
Supersoft C Compiler

Table Of Contents

CHAPTER 1
Introduction » 1

Modularity 2
Intermediate Output: U-code *... 2
Final Output: Assembly Code 3
Execution Time vs. Compilation Time 3
Recommended Read ing 4
Organization of Tnis Manual 5

CHAPTER 2 '
Using the SuperSoft C Compiler 6

Topics Discussed 6
Files Supplied 7

Under CP/M-80 7
Under CP/M-86 8
Under MS-DOS and PC-DOS 9
Under ZMOS 13

Files Needed for Compilation 11
Command Formats and Sequences 12

Compilation Using ASM 15
Compilation Using MAJ 1'
Compilation Using ASMS 6 19
Compilation Using MASM 21
Compilation Using M80 23
Compilation Using RMAC 25
Compilation Using AS 26
Compilation Using RASM ". 27

CoiTLiiand Line Options, 29
CC Machine-Independent Command Line Options 2S
CC Machine-Dependent Command Line Options 31
C2, COD2COD, and C2I36 Command Line Options 33

The Compiler Preprocessor Directives 35
The IDEFINE Directive 37
The ILINE Directive 33
The f INCLUDE Directive 38
The *IF, fIFDEF, tIFNDEF, fELSE,

and SENDIF Directives 39
The fASM and IENDASM Directive 40
The VJNDEF Directive 42

Using List Functions 43

fc

I

CHAPTER 3
The SuperSoft C Standard Library Functions 45

Descriptions of the Functions 47
The Functions Grouped According to Use 49
List of Functions 50

CHAPTER 4
Combining Source Code and Altering Assembly Code 125

Method 1: The Relocating Assemolers, Modules,
and Libraries 125

Method 2: The fINCLUDE Directive 129
Method 3: The CC Command Line Filename List 130
Method 4: Precompilation and Insertion in a

Header File 131
Method 5: Cut and Paste 134

How to Reorigin the Code Generated by the Compiler 136

APPENDIX A
The Differences between SuperSoft C and Standard C 138

APPENDIX B I
Currently Available Machine and Operating System
Configurations of the SuperSoft C Compiler l4l

APPENDIX C]

Some Common Problems and Solutions 142

APPENDIX D '
Locations of Supplied Functions and Externals 144

APPENDIX E I
Using Overlays under CP/M-33 146

APPENDIX F
Error Messages .-. . 149

APPENDIX G I
Double Floating Point Functions 164!.

A P P E N D I X H |
Long Integer Func t ions • 171

S u p e r S o f t C C o m p i l e r U s e r ' s M a n u a l (c) 1 9 = 3 S u o e r S o f t

CHAPTER 1
!

I

Introduction

I
The SuperSoft C Compiler is a self-compiling, optimizing,
compiler generating a final output file in assembly source
code. It accepts essentially the full C language, with the
few exceptions detailed in Appendix A of this manual. Under
CP/M, the compiler requires two passes; under CP/.M.-S6 and
MS-DOS, the optimization and code generation are split into
individual phases, effectively making it a three-pass
compiler. SuperSoft C is adaptable for a variety of
operating systems and central processing units (CPUs). See
Appendix B for a list of the currently available machine and
operating system configurations. Due to the inherent
portability of the C language and its particular
implementation in our compiler, configurations for other
operating systems and machines can be easily and rapidly
developed.

I
A wealth of user callable functions are supplied with
SuperSoft C. These include many UNIX compatible functions,
allowing the porting of source between UNIX C and SuperSoft
C with few if any source changes. A full standard I/O
package (STDIO) is provided. This package allows file I/O
that is independent of the natural record size of the target
system. For instance, under "CP/M, a SuperSoft C program may
open a file, seek to any byte in the program, and then close
the file. The appropriate byte and only the appropriate
byte will be changed by this sequence of' operations. Beyond
that, porting services are available from SuperSoft.

Writing our compiler in the language it implements not only
has facilitated its development and maintenance but also has
provided the most direct means of testing it. It has
undergone many other extensive tests including the fact that |
it is used in most of our programming projects. As a |
result, SuperSoft C has been tested on tens of thousands of ^
unique lines of C source code. t

f
As a result of the optimizations performed, the code |
generated by the compiler has spatial and temporal t,

E
I

SuperSoft C Compiler User's Manual (c) 1983 SuperSoft

efficiency adequate for
programming. One measu
least one operating sys
ten line procedure in a
the operating system,
compiler is written in SuperSoft C

system- as well as application-level
re of its efficiency is that for at
tern, CP/M, with the exception of a
ssembly code required as a link to
the entire I/O interface of the

Design decisions made w
the SuperSoft C Compile
subroutine entry and ex
true register variables
(Specifically, on the 8
register pair as a true

I
ith regard to code generation allow
r to generate rather good code for
it. These decisions allow us to have
even on machines with few registers.

333 series SuperSoft C uses the BC
register variable.)

MODULARITY

The fact that each pass of the SuperSoft C Compiler
modular confers certain important advantages. Dividing
compiler into separate self-contained programs allows it
run with a relatively small amount of available memory
still support most of the C language. This mod
structure also leads to a clean interface between the f
pass, or Parser (CC) , and the optional optimization
(COD2COD) and between the optimization pass and the f
pass, or Code Generator (C2 or C2I36). The output file
one pass simply becomes the input file of the n
Modularity also facilitates adapting the compiler to o
machines and operating systems, since the first module
machine- and system-independent and only portions of
code generator need be changed.

is
the
to

and
ular
irst
pass
inal

of
ext.
ther

is
the

INTERMEDIATE OUTPUT: U-CODE
*

The compiler's first pass, CCf accepts as input a SuperSoft
C source code file and parses it. As output it generates a
file in an intermediate code known
U-code (implying code not specific
machine). Since one of the design
compiler was that the output of all
intelligible to a human being, U-code•* —

modified using an ordinary text editor.

as Universal code
to any one system
specifications of

of its passes
may be viewed

or
or

our
be

and

A machine-independent, U-code to U-code optimizer is
supplied with your compiler. Under CP/M-86 and MS-DOS, the
optimizing process takes place in a separate pass (COD2COD);
under CP/M, this process occurs during the code generation
pass (C2).- The optimizer accepts as input the U-code file
generated by CC. The input file undergoes a complex

SuperSoft C Compiler User's Manual (c) 1933 SuperScft

optimization process involving global code rearrangement
within functions as well as reiterative local code
transformations within a "peephole" or window of a certain
number of lines of code. The code generation process (C2 or
C2I86) produces a final output file .in assembly language.

FINAL OUTPUT: ASSEMBLY CODE

Several benefits result from the choice of assembly code as
the final output of the compiler, some of particular value
to the system level programmer. Since the code generated is
intentionally not specific to any one of the assemblers in
use on a given machine, practically any hardware-compatible
assembler (including absolute as well as relocating
assemblers) may be used. Thus the output of this compiler
can be integrated into any software system already written
in, or compatible with, assembly source code,
programmer can also insert lines of assembly code direc
into a C source file by bracketing them with the
directives *ASM and *ENDASM. Lines so inserted
optimized or altered in any way by the compiler.

I
Use of assembly source code also satisfies our

compi
are

i . j c

tly
ler
not

des
specification requiring that the output of each pass
intelligible to a human being. The resulting readability
the compiler's output facilitates debugging and allows
user to see the kind of code generated by the compil
Thus the programmer need not take for granted that the c
generated is what was desired and may either alter
source code or "hand polish" the generated code to make
result more suitaole for a particularly demand
application.

ign
be
of

any
er .
ode
the
the
inc

EXECUTION TIMS VS. COMPILATION TIME

A major trade-off in the design of any compiler is in the
time required to compile a program versus the time required
to execute it. Since one of our primary design goals was to
generate code efficient enough for system level programming,
we have emphasized speed of execution at the expense of
speed of compilation. (Certain optimizations performed by
the code optimizer require time proportional to the square
of the size—number of U-code instructions—of the largest C
function to be optimized.) Optimization can be turned off
for faster compilation. This emphasis, while increasing the
turn-around time during program development, does make our
compiler useful for a far broader range of programming
tasks. The SuperSoft C Compiler is unique in t^at it allows
you to do efficient system level programming with structure
and clarity on a relatively small hardware system.

U

SuperSoft C Compiler User's Manual (c) 1383 SuperSoft

RECOMMENDED READING -

The standard reference for the language is :

Brian w. Kernighan, and Dennis M. Ritchie, The C
. Prog ramming Language (Englewood Cliffs, NJ:
Prentice-Hall Inc.)/ 1978.

The programming manual that Dennis Ritchie, the chief
designer of C, and Brian Kernighan have written is a
well-conceived and readable introduction to C and includes
the C Reference Manual as an appendix. It is indispensable
to any would-be C programmer. An article which touches on
tha evolution and philosophy of the C language, is:

D. M. Ritchie, et al., "The C Programming
Language," The Bell System Technical Journal,
57(6) (July-August 1978), 1991-2019.

A tutorial on C is:

Thomas Plum, Learning to Program in C (Cardiff,
NJ: Plum Hall, 1983) .

Also useful are:

Alan R. Seuer, The C Puzzle Book (Englewood
Cliffs, NJ: Prentice-Hall Inc., 1982).

I
Jean Yates and Rabecca Thomas, A User Guide to the
UNIX System (Berkeley, CA: OS30RNE/McGraw-Hill,

IL'382) .

Ann and Nico Lomuto, A Unix Primer (Znglewood
Cliffs, NJ: Prentice-Hall Inc., 1983).

SuperSoft C Compiler User's Manual (c) 1983 SuperSoft

ORGANIZATION OF THIS MANUAL

The chapters that follow provide the information you will
need to use the SuperSoft C Compiler. Chapter 2 presents
instructions for invoking the compiler and tne preprocessor
directives. Descriptions of the standard library functions
supplied with the compiler are given in Chapter 3. Chapter
4 describes how to insert code into the code generator's
run-time library. The differences between SuperSoft C and
Standard Version 7 UNIX C are listed in Appendix A. The
currently available machine and operating system
configurations of the SuperSoft C Compiler are listed in
Appendix B. Appendix C describes some common problems and
their solutions. Appendix D consists of a list of supplied
functions organized according to the file in which they
reside. Appendix E discusses the use of overlayed programs.
The program's error messages are listed in Appendix F.
Appendix G describes the Double Floating Point Functions;
Appendix H, the Long Integer Functions.

We hope that the SuperSoft C Compiler becomes one of your
most useful programming tools. We welcome any comments you
may have about the compiler or its documentation.

w-m

fci

SuperSoft C Compiler User's Manual (c) 1933 SuperSoft

CHAPTER

Using the SuperSoft C Compiler

TOPICS DISCUSSED

This chapter presents the information you will need to make
the best use of the SuperSoft C Compiler. The topics
discussed are: "the files supplied on the compiler disk,
which of those files you will need to compile your programs,
other software you will need, the syntax of the compiler's
command lines, the use of our compiler in a , specific
operating system environment, the
available for each pass, and the
directives supported in SuperSoft C.

command
comoiler

. me opt i ons
preprocessor

SuperSoft C Compiler User's Manual (c) 1993 SuperSoft

FOR YOUR OWN PROTECTION, make a copy of your SuperSoft C
Compiler disk when you first receive it.' Store the original
in a safe place as a master disk and for all subsequent work
use only the copy.

FILES SUPPLIED...
I

...UNDER' THE cp/M-80 OPERATING SYSTEM

If you have the CP/M-80 version of the compiler, you
find the following files on your working copy:

I

should

-VC2.RH

C 2 P R E . A S M
C2POST.ASM

f C Z P R E . R E L
C/C2POST.REL

*.ASM
— M D E P . C
^C.SUB
—CBRACK.H
-CUSTOMIZ
*-STDIO.H
— STDIO.C
ALLOC.C

H

FORMATIO.C

DOUBLE. C
— BCD80.C
*~SAMP?.C
^LIBC.REL
LIBC.SUB

run-time
run time
run time
run time
run time
various

VSH.COM

first pass of the compiler: the parser
second pass: Code Optimizer/Generator
run-time library header file used for ASM
run-time trailer file used for ASM

trailer for RMAC and M30
header source for L80 '
trailer source for L33
header for L80
trailer for L80

other run—time sources
f-ASM/*ENDASM version of run-time
CP/M SUBMIT file for compilation
upper case defines for keyboards w/o lower case
C library compile time parameters
standard I/O functions header
standard I/O functions
dynamic memory allocation functions
C language parts of the run-tirae
auxiliary functions^ ^ »

printf, scanf,' et al. functions
long integer functions
double floating point functions
assembly language support for DOUBLE.C
sample programs which test features of C
C library in relocatable format
SUBMIT file- to compile the library functions
various SUBMIT files
enhanced SUBMIT facility

t-
t

|
S

a

S

CC.COM and C2.COM are
CP/M-80.

he compiler executable files under

SupecSoft C Compiler User's Manual (c) 1983 SuperSoft

...UNDER THE CP/M-36 OPERATI-NG SYSTEM

If you have the CP/M-86 version of the compiler, you
find the following files on your wording copy:

should

CC,CMD
COD2COD.CMD
C2I36.CMD
C2I86.RH .
C2I86.RT
C2PRE.ASM
C2POST.ASM
*.ASM
MDEP.C
C.SUB
C3RACK.H
CU-STOMIZ.H
STDIO.H
STDIO.C
ALLOC.C
CRUNT2.C
FUNC.C
FORMATIO.C
LONG.C
DOUBLE.C
SAMP7.C

I

lower case

first pass of the compiler: the parser
second pass: Code Optimizer
third pass: Code Generator
run-time library header file used for AS.M86
run-time trailer file used for ASM86
run time header ,
run time trailer
various other run-time sources
*ASM/IENDASM version of run-time
CP/M SUBMIT file for compilation
upper case defines for keyboards w/o
C library compile tame parameters
standard I/O functions header
standard I/O functions
dynamic memory allocation functions
C language parts of the run-time
auxiliary functions I
printf, scanf functions and so on
long integer functions
double floating point functions
sample programs which test

I

features of C

CC»CMD, COD2COQ.CMD, and C2I86.CMD are the compiler
executable files under CP/M-86. The second pass is split
into COD2COD (the optimizer) and C2I86 (the code generator) ,
which we call a third oass.

H
-I

/ i

SuperSoft C Compiler User's Manual (c) 1983 SuperSoft 9

UNDER THE MS-DOS AND PC-DOS OPERATING SYSTEMS

If you have the MS-DOS or PC-DOS versions of the
you will find these files on your working copy:

CC.EXE
COD2COD.EXE
C2I86.EXE
C2PRE.ASM
C2POST.ASM
C2I86.RT3
C2I86.RTM
MDEP.C
C.BAT
CBRACK.H
CUSTOMIZ.H
STOIC.H
STDIO.C
ALLOC.C
CRUNT2.C
FUNC.C
FORMATIO.C
LONG.C
DOUBLE.C
SAMP7.C
LIBC.BAT
LI3C.LI3

corapiler ,

first pass of the compiler: the parser
second pass: Code Optimizer
third pass: Code Generator
run-time header for LINK . . <
run-time trailer for LINK
run-time library header file for MASM
run-time library trailer file for MASM
*ASM/*ENDASM version of run-time ' '
MS-DOS BATCH file for compilation
upper case defines for keyboards w/o lower case
C library compile time parameters
standard I/O functions header
standard I/O functions
dynamic memory allocation functions
C language parts of the run-time
auxiliary functions ' •
printf, scanf functions and so on
long integer functions
double floating point functions
sample programs which test features of C
BATCH file to compile the library functions
C library in relocataole format

i

CC.EXE, COD2COD.EXE, and C2I36.EXZ are the compiler
executable files under MS-DOS and PC-DOS. The second pass
is split into COD2COD (the optimizer) and C2I36 (the code
generator), which we call a third pass.

For the CP/M, CP/M-36, and MS-DOS versions of the program,
the following--C2PRE, C2POST, STDIO.H, STDIO.C, FORMATIO.C,
ALLOC.C, FUNC.C, CRUNT2.C, LONG.C, and DOUBLE.C—are the
built-in function files. (The other files on the disk with
the extension n.C" are programs in SuperSoft C source code
provided as examples.)

i

•»:

S u p e r S o f t C C o m p i l e r U s e r ' s M a n u a l (c) 1983 S u p e r o c i c

. . . U N D E R T H E ZMOS O P E R A T I N G S Y S T E M
I

If you have the ZMOS version of the compiler,
find the following files on your working copy:

CC.TMAG
C2Z8001.IMAG
WHEADER.REG
WTRA1LER.REG
ZSTDIO.REG
ALLOC.REG
CRUNT2.REG
FUNC.REG
FORMATIO.REG
LONG.REG
DOUBLE.REG
SAMP?.REG

CC.IMAG and C2Z
under ZMOS. ?i
header files,
SAMP?.REG, the

you should

first pass of the compiler, the parser
second pass, the Code Optimizer/Generator
run-time library header file output by C2Z333L
run-time trailer file output by C2Z8001 ;
standard I/O functions
dynamic memory allocation functions
C language parts of the run-time
auxiliary functions
printf, scanf et al.
long integer functions
double floating point functions
sample programs which test features of C '

i

i
8001-IMAG are the compiler executable files
les with the extension of ".REG" contain
library functions, or, in the case of

sample programs.

o-

I
SupecSoft C Compiler User's Manual (c) 1983

I

i
FILSS NEEDED FOR COMPILATION OF YOUR PROGRAMS

To compile a program you will need the executable files
appropriate to your particular operating system. in
addition, you will need the appropriate header and trailer
files and the files containing any library functions
desired. The code generation pass of the compiler
automatically incorporates all the code segments and
functions contained in its run-time library and the header
and trailer files into your program during compilation. -If
using a relocating assembler, you will need the appropriate
trailer file (C2.RTM for CP/M-83) and LIBC. Using a
relocating assembler, you will have to link in the run-time
library functions. A ".H" or ".C" file will be needed only
if your program calls one or more of its functions. Since
the functions contained in these files are such basic
building blocks, most programs will call a substantial

Therefore, if your program does require any
defined in these ".C" or ".H" files, you
incorporates all necessary function and
from those files and, in turn, that it

incorporates the same information from the functions that
Five methods of acccraolishin-

number of them,
of the functions
must see that it
data definitions

these functions call for.
this are described in the section of Chapter 4 called
11 Incorporating Standard Library Functions". Also see
Appendix D for a summary of which supplied C functions are
in which files. \

Since the final output of this compiler is in your machine's
assembly source code, you will also need an assembler
compatible wiih your operating system and hardware, plus the
software required to load and run programs on your systarr, .

I

SupecSoft C Compiler User's Manual (c) 1383 SuperSoft 12

COMMAND FORMATS AND SEQUENCES |

To compile a SuperSoft C source program, each of the passes
must be invoked with a sequence something like the
following:

passname filename.ext ... options

I -
Filename refers to the prefix portion of the file
specification required by your opera-ting system. Passname
refers to the name of a pass of the C compiler.

Command line options for each pass should be separated by
spaces. No options need be listed, since the default
conditions specify the normally desired mode of operation
for the compiler. However, if you are running the compiler
'on a CPU other than an 3030, 9085, 3086, or- Z80 (tne 3033
series), or are targetting for a different machine than the
host machine, you may have to set the machine-dependent
options, +J, -I, and -P, described on page 31, to their
proper values for your processor.

When invoking CC, you may list as many filenames in the
command line as you desire, separated by spaces. The files
specified need not contain complete functions since they
will all be parsed, in the order listed, as if they were one
file. The U-code output file will be assigned the first
filename given. You may specify only one filename when
executing the other passes. Each pass emits a file with tne
same name you specified but with a different extension.

By convention, C source code files have the extension or
suffix .".C", although any extension is legal. CC
automatically provides the ex'tension ".COD" for its U-code
output files. The extension ",U" is used -for optimized
U-code. The extension ".ASM" is used for assembly language
output. Other passes have similar specifications. These
are:

SuperSoft C Compiler User's Manual (

OPERATING SYSTEM

CP/M-80, CP/M-86,

PASS SAME ,INPUT FILE OUTPUT FILE

and MS-DOS

CP/M-30

CC

C2

CP/M-86, MS-DOS COD2COD

ZMOS

UNIX
UNIX

CP/M-86
CP/M-86

MS-DOS
- -. MS-DOS

After the
a file tha
of assembl
your prefe

OPERATING SY

CP/M-80
CP/M-83
CP/M-80
CP/M-83

CP/M-86

MS-DOS

UNIX

ZMOS

C2Z3001

C2Z3002
C2Z8002

C2I36
C2I36

f.C — >

f.COD — >

f.COD — >

f.COD ~>

f.COD — >
f.U — >

f.COD ' — >
f.U — >

C2I36 f.COD — >
C2I36

* t
f.U — >

SuperSoft C Compiler has done its work,
t should be run through an assembler,
ers is wide, depending on the operating
rence.

