SL5 STSTEM REFERENCE MANUAL

Information contained in this wmanusl is disclosed in confidence and may
not be duplicated in full or im part by any persom without prior written
spproval of The Stackvorks. Its sole purpose is to provide the user with
adequately detailed documentatiot so as to efficiently imstall, operate, and

mgintain the system supplied. The use of this document for all other purposes
is specifically prohibited,

4

"-_." 12,05

COPTEIGET 1980
By The Stackworks
321 E RKirkwood Avenne
P.0. Box 15096
Bloomington IN 47402
(812) 336~1600

References are made throughout this manual to the CP/M operating system, to
the Z80 microprocessor, and to the 8080 microprocesser. CP/M is a registered
trademark of Digital Research of Pacific Grove CA. 280 is g registered
tracemark of Zilog Imc. 8080 is s registered trademark of Intel Corp.

Statement of Warranty

Super3Seft diseclaims all warranties with
regard to¢ the scoftware c¢ontalned on discette,
tape, or printed form, including all warranties eof
merchantability and fitness; and any stated
expreas warranties are in lieu of a2ll obligations
or liability on the part of Super3cft for damages,
inciuding but not limited to special, indirect or
consequential damages arising out of or in
connection with the use or performance of the
software licensed.

Transferability

SuperSoft software sand manuals are sold on an
individual CPU basis and NO rights for duplication
are granted. X N feth

Title and ownership of the software and
manual shall at all times remain with SuperScft

It is understood that acceptance of this
software product implies agreement with the above
policles.

Application Note #1
(Z80 Version)}

Branching to Externzls

Sometimes it becomes necessary to branch te (or "CALL") an external
assembly language routine from 8 word and return to that word after some
action is preformed, This note will iliustrate two ways in which this cap
be accomplished by the use of an additional code word. The assembler is
assumed to be present in the following examples,

The first example branches to a specified address EXAD, where the
following code exists,

EXAD: LD A,20H
ouT (CD1IH) ,A ;SERD A BLANK TO PORT D1i.
RET ;RETUEN TO CALLEE,
In the SL5 portion of the program, the following words are defined.
F600 CONSTANT EXAD (address of routine)
CODE BRANCH-EXAD EXX DE PUSH HL PUSE EXAD CALL
HL PCP DE POP SNEXTHL JP EDOC

Whenever the word BRANCH-EXAD is executed, the alternate register pairs
DE & HL are saved on the stack before and are restored after calling EXAD,

The second example to be given is slightly more complex then the previous
one, because it branches to amn address placed on the stack and passes
parameters to and from the external. This example will assume that the
following assembly language routines exist starting at F605.

EXAD2: LD A,C ;LOAD A4 WITH THE DATA.
oUT (OD1H) ,A ;SEND IT TO PORT DIl.
RET ;RETURN TOD CALLER.

EXAD3: IN A,(OD2H) ;READ FROM PORT D2.
RET

In the SL5 portion of the program the following words are present.

F605 CONSTANT EXAD2 (ADDRESS OF EXAD2)
F609 CONSTANT EXAD3 (ADDRESS OF EXAD3)
CODE BRANCH HL POP BC POP
EXX DE PUSH HL PUSE EXX
HERE 5 + DE LD DE PUSH (HL) JP
EXX HL POP DE POP EXX
41l LD 0 B LD $PUSH JP EDOC
: TESTI " A EXAD2 BRANCH DROP ;

¢ TEST2 O EXAD3 BRANCH , ;
Whenver TEST1 is executed, the letter A (4] hexidecimal) will be sent to

port D1, Whenever TEST2 is executed, port D2 is read and the value is
displayed via the ".".

o
]
H]

L}

N
-
ONMHMUOY> W~ L WN—O

[d
P

P B Bt e o Bt B b s b 2 bes e e
MU Omd Do~ W

—
b

Nl#NNNMBNNNHHr—HHHHH [o
W o =~} h ua b RO W~ W OWOo WL LR D 2

La W
e O

char

zull
sgh
8LX
etx
eot
eng
ack
bell
bs
ht
1f
vt
£f
cr
B0
si
dle
del
de
del
dcéd
nak
2yn
ethb

em
sub
esc
fs
g8
TS
us

hex

20
21
22

24
25
26
27
28
29

28
2C

2E

30
31
32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F

The Ascii Character Set

dec

32
33
34
35
36
37
38
39
40
41
42
43
b
45
&6
47
48
49
50
31
52
53
54
35
56
57
58
59
60
61
62
63

char

T v + %~ Avth M0

LURRY . I, BN - LRV B A VURY RO L o R S

[IRV BV .S

hex

40
41
42
43
44
45
46
47
48
49
4A
4B
4C
4D
4E
4F
50
51
52
53
54
55
56
57
58
59
5A
5B
5C
5D
SE
SF

dec

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
B6
87
88
89
90
91
92
93
94
95

n
=2
mn
H

— N H TS WOoOwOoORRXCPR LU OMMMN OO > mw

hex

60
61
62
63
64
€5
66
67
68
69
6A
6B
6C
6D
6E
6F
70
71
72
73
74
75
76
77
78
19
74
78
7¢C
7D
7E
7F

deg

96 .

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

char

s

4

ot e N Y M E L4 2 v DD O P H HRRFOMHTR MO AN OD
L

Tubout

Preface

SL5 is more than 2 language; it is a complete approach to small systems
srogramming. The distributed CP/M compatible diskette contains every line of
source code for the system.

We believe SLS will greatly enbance the development cf software for the
micro-processor/small system of the “80s, It is self-contained and can be
completely regenerated at amy time. Subsets of the development system can be
created using a minimum of 2K bytes of storage. Thus, a complete end user
oriented package can be developed at a high level, debugged, and then
.mplemented in EPROMs or very small memory systems.

This feature should rezlly impact OEMs who market micro-based products
apd are nov using assembly code. SL5 is not likely to increase memory usesge,
and on large programs is likely to need less space due t0 its threaded 1ist
structure, Ip any case programming-debugging-modification time will be
dramatically reduced.

Since SLS is8 written in SL5 it will be easy to change to & nevw CPU in
the future. Controllers pow using a Z80 could be switched to & 6809 without
huge software changes. In addition the system is easily extensible and can be
snbanced to meet your needs at any time, Want a simpler 1/0 structure thano
\ ¥M? All the books are in the SL5 source to make the change.
= All of the SL5 system can be moved to & new CPU by redoing the kernel for
that CPU and its operating system 1/0. As part of this manual, we have
provided documentation or how the kernel works, and all of its source code is
included with the system.

Where does the system go next? In large measure that depends on where
you want it to go. We are committed to both implementing the system on more
CPUs/operating systems, &pd also adding more powerful features and
enhancemenrs. We are already working oo an AMS51]1 compatible floating poiant
package and a character string handling package. We have a MC6809 version
nearly ready and we will comsider doing other stapdard CPUs as well. We are
definitely interested in having a version for the MC68000 in the coming
months,

We want to establish a broad base of users/developers who can expand the
system evenr futher. The simplicity of structure inherent in the SL3 syntax
coupled with its compact productiom code, fast speed, high-level coding, ard
in-line assembly code capability make this system among the best available.

('n arriving at the £imnal vocabulary chboices we have varied from the 1977 Forth
"andard only where we felt that its struccure was not powverful enough or not
:adable enough.

We look forward to an exciting decade for small systems ,and we are
confident that you have purchased a product that will allow you to keep up
with the fast pace of the "80s. We think that as you continue to work with
this powerful system you will share this confidence.

We are available as an additional resource for programming problems,
bugs, special problems, etc, Feel free to contact us at any time.

Go with ifae..
Mike Brothers

Larry Moopgin
Dave Delauter

Gettz.ng Started _) R - A

SLE is distributed as a set of CP/M text and COM files on & single
diskette. Its a good idea to make one or more backuyp copies of the -, -
distribution disk before using the system. PIP the files over to a disk which
has been SYSGENed with a copy of your CP/M system. The text file SL5.DOC
contains a description of each £ile on the diskette, 1f you are familiar with
Forth type languages, browse through the Reference Section list the SL5.DOC . . .
file and go to 1it, New users should read the Tutorial Section and work through

the examples first. L AR ol
To bring up SL5: o _ kY ; C R, : L
1. Enter cntl~C or reset the system to bring up CP/M L ,“
2. Eater SL5<cr> ' * . ; - “op

_ The prompt > should appear on your screen. Lf it doesn’t try again, then -
give us & call. , ,

- -
-

R

(
(

—

-

{

Using SL5

SL5 can be used it a variety of ways depepnding o vour needs. The
development systex caz be used imteractively to test out simple procedures,
debug & newv piece of hardwzare, or write a3 simple test driver for 3 device.
New words(procedures)can be defined, but will disappear om a reset. HNew words
are said to be "compiled” which actually means that a symbol table entry is
made and a threaded list of poipters to the words ino the definition is created
for later execution. Thus, the compiled code segment is extremely compact.

Execution of SL5 words is accomplished by an inper interpreter which
fetches word addresses from the threaded list and executes each wvord in turn.
The overbead for each word is about equivalent to a subroutine call and
return, Most coding is done using the stack for parameter storage for both
input ané output to a word., There are also arrays, variables, and constants
defined in the language. For most programs a 256 byte stack is more than
sufficient and careful structure of code allows for a ROM based system
implementation with very small RAM and ROM requirements.

Complex programming is usually done by writing the SL5 colon or code
iefinitions onto & f£ile using am editor. This file is then compiled on top of
the development system by using the word FLOAD. Each defined word can be
checked for proper execution starting from the simple definitioms and working
up to the more complex words.

When the file(program) is debugged, tbhere are several options:

1) Do nothing...that is load the program each time it is
used by loading SL5 and then FLOAD the program.

2} Create 2 memory image of the working version of the
program that can then be saved on disk. The COMMOD procedure
does this.

3) Create a RAM or ROM image of the program (with all or part of
the SL5 system includeg)starting from a minimal 1K system
wvith simple user 1/0 to a 10K development system plus the
wvorking program. The SYSMAK routine is used tp create these
modules. The Object Modules Section describes how these

N systems are created in some detail.

o~ The SL5 system is extensible, adaptable, collapseable, and well

documented making it 2 very powerful, self-contained programming tool.

-

L

>

e

N
t i
*
Ll
w4
~
,
s %
2
A
sha
v
N
o
[
-
*
L -

oy

=3

-

[39

r

£

1.

Table of Contents

-

Tutorial
IRETOodUuCEiOl e + 4 o v 4 s e o e 5 e o a
DECTIMAL
Numbers L3 - - L] L] L] - L) - . - . [- . o °

Simple Stack and Arithmetic Operators ..
DUP SWAP + - =*

Dlspla?ung a Message . +« ¢« v ¢ o & ¢ » o

Colon Definitions...Creating New Words . .
P
Word Names

Program Control Words . . . « « ¢+ « & « &
BEGIK END
IF ELSE ENDIF
D0..LOOP
FORGET

Comszants, Variables ¢ ¢ « + « &
CONSTANT
VARIABLE
@ (fetekr)
!' (store)
BE B!

Writing a2 Program...a Simple Example . . .

)

—

90

10,

11.

12.

Reference

Introduetiol o 4 ¢ 4 & s 6 + % os e & 8 s s

The Stack « o s s = & s 5 s 8 & © ® e & ¢ =
Stack Operators

Nunbe:s * ® . . * - ® L) . * L] L] - - - - L]
Variables and CODSLANLE . ¢ o o « « o = ¢ » o
Constants
Variables
Memory operators
Arithmetic and Logical Operators
Conditional OPEZABLOTSE « v ¢ o o o o ¢ « o & &«

Quter Interpreter e £ 5 s a4 s s o 4 s s s a

:Definitions P 8 s & & & 4 & = » & & » a @
Ipner Interpreter

Brapcking
I¥..ELSE..ENDIF
CASE..NOCASE. .CASEND

Loops . . ¢ ¢ ¢ i e b e st e e s e e e e
BEGIK..END
BEGIN..WHILE., .REPEAT
DO ., LOOP
+L0OP, EXIT
Loop indexes (I,J,K)
RECURSE

A:’ra?s L] L] L] * * ; . L] L] - . & @ » " 4 & & &
ARRAY .
BARRAY

I!O.a-ae-aon-oo-.c--ccc-
Introduction
INFILE, OUTFILE
FALLOC, NAMIT
OPENR, OPENW, FLUSE, CLOSE
GCB, TCHE, T", TYPE
CIN, corT, C"
RCE, WCH
REYTE. WBYTIE
READ, WRITE
DELETE. RENAME
ININIT, OUTINIT
EOF
WORD
Numeric input
Numeric output
FLOAD, [end—of=file}

L]
-~ ~ o

A2

A2

[

13.

id,

15.
1.
17.

User Defined Code STructures . ¢ « « + « « » o

: CODE

The DICLiOBETY + o & o o o & o 1 = &
Symbel Table
Vocabularies
Chaining
FIND
FORGZT
“, "B, °S, COMPILE

CODE Words . . ¢ o ¢ ¢ 4 ¢ o« o &+ ¢ o ¢ o« »
System Variables . . . « v v v ¢ 4 & o o o

ETTOr WEeSEATES . o + o ¢ & o o o 2 6 4 o o o o

Introducetiol ¢ &+ ¢« o ¢ ¢ & ¢ ¢ & o« s e s o »
Execurion of CODE Wozds . o « 4 o« o o o o «

Creation of CODEI Words c B o s o ¢ b e s »

Using the Assembler
Exiting from a Code Word
Branching Within CODE Definitions
Forward Branching
Looping

1
2
3

s & o

Assembler MRemomics . « « « « + « s « = o &
Register Usage. . + + v v ¢ & s » & & « o o

Exampies of CODE Defimitions.« . « . .

Debug

Introductiol, . . &« « « 4+ v 4 o & 4 & v . . .
DUMP - Memory Dump. . . ¢ + ¢ & & & « & o o &
MODIFY =~ Memory Modify. . . .« . . . + + + « .
PSDMP, RSDMP - Stack Dumpimg. . « « « « « . .
BREAK, *UB* - Breakpointing

SYM®, SYMDUMP - Dictiomary Ixamination. . . .

- .18

.19
.20
W21

.1
.3

o~

CP/M Interface

l. Imtroduction .« ¢« ¢ v ¢ v ¢ o 5 0 s ¢ s o « o ¢ &
2. Loadipg SL3 object files . « v v ¢ o o o o o o =
3, TLOAD « ¢ v ¢ ¢ 4 o s o s « o« & s« s » a s « &
G CALLCPM , . . v 4 4 ¢t c ¢ o =+ 2 o o « = o« » «
5. Serial 170 « 4 v o v 6 b b h h a6 e e e e e e
B. Digk I/0 . o ¢ 4 ¢ o o o o o b o s a4 e e o e e s
7. OPENR, OPENW . o ¢ « 2 s « ¢ s o s s s « 5 o » &

Object Modules

1. INtToduetion .« o« o« 4 o o & 4 s 4 s b6 2w e e
2. Compiling a Subset of the SL5 Kermel.

Quter Interpreter

Compiler

Consele 1/0

FTile Systen

User 1/0

The Symbol Table

Delating a Section of the Kernel

3. Gemerating a ROM Based Concroller Program . . .

[Generating a2 RAM COM Module with SYSMAKE . . .

5. SISMAKE Errors and Parameters . . . <« « « o o+ o

6. Generating a COM module with COMMOD
Creating Disk COM File

Creating a COM File With an Initialization
Creating a COM File Without a Symboel Table

L
w [] [] (8]

.
ST S

Routine

AT S

1S
P

1.

2.

3.

4,

Structure

ln:roduCtion » ° a . L] L] Ll - L] . * a L] L] L

Memory Organizafioh. . +« . + ¢ « o « « ¢ + &

Compilatior of Words . o v + v ¢ & o o & =« &

1. Colon Defimitiems. . « « o« o« . =

l. Literals « . + + . . .
2. T"] L - - L] L) + L] L L]
3. Branching . .

IF..ZLSE. .ENDIF

BEGIN..END

RECURSE

;¢ aod ;CODE
2 L] CGDE De:’ ini L ions L] L - -, a L] . - -
3. CONSTANTSs. . & 2 ¢ & ¢ & & o =& = =
4 + VARIABLES * [] L] - L - - - ® L] - - -

5. ATTEYS + ¢ v 4 4 4 s e 6 s e e e

Ihe Di ctionary Ll L] L] - * - L 3 » » [] [] L] - L 2 -
1. The CURRENT & CORTEXT Pointers . .
2. vOCabulariES - - . L] - . . - L] L]
Their Internal Structure
Vocabulzry Chaining

3. Dictiomary Reduction . « . « + . .

Glossaries
SLS Glossary + « + 4 o + s o s 4 4 4 e 0 4 s
Assembler GloSsaTy . + ¢« ¢ ¢ 4 . s e e o o .
File System GlossSary . . « &+ o 4 o « o o & =

Debug Glossazry . . . « v o v ¢ ¢ ¢« v« . .

L]
[E R0 o w L

.10
.10
1l
.11

Jd2
12

'12

- 1
A7
.18

i~

)

Tutorial

Introduction

This section describes how to do simplie SLS programming and includes
examples of some of the predefined SLS procedures, called words. SL3S
Programs ace developed by defining new words using the predefined omnes. For

the most effective learning try the exanples 28 vou read. Bring up the 5L35
gystem now, as described in the Interface Sectio:n,

The prompt character ">" on the CRT indicates that SL5 is waiting for
input. Keyboard entries are terminated by a cerriage return which in the
early examples is indicared by the symbols <er>. In later examples the <er>
is omitcted, but 8 carriage returt is assumed after each entry. For example
the predefined word DECIMAL can be entered teo tell the SLJ system that numbers
entered are it base 10. Make this entry pow.

Type: DECIMAL <ezr> -

DECIMAL snd many other predefined words are described in the Reference Section
and also in the Glossary.

(? Bumbers

N

SL5 has two primary structures, words(procedures) and numbers. Numbers
are stored as lé bit integers in memory.

Enter a: 2 <er> »

Not much seems to have happened, but the system has recognized the number
2 and stored it in the primary storage area, the "Push Down Stack"™. Much like
a pile of plates, the last number entered on the Stack will be the first to be
temoved. The Stack concept is the heart of the SL5 system and will become
more obvious it the examples that follow.

Now enter a: 3

The 3 is stored on the Top of the Stack(T0S) vith the 2 being pushed Hext on
the Stack(N0S). 4 periocd 1s predefined to mean remove and display the TOS.

Type: .

g" removes the TOS and displays it(the 3 iz this case) on the CRT. This
- 5 the value 2 remaining on the TOS.

Tvpe: .
Now the 2 is displayed leavimg the Stack empty.
Type: .

The error message "Stack Underflow Abort" indicates an empty Stack. Iry
entering several numbers and then displaying them wiidb the period.

Tutorial -~ 1

J

O

Simple Stack and Arithmetic Operators

Many of the predefined words use the Stack for their input data and leave
their results on the Stack when they finish., DUP and SWAP are two of the most
used worés. DUP means create a copy of the TOS and put it on the TOS(the
original is now NCS). SWAP means reverse the top number with the one under
it.

Try: 4 & DUP . . .) . *
anc alse: & & GSWAP ., .) ’

3 4

LY R

This same use of the Stack for inputr and output carries over to the
arithmetic operators as well. . 2
o = sy
Iry: 2 3 + - toREs o~ L
Plus removes and adds the top 2 Stack entries apd puts the sum back on the
Stack. Try some more experiments with other operators includinmg:

-~ A
s

& 2 3 * - {result=2) A4
This notation is slightly confusing, but more than offset by the ease of
defining new words, the execution speed, and the simplicity of structure, -

Displaying a Message -
b

P .
1] o

2

Type: T This is = message

~ (. .
- - +

i

Anything betwveer the T" and the " will be displaved. Note tbat a " will
not display using this technique. The space after the T" is mandatory.
Another useful word in this context is CR.