STEM PASS NAME INPUT FILE OUT

ASM f.ASM — >
MAC , f.ASM — >
M30 f.ASM — >
RMAC f.ASM — >

•

ASM86 f.A86 — >

MASM f.ASM — >

AS f.ASM — >

RASM ' f.REG — >

.f.COD

f.ASM

f.U

CASH. RE

f.ASM
f.ASM

f .A36
f .A36

f.ASM
f.ASM

it 1 e a v e s
The choice
system and

PUT FILE -

f.HEX
f .HEX
f .REL
f .REL

f .H36

f .OBJ

f .0

f .IMAG

After the compilation pass, the output file must be
transformed into an executable file. This completes the
compilation process. Here are some examples of this
completion, organized by operating system and file
transformation.

1

Super So ft C Compiler 'J sac's Manual (c) 1983 Super So ft 14

OPERATING SYSTEM PASS NAME INPUT FILE OUTPUT FILE

CP/M-83 LOAD f.HEX —> f.COM
CP/M-80 L80 f.REL —> f.COM
CP/M-83 ' SLINK f.REL —> f.COM
CP/M-80 LINK80 f.REL —> f.COM •

'CP/M-86 GENCMD f.H86 —> f.CMD

MS-DOS LINK .. f.OBJ —> f.EXE

UNIX LD . f.O —> f

As an example of the kind of procedure that must be followed
to compile and ran a SuperSoft C program in a specific
machine and operating system environment, we will describe
the procedures required under the various operating .systems.
We Jwfit-assume that you feel ready to compile and ran your.
first C program, SAMP1.C. After first checking that all the
necessary files are available on your disk and that your
program includes all data and function definitions required,
you are ready to begin.

S u p e r S o f t C C o m p i l e r U s e r ' s M a n u a l (c) 1983 S u o e r S o f t 15

COMPILATION USING ASM, THE STANDARD CP/M-80 ASSEMBLER

To transform SAMPl.C into an executable command file so that
it can be run under CP/M-80, you should type each of the
commands listed below in sequence. This procedure is
similar to the procedure for MAC described later. Make sure
that the files C2.RH and C2.RT are on the default disk
(usually the same disk as C2.COM). Execution of each of
these CP/M commands begins as soon as you hit RETURN at the
end of the- line. Type:

SAMPl.C
C2 SAMP1.COD
ASM SAM PI
LOAD SAMP1
SAM PI

ASM

I
I
i
i
i
5

I
5
•
i
|

I

£

a

Each of the above commands causes a
on the disk which contains SAMPl.C.
files are/ respectively:

new file to be
The names of

created
these

r̂

3

4
*;

SAMP1.COD
SAMP1.ASM
SAMPL.HEX
SAMP 1.COM

; output from CC
; output from C2
; output from ASM
; outout from LOAD

The last file created is the executable command file for
your program. This is the only form in which your program
can be run under CP/M. (The others may be deleted.) Once
this file is created, you need only type:

i
I
•>

I

I

SAM PI

Then hit RETURN, and execution of your program will begin.

CC, C2, and ASM may also generate error messages indicating
defects in your program. Although these messages are
Largely self-explanatory, a complete explanation of them can
be found - in Appendix F of this manual. The CP/M
documentation provides information on the error messages
generated by ASM. Two types of messages from ASM can have
roots in poorly formed C programs: (1) Phase errors and
multiply defined labels are usually caused by the
redefinition of a C external (including C functions). Note
that externals have only so many significant leading
characters. This, number depends on the assembler (and

I

I

*J

SuperSoft C Compiler User's Manual (c) 1983 SuperSoft 16

loader) used. (2) Undefined labels usually indicate un-
defined C externals (including C functions).

In the course of developing programs, you are likely to
repeat the procedure just described—with no change except
in the filename specified—an enormous number of times. it
would save considerable time if you could cause this entire
procedure to be carried out by means of a single command.
Under CP/M, the SUBMIT command and SUBMIT files provide the
means of accomplishing this. .

An appropriate SUBMIT file, with filename C.SUB, would
contain the followingcommand lines

CC $1.C
C2 Sl.COD + ASM
ASM $1
LOAD $1
$1

where "$1" is a symbolic parameter to be later replaced by
the first actual parameter of a SUBMIT command.

After you have created such a file on your disk, type:

SUBMIT C SAMP1

Then press RETURN. If CP/M finds C.SUB on the current disk,
the following five commands will be executed (SAMP1 has been
substituted for each occurrence of "$!"):

CC SAMP1.C
C2 SAMP1.COD +ASM
ASM SAMPL
LOAD SAMPI
SAMP1

For further information about SUBMIT files, consult the CP/M
documentation or one of the several CP/M manuals available.

SuperSoft C Compiler User•s Manual (c) I9BJ

COMPILATION USING MAC, THE DIGITAL RESEARCH MACRO ASSEMBLER

To transform SAMPl.C into an executable command file using
the Digital Research Assembler MAC and actually execute that
file under CP/M-83, you should type each of the commands
listed below in sequence. This procedure is similar to the
procedure for ASM. Make sure that the files C2.RH and C2.37
are on the default disk (usually the same disk as C2.COM).
Execution of each of these CP/M commands begins as soon as
you hit RETURN at the end of the line. Type:

CC SAMP1.C
C2 SAMP1.COD
MAC SAM Pi
LO^D SAMP1
SAMP1

•ASM

Each of the above commands causes a
on the disk which contains SAMPl.C.
files are, r2spectively:

new file to be created
The names of those

SAMP1.COD
SAMP 1.ASM
SAMPI.HEX
SAM?1.COM

output from CC
output from C2
output from MAC
outout from LOAD

The last file created is the executable command file fo
your program. This is the only form in which your progra:
can be run under CP/M. (The others may be deleted.) One
this file is created, you need only type:

H

SAM PI

Then hit RETURN, and execution of your program will begin.

CC, C2, and
defects in
largely self
be found if

documentatio
generated by
.roots in poo
multiply de
redefinition
that extern
characters.

MAC may also generate error messages indicating
your program. Although these messages are
-explanatory, a complete explanation of them can
n Appendix F of this manual. The CP/M
n provides information on the error messages
MAC. Two types of messages from MAC can have

rly formed C programs: (1) Phase errors and
fined labels are usually caused by the
of a C external (including C functions). Note

als have only so many significant leading
This number depends on the assembler (and

z:
i

t
<
i

SuperSoft C Compiler User's Manual (c) 1983 SuperSoft 13

loader) used. (2) Undefined labels usually indicate un-
defined C externals (including C functions).

\
In the course of developing programs, you are likely to
repeat the procedure just descr ibed--wi th no change except
in the filename specified — an enormous number of times. it
would save considerable time if you could cause this entire
procedure to be carried out by means of a single command.
Under CP/M, the SUBMIT command and SUBMIT files provide the
means of accomplishing this.

An appropriate SUBMIT file, with
contain the following command lines

filename C.SUB, would

CC $1.C
C2 Sl.COD
MAC $1
LOAD $1
SI

•ASM

where "SI" is a symbolic parameter to be later
the first actual parameter of a SUBMIT command

replaced by

After you have created such a file on your disk, type:

SUBMIT C SAMP1

Then press RETURN. If CP/M finds C.SUB on the current disk,
the following five commands will be executed (SAMP1 has been
substituted for each occurrence of "51"):

CC SAMP1.C
C2 SAMP1.COD +ASM
MAC SAMP1
LOAD SAMPI
SAMP1

For further information about SUBMIT files, consult the CP/M
documentation or one of the several CP/M manuals available.

I

SuperSoft C Compiler User's Manual (c) 1983 SuperSoft 19

COMPILATION USING ASM86, THE STANDARD CP/M-86 ASSEMBLER •

To transform SAMP1.C into an executable command file so that
it can be run under CP/M-86, you should type each of the
commands listed below in sequence. Type: I

CC SAMP1.C
COD2COD SAMP1.COD
C2I86 SAMP1.U
AS.M86 SAMP1
GENCMD SAMP1 DATA[X1000]

Each of the above commands causes a new file to be created
on the disk which contains SAMP1.C. The names of these
files are, respectively:

S.AMP1.COD
SAMP1.U
SAMP1.A86
SAMP1.H86
SAMP1.CMD

output from CC
output
output
output
output

from
from

COD2COD
C2I86

from A SMS 6
from GINCMD

The last file created is the executable command file for
your program. This is the only form in which your program
can/oe run under CP/M-86. (The others may be deleted.) Once
this file is created, you need only type:

SAMP1

Then hit RETURN and execution of your program will begin.
I

CC, COD2COD, C2I86, and ASMS6 may also generate error
messages indicating defects in your program. Although these
messages are largely self-explanatory, a complete
explanation of them can be found in Appendix F of this
manual. In addition, the CP/M-86 documentation provides
information on the error messages generated by ASM86. Two
types of messages from ASM36 can have roots in poorly formed
C programs: (1) Phase errors and multiply defined labels
are usually caused by the redefinition of a C external
(including C functions). Note that externals have only so
many significant leading characters. This number depends on
the assembler (and loader) used. (2) Undefined labels
usually indicate undefined C externals (including C
functions). In the course of developing programs, you are
likely to repeat the' procedure just described—with no
change except in the filename specified—an enormous number

L
8

SuperSoft C Compiler User's Manual (c) 1983 SuperSoft 20

I

of times. It would save considerasle time if you could
cause this entire procedure to be carried out by means of a
single command. Under CP/M-86, the SUBMIT command and
SUBMIT files provide the means of accomplishing this.

An appropriate SUBMIT file, with filename C.SU3, would
contain the following command lines

CC $1.C
COD2COD SI.COD
C2I86 Sl.U
ASM36 SI
GENCMD $1 data[x!3C0]
SI

where "$1" is a symbolic parameter to be later replaced by
the first actual parameter of a SUBMIT command. I

After you have created such a file on your disk, type:

SUBMIT C SAMP1

Then press RETURN. If CP/M finds C.SUB on the current disk,
the following five co-rmands will be executed (SAMP1 has been
substituted for each occurrence of "SI"):

CC SAMP1.C
COD2COD SAMP1.COD
C2IS6 SAMP1.U
ASMS6 SAMP1
GENCMD SAMP1 D A T A U 1 0 Q 0]
S A M r l

For further information about SUBMIT files, consult the
CP/M-86 documentation or one of the several CP/M-86 manuals
available.

' 1
SuperSoft C Compiler User's Manual (c) 1983 SuperScft 21 t

COMPILATION USING MASM, AN MS-DOS/PC-DOS ASSEMBLE?
I

To transform SAMP1.C into an executable command file so that
it can be run under MS-DOS, you should type each of the
commands listed below in sequence. Type:

CC SAMPi.C ;
COD2COD SAMP1.COD :

C2I86 SAMP1.U -ASM +MSDOS
MASM SAMP1.ASM;
LINK C2PRE+SAMP1+C2POST,SAMP1,NUL,LI3C
SAMP1

Each of the above commands causes a new file to be created
on the disk which contains SAMPl.C. The names of these
files are, respectively:

output from C!
output from COD2COD
output from C.2I86
output from MASM
outout from LINK

The last file created is the executable command file for
your program. This is the only form in which your program
can be run under MS-DOS. (The others may be deleted.) Once
this file is created, you need only type:

SAMP1

Then hit RETURN, and execution .of your program will begin.

SAMP1.COD
SAMP1.U
SAMP1.ASM
SAMP1.0BJ
SAMP1.EXE

/
7

CC, COD2COD, C2186, and MAS.M may also gen
messages indicating defects in your program. Al
messages are largely self-explanatory, a
explanation of them can be found in Appendix
manual. In addition, the MS-DOS documentati
information on the error messages generated by
types of -messages from MASM can have roots in po
C programs: (1) Phase errors and multiply def
are usually caused by the redefinition of a
'(including C functions). Note that externals ha
many significant leading characters. This numbe
the assembler (and loader) used. (2) Undef
usually indicate undefined C externals (i
functions).

erate error
though these

complete
F of this

on provides
MASM. Two
orly formed
ined labels
C external

ve only so
r depends on
ined labels
ncluding C

!
SuperSoft C Compiler User's Manual (c) 1983 SuperSoft

i 22

In the course of developing programs, you are likely to
repeat the procedure just descr ibed--wi th no change except
in the filename specified — an enormous number of times. it
would save considerable time if you could cause this entire
procedure to be carried out by means of a single command.
Under MS-DOS, the BATCH command and BATCH files provide the
,-neans of accomplishing this.

An. appropriate BATCH file, with filename
contain the following command lines

C.BAT, would

CC U.C ;

COD2COD 11.COD j
C2I86 II.rJ -ASM +MSDOS !
MAS*, II.ASM;
LINK C2PRE+I1+C2POST,%1,NULfLI3C
II .

where '%!' is a symbolic parameter to be replaced later by
the first actual arameter of a BATCH command.

After you have created such file on your disk/ type

C SAMP1

For further information about BAr

documentation or one of the
avail able.

'CH files consult the MS-DOS
several MS-DOS manuals

SuperSoft C Compiler User's Manual (c) 1983 SuperSoft 23

COMPILATION USING M80, A RELOCATING ASSEMBLER . •'
1 ' .

To transform SAMPl.C into an executable command file so that
it can be used under CP/M-80, you should type each of the
commands listed below in sequence. This procedure is the
same as those described above with the exception that
relocatable modules are produced and modules are linked
together. Type:

CC SAMP1.C 1
C2 SAMP1.COD
M83 =SAMP1.ASM • • '
L8C C2PRE,SAM?1,LISC/S,C2POST,SAM?1/N/E/Y
SAMP1

•I
x

C2POST must be specified as shown (last module).

Alternatively, the L8C line can be replaced by using
SuperSoft's ELINK:

ELINK BC(SAMPl);C2PRE,SAMPl;SR(LI3C);IS(C2POST); EN ;

Each of the above commands causes new files to be created on
the current disk. These are:

SAMP1.C02
SAMP1.ASM
SAMP1.REL
SAMP1.COM

; output from CC
; output from C2
; output from M80
; output from L80 or SLINK

H

Using the above procedure will require the availability of
the following files in relocatable format:

C2PRE.REL
C2POST.REL
LIBC.REL
C-T . 0\~>1

; run-time header from C2PRE.ASM
; run-time trailer from C2POST.ASM
; the C library

LIBC.REL is a library created from the rscompilation of the
following sources: ALLOC.C, STDIO.C, CRUNT2.C, FUNC.C, and
FORMATIO.C. You will also need the file C2.RTM present on
disk.

An appropriate SUBMIT file for relocating assemblers using
L 8 0 i s: • •

a

SuperSoft C Compiler User's Manual (c) 1983 SuperSoft 24

CC Sl.C
02 SI.COD
M80 =S1.ASM
L80 C2PRE,$1,LI3C/S,C2POST,$1/N/E/Y
$1

Or if ELINK is used:
i

CC Sl.C ' ';

C2 SI.COD
M33 =$1.ASM
ELINK BC(S1);C2PRE,$1;SR(LI3C);IN(C2POST);EN;
SI

If-
e.

I'

SuperSoft C Compiler User's Manual (c) 1982 SuperScft 25

COMPILATION USING RMAC, A RELOCATING ASSEMBLER

To transform SAMP1.C into an executable command file so that
it can be used under CP/.M-80, you should type each of the
commands listed below in sequence. This procedure also
produces REL modules and links them together as in the M82
and L80 example above. Below is the procedure:

CC SAMP1.C '
C2 SAMP1.COD -OFILESAMP1.MAC
RMAC SAMP1 . i
LINK SAMP1,C2PRE,LI3C[S],C2POST
SAMP1

C2POST musi be specified as shown (last module).

Alternatively, the LINK33 line can be replaced by usinc
SuperSoft's ELINK:

ELINK BC(SAMPl) ;C2PRE,SAMP1;SR (LIBC) ; IN (C2POST) ;EN;

C2POST must be specified last. Each of the above commands
causes a new file to be created on the currently logged in
disk. These are:

SAMP1.COD
SAM?I.MAC
SAMP1.REL
SAMP 1.COM

; output from CC
; output from C2
; ou-put from RMAC
; outout from LINK or ELINK

Using the above procedure-wi11 require the availability of
the following files in RMAC REL format:

C2PRE.REL
C2POST.REL
LIBC.REL

; from run-time library
; run-time trailer from
; the C library

i

C2PRE.ASM
C2POST.ASM

ofLIBC.REL is a library created from the recompilation
following sources: ALLOC.C, STDIO.C, CRUNT2.C, FUNC.C,
FORMATIO.C.

the
and

I
SuperSoft C Compiler User's Manual (c) 1983 SuperSoft 26

C O M P I L A T I O N U S I N G A S , A R E L O C A T I N G A S S E M B L E R
•

To transform SAMPl.C into an executable command file so that
it can be used under UNIX, you should type each of the
commands listed below in sequence. This procedure also
produces relocatable modules and links them together as in
the M80 and L80 example above. Below is the procedure:

CC S A M P l . C . ' i '
C O D 2 C O D S A M P 1 . C O D - : .-
C 2 Z 8 0 0 2 S A M P 1 . U j
AS S A M P I . A S M -0 SAMP1.0
L D SAMP1 .0 C 2 P R E . O L I B C . A C 2 P O S T . O
SAMP1

C2POST.O must be specified last. Each of the above commands
causes a new file to be created on the currently logged in
disk. These are:

SAMP1
SAMP1
SAM PI
SAM PI
SAM PI

.COD

.U ;

.ASM ;

.0 ;

output from CC
output from COD2COD
output from C2Z8002
output from AS
output from LD

Using the above procedure will require the availability of
the following files in UNIX.O format:

C2PRE.O
C2POST.O
LIBC.A

; from run-time library C2PRE.AST4
; run-time trailer from C2POST.ASM
the C library

LIBC.A is a library created from the recompilation of the
following sources: ALLOC.C, STDIO.C, CRUNT2.C, FUNC.C, and
FORMATIO.C.

SuperSoft C Compiler User's Manual (c) 1983 SuoerSoft 27

SAMP1.COD
SAM?I.REG
SAMP1.IMAG

; output from CC
; output from C2Z8001
/ output from RAS.M

COMPILATION USING RASM

To transform SAMP1.C into an executable command file so
it can be used under ZMOS, you should type each of
commands listed below in sequence. This procedure
produces IMAG modules and links them together as in the
examole. Below is the orocedure:

CC SAMP1.C
C2Z8021 SAMP1.COD
RASM SAMP1
SAM PI

that
the

also
ASM

Each of the above commands causes a new file to
on the currently lodged in disk. These are:

be created

•*
i.

r
**~i

f i

You will also need the files WHEADER.REG and WTRAILER.REG
oresent on disk.

?.
c
**

n
) ,

.1

H

=

SuperSoft C Compiler User's Manual (c) 1983 SuperSoft 28

COMMAND LINE OPTIONS

CC MACHINE-INDEPENDENT COMMAND LINE OPTIONS

•.

+A places the address of the last memory location used by
CC in front of each C source code line inserted as a
comment into the output file. This option has no
effect unless the option +L has also been selected.
This memory allocation information is helpful in
determining if and when the compiler is out of memory.
Default is -A. . i .

-BUFSIZ is followed immediately by a decimal integer. This
integer becomes the buffer size for I/O operations.
The larger this value, the faster the compilation.
Smaller sizes use less memory. A number of 123 is
about the minimum for most systems. This size is in
effect for both input and output buffers (see -WB'JFSIZ f
below.) If this option is used, the selected value will fc
be printed on the console. Default is -BUFSIZ1024.

+CO forces output to console. Default is -CO (output to
filename.COD).

+CR appends a Carriage Return to each U-code output line
generated. Certain text editors (e.g., CP/M's ED)
expect this format. Default is -CR.