Try: T line onme " CR T" lipe two " CR , E
Iry some variations of the above exanmple. 'j o L BR e
Colorn Definitions..Creating New Words ©e

New words can be defined Dy using the two wards color and semi-colon.

Type: : MESSAGE T" This is a test " CR ;

The predefined word colomn(:) creates a symbol table entry for the wvor
MESSAGE. ~

Now type: MESSAGE “gv
Try: : SUM <+ T THESUMIS " . CR ;

This word SUM expects two numbers to be on the Stack when it is called. It
adds them, displays a message, displays the T0S, and then does a carriage
return.)

2
T

Type: 2 3 SUM . - AT 3
Type: 20 <3 SUM

<z

Tuterial - 2

L4]

New word defipitions comsist of a color, a one word name, a8 list of
already defined words or numbers, and & terminatipg semi-colom. Tairly
complex high level words are possible with eack word beipg defined in terms of
lower levels until the bottom level words are defined completely by the
predefined words supplied with the system. :

Word names can be any sequence of non~blank characters. Some examples
are: + 1+ Q QQQ*7T TEIS-15-A-LONG-WOQORD and so0 on. Some care is
pecessary to avoid comnfusing names. 3Since most programmers work in base 16,
the prames F¥ ABCD 1BAD end so on wouid be valid, but ambiguous with
valid bex pumbers, The system first checks a CRT inpul to see 1t it is 2
valiid vord, thes tries to ipterpref it a&s & pumber,

A complete program is usually defined a2s a single word whickh, when
executed invokes many other words to accompish a task. The words can be
tested individually by entering them in the sape manner as SUM and MESSAGE
were entered. Try defining some words using either the vords mentioned in
this sectiot or in the SL5 Glossary Section.

Program Contrel Words... -

There are several ways for SL5 programs to loop and brameh. The
predefined words BEGIN END IF ELSE ENDIF DO and LOOP will be discussed
iz this section. For 2 more complete list see the Glossary Section and the
Reference Section., The most simple loop words are the combipation of BEGIK
ané END. END is predefined to remove the TOS and if it is truel{motr zero),
terminate the loop. I1f the TOS is false{zero), control trawnsfers back to the
BEGIN., For example, the Sequence BEGIN 0 END never ends while the sequence
BEGIN 1 END executes only once.

The words IT ELSE angd ERDIF are used for most common branching. If
the TOS is true{non-zero), words following an IF will be executed. If the TOS
is false(zero), words following ELSE{(ELSE is optional and may be omitted)will
be executed. Ip either case control will transfer to the words following
EXDIF .

Try: : ATEST IF T" true " ELSE T" false " ENDIF MESSAGE CR ;
Note: the SLS system allows use of some words suck as BEGIN END IF ELSE

ENXDIT and so o only within a colon definition, Attempts tc use thexm
otherwise will leave the Stack 1n ao unknown state.

o Trys 1 ATEST

\

_.mé: 0 ATEST . _ -

A

Mpst languages have some built-in procedures to do common kinds of
branching such as DO and CASE statements, SL5 has these procedures predefined
and a2 more complete description cav be found im the Reference Sectiion. Here
is an example of a simple DO statement to display the numbers 0§ to 4.

‘ Type: . DOTEST 5 0 DO I . LOOP CR ;

The predefined word I puts the inside-most loop counter on the TOS.

Type: TEST

Tutorial = 3

)

The word DO expects two values on the Stack: the TCS is the start value
for the loop and the stop value less 1 is NOS., LOCP ipcrements the count by 1
apd coptipues the loop until the stop value is reached.

1

Now type: : DOTEST 0 DO I . LOOFP CR ;

The system responds with a message REDEF DOTEST indicatimg that the word
DOTEST hes beesr redefined. The first definition is still stored in memory,
but future vreferences to DOTEST will use the newv one. This second versiou
requires a stop value to be on the TOS when it is iovoked. .-

Type: 7 DOTEST -

- For a still more general DQTEST put both DO parameters om the Stack.

~

i=

Type: : DOTEST DO I . LOOP CR ; o N
Once again DOTEST is redefined and there are now three vérsigns. The latest
one will be executed.

Type: g 1 DOTESI

T-y some more experiments. There is a convenient predefined word FORGET to
allov returning tc an old definition. Cautiom: FORGET will throw away all
word definitions unzil it reaches the word specified.

\
Type: FORGET DOTEST ‘ T e S e
The second version of DOTEST is now active. Test 1f.... - : .
Then Type: FORGET ATEST

This causes the system to forget ATEST and all words defined since ATEST, in
this case DOTEST versioms two and omne. Test it,

A - t =

¥

Type: DOTEST :

The error message DOTEST 7 indicates that DOTEST is unknown to rthe
system. ATEST is gome too., FORGET is most useful during the debugging phase
of program development. Each new load is preteded by 3 FORGET of the old
version,

-

E O 13

Constants and Variables

-

-

In complex programs it is convenient to have access to storage a. .as
other than the Stack for commonly used data, In SL5 there are four predefined
words for this purpose: CONSTANT VARIABLE ARRAY and BARRAY (byte array).

The word CONSTANT defines a2 mame which when executed will leave a 16 bit
value on the Stack, Usually, this value remains unchanged during execution
and it is considered as a rommable memory area. By convention Values that
wight be changed are stored ip variables. The word VARIABLE defines a name
which leaves the 16 bit address of a 16 bit value om the Stack,

The prededined word € (feteh) rTemoves the TOS, assumes it to be ap
address, and leaves the data from that address on the TCS. The predefined
word ! (store) removes an address (TOS) and a data value (NOS) from the
Stack, and stores the datz im the locatiorn specified bv the address.

Tutorial = 4

Type: 1 CONSTANT ONE

and: 2 VARIABLE VARTIMP

and: VARTEMP? € .

to display the current value of VARTEMP.
and: OKE

to display the value ol ONE. -

Trv: 6 VARTEX? !
and: VARTEM? @ .
apd: VARTEMP € ONE SOM

Try defining some variables and experiment witdk them. Note that the use
of £ and ! is not limited to variagbles. If vou wish to read the conten:s
of memory location zero, 0 @ will leave that value on the Stack. For
example,

' : ZAP 100 0 DO ¢ I B! LOOP

would set memory locations from 0 to %9 to zero upon execution of ZAP, The
words BE and B! fetch and store bytes., (Warning: setting lov memory
cells to zerc is likely to crash most operating systems).

C

_ Writing a Program...a Simple Example

A very short sample program teo de inventory contrcl is outlined below.
The top level word (ICP) calls a word to imitialize variables, tables, and so
on., Then it begins 2 loop which looks for a CRT entry, does the appropriate
action, and continues to loop until a terminatioo is requested. The top line
enclosed by parenthesis is 2 comment.

Once the top level word is completely defined, each of its words can be
defined, either a2s a test stub, or in a more complete form. This process
continues unril 211 words zre defined. As eackh bottom level word gets
defined, it car be checked ocut immediately. By the time the checkout reaches
the topmost levels most bugs are fixed.

{ ICP Inventory Contrel Program)
ICP INITIALIZE BEGIN
DISTLAYMENU ANTINPUTIET our IF
PROCESSOPTION
(ENDIF
END

This defipition leaves INITIALIZE, DISPLAYMENU, ANYINPUTYEI, and
PROCESSOPTION yet to be defimed. Suppose we define DISPLAYMENU as

DISPLATMEND CR
T" Select ac optionm: " CR
™ 1 New Eatry " CR
™ 2 Update Previous Entry " CR
™ 3 Display Current Data " CR
™ 4 Stop Exezution " CR ;

This definition could be checked immediately as 2ll of its words are
already defined. The word ANYINPUTYET as used 1n the defipitiomn of ICP will
check to see 1f there 15 a2 kevboard entry and leave the datz entered on the
TCS, or a 0 if there is no entry yet. The entry is duplicated and checked

with the IF, amd if it is-a zero{false), the duplicate will cause END to

Tutorial = 5

7

branch te BEGIN. The predefined word CIK might be used inm ANYINPUTYET.

The word PROCESSOPTION is the heart of ICP. 1t must do the file I/0 and
displays as requested, and leave g true(non-zern) value or the Stack for
stopping the prograzc, if requested. The predefined words CASE and NOCASE
could be used very effectively in PROCESSOPTION. During the development stage
of ICP this word mxgh: be defined as 2 scub for testing and then £illed in
piece by piece later. For example:

PROCESSOPTION { test stub for debugging)
™ PROC ™ DUP . & = TIF
1 ELSEO (leavea !l for termizate)
ENDIF

Careful choice of word names, & few comments, and some sort of
indentation convention will make programs almost self-documenting and easy to
change. Avoid the temptation to save space by using obscure nacmes or writing
the definitioms run together, i.e,

: ICP 1IN BEGIN INP DUP I¥ PROC ENDIF END ; This definitiom is not very
easy to read and not recommended. i

There are many ways to write ICP that are equivalent to the above
example. Avoid doing clever apd tricky Stack manipulations or other shortcuts
unt11 the program is debugged(if at all). SLS programs are fast and may
fine without further tweaking. Even faster execution speed can be ob:ained")
substituring CODE definitions(see the Assembler Sectien)} for a fevw key words.

During normal program development SL5 programs are written directly on
disk £iles using an editor and thes loaded using the predefiped word FLOAD.
See the Reference Section for more information about loading. The SYSGEN
program included with SL> can be used to create a CP/M COM module or a stand~-
alone ROMMABLE module. See the SYSGEN Section for more details about these
options.

This comcludes the Tutorial Section. Many other examples of SL5 programs
can be found in other sectiomns of this manuzl. Perhaps the best resource for
SL3 examples is SL5 irself. Most of the system is wrlt:en ip SL5 amd all
source code is jncluded with the system,

-

Tutorial - 6

Reference E

S

——

Referencs
I. Introduction

This section decribes the SL3 programzing language. It is loosely
prganized by class of operator, and is intended to bridge the gap between cThne
Tuterizl section ané tne Glossary. Twe central elements of the SL3 programming
systew are a pushk down stack anmé RPN (reverse polish notztion) logic.
Prograwmmers unfaciliar with either of these concepts are urged to review the
material io the Tutorial section, acd experiment with the system using the
conscle inrterpreter. Many examples in this sectiorn illustraie the use of S§SL3
operators from the conscle interpreter (see example 1 pelo). Tach line ¢?
inmput is terminmated with a carriage return. Numbers are pushe onto the stack
for use Dy operators that follow., Dot/period (.) causes the t«p of the stack
to be printed om the CRT. The right arzvow (>) is a systex prozmp: for more

input. All numbers in the examples are decimal unless otherwise specified.

Example 1l:

>3 4 5 (put 3 numbers on the stack)
>, .. (print 3 stack elements)

e S 43 54353+ 2 %,

i4 > {resulr is 14 1f base is decimal)

2. The Stack

The stack is the primary mechamisz for dats transier in SL3. Operands zr-e
pushed onto the stack for sudbsequenrt processing Dy words (procedures) invoked
fron the outer interyreter, or executed Irvom compiled words. BEPN (reverse
polish notation) logic holds between words, zlthough »nfix 1s used to ordes
pulciple operand words (e.g. +, =, ROZ). The szack 15 formal.y defined as =
lest=in Zirst—-out queune. Use ci the stack to tramsier parameters betweer woras
allows the matural generation ¢ reentrant and recursive code, and clean
handling of interrupts. '

p—_— P s
>5 .
3>5 dUP . .
55 >10 5 swaP . ,
10 5 >3 & 5 ROT .
35 4 53 4 2DUP
43 43 >

Stack operators

The table below describes the S13 stack operzcors. The tor cf stack is on
the rizht 1n the diagrams.

Reference - !

‘(\\

[: I Stack * |
| Uperand | Fuaction | before! after|
| l [|
! DUP i Copy top of stack | a aa !
! | (TOS) | |
f ; s s
| DRCE E Remove TOS ! ab s | .
i —t 1 1
} SWAP ; Reverse T0S, TOs-1 | ab va E
} OVER } Copy T05-1 } ac aba E
L1,
I ROT } Move T05-2 to TOS f apc bez | s
l — . l (e
® ROLL | T05-5 to T0S I | ;
| Fill vacated positions |
! 3 ROLL g (same as ROT) | ab¢ bea 1 ;
l _ .
a -ROLL | opposite of ROLL i !
! 3 -ROLL = } gbec cab E
| T PiCK } Copy 10s-& to T0S | |
3 PICK | | abc abez | h
I _ I !)
2DUP ; D-p TOS & TOS-1 } ab abat E
¥ 2DROP ‘“"% Drop IC5 & 105-1 1 aab & !
— — ' 1
| 2SWAP | Swazp TOS.TOS-1 wiczh | |
} | T05=-2,TQS=3 | abcd cdab =

3. Numbers .

- T

™

Signed numbers are stored as 15 bit integers, with the top bit used Zeor
the eign. 4 16 bt word is also used to store unsigned numbers. There 25 ng
internal d4ifference berwveen signed and unsigned numbers. The rype oI operator
deterxzines how the number is handled. Overflow Is not checked bv ruc e
routines. The usual result is truncatioesx. -

-

¢ Base
The variable BASE rontains the current Radix used by input and outpug
routines. Changing the base does pot aifect numbers already stored ir memory,
only the Radix with which the number is printed. DECIMAL, OCTAL, and HEX are
predeiined words to set the Radix. Other bases may be used but the output mey
100k strange.

>DECIMAL 10 HEX . .
A >EEX 10 DECINMAL . T
16 >

Reference -~ 2

4. Variables and constants

Constants

& constant is5 a2 word that pushes its value on the stack when execured.
{onstants are stored as 16 bit integers.

>10 CONSTANT XX .
>XX .
10 > -

The value of 2 constant can be changed by manipulating the dictiorary amd

° code segment, but that’s 2 poor programming practice ir RAM based systems. The

€; .alue of 2 constant cacnot be changed in ROM bzsed code because the value is

' “stored in the ROM sect:iot of memory. Use variables if you want to change the
value at rTun time.

Variables

4 variable is a2 word that pushes the address of 2 16 bit memory loca:tion
oo the stack. SLS has 2 types ¢f variables, RAM and ROM, Variables created
durinz normal progran development are RAM variables. The variable is stored iz
the code segment, A4 flag variable ROMF deterzines whether 2 systern is crezated
wich ROM (ROMF=l) or RAM (ROMF=0) variables by the SYSGEN program. Wher ROMT =
1l the code segment contains & poinzter te z memery location in a user defiped
RAY area.

>10 VARIABLT IX
>XIT B .
10 >15 XX !

‘ . >XX &

- 135 >

Memory operators

Memory words assume that an address is on the TOS. An additional operand
way be required (e.g. !J.

Reference =~ 3

{’opera:ar{ example ﬂ funccion E
; g | g & } TOS = comtents of adar g !
E |
J ! i o p ! H Store m at adaress oz p
l f
| BE I q B § Fetch L byte from memory |
| !
| B! ; mp B! g Store byse m at aadr of p |
| _ !
| e | q @X } “Tetch a word and swap byces |
| _l |
E 1+! 1 p l+! | increment contents of p oy Ll
|
{ 1= ﬁ p 1=l | decrement countents of p l:
E -l } @ p +! ; add m to contents of p }
3 >10 VARIAELE TEST B
>TEST .
4000 > (address of TEST returned)
>TEST @ .
10 >5 TEST !
>TEST € ,
5 >TEST 1l+! ,
>TEST €& . : "
& > N

5. Arirhmetic and logical operators

All of the arithmetic amd logical operators rake their operands from
stack, and return cthe result %o tne stack. Logic s RPN so precedenca
-mplled by the order,

-~

E

Qefsrence = « — . -

T o ——— g rp—

exzmple 1 funccicn

T u o+ | add m andé =, Tesult on TGS
|
o L+ | aed 1 to TCS
I
o= | subrrazc: ¢ froz ©— (m—n,

o 1- | supcract 1 from TOS
[

T o - | suntract =- { m~t)} = (p~m)

T B ¥ | Mnlziply z by m

quotient on 708

I
| —

o1 /MOD | Integer divide w by =
| quorient oc TOS$

|
I
|
|
I
]
|
I
|
|
!
|
{
/ : m = / | Integer divide m Dy &
|
|
[
|
f
!
I
!
|
|
!

| | remainder TO0S=1

MOD m o MOD I
I MIN o & MIN I leaves sma.ler of m b or TOS
I MAX r & MAX H Leaves larzer (m,n) or TCS
I ABS | m ABS I Leave absolute value on TOS
I MIEHE_I n MiNUS I Negate by taking 2's czompi
I COM I x COM I 1"s complement
I & I o n & I 16 bat logical AND
I { I D | I 16 bit inclusive OR
I X I zn X| I 16 bit exclusive OR
I <=1 I m o <-L I left shift = n bics
| t ! end off
E =>L E = n >L I vt shifit = © bits,end oif

|
I
|
I
I
3
!
f
I
I
|
|
i
]
i
!
!
i
]
|
Remainder of m/t on TOS }
I
|
|
[
!
i
!
|
|
I
I
|
|
!
|
I
i
|
i
{
i !

O b bt b b e O
A
—
—

Reference = 5

6. Conditiomal Operators

Conditiomals take their operands from the stack and return logical true
or logical false as the result on the top of the stack. Iz 815 a logical TRUE
is defined as a nop~zero value on TDS. 4 logical false is a zero T0OS. Four
unsigned operators are included so that 16 bit numbers like addresses can be
compared. .

| operator| example | function !
E 0= |7 =m 0= |"TRGE 22 © = 0 i
{ 0« ; n 0< f TRUE if m less tbam O }
- E 0> { = 0> E-Tiﬁf if m greater than O i
‘?} t NOT E m NCT I equivalent to 0= = “{b
I = | o= | TRUE if m = n l
% <> f s n <> ” TRUZ if w not equal to m :
= < E mn < J TRUE if m less than n }
; > i z B> d-fﬁﬁf if w greater than n E
l K= ! maon <= [TRUE if m LT or eguel to w |
{ >= ? E o o= ? TRUT if m GT or egqual ton i
{ g I =z n U> | Unsigned greater thaTZ test }
} U< H ® n U< ; insigned less thar test ;
{ Co= J me U>= i Unsigned GT or equal {
i U<= ; z n U<= E Unsigned LI or equal i

-— ?xﬁ\

Examples: Conditional operators

>1 0= .
0 >0 0=,
1 >0 0< .,
¢ >33 =,
0 >5 5 =,
12>5 5«

0

Reference = 6

7. The Outer lLnterpreter

The outer interpreter is the “main-loop” oI the SL5 prog-amnxng system.
It funcriopns a5 the conscle executive, in: e'n e.e-, and primary dats enzry
svystem. This sever word solor delimition is a classit example of the power of
the Fortd programming language .

The SL5 visable to the user oz the ecrt screen is the ourcer imterpreter, A
line of tex:t is collected, then processed. Color delinitionms, variables, and
constants zre entered into the dietionary —— which is a linked list of defimed
words., Previously defined vords that are no: part of a mew deficitipe are
executec immediately. Strings pot found in the dictiomary are treated as data.
NUMBER is called to comvert the ASCII stripg according te the current radix,
If NUMBER £fzils an undefined abort occurs. Valid numbers are pushed ounto the
szack 1f executing, or entered into the dictiomary as literals if compiling.

Compilation is a special case of interpreting (see : definitions 8.),

Colon sets the system variable STATE to compile. Subsequen: words in the igpu:

streawr are compiled until the word ; resets STATE. 4 few words (e.g. °, T", IF

etc.) are executed even though SLS5 is im the compzle stzte. These are
ef called immediate words or compiler directives,

N e

8. Colon Definitions .

Compiling is 2 specizl case of interpreting the input stream. Wher 2 : is
encpuntered the system variable STATI is set., The words that follow up to a2
are used Lo create & new word .n the dicriomary.

There is 2 class of words that executes during compilacion. They are
coupiler directives, or words that act oo the input streaz (7, T, Tokems in
the inpur,stream that are not found in the dictiomary are conve—ted to numbers
and stored as literals in the dictionary. &4 conversion failure results in a
call to UNDEFTINED.

" Colon creates an entry in the symbol table with a pointer to the firset
_atry for that word in the code segment. The start of everv color definition
.5 ¢ call to the word S: to set up a comntext switch. The rest of the
gefinition 1s 2 list of addresses, and literal values. The addresses are
pointers to the entry points of other words. The last entry is rhe address of
§; which rescores the coatext.

.

' EXAMPYLE:
: 2TIMES 2 =

Reference - 7

L 2

H

adar LIT

00C2

addr *

addr §;

S Y —

< are

Semicolon puts the address of §; in the dictionary, and resets STATE.
SL5 resumes executing until another color definition is found. A& colon
definizion is a list of addresses of other words, Each word is executed umptil
$; flags the contex: restore process.

The loner Interpreter

NEXT is an S15 code word that processes the list of addresses ip 2 ’

defimition. It maintains an instruction counter (IP)., The IP is similar to the
PC iz the cpu. NEXT is called at the end of every code word. Machine code
sequences are executed directly by the cpu a2s assembly language Toutines, NEXT
provides the linkage between words. & SL5 prograwm cap be viewed as an ioverted
pyramid with machine code primitives at the bottom and levels of SL3 worés
above. 5: and §; hapdie the contex:t switching between colon defimitiomns, and
NEXT links the words.

9. Branching - e

P

Conditional brancking in SLS is donme with the IF..ENDIF and CASE..CASEND
structures. These words gemerate test and branch instructions im compii
SL5 words. They can only be used inside of colon definitions They are nc)
defined 1n the context of interpreted code.

Ir

The words IF ELSE and ENDIF are compiled into test and pranch
instructions. In the compiled code SIF tests the top of stack. & TRUE T0S (<>
0) causes the words fellowing IF to be executed. & FALSE TOS (0) causes z jump
over the words following IF to the words folowing ELSE or te¢ ENDIF if 2o ELSE
tlause 1s present,

Reference -~ §

>: TEST IT 1 . ELSE 0 . ENDIF

?

IT statements ma2y be pested several levels deaep, but the clauses gust be
bzlanced. Evervy IF must bave & INDIY stztement to clese the stTutture.

I € IF
Y 8 1IF
XeyYeE/z!
ENDIT
ENDITF

CASE

SL5 uses a2 CASE starewment similar to the PASCAL CASE statemwent. This
er'ria:es from “standard” Forth, bur it is 3 much more readable structure. Any
s5¢ structure must have a2 logical equivalent to 2 nested IF structure, butr it
ussen’t need to be visible at the source code level. The verb CASE causes the
contents of the TOS to be compared with test values specified irp the case
aod\. If 2 maten is found that element is executed¢, and the IP set to the word

fter CASEND. The NOCASE clause if present, is executed when the TOS does pot
mahcr any of the test values.

EXAMPLE: kevboard imput

: KEYIXN
{ 0OD= <CR>, 08= backspace, lB= escape)
@CE CASE
0D =: 1 KRDY ! TBUF € TBUFMAX ! CR ;;°
08 =: 20 TCH 08 TCE 20 TCH T3UF 1-!
1B =: TBSTRT € TBUTF ! T" *ESC* " CR

DUP NOCASE =: DUP TCE TBUF & ! TBUT l+! ;;
CASEND ;

10. LOQPS

L]

a2 high level programing
for repetitive exescution:

Iteration operators are a cemntral par:t of

-

language. SL5 has three types of structures

3EGIN..ZXD, DO..LOOP, and RECURSE. BEGINK..END is repeat until test condition

is TRUE, DOHLDO° i5 repeas 1 tlnes, and RECURSE is 2 structure to allow a
ward to call irsell.

Raference = 9

BEGIK..END

BEGIN is 2 compiler word that pushes the contents ¢f the IP or the stack.
Words betweern BEGIK and IND are compiled. END causes a tes: imstructiorn with
conditiomal branch to be compiled inte the word. I1f the TCS is TRUE (<>0) the
word following END is executed mext. A FALSE TOS resclts iz & jump 2ack to the
word foliowing BEGIN, and the loop 1s repeated.

: WAIT-FOR-CR BEGIN GCH OD = END ;
this loop will repeat until a CR is typed

BEGIK..WHILE,.REPEAT

The BEGIN..END structure has & test 2t the eod of the loop.
BECIN..WEILE..REPEAT tests for iteration at the beginning of the loop. WEILE
generates code te test the TO0S, and jump to the word followimg REPEAT if TO0S
is FALSE, RIPEAT generates an unconditiomal jump back to BEGIN, and the TOS is
tested again, >

- -) . | - ;J
0. .LOGP : '

The DO LOOP is similar to the same structure iz PASCAL or FORTRAKX. The
body of the loop 1s repeated © times. DO takes 2 parameters; limit+l and
start. Note that the first parameter is 1 greater than the limitz.

. i

>: DO=TIST 10 0 DO I . LOOP ;
>DO-TEST
0123&5¢€7889>

+L00P, EXTIT

-

The DO..LO00OP wzs shown incrementing the loop counter by ! on eaciﬁ
iteration. +LOOP allows the counter to be 1ncremented by any positive integer.
It does not have to be an eved multiple of the total count,

»

>: DO=-TEST 10 0 DO I . 3 +LOOP ;
>DO=TEST
036 ¢> . ..

The word EXIT cz3uses terminatiom of a DO..LOQOP at the end of the current
izeration. It does not cause the words between IEXIT and LOOP to be skipped
though.

Reference - 10

CRT=-0UT
TBUFMAY 1+ TBSTRT DO (loop from star:t to max)
1 @DUP 0D = IF
DROP CR EXIT (found end of lipe)
ELSE TCE
ENDIF
1007 ;

Loop indexes

I, J, and K are words that push the current loop ipdex on the stack. I is
the index of th ipnermost loop, J and K are rndexes for the mex: 2 loecps. DO
-0O0F’s cac be nested many levels deep but indexes are only provided for Zhe
three inner loops. See the Structure manual for DO LOQP implementation details
I you need an index om apother level.

: MATRIXZ
30 DO
2 0 DO
((o 3 * T 4.
5 LOOP CR
LOOP :
SMATRIX
01
23
45
>

RECURSE

€L5 is 2 stack language. Reentrant and recursive .,code is a natuval
‘viroduct of the language. Normallv a word nmust be compiled before it can be
.sea, RECURSI puts the address of the word being compiled into tne dictiomnary,
hus generating recursive code. SL3 has & fixed length stack (usuvally 256
»ytes), See the Sysgen section for details oo how to increase the stack size.

’

$

- : F13
DOP 60 < IF
DOP . S5WAP OVZIR + RECURSE
ELST 2DRO?
ENDIT

>0 1 FI2
1123581321 3455>

-d

Raference - !l

-

11. Arrays

The SL5 vocabularv has one-dimensional word and bvte arrays. The index is
0 based; a 10 element arrav has indexes of 0 to %. Both BAM and ROM arravs are
available. The storage for RAM arrays is located in the code segment along
with the defining code. The storage for a RCM array is put in z user defined
zemoTy arzd, alomg with RCM wvariscles. The code segmeat £or 2 ROM zrray
contains : pointer to the first element of the array in memorTy.

ARRATY

100 ARRAY BUFFER

A 100 element array of 16 bit words is allocated and a word BUFFER
defined in the current vocabulary. When an array word is referenced the sum of
the TOS and the base address of the array is put on the stack.

{ assume BUFFER is at address 3000H)

>10 BUTFER .

3010 >10 BUFTFYER € .

nonn O { wne=e mnnn is contents of llth worc)

BARRAY

BARRAY fupctions like ARRAY except am element 1s a byte instead of &
werd, 100 BARRAY VEC! allocates 100 & bit dyvtes of storage. Word operaiiocns
like @ irstead of 3€ cap be usec on & BARRAY. The address returnec is the
firs: bvte used. The second byte is compured by the eperatiom.

>100 BARRAY VEC!
>10 1 VEC1 B!

>1 VECl BE .

10 >

12.0 1/0

The 5L5 programming system inferfaces to a2 number of commonly available
disk operating systems. Iz genmeral the specific operating system 1is
transparent tc the user. Liceptioms are noted in the Interface section. Serizl
and disk I/0 in SL5 :s performed through a uniform library of procedures. The
code is designed to be svmetTic so that the specific device is5 rransparent Lo
most routines. Files and devices are assigned to channels using RAMIT. All 1/0
except serial output is buffered. The aevice driver routines are imbedded in
iogical record routines called by characier I/0 words.

Reference - 12

IKFILE, OUTFILE

There ate 2 default channels or data streams defined. Associzated wich
MTILEI and OUTTILE zre SLS comtrol bytes, logical record buffers, and ap
perating syster dependen: control area. At coldstart INFILE and OUIFILE are
nitialized tc the console device.

FALLOC, HRAMTT

Additional 1/0 channels can be allocated with FALLOC., FALLOC reserves
pace in mewmory for buffers and comntrol fields, and assigns a name to the

rea.

FALLOC INFILE
FALLOC FILEL

SL5 has a FALLOC INFILE to set up that chaonel. FALLOC FILE]l would set up
nother chanpel addressed by the name FILEl. Most of the 1/0 library can be
sed with additional channels. GCH, TCH, T", CIN, COUT, C" can only be used
.y the default data streaws INFILE, and OUTFILE.

" NAMIT links az filename or a device to a channel. Subsequent calls to
PENR or OPENW establish the link betweer the channel and the operating
vsiem.

INFILE RAMIT test.tx:
INFILE NAMIT #CRT
OUTITILE NAMIT #CRT
OUTFILE NAMIT #LIST

OPENR, OPENW, FLUSH, CLOSE

OPENR enables a2 channel for input. If zhe name is a disk file, the open
ommand 1s passed on to the operatring system. & serial device 1gf opened by
etting & parameter in the control field for the channel. OPENV opens a
nannel for output. SL> does not permit concurren: reads and writes on the
ame channel, FLUSH writes azy bytes lef: in the bufier out to the file or
evice, CLOSI resets the channel status and issues a call te the operating
vstem that updates the directory for the file associated with the channel.
v""H and CLOSE should always be invoked before attempting to reuse a channel.

|/

GCH, TCH, T", TYPE

GCZ reads the next characrer from the default input chanmel INFILE.
uffering of logical records is handled by the Z/0 system. The ASCII EOF
naracter l4& is returned on end of f£ile., This character is normally comtrol-Z
n the keyboard. TCE transmits a character to the default output chanomel
UTFILE, T" transmits a string c¢f characters to the ourput chacnel OUTFILE.
ne space must follow T" before the string starts. " terminactes the string,
ad one space wmust precede the ". TYPI outputs a string to the output device.
zor TYPE causes the string at address nnnn to be outpui. The first bvie of
2e¢ sfring contzains the string lengtih.

>T" this is z message " CR
tnis 15 a message

Reference - 13

i

ha

READ, WRITE

READ reads a physical sector fror the selected champel into a svstex
uffer, Disk sectors are 128 or 256 bytes depending on the operating svstem. A
ine 15 created as & physical record if & serial device is attached to the
naonnel, WRITE writes one physical record tc the f£ile or device attached to
ne selected chaanel. The user should be Zamilar with disk I/0 conventions and
he host cperating svstex before calling READ and WRITE direcctiy. The SL3
naraster level words (GCE, RCH, RBYTE ezc.) czll RIAD and WRITE.

DELETE

Chatnel-pame DELETI removes the file associated with the chanmel frorm the
perating system directory, and returns the space occupied by the file,
nannel-nace NAMIT must be invoked before DELETE to set the filename.

ININIT, OUTINIT

ININIT, and OUTINIT initialize the default input and output channels
INFILE and OUTFILE) to the comsole device. These words are called on
» 4stzrt., If used teo reassign the chapnel, FLUSH and CLOSE should be called
‘ st to empty the puffer, and update the directory.

EOF

The word EOF returns 2 0 while there is mere data in the £ile and a 1
nen the phvsical end of file is reachec. The character 1/0 words a2lsc retur:n
ne ASCII end of file character lA continuing to read charazters from =2
nannel afrer the end of file is reached resul:s in a fatzl error, and a
vstex restar:,

WOED

The S15 word WORD scamns the current systenm input buffer, and gets the
zx: token fror the bufier. The variable DELIMITER contains the characier used
o separate strings of characters. The user can setr DELIMITER before calling
ORD. WORD resets DELIMITER to blank (20E) before returning. WORD puts the
cring length and string of the next token at the end of the dictionary. HERE
{'“‘ﬁ to the length, and HERE 1+ is the locarion of the first character in

string.

ZXAMPLE: ger a filenawe from the conscle

GET~-KRAME
™" Enter filemame (1«7 chars) ™ er
WOED
T The cucrent file is
EERE € 1+ 0 DO
HERE 1+ I + BE DUP TCH I KAME 2! LOOP CR ;

n

>GET-NAME

Tater filename (1-7 chars)
SLs

The current file s SL3

>

Reference - 15

Numeric ipput ' -

NUMBER can be used after WORD is called to convert the sirirng WORD
leaves in the dictiomary to a number. The radix is defined by BASE (see
Numpbers above). If the number imput is larger than the maximum value tnar can
be stored in 16 bicrs, high order digits are lost. AFFTFF converted as a HEX
number results in FFFF returned by number. e -

N

Numeric output

The Forth vocabulary has several words ro prict numbers on the output
device. The word . {(dot/period) primnts the top of the stack as a signed

integer. It is printed according to the current radix stored im BASE. -

>10 .

10 > =3 .

=3 >PEX 100 DECIMAL . EHEX
2586 >

X. prints the top of the stack 2s an unsigned 16 bit ipteger., It is used
for addresses and other numbers that are stored as 16 bit unsigned nunmbers,
instead of 15 bit signed numbers. B. prints a byte (€ bits) instead ¢ a lé
bit word. B. is used in the dump routine. .

>AAAA X, = .
AAAA >88 B.

38 >9988 B,

38 > { note that the high erder byze is lost)

FLOAD, [END—OF-FILE]

TLOAD loads an SL5 source file, The input streawm 1s switched Zron the
console device to the disk file specified after FLOAD. The text is interpreted
and compiled inte the gictiomary. A& dhysical end of £ile switcnes input bach
to the console. The wore [END-OF-FILE] car be used to create 2 logiczl end of
file at anv place in the source text. This can pe helpful whes one wisnes to
depuz part of a program.

Reference - 16

__/

EXAMPLE: BARRAY
: BARRAY EZRE 5 + CONSTANT DF~! ;: € + ;

220 BARRAY TEST
>100 1 TEST B!
>l TEST B@ .
100 >

BARRAY is a colen definitior that creates byte arrays in mewmory. 20
BARRAY TEST causes a 20 byte array named TEST to be ser up. Subsequent
references to test ilpvoke the code between ;: and ; in BARRAY.

; CODE

The ;: word creates new classes of structures that execute words.
Occasionally the pew word class must be faster than : definitioms allow. ;CODE
creates nev words that ianvoke assembly language sequences (see Assewmbdly

(T language sectioul.

{ - ~

140 The Dictionary
Symbol Table

SL5 bas a symbol table separate from the code segment. The symbol tabie
is & linked list c¢f the symbols defined in vocabularies, a flag byte, and a
pointer to the £irst word of the code body in the code segment. The symbol
table links are relative so the table car be moved, It grows down toward the
code segmentg,

Vocabularies
A vocabulary is z set of words linked together. Svstem vocabularies—
- include FORTE, ASSEMELER, DEBUG, and SYSGEN. A vocabulary is created by the
word VOCABULARY. Words are added te it with DEFINITIONS. Irovoking the
vocabulary name causes it to be the contex:z vocabulary, or the vocabulary
searched by FTIND,
VOCABULARY ALFA define the SL5 vocabulary
ALTL = ALFA is the context vocabulary.

ALFA DETINITIONS = declare SL5 as the curremt vocabulazy
New definitions are added to SL5.

Two system variables CONTEXT and CURRENT point to the heads c¢f

Reference = 18

vocabularies, CONTEXT po-n.s to the lasb vocabdulary invoked, It is used by
FIND for dictiomary searches. CURREINT -oimts to the vocabulary that is being
2dded to when nev words zre defined. The two pointers cam point ¢ the same
vocabulary as wher & user vocabulary is being built.

Chaining

Vocabularies can be chziped together, to extend the scope of the
¢ictiopary search. FORT. is always the base vocabulary. Otber vocabularies are
chained to TORTE (e.g. ASSEMBLER, EDITOR). This chain canm be extended into

tree structures tc develop separzte sections of programs, or limir the leng:h

cf a diccionary search. The chain links through vocabulary heads so words
defined iz 2 vocabulary after it is chained are still within the scope of the
search.

FIND

The SL3 word FIRD searches the symbol table for a match with the string
that WORD left at the end of the dictiomary. It lirnks th-ough chained
G? abularies searching Zrom the last word defined. FIND returns false (0) if

" search fails, 1f 3 word is multiply defined in the dictionary the last
je imitior is found.

FOBGET

ssss FORGET erases all words in a vocabulary from the word sess. This is
¢ sequential erase, The vocabuiary head is set to the word before ssss, if
any.

- “B "85 COMPILE

These words returm a pointer to the code segment of a word. ° nnan
returns the address of the first word ip 2 color definitior, or the paracere:
iield ¢f a variable or comstac:. It czr be used to change the value of 2
constant, or the address of a variable, bu: the practice isn’t recommendec. “E
re"urns the adéress of the code field of a word. S is the same as “B during

em generatiocn. COMPILE is { “B,]. I: gets the address of the entry poir:
q - worc, amd compiles it into the dictionmary. All of these words can be usec
t6 produce tricky, obscure code. It is reccmmended that their use be
restrictec zo the few systems programming applications vhere they zte rezlly
needed. See the source of the SL> kermel for examples cof their use.

15.0 Code worids

4 coae word is ap assembdly language routine with a symbol table entry. I:
similar to an assembly languzge subroutine except that the last
tTuction is a jump Lo NEL., the imner interpreter, lnstead of & returm
truction. Mary of the words definmed in the Forth vocabulary are code

Reference - 19

o

words,

A mice strategy for progran developmen:t is to write am entire application
in SL3 cclon definicioms, debug if, and then recode a fev words as code words
where speed requirements and frequency of use dictate. Colop defiritioms have
a fair awmount of overhead. NEXT is called betweer every word in the
definition. Also, §: is called tc switch context ot entry, and $; is iovoked
tc swiitl contexr ot exit from the coion definition. This overnead ranges from
100 microsaconds o2 az BOB0 to & fev microseconds on a2 68000. Code words ace
difficult to write, debug, modify, and they are not machine independent {see
ASSEMBLY language section).

e

16.0 System variables

The SL3 programming system bas several variables that contain important

information for the operating system. System variables can be accessed and

— chapgec by any word. The user must understand the SL5 systez before modifying
(: system variables., The table below describes system variables,

-~ -:.’ i)\
!