-D followed immediately (no white space) by an identifier,
defines that identifier- just as if a #DEFINE was
encountered for that identifier. Useful for IIFDEF and
tENDIF preprocessor directives. Default is to
predefine no identifier.

+DDT incorporates additional debugging information into the
output file. Default is -DDT. f-

+F flushes (writes to file) all U-code lines generated .4
immediately after each line of C source code is £
processed. If options +L and +F are both selected, .-i
then each source code comment line placed in the output 5
file is followed immediately by all the U-code lines J
generated from it. Selecting this option slows R
execution of both CC and C2 (or C2I36) and inhibits Ij
certain optimizations normally performed by C2 (or ^
COD2COD) . Default is -F. , "j

• 4

-G turns off U-code generation. This option is useful for ?
checking the syntax of a source code file. Selecting j

1

~* \•i
! J

I ..
SuperSoft C Compiler User's Manual (c) 1983 SuperSoft 29

this option and option +L below will also produce a
numbered listing of the C source code with macro
defines expanded. Default is to generate U-code.
Default is +G. .

i •

+L lists each line of C source code as a comment in the
U-code output file. The source lines are grouped
together by function and are thus only loosely
associated with their corresponding U-code lines.
Macros are expanded and line numbers appear before each
source code line. Default is -L.

I ;
-LISTLN'O suppresses listing of line numbers in the output

file. Active only if +L is also specified. Default is
+LISTLNO. ' L

+LNC places source code line number in front of first
corresponding line of U-code in the output file.
Output also indicates line number at- which each file
incorporated by use of a #INCLUDE directive begins.
Nested ^INCLUDES are clearly indicated as well.
Default is -LNO.

is fo l lowed i m m e d i a t e l y by an integer
i n i t i a l va lue for the c o n s e c u t i v e l y
generated by CC. D e f a u l t is an in i t ia l v a l u e

s e c i f n the
numbered labels

of two.

the output
c

•OFILE redirects
under any specified
immediately by a
output file. There

file to
f i lename.

any specified drive
It is followed

filename wh ich
must be

will be used
no whitesoace

for the
between

-OFILE and the filename.

•PRE is equivalent to specifying +L -LISTNO -G.
file that has been preprocessed only. The
be rerun through CC. Default is -PRE.

Creates a
cutout can

+S prints symbol table information as' each symbol is
entered into the symbol table. Mostly of use to the
compiler writer. Default is -S.

+SILENT suppresses some output header information. Helps
lower the clutter on the console. Default is -SILENT.

of
CC
(or

+ SUBM conditions the output to allow separate assembly
each C function. If this switch is specified as a
parameter thea it also should be specified as a C2
C2I86-) parameter. Default is -SUBM.

+CASE accepts keywords without regard to (upper/lower) case.
This applies to preprocessor keywords as well as C
keywords. Useful with terminals that accept upper case
only. Note the include file CBRACK.H has upper case
keywords for common C tokens such as { and } . This
useful for keyboards without lower case. Default
-CASE. j

is
is

Super Soft : orr.pi 1 er User's Manjal (c) 1963 SooerSoft

•WBUFSIZ is followed immediately by a decimal integer. This
integer becomes the buffer size for output operations.
The larger this value, the faster the compilation.
Smaller sizes use less memory. A number of 128 is
about the minimum for most systems. If this option is
used, the selected value will be printed on the
console. Default is -WBUFS IZ1024.

*

SuperSoft C Compiler User's Manual (c) 1953 SuperSoft 31

CC MACHINE-DEPENDENT COMMAND LINE OPTIONS
I

The three options below may be used to tailor CC for a
particular target processor (CPU). They are the only
machine-dependent options. If the value set for any of
these options is not appropriate for your processor, the
compiler will not function properly. (In what follows,
jflag, int__size, and pad_size all refer to the names 'of
variables within the compiler.)

sets jf
represe
functio
(1) for
r ightmo
i s the
cond i ti
causes
in the
This is

lag equal to
nting a char
n, it is wid
jflag cause

st byte of i
proper setti
on is to set
the same byt
leftmost byt
the Drooer

one (1
is pas

ened to
s such
ts assi
ng for

) .
se-d
an int

a byte to be
gned storage

the Z8000
eaual to

Whenever a single
as a local parameter

A se 11 i ng of
s t o r ed in

location.
The de

zero (0)

byte
to a
one
the

This
fault
which

e representing a char to be s
e of its assigned storage Iocs
setting for the 3CS3 series CP'Js .

tored
t i c i.

-I is followed immediately by an integer
size of an int (int_size) in bytes.
bytes.

specifying the
Default is two

is followed immediately by an integer specifying the
appropriate modulus (pad__size) for all integer
addresses. Since 'each integer address will oe a
multiple of the value of pad_size, each integer ad-dress
moauj.o tne
Default is

value of pad_size will be equal
a modulus of one (1).

to zero (3) .

taiThe values for the three above options required to
this compiler for a particular target processor may be
in one operation through use o"f one of the composite flags
defined below.

+i8080 sets: jflag
processors are
188, and 286.

= 0, int_size - 2, pad_size
the Intel 8082, 8085, 8086,

= 1. Target
8088, 186,

+Z80 sets the same values as above. Target processor is the
Zilog Z80. Note: This is a CC option and not a C2
option, so 8083 mnemonics are still output by C2.
* *

+Z8000 sets: jflag = 1, int_size = 4, pad_size - 2. Target
processor is the Zilog Z8001.

£
t-
2

*
5
î

•\
SuparSoft C Compiler User's Manual (c) 1933 SuperSoft 32

+Z8001 sets: jflag = 1, int__size
processor is the Zilog Z8001

+Z8002 sets: jflag - 1, int_size
processor is the Zilog Z8302

= 4, pad_size - 2. Targe'

= 2r pad_size = 2. Target

Default condition is identical to the result of +i8080 or
+ Z80. i .:

SuperSoft C Compiler User's Manual (c) 1983 SuperSoft

C2, COD2COD, and C2I86 COMMAND LINE OPTIONS

I
+ASM is used to indicate that an absolute assembler is being

used. It includes the header file (default: C2.RH or
C2I86.RH) before any generated code and the trailer
file (default: C2.RT or C2I86.RT) after any generated
code. These files should be on the default disk. + ASM
is not used under MS-DOS or PC-DOS.

*H

-ASM is the default and it indicates that a relocating
assembler is being used. Under CP/M, C2.RTM, the
default trailer file for relocating assemblers which is
appended to the end of the file, is used instead of
C2.RT. (There is no header file.) Under MS-DOS or
PC-DOS, -ASM uses C2I86.RT3 and C2I86.RTM as the header
and trailer files, respectively, to output code
definit ions. . . .

-BUFSIZ is
inteer

followed immediately by a decimal integer. This
becomes the buffer size for I/O operations.

The larger this value, the faster the compilation.
Smaller sizes use less memory. A number of 128 is
about the minimum for most sstems. This size is in
effect for both i n u t and output buffers (see -WBUFSIZ
below.) If this option is used, the selected value will
be printed on the console. Default is -3UFSIZ1024.

+CO forces output to console where output
Default is to outout to filename.ASM.

may be viewed

•ENT<keyword> defines the keyword used to declare the entry
point of a label for relocating assemblers. (Note: no
space between -ENT and the keyword.) Default is
-ENTENTRY.

•EXT<keyword> defines the keyword used to
external label for relocating assemblers,
space between -EXT and the keyword.)
-EXTPUBLIC.

declare an
(Note: no
Default is

turns off assembly code generation,
generate assembly output code.

Default is to

+L places each line of U-code in the assembly code output
file as a comment. If optimization is performed,
U-code lines are grouped together by function;
otherwise, they occur directly before the code that is
generated for the line. Default is -L.

+MSDOS instructs C2I86 to output code compatible with
MS-DOS/PC-DOS assembler.

In

3

SuperSoft C Compiler User's Manual (c) 1983 SuperSoft

-0 turns off optimization. Tj-code to assembly code
translation only is done. Default is to perform
optimization.

traces optimization process by writing information
the output file indicating each code change as
made. This option will slow execution of C2 or
and vastly increase the amount of output,
particular use only to the optimizer author.
is -OC.

to
it is

COD2COD
Of

Default

OFILE redirects the output file to any specified drivre
under any specified filename. It is followed
immediately by a filename which will be used for the
outut file. There must be no whitespace between
-OFILE and the filename.

•ORG followed immediately by a decimal integer forces the
output code to be ORGed at the value specified.
Default is 256 if + ASM is specified; no ORG at all
otherwise .

*PKGL causes the name of the function currently being
optimized to be displayed on the console as an
indication of where C2 or COD2COD, is in its execution.
Default is -PRGL.

-Q is followed immediately by an integer specifying the
optimization level. Default is full optimization.
(Not currently implemented.)

file•RH<f i lename> causes the optimizer to use the specified
as the run-time header file. (Note: there is no space
between -RH and the filename.) Default is C2.RH
(C2I36.RH under CP/M-S6) if + ASM is specified. For
-ASM, no file is prepended under CP/M; C2I86.RT3 is
used under MS-DOS.

-RT<filename> causes the optimizer to use the specified file
as the run-time trailer file. (Note: there is no
space between -RT and the filename.) Default is C2.RT
(C2I86.RT under CP/M-86) if + ASM is specified; for
-ASM, C2.RTM (C2I86.RTM under MS-DOS).

+T generates and inserts code in output file that, at
run-time, causes the name of each function to be
displayed each time it is entered. This option, useful
in debugging, allows the programmer to trace the
control flow within a program. (Not currently
implemented.) Default is -T.

-WBUFSIZ is followed immediately by a decimal integer. This
integer becomes the buffer size for output operations.
The larger this value, the faster the compilation.
Smaller sizes use less memory. A number cf 128rs-
about the minimum for most systems. If this option is

I
SuperSoft C Compiler User's Manual (c) 19S3 SuperSof t

used, the selected value will be printed on the
console. Default is -WBUFSI Z 1024 .

-X causes generation
expense of its
performed trades s
Default is to t
efficiency. The
because most optim
.both speed and
implemented.)

+Z is followed immedi
(C2186 under C?/M-
all the labels it
default (+ZC).

of slightly smal
speed of executio
peed efficiency for
rade space effici

difference is r
izations have a po
space efficiency.

i
ately by a characte
86 and MS-DOS) uses
generates. A pr

ler code at the
n. Optimization
space efficiency.

ency for speed
elatively slight
sitive effect on

(Not currently

r string which C2
as a prefix for

efix 'C1 is the

SuperSoft C Compiler User's Manual (c) 1983 SuperSoft 36

THE COMPILER PREPROCESSOR DIRECTIVES

All files input to the SuperSoft C Compiler pass through a
preprocessor which scans them for lines beginning with '#'.
Such lines, which are not themselves compiled but instead
direct the compilation process, are known as compiler
preprocessor directives. These lines are terminated by
newline characters rather than semicolons. The preprocessor
directives supported in SuperSoft C are:

*define
#end if
ielse
* include
*if
tifdef
*ifndef
*line
iundef
33S7T,

fendasm

Each of these directives is syntactically independent of the
rest of the C syntax and may appear anywhere in a program.
The effects of ail the directives extend to the end of a
compilation. Their effects and uses are described in the
oarazraohs below.

SuperSof- C Compiler User's Manual (c) 1983 SuperScft 37

THE IDEFINE DIRECTIVE

If a line of the form

fdefine IDENTIFIER TOKENSTRING

is found in source input, it
replace all subsequent occur
specified with the TOKENSTRING
lexical unit in a programme
identifier, an operator, a k
simplest form of macro subs
identifier occurs within double
not be replaced. Each replacem
for other *DEFINE'd identifiers
IDEFINE directives. Redefining
compilation error. A param
suooorted.

causes the preprocessor to
rences of the identifier
specified. (A token is a
ng language, such as an
eyword, etc.) This is the
titution. If a fDEFINE'd
or single quotes, it will

ent string will be rescanned
, thus allowing nesting of
an identifier results in a

eterized ^DEFINE is not

The most common use of this directive is in defining a set
of symbolic constants in a program's header for use in the
functions that follow (a far better practice than inserting
literal constants in program statements). An abbreviated
examole of this kind of use is:

sdefine BSIZ 0x103
char Bufl[BSIZ], Buf2[BSIZ);

main ()

register int f;

for (i = 0 ; i + + < B S I Z ;) {
B u f l [i] = B u f 2 [i] 0;

Macro substitution through the Sdefine directive
other uses. For further examples and information
pages 12; 86, and 207 in Kernighan and Ritchie.

has many
refer to

SuperSoft C Compiler user's Manual (c) 1983 SuoerSoft 38

THE ILINE DIRECTIVE

The line directive sets the source line number as used by
the compiler. This will affert the line number as printed
by the compiler when errors occur.. The form is:

fline LINEN'JM.BER

where LIN'EN'JMSER is a constant.

!E ^INCLUDE DIRECTIVE

If a line of the form

include "dr ivename:filename"

or a line of the form:

^include <drivename:filename>

is input to the compiler, it causes the pr
replace that line with the entire contents of
named on the drive specified. If the prepro
find a file, it will look for it on the curren
the future (that is, not in the current
preprocessor will look for the named file on a
it knows are available (all drives mentioned
point) if the ^INCLUDE <filename> directive is
tINCLUDE directives found in a fINCLUDE'd
processed in the same way. Hence, nesting
directives is possible. For examples and info
to pages 86, 143, and 207 in Kernighan

eprocessor to
the file so

cessor cannot
In

the
that
this
Any
be

t drive.
version)

11 drives
up to
used.

file will
of ^INCLUDE

rmation refer
and Ritchie.

!i

SuperSof-t C Compiler User's Manual (c) 1983 SuperSoft 29

T H E *IF , I I F D E F , * I F N D E F , f E L S E , A N D f E N D I F D I R E C T I V E S

These d i r ec t i ve s p e r f o r m c o n d i t i o n a l c o m p i l a t i o n
gene ra l f o r m is:

The

ICONDITIONAL

TRUECODE

telse

FALSECODE

£ on<•* iT XT . J L» A

where ^CONDITIONAL is one of #IF, SIFDEF, or tIFNDEF
fELSE is optional. That is, the form can be:

The

^CONDITIONAL

tendif

If the ^CONDITIONAL is considered to be true/ then lines
shown as TRUECODE are compiled and the lines labeled
FALSECODE are ignored. If the ^CONDITIONAL is considered to
be false, then the lines labeled FALSECODE are compiled and
the lines shown as THUECODE are ignored.

The fIF directive is of the form:

fif CONSTANT

The CONSTANT must be a constant. If it is, then the tIF is
considered to be true.

The *IFDEF directive is of the form:

SuperSoft C Compiler User's Manual (c) 1963 SuperSoft:

tlfdef IDENTIFIER

The IDENTIFIER must be a *DEFINE-style identifier. If
IDENTIFIER has been previously defined via a #DEFINE, then
the IIFDEF is considered to be true.

lifndef IDENTIFIER

The IDENTIFIER must be a *DEFINE-style identifier. If
IDENTIFIER has been previously defined by means of a
IDEFINE, then the fIFNDEF is considered to be fals*.

HE #ASM AND *EJOAS"! DIRECTIVES

This special feature of SuperSoft C allows
lines of assembly code directly into your
file. This would appear as follows:

you to insert
C source code

pu-char (' y') ;
fasm

mvi a , 38
call output

crlf () ;

assembly languag
through the passes
incorporated at the
output file. Inside
executed as encounte
must contain a label
to be executed. The
are put outside of a
No included assembly
for errors. Labels

e lines between #ASM and #ENDASM go
of the compiler unchanged and are

corresponding locations in the final
of a C function, the lines will be

red; outside of a function the lines
and must be explicitly called in order
type of assembler language lines that
C function are directives and equates.
language lines are optimized or checked

beginning with 'C1 in the inserted code

SuperSoft C Compiler User's Manual (c) 1983 Super Soft 41

should be avoided, since labels with this
generated by the compiler and may result in
label when the program is assembled.

prefix are
a duolicate

Included assembly language lines may b-e used anywhere in a C
source file. If they occur outside of a C function or if
the -0 option (don't optimize) option is used on the C2 or
COD2COD pass, then the amount of included assembly language
is unlimited. Otherwise, the amount of assembly language
w-ill be limited by the per-procedure optimizations of C2 or
COD2COD.

The following options are assumed by C2 under CF/M-80 and
will affect how the included assembly language lines are
used :

.RADIX 10 (decimal radix) ,

.13233 (838C! mnemonics),
CSEG (code segment).

C globals may be referenced in included assembly language
(and also in linked assembly language) and assembly syr.b^ls
may be referenced by C. Currently, C globals will ma-rh
assembler symbols by the same name. This will not always be
the case. In a subsequent version of the compiler, an extra
postfix character will be added to a C symbol for it to
match an assembler global. Also STATICs will not have a
readily available assembler symbol.

C makes use of these registers:

primary register (the current sub-expression),
secondary register (the previous sub-expression),
stack pointer,
register variable,
base pointer (only in some implementations).

C expects the register variable to be preserved
times; the primary register to be set to the retur
on function returns; and the primary and secondary
to be preserved within the computation
sub-expression. The stack pointer should also be
across function calls and included assembly languag
secondary register is more transitory: it is not
to be preserved across function calls. However
expected to be preserved within most sub-express
during the vectoring into a switch case. It is not
desirable or useful to impose included assembly
inside of a C sub-expression. An example of
assembly language in a C sub-expression which wou
problems:

at all
n values
registers
of any
preserved
e. The
expected
, it is
ions and
normally
1ang uage

including
Id cause

MF-

Er
C

i

i
4

\

I

SuperSoft C Compiler User's Manual (c) 1983 SuperSoft 42,

#asm

#endasm

a =

MVI H,9

b;

When call
1anguage,
preserved
preserved
assembly
including
reg ister
state) r
machi nes.
p r e s e r v ed
ass ignmen

ing C code from ass
it is best not to
by the C code,

by some SuperSoft
language from C,
assembly language

variable and the st
egisters may have

For instance the
on the 8086. . The

t of C registers.

embly language
assume that an

although som
C code generate

or when "f
1ines , be sure
ack pointer.

to be prese
DS, CS, and SS
following table

or from any other
y registers are
e registers are
rs. When calling
ailing through"
to preserve the
Other (primarily
rved on various
registers must be

summarizes the

Reg ister 8083/Z80 8086/286 Z8002 Z8001

primary
secondary
stack pointer
reg . var iable

HL
DE
SP
BC

BX
SI
SP
DI

R4
R.5
R15
R8

RR4
RR6
RR14
RR8

#UNDEF DIRECTIVE

This directive is of the form r

fundef IDENTIFIER

It forces the preprocessor to forget the named IDENTIFIER

i

SuoerSoft C C o m i l e r "User's Manual (c) 19S2 SuoerSoft 43

USING LIST FUNCTIONS

SuperSof t C is able to handle functions without a
predetermined number of arguments. This is done with an
additional function attribute called list. The SuperScft C
standard library functions include the following predefined
list functions: printf, scanf, fprintf, fscanf, sprintf,
and sscanf. The operation of these list functions is
transparent to the user: you need not do anything speci'al
to take advantage of these built-in functions.

However, if you wish to use your own list functions, you
will have to know how the list attribute is declared and how
parameters are passed. For the list functions of your own
creation to execute properly, they must be declared before
they are first used by your program — as follows:

TYPE listf(.) ;

where listf is an arbitrary list function, and TYPE is the
return value declaration for listf, which should, of course,
match all other declarations for listf. This declaration
causes, for each invocation of that function, the last
argument on the parameter stack to be the argument count.
If this declaration appears at the top of your program as a
global external, it need appear only once in your program..

The body of a list
special manner in
parameter stack,
the above function
utilize the addi
parameter stack,
which expect a c
themselves from
arguments, perinitt
For instance, the
be detected:

function must
order to take
You may want to
s for the spe
tional informa
The list attr
ertain number
being passed
ing the coding
following poorl

coll
into
loo

c ial
t ion
ibut
of

an
of v
y f o

ect its a
account

k at the
codirsg
a v a i 1 a D

e allows
argument

incorrect
ery relia
rmed func

rguments in
the altered

bodv of one of^

necessary to
le via the
C functions

s to protect
number of

ble programs.
tion call can

fprintf("%s");

This detection ability is a feature that few C compilers
have. with most C compilers the above code would cause
undefined (and potentially disastrous) I/O operations to
occur .