A

Reference - 20

—

| Bit O ON -~ REDEF message printed
| Bit 2 OF - Prin:t source during

| FLOAD -

} all bits default to ON.

| VARIARLE { FUNCTION |
i or i current dictionary pointer ‘__;
H-Eﬁiﬁfﬁf_ } head of current voecapulary }
CORTEXT } peints Lo conliext vocabulary }
“Cvaoc ! curreat vocabulary pointer {
TSYHTP { Top of symbol table {
% SYMPTR % last entry in symbol table §
RSIZE } recurn stack size (constamt)

i SSIZE E data stack size (constant) |
} RESTARTAD II addr. RESLART (SYSGEN) ;
{ GOQILAD ﬂ addr. outer interpreter (SYSGEN) i
i STATE E O=1nterpret, l=compile {
l BASE f number racix {
! UPPER ; upper/lower=0, upper only=l {
g DELIMITER % delimicer character used bpy WORD }
% SSTACK } Paramerer stack (2 BARRAY) -{
E RSTACK i Return stazk (z BARRAY) E
} INFOF ; iniormarion control byte }
| |
| |
l l
! i

17.0 Error Messages

During the executicn or csompilation of programs, & variety of error
copéitions are checked for. These can be tlassified into 3 groups, (1)
those which are informative, {2) general fatal conditions, and (2) fatal
conditions in the £file svsren. When and error of type 2 or 3 oceurs, the
vord RESTARY is executed after the message i1s displaved.

lnformative messages (type 1)

REDET nnnn - The werd nnnn was just redefined, with tine
previous definition now being inaccessitls.
This message can be turned off by setzing b1t O
of the var:able IKFOF cto (.

Reference - I

i

53
-

General Zatal erTor messages {(type 2)

nanp 7 -

D/Q ABORT
STACK UKDERFLCW ABORT -~

RETURN STACK UNDERFLOW ABORT =~

UNBALANCED NESTING ABORT -

The word nnon could Dot De executed or
compiled because it is no: defined,

The previous divisien {(/, /MOD, MOD,
U/MOD) operztion was undefined (division
by zero).

The parameter stack is in an underilow
state, i.e. mOTe items were removed thas
there were placed oz the stack.

The returo stack is in ap underflow
state. .

The word just defined did not contain
proper balancing of IF..ENDITF,
BEGIN..EHD, DO..LOOP, CASE..CASEND
consLructions.,

Fatal error messages from the file system (type 3)

RZAD PAST EOF. -

FILE NOT OPENID FOR READING.

FILE NOT OPENED FOR WRITING. -

FILE DOESN"T EXIST. -

FILE CAN"T BT CREATED. -~

DISK WRITI ERROR. ~

Az artempt to read beyond the end r% 3
file just failed. -
A Teguest to read (RCH, RBYTE, or READ)
f£rom a file not opened for reading
failed. .

A request to write (WCRB, WBYTE, oz
WRITE) onteo a £ile not opened foT
writing falled.

The file specified on the last OPEKRK
doesn’t exist in the file system. Tiles
being opened via OPENR have to be
previously created (OPENV does this).

An attempt o create a new file via the
OPENVW routime fziled due to a lack of
disk space or cirectory space.

The previous write command falled
because of a system error. “ﬁ

Reference - 12

Assembler E

Assenbler

' 1. Introduction

In the previous sections you were shown how to define a proce.
iz terms of other, previocusly delined processes or words, and this was
a "colon" definition. There is another method of defirizng words in .
cachine language of the particular processer being used. This is called 2
"code definition®”. Many of the SL5 primitives (such as SWAP, +, ¥, etc...)
are defipged in this maunner,

NOTE: This manual assumes that the reader is familiar with the Z80
asgembly language.

2. Exgention of CODE defizmitions

The execution of code definitions is very different from the way im which

colon definitions are executed. The main difference is that the body of the

le word is executed directly by the CPU while colon bodies are interpreted
the inner interpreter.

a "

3. Cregtion of CODE Words

One of the masjor differences between CODE words and colom (:) definitioms
is that the code segment is created through the execution of words which place
cachine instructions inm the code segment while with colon definitionms
addresses aTe placed in the cpde segment by the compiler.

CODE nnnn ce. Words ... EDOC

Figure 3-l. Format of CODE definitiouns.

Sbown in Figure 3~ is the format of CODE defipirions., Upon execution of

word CODE , nmnn is added to the dictionary and CONTEXT is set to the
s mbler. The words which follov may place machine instructions ip the code
s..ment which will be executed when "mons” is subsequently executed. The
£inal pact of a CODE definition (EDOC) resets the CONTEXT vocabulary to the
CURRENT vocabulary so tbat the newly defined word may be used immediately.

J.l. Using the Assembler

During the writing of CODE definitioms, the machine instructioms which
coapose the definitiom car be specified by placing the actuzl opceodes ir the
code Segment oT by using the SL5 assembler mnemounics. To place the opcodes in

Assembler - 1

.ouUe bpEpmeDnt, LOE WO WOTAS , apd b, ®av De used. The wogrd 7, will
ce a word {16 bits) in the code area while "B,”" will store a byie (the iow
.er B bits ¢f a word).

QTE: tre word "," reverses the bytes before storizng thez)

EXAMPLE: The word "+" could pe cefined as: -

cODT + cl B, El B, 09 B, C3 &, $PUSH , EDGC T
Cl, Bl, 224 09 are the Z8C opcodes which wnen executed will pop the BC
and BL registers off of the stack and add them together, The "C3 SPUSE" will
then jump to the inper interpreter and push the sum which is 1o HL ontoe the
stack. The memory image of the word "+" 1s shown below. -

POP B3C (Cl)

w i Il &
| |
% JP SPUSH {C3 SPUSH) i
! I
; ADD HL,BC (09) !
,) .
] | 1y
C { Por EL (E) | .. ,
7 | | T A
| !

entry point =-—>

Another, wmoTe readable method of assembling opcodes is by using the
mnemonic assembler. To use the munemonic assembler, you must firs: load it
(the mpemonic assembler occupies approximately 4000 decimal bytes):

>TLOAD ASSEM.SLS <er?

You can now define CODE words by using the-SL) mnemonics to specify
machine insctructions (see Appendix 4 for further details on the mnemonics).

EXAMPLE: The definition of the word "+" can now P
(- be written as: D
- i 1
K CODE =+ BC POP BEL POP BC HL ADD SPUSE JP EDOL . T \1i
. s - ' .

J.2. Exiting From a CODE Word

After a code defimirion has fimished executing, it needs to return to the
control of the calling word. Since code defigpitions are normally called from
colen definitiomns, the return must be made o the colon defimition or rather
the "inner interprerer"” which executes colon defizitions.

Assembler - 2

Returzming control to the inner interpreter is nmormaly accomplished by
branching to ome of the eatry points listed in figure 3-2.

entry name description

SNEXT The standard exit from 2 code
word. The inner interpreter

coutinues executing where it was

before. | .
SPUSE Push the register pair HL on the
parameter stack and bramch to
SNEXT,
SNEXTEL Similar to SNEXT, except that

the zltermate register set 1is
selected.

L LT S AU S PR ——
— . e e e et i T e e . S e by Pty et

Figure 3~2. Summary of inner interpreter entry points.

EXAMPLE: The code definition of a2 word which adds 3 to
the value on the top of the stack and pushes the
sum might be written:

CODE 3+ HL POP 3 BC LD BC HL ADD
EL PUSE SNEXT J?P EDOC |

When the above example is executed, the sum is pushed onto the stack
before the inner interpreter is invoked. The same thing could have been
vritten as: ’

CODE 3+ EL POP 3 3C LD BC HL ADD
SPUSE JP EDOC -

3 ' 3.3. Brzoching Within CODE Definitiomns

,

There are three assembler comstructions which enable you to bramch within
a CODE werd, It order to use these words, the miemonic assembler must be
present. /

-

Foward Branching

Iz colon defimitioms, the words IF , ELSE , and ENDIF composed the
forward branching econstruction, In code definitions, the words are IF, ,
£LSE, , andé ENDIF,., The difference between the two constructions (outside of
the trailing “,") is the assembler word IF, tests a Z80 condition code (cc)
during execution rather thao a boolear stack value.

Assembler - 3

&t -

NP1 R prr e e 4 s b

ce IF, ..true part.. <{ELSE, ..false part..} ENDIF,

Figure 3-3. Format of the IF,..ELSE,..ENDIF, comditiomal.

The format for the conditional brameck is shown above (the portion
enclosed by tne "{}" is optiomazl). The cc part is the condition code
(¢,%C,2,K2,P,0,P0 or PE) which if frue at execution time will cause the
za:h; € instructions between the IF, and the ELSE, to be executed. If cc
isn’t true the code following the ELSE, (if present) will be executed. 1In
both cases, the code following the ENDIF, 15 executed.

JP SPUSH

LD HL,C

JE addr2

1D EL,!

OR H

LD A,L

POP HL

——— . T— . E—— e ——— b AL Rkl St S e s i
®
Ll
'
£y

]
!
J
!
!
[
%
(5 } JR Z,addrl
|
!
!
!
!
I

entrTy point ==>

Figure 3-4. Memory diagram of the word 0<>,

FINN

-

EXAMPLE: CODE 0<> HL POP L A LD H OR KZ IF,
1 HL LD -
ELSE, 0 Ee LD
ENDIF, SPUSH JP ED0C

The wemery image of the above example is given in £figure 3-4. When the
(. wvord 0<> is executed the top of the stack is tested for a non—zereo value. 1IF
it is pop—-zerc, @ 1 is loaded into the register pair EL. If the top of stac)
is zerec, & 0 is loaded inte HL. The ipner interpreter entry point S$FUSE theh)
places the value of EL on the stack and drops into SNEXT. Another way of
writing the above example would be:

v -
*

CODE 0<5 HL POP LALD E OR K< IF,
1 HL LD
ENDIF, SPUSH JP EDOC

Iz this version the fact that the register pair HL already contains the
false vaiue (0) if the TOS is zero is taken aavantage of.

T e

Assembler - &

Looping

There gre two types of loop comstructions which can be urilized in CODE
words. The first type is the conditional loop and its format is shown below
(figure 3-5). The BEGIN,..END, 2ssembler comstruction is very similar zo the
BEGIN..END construction used in colon defipitions with the exception that
ZIND, tests a 280 condition code (cc) rather thanm a boolean stack value before
10CPiRE &gain. Tne code between BEGIN, and END, is executed repeatedly unmtil
the sonditiecr =zode (C,NC,Z,NZ,7 ,M,PC, or PEL) is true when END, is executed.

BEGIN, cc END,

Figure 3=5. Format of the BEGIN,..END, comstruct.

An example of the conditiomal loop is shown below with the memory image
of the example givez in figure 3-7.

CODE BMOVE BC POP DE POP HL POP BEGIN, :
(HL) A LD A (DE) LD HL INC
(DE INC BCDEC R ALD C OR
7 END, SKEXT JP EDOC

Figure 3=6. Example using tbe BEGIN,..END, conditiomals
to define the word BMOVE,

] J? SNEXT

JR NZ,addrl

T O C

1D A,B

DEC BC
INC DE
(' INC HL
l LD (DE),A
LD A,(HL)

addrl

POP HL

|
I
l
l
!
|
l
l
l
|
l
f
f
l
l
l
l
|
[
l
{
POP BC }

I
l
!
{ POP DE
[
l

entry point =-=>

Figure 3~7. Memory image of the BMOVE example.

Assembler - 5

In the example, the code bet?een the BEGIK, apd the 2 ERD, is execuced
Tepeatedly uptil the register pair BC becomes zero. Kotice that if BC is
ipitially zero, the loop is executed 65536 times instead of not executing at

all, which is mot what we wanted to do. To cure this, a pre-test is needed,
apdé this is shown ip figure 3=E.

CODE BMOVE RC PO? DI POP Bl POP B ALD C Ok :

BEGIN,
(L) ALD A (DE) LD EHL IKC

DE INC BC DEC <CALD B OR
Z ERD,

INDIF, SNEXT JP EDOC

Figure 3-8, The EMOVE example with a pre-test for -
ZeTO. b

-

The format of the other type of loop, the unconditional loop, is given in
figure 3~2 and ap example of its usage is shown im figure 3-10.

BEGIK, criaae REPEAT, -
3.
Tigure 3-9, Format of the unconditiopal assembler loop.

CODE WAIT BC POP BEGIN,
20 I8 ¢ CP 2 IF,
SNEXT JP
ENDIT,
REPEAT, £DOC

Figure 3-10. Exampie using BEGIN,..REPEAT,.

In the azbove example the code between the BEGIN, and the REPEAT, is
executed until the data read from port 20 is equal tc the TOS upco entry of

W£IT. Kotice that no code £follows the REPEAT,. This is because it normally
: would noi be executed.

Assembler ~ &

4. Assemhler Mnemomics

This appendix compares the SL5 assembler mnemonics with the ZILOG
moemonics. Refer to the "MOSTER 280 PROGRAMMING MANUAL" for more details on
the operation and usage of the ZBU instruction set.

Ino the first part of this appendix the format of the SL5 mnemonics is

discussed and in the second part the SLS5 mnemonics are listed with their ZILOG
counterparts in alphabetic order,

The SLS mnemonics differ frow their ZILOG counterparts as follows:

(1) Because of the nature of SLS5, the
operands must precede the mpemoric.

EXAMPLE: the instruction: Ld ¢,3

is written as: 3CLD
(2) Certain operand types hasve been
changed so0 as to keep the assembler
- clean. These differences are listed in
(: figure A-]l (where two forms are showsn,
- either may be used).
ZILOG SL5
(adr) adr °
* adr
(IX+n) o IX+
IX+ =n
(I¥+n) o LY+
I+ o
(n) n °
. -
1 ' IR
kj‘ Figure A-l1, Operand differences.

Assembler - 7

e oA . . oakella. A T u [A SR

Notation

r,zl,r2 = any of the 280 registers {4,5,C,D,E,H,L,(EL)}. .
rpl = azy of the register pairs {BC DE HL,SP} -
rp2 - any of the register pairs {BC,DE,HL,AF}.
rp3 - amy of the register pairs {BC,DE,IX, SP).
rpdé = any of the register pairs {BC,DE,IY, 'SP}, -
cc ~ any of the condition codes {C NC ,2,N2,PO,PE P K}, .
x
D = 2 3 bit nteger,
z,nl,n2 - au 8 bit integer.
nn = a lé bit integer.
adr - 2 16 birt address. . *

The following is an alphabetically sorted list of assembler mnemonics
comparing the ZILOG form with the SL) form. Arny duplicatiorns which appear
imply that either form showr may be utilized.

2ILOG) SLS
. .
ADC = r ADC)
¢ ADC 1 " * z ADC ~
ADC HL,rpl rpl HL ADC
ADC (IXsz) t IX+ ADC
ADC (I¥+n) o I¥+ ADC
ADD T r ADD
ADD n u ADD
ADD BL,rpl rpl HL ADD
ADD IX,rpd rp3 IX ADD
ADD IY¥,rpé rpé IY ADD
ADD {iX+n) n I1X+ ADD
ADD (I¥+n) o IY¥+ ADD
ARD T r AND
AND o n AND
AND {IX+n) n IX+ AND
AND (IY+n) T IY¥+ AND
BIT b,r r b BIT
BIT b,{(IX+n)) n IX+ b BIT
BIT b,(IY+n) o I¥+ b BEBIT
CALL adr adr CALL
- CALL cc,ady adr cc CALL , ‘}
¢ CCF CCF —
N CP T r CP
CP o - o CP
CF {(IX+n) z IX+ (P
cr {I¥+n) n IY+ C?
CPD CPD
CPDR CPDR
CPL CPI
CPIR CF1iR
CPL CPL
DAA DAA
DEC T r DEC
DEC rp rp DEC
DEC X 1X DEC
DEC Iy IY DEC
DI DI

Assembler - 8

E L E b L EEEEEEEEEEEEEEELEEUEEEEEEE Ry RS Bty

(IZ+n),r
(I¥+n),r
(IZ+nl),n2
(I¥+nl),n2
A, (BC)

A, (DE}

A, (adzr)
(BC) ,A
(DE) ,4
(adr),A
4,1

AR

R, A
rpl,nn
IX,nn
IT,an
rpl,{adr)
IX,{adr)
I17,(adz)
(adr),rpl
{adr),IX
(adr),IY
SP,EL
SP,IX
SP,IY

Assembler - 9

HEE
=

Fan Wan W ¥

iy

'ﬂ'ﬁ’ﬂum

[N TN L | 4]

HHpp
[~}
H
"
+

>

LDDR
LDIR

NEG NEG

NOP NOP .
CR r r OR
Ok ! n OR
OR (IX+n) n IX+ OR
OR (IY+n) n IY+ OR
OTDR OTDR ,
OTIR : OTIR -~ |,
ovT (n),A n OUT - -
oUT (n},4 A T n 0OUT ”,
ooT (C),r r (C) ovr
OUTD ouTD -
oUTl QUTI *
POP rp rp POP
PUSE rp rp PUSH .
RES b,T r b RES -
RES b,(IX+n) n IX+ b RES - -
RES b, {IY+n) n I¥+ b RES © .
RET RET -
RET ¢ ¢c RET .
RET1 RETI " %
RETN RETN
RST = n RST)
RL T r RL —
((RL (IX+n) o IXZ+ RL %
) RL {IY¥+n) ’ z I¥+ RL . !
{ RLA RLA A
RLC T . r© RLC .
RLC {IX+1) a IX+ RLC
RLC {(IY¥+gp) n IY¥+ RLC
RLCA : RLCA
ZLD RLD .
RR T o r RR -
RR (IX+n) n IX+ RR
RR (IY+n) o IY¥Y+ RR
RRC r t RRC -
RRC (IX*n) n Ii+ RRC -
RRC (I¥+n) n I¥+ BRRC .
BRRA = RR2
RRCA o RRCA
RRD RRD e
SBC T r SBC
SBC n n SEC)
SBC HL,rpl rpl HL SBC -
) SBC (IX+n) z IX+ SBC .
(SBC {(IY+n) n I¥+ SBC - s
: SCF SCF - ‘o
SET b,T * b SET ‘
SET b,(IX+n) n IX+ Db SET -
SET b,{IY¥+n) n I¥Y+ b SET
SLA T r SLA .
SLA (IX+n) n IX+ SLA
SLA {(ZY¥+n) o I¥+ SLa +
SRA T r SR4
SRa (IX+n) - n IX+ SRa
SR4 (I¥+n) o IY+ SR&
SRL T r SRL
SRL (IX+n) n IX+ SRL
SRL (IY¥+n) n I¥+ SRL
SUE = . r SUB 3
SUE n n SUB Lt
SUR {IX+n) n IX+ SUEB -

Assembler - 1C <

SUB {IT+rn) n IY+ SUR

X0R B n XOR
Z0R T r XOR
XO0R (IX+n) o IX+ XOR
ZOR {(IY+zn) » I¥+ ZXOR

5. Kegizter Usage

Figure B-l is a list of the ZB0 registers and their usage, Any register
»signated as unused may be alzered within a code word. Any register which is
cserved (SP, DE” gnd EL”) may also be used inside a code definitiom, if its
ountents is saved upon entry and restored upon exiting £from the code word.

A - Onused § bit register,
BC - Unused 16 bit register pair.
DE - Unused 16 bit register pair.
HL - Unused 16 bit register pair.
IX - Unused 16 bit register,
Y - Dnused 16 bit register.

C SP

Parameter stack pointer.

Alternate register set

A’ - Unused B bit register.

BC® - Unused 16 bit register pair.
pET - Returnz stack pointer,

H" - Interpreter pointer (IP).

Figure B~l. Register usage.

6. Exxples of CODE Definitions

The £irst example wultiplies the top of the stack by 2 and pushes the
‘oduct oz tbe data stack. The equivalent colon defimition would be:

(; N : 2* DUP + -
[—
~ CODE 2* HL POP HL EL APD SPUSE JP EDOC

The next exXample tests the top of the stack to see if it is negarive. If
15 negative, the value]l 1s returned, otherwise the value 0 is returned.

CODE O< ©HL POP H 7 BIT Nz IF,
1 EL LD
ELSE, © HL LD
ENDIF, SPUSE JF EDOC

Assembler -~ 11

The paramerer .5 popped, irs sigo bit is ther checked and if it is set
(indicatizng 2 megative number) a 1 is loaded into the register pair HL,
othervise a 0 is loaded inco EL. Then SPUSE 1s jumped to which will push EL
or the stack and contimue.

The word 0< could bave been writter several differeat wavs which are more
efficient in terms of speed and wmemory usage. Oue of these is shown below.

CODE (< BC POP 0O EHL 1D B 7 BIT ©XIZ TIF,
HL INC
ENDIT, $PUSH JP ED0C

The finel example polls port 40 continmously until 2 poem=zero value
appears., Then port 41 is read and the data is pusned on the stack.

CODE IN4l BEGIN,
40 IN &4 O
NZ END, 4l I8N ALLD OELD
SPUSH JP EDOC

C L . . ™
(Tor more examples of CODE definitiops, exanine the definitions of the™
wvorés (SWAP, +, DUP ...etc.) 1o the Lernel.

H

Assembler - 12

Debug E

v

Debug

1. Introduction

The debugging utilities are provided to aid the programmer in discovering
and fixing the "bugs" which ail their programs. The debugging routines may
be loadsd at zoy time by executing:

>FLoAD DEBUG,.SLS <gr2>

The words which are described in this section are nowv loaded and ready to
be used,

2. DOMP

The DUMP utility allows you to examine amy portion of your CPU's memory.
The form of DUMP is:

‘? e s DOMP

e “bere "s" is the starting memory address and "e" is the final address.
L .P will then display 16 bytes of memory on a line witk the starting address
giver first folliowed by the 16 bytes ip numeric and ASCII character form (zny
codes betveen 0-20 hex are shown as & "."). All numbers zre displayed it
nexadecimal notation, '

ERAMPLE: >120 100 DUMP <cr>

0i00 C3 4 06 E5 D9 4 23 46 23 C5 D% C9 El 5E 23 56 CN.eYN#F#EYIa"#V
GLI0 D5 C3 04 Q] C3 04 01 CD OC O 82 o7 CD OC 01 84 TUC..C..M...gM...

3. MODIFY
(- The word "MODI¥FY" lers you examine apd alter the contents of memory on a
t _e to pyte basis starting at & seiected address. The form of the modify
command is:
§ MODITY

MODIFY will ther proceed by displayipg the contents of 16 bytes starting
at the address "s" and ask for input, which can be

(1) A two digit hexadecimal number which will
replace the byte wkich is showe above it,

(2) A "carriage-return” which causes modify to
proceed to the next 16 by:tes.

(3 An "ESCAPE", which takes you ocut of MODIFY back

Debug - 1

L

to the puter interpreter.
(4} Any other character, which causes MODIFY to
proceed 0 the next byte.
EXAMPLE: 1f you executed the following:
>100 MODIFY <cr>

0100 €3 4E 06 ES D9 4E 23 46 23 C5 D9 C9 El SE 23 56 CK.eYN#F#ET1a“#V
0100 11 22 33 &b <er> -

0110 D5 C3 04 01 T3 G4 OL CD OC 01 82 67 CD OC 0l 84 UDC..C..M...gH...
0110 40 41 42 _ 43 44 _ 43 46 _ 1B <escazve>

>120 100 DOMP <er>

0100 11 22 33 E5 D9 4E 44 46 23 €5 D9 C9 El 5E 23 56 ."3eYNDFPEYIa"#V
0110 40 41 42 Q1 43 44 Ol 45 46 Q1 1B 67 CD 0OC 01l 84 @AB.CD.EF..gM...

4. PSDMP and RSDMP -~ Stack Dumping. - -

The words PSDMP and RSDMP allow you to examine the contents of either the
data stack or the return stack easily. The contents are displaved as 2 byres
to a line in both hexadecimal form and character form. The top of the stack
is shown first while the bottom is shown last.

IXAMPLE: If the parameter stack contaiped the wvalues
2, 96, and 4463 (nexadeciwmal), then
executing:

SPSDMP _ <er>
0002 ..

0096 ..

4463 Dc

>

5. *BREAFT and *UB* - Breakpointing.
. - "
Breakpoinrs car be set amywhere within color definitions by inserting the
vord "*BREAR*" into the defimitiom. ¥When the breakpoint subsequently
execures, countreol is passed to the outer interpeter so that you may examine or
zlter the environment (the stacks, variables, etc)., To continue execution
after the breakpoint, you only need to execute the word "*UB*",

Debug - 2

JAMPLE: suppose we defined z word called “EX1™ which
added the two numbers onm the stack and
displayed the sur afterwards.

: EX1 o+ .

To set a breakpoint before displaying the
suxm, we only need to alter the defipition so
as to resemble:

¢ EX1 + *BREAR* , ;
Now when the word EX1 i1s executed:

>2 3 EX] _ <er>
BREAK: EX1 1139
>DOP . <Lcy>

5

>*OUBx <Ler >

5

>

Wher the breakpeint occurred in the above example, the word in which the

‘r reakpoint occurred was shown alomg with the breakpoint address {(in this case,
X1 1139"). The top of stack was then examined by executing "DUP .".
«ntrol was then returned to the word folloving the "*BREAK*" in EX] by the

execution of "*UB*'. The top of stack was then displayed via the ".” ip EXI.

6. SIM”, SYMDUMF -~ Dictionary Examination

There are twe words, which are included ir tbhe debugging package, that
let you examine the symbol table. The first to be described is "SYM™, whiceh
displayvs the enrry of a parcticular wore.

EXAMPLE: >STM” LEMMOR <cr?>
9067 TF35A 7376 2011 00 LEMMON

In the above example, the address of the dictiomary entry was first shown

\i 1067), followed by the Telative link address (F3%A) and the absolute link

dress {(7876). The execurion address was then displaved (2011), followed by

«u2 flazs {(00) and the word itself. All numbers are displayed in hexadecimal
notation, regardless of the current radix.

The other dictiomary examination tool is called "SYMDUMP". This word,
vhen executed, displays the whnole dicriomary starting at CORTEXT in the same
format as "SYM™".

Debug - 3

-

&)

B

Er o

-

“

1%

Ty

-
Vi

-y

Interface B

Y

ey

&

na

of

e

CP/M Interface

Introduction

CP/¥ from Digital Research is a generel purpose microcemputer disk
operating system., Lt contains 4 modules: BIOS, BDOS, CCP, and TPA. BICS
centales the device drivers for disk and serial I1/0 umits. BDOS is the program
level interface to CP/M, and also contains the kermel of the operating system.
CCP is the comsole executive. The TPA is the execuriorn arez for user programs.

SL5 is loaded into the TPA like any compiler or program utility. Oz
initial load SL5 imictializes stack poincters, vegisters, and system variables.
The boot routine also relocates the symbol table inte high memory overwricing
tpe CCP area. Boot obtainms the relocation address from CP/M at mewmory address
6, s0 it always uses all of available memory regardless of the system that SLS
was generated om.

The SL5 1/0 subsystem (see 1.12 REFERENCE) is designed to rum under a
aumber of disk operating systems besides CP/M. User calls to I1/0 words are
translated into CP/M calls and passed on to the BDOS. While the SL5 1/0

~ wructure is similar te CP/M calls, there are differences. Systems programmers
% nould comsult the SLS Reference section, and CP/M Inzerface Guide before
_.iting code to call 3DOS directly.

The user of the SL5 1/0 subsystem does mot have to have 2 working
knovleage of BDOS. Character and f£ile I/0 canm be done by using SL5 I1/0 words.
CP/M traps some fatal errors, issues a wmessage and reboots. The CP/M manual
liscs these error messages. SL5 traps and reports additional errors (see
Reference 1.12}.

Loading SL5 Object Files

SLS object modules are created by SYSGEN and COMMOD as standard CP/M COM
files. They are loaded and executed by entering the filemame from the console
wkile in CP/M. Since the CCP section is overwritten by SLS programs, a varm
boot must be execured to go back to CP/M. The modules are loaded inre the IP4
2t address 100E. SLS5 does not use the area from 0 tk 100K, or the CP/M BDOS,
BIOS &areas.

d

* User prograwms can overlay BDCS and EI0S; mo bounds checking is done by
v ~3. 1f the user program subsequently attempts to use the SL5 I/0 subsystem or
BDOS, the results are unpredictable, and usually undesirable. Programmers can
write code to call BDOS and BIOS directly, but a thorough knowledge of CP/M
and SL5 I1/0 is required. The SLS I/0 subsystem should be sufficient for most
applications.

FLOAD~ Loading 5L5 Source Files

There are several files on the SL5 distribution disk. SL5.DOC describes
each file, and how it i5 used. SLS5.COM is the compiled kernel. DEV.COM is the
compiled kermel plus the assembler and debugging wvocabulary., With FLOAD the

Interface = 1

[PrECP Lt F e

-

user cap compile additiomal source files or libraries into the TPA. New files
are compiled, extending the symbol table and code segment. 4 fatal error
occurs if the symbol tzble collides with the code segment.

Example:

A>DEV -~ load DEV from CP/¥

>FLOAD USEIR1.SLS =~ lcad anmother pregram from SLS
> - concidue executing in SL3

SLS bas 2 systems for creazting mew COM files. After a mev library oz
gpplication program is debugged it can be saved as ap executable file. COMMOD
saves the memory image after compressing out the free space between the code
segment and the symbol table. On initial loacd the symbol table is relocated
inzo high memory. The CP/M SAVE utility stores the objec:z file, The second
system, SYSGEN, compiles the kermel and user code directly omto & disk file.
SYSGEK is used to create new kermels, applications programs without the
development words, and rommable object files (see Object Module section).

CALLCPX ..

- " ¢ L) 't
The interface between SL5 I1/0 and CP/M°s BDOS is chrough am SLS cowrs
word, which is ap assembly language routine.

CODE CALLCPM - : .
1 BC POP DE POP 05 CALL O HLD AL LD i ‘ '
$PUSE JP EDOC a 3

On erntry the TOS comtains a function code which is put imnto the C
register. The NOS is an information block address (FCB address). Location 3
contains a jump to & locatiom in CP/M that is the entry point of the program
1/0 handler. Op return the A register contains az status byte. SPUSE JP pushes
the status on the parameter stack, and exacutes SNEXT- the inmer loop of SLS.

IS SR ~

Serial 1I/0 -

-

SL5 uses 4 CP/M serial character functions: check console status, read
conscle character, write comsole character, and write character to the 1!
device. These 4 functions map into the character-1/0 words described in t.
Reference section. Since all character 1/0 is performed through CP/M, SL3
programs are easily transported across different machines running under CP/M.

Serial devices:
$CRT - comsole inpur and output
#List= printer output

Pisk I/0

The CP/M inteviace contains a number of functions for disk I/0 including
cpen, close, Tead, write, create, recame etc. These funcrions map imto SLS

Interface - 2

disk 1/0 words described in the Reference seztion. The function calls and
detzils of CP/M BDOS imterface are transparent to the user for the most part.
CP/M traps and handles a few disk I/0 errors including fatal read and write
errors. The error codes are described in the CP/M manual. CP/M usually must be
rebooted after one of these errors. The SL5 I/0 subsystem traps some
additional errors described in the Reference section (1.12), The SLS5 erroc
message 1s displaved on the comsole, ané RESTART- the warm s5tart routine is
executed,

OFENR, OPENW

CP/M has one open routine, and allows concurrent reads apd writes om the
same file. Most other microcomputer operating systems require that a £file be
opened for eitber reading or writing, but not both. SL5 has separate opern read
and open write words. The user can easily modify the kernmel to allow
concurrent reads and writes, but the code will not be transportable to other
operating systems SL5 is implemented on. OPENW executes a2 delete function
before open to prevent file mame duplication in the directory.

Cetting Started

(: SL5 is distributed as & set of CP/M text and COM files on a single
.~ iskette. Its & good idea to make ome or more backup copies of the
tistribution disk before using the system. PIP the files over to & disk which
bhas been SYSGENed with 2 copy of your CP/M system. The text £ile SL5.DGC
coptains 2 description of each file on the diskette. If you are familiar with
FTerth type languages, browse through the Reference Sectioen list the SL5.DOC
file and go to it. Nev users should read the Tutorial Section and work through
tbhe examples first.

To brimg up SL3:
1. Eater cntl-C or reset the system ro bring up CP/M

2. Epter SL5<er>

L 4

The prompt > should appear on your screen. 1f it doesn’t try agaimn, then
give us 2 call.

C

~—

Interface - 3

-

.
-~
A+ 5w
‘
-
rau
-

P

Object Modules B

.

R

yF- T s i 5w

Object Modales

l. Introduction

The 515 system disk nas 2 routines for creating complete execution fileas
or object modules, the COMMOD routine and the SYSMAKI routine. This section
contains a discussion of ways to recreate, extend, or collapse the SL5
development system along with custom code to create 2 svstem tallored to a
particular product or application. This could be azmnything from adding a
library of words to expand the development environment, to a small subset of
the system for an EPROM based controller. COMMOD 1s used to create 2 memory
image that 1s then "saved"” as a CP/M object module. SYSMAKE is a cross-
compiler and creates an ectirely new svstem with a new symbol table. The new
system can be BROM based apnd may be collapsed as desired.

2. Compiling a Subset of the SL5 Kernel

The SL5 kernel, written im S5L3, caa be divided into 6 sections: SLS
primitive words, the interpreter, the compiler, console I/0, the file system,
and user I1/0. Compiler directives IFTRUE..CTEERWISE..IFEND control compilation
of each section based ok the value of constants defined iz che kerpel source.

The SL5 primitive library is a set of 70 SLS words and system variables.
Most of these words are needed in every kermel. Tne library occupies about
1400 bytes in the code segment, The other five sections can be compiled or
left out depending on the application. If a user program references a word
that is left out of the kermel ar undefined error message is printed.

| Sectiom | Size(bvtes) | Fumction |
} Primitive library } 1400 } basic fu;;txou llbrary:
{ Ioterpreter { ¥ : outer interprater {
; Lompiler : 1K I complle new words { 53
; Console I/0 } 500 : console 1/0 wcrds {
i File System % 1.5K : interface to disk E
{ | | operating system i
i User I/0 i 100 ; direct 1/0 words E

Outer Interpreter
The outer iprerpreter is the mais loop of SL5. It processes input

commands from the console, converts strings to gumbers, and executes words
defined in the dictionary. It must De compiled in any system that peeds czo

Object Modules - 1

Li-
3
.

-

/*'\

access the dictiopary. The oucer interpreter ¢an de used i1n am application or
toutrol program to process coummands and select different drivers. Fuoetiocuns
like WORD, NUMBEIR, and FIND can reduce the amount of custom programming neaded
to implement contrcl fupctions. The outer interpreter section requires console
1/0 and eirther the file systemwm or user I/0 section.

Compiler

The compiler sectiom is a 1K library of words that supports creatiom of
pev SL5 words and vocabularies. It is needed iz 3 development system. It can
be deleted from systems that do not need to cTeate new words at execution
time. N -

Console 1/0 P)

The console I/0 library is a set of about 20 words that input and output
tharacters, numbers, and messages on the CRTI. It must be included in a system
that contains the interpreter or compiler. It requires either the file system
or a user 1/0 sectiom.

File System . ..

The SL5 file system is the link to the host disk operating system. It
glsoc contains channel I/0 providing buffered input and output to serial
devices. This section can be deleted from a kernel that does not use the disk
system, bul a user I/0 section must be added if the comsole I/0 or outer
interpreter section is coumpiled.

Dsexr 1/0 -

The SL5 file system and the host DOS take up several thousand bytes of
memory. In many cases the bhost DOS cannot >e executed from ROM. A user I/0O
section ¢an be substituted for the file svystem toc support console L/0. &
sample user I/0 section is listed below. The direct 1/0 words CIN, COUT, ar_
€IS are installation dependent. The 1/0 address and status mask depend oL -
hardware addresses and the UART used.

S SR TR ST T AT A O N A)

OWNIO SECTION 3

J0WNIO IFTIRUE

P, S

80 BARRAY TBUFTF
0 VARIABLE TBUF?
0 VARIABLE BUFSIZE . -

Object Modules - 2

AT ™ e Sl SN .

: COUT BEGIN (8251 character ouzput word = device addr ED comirol EC data)

0ED ZIN 1 &
END QEC zZOUT ;
: CIN BEGIN (serial input - device addr ED concrol EC datz)
0ED ZIN 2 &
END OQEC ZIN 77 & DUP COUT -
cls ;
{ CTYPE, SC")
: CTYPE DUP IT
0 DO }
DUP BE& COUT 1+
LOOP DROY
LLSE 2DROP
ENDIF ;

$C" R> DUP B@ SWAP l+ SWAP 2DUP + >R CTYPE ; (type string to console)

E(7E COUT ;

BEGIN
CASE
04 COUT 1
0D COUT 0A COUT

: TGET " > COUT 0 TBUF? !
CIN DUP TBUFP @ TBUFF Bl
00 =: TBUFF l-!
1§ =; (" *gsC«"
08 =: TBUFP @ IT
TBOF?P l-|
ENDIF O ;3
NOCASE =: TBUF? l+! o ;s

0 TBUF? ! ;

CASEND
END T3UFP £ BUFSIZE !
: GCB TBUFP € BUFSIZE € >= IF

TGET RECURSE

ELSZ TBUFP @ TBUFF BE
ENDIF ;

TBUFP 1+!

: DGCH GCE

Es" WTINIT ;

T _(INIT 0 TBUFP ! 0 BUFSIZE ! ;

IFEND

O TBUFP ! 0 ;;

END OWNIO SECTION

N

o N

The Symbol Table

The SL5 svmbol table is s

segment addresses of all the words in the diecctionary.

used Dy the outer ipnterpreter and compiler.

Object Modules - 3

linked list of the symbol names and code

The symbol table is
The symbol table occupies

approximately 255 of the space used by an SL3 program. It can be removed in
SYSMAKE by responding with a "N" to the gquestion: '"Do you wamt a symbol table
(Y/y) 7", In COMMOD, the variable ?SYMTAB should be set te § Lif the symbol
table isn’t needed.

S

Deleting a Section of the Rermel

Compiler Comtrol Constants

7INTERD Compile 1nrerpreter words
TCOMPLILE Compiie compller words
TCRT Cowpile counsole 1/0 woras

TFILESYS Compile tne SLO file system

TOWNLO Compiie user 1/0 words

e S s Bt WL E— T — A $eren. — —
e e e e T A i T ST T—— —
'
&

E

The standard SL5 kernel is compiled with ?7INTERP, ?COMPILE, ?FILESYS, and
?CRT on {ser to l). ?0WNIC is set to 0. Compiler words can be deleted without
effecting the rest of the kermel. The compiler library requires the
interpreter, the file system and the CRT words. The interpreter library
requires the CRT and either the file system or user 1/0 section. Tne CRI
library peeds the file system or a user I/0 library.