]

SuperSoft C Compiler User's Manual (c) 1983 SuperSoft 44

The body of a list function should look something like this:

pf (nargs)
int nargs [] ;

-f:

unsigned cnt;
int * p;
cnt « nargs;
if (cnt<MINIMUM

return;
cnt>MAXIMUM)

p = Xrev(&nargs); /* lib arg reversal fn */

* at this point:
*
* cnt is the count of passed parameters
* p[C] is the leftmost parameter
* pill is the 2nd leftmost parameter
* p[2] is the 3rd leftmost parameter
* ... and so on up to o[cnt-l]
V

i**.

SuperSoft C Compiler User's Manjal (c) 1983 SuperSoft 45

CHAPTER 3

Tne SuperSoft C Standard Library Functions

The standard library functions supplied with the SuperSoft C
Compiler are defined in the following files:

.UNDER CP/M-8-3

C2.RH
C2.RT
C2.R7M
C2PRE.ASM
C2POST.ASM
MDEP.C
CUSTOM IZ.H
C3RACX.H
STDIO.H
STDIO.C
ALLOC.C
CRUNT2.C
LONG.C
DOUBLE.C
BCD80.C
FUNC.C
FORMATIO.C

run-time library h
run- time library t
run-time trailer f
run-time header fo
run-time trailer f
£ASM/*ENDASM versi
header for the C l
header for keyboar
header for STDIO.C
standard UNIX-styl
dynamic memory all
auxiliary, common
long integer funct
double floating po
assembly language
auxiliary function

and M80

eader
railer
or RMAC
r L80
or L80
on of run-time
ibrary
ds w/o lowercase

e I/O functions
ocation functions
run- time
ions

functions

int unctions

printf, scanf, et

support
s
al .

for DOUBLE. C

.UNDER CP/M-86

C2I86.RH
C2I86.RT
MDEP.C
CUSTOMIZ.H
CBRACK.H
STDIO.H
STDIO.C
ALLOC.C
CRUNT2.C
LONG.C
DOUBLE.C
FUNC.C
FORMATIO.C

t<»

run-time library header
run-time library trailer
4ASM/SENDASM version of run-time
header for the C library
header for keyboards w/o lowercase
header for STDIO.C
standard UNIX-style I/O functions
dynamic memory allocation functions
auxiliary, common run-time functions
long integer functions
double floating point functions
auxiliary functions
printf, scanf, et al.

•~i

SuperSoft C Compiler User's Manual (c) 1933 SuperSoft

..UNDER MS-DOS AND PC-DOS

C2PRE.ASM
C2POST.ASM
C2I86.RT3
C2I36.RTM
MDEP.C
CUSTOMI2.H
CBRACK.H
STDIO.H
STDIO.C
ALLOC.C
CRUN72.C
LONG.C
DO'JBLE.C
F'JNC.C
fORMATIO.C

run-time header for LINK
run-time trailer for LINK
run-time header file for MASM
run-time trailer file for MASM
#ASM/*ENDASM version of run-time
header for the C library
header for. keyboards w/o lowercase
header for STDIO.C
standard UNIX-style I/O functions
dynamic memory allocation functions
auxiliary, common run-time functions
long integer functions
double floating point functions
auxiliary functions
printf, scanf, et al.

During its second pass (or third pass, in the case
CP/M-86 and MS-DOS), the compiler automatically incorporat
certain precompiled, preoptimized assambly code into yo
program. This code is contained in the compiler's

yo
run-ti

library files. The other files contain the definitions
the remaining standard library functions in SuperSoft
source code. There are various methods for
programs with the library functions. These
Chapter 4.

combining
are described

c

o:
es
ur
me
of

ur
in

SuperSoft C Compiler User's Manual '(c) 1983 SuperSoft

DESCRIPTIONS OF THE S'JPERSOFT C STANDARD LIBRARY FUNCTIONS

The rest of this chapter
each of the SuperSoft
alphabetical order. The
by Kernighan and Ritchie
functions do not prov
implementation of that f
guide to using such a
majority of the standard
SuperSoft C source code
can discover the details
that code.

will consist of descriptions of
C standard library functions in
pages in The C Programming Language
referred to under most of the

ide details on our particular
unction but are, instead, given as-a
function in general. Since the
library functions are provided in

and the rest in assembly code, you
of our implementation by examining

In present!
kind of sho
and passed
1ines appea
the first 1
declarat ion
The type of
If the type
return any
will always

ng each of
rthand for
as argumen
ring befor
ines of it
s of the f
a functio
of a func

defined va
be indica

the
i nd i

ts to
e the
s def
uncti
n is
tion
lue .
ted.

functions
eating the
each func
descr ipti

inition in
on itself
the type o
is not ind
The type

below, we have adopted a
data types returned by

tion. The first few
on of each function are
SuperScft C, namely the

and of its arguments.
f the value it returns.
icated, then it does not
of each of its arguments

The file STDIO.K contains ^DEFINE statements establishing
the following predefined symbolic return values (the actual
numeric values returnee are shown in parentheses):

TRUE (1)
FALSE (0)
SUCCESS (0)
ERROR
NULL

(-1)
(0)

The file STDIO.H also contains tDEFINE statements
establishing the various data types that are used by library
functions. These include:

SuperSoft C Compiler User's Manual (c) 1983 SuperSoft 48

DATA TYPE

BOOL
RESULT
FILE
FILESPEC
STREAM
TYPE

DEFINITION

char
int
struct filedesc
char *
FILE *

EXPLANATION

TRUE or FALSE .
SUCCESS or FAILURE
file descriptor
filename
buffered file descriptor
an arbitrary or varying
type

STDIO.C contains a IINCLUDE of STDIO.H and many of the
functions defined in STDIO.C will return these values.

Super So ft C Compiler User's Manual (c) 1983 SuperSoft 49

The SuperSoft C Built-in Functions

Grouped According to Use
g&

.SYSTEM ACCESS

bdos
bios
exit
ccexit
ccall
ccalla
ccmlen
comline

inp
outp
inp!6
outplo
cprnver
xmain
lock
nice

CONTROL FLOW

exec setjrnp
execl setexit
longjmp sleep
reset wait
pause

CONSOLE I/O

getchar putchar
gets putdec
kbhit puts
scanf printf
ugetchar

.s'-

^
JH
*=
c
6

BUFFERED FILE I/O DIRECT FILE I/O GENERAL FILE

fclose
fflush
f getc
f gets
f open
fprintf
f putc
f puts
fdopen
clearerr
pputc
cet2b
fileno

f read
fscanf
fwrite
getc
getw
putc
putw
uncetc
freopen
pc etc
ferror
put2b

close
creat
open
otell
read
chmod

rtell
seek
tell"
wr i te
access

MEMORY INITIALIZATION

initb
initw
movmem
s e tin em

peek
poke
g e t v a 1

fabort
unlink
perror
isfd
rnktemo

NUMERIC

abs
max
rand
double
assert

r enarr.e
link
er rno
isatty

aosvai
min
srand
lone

STRING PROCESSING

atoi
index
isprint
isspace
ispunct
iswhi te
isalnum
isalpha •
i sasci i
iscntrl
i sdigit
isupper
islower
isnumeric
qsort
swab

xrprintf
xrscanf
r index
spr intf
sscanf
strcat
strcmp
strcpy
streq
strlen
strneat
strncmp
strncpy
substr
tolower
toupper

DYNAMIC MEMORY ALLOCATION

alloc
calloc
brk
ubrk
evnbrk
xr ev
topofmem

malloc
realloc
sbrk
wrdbrk
free
i sheao

._ I
SuperSoft C Compiler User's Manual (c) 1983 SuperSoft 50

ABS

int abs(i)

int i;

abs returns the absolute value of i (-i if i is less than
zero, i otherwise). This function is not available under
MS-DOS or CP/M-86 because of an assembler keyword conflict.
See absval below.

BSVAL

int absval(i)

int i ;

absval returns the absolute value of i
zero, i otherwise). See abs above.

(-i if i is less than

CCESS

BOOL access(filename,mode)

FILESPEC filename;
unsigned mode;

access returns TRUE (1) if the file
given mode; FALSE (3) otherwise.

is accessible to the

I
SuperSoft C Compiler User's Manual (c) 1983 SuperSoft 51

ALLOC

char *alloc(n)

unsigned n;

alloc allocates a contiguous memory region of length n.
Every block it allocates starts on an even address. See
malloc, its identical twin.

c c r
^ *J •»

BOOL ASSERT(b)

BOOL b;

assert prints "Assertion failed\n" on the console and
if b is FALSE; otherwise, assert merely returns.

ex i ts

iTOI

int ato i(s)

char *s;

atoi returns the decimal integer value corresponding to the
null-terminated ASCII string pointed to by s. If this
string contains characters other than leading tabs, blanks,
and a minus sign (all optional) followed by consecutive
decimal digits, atoi returns 0 (see K&R, pp. 39, 58).

S u p e r S o f t C C o m p i l e r U s e r ' s M a n u a l (c) 1983 S u p e r S o f t 5 2

BDOS

int bcos(fn, parm)

int fn, oarm

bdos enables users to incorporate direct BDOS function calls
into programs written in SuperSoft C. Programs utilising
bdos will not always be portable. For example, BDOS
function call 7 under CP/M-80 and CP/M-86 represents "Get
I/O Byte", but under MS-DOS the same function number
represents "Direct Console Input". On the other hand, BDOS
function call 9, "Print String", represents the same
function under all three systems. Users should consult
their system interface guide for further information.

Under CP/M-80/ bdos loads machine register C with fn and I
machine register pair de with parm, then calls location 5. ;
It returns (as an integer) a single byte identical to the I
contents of the A register, except under 3DCS function calls 1
12, 24, 27, 29, and 31, when it returns a word identical to .
the contents of the HL register pair. I

:

Under CP/M-86, bdos loads machine register CX with fn and }
machine register DX with parm, then performs an INT 224 • t
instruction. It returns (as an integer) a single byte
identical to the contents of the AL register, except under -
BDOS function calls 12, 24, 27, 29, and 31 when it returns a ?
word identical to the contents of the BX register. In :
addition, calls 2^ and 31 set the global ^ariaole ESS to the >
value returned in register ES; call 52 returns a word -
identical to the contents of the ES register and also sets »
the global variable BXX to the value returned in BX; and ?
call 59 returns a word identical to the contents of the AX ==
re-jister. For information about call 50, see BIOS, which is ^
described later.

4

• f

Under MS-DOS, bdos loads machine register AH with fn and -\
machine register DX with parm, then performs an INT 0x21 -\
instruction. It returns (as an integer) a single byte j
identical to the contents of the AL register, except under -I
BDOS function call 6 when it returns AL, plus 0x400 if the ~\
zero flag was set. Other exceptions under MS-DOS: function]

calls 12 and 31 through 40 will return invalid results; r
calls 24 and 28 through 32 are not defined under this
system. .

A summary of BDOS exceptions under CP/M, CP/M-86, and MS-DOS . 5
follows: ! j

i

I

SuperSoft C Compiler User's Manual (c) 1983 SuperSoft 53

CP/M-80 All return A except:

BDOS Function Call

12 (Return Version Number)
24 (Return Login Vector)
27 (Get Addr (Allor))
29 (Get R/0 Vector)
31 (Get Addr (Disk Parms))

Returns

HL
HL
HL
HL
HL

CP/M-86 All return AL except:

Sr
t.

i»

t~
«l

4

BDOS Function Call

12 (Return Version Number)
24 (Return Login Vector)
27 (Get Addr (Alloc))
29 (Get Addr (R/0 Vector))
31 (Get Addr (Dis< Parms))
50 (Direct BIOS Call)
52 (Get DMA Segment Base)
59 (Program Load)

Returns Sets

3X i
BX
BX ESS
BX
3X ESS
(See bios)
ES BXX
AX

MS-DOS- All return AL except:

BDOS Function Call

6 (Direct console I/O)

12 (Character input with
.-buffer flush)

24/ 28-32

33-40

Returns

AL and 0x400 if zero
flag was set

Invalid-Function

These functions not
defined under MS-TOS
Invalid Functions

NOTE: The value that bdos returns is not sign-extended

S u p e r S o f t C C o m p i l e r U s e r ' s M a n u a l (c) 1983 S u p e r S o f t 54

B I O S

CP/M-89 CP/-1-S6

i n t b i o s (j m p n u m , be, d e)

i n t j m p n u m ;
i n t c, d e;

i n t b i o s (j m p n u m , ex , d x)

i n t j m p n u m ;
i n t ex , d x ;

bios enables CP/M users to incorporate direct B
into programs written in SuperSoft C. Programs
bios will not be portable beyond CP/M systems.
machine register pair BC (CX under CP/^-SS) -o
given in be (ex under CP/M-86) and register pai
under CP/M-86) to the value given in de (dx under
an--3 i - i i t i i t i s the appropriate BIOS call by tr
control to the BIOS ^ump vector entry point spe
jmpnum. This entry po-int may be specified numer
symbol ic^l ly .

IOS
that
bios

ansf
cifi
ical

er
ed
ly

* 11 s
call
sets
a 1 j 3
(OX

-86)
r i ng

in

The appropriate mnemonics or
point (as given in the C?/M

symbol!-: names for
Alteration Guide

-»'a
and

enLr

System Reference Guide supplied by Digital Research, Inc.)
~t~he~~1Tu:n-er ic value for each entry point are given below:

Entry Points Under CP/M-80

BOOT
W300T
CONST
CONIS
CONOUT
LIST
PUNCH
HEADER
HOME

0
1
2
3
^

5
6
7
8

SELDSK 9
SETTRK 12
SETSEC 11
SETDMA 12
READ 13
WRITE 14
LISTST 15
SECTKnN — 16

Under CP/M, if jmpnun is either SELDSK (9) or SECTRAN
bios returns the value remaining in register HL
execution of the BIOS call; otherwise, it returns the
remaining in register A without sign-extension (that
a value between 0 and 255).

(16) ,
after
val ue

is, as

Super Soft C Ccr.piler User's Manual (c) 13S3 Super Scf

Entry Feints 'Oncer CP/M-86

IKIT
W300T
CCKST
COKIN
CONOUT
T T CT» — ,_»_

PUNCH
READER
WOMF

SELDSK
SETTRK

6
1
2
3
4
cj
6
7
0o

9
10

SETSEC
SETDMA
READ
WHITE
LISTST
SECTRAN —
SETDMA3 —
GETSEG3 —
GETI03
SETIOB

11
12
13
14
15
16
17
18
19
20

Under CP/M-86, if jr.pnu:?. is either SELDSK (9), SEC7RAN (16),
or GETSEG3 (18), bios returns -the value remaining in
register EX after execution of the BIOS call; otherwise, it
returns the value rer.air.ing in register AL. Additicnally,
SELDSK and GETSEG3 set the global variable ESS to,the value
returned in register ES.

SuperSoft C Compiler User's Manual (c) 1S83 SuoerSo ft 56

BRK

RESULT brk(?)

cnar *?;

brk se
byte
equi
ini t
byte

ts the
pointed
lent to
lly set
n your

used as a bas

va
ia

f unc
your
your

p
o

oer f

ons , th
rogram.
wn prog
m the b

exter
to

the
to t

progr
e val
* s *"* ̂*

You
r a m c

reak.

nal var
by P

p o i n t e r
he byte
a rn ' s ex
ue by t
oper1v
will's

brk

iable name CCEDATA to the m
and returns CCEDATA, which
value it was passed. CCEDAT
immediately following the

ternal data area. Since CCEDA
he other dynamic memory alloc
initializes those functions

Imcst never need to call br
returns ERROR if it could

emery
is

A is
last

TA is
ation

for
k in

net

ALLOC

char *calloc(nthin=s, sizeofthings}

unsigned nthings, sizeofthings;

Allocates a contiguous memory region whose length equals the
product of nthings and sizecfthings. Every block allocated
starts on an even address. "The bytes of the block contain a
zero (?) value. See malloc.

SuperSoft C Co-T.pilec User's Manual (c) 1933 Super 5."3 ft

CCALL

int ccall(addr, hi, a, be, de)

char *adfr, a;
int hi, be, d e;

ccall sets machine registers hi, a, be, and de to the values
in , a, be, an. 5 d = > c^s^-ctively and calls , the

language subroutine beginning at addr. ccall
returns the ^alue present in the hi register after execution
of the subroutine. Programs calling ccall will not be
portable beyond the 8383 series CPUs.

int ccal la (.v.2dr , hi, a, be, de)

char * addr, a;
int hi, be, de;

ccalla is identical to ccall e x c e t VM t
value present in the ^ register dfter execution
subroutine. Pro^ra^s c a l l i n g
portable beyond tne SC33 series

will also

As an exa-nple of the use
followi ng:

Of t'1-

11 'J U b r

tnis function, consider

int bdos(c, de)
char c;
int de;

return ccalla(5, 0, c, de) ;

The C function listed above is clearly an imple-nent.i :: ; ••>
the function BOOS in terms of ccalla. (This is not the
BDOS is implemented.} Both ccall ani ccalla nay also be
to in-*o'<.» assembly languag-.* 'subroutines of your
creation .

of
wa

:t

•

I
I

SuperSoft C Compiler User's Manual (r) 1933 S jo^r 3 •) ft

ccsxi r

c c e x i t (i }

i n t i ;

Returns to the operating system. i is the return code.
should be 0 if the program is .?.-) npl e ted successfully.
should be between 1 and 255, otherwise. (These values
be arbitrarily .*ssijned to error codes.) ccexit does
close any open files.

csn
net

HM.OD

SUCCESS chmod (mode)

unsigned mode;

Sets the filemode. If
under C?/.̂ and C?./v1-36

tn= 3x3^ ui- is set, sets R/0

clearerr(fd)

STREAM fd;

isSets the file error s'c-ite to be clear. Currently thsre
just one global error state variable: errno (described
later) .

*"

SuoerSoft C Co:r, oiler I ,
5) 19 -iC 3 D £ C,

LOSE

RESULT close(fd)

FILE «fd;

Closes ths file specified by the pointer fd to
descriptor. close returns SUCCESS (3) if th-> file
was successfully closed. close returns ERROR (-1)
not close the file if: (1) fd does not point to

its file
spec i f is 2
and do^s
3 /alii

file descriptor, or (2) the file could not be closed due
an error at the operating system level.

to

thedoes not place an end-of-file (EOF) character

(See K&R, p. 163).

'4

OETN'D

char *cocend•)

e
L. llowin;codend r e t u r n s a p o i n t e r to the byte i m m e d i a t e l y

root se»j.Tient of you r p r o
-your p r o g r a m ' s exter . i -a l

•; •) I - n^ w i 11 po in t to
(N o t c u r r e n t l y i m p l e m e n t e d .

the en-i of the code for the
'Jnless you have re-origined
area, the value returne:
beginning of that area.

?»»

z
«.

r̂ =

ft C Conpilec "Jser's Manual (cj 1933 SuperSoft

int conle-iO

Returns the length D
systems that have th-

,-Vi con-nai] 2 1 n - » . \vailaole only on
•om.-nand line available as an array of

M t

char *comline(}

Returns the add
systens that ha
charaj t-*r s.

ess of the con-nan : i n e . A v a i l a b l e o n ' y on
[• • • ^ l i a b l e as -an - i r ray of

SuperSoft C Compiler User's Manual (c) 1933 Sap^rSoft

int cpmver()

Returns the value present in register HL after execution of
a call to BD05 function number 12 (See the CP/M Interface
Guide supplied by Digital Research Inc.). This return
value, which is not sign-extended, is 0 if the calling
program is running under CP/M versions released prior jto
Version 2.0, 0x0020 if it is running under C?/M Version 2.(3,
in the range 0x3021 to 0X002F under versions subsequent to
2.0, and 0x0100 under MP/M. This function is useful in
writing C programs to run under CP/M or MP/M—independent of
version number. Programs calling cpmver will not be
portable beyond CP/M, CP/M-86, and MP/M/

FILE *creat (-fspec ,mode)

cILESPEC fspec;
unsigned mode; . • ^

i

Creates a file on disk with the file specification given in
fspec and opens it for output. If the value of mode has the f
0x83 bin set, then a readable-writeable file is created; f
'Otherwise, a read-only file i-s created. Any existing file
with the same specification will be deleted.

creat, if successful, returns a pointer to a valid file
descriptor for the file specified. You should store this
pointer for subsequent use in your program. creat returns
ERROR (-1) and does not create or open any file if: (1) net
enough user memory is available to store a new file
descriptor, (2) the file specification given is invalid, or
(3) the file could not be created and opened due to an error
at the operating system level (See K&R, p. 162).