3. Generating a ROM Based Controller Program R

(See example 1l below) _ .-

1. Write tbhe application program om a file.

2. Debug the program using DEV.COM and TLOAD. .
3 Compile a RAM syscem with SYSMAKE.COM and test. 21)\ Y
4. Write user 1/0 vords and debug with DEV,COM
3

. Add OWNIO secrion to KEERNEL.SLS PN . wmoa - PRI N
Ser 7COMPILE, ?INTERP, ?FILESYS to 0
Set ?0WNIO to 1 (edit KERNEL.SL5 source to change these comstants)

6. Compile a ROM system with SYSMARE.COM
Set the variable GOQILAD to the address of the driver word.
: DRIVER (your driver word) ;
“B DRIVER GOQIAD T!
When the program is loaded from disk or jumped to on coldstzart the
driver program will be executea after initialization of SL3,

7. Load the program from disk and test.

Object Modules - 4

8. Blast the object code into ZPROM and test.

NOTE: The words T! and T@ should be used in SYSMARE when storing values in
variables or memory lccations during STYSMAKE executioun. The words € and !
should still be used whex compiling.

EXAMPLE: 0 VARIABLE XYZ
§9 XYZ T!
¢ TI8T °9 XXT

The program should be tested and debugged using DEV.COM before compiling
with SYSMARE.COM. The ROM object f£ile can be locaded and tested using the DOS
vefore blasting EPROMS. After the program is tested, generate the productios
rersion with SYSMARE.COM,

NOTZ: The examples that Zollow include prompts, output messages and console
input as displayed on che console CRT during execution.

Example] : Generating a ROM module DRIVER.COM

C

.. SYSMAKE { load compiler program from CP/M)

Svsmake versionm 1.2 280 - CP/M
(C) Copyright 1980 The Stackworks

Znter “STAT” to examine parameters
Inter "RAMGEIN® to generate a RAM based system
Inter “ROMGEN® to generate a ROM based svstem

>1 imfof !) { turn off compiler source listing)
>Tomgen
Enter first address in ROM >4000 -

Znter nigest RAM address >e000

Znter object file mame >driver.com
Inter Kernel source file name >kernel.sl5 (compile kernmel.sl5)

— kermel.sl5 is compiled onto driver.com

Mora2 input (Y/N) ? ¥y
Enter source file pame >driver.sld (compile driver.sl3)

driver.sl’ is compiled onto driver.com

More imput (Y/R) 7 n
Do you want a symbol table (Y/N) 7 n (do not generate symbol table)

Successful compilatiom

Object Modules - 3

Program size = CFl / 3313 (hex / decimal aotation) .
Variable space used = 206 / 1736
Tota2]l memory used = FB7 / 5049 P

A> (back to ep/m)

4, Generaring a RAM COM module with STSMAKE

1. Write the program. . T
2. Compile and debug it using DEV.CONM.
3. Compile using SYSMAKE and all of KERNEL.SLS and test, g

4, Set conditional compile switches to delete unneeded sections of the
kermnel.

5. Compile with SYSMAKE, load and test.
NOTE: The words T! and T€ should be used in SYSMAKE when storing values in

variables or memory locations during STSMAKE execution. The words € znd |
should still be used when compiling.

~)
EXAMPLE: 0 VARIABLE XYZ
99 XYz T!
: TEST 99 X¥2 !
Example 2 : A RAM based COM file with SYSMAKE . .
g ..
A>SYSMAKE (load SYSMAKE program from CP/M) ‘s Lo
Svsmake wversionm 1.2 280 - CP/M ,wit-*
(C) Copyright 1980 The Stackworks - SRS
Sy ° L.
Enter “STAT” to examine parameters . .
Enrer “RAMGEN” to generate a RAM based system cL
Enter "ROMGEIN” to genmerare a ROM based system ‘5
I'd
>1 infof ! { turn off compiler source listing) . -/
>ramgen <

Enter object file pname Jmyprog.com g
Enter Rernel source file name >kermel.sl5 fcompile kernel.sl5) -

» 1
kernel.sl5 is compiled omte myprog.com

More ipput (I/R) ? y' s T
Enter source file name >myprog.slS (compile myprog.slS)

wyprog.sls is compiled onto myprog.com

- i e

Object Modules - 6

tore imput (Y/N) ? o
)6 you want a symbol table {(Y/¥) 7 y (do pot generate symbol table)

:uccessful compilation

‘wagraz size = 1F43 / 8011 { bex / decimal potation)
victiopary size = AF3 / 2803
‘otal memory used = 243FE / 10814

W2 { back to ¢p/m)

5. SYSMAXE Errors and Parmmeters

There are a few error messages that are generated by SYSMAKE when an
;ndefined action takes place or one of SYSMARKE"s data structures overflows.
joth of these are described here along with a remedy. Most error conditions
:ause the svstem to abort to the operating system after the message is5 issued.

-

¢ General SYSMARZ Errors '

TARGET REDEF numn - - This informative message is the same as the
compilation message "REDET nnnn”, which means

that the word tnns was just redefined iz the
vocabulary. No adverse action takes place.

anan 1§ UNDEFINED - This informs you that the word nmnn was used
without being previously defined.

Data Structure Overflows

oMP, BUFTER OVERFLOW 4 special buffer inside SYSMAKE c¢alled the
"compiler buffer" overfloved because a large
word was just defined. There are two ways to
resolve this problem, (1) separate the word imto
, one or more smaller definitions, (2) re-enter
‘* SYSMAKE 2and set the variable "CB-SIZE" to a

larger value than {t"s imitial value.

SYSs ZRROR # 1 - This message is generated wvhen the number of
defined variables exceeds the oumber allowed.
Re—enter SYSMAKE and increase the value of the
variable "TVAR-NUM" before compiling.

¢YS ERROR & 2 - Re—enter SYSMAKZI and increase the value of the
variable ISTMSF before compiling.
5¥S ERROR # 3 = Tals message is generated when xore mewmory is

required to complete compilatiom. If more
memOTY 15 not available, Te—enter SYSMAKE and
trv decreasing the values of the variables CB-
SIZZ, TVAR-NUM, and TSIMSP.

Object Modules = 7

ey

Setting SYSMAXE Parameters

. LA S -1

The following outpur demonstrates how to examine and modify SYSMAKZ
parameters. All user input is underlined fer clarzity,
g

ADSYSMARE (ioad SYSMAKE program STom CP/M)

Sysmake version 1.2 280 - CP/M
(C) Copyrigbt 1980 The Stackworks

Ecter “STAT” to examine parameters
"RAMGEN" to generate a RAM based system
Inter "ROMGEN™ to generate a RCOM based Ssystem Cow

All values are shown in hex/decimal form . S oo

Maximum number of variables (VAR-MAX) = 40 / 64

Temporary symbol table space (TSYMSF) = 200 / 512

Compiler buffer size (CB~SIZE) = 200 / 512

Starting program address (TDP) = 100 / 256 (auto. set during ROMGEN)}

—)

>60 var-max ! (set maximum number of variables to 60 hex) =+ —= - %,

>400 tdp ! (set starting address toc 400 hex)
>ramgen (now gemerate 2 ram based system)

P

6. Generating a COM Mpdule with COMMOD

The COMMOD prograx provides a quick, easy way to generate COM modules
for exacution. COMMOD can discard the symbol table if desired, or it cam
leave it imctact to be used alomg with the outer interpreter. COMMOD can also
execute ap initlalizationm routine which would display a2 message and or
initjalize variables before emztering the outer interpreter.

NOTE: If the symbol table is discarded, the outer interpreter is not
functional and an entry point for the program should be specified as the
initialization routine, :
- <
© Lk
Parameters For COMMOD

COMMOD has two parameters, !STMIAB and USERPAD.

These are variables and
tan be set after COMMOD.SL5 has been loaded.

7STMTIAS - If set to O, the symbol table is discarded,.
otherwise it is preserved. Default =]
USERPAD - This can be set to point to anm imitializationm

Toutine,

Oz default it poilnts to a dummy
routine,

»

Object Modules - 8

Example 3 : Create a disk com f£ile with COMMOD.SLS

i>sls (load the kermel object file from CP/M)
51 ipfocf ! (turn off source listing)
»>fload TEST.SLS (load user program on top of kernel)

»fload COMMOD.SLS ' (icad zhe commod program)

set the variable 7STMTAR to 0 if the symbol table isn”: needed.
ixecute “MAKECOM program.com” when ready.

>makecom TEST.COM . (genmerate program or TEST.COM)
?rogram size = 2D09 /11529 (size shown irn hexadecimal/decimal format)
40 (SLS returns to CP/M after saving TEST.COM)

Example 4: Create a disk COM file with a user initialization
routine

({ 18 . (load the kermel objeecr file from CP/M)
>zLoad TEST.SLS (load user program on top of kermel)

. MYINIT CR T" WELCOME TO MY PROGRAM VERSION 1.0" CR ;
»>£load COMMOD.SLS (load the commod program)

et the variable ?SYMIAB to 0 if the symbol table isn“t needed,
Ixecute "MAKECOM program.com” when ready.

‘p myinit userpad ! (set imitialization address to myimit)
makecom TEST2.COM (generate program on TESTZ2,.COM)

*rogram size = 2D09 / 11529 { size shown in hexadecimal/ decimal format)
L (SL5 returns to CP/M after saving TEST2.COM)
~>TEST2

=" COME TO MY PROGRAM VERSION 1.0

o
vy —

Object Modules - ¢

Example 5: Using COMMOD to create a disk COM file without a symbol

table.

A>sl5 { load the kernel object file from CP/M)

>fleoad TEST2.ELS { load user program or top of kernmel)

: DRIVER BEGIN (your main loop) 0 END ;

>£load COMMOD.SL3 (load the commod program) . .

Set the variable ?SYMIAB to 0 if the symbol table isn”t needed,

Execute "MAKECOM program.com” when ready. .

>0 ?symzabd ! - { symbol table will be discarded)

>“b DRIVER userpad ! (set initialization routine to DRIVER)

>makecom TEST3.COM { generate program om TEST3.COM)

Program size = 2D09 / 11529 { size shown in hexadecimal/ decimal format)}

A> (SL5 returms to CP/M after saving TEST3.COM) J\v

[EN
4

o
b
A}
A
"gen

Object Modules - 10

Structure B

J\

Structure

l. Inrroduction
In the £irst part of this macual, you vere shown bow to create and use

ords and structures. This section describes what actuzlly goes ot when you
reaz2 and use words and stTuctures,

2. Memory Organization

Given in figure !l is a typical memory layout for a RAM-based system and
2 figure 2 for ROM=-based systems. See the Interface Section for the actual
scation of these areas in your system,

Top of memory

.
€
5

N

5I0s

EDOS

Symbol table (dictiecmary)

" o e e e
e v e e v

i\ Code & datz ares
[code segments
- i variable & arrav stocage
& i 1/0 buffers
< i stacks
100H

buffers & data

e e it e f | e e i e e e e e e i
.
e et i atem s s e e e |] e i e e e e e e — —

Sottom of memory

Figure 2-1. Typiczl memory lavout for RAM-based systems.

Structure -]

N

The symbol table {or dictiopary) is a dowaward growing linked list of all

the defined words along witkhe code segment address and a flag bvte.

Toe code and datz arez contzins the code segments of definmed words,
I0 buffers, and the stacks {recturn and parameter).

towards the dic¢tiomary. I1f they collide, a fatal error results,

The parameter stack is 2 stack which grows

downward as more values

the

This area grows upward

are

placed onco 1t and comtracts upward when values are removed from i:. The °
rezurs stask i5 used for storing the interprefer pointers, and loop indexes.

o — et i

-

—— i ——
[

1008

Figure 2-2.

Top of memory

BI0s

BDOS

— i et F— S——- S Tt

Data area

variable & array storage
I/0 buffers
stacks

Symbol table (dictiomary)

Code area

Code segments

[, T J .

buffers & darta

Botteon of memory

Memory layout for ROM-based systems.

et et e i o e]} e e e i . s s Pt e e e e

Ir 2 ROM envirooment, the data area is separated from the code arez so

that the values of variables can be altered.

The code segment area lies in

ROM while the dictiomary and data area wmust be in RAM, The dictiomary may be
ommitted for systems where the outer incerpreter isn't used.

Structure - 2

3. Compilation of Words

Whenever a2 new word ‘s defined, 2 search is first performed on tte
ONTEXT vocabulary to see if the word has been previously defiped. If the
‘crd 18 found, the message "REDEF nnnn'" is displayed to imform you thzat you
Te redefining that word. This message is otly an informative one. Ther zhe
ord i1s added to the end of the CURRENT vocabulary and the CONTEXT vocabulary
s set to the CURRERT vocabulary except for CODE words in which case CORTEXT
s set to the ASSEMBLER vocabulary. What happens mext varies for COLON (:),
ODE, CONSTANT, VARIABLE, and ARRAY definmitionms.

3.1. Colon Definitions

When a colom (:) definition is defined, a CALL $: wmachine instruction is
tored at the start of the new word’s code segment. The variable STATE is set
¢ ! to indiczte compile mode. During compile mode the code segment address
=~ ords referepced inside the defirmitior will be stored in the code segment
’ he word being defined unless the referenced word has it“s precedence bit

Some words have 3 precedence bit set to force execution durinmg compile
ode. One of these words is semi=-colon (;}). It resets the STATE to ©
:xecutiot mode), updates the CONTEXT vocabulary so that the word just defined
s accessible, and places the address of ;53 in the code body (see figure 3-l).

address of §;

addresses of more
words

address of 2mnd wozd

address of lst word

f
J
|
1
|
!
i
[
!
|
[
}
i CALL §:

——————— e e) e —

entry point ==—>

Figure 3-l1. Memory format of colon definitioms.

wnem the nevw word is executed, a Jump to the entry point is made which
zuses the CPU to execute the CALL §: ipnstruction. $: pushes the value of
ae¢ Lnterprerer pointer of the returm stack and sets the IP o the memory

Structure - 3

4

location following the JALL $: instruction. The inner interpreter will pow
execute {jump tc) the addresses ip the colon definition. When $; 1s execuced,
tne previous value of the intepreter pointer 1s popped from the return stack,

3.l1.1. Literals -

During executiom, literals are pumbers whick you type im and are pushed
onto the stack. During compilatiom, literals are processed it a different way
so that the number will be pushed on the stack when the word is executed,

vatbher thao wher 1t 15 defined, The address of LIT and the value is compiled
into the code segment.

.« o « « | address of LIT | | the number J

Figure 3-2. Compiled literals.
¢ <l
I " -
Upon execution of LIT, the literal is placed on the stack apd the \
interpreter ©pointer 1s incremented to the memory location pas:t the number s¢ ~
tnat the inper ipterpreter won't execute the number.

-
i
-

s ™3
.
¥

3.1.2, T

What happens with T" auring compilation is similar to what was described
for licterals. The adaress of the word $T" 1s placed 1n the code segment along
with the stripg and tne string’s length.

EXAMPLE: If T" purple” appeared 1n a colorn Jdefinitaion,
the following would be placed 12 the body:

| address of ST" | | 6 lplulzclpll | el

When execuced $T" will priat
purple

ané i1nerement the interpreter pointer o the locarionm
following the e in purple.

-

Structure - &

4 Al PR o af b Ralm ™ g’

2.1.3. Branching Within Colom Definitiomns

In this sectiom, the intermal structure of some of the branching
copstTuctions is describec. The constructiomns discussed here should give you
some insight into the structures which are notr described in this section.

I¥..ELSE..ENDIF

When TIF..ELSE..ENDIF is compiled IF ELSE and ENDIF are actually
:xecuted rather than their addreses being compiled into the defimition because
nelr precedence bit is set. IF ELSE and ENDIF pur addresses of words and
ransfer addresses in the color body so that wher the word is executed the
roper bramehing will cccur.

EZAMPLE: NIRL=
¢ NINE= 9 = IF | ELSE 0 ENDIF . ;
vhich when executed will test the value on the top of the stack and type

! if it is a 9 or 2 0 if the top of stack is anything else. The definition
ody would then resemble:

address of 3; }

address of . |

address?]

a—

address of LIT |

address! |
address2 l =

|

addr. of SILSE |

address of LIT

I
|
l
I
}
|
|
I

addressl

address of $IF

address of =

9

|
l
!
J
J
address of LIT i

|
CALL $: !

!
|
|
i
:
|
|
|
|
|
I
{ I

{ | __
{
z
l
|
|
1
l
|
1
I
|
:
|
|
|

entry point =->

tructure = 5

¥When NINE= is executed and the top of stack (T0S) is 9, SIF will
inerement the interpreter pointer to skip over addressl, LIT wzll push the 1}
oz the stack, SELSE will then set the interpreter peinter to address2? to avoid
execution of the £alse part of the branch, and "." will print the TOS which is
2 1. 1f the pumber vhich was on the top of the stack upon entry of NINE= was
Dot a 9, SIF will se:t the interpreter peinter to addressl and LIT will push a
0 onto the stack which "." will print,

BEGIN. .EED
- v H ‘ j

BEGIN-END executes during compilation and places addresses along with
data in che code segment.

¥—-1. BEGIN DUP . l- DUP 0= END DROP ;

~

When N-l. is executed it will print all the numbers starting from the ‘;ﬁ
I

value on top cf the stack down te 1, - -
EXAMPLE: >3 Nel. <CR> - N
will produce: 987654321

address of $;

addr. ¢f DROP
address2

addressl

addr. of S$IF

addr. of 0=

addr. of DUP
4
addro Of l- ," \})

$

addr. of .

addr. of DUP

address]

CALL §: | '

entry point —-> ‘ !

Figure 3-3. Memory diagram‘of the word N-1.

Structure - §

[- - hed PG S - 4

Figure J-3 shows the memory image of the N-l. The word END puts the
address of SIF £folloved by the loop address in the code segment. 7The word
SIF will set the IP to address2 when the TOS is true{non-zerov) at the end of
1 the loop.

EECURSE

When the cowpiler directive RECURSE is encountered during the compilation
of 2 vord, it executes immediately and places the address of the word under
coustruccion in the definition. This epables the word to czll itself
recursively during execution.

: §~1, DOP IF *
DUP? . !~ RECURSE
ELSE DROP

ENDIF ;

- Execution of N-l. will cause the numbers starting from the value on the
stack on entry of N-1l. down to "1" to be typed.

.

= ZXAMPLE: >7_N=1. <CR>
will produce: 7 8§86 54 3 21

addr. of $;
addressd

addr. of DROP
addressi

address3

addry. of SELSE

addr., of b-i.
(addressl)

addr, of 1l-

N
‘.

addr. of DUP

address

addr, af SIF

addr. of DUP

| {
[f
| i
| i
] J
! !
! !
i [
{ |
] |
| l
| !
{ addr. of . i
| |
| |
| |
| !
| f
i i
] !
| }
| }
| !
| |

- entTY point CALL $:
(adgressl) =>
Figure 3-4. Illuscration aof N-~l. using RECURSE.

Structure = 7

g.’q\

N-l. cannot be used instead of RECURSE Decause the CONTEXT dictionary
(see section 4.1) does not contain the word N~l. until the ";" is processed.
The logic behind this is that it is ofterc desirable to be able 2o redefine a
word using the previous definitier.

3.1.4. ;: and ;CODE Comstructions

The most common way to tercinate a colon defircition is by the use of the
[1" Y
word ":". Two other words canm be used ~- ;: and icode.

When the compiler directive ;: is used, it places two thimgs in the woré
under definition before terminating compilation. The first is the address of
a word 3%;: and the second is the machime imstructiom CALL §: .

EXAMPLE: The aefinition of the werd BARRAY:

: BARRAY HERE 5 + CONSTANT DP+! ;: @ =+ ;
Which when used: . . - T ¥
. N
& BARRAY BEX!

\ *

will define a new word called BEX1l . Figure 3=-5 shows the memory image
of these two words.

BARRAY

addr. of $;

addr, of +

adar. of €

— — — i S

Call §S:
addressl -

| addr. of 5;:
BEX! _))

addr, of DB+!

address of
CONSTANT
0

array
elements

address3

addr, of LIT aadressd

address?

CALL $:

i

J
|
!
i
i
CALL addressl ;

Figure 3-5. Tlilustration of BARRAY & BEXI!.

Structure - §

When $;: is executed address! is placed in the address fielc of the CALL
instructior in BEX!l and executiop of BARRAY is te-mirated. Wken BEX] is
subsequently executed, CALL addressl will push address2 on the stack and
branch to addressl. CALL $: at address] will ip turm set the imterpreter
pointer up and start executing, as if it were 2 colom definition.

The compiler directive ;;CODE is idemziczl tz ;: except that it defines a
CODE seguence instead of 3 colon sequence, Thus the form:

roop ...words... ;CODE ...machige ipstructions... EDOC

oooe Tmmm

produces the memory images shown iz the figure below.

oong
| !
- machine -
~ instructions ~
;/' | i address2
! address of | T
~ } $;CCDE_ | I
| i
T addresses of T - paramerlers =
= words = - =
E E addressl { !
[
f CALL §: ; { CALL addressl |
|
Figure 3=6. Memory format of ;CODE comstructioms.
3.2. CODE Definitioumns
ii- Wher vou define a code word, SL3 remains ir the execurion mode (STATE=(Q)
.like colon defirmitions where you are in compilation mode (STATE=])., Words

-e assembled into the code segment to be executed by the CPU., Upon execution
cf the word "EDOC", CONTEXT is reset to the CURRENT vocabulary, which emables
vou te reference the nev word immediately.

! !
J machinpe I
] insctructions | ’
encry point =--=> | |
Figure 3-7. femory format for CODE definitioms.

Struczure - 9§

3.3. CORSTANT

-

4 comstant pushes 1t”s value outo the stack., Wher vou define a CONSTANT,
the memory image resembles that of figure 3-8. When the cemstant is executed,
the word SCONSTANT picks up “convalue" and pushes it on the stack.

convalue

l
l
|
% CALL $CONSTAKNT
i

A A it SR s PP T

entTy point =—>

Figure 3-8, Memory format for comstants. _

Y

.)
3.4. VARIAELE o

When 5 new variable is defined, 2 code segment of the form shown it
figure 3-9 is created. Subsequent execution of the variable results ic
addressl being placed oo the parameter stack to be used by words such as "I" ,
”@" 3 "1*!" -..etC-

varvalue
address] =—>

addressl

CALL SCONSTANRT

l
I
i
I
l
|
I
I
I
!

entry point =>

Figure 3=-9, Format of variables.

3.5. Arrays

In this section, the term "arrays” refers to the structures which are
defined via the word ARRAY, Structures which are defined through the word
BARRAY are identical to those of ARRAY with the exception that the size of the
elemenrs in a BARRAY are 8 bits while those of an ARRAY are 16 bits.

- Structure - 10

The memory image of ap array is given it fxgu-e 3=10 for RAM-based
svstems, 1o a ROM-based system the elewments would lie ir the data area. When
the array is accessed the address of the desired element is lef:z on the stack.
The address 15 computed as "2*n + addressl" where n is :he element number,

elements

addressl

addressl

CALL SARRAY

[P [P
UV, SEDPUIEUL AN S PRSI,

Figure 3-10. Memory image of arrays.

= 4. The Dictionary

4.1, The CURRENT & CONTEXT Pointers

When you type in words at the top level, a search is made in a vocabulary
for the vord It is exscuted or compiled depending op the value of the variable
STATE., The CONTEXT vocabulary is the vocabulary searched. The variable CONTEXT
poiats (a2 negative offset from the variable SYMTP) to the first emntry ip the
voecabulary list, The CONTEXT vocabulary is set by execuring:

nonr -

where annnh is the name of a vocabulary such as ASSEMELER or FORTH.

s Nev words are added te the CURRENT vocabulary. There is a variable named
> "RRENT which peints to 2 memory locartion whicn in turc points to the last

-7d defined in the CURRENT vocabulary The CURRENT vocabulary is set when
yoU execute:

nnan DEFINITIONS .o

vhere poon is the name of the new CURRENT vocabulary. Note that the
CONTEZXT vocabulary is also set by executing nann. The CURRENT and CONTEXT
pointers can refer to the same vocabulary.

Structure - 11l

5 A

Vocabularies . ‘ e mes
=T
Every word that is defiped in SL3 has an entry in 2z vocabulary. &4
vocabulary is 8 linked list of these entries with the first element of thats
list being the most recently defined word in that vocabulary.
The Internal Structure of Vocabularies

»

There are two different types of eantries found in vocabularies. The
£irst and most common is the symbol entry which contains the symbol, the
execution address, and a flag byte. s

increasing memory addresses ——==>

VA
[1 byte ; 2 byres } 2 bytes i 1 byte i "length" bytes }

| ——
| flags | 1link | address | length | \n:me !
Figure 4-l. A symbol encry.
™
~—
f b | F78a | 2081 | 5 grape !

Figure 4-2. Example of a symbol entry for the word "grape'.

¥+

Every symbol entry has a flag byte (figure 4-3) followed by a zwo byte
lipk field (which whep added to tbe value of the variable SYMTIP gives the
address of the next entry in the vocabulary), followed by the execution
adéress, the length ol the word, and the symbol. - S Ut ot

MSE Ls3
f716 151413121100l e L . it

bit usage) . VI DL
= 0=3 unused, -
unused but reserved.

unused but reserved. ’ e
unused but reserved.

precedence bit. If set (l), the word

will be executed rTegardless of the value . .
of STATE. . . -

~tDvun

NOTE: All bits default to the value 0.

Figure 4=3, Explanation of the flag bits.

Structure - 12

The other type of euntry found it 2 vocabulary is the vocabulary base
which appears orly once iz eazch vocabulary. For every vocabulary except FORTH

the format of this header is given in_figure 4~4, 7The FORTH vocabulary is not
chained o amy vocabulary, so its 'vlink"” field is set to O.

increasing memory addresses ———>

0 ! Q | wvlink | 0 !

| 1 byte i 2 bytes | 2 bytes | 1 byte |

Figure 4=~4, Vocabulary base format.

Vocabulary Chaining

When a new vocabulary is defined,

it is chained to the CURRENT
v -abulary.

Chaining enables the words io the CURRENT vocabulary (and the

» bulary it was chained to, if present) to be referenced while using the new
v abulary.

When the new vocabulary is created { VOCABULARY nmmnn), a vocabulary base
{see figure 4~4) is crezted in the newv vocabulary with the vlink field
pointing to the head of the CURRENT vocabulary. Ap example of vocabulary

chaining 1s shown 1o figure 4-3 with the ASSEMBLER and the USERV vocabularies
ccained to the FORTH vocabulary.

Struczure = 13

U

nead of the i
ASSEMBLER

|
\ I/

last word iz !
the ASSEMELER !
vocabulary I

[

more ASSEMBLER
definitions

\1/

ASSEMELER base |

Figure 4-3,

4.3. Dictiomzry Reduction

EXAMPLE:

head of FORIR

i
|
¥

last werd in
the FORTH
vocabulary

i

more FORTH
definitions

\i/

FORTE base

>TORGET lemmon

|

<er >

head of USEY

|
!
\S¥}

last word in
the USERV
vocabulary

!

more USERY
definitions

\i/

USERY base

truccure - 14

Diagram of chained vocabularies.

In the course of debugging programs, it is often necessary to free up
memory which is occupied by previous versions of the program.
definitions from the symbol table(dictiomnary).

FORGET deletes

Ir the above exampie all words defined sivce and iemcluding the word
lemmor will be removed froo the dictionary. Theilr code segments are also
discarded. If the word lemmon does not exist, the informative message

lemmon ?

w11l sappear, without arnv words being removed from the dictionary. FORGET
should be used cautiously, for it cap produce undesirable and/or fatal effects

if two or more vocabularies are intertwined.

t-ueture - 15

A A e -

W)

Glossary

Ir this glossary the words are described im a semi-alphabetic order. The
followicg netation 1s used for each entry:

pedatal.t parms anan parms ===> values {chars)
description
where: nnoo is the name of the word being described.
parms are the word’s parameters (parameters

which appear before the word are assumed
to be or the stack while parameters
appearing after the word are parsed from
the input buffer) .
values are the values returned.
'C chars are characteristics of the word,

descriptior is a verbal description of what the word
does.

not every word will have parameters/values/characreristics,

Parameter Notetiom:

-

c a seven bit ASCII character code.

2 boolean flag, False = {; True = non-zero. All
words which return a flag (0= , <= .,.etc) return
FALSE = 0, TRUZ =].

egmun a lé bit integer,
T PerT
’I T uv
PFTE Y 2
penn a4 name of a word which consists of 1-255 nop-blank char-
TS gacters delimicted on the right by a blamk or a

carriage-return,

1

Glossary

Characteristics

c The word may only be used withit a ¢olon defiritioen.
P The word has its precedence bit set and 1is executed
immediately, even in compilation mode.)
v The word 1s a variable. The default value :)
is showr following the V in decimal notationm.
) 4 The word is a constant. o
Y P <

. Bl

.
+
~n

Y

-
\
\ i
L]

s

/MOD

 p !
Store m at address p.

p € —3 |
Fetch the contents of address p and put it on the stack.

Fetch the contents ¢f the word at address p and reverse the
order of the bytes before placing it on the stack.

c -—> (?)

The ASCII wvalue of the character thatr follows is returned.

-

annn -—D> P (p)

4 compiler directive that fetches the address of the parameter
field of the word nonn. The parameter field is the £irst word
in a2 colon definition after the code field,

“B aunnn ——> addr (P)
Returns the execution adéress of the word nann. It is similar
to " except that the address is 3 less.

‘S nonn —> addr (P)
Rerturns the address of the symbol table entry of the word npnn.

(ssss) (P}
Ignore 2 comment that will be delimited by a right parenthesis
OT & carriage refurn.

m n o+ —
16 bit signed addition. p=m+n

m n - —D> P
16 bit signed integer subtractiopn. p*w—n

n g - —_—> P
16 bit signed integer subtraction. p=p-m

m o * _-—>
16 bit signed integer multiply. pem*n

= n / p .
16 bit integer divide. The quotient is trumcated to 16 bits and
the remainder is dropped. p=m/n

m B /MOD > P a
16 bit inceger divide. Quotient is on top of stack, remainder
below it. Remainder has sizn of dividend m. pem/n

SL5 Glossary - 3

. ko B S Y et e AT KR MG el by L et

%

<-L

1+

1+}

+!

=ROLL

» 1o | —_—D
16 bit Logical imnclusive OR of m and n.

& B & —-—D P ;
16 bit legizael AND of &= and n.

= o =>L —-—2 P t
Logical right shift of m by n bits.

A3

m n <~L -_—> 0D
Logical left shift of m by n bits.

m 1+ -—> 1
Add one te the vzlue on top of stack. >
p 1+l ' ‘

Increment the value stored at p by one.

-
Y

m 1- ——3 p . - _/‘\
Subtract 1 from m.

p 1! 3
Decrement the value stored at p by one.

m p +!
Add the integer value m to the value stored at address p.

- ,) '

Store m into the dictionmary at the locatior specified by the
dictionary pointer (DP)., Increment~the dictiomary pcinter by
n :

-

n =-ROLL
Move the top of stack inro the nth position ip the stack. The
rest of the stack moves up. (3 =ROLL = ROT ROT) -

- - LIV -

[

Switch state from compile to interpret {see] below). Words in
a colon defination up to | are interpreted instead of compiled.

]

Switch STATE fromw interpret back to compile. Words between |
and | are interpreted even :though the machipe state is compile.

m . . ’
Display the top of the stack as a 16 bit signed number
according to the current radix specified by the variable BASE,

SL5 Glossary - 4

“&k\

L2)

2DRO?

2DTUP

2SWAY

we

we
1]

:CODE

0<

0>

> .
Display the contents of address p or the console according to
the current radix,

= © 2DROP
Remove the top twe stack elements.

m n Z2DUP -—=> m 1o =™ =n
Duplicate the top two stack elements,

m B P q 2SWar -—-> P g B 1.
Swap the top Iwo pairs of stack elements.

: nnon :

Create 2 mew word (entry) in the dictionmary with the label
nnnn., Set the system variable STATE to compile (1), Subsequent
wvords up to ; will be compiled into the dictionary instead of
executed (interpreted).

; (cp)

]

Terminate a colon defimition, update the dictionary linked
1ist, and set the variable STATE to 0 (interpret mode).

;e (CP)

Used to create a user defined data or code structure, ;: causes
the wvords betwveen ;: and the next ; to be compiled and their
address specified in the code segmen: of any words created by
annn.

;CODE (CP}
;CODE has the same effact as ;: above, except that the code
defined is assembly language instead of SL53.

o 0< -—> £
£ is true if m 15 nmegative

m O= -—> £
f is true if m = Q,

mw 0> — f
True if m i1s greater than zero.

m o < —_—> f
£ returned as true if m is less than n.

+H
e
n

i5 true 3.f m is less than .or equal to m.

;)
r
tn

SL5 Glossary - 5

I e

$-

<>

ARRAY

ASSEMBLZR

BARRAY

BASE

= —_ £

True if m is equal to n.

n oo < _—> f

f is truve if w is mot equal to o,

=z > —— £

True if m is greater that u.

b R 4 = o> f
True 1f m is greater thap or equzl te u.

ABORT) " "o
Common word for fatal error exits. The message "ABORT" 1is

displayed before RESTART is executed.

m ABS —> 1
Absolute value of m,

)

¢ ARRAY anpnn . - .
Define a word none and azllocate © words of storage. Subsequent
references to unnrn cause the top of stack to be added to the

base address of the defined storage area and placed on the top
of the stack.

ASSEMBLER - '
S5et tbe context vocabulary to the ASSEMBLER vocabulary.

» p B!
Store the byte (low 8 bits of m) at address p.

p BE —-—>
Fetch the contents of the byte at address p and put it on the
top of the stack.

m B, -
Store the byte m into the dictionary at the address of the DP,
Increment the dictiopary poinoter by one.

m B,
Display m as an unsigned 8 bit hexidecimal number.

t BARRAY a=nnpon

Same as ARRAY, wvith the exception that the cells are one byte
iz length instead of two byres.

EASE (vi6)
A system variable that contains the current conversion radix.

SL5 Glossary - 6

BEGIN

BLANK

BMOVE

BSWAT

CASE

CASEND

CIECK

CIN

Cils

BEGIN ,.. END (ce)

L compiler directive that defines the start of a loop. The wozd
END tests the top of stack, and brancches back to begic if the
TOS is false (0), or to the word followimg END if true. The
word WEILE can be used for a pretest as Ln BEGIN... WEILE...
REPEAT.

a q BLANK
Fill ¢ bytes of memory starting at addéress q with the space
charvaccer (20E),

p q m BMOVE
Move m bytes starting at address p into the area specified by
address q.

n BSWAP —-—D> m
Swap the order of the two bytes of o and place the result on
the stack.

CASE (CP)
1 = ..

2= ...

3 ® oa.. LS |

DUP NOCASE =: ... ;;

CASEND

The case statement is a ome of n execution select. Iz deviates
from the standard Forth case statement which is really 2 mested
if statement. NOCASE is executed if the TOS does not maich any
¢f the values in the case body.

CASEND (ce)
Terminates a CASE statement seguence. See the word "CASEZ".

CHECK -
Test for returt or parameter stack underflow. Abort is called
on underf{low.

CIX —-—)

Read a character from the keyboard and return its ASCII value
¢. The character is checked before returning it teo see if it
is one of the special characters.

CIs

The keyboard is checked for input and if a character has been
typed, the character is read and examined to see if'it is one
of the special cbaracters. This routipe is very useful as 2
Tealtime breakpoint urility.

SL5 Glossary - 7

”“f*\

CODE

¢
€
4

COMPILE

CONSTANT

CONTEXT

COUNRT

CoTT

CR

CTIPE

CURRENT

cvoc

CODE opumnr
Define a word nonn wbich is writtern in assembly language using
the SL5 system assembler. Creates a dictiopary encry, and sets
the costext vocabulary to ASSEMBLER. (See the Assemblers
glossary).

n COM 2 n
Cne”s complemezt c¢f =w,
COMPILE onnonn (p)

Compile the address of the word nonm inte the code segment.
This is useful for compiling words whick have their precedance
bit set by IMP or IMMEDIATE,

E]

n CONSTANT =nnan
Create 2z word nonn which when executed places the value & on
the top of the stack.

CONTEXT (v)
A pointer to the Context vocabulary, where dictionary searches
begin. (See the word "FIND").

p COUNT ~—> | 1B

Returas the byte address m and the length n of the ASCII string
at address p. COUNT assumes that the first byte at address p
contains the string length.

-

c COUT
The character whose ASCII value corresponds to ¢ is displayed
on the comsole.

CR
Outpur a carriage veturn - line feel sequence to the ouzput
file designated by OUTFILE.

m n CTYPE

A

/11'

Qutput 2 string of n characters starting at address m to th{_ﬁ_

console.

C" ssss” ' - (P)
Qutput the string ssss to the console. One space must precede
the string.

CURRENT ' ' (V)
4 variable pointing to the CURRENT vocabulary, which is the
vocabulary which new words are added to.

cvoc (v}
CURRENT vocabulary pointer.

SL5> Glossary - 8

DECIMAL

DEFINITIONS

DELIMIT

DO

DP

DP+!

DROP

Jalopy

ELSE

ENDIF

ZZXECUTE

S et 2 B

DECIMAL
Set zhe number radix to base 0.

nann EFINITIONS
Set the cuvrent vocabulary to noaon. New words will De added to
the nono vocabulary,

DELIMITER {(v32)
A variable that contains the current character used as a string
delimiter by szring routines (WORD).

m v DO ... LOOP cr (cp)

w B DO ... o +«LOOP

Defines an i1terative loop that is executed m - © Limes. The
upper limit m is one greater than the terminal value, ¢ +1L00?
increments the loop index by ¢ each time through the loop. ©
does not have to be an integral value of the coupt,

DP (V)
4 variable pointing to the mext available word inm the
dictiomary or code segment.

o DPe+!

Ircrement the value of the dictionary pointer (DP) by m and
store the result in DF.

w DROP
Remove the top element of the stack.

mw DUP —=> m m
Duplicate the top elemen:t of the stack.

IF ... ELSE ,.. ENDIF (cP)
Defines the start of the false part of a IF ... ELSE ... ENDIT
clause,

BEGIN ... END (cp)

Marks the end of a BEGIN .. END loop. The top of stack is
tested upon execution of END for a zero value (false). 1f it
is zero, execution resumes with the word following the
corresponding BEGIN statement. 1f it is non-zerc (truch)
execution continues with the word following the END statement.

IF .. ELSE ... ENDIF (CP)
Marks tne end of a IF scatement.

P EXECUTE

A word used in the outer interpreter to execute/coumpile the
word peinted to by address p, depending on the value of tne
variable "STATE" and the precedence bit of the word. p is a
pointer to the word’s symbol table entry.

8L5 Glossary - 9

-
i

,-.1-"’"\

EXIT

FILL

FIND

FLCAD

FORGET

FORTE

GCR

GO

GOQLAD

GO—-OPSYS

HERE

HEX

DO ... EXIT .. LOOP (C}
Force termination of the currest loop on this iterstion, by
inereasing the loop index to the rerminal value.