I

SuperSoft C Compiler User's Manual "(c) 1933 SuparSoft 63

ENDEXT

char *endext()

Returns a pointer to the byte immediately following the last
Thisbyte in your program's external data area

should be identical to the initial value of CCEDATA.
currently implemented.)

value
(Not

tRNO

int errno

Not a function, but an external variable that will be set -to
an error code whenever an I/O error occurs. Note that it is
not automatically cleared if no error occurs. There is no
zero error message, so clearing errno is the accepted way to
'preset' it for picking up error values. perror, described
later, prints an error message on the console, given a
non-zero error.

v̂

i

SuperSoft C Compiler User's Manual (c) 1983 SuperSoft 62

DOUBLE arithmetic

The file DOUBLE.C contains a double precision floating point
aritLiietic package. These functions perform arithmetic on
BCD numbers which are 3 bytes long. All variables used by
this package should be declared DOUBLE or LONG FLOAT. The
functions are passed the address of each argument. Usually
the functions return the destination address so that calls
can be nested in the following manner:

Badd (id, BmuK&a, &b, &c) , &e)

•

In this example d=b*c+e.

See Appendix G for descriptions of these functions

SuperSoft C Compiler User's Manual (c) 1983 SjperSoft 54

EVNBRK

i :XEC

' *

cnar *evnbrk(n)]
8
8

unsigned n; . . '

Performs identically to sbrk with the exception that it
always returns an even value (a pointer with its low order
bit zero). It accomplishes this by skipping one byta ' if
sbrk returns an odd value for the given n argument. If
successful, evnbrk returns a pointer to the first memory
location in the block added; otherwise, it returns a value
of ERROR (-1). Failure can be caused by: (1) overlapping 2
stored program, (2} overlapping the run-time stack, or (3)
exceeding the available memory. Note that n is unsigned.

Also see sbrk, ubrk, wrdbrk, and brk.
r>

I
t-

I

R r z " r ** Q v a- ' f c -ie»'~ > I ' " i ""-.C o L> i S X ?Tw ^ L s p _ _ / • • i »,

E

FIL£S?Er fspec; u

M
- (

P e r f o r m s an i n t e r p r o g r a m jump to the f i l e spec i f i ed in the $
n u l l - t e r m i n a t e d s t r ing po in ted to by fspec. exec is a cal l £
to execl w i t h two a r g u m e n t s : execl (f spec , 3) . It is ^
included for compat ib i l i ty w i t h BDS C. See exec! below. Jj

Ft

S!

SuperSoft C Compiler user's Manual (c) 1933 SuperSoft 65

EXECL

RESULT execKfspec, arg0, argl, arg2,...argn)

FILESPEC fspec;
char *arg0, *argl, *arg2, ..., *argn;

Performs an interprogram jump to the file specified in the
null-terminated string pointed to by fspec. That is, -it
loads and executes the code that file fspec is assumed to
contain. Interprogram jumping is sometimes referred to as
program chaining. execl enables you to successively execute
a series of programs, with each program in the series
overlaying the memory image of the preceding program.

Command line parameters may be passed to the invoked program
in a series of null-terminated strings pointed to by argl,
arg2, argn. The last argument (argn) must be zero .

under
of that operating system.

This is for compatibility with UNIX. arg3 is ignored
CP/M due to an unfortunate feature
execl constructs a command line
by its arguments (under CP/M and MS-DOS tnis
interleaving spaces between the arguments).

from the s t r i n s ointed to
means

Data may also be passed from the invoking program to the
invoked program within files or through the external data
area. To pass data within a file, the invoking program
should close the file and the invoked program should reopen
it. To pass dara (including open file descriptors) through
the external data area, the origin of that area must be the
same for bo-h programs. On CP/M-36 and MS-DCS, this could
be accomplished by having both programs define the exact
same set of gimbals.

return
sec does

excel returns EP.POP (-1), since any
error. This will happen if the fil
could not be read for any reason, preventing
the memory image of the invoking program and

from execl is
not exist

an
or

o v e r a y n g of
the execution

of the invoked program. The invoked program can jump back
to the invoking program via another call to execl.

execl is a list
FUNCTIONS.)

function. (See Chapter 2, USING LIST

EXIT

SuperSoft C Compiler User's Manjal (c) 1983 SuperSoft

exit (i)

i n t i;

Transfers control from the program back to the operating
system (causes
returns. It cal
redirected stand
See xmain) . No other files are flushed (written

an exit to system level).
ls fclose to close stdout and
ard outut file and standard

exit
stderr
error

to
nor are any other open files closed. (See K&R, p. 154.

urrently ignored under CP/M and MS-DOS.
perating system is desired without any
ccexit instead of exit.

parameter i is c
an exit to the o

never
(the

file.
disk)
) The

If
I/O

occurrng, ca

ITSRNS

char *externs()

Returns a pointer to the first byte in the external dat^
area of your program. Unless you have re-origined this area
this value will be the same as that returned by codend .
(Not currently implemented.)

SuperSoft C Compiler User's Manual (c) 1983 SuperSoft

FABORT

RESULT fabort(fd)

FILE *fd;

open file without
by the po inter f d

effect

Frees the file descriptor allocated to an
closing that file. The file is specified
to its file descriptor. Calling fabort will have no
on the contents of a file opened for input only, but calling
it for a file opened for output may cause the loss of some
or all of the data written to that file. (We have included
this function for the sake of compatab il i ty with 3DS C — v:e
do not recommend that you use it.)

fabort, if successful, returns SUCCESS (0). fabort returns
ERROR (-1) if fd does not point to a valid file descriptor.

CLOSE

RESULT fclose(fd)

STREAM fd;

Closes a file opened for buffered
file is specified by the pointer
fclose places an end-of-file-(EOF
position in the file's
closing the file.

output via fopen. The
fd to its file descriptor.
) character at the current

I/O buffer and calls fflush before

frlose returns SUCCESS (0) if
successfully closed. fclose retu
close the file if: (1) the file
for buffered output via fopen, (2
valid file descriptor, or (3) the
due to an error at the operating
p. 153) .

the file specified
rns ERROR (-1) and does
specified was not
) fd does not point to a
file could not be closed
system level (see K&3,

was
not

opened

SuperSoft C Compiler User's Manual (c) 1993 SuperSof 63

FDOPEN

STREAM f d o p e n (f d , mods, b u f f e r _ s i z e)

FILE *fd;
char *mode; . ..
unsigned buffer_size; . :

Converts from an unbuffered file descriptor (FILE *) to a
STREAM (buffered file descriptor). mode must be compatible
with the read/write attributes of fd. buffer_size is the
size of the buffer to be used by the STREAM descriptor.
Note that it can be usod to change the size of a STREAM
descriptor if used in conjunction with fileno, as in:

strn = f-5open (fileno (stm) , mode ,buffer_si ze) ;

Returns NULL if unsuccessful.

RROR

int ferror(fd)

STREAM fd;

Returns the error value for the given stream. The error
value, which is read from errno, is set on error. To clear
it, use clearerr (described earlier)* Currently there is
only one error value.

&•.
•!

SuperSoft C Compiler User's Manual (c) 1983 SuperSoft 69

FFLUSH

RESULT fflush(fd)

STREAM fd;

Flushes or writes to file the current contents of the I/O
buffer associated with a file opened for buffered output via
fopen. The file is specified by the pointer fd to its file
descriptor. The size of the I/O buffer is set when the file
is opened, After a call to ffiush, the file I/O pointer
will point to just past the last byte accessed, as expected.

ffiush returns SUCCESS (3) if the buffer was successfully
written to file. (Calling ffiush when the buffer is empty
has no- effect other than to return SUCCESS.) ffiush returns
ERROR (-1) and does not flush the buffer if: (1) the file
was not opened for buffered output via fopen, (2) fd does
not point to a valid file descriptor, or (3) the .entire
contents of the buffer could not be written due to an error
at the operating system level (see KiR, p. 166).

;TC

int fgetc(fd)

STREAM fd;

Identical to getc (described Later). Guaranteed
function rather than a preprocessor macro.

to be

fILENO

FILE *fileno(sfd)

. • STREAM sfd;

Returns the file descriotor associated with the STREAM sfd

SuperSoft C Compiler User's Manual (c) 1983 SuperSoft 73

FGETS • .

char *fgets(s, n, fd)

char *s;
unsigned n;
STREAM f d ; . - . _ ' .

f
•r

Reads a maximum of n-L characters (bytes) from a file opened
for buffered input via fopen into the string beginning at s.
The file is specified by the pointer fd to its file j
descriptor. fgets will not read past a newline or more than »

• n-1 characters, whichever comes first. fgets then appends * j
null character to the characters read to create, a ' [
null-terminated string. j j

fgets, if successful, returns a pointer to this string j
(identical to the value passed in s). fgets returns a null I
pointer value (0) if: (1) fd does not point to a valid file j
descriptor, (2) the file could not be read due to an error ?
at the operating system level, or (3) the end of tne file \
has been reached (see K&R, p. 155). \

V

4

3

SuperSoft C Compiler User's Manual (c) 1933 SuperSoft 71

FOPEN

STREAM fopen(fspec, mode, buffer_size)

FILESPEC fspec;
char *mode;

. int buffer size;

Creates and/or opens
specification given
function later in th
Thus full file speci
successful, it retur
for the file specifi
subsequent use in yo
does not create or o
unrecognized, (2) no
new file descriptor,
invalid, or (4) the
an error at the oper

a file for buffered I/O with
in fspec. It uses open (see
is chapter) to actually open
fications may be used.
ns a pointer to a valid file
ed. You should store this
ur program. fopen returns

the
the

the f
fopen

descri
pointer

NULL (0)

If

pen any file if: (1) the file mode
t enough user memory is available fo
(3) the file specification given

file cannot be opened or created due
ating system level.

file
open
ile.

is
ptor
for
and
is

r a
is
o

For mode you must specify one of the following:
or "r". Whichever you specify determines the
mode, as indicated in the following table:

11 w" ,
file's

a /
I/O

"w" write-only mode

write-only mode, append output to end of file

M _ It read-only mode

If a f i l e ' s I/O mode is e i ther "w" or "a", it is said to
open for b u f f e r e d ou tpu t . II a f i l e ' s I/O mode is " r" ,
is said to be open for b u f f e r e d i npu t .

oe
it

The value you specify for buffer_size d
the I/O buffer associated with the file
set as a positive integral multiple of
size. (A system record is the mi
transferred during file I/O operations,
system record size is 128 bytes. Und
bytes. Consult your operating system1

further information.) A pointer to the
I/O buffer is stored in the file descri
pointer to this file descriptor need be
other buffered file I/O functions (see

etermines the size of
This value is best

the system record
nimum unit of data

Under CP/Mf the
er UNIX it is 512
s documentation for
first byte in this
ptor. Thus, only a
passed to any of the

K4R, pp. 151, 167).

SuperSoft C Compiler User's Manual (c) L983 SuperSof 72

FPRINTF

RESULT fprintf(fd, format, argl, arg2,...)

FILE *fd;
char *format;

• TYPE argl;
TYPE arg2;

Identical to printf except that instead of writing to the
standard output it writes its formatted output string to the
I/O buffer associated with a file opened for buffered output
via fopen, beginning at the current location in that buffer.
Whenever that buffer becomes full, it is automatically
flushed (i.e., its entire contents are written to the file) .
The file is specified by the pointer id to its
descriptor.

fprintf is a list function. See ?. 43. '

file

fprintf returns SUCCESS (0) if i
successfully written to the buff
buffering of file I/O operations
guarantee that this same string
to the file, since errors result
outcome of a particular call t
apparent until some later functi
I/O buffer to be flushed. fprin
(1) fd does not point to a valid
file was not opened for buffered
file could not be written due to
system level, or (4) the entire
to the file due to a lack of "dis

ts entire output st
er. However, due
, such a return val
will be success full
ing from and affec
o fprintf may no
on call causes tha
tf returns ERROR
file descr iptor,
output via fopen,
an error at the

string could not be
k space (see KiR,

ring
to

ue c
y wr
ting
t b
c f
(-1)
(2)
(3)

oper
wr

o.

was
the

a n n o t
itten

tr,e
ecoT.e
ile's

if:
the
the

a t i ng
i t-en
152) .

i
u

y

№

SuperSoft C Compiler User's Manual (c) 1983 SuperSoft 73

FPUTC

RESULT fputc(c, fd)

char c;
STREAM fd;

Writes the character c to the STREAM fd. Identical with
putc (described later) , except that it is guaranteed not ' to
be a preprocessor macro.

'PUTS

RESULT fputs(s, fd) '

char *s;
STREAM fd;

Writes the null-terminated string pointed to by s to the I/O
buffer associated with a file opened for buffered output via
fopen, beginning at the current location in that buffer.
Whenever that buffer becomes full, it is automatically
flushed (i.e., its entire contents are written to the file) .
The file is specified by the pointer fd to its file
descriptor. For each newline character ('\n') appearing in
the string, a carriage return and a newline ("\r\n") are
written to the buffer. The terminal null character is not
written.

fputs returns ERROR (-1) and does noft write the string if:
(1) fd does not point to a valid file descriptor, (2) the
file was not opened for buffered output via fopen, or (3)
the file could not be written due to an error at the
operating system level. Otherwise, fputs returns the number
of bytes actually written to the buffer minus the number of
carriage return characters inserted. However, due to the
buffering'of file I/O operations, such a return value does
not guarantee that those same bytes will be successfully
written to the file, since errors resulting from and
affecting the outcome of a particular call to fputs may not |?J
become apparent until some later function call causes that
file's I/O buffer to be flushed (see K&R, p. -155).

8;(

SuperSoft C Compiler User's Manual (c) 1933 SuperSoft 74

FREAO

> rrv t~t *•

int fread(buf, fsizeofitem, nitems, fd)

TYPE *buf;
unsigned sizeofitems;
unsigned nitems;
STREAM fd;

Reads a number of items (nitems) from STREAM fd. The size
of an individual item is sizeofiterns. buf is the address to
read into* fread returns the number of items read or
ERROR (-1) on error. freads can be interspersed with s-etc,
fgetc, get2b, and getw (all described in this chapter).
Alignment is of no concern. Also see read described later.

free(p)

char *p;

PS)

Frees a block in memory previously allocated by a call to
alloc. The argument p, which should be identical to the
value returned by that call to alloc, is a pointer to the
first memory location in the block. Allocated slocks may be
freed in any order. To call free with an argument not
previously obtained by a call to alloc is a serious error
(see K&R, pp. 97, 177)»

SuperSoft C Compiler user's Manual (c) 1983 SuperSoft 73

FREOPEN

STREAM freopen(fspec, mode, buffer_size, strm)

FILE *fspec;
STREAM strm;
char *mode;
unsigned buffer_size;

Redirects strm as if strm = fopen(fspec,mode ,buffer_size)
been called. Returns MULL if unsuccessful.

had

SCANF

RESULT fscanf(fd, format, argl, arg2,...)
•

FILE *fd;
char *format, *argl, *arg2, ...;
TYPE *argl;
TYPE *arg2;

Identical to scanf except that the input string is read fron
the I/O buffer associated with a file opened for buffered
input via fopen rather than from the standard input. The
file is specified by the pointer fd to its file descriptor,
fscanf begins reading at the current position in the I/O
buffer. It stops reading when it has successfully assigned
values to the bytes corresponding to each item listed in the
format string or when it has reached the end of the
file—whichever comes first

fscanf is a list function,
end of Chapter 2.

See USING LIST FUNCTIONS at the

If no errors occur, fscanf returns the number of values
successfully assigned. fscanf returns ERROR (-1) and
performs no input if: (1) fd does not point to a valid file
descriptor, (2) the file was not opened for buffered
via fopen, or (3) the file could not be read due to an
at the operating system level (see K&R, p. 152).

input
error

*
£

r
1

S u p e r S o f t C C o m p i l e r U s e r ' s M a n u a l (c) 1983 S u p e c S o f t 76

FWRITE

int fwrite(buf, sizeofitem, nitems, fd)

TYPE *buf;
unsigned sizeofitem;
unsigned ni terns;
STREAM fd;

Writes a number of items (niterns) into STREAM fd. The size
of an individual item is sizeofitems. buf is the address to
write from. fwrite returns the number of items written or
ERROR(-L) on error. fwrites can be interspersed with putr,
fputc, put2b, and putw (all described in this chapter; .
Alignment is of no concern. Also see write described later.

int getc(fd)

J

Returns one character (byte) as an integer (between 2 and
255 inclusively) in sequence from a file opened for buffered
input via fopen. The file is specified by the pointer fd to
its file descriptor. Carriage returns and linafeeds are
returned explicitly. getc returns ERROR (-1) if: (1) the
file was not opened for buffered input/ or (2) the end of
the file has been reached (see K&R, pp. 152, 166) .

I
_l-i

SuperSoft C Compiler Jser's Manual 1933 SuoerSoft 77

GETCHAR

char getchar(}

Returns
MS-DOS

the next character
CON: device — usually

from

getchar encounters a
returns an error(-l).
162.)

Control-2
(See K&R,

standard input (the CP/M or
the console keyboard). If

(CP/M's EOF marker)
pp. 13, 40, 144, 152,

, ic
161,

; ETS

gets(5)

char *s;

Reads the next line from standard input (tne CP/M or MS-30S
CON: device—usually the console keyboard) into the string
beginning at s. gets replaces tne newline character ('\r.')
or the carriage return /newl ine combination ("\r\n") that
terminates the input line with a null character to creat-? a
null-terminaced string. Since gers does noi test whether
the string beginning at s is long enough to contain the
input line, you should define tnis string such that it can
contain the longest input line you could reasonably expect.

-I -
SuperSoft C Compiler 'Jsec' s Manual (c) 1983 SuperSof 79

GETW

int getw(fd)

STREAM fd;

Returns one integer in sequence from a
buffered input via fopen. The file is
pointer fd to its file descriptor. Carr
linefeeds are returned explicitly, getw r
if: (1) the file was not opened for buffe
the end of the file has been reached, or (
equal to ERROR (-1) appears in the input f
should be checked for true error condition
may be interspersed with calls to getw. I
getc and getw may be written by putc and p
not be anv oarticular alignment of inforrrsa
file.

file opened for
specified by the
iage returns and
eturns ERROR (-L)
red input, or (2)
3) if the integer
ile. Thus errno
s. Calls to getc
nformation read by
utw. There need

in the inputtion

int get2b(fd)

STREAM fd;

Returns a two byte quantity from a buffered input stream.
get2b is similar to getw and fread, except that
invariant with respect to byte ordering. •

t is

s
a

«
I

I
SuperSof- C Compiler User's Manual (c) 1933 SuoerSoft

INDEX

char * index(s, c)

char *s, c;

Returns a pointer to the first occurrence of the character c
in the string beginning at s. index returns a null pointer
value (0) if c does not occur in the string. See "rindex
described later in this chaster.

NITB

initb(array, s)

char *array, *s;

Per.Ti it
arrays
array,
second
of ASC
separa
decima
sequen
signi f
elemen

s relatively con
It should be

should be a poi
, s, should be a
II characters
ted by commas.
1 integer value
cef to a binary
icant 8 bits o
t in the char

ven
pas
nte
po

rep
W

in
int
f
act

ient
sed t
r to
inter
resen
hen
tne

eger
that
er -a

initialization of charac
wo parameters: the fir
an array of characters;
to a null-terminated str

ting decimal intejer val
called, initb converts e
string beginning at s,

value and assigns the le
value to the correspond

rray pointed to by arr

ter
st ,
tne
i n

ach
in

ast
ing
av .

If tnere are n integer values in the string and greater than
n elements in the array, only the first n elements of the
array will be assigned values and the contents of tne
remaining elements will be unaltered. • If there are n
integer values in the string and less than n elements in the
array, bytes beyond the end of the array will be assigned
values as if they were elements of the array and data may be
overwritten in error. It is the programmer's responsibility
to prevent or provide for these situations.

SuparSoft C Compiler User's Manual (c) 1933 SuparSoft 31

INITW

JfP

ini tw(array, s)

int *array;
char *s;

Permits relatively
arrays. It should be
array,, should be a po
second, s, should be
of ASCII characters
separated by commas.
decimal integer value
sequence, to a binary
to the corresponding
by array.

convenient initialization of
passed two parameters: the

inter to an array of integer
a pointer to a null-terminated
representing decimal integer

When called, initb convert
in the string beginning at
integer value and assigns that

element in the integer array poi

integer
f irs-t,

s; the
string
values

s each
s, in
value

nted to

If there are n integer values in the string and greater than
n elements in the array, only the first n elements of the
array will be assigned values and tne contents of the
remaining elements will be unaltered. If there are n
integer values in the string and less than n elements in the
array, bytes beyond the end of the array will be assigned
values as if they were elements of the array and data may be
overwritten in error. It is the programmer's responsibility
to prevent or provide for these situations.

char inp(port)

int port;

Returns the byte value present at the specified input port
after execution of a byte IN machine instruction for that
port. (This function is available only on machines for
which the byte IN instruction or equivalent makes sense.)

SuperSoft C Compiler User's Manual (c) 1983 SuperSoft 33

ISASCII

BOOL isasci i(c)

char c;

Returns TRUE (1) if c is an ASCII character; otherwise, it
returns FALSE (0) . .

JATTY

BOOL isatty(fi)

FILE *fd;

Returns TRrJE(l) if tnis file descriptor
otherwise, FALSE(0). Returns TRUE if * the
refers to the console ("CON:").

is a tsrmina *;
file descriotor

SCNTRL

BOOL iscntrl(c)

char c;

F*̂
In*

Returns TRUE (1) if c is an
otherwise, it returns FALSE (0) »

ASCII control character;

SuperSoft C Compiler User's Manual (c) 1983 SuperSoft 82

INPL5

int inplo(port)

int port;

inp!6f not available under CP/M-8Z, returns the value
present at the specified input port after execution of, a
15-bit IN machine instruction for that port. (This function
is available only on machines for which the 16-bit IN
instruction or equivalent makes sense.)

SALNUM

BOOL isalnum(c)

char c;

ASCIIReturns THUS (1) if c is an
otherwise, it returns F^LSI (3).

alphanumeric character;

SALPHA

BOOL isalpha(c)

char c;

Returns TRUE (1) if c is an ASCII alphabetical character;
otherwise; it returns FALSE (0) (see KiR, pp. 127, 156).

SuperSoft C Compiler User's Manual (c) 1983 SuperSoft 84
I

ISDIGIT

300L isdigit(c)

char c;

Returns TRUE (1) if c is an ASCII character representing one
of the decimal digits 0-9; otherwise, it returns FALSE (3)
(see K&R, pp. 127, 156} .

'D

BOOL isfd(fd)

FILE *fd;

Returns TRUE- if fd is a valid file descriptor; FAL?'
otherwi se.

iZA?

300L isheap(ptr)

char *ptr;

Returns TRUE iff ptr points to a data area returned from
malloc. Must be called only after the first call to malloc.

ouperSofr C Compiler user's Manual (c) 19S3 SuperSoft 1.25

'.HAPTER

C o m b i n i n g Source Code and A l t e r i n g Assembly Code

METHOD 1: THE R E L O C A T I N G A S S E M B L E R S , M O D U L E S , AND L I B R A R I E S

The C language i
functions can
modules and tne
using features
Chapter 2, "Usi
allows the C EX
accessible or g
special case of
automatically d
the EXTERN stor
to allow the

be
n li
that
ng t
TERN
loba
fun

ecl
age
refe

s constructed so that v
compiled separately into

nked together to form wor
are available with most li

he SuperSoft C Compiler".)
storage class for exter

1) variables and functio
ctions, those not previousl
.red as external. SuperSofr
class into the proper assem
rences to be resolved a

ariables and
relocatable

king programs
nkers. (See

SuperSoft C
nal (globally
ns. In tne
y declared are
C translates

bier directive
t link time.

n g loo
with

on in
wi th

check
tency ,
tency .

wi th
be decl
outsid

once wi

all ••"
the
tna
the
all
the

>.-»
the

ared
e of
th i

There must be exactly one definition of eac
accessible variable or function. Every external
same name will be bound to the same definiti
program. The various declarations should agree
definitions. Although the. C compiler will
declarations in a given source file for consis
linker may not be able to check fully for consis
variable may be declared as many times as desired
EXTERN storage class explicitly stated, but must
exactly once without the EXTERN storage class and
a function body. A function must appear exactly
function body and without the EXTERN keyword.

Of course, variables must differ within the first few
characters to appear unique to an assembler or linker. In
the case of M83, names are truncated at six or seven
characters depending upon the version. In CP/M-83 .REL
format, names are limited to seven characters. Also, many
assemblers (including M80) translate lower case characters
in a name into upper case, effectively lowering the number
of unique names. For portability reasons at least, cas^
should not be used to distinguish variable or function.

SuperSoft C Compiler User's Manual (c) 1983 SupeiSoit 126

names. Foe example, a program should not contain 'THelp1

and 'TheLP1 as unique variable names.

IT IS HIGHLY RECOMMENDED THAT SUPERSOFT C 3E USED WITH A
RELOCATING ASSEMBLER, rather than an absolute assembler such
as ASM or ASM86. Relocation, available to users with a
relocating assembler package such as Digital Research's RMAC
package, is by far the easiest and most usable method of
incorporating both user and library functions into a final
executable (COM, CMD, or EXE) file.

Linking is usually faster than compilation. Once linked, a
file may be used over and over again. Linking also allows
groups of people to work on a program, giving any one of
those people the ability to combine and execute the program,
but disallowing each access to the other's source. This
last advantage is extremely important in a large project, or
in a small project completed over time, especially on
systems that do not have adequate security between users.

The use of libraries is the easiest method of combining
variables and functions into working programs. It requires
a librarian as well as a linker. In the case of CP/M-S?,
the linker might be SuperSoft's ELINK and t̂ he librarian
might be LI380. You must compile each relocatable module,
follow the librarian instructions to create a library that
includes all modules, and then specify that library to link
a program.

Most linkers do nor make much of a distinction between a
relocatable- module and a library. Either can be specified
to build an executable file. The difference is mainly in
the way that they are combined. Relocatable modules are
loaded into the executable file in their entirety.
Libraries are built from multiple relocatable modules. They
are searched by the linker in order to include only those
modules which satisfy external references not previously
defined.

The SuperSoft C compiler under CP/M-83 comes with a library
of standard functions (LIBC.REL) built from the files
FORMATIO.C, STDIO.C, STDIO.H, FUNC.C, CRUNT2.C, MDEP.C,
LONG.C, DOUBLE.Cf and a number of .ASM files. The + SU3M
option of the C compiler (described balow) and the SUBMIT
file LI3C.SUB was used to build this library. Version 3.44
of M80" and LI380 from Microsoft was used to assemble and
collect the library. This library contains all of the
functions that are described in Chapter 3. You could add
your own functions, or alter the supplied functions by
adding relocatable module names to the LIBC.SU3 file and
compiling the appropriate source files. ,

I
SuperSoft C Compiler User's Manual (c) 1933 SuperSoft 1.2?

If you are using another linking system, you may or may not
be able to make use of the LI3C.REL library. ELINK is
compatible with LI3C.REL; the LINK30 may not be. If you
have any problems, you should rebuild the library, as
described below. This is not a task to take lightly. It
requires a considerable amount of disk space (mostly
directory space for a lot of small files) and time. It may
take hours.

The method described below may also be used to build your
own unique libraries. In building a library you will
probably have to sort the modules into a dependency order :
if module A refers to module B, then module A will have to
be before module B in the library. If this is too much
trouble, you can try searching the library more than once in
order to pick up all references. Most linkers allow the
searching of more than one library, so adding another
library to a linker command line is the easiest and sanest
method for adding functions to your C library. Note,
however, it is not necessary to compile source files into
libraries. For many uses, leaving them as relocatable
modules is adequate. The libraries are mainly useful for
the selection of variables or functions rather than tna
inclusion of whole relocatable modules into a program.

The SuperSoft C compiler contains a method for creating
libraries in which each function can be separated and loaded
only if needed. In order to do this, specify the + SU3M flag
on the command line of both the first (CC) and second (C2 or
COD2COD) passes of the compiler. The output of the second
pass is altered: no longer is the output a single file with
the extension .ASM. Instead, it is a file per function,
each file consisting of tne name of tne function and trie
extension .MAC (under CP/M, MS-DOS, and PC-DOS these names
have '_' removed and are truncated to eight characters in
order to be compatible with the native assembler/linker
systems). Also a file is cre.ated which contains directives
to fora the relocatable modules (named .REL under CP/M-33
and .OBJ under MS-DOS). This file is named $.SUB. Under
CP/M this file is directly executable via SUBMIT and it will
assemble the appropriate relocatable modules. After
executing the S.SUB file, the librarian must be used to
collect the functions into a library.

The file LI3C.SU3 contains a SUBMIT file that will create I
the standard SuperSoft C library. This is not an ordinary |
SUBMIT file, but requires recursive capability. The |
SuperSoft program SH.COM (supplied with the C compiler under |
CP/M-83) will allow recursion and must be used with I
LI3C.SUB. \

r

SH is similar to, but more powerful than, SUBMIT. SUBMIT |
allows nine arguments: $1 through $9. SH allows an I
indefinite number of arguments: $3 contains the name of the \
SUBMIT file, and $1, $2, $3, ..., $9, $10, $11, ... contain" |

t

I
1

SupecSoft C Compiler User's Manual (c) 19S3 SuperScft 123

the arguments. As a result, $11 would be
differently by SH and SU3MIT. SH interprets
eleventh argument and SUBMIT interprets it as
argument followed by a 1.

interpr eted
it as the
the first

An SH file may contain other lines invoking SH. Each time
SH is invoked it stacks the old $$$.SU3 file by renaming it
as Snn.SUB, where nn is replaced by a unique decimal number.
Then it places at the end of the SUBMIT file a line of the
form 'SH -E Snn.SUB1, which unstacks the old 5.SUB file.by
erasing $$$.SU3 and renaming $nn.SU3 to be $$$.SUB.

Additional features of
the argument list "down
$1, and so on) . (2) SH
1 ; ') from the $$S.SrJ3 f
work. '$*' in a .SUB f
each argument separated
the argument list, each
Blank lines, partial la
cause SUBMIT to execute
no such problem with SH
SUBMIT can be used only

SH: (1) the SHIFT operator shifts
" by one ($1 becomes $0, $2 becomes
scrips comments (lines preceded by

ile to allow larger S$$.SU3 files to
ile expands to be the argument list,
by a space and '$:,' expands to be
argument separated by a ','. (3)

st lines, and large SUBMIT files
in an uneexpected manner; there is

(4) SH can be used from any drive;
from drive A.

SuperSoft C Compiler Usec's Manual (c) 1983 SuoerSoft 129

METHOD 2: THE ^INCLUDE DIRECTIVE

The fINCLUDE preprocessor directive is able to incorporate
the entire file containing the desired variables or
functions into your program. A good practice is to place
any fINCLUDE directives for the standard library function
files in your program's preamble, immediately after any
external data definitions.

of
t yo
SM.

The sample prog
this method
assumed tha
C?/M-83's A
least commo
will work w
assembler.
statements
SAMPl.C inc

n de
ith
At

for
lude

rams given
building pr
u are using
The use of

nominator:
either an a
the top of
the appropr
s CRUNT2.C

ofout with SuperSoft C make
ograms from functions.
an absolute assembler
the fINCLUDE directive
the sample Drocrams as™ * * • •

bsolute assembler or a relocating
the sample programs are ^INCLUDE
iate library modules. For e-xample
and FUNC.C.

use
It is

such as
is the

suooliec

A disadvantage to fINCLUDE
into your program is that
will include the time to c
It may also make your
incorporating into it funr
you are using a relocating
to compile the sample prog
the * INCLUDE statements fr
compile as soecifie-i in Ch

ing all necessary library files
the time to compile your program
ompile all of the included code.
program unnecessarily large by

tions that are never called. If
assembler, you will probably want

rar.s in a modified manner. Remove
om the sample programs. Then
aoter 2.

The result will be about 25 per rent of the size
executable file that you would get if you used an
assembler. Also, compilation time will be a small
of the orginal compilation time.

theor
absol ute
percent

piw•̂iu
>H

3T«-j
-?-̂

SuperSoft C Compiler User's Manual (c) 1983 Super So ft 133

METHOD 3: THE CC COMMAND LINE FILENAME LIST

If you list a number of filenames on the command line for
CC, the first pass of the compiler, all the files named will
be parsed, in the order listed, as if they were one file.
The output will still be placed in a single output file.
Thus you may incorporate any C source code file into your
program simply by listing its filename in the command line
for CC. The CC command line that would incorporate all the
SuperSoft C standard library functions into the program Y.C
is :

CC Y.C CRrJNT2.C STDIO.C ALLOC.C FUNC.C FCRMATIO.C

This method has all the advantages and disadvantages of the
previous one (using ^INCLUDES), but is more flexible. To
change the files incorporated into your program, rather than
changing your program, you would just type a
of filenames in the CC command line.

different set

3
aa

Supe rSoft C Compiler User's Manual (c) 1983 SuperSoft

METHOD PREC01PILATION AND INSERTION IN A HEADER FILE

Any of the library files which are in SuperSoft C source
code may be compiled and the resulting file inserted, witn
minor editing, into the compiler's run-time library. This
increases the speed with which you can compile programs that
incorporate these functions. However, this method shares
the same disadvantage of possibly excessive program size
with the two other all-inclusive methods described above.

Of course, yo
a whole. If
commonly use
version of
inserting the
necessary tha
with the comp
method can sa
programs and
unnecessary f

u are not limited to including the li
you have an idea of the functions
in your programs, you may create
the run-time library by precompi
so functions into your header file,
t these functions be the functions
iler: they may be of your own creati
ve you considerable time in compi

considerable program space by e
unctions.

brari
you

es as
will
own
and

your
1 ing
Nor i

sup_
on". This
1 ing-
1 i m i n

s it
lied

your
i a 11 n 3

SuperSoft 's C allows the user to add code to the code
generator's header file, the file that is automatically
placed at the beginning of C programs. (The header provides
necessary machine dependent functions.) Any function already
in assembly source and included in the header file need not
be recompiled and re-optimized each time the rest of the
program is compiled. This is particularly useful when using
an absolute assembler like C?/M-80's ASM or C?/M-86's ASMS 5.

To use this method, the user comiles the necessary
routine(s), producing an assembly language file. This
assembly source file is then added into the header file.

of
the

how the
runtime

Below is a detailed, step by step, description
CRUNT2.C file of subroutines can be moved into
routines under CP/M-80, thus eliminating the need to use a
tINCLUDE "CRUNTZ.C" directive (or a link of a CRUNT2 object
file) .

1} We are ready to compile
following commands:

the CRUNT2.C. Issue the

83

if.

i
i

k

I

SuperSoft C Compiler User's Manual (c) 1983 SuperSoft 132

A>CC CRUNT2.C

\>C2 C3UNT2.COD +A5M + ZA -RH -RT

The ''+ZA' options tells the code generator to start all
labels with the letter 'A'. This avoids any conflict
with the code produced by normal compilations which
start each label with a 'C1. The -RT and -RH options

the inclusion of the header and trailer files.

2) Next, REName the file to CRUNT2.LI3, in preparation fo
merging into the C2.RH file:'" -

REN CRrJN72.LIB=CRLJN72.ASM

3) \ m i n o r amount of ed i t-i ng must be done be fore the
C R U N 7 2 . L I 3 f i l e can be rr .erged. Type the f o l l o w i n g :

A > E D C R U N T 2 . 1 I 3
ir A ̂ *

*3T !
5

you will then see

;C Optimi zer VI.2
ORG 255

;C Compiler VI.2

When you list the top of the file on your screen, your |
file should be the same (except for version numbers) as £
that listed here. You must now delete the following |
line: j

ORG 256 :

r •-*

3
4) After deleting this line, exit the edit with an 'E' jj

(thus saving your changes). . I
C

- §

I
SuperSoft C Compiler User's Manual (c) 1933 SuparSoft 134

METHOD 5: CUT AND P^STE

This method is simple in concept but laborious in execution.
The idea is to create, from the standard library function
files, a file or files containing only those data and
function definitions required by your program (cut) and then
merge the files thus created into your program before
compiling it (paste).

The advantage of this approach is that both the source and
object code for your program will be as small as your
program's implementation will allow-. Of course, you must be
careful that all data and function definitions required for
execution of your program are present and intact. Clearly,
this can be time-consuming, and some troublesome bugs can
creep in during the process.

However, it may be essential in some applications that- your
programs make the most efficient possible use of the
available memory. The size of some programs alone may
approach or exceed the memory capacity of your system, while
others may require correspondingly large amounts of data
storage during execution.

You may also find yourself repeatedly using a particular
subset of the standard library functions, mingled with some
functions of your own. In this situation, you could use
this method as a first step toward creating your own
customized se~ of SuperSoft C standard library functions.

You should not attempt to use this method unless you are
quite familiar with C and with your own operating system.
What follows is only a very general outline of the steps
necessary to the cut and paste method.

1) Make a copy on disk of each file containing data or
function definitions that you wish to incorporate into
your program.

2) Using your editor, delete from each file those data and
function definitions you do not wish to incorporate
into your program. Be careful not to delete the
definitions of those functions called by the functions
your program calls or any of the data definitions
required by any function that you intend to
incorporate.

3) If you now have more than one file containing the
definitions of interest, you may leave them as separate
files or concatenate- them as you choose.

*ia

SuperSoft C Compiler User's Manual (c) 1983 SuperSoft 133

5) Now you must edit the C2.RH file. Your screen should
show:

A>ED C2.RH
**A
*F** insert any user~Z01t
. ***** insert any user code here

*rcrunt2.1ib

This will cause the editor to read
file.

in the CRUN72.LI3

After exiting the editor with the '£' command, all of the
functions contained in CRUNT2.C will have been moved into
the system runtime file C2.RH. This means that you will no
longer have to use the ^INCLUDE "CRUNT2.C" directive.
However, since you will always be loading these functions
even if they are not needed, there may be a need
different C2.RH for different programs.

for

SuperSoft C Compiler: User's Manual (c) 1933 SuperSoft 135

4) You are again faced with the choice of how to in-
corporate the files you have created into your program.
You may use any one of the methods previously described
for incorporating the SuperSoft C standard library
function files. Your programs will now contain only
the data and function definitions they require.
Another option is to use your editor to insert the
definitions you have created into your program at
appropriate places.

C
*•

t
e

K

i
•a

i
i
5
I

a
H

SuperSoft C Compiler User's Manual (c) 1983 Supers^

HOW TO REORIGIN THE CODE GENERATED BY THE COMPILER

A relocating assembler frees programmers from concer
themselves with the actual locations at which their prog
execute or fetch data. It does this by generating ob
code in which memory addresses appear as displacements
sofne relative point. These relative points can be ei
externally defined references or relative program orig
An external reference uses a symbolic label referring t
location in another module. For example, an exte
reference in module A is a way to reference a location
module 3 without knowing the absolute address of
location. The relative program origin is the beginning
particular module, relative to which all of its inte
addresses are calculated. Relative addresses are fixed
the program is linked.

ning
rams
jert
f ro.T
ther
ins'.
o a
rnal

in
thac
of a

Assemblers will support some means of specify
absolute (or relative) origin for your code. In th
CP/M's absolute assembler, ASM,
accomlishes this function. The

the ORG
argument

in
of*

code
end

to
each
par

into
your data into RAM. If a program you wish to load
requires writeaole data areas, at least two ORG s
must appear in your file: one at the beginning
program specifying its absolute origin in ROM and a
the beginning of the writeable data area specif
absolute origin in RAM.

statement is used by ASM as the origin for the
precedes — up to the next ORG statement or the
file. The ORG instruction can also be used
different relative and absolute origins for
segment or data area. This capability is
important when you wish to load your pro-gram

ing
e cas
struc
an
that
of

estab
pro

ticul
ROM

into
tat em
of

nothe
ying

the
e of
r ion
C?.G
i t

the

a r 1 y
but
•» *\ k>n •-/ "i

en ts
your
r at
its

The final assembly code output generated by this compiler
contains two ORG statements, appearing (at the beginning of
the program and data areas respectively) as follows:

ORG REORIGIN PROGRAM HERE

ORG SEORIGIS DATA HERE

The argument '*' signifies the current location, but the ORG
statement is not activated until you insert the values for
these arguments appropriate to your situation.