-+

= p n FILL
Store the value © into m bytes starting at adaress p,

-

FIND - -—-> v 1 /1
Search the symbol table starting at CORTEXT for a mateh with
the string at the dictionary pointer. The strimg is usually
left by WORD. If found return the code address, and 3, 1 on TOS.
Othervise returu a 0 to £flag that the symbol isn”t in the
dictiopary.

#

FLOAD nnaon . - (B L

Open the file nnnr and swizch the input stream to disk input
from that file. On EOF or [END-OF-FILE] return to the comsole
for input. Genmerally used to compile code edm:ed into a source
£ile and saved on disk, -

-);‘

FORGET nonn (P)
Delete mnun and all subsequent dictiomary entries.

FORTE
Sets the CONTEXT vocabulary to FORTH, which is the central
vocabulary.

'
[l

GCH -2
Read a character from the system input file and returr its
ASCII character cpae.

hadid -

z GO -
Branch to the address mn. If n is the address of a coloz
defivition or a code definition which returns to the inner
interpreter, GO functions more as a "call" statement.

I

-
GOQILAD (V)
A variable pointing to the outer interpreter word. Can be set
so that amy word can be branched to after a RESTART other than

the outer interprecer (INTRLP). -
- 5ne

GO-QPSYS
Exir to the operating system. ~'-V¥

EERE -—> p e
Returns the value of che dictiomary pointer (DP), -
EEZX B

Set the radix to base 1€ (hexidecimal). -~

SL5 Gliossary - 10

- T

IMMEDIATE

IMP

INFILE

- !h\

INFOF

ININIT

INTRLP

LINK

LIT

D0 ... I ... LoO? (<)
Returns the value of the innermost loop index.

IF .. ELSE .. ENDIF (c?)
Toe start of a conditional clause. Code L5 compiled to test
the top of the stack, and brazsch 22 the true part {(IF), the

false part (ELSE), or ENDIF.

IMMEDIATE
Sets the precedence bit of the word which was just defined.

IM" aznpn

Kark the word nnan as immedjiate. nnnn wiil be executed
whenever it is encountered. Specifically it is executed when
ETATE=] or during compilation.

INFTILE
The system input file"s £ib. This can be altered so the input
(such as GCH) will be takern from a device or a disk file,

IRFOF (v)

Information contrel byte. Whem bit 0 is om the system the
system prints ap error message when a word is redefined. Bit 2
on enables listing of source text during FLOAD. INFOF defaults
to all bits beimg set.

INIRIT
Reset the system inmput file (INFILE) to the comsole.

INTRLF
The ocgter-intrepreter loop.

J (C)
Retures the value of the next outer do loop index.

K ()
Returns the value of the third do loop index.

o LINK

Adds a2 nev word to the symbol table, and the active vocabulary
chain. The name of the word is pointed to by DF and n is the
execution address of the word. The flag byte is initialized to

LIT iy -

4 word that is compiled into the code segment before every
literal. Contains code to push the pext word omto the stack at
execution time, and wmove the IP to the following werd.

SL5 Glossary = Ll

q&’\

LITERAL

LOQP

+100F

MINUS

MOD

NOCASE

NOT

HUMBER

OCTAL

OUTFILE

o LITERAL

I1f STATE=! (compilationm wmode), the word LIT is compiled along
with o so that o is placed oz the stack upon execution of LIT.
If STATZ=0 (interpreter mode), = is left oc the stack.

DC ... LOOP {cr}
Iacrement the loop index by 1 and exit frem the loop if the
index is greater thac or equal to the limit.

= +LOQP (CP)

Add m to the loop index. The loop is exited when the value of
the index is equal to or greater than the limit.

m o MAX -——> g . . .

Leaves the greater of the two signed integers m and n on the
stack.

m n MIN —-—
Leaves the lesser of the two signed integers m anad n oz the
stack.

o MINOS —Don
Leave the two s complement of m on the stack. - .
m n MOD ——D T

Remainder of m/n with same sigr as m.

CASE ... NOCASE... CASEND
AD otherwise branch for the case statement. See the word
“"CASE".

mw NOT —
Equivalent to 0=,

+h

NUMBER —3 a1 / 0
The character string left by word is converted to a number
according to the current radix defined in the variable base.
NUMBER converts signed and unsigned 16 bit integers. The result
is left on the stack with a 1 on T0S LIf the conversion suceeds.
A 0 is left oo the stack if the number camnor be comverted with
the curreat radix.

OCTAL
Set the I1/0 number radix to octal.

OUTFILE

The system output file’s £ib. This can be changed so as to re-
route all system output to a device or a disk file. OUTFILE
defaulis to the conscle,

515 Glossary = 12

OUTINIT

OVER

o
(Sl
(%]
L&l

R>

>R

RECTURSE
3

RIPZAT

RESTART

RESTARIAD

IMOVZ

§ S

kuLL

BRP

OUTINIT ‘
The system output file (OUTTILE) is set to the console.

z n OVER -———> m o m
Duplicate the second stack element, and put it on the T0S,

& PICK -—> n
Copy the mth stack value omto the TCS (2 PICK = OVER}.

Pop the top value £rom the return stack and push it onto the
parameter stack.

m >R
Move TOS to the top of the return stack.

RECURSE (CP) .
Causes the word under coaostcruction o be executed at execution
time,

BEGIN ... WEHILE ... REPEAT (cp}
Compile an uncanditiomal jump back to BEGIN. See BEGIN

L
EESTART
The stacks are cleared, STATE is set to interpret, INFILE and
OUTFILI are set to the crt, and the outer ipterpreter is
invoked.

RISTARIAD (")
4 variable pointing to the address cof the system Testart
routine.

-

P q m RMOVE
Move m bytes in memory from address p to address g. The move
is carried out from the last byte in the vector to the firse.

n ROLL
Fetch the nth stack element and push it onto the TOS.
(3 ROLL = ROT)

m ©n p ROT -—=> 0 P W
Rotate the top 3 stack elements.

RPE -—> 1
Push the value of the return stack pointer onto the parameter
stack.

SL5 Glossary ~ 13

——t

_\q"\:

4™

B2!

RSIZE

SET

SPE

SP!

SPACE

SPACES

SWAY

85Izt

STATE

SYMIP

STMPTR

TCH

TIPE

n RP! -
Set the return stack pointer to &,

RSIZE {K) -
The size of cthe return stack which is implemented as 2 BARRAY
in SL3S.

-

m p SET nooo
Define a2 word nnnn which when executed will cause the value m
to be stored at address p.

SPE m——> 7
Push the value of the parameter stack pointer onto the stack.

n SP!
Set the parameter stack pointer to n.

SPACE
Output a space character (20H) to the system output file.

n SPACES i
Qutput n space characters to the system output file.

m n SWAP —=> 1n m
Exchange the top two elements om the stack.

oW

$S81ZZ (K)

Returas the size of the parameter stack which is mexemen:ed as
a BARRAY in SL5S. .)
STATE (vor

A variable thart determines whether a word 1s interpreted
{(STATE=0) or compiled (STATE=1). Words that nave their
precedence bit set are executed when STATE=l.

SYMTP (v}
The address of the top of the symbol table,

STMPTR (v)
A pointer to the last entry in the symbol table.

¢ TCH ”
The ASCII character associated with c 1s sent to the system

output file,

mw n TYPE
Qutput a string of n characters starting at address m to the
system output file,.

SL5 Glossary - 14 N

J

--

U<
U4=
>

U>=

UPPER

UNDEFINED

VARIABLE

L 1

VLIST

VOCABULARY

WHILE

WORD

ak

T" ssss”
OQuzpur the stricg ssss to the system output £ile. Ome space
must precede the string.

Unsigned 16 bit integer comparisons. Used to compare addresses
and other 16 pit integers that are treated as unsigned numbers.

UPPER (vi)
When UPPER is set to 1, the routine "WORD" comverts characters
to upper case. UPPER defaults to l.

UNDEFINED
The string left by WORD is displayed along with the undefined
message on the comsole. RESTARY is then executed.

m VARIARLE annnn
A word that creates a dictiomary entry for the word nnnn,

allocates a word in memory and initiazlizes that memory word to
n. See @ and !.

VLIST
List the dictionary starting at CONTEXT. Every entry bas its
execution address, flag byte and pame displayed on a separate
line.

VOCABULARY vwvvv

Creates a vocabulary chain vvvv with the head linked to the
current vocabulary. vvvv DEFTINITIONS makes vvvv the current
vecabulary inteo which new definitions are added.

BEGIN ... WHILE ... REPEAT (ce¥

A prerest for loop iteratiom. A true TOS (<>0) causes the words
between WHILE and REPEAT to be executed. REPEAT generates an
ucconditional jump back to BEGIN. 4 false TOS (0) results ir a
jump to the word followimg REPEAT.

WORD

Scan the input buffer for the next token, which is the string
of characters up to a2 delimiter. The delimiter is the character
iz the wvariable DELIMITER. WORD resets DELIMITER to blank
(20E). The string is stored iz a3 system area, with the size,
followed by che string.

a X.
Print the top element on the stack as an unsigned 16 bit
integer iz base 16,

n o X| -—_> 0
Logical exclusive OR of n and n.

SLS Glossary - 15

-

ZIN

20UT

p ZIX —=> 1
Read value n from port p (280 version only).

n p Z0TUT
Cutput n to pert p (ZBG version only).

SL5 Glossary - 16

BEGIN,

CODE

EDOC

RPEAT,

BEGIN,
Mark the beginning of an assembler loop.

CODE tnnnz
Create a2 dictiopary entry for a2 code word nomns and set the
CONTEXT vocabulary to ASSEMBLER,

EDOC
Terminate a code definiton and set the CONTEXT vocabulary to
the CURRENT vocabulary.

ELSE

Hark’the begimning of the false part of ap "IF," comstructior.
The code which follows is executed only if the condition
specified at the "IF," is false.

c¢ END,
Mark the end of a conditional loop. If cec is "rrue" during
execution, the loop will not be re—executed.

ENDIF,
Mark the end of a conditionzl foward branch.

cec IF,

Assemble a conditional branch which will execute the code
following "IF," only if ¢c is true, otherwise a branch to the
code following "“ENDIF," or "ELSE," is made.

REPEAT,
Mark the end of an unconditional loop.

Assembler Glossary = l7

J— - - . - Py 3 - -~ - aka

. *’\

[END-OF-FILE]

BUFAD

BUTLEN

BUF?P

BUFSIZE

CLOSE

DELETE

EQF

EOFCER

FALLOC

FCE

FLOAD

FLUSH

[END=QF=FILE]
Terpinare compilation of a file which was loaded via FLOAD.

£ib" BUTAD —> o ‘ _
Returh the buffer address associated with fib™.

£ib"® BUFLEN —> 1
Return the address of the buffer length associated with £ib”,

£i»™ BUF? -—>

The address of the buffer pointer associated with £ib" is
Teturned, . .
BUFSIZE —> 1 G §!

A predefined constant whose value is the size of all the
buffers.

£ib® CLOSE . .
Close the file designated by £ib™ which was previously openeé
0T created.

£ib~ DELETE)
The file designated it fib”™ is removed from the directory.

£id" EOF -—> f -

The boolean flag £ is returned as true (1) if the end~of-file
was reached on the file specified by £ib~., I1# the EOF hasz’t
been processed yet, the false value (0) is returned,

y o

ZOFCHR -—> 1 (K)
A& constant which determines the end=of~file character which RCH
looks for.

FALLOC annn
Create a FIB which can be subsequently referenced by the name
nans.

£ip® FCB -——> 1
Return the address of the FCB associated with £ib~,

FLOAD <filename
Load the f£ile specified by filename from the disk.

fip® FLUSE

Flush the buffer associated with £ib”. The buffer is written
out o0 disk 1f the buffer pointer associated with the file is
pop~zere, othervise no action is performed.

File System Glossary - 18

»

-J :

-

NAMIT

OPENR

OPENW

. 'L'Bm

RCH

RENAME

HCE

WRITE

£ib" NRAMIT anno
The file mame associated with fid™ 1s set to mann. ©uma i& it
the form of d:fff£fffff.ece where "d" is the drive {(A=2)
foliowed by a colonm, WEELEFEFES™ is the file mame, and "eee"
is the extension name. The "d" and che "eee' £fields are not
mandatory. Serial devices are specified ehen "Iff£fIff" is
one of the following:

#CBT -~ coumsclz/keyboazd.

#1LST = printer/keyboard.

£ib" OPENR
Open the file designated by £ib™ for reading.

£:b* OPENW

Create a nev file which is designated in £ib” and open it for
writing. The previous version of the f£ile is deleted from the
directory, 1f ir existed. If the operatiomn fails, an error
message 15 issued and an abort to RESTART is made.

£ib® BREYTIE —-—> n
The next byte is read from the file designated by £ib™ and
returned,

£ib® RCE -—D
The next ASCII character is read from the file described by
fib‘ L

£ib® READ
The next sector is read from the file designated by £ib™ into
the file"s buffer.

ofib™ afib”™ RERAME -
The £ile which is described by ofib”™ is renamed to the file
specified nfib”™ in the directory.

£ib™ RESET
The file associated with fib™ is reset. This means that the
file is rewound and the EQF flag is reset,

n £id” WBYIE
The byte » is written onto the file described in £ib~.

e £ib” WCE
The ASCII character ¢ is written to the file designated by
£ib”,

£ib® WRITE

The buifer associated with fib™ is written onto the file
designated by £ibd°. If the file is a serial device, BUFP
should coptzin the size of the buffer which is to be writctern
out.

File System Glossary - 19

DuM?

MODLIFY

pso®

RSDMP

- STYMDOMP

*BREAK™®

[0B

L’\

-

-an

s DUME

Dump memory £rom 5 to e on the termipal (or which device is
selected viz ochan#), The dump is displayed as lines composed
of an address followed Dy the 16 bytes which start at that
address ino their numeric value followed by the 186 by:tes
displaved ir their ASCII code. A1l nuzmbers zre displayed it
hexadecimal potatio=n,

+

s MODIFY
Modify memory starting at address s,

shp
Dump the data stack. The top of stack is displayed fizst and
the bottom is displayed last.

RSDMP
Dump the return stack. The top o0f the return stack i
displayed first and the bottom of the return stack last.

SIMDUMP

Dump the symbol table (the dictionary) starting £from context
proceeding to the first definition. Each sympbol is displayed
on one line with the address of the entry iz the symbol table
first followed by the limk being displayed as relative to SYMTP
and its absolute location in memory. The address of the
code/colon body is then displayed followed by the length of the
evymbol s name and the symbol. All numbers zre displayed in
hexszdecimal notatiorn,

SYM nnnnp
Display the word nonn as it would be shown in SYMDUMP,

*BREAKY® « (C2)
Cause & breakpoint to occur.

*PR=
Return from a breakpoint.

Debug Glossary - 20

L

Stackwork’s FORTH

Review by Arne Henden

Stackwork’s FORTH (SL5) is one
of the more unusual and interesting
implementations of FORTH thatI've
seen. It matches FORTH-77 (with
some minor differences) instead of
FORTH-79. While double precision
integer arithmetic operations are not
included, many normally optional
features such as arrays and case
statements are available. The SL5
copy that I have is over a year old so
this review does not include any re-
cent changes.

File Access

As opposed to Z80 FORTH, which
is tied to CP/M but treats the disk
just like traditional FORTH (as 250
1024-byte blocks, randomly ac-
cessed); SL5 uses sequential access,
record oriented files exclusively and
has no block structure.

This means that SL5 does not re-
serve 1024-byte memory blocks to
buffer data from the disk, leaving
more memory space for application
software. One input and one output
file can be open simultaneously with
the basic system, and more files can
easily be added if necessary. SL5 can
perform character or buffered read/
write operations. Rather than
LOAD one application screen at a
time, it loads the entire application
file.

FORTHuwords continued

The next couple of columns will
discuss benchmark results for the
five FORTHs mentioned in this col-
umn, a very accurate hardware
timer using CTC#0, and discuss
several screens of utility software.
Also, there’ll be a review of HART-
FORTH.

Meanwhile, please send me your
questions and comments about
FORTH. I would very much like to
help you use this unique program-
mer’s language to its fullest advan-
tage!

What you get

The SL5 disk comes with one of
the best manuals I've seen. Its major
entries include a tutorial (6 pages),
reference (22 pages), the Z80 as-
sembler (12 pages) and a glossary (20
pages).

The disk includes the kernel (both
.ASM and .COM files), the debug
package (DEBUG.SL5), and the as-
sembler (ASSEM.SL5). SL5 itself re-
quired no modifications and worked
the first time. One of the major ad-
vantages of SL5 is that all of the
source code is included, making sys-
tem modification simple.

Disk I/O

SL5’s non-FORTHian file struc-
ture makes SL5 appear quite differ-
ent from other versions of FORTH.
No editor is included because all files
can be entered with any standard
editor such as ED. This means that
debugging changes are not interac-
tive.

Because you cannot examine
source files easily while in SL5 (no
LIST commands), errors during
loading are hard to trace down. You
cannot incrementally load your pro-
gram. More disk activity is necessary
since source code is brought in one
sector at a time and no extensive buf-
fering is included. At the same time,
the ability to manipulate source files
with standard editors and other lan-
guage compilers is an advantage.
Leaving out the screen buffers pro-
vides more application program-
ming space.

The compiler and assembler

Another advantage of SL5is thata
cross-compiler is built-in. You can
easily produce ROMable code for
dedicated applications. SL5 does
this by separating code and data
areas from the symbol table. You can
create headerless code by simply re-
moving the symbol table while
cross-compiling. Variables and ar-
rays can be stored separately from
code segments, easing the problem
of creating ROMable FORTH.

New system configurations can be
of two types: user applications load-
ed on top of SL5, creating a new

SL5.COM file; and creating entirely
new systems using the cross com-
piler, perhaps modifying the kernel
or burning a small application into
ROM.

The assembler is excellent. Not
only are Zilog mnemonics sup-
ported, but high level structures
such as IF-ELSE-ENDIF and BE-
GIN-END are available. Stackworks
is careful to point out system register
usage to prevent loss of pointers by
assembly code produced by the
user.

Conclusion

My major complaint with SL5is its
file structure. When you lose the
FORTH block/screen, you lose many
of the advantages of FORTH. In-
teractive debugging is hampered,
more disk I/O occurs, and less stor-
age space is available on any given
disk. SL5 is not easily upgradable to
FORTH-79 because of the file struc-
ture.

Also, no double precision integer
words are included, and floating
point is not available as an option.

In all, I think SL5 is a good lan-
guage that is well documented and
comes with a lot of usually optional
features. Its unique implementation
of FORTH is interesting, but at the
same time prevents me from recom-
mending it to a user who wants to

learn standard FORTH.
HENE

Name: SLS

Authors: The Stackworks

Mike Brothers
Larry Mongin
Dave DelLauter
Type: ~ FORTH for the Z80
Distributor: Supersoft Associates
P. 0. Box 1628
Champaign, IL 61820
Price: $175
Requires: CP/M operating system
280 processor
24K bytes RAM
110 page 8 1/2 x 11"
spiral bound

Manual:

Micro Cornucopia, Number 4, February 1982

13

fritz
Kommentar
From:

https://archive.org/details/micro-cornucopia-magazine-1982-02

	SL5 SYSTEM REFERENCE MANUAL
	Application Note
	Preface
	Getting Started
	Using SL5
	Table of Contents
	Tutorial
	Reference
	Assembler
	Interface
	Object Modules
	Structure
	Glossary
	Stackwork's FORTH
Review by Arne Henden