._ I

SuperSoft C Compiler User's Manual (c) 1983 SuperSoft 127

A NOTE ON THE GENERATED CODE: The code produced by trie
compiler requires that the heap and stack grow toward each
other. This usually means that the stack' will be at larger
numbered locations than the heap. This relationship should
be maintained even if the code produced by the compiler is
going to be ROMmed.

l\

SuperSoft C Compiler User's Manual (c) 1983 SuperSoft 35

ISLOWER

BOOL islower(c)

char c;

Returns TRUE (1) if c is an ASCII
character; otherwise, it
p. 156) .

returns
lower case alphabetical
FALSE (0). (see K&R,

5NUMERIC

BOOL isnuneric(c, radix)

char c;
int radix;

Returns.TRUE (1) if c is an ASCII character representing a
valid digit in the number system with the base specified in
radix; otherwise, it returns FALSE (0). For example,

isnumeric('A',15)

returns TRUE. isnumeric is defined only if 1 < radix < 36

ISPRINT

BOOL ispri-nt(c)

char c;

Returns TRUE (1) if c is a printable ASCII character;
otherwise, it returns FALSE (0).

SuperSoft C Compiler User's Manual (c) 1983 SuperSoft 86

ISPUNCT

BOOL ispunct(c)
f

char c;

Returns TRUE (1) if c is an ASCII character representing a
punctuation mark; otherwise, it returns F^LSE ($} .

•
«

ISUPPER

BOOL isupper(c)

char c;

Returns TRUE (1) if c is an ASCII upper case alphabetical
character; otherwise, it returns FALSE (0) (see K&R,
.pp. 145, 156) .

[SSPACE

BOOL isspace(c)

char c;

Returns TRUE (1) if c is an ASCII character representing a j
space, a tab, or a newline; otherwise, it returns FALSE (0). • \
(This function is included for compatibility with BDS C; the j
standard UNIX C function is iswhite. However, see K&R, j
p. 156.) |

*i

SuperSoft C Compiler User's Manual (c) 1983 SuperSoft 37

ISWHITE

BOOL i swhi te(c)

char c;

Returns TRUE (1) if c is an ASCII character representing
space, a tab, a newline, or a formfeed; otherwise,
returns FALSE (0) .

a
it

BKIT

BOOL kbhitO

Tests whether a character has been typed on the console
keyboard—returning true if it has, FALSE if it has not.
More precisely, kbhit returns true (non-zero) if a character
is present at the standard input (the C?/M or MS-DCS
CON: device—usually the console keyboard); otherwise, it
returns FALSE (3). This function is not available on
systems that do not have such a function (such as UNIX) .

-INK

link(ofs?ec, nfspec)

FILESPEC ofspec;
FILESPEC nfspec;

Makes nfspec into a synonym for the filename nsfspec.
possible under CP/M or MS-DOS. Under these systems,
operates just like rename (described later).

Not
link

SuperSoft C Compiler User's Manual (c) 1933 38

LOCK

Locks a process in fast memory. A no-op under C?/.M. and
MS-DOS.

}NG arithmetic

The file LONG.C contains a machine independent LON'G integer
arithmetic package. These functions perform arithmetic on
32-bit two's complement integers. Ail variables used by
this package should be declared LONG or UNSIGNED LONG. The
functions are passed the address of each argument. Usually
the functions return no value.

See Appendix H for descriptions of the long integer
functions.

SuperSoft C Compiler User's Manual (c) 1933 SuperSoft 39

LONGJMP

longjmp(savearea, i)

i n t s a v e a r e a [] ;
i n t i ;

Restores the program
should be 6 bytes lo
program state includ
program counter, and
have been previous
(described later).
savearea, the state
a return from satjmp
being i. longjmp

state from the savearea. (sa
ng on the 3030 and 8086 series.
es all register variables, the
the stack pointer. savearea

ly used as an argument to
Upon a call to longjmp with the-
is restored, effectively appearing
has occurred, with the return
is a generalized version of

vearea
) The
return
should
setjmp

same
as if
value
reset.

char *malioc(n)

unsigned n;

Allocates a con t iguous memory reg ion of length
block it allocates starts on an even address .

n Every

mailoc, if successful, returns a pointer to the first memory
location in the block. You should store this pointer for
subsequent use in yoxir program. mailoc returns a NULL
pointer value (8) and does not allocate any memory if
allocating a contiguous block of the size requested would
overlap: (1) a stored program, (2) the run-time stack, or
(3) a previously allocated block in memory. (See K&R's
description of alloc, pp. 97, 175) .

J
SuperSoft C Compiler User's Manual (c) 1933 SjperSoft

MAX

int max(a, b)

i n t a, b;

Returns the greater of a or b

min(a, b)

int a, b;

Returns the lesser of a or b

:TEM?

mktemp(f)

FILESPEC f;

Alters the FILESPEC string to a unique filename: the string
that is returned can be used in an fopen, open, or creat
without conflicting with an existing file. If mktemp cannot
form a unique filename, then it returns NULL; if it can, it
returns f, its argument, mktemp looks for a capital X and
replaces it and the following character with a two digit
decimal number.

S u p e r S o f t C C o m p i l e r U s e r ' s M a n u a l (c) 1983 SuperSo 9;

MOVMEM

movmern (source , dest , n)

char *source , *dest;
int n;

Copies the contents of the n
beginning at source in to the n

contiguous bytes in memory
con t iguous bytes b e g i n n i n g , at

dest. There is no res t r ic t ion on the over lapp ing of tnesa
two regions. The bytes in the region pointed to by source
are unaltered unless they are overwri t ten as a resul t of
over lapping between the regions.

ICE

nice(n)

int. n ;

Sets the priority of the current process. A null procedure
under CP/M and MS-DOS.

I
*•

\
-

SuperSoft C Compiler User's Manual (c) 1933 SuperSoft 92

OPEN

FILE *open(fspec, mode)

FILSSPEC fspec;
unsigned mode;

Opens the file specified in
must already exist. (See
returns a pointer to a valid
specified. You should store
in your program. open retur
the file if: (1) not enough
new file descriptor, (2} the
invalid, (3) the file specif
not created via creat, or (4
due to an error at the ooera

fspec for direct I/O. This f
creat.) open, if successf
file descriptor for the f
this pointer for subsequent

ns ERROR (-1) and does not o
user memory is available for
file specification gi.'en

ied either does not exist or
) the file could not be ope
ting system level.

lie
ul,
il-r

use
pen

a
is

was

For-mode you must specify one of the following: ..0., 1, o
Which one you do specify determines the file's I/O mode,
indicated in the following table:

2.
as

read-only mode

write-only mode

read-write mode

(See K&R, p. 162.)

u

B.
r I

SuperSoft C Compiler 'Jser ' s Manual (c) 1983 SuperSoft 9

OTELL

unsigned int otell(fd)

FILE »fd;

Returns the byte offset from the beginning of the currently
accessed 512-byte block of a file, at which the next file
I/O operation on that file will begin. The file j is
specified by the pointer fd to its file descriptor. otell
does not indicate within which 512-byte block the I/O
opecation will begin. See rtell and tell.

OUTP15

outp!6(prtf w)

int prt, w;

Places the word w at the output port designated in prt and
executes a word OUT machine instruction for that port.
(This function is available only on machines for which the
word OUT instruction makes sense.)

)'JT?
i

outp(prt, b)

int prt;
int b;

Places b at the output port designated in prt and executes a *
byte OUT machine instruction for that port. (This function *
is available only en machines for whirh the byte O'JT S
instruction .-Hakes sense.) :

X.

E

I
e

frl

P-

S

r
r -

Super Soft er User's
!

Manual (c) 1982 SaperSoft

PERROR

perror(s)

cnar *s;

Prints the string s then a colon and then prints a
interpreting the value of errno, the I/O error value,
errno is zero, no interpretation is printed.

str i ng

JETC

int pgetc(fd)

STREAM fd;

Identical to getc except that it replaces the system end of
line indicator with a '\n'. Under C?/M and MS-DOS, this
means tha whenever ir encounters carriage return
character ('\r') followed inuned iately by a newline character
('\n'), it returns only the newline. pgecc thus converts
lines within files from CP/M to UNIX (ANSI) format.

SuperSoft C Compiler User's Manual (c) 1933 Super So f- 96

POKE

poke{addr, b)

char *addr, b;

Writes the byte b into the memory byte at addr. b mus- be
an lvalue expression (see K&R, p. 183). The function poke,
which has been included for compatibility with 3D3 C, is
redundant in C, since indirection is a feature of the
language.

'P'JTC

int pputc(c, fd)

char c,-

t it relaces theIdentical to putr except tha
with the system end of line character.
MS-DOS, this means that whenever it
character ('\n')/ it first writes a
character ('\r') to the file's I/O buffer

'\n' character
Under C?/M and

passes a newline
carriage return
and then writes

the newline character that was passed. pputc thus converts
lines written to .files from UNIX (ANSI) to CP/M format.

) i

I
I
9*.

\

1

SuperSoft C Compiler User's Manual (c) 1982 SuperSoft

PR I NTT

pr i n t f (f o r m a t , a r g 1 , a r g 2, . . .)

char * £ o r m a t ;
TYPE *argl ;

• TYPE * a r g 2 ;

Wri tes a format t
CP/M or MS-DOS C
p r i n t f must be
nu l l - t e rmina ted
f o r f o r m a t , s inc
This str ing cont
p r i n t f may be pa
a rg2 , The
charac te r s , in te
Only the firs:: a
opt ional .

ed oat put
O N : devic

passed
s t r i n g .
e it eval
ro l s the
ssed a se
i n d i v i d u a
g e r s , uns
rgument ,

string to the standard output (
a—usually your console scr

the pointer, format, to
(A string constant is also
uates to a null-terminated strin
generation of the outout stri

va

r ies of . o ther a r u m e n t s : ar
1 arguments in this series may
igned integers, or string point?
format, is required; ail others

the
n » •

a
lid
'5 • ̂
ng .
9 - /
be

r 5 .
are

printf is
end

a list function. See USING LIST FUNCTIONS at the
of Chater 2-

The string poi
characters or
character %,
Each ordinary
scans the stri
the standard o
encountered, c
series argl, a
secified and

nted to by format may contain either ordinary
special substrings, beginning with the

that are called conversion specifications.
character, when encountered by printf as it
ng from right to left, is simply written to
utput. Each conversion specification, when
auses the value of the next argument in the
rg2, ... to be converted and formatted as
written to the .standard output.

Following the character
there may appear:

in each conversion specification

1)

2)

an optional minus sign, '-', which, if present, causes
the converted value to be left-adjusted in its field.
Right-adjustment is the default.

an optional string of decimal digits specifying the
minim-urn number of characters in the field in which the
value is to be written. The converted value will never
be truncated. However, if it has fewer characters than
are here specified, it will be padded on the left (or
right, if left-adjustment has been specified) with
spaces to the width specified. If this digit string
begins with a zero, the converted value will be padded
with zeros instead of spaces.

SuperSoft C Compiler user's Manual (c) 1933 SuperSoft 93

3) another optional string of decimal digits, which must
be preceded by a period, '.', specifying the maximum
number of characters to be copied fro--n a
null-terminated string.

4) a character, called the conversion character, in-
dicating the type of conversion to be performed.

Of the above, only the conversion character must be present
in a conversion specification. All the others, if present,
must be in the order they are listed.

The- (valid) conversion characters and
conversions they specify are:

the types of

— the least significant byte of the argument is
interpreted as a character. That character is written
only if it is printable.

—the argument, which should
converted to decimal notation.

— the argument, which should
converted to octal notation.

be an integer, is

be an integer, is

—the argument, which should be
converted to hexadecimal notation.

an integer, is

— the argument, which should be an unsigned integer, is
converted to decimal notation.

— the argument is interpreted as a string pointer:.
Characters from the string pointed to are read and
written until either a null character is read or an
optionally specified maximum number of characters has
been written. See item-3 above.

% —the character % is written. This
sequence. No argument is involved..

(See K&R, pp. 7, 11, 145.)

is an escaoe
[•"i

buper^ort C Corr.pner User's Manual (c) 1332 SuperSoft 99

PUTC

RESULT ?utc(c, fd)

char c;
STREAM fd;

Writes the character c to the I/O buffer associated with a
file opened for buffered output via fopen, beginning at the
current location in that buffer. Whenever that buffer
becomes full, it is automatically flushed (that is, its
entire contents are written to the file). The file is
specified by the pointer fd to its file descriptor.

putc returns ERROR (-1) and does not write the character if:
(1) fd does not point to a valid file descriptor, (2) the
file was not opened for buffered output via fopen, or (3)
the buffer could not be written due to an error at the
operating system level. Otherwise, putc writes the
character to the file's I/O buffer and returns SUCCESS (0).'
However, due to the buffering of file I/O operations, "such a
return value does not guarantee that that same character
will be successfully written to the file, since errors
resulting from and affecting the outcome of a particular
call to putc may not become apparent until some later
function call causes that file's I/O buffer to be flushed
(see K&R, pp. 152, 166) .

putchar(c)

char c;

Writes the character c to the standard output (the CP/M or
MS-DOS CON: device—usually your console screen). (See KiR,
pp. 13, 144, 152).

C

fc-

*
£
|

£

SuperSoft C Compiler User's Manual (c) 1983 SuperSoft

P'JTDEC

putdec(nn)

int nn;

Prints the decimal number nn on the console. See printf for
a more elaborate function.

puts(3)

char *s;

Writes the string beginning at s to the standard output (the
CP/M or MS-DOS CON': device—usually your console screen) .
All carriage commands must appear explicitly in this string.

X

SuperSoft C Compiler User's Manual (c) 1933 SuperSof. K

PUTW

RESULT putw(i, fd)

i n t i;
STREAM fd;

Whenever that buffer
flushed (that is, its
file). The file is
its file descriptor.

Writes the integer i to the I/O buffer associated with a
file opened for buffered output via fopen, beginning at the
current location in
becomes full, it is
entire contents are
speci fied by the

putw returns ERROR (
(1) fd does not poin
file was not opened
the buffer could not
operating system lev
to the file's I/O bu
due to the buffering
value does not guara
successfully written
from and affecting t
may not become appa
causes tha file's I
and putw may be inte
putw may be read usi

that buffer.
automatically

written to the
pointer fd to

-1) and does not
t to a valid fil
for buffered out
be written due

el. Otherwise,
ffer and returns
of file I/O ope

ntee that that
to the file,

he outcome of a
rent until som
,/0 buffer to be
rspersed. Files
ng getc and getw

write the integer
e descriptor, (2)
put via fopen, or

to an error at
putw writes the " int
SUCCESS (3). Howe

rations, such a re
same integer will

since errors resul
particular call to
e later function
flushed. Calls to
written with putc

if:
the
(3)
the

eg er
ver ,
turn

be
ting
putw
call
putc
and

~>rJT23

int put2b(i, fd)

i n t i ;
STREAM fd;

'•V

&
r*V

*&

g

Outputs a two byte quantity to a buffered output stream.
put2b is similar to putw and fwrite, except that it is
invariant wirh respect to byte ordering.

. I-
SuperSoft C Compiler: User's Manual (:) 1933 SuperSoft 132

QSORT

int qsort(tbl, nrecs, reclen, cmp)

char tbl [] [] ;
unsigned nregs, reclen;
int (*cmp) () ;

order sort on the doubleqsort performs an ascending
dimensioned array

tbl[nrecs] [reclen]

That is, tbl points to the base of the array; reclen is the
length of the record that is to be sorted; nrecs is the
nunber of records; cmp the function to be used to perform
the comparison. It will be called with two pointers to
records. Effectively, its declaration is:

int
cm p (a , b) '
char a [reclen] ;
char b [reclen] ;

It must return a value less than zero if the comparison is
"less than"; a value of zero if the comparison is "same";
and it must return a value greater than zero otherwise.

ND

int rand()

number sequence
Values in the

Returns the next value in a pseudo-random
initialized by a prior call to srand.
sequence will range from 0 to 65,535.

f

The C expression
•

rand() % n

will evaluate to an integer greater than or equal to
less than n. •

0 but

SuperSoft C Compiler User's Manual (c) 1983 SaperSoft 123

READ

int read(fd, bufr, n)

FILE *fd;
TYPE *bufr;
unsigned n;

Reads a maximum of n bytes from a file opened for eithe.r
direct or buffered input, beginning at the current locatio'n
of the file I/O pointer, into the memory buffer pointed to
by bufr. The file is specified by the pointer fd to its
file descriptor.

You should define the buffer pointed to by bufr such that
can contain at least n

it
bytes.

The file I/O pointer will always point to the beginning of *
system record. After a call to read, the file I/O pointer
will point to the beginning of the system record following
the last one read.

If no errors occ
read. If those
returns either a
(0). Zero will
been reached . I
(such as the C?/
a file, read ret
to read can be r
ERROR (-1) and d
the file was not
system record si
an error at the

ur, read re
bytes are
multiple o
be returned
f bytes are
M or MS-DOS
urns one (1
sad from a
oes not att
opened for
ze, or (3)
operating s

turns
being
f the
only
bein
CON:
) , si
ser i

empt
inpu

the"f
y s t em

the actual
read from

system reco
if the end

g read from
or ROR: dev

nee only one
al device.

read the
(2) n is

ile could no
level (see

to
t,

numoer
a f i

rd size
of the
a seria
ices) o
bvte
'read

file i
less

t be re
K&R,

of bytes
le, read
or zero

file has
1 device
pened as
per call

returns
f : (1)
than the
ad due to
o. 163) .

SuperSoft C Compiler User's Manual (c) 1933 SuperSoft

REALLOC

TYPE *realloc(p, nbytes)

TYPE *p;
unsigned nbytes;

Changes the size of the allocated region pointed to by p (p
must have been previously set by a call to malloc). realloc
preserves the content of the region, as best as can be done,
since the region may have a new size. realloc returns a
pointer to the new size region.

RESULT rename(fname/ fspec)

FILESPEC fname;
FILESPEC fspec;

Renames the file specified in fspec, giving it the name
contained in the null-terminated string pointed to by fname.
(A string constant, such as "newname", is also valid for
fname, since it evaluates to a pointer to a null-terminated
string.) The drive name and tne number, if any, are
unchanged.

S u p e r S o f t C C o m p i l e r User s Manual (c) 1983 Super So ft 125

RESET

reset(n)

int n;

Causes program execution to return to the
prior call to setexit. This transfer has
a return from setexit. The parameter n
appears as the value returned by setexit.

point set by a
the appearance of
passed to reset

reset and setexit together allow simpler and clea
of repeated exits to a common point—particularly
transfers require unraveling a number of levels o
calls. For example: in writing an interactive
could call setexit at the top of the command loop
whether or not its apparent return value was equa
(9). Each non-zero value could be used to
different error condition. The error number
printed and command loop execution could continue
reset would be sprinkled in appropriate places
the loop. In each instance the parameter passed
would indicate the presence (non-zero) or absence
a particular error condition.

reset and setexit, while they resemble functions
and syntax, are implemented as compiler
directives rather than as functions.
find them in any of the standard library function files.

ner coding
when

f func
editor

and
1 to
indicat
could

. Call
throug
to r
(zero)

such
tion
you

test
zero
e a

be
s to
hout
es-^t

of

in usa^e

*&

preprocasser
Thusr you will not

UNDEX

char *rindex(s, c)

char *s, c;

Returns a.pointer to the last occurrence of the character c
in the string beginning at s. rindex returns a null poin
value (0) if c does not occur in the string. See
described earlier in this chapter.

ter
ndex

Super Soft C Compiler User's .M.anjal (c) L9S "> 7Super Soft

RTSLL

3RK

unsigned int rtell(fd)

FILE *fd;

Returns the offset, in 512-byte blocks, from the beginning
of a file of the 512-byte file block within which the next
file I/O operation on that file will begin. rtell does not
indicate the offset into that block at which the I/O
operation will begin. The file is specified by the pointer
fd to its file descriptor. See otell and tell.

char *sbrk(n)

int n;

Adds n bytes to user memory (increments CCEDA7A by n}.
sbrk, if successful, returns a pointer to the first byte in
the block added. sbrk returns a value of ERROR (-1) and
adds no bytes to user memory if a block of the size
specified would: (1) overlap a stored program, (2) overlap
the run-time stack, or (3) exceed the available memory.

IMPORTANT: Do not u
between calls to alloc

cal1 sb rk
(see K i R , p.-§175)

w i t h a n e g a t i v e a r g u m e n t

•i
•i

S u p e r S o f t C C o m p i l e r U s e r ' s M a n u a l (c) 1963 S u p e r S o f t

SCAN?

RESULT scanf(format, argl, arg2,...)

char *format;
TYPE *argl; -
TYPE *arg2; •

Reads a formatted input string from the standard input (the
C?/M or MS-DOS CON: device—usually the console keyboard) .
Under control of the format string pointed to by its first
argument, format., scanf extracts a series of substrings,
known as input fields, from its input string, converts the
values represented in each of these fields, known as input
values, and assigns these converted values, in sequence, to
the objects pointed to by its remaining arguments argl,

scanf is a list function. See USING LIST FUNCTIONS at the
end of Chapter 2.

As its first argument, scanf must be passed a pointer,
format, to an appropriate nul1-terminated format string. (A.
string constant is also valid" for format, since it evaluates
to a pointer to a null-terminated string.) A series of other
arguments, argl, arg2, ..., may be passed to scanf, all of
which must be pointers. The individual objects pointed to
by argl, arg2, ... may be either characters, character
arrays, or integers.

The format string may contain either "whitespace" characters
(that is, spaces, tabs, and newlines), ordinary characters,
or special substrings, beginning with the character %, known
as conversion specifications. The first conversion
specification in the format string corresponds to and
determines the boundaries of the first input field in the
input string. It also determines the type of conversion to
be performed on the input value represented in that field.
Each successive pair of conversion specifications and input
fields bears this same relationship.

Following .the character % in each conversion specification
there may appear: *'

1) an optional assignment suppression character, ''
which, if present, causes the corresponding input field
to be skipped.

f\

S u p e r S o f t l o m p i l e r ' J s e t ' s M a n u a l So f i.

2) an optional string of decimal digits
maxi/num number of characters in the cor
field.

specifying the
responding 'input

3) a character, called the conversion character,
dicating the type of conversion to be performed on
corresponding input value.

in-
tha

Of the above, only the conversion character must be present
conversion specification. All the others, if present,n a

must be in the order they are listed above.

The valid conversion cha-racters and the types of conversions
they specify are:

% — a single % character is expected in the
at this point. This is an. escape
assignment is performed.

input string
sequence — no

— the input value is interpreted as a character. • The
corresponding argument should be a character pointer.
The normal skip over space characters is Suppressed.
To read the next non-space character, use %ls. If a
field width is also specified, the corresponding
argument should be a pointer to an array of characters,
and tne specified number of characters will be reac.

strin
to

— the input value is interpreted as a character
The corresponding argument should be a pointer
array of characters large enough to hold the string
addition to a terminal null-character added by scanf.
The input field is terminated either by a space or a
newline or when the maximum number of characters
been read, whichever comes first.

ar.
in

has

— the input value is interpreted as a character st
The corresponding argument should be a pointer
character array large enough to hold the string pi
terminal null-character added by scanf. Where
input field is terminated is determined as fol
The left bracket above is followed by a se
characters and a right bracket. If the first char
in that set is not a circumflex, '*', the input
is terminated by the first character no in the
within the brackets. If the first character
circumflex, the input field is terminated by the
character in the set within the brackets (the
excluded) .

to a
us a

the
lows .
t of
acter
field

sec
is a
first

• • i

— the input value is interpreted as a decimal integer
and is converted to a binary integer. The
corresponding argument should be an integer pointer.

SuperSoft C Compiler User's Manual (c) 1983 SuoerSoft ; j 9

—the input value is interpreted as an octal integer
and converted to a binary integer. 'The corresponding
argument should be an integer pointer.

— the input value is interpreted as a hexadecimal
integer and is converted to a binary integer. The
corresponding argument should be an integer pointer.

The central task of scanf is to determine the boundaries of
the input fields in its input string, which contain the
input values to be converted and assigned. To find these
substrings, scanf scans the characters in its input string,
comparing each of them with the corresponding characters in
the string pointed to by format. If a character in the
input string matches the corresponding character in the
format string, it is discarded and tne next character in the
input string is read. If the corresponding characters do
not match, scanf returns immediately. Nets that any amount
of whitsspace in the. input string matches any ' amount of
whitespace in the format string. Whitsspace in the -format
string is optional (it is ignored^, while, in the input
string it can delimit input fields. Thus, corresponding
characters are not simply those characters that are the same
number of bytes from the beginning of tneir • respective
strings. Whenever the character %, which introduces a
conversion specification, is encountered in the format
string, the corresponding character in the inpur string is
assumed to be the first byte of an input field. A.n input
field extends either until a space character is encountered
in the input string or the number of bytes specified for the
field width has been read, whichever comes first. The
conversion characters c and [above are the only exceptions
to this otherwise general rule. Any inappropriate character
in an input field causes scanf to return immediately.

scanf returns either the number of converted input values it
assigned or, if no input is present at the standard input,
the constant EOF (see K&R, p. 147).

P̂

SuperSoft C Compiler User's Manual (c) 1982 SuoerSof 113

SEEK

irvt s e e k (f d , o f f s e t , o r i g i n)

FILE *fd;
int offset?
int origin;

Sets the value of the file I/O pointer associated with an
open file. A file I/O pointer must be between 0 and" 3
megabytes . The file is specified by the pointer fd to its
file descriptor and .-nay have been opened for either direct
or buffered I/O. seek is orimarilv used in conjunction wi tn» *. **

tell and the direct file I/O functions read and write. See<
must be used with more care in conunction with the buffered
file I/O functions in order revent data loss.

The value assigned to offset has a different interpretation
depending on the value assigned to origin:

If origin is 0, then the file I/O pointer will point 'to the
beginning of the file plus offset bytes.

If origin is 1, then the file I/O pointer will point to its
current position in the file plus offset bytes.

If origin is 2, then the file I/O pointer will point to the
end of the file plus offset bytes,

If origin is 3, then the file I/O pointer will point to the
beginning of the file plus offset times 512 bytes.

If origin is 4, then the file I/O pointer will point to
current position in the file plus offset times
bytes .

its
512

If origin is 5, then the file I/O pointer will point to tne
end of the file plus offset times 512 bytes.

(See K&R, p. 164.)

!-

3
• i

>

I

S u p e c S o f t C C o m p i l e r : U s e r ' s M a n u a l (c) 1933 S u o e r S o r t

SSTEXIT

int setexitO

Calling setaxit sets ts location as the "reset" point — the
point to which subsequent calls to reset transfer program.
execution; 3 is returned. Each call to reset tha
causes an apparent return from the function

t

setaxit appears to return the value of
that was passed to reset. See reset and

the
set

follows
setexi t.

parameter, n-,

TJM?

setjmp (savearea)

int savearea[saves:ze];

Calling setjmp stores the program state in the savear^a
returns 0. (savearea should be 6 bytes long on both
8030 and 8036 series.) The program state includes
register variables, the return program counter, and

an-J
the
all

stack o i n t e r .
t e

Upon a call to long j -np (see e a r l i e r
red ,
has

o n g m p .

description) with the same savearea, the state is
effectively appearing as if a return from se
occurred, with the return value being supplied by
setjmp is a generalized version of setexi

resto
t m

t.

I
*
6

SuperSoft C Compiler User's Manual (c) 1933 SuperSoft 112

SE7MEM

setmem (p , ' n / b)

TYPE *p;
unsigned n;
char b;

Sets the n contiguous bytes beginning at p to the value
specified in b. You can use setmem to initialize a variety
of buffers and arrays.

SLEEP

sleep(n)

unsigned n;

Suspends execution for n tenths of a second on a
running a- 4 Mhz. You can tailor this function
different CPU and/or clock rate by changing the value
or two constants located in the function's code.

Z33 CP'J
to a

of one

SuperSoft C Compiler User's Manual (c) L983 SuperSoft 112

SPRINTF

s p r i n t f (s , f o r m a t , a r g l , a r g 2 , . . .)

char *s, *format;
TYPE argl;
TYPE arg2;

Identical to printf except that it writes its formatted
output into the string beginning at s. Contrast this with
printf, which writes its output to the standard output, and
fprintf, which writes its output to a file. sprintf appends
a null character to the formatted output string (see KiR,
p. 153). sprintf is a list function. . I

AND

srand(seed)

int seed;

Initializes the return value of rand to the value passed in
seed. r

• . • •• K̂

S u p e r S o f t C C o m p i l e r U s e r ' s M a n u a l (c) 1983 S u p e r S o f t 114

SSCANF

s s c a n £ (s , f o r m a t , a r g l , a r g 2 , . . .)

char *s, * f o r m a t ;
TYPE *argl ;
TYPE * a r g 2 ;

Identical to scanf (and fscanf) except that its formatted
input string is read from the null-terminated string
beginning at s rather than from the standard input. sscanf
does not read the terminal null character (see KSrR, p. 153) .
sscanf is a list function.

char *strcat(sl, s2)

char *sl, *s2;

Appends a copy of tne string beginning at s2 to the end of
the string beginning at si, creating a single
null-terminated string. No.te that the resulting string
begins at si and contains a single, terminal null character.

strcat returns a pointer to the resulting string identical
to the parameter, si, that it was passed (see K&R, p. 44).

SuperSoft C Compiler User's Manual (c) 1983 SuperSoft 15

STRCMP

in t s t r c m p (s l , s 2)

char *sl, *s2 ;

ompares
beg inn ing
a l h a b e t i c a l

the
at

str ing b e g i n n i n g at si
s2. This compar i son is

wi th the
s imi la r

c o m a r s o n exce that it is based

s t r i n g
to "an
on the

the twonumer i ca l va lues of c o r r e s p o n d i n g cha rac t e r s in
s t r ings. This c o m p a r i s o n ends when the f i r s t nul l character
in either s tr ing is encountered.

s t rcmp r e t u r n s a p o s i t i v e i n t e g e r , zero (3) , or a n e g a t i v e
in t ege r depend ing on whe the r the s t r i ng beg inn ing at si i s ,
respec t ive ly , g r e a t e r t h a n , equal to, or less tnan the
string b e g i n n i n g at s2 (see K & R , p . 101).

'R~?Y

s r rcpy(s l , s2)

char *sl, *s2;

Copies the string beginning at s2 into the
at si, stopping after a null character has
the length of the string begi'nning at s2 is
length of the string beginning at si, data in
following the latter may be overwritten in error
o. 100) .

s t r ing b e g i n n i n g
been c o i e d . I f
g rea te r than the

the
(see

bytes
K & R ,

BJ

••II

'-•I

SuperSoft C Compiler User's Manual (c) 1953 SuperSof- 115

STREQ

int *streq(sl, s2)

char *sl, *s2;

Compares the characters in the strings beginning at si and
s2, where n is the number of characters (excluding the
terminal null) in the string beginning at s2. streq returns
n if the corresponding characters in the two strings are
identical; otherwise, it returns zero (0). Like substr
(described later), except that it returns end of string
instead of beginning.

TRLEN

int strlen(s)

char *"s;

Returns the number of characters (excluding the
null) in the string beginning at s (see KiR, pp
93) .

terminal
36, 95,

STRNCAT

char *strcat(sl, s2, n)

char *sl, *s2;
int ri;

Identical to strcat except that strncat appends at most n
characters from the string beginning at s2 (truncating from
the right) to the end . of the string beginning at si.

SuperSoft C Compiler User's Manual (c) 1933 SuperSoft

.STRNCMP

int strncmp(s, t, n)

char *s;
char *t;
unsigned n;

Compares the strings pointed to by s and t. The compariso'n
stops at first '\o' (like strcmp) or after n characters are
scanned, whichever comes first.

TRNCPY

char *s t rncpy(s l , s2, n)

char *sl, *s2;
int n;

Ident ica l to strcpy except that strncpy copies exac t ly n
characters in to the s t r ing beg inn ing at si, t r u n c a t i n g or
null-padding the s t r ing beginning at s2 if necessary.
resul t ing s t r i ng rr.ay not be nul l - terminated
beg inn ing at s2 con ta in s n or -nore characters .

the
The

s t r i n

_.UBSTR

char *substr(pa, pb)

char *pa;
char *pb;

Locates the beginning of the first occurrence of the
substring (pointed to by pa) in the string pointed to by ?b
Returns NULL if pa is not found in pb . See strcmp,

r-n

a

and index, also described
string functions.

in this chapter, for
strec,

similar

SuperSort C Compiler User's Manual (c) 1933 SuperSoft 113

SWAB

swab(s 1, s2, n)

char *sl, *s2;
int n;

Copies n bytes from si to s2, swapping every pair of bytes.,

L

unsigned int tell(fd)

FILE *fd;

Returns the byte offset from the beginning of a file at
which the next I/O operation on that file will begin. The
file is specified by the pointer fd to its file descriptor.
If tell is called for a file greater than 54K long, its
return value is subject to arithmetic overflow. See otell
and rtell.

•».
v

>>-,
lK;

V
c~«

LOWER

char tolower(c)

char c;

m

Returns the lower case equivalent of c if c is an upper
alphabetical ASCII character; otherwise, it returns
(K&R, pp. 145, 156.)

j

S u p e r S o f t C C o m p i l e r U s e r ' s M a n u a l (c) 1933 S u p e r S o f t . 119

TOPOFMEM

char * to po f m e m ()

Returns CCEDATA (see b r k , e v n b r k , and s b r k) .

TO f J??ER

char t o u p p e r (c)

char c;

Returns the upper case equivalent of c if c is a .Is
alphabetical ASCII character; otherwise, it returns
K&R, p. 156).

(see

U3RK

char * u b r k (u)
unsigned u

Returns a pointer to a memory region of size u. Since u is
unsigned, ubr:< cannot "give back" any allocated memory. It
returns ERROR if it cannot locate a free region of proper
size. See sbrk, evnbrk, wrdbrk, and brk also described in
this chapter.

•j,
j

SuperSoft C Compiler User's Manual (c) 1933 SuperSof 123

UGETCHAR

ugetchar(c)

char c;

Causes the next rail to getchar to return c.
ugetchar more than once between successive calls to
will have no effect on the state of the standard

Calling
getchar
input.

SETC

RESULT ungetc(c, fd)

char c;
STREAM fd;

OfWrites the character c into the most recently read byte
the I/O buffer associated with a file ooened for buffered
inout via fooen unsetc also decrements the oointer to
next byte to be read from the file I/O buffer so that
points to the byte that was just written.

the
i t

ungetc, if successful, returns an undefined value. ungetc
returns ERROR (-1) if it could not perform its function:
the file specified was
fopen, for example.

no ooened for buffered inout
i r

via

To call ungetc for a file serves no purpose unless either
fgets, fscanf, getc, or getw (the buffered file
functions) has been previously called for the same
Only one call to ungetc between calls to the buffered
input functions for a given file can be guaranteed to
the desired effect (see K&R, p. 156) .

input
file.
file
have

SuperSoft C Compiler user's Manual (c) 1983 SuperSoft 121

UNLINK

RESULT unlink(fspec)

FILESPEC fspec;

Deletes the file specified in fspec from the file system,
unlink returns SUCCESS (0) if the file was successfully
deleted. unlink returns ERROR (-1) and does not delete the
file if: (1) the file specification given is invalid or (2-
the file could not be deleted due to an error at the
operating system level (see KfirR, p. 163) .

RESULT wait(pid)

unsigned pid;

the execution of the process until
with rocess id id. Returns

Blocks
the process
such process id
an ERROR value.

is w a t i n

the completion cf
ERP.3R (-1) if n^

Always returns immediately wi en

WRD3RK

wrdbrk(u)

unsigned n;

Returns a" pointer to a memory region of size u. Since u is
unsigned, wrdbrk cannot "give back" any allocated • memory.
It returns ERROR(-1) if it cannot locate a free region of
the proper size. See sbrk, evnbrk, ubrk, and brk also
described in this chapter.

SuperSofr C Compiler User's Manual (c) 1983 SuperSoft 122

WRITE

int write(fd, buffer, num_bytes) '

FILE *fd;
TYPE *ouffer;
int n um_b y t e s ;

Outputs the number of bytes specified in num_bytes from the
area pointed to by buffer. Output is to a file opened for
direct (unbuffered) output. The file is specified by a file
descriptor, fd.

write returns the actual number of bytes written. This may
be less than num_bytes. If the file descriptor is invalid
or the file cannot be written, a value of ERROR (-1) is
re-turned to indicate an error.

• • «•• *

Every file descriptor contains a pointer to the next record
to be accessed in file I/O operations. A call to • write
advances that pointer by the number of bytes written. A
subsequent call to read or to write will begin at the new
position of tnis pointer. By calling seek, you may alter
the position of this file I/O pointer without reading or
writing. (See K&R, p. 160).

SuperSoft C Compiler User's Manual (c) 1983 SuperSoft 123

XMAIN

xmain ()

The first C function called upon program start up. It sets
up the arguments to main and does I/O redirection if the
switch REDIRECT is set in CUSTOMIZ.H before CRUNT2.C is
recompiled. I/O redirection is the ability to redirect the
console input, the console output, or command arguments :to
or from files. Console input is redirected by specifying a
filename preceded by a '<' on the command line. Console
input is then taken from the file. Console output is
redirected by specifying a filename preceded by a '>' on the
command line. Console output is then ser.t to that file.
Command argument redirection is specified by preceding a
filename with an '3' on the command line. Co-nmand arguments
are then taken from the file.

Command line arguments are passed to the program by setting
up two parameters in the call to main. The left parameter
is the count of the number of arguments. The right
parameter is an array of pointers to strings, one string for
each argument.

If the command line and I/O redirection code is not desired,
or if a different action is required, a program can be
specified with its top level procedure being xmain rather
than main.

!

*

XREV

SuperSoft C Compiler User's Manual (c) 1983 SuperSoft
»

TYPE *xrev(narg)

TYPE nargs[]

Reworks the parameters in list functions. • Under SuperSoft
C, the count of pointers is assumed to be in nargs [3] and ^an
array of parameters starts at inargs[l], xrev returns a
pointer to the argument list. Turn to Chapter 2, USING LIST
FUNCTIONS, to see xrev in use.

:PRINTF

xrprintf(line, args)

char *line;
TYPE args[];

Does all the work for print* et al. (See printf described
earlier.) It expects a char array (line) to write its oucpv:-
string to an array of arguments (args). The first element
of args should be a formac string. (See printf described
earlier) .

RSCANF

xrscanf(kind, u_kind, where, args)

int (*kind)(), (*u_kind)()f where;
TYPE args[];

Does all the work for scanf et al. (See scanf described
earlier in this chapter). xrscanf expects to be passed two
functions. kind(where) should return a byte from the input.
u_kind(c, where) should push back a byte into the input.
args is a format string (see scanf) followed by an array of
addresses. xrscanf cannot be called recursively, because it
makes use of a global static for some inter-function
commun ication.

SuperSoft C Compiler User's Manual (c) 1983 SuperSoft 135

Appendix A

The Differences between SuperSoft C and Standard C

i

SuperSoft is committed to implementing the full C language.
All purchasers of SuperSoft C will receive notice as updates
are available. The standard C language features not yet
implemented are: TYPEDEF declarations; declaration and use
of bit fields; initializations. STATIC declarations are
recognized; however, they have no initial value. Otherwise,
EXTERN STATICs operate as expected and local STATICs do not
have their values retained across function invocations.

LONG, FLOAT, DOUBLE and LONG FLOAT variables may be defined.
These data types may be used in any declaration except as a
function's formal argument. This includes declaration of
STRUCTs, UNIONS, and arrays. The address operator is trie
only availaole operator on these data types. Note that
there are library functions (DOUBLE. C and LONG.C) that
operate on these data types.

SuperSoft C expects parameters to functions to be pushed
onto the stack in right to left order, followed by the
return address (presumably by the call instruction of the
machine) — - ̂ < < ^ - •> - ̂ ̂ j i _ ^ ^ ^ _ i
are a.
a numbe
SuperSoft C. In particular, the original DEC PDP-11
implementation pushes left to right.

All the formal arguments to "a function must .be declared
within that function. That is:

f unc (aa ,bb ,cc)
int bb;
int aa f cc;

i
>•

....is accepted, but I
f

f unc (aa ,bb,cc) I

t I
...will generate an error. '. I

r:

SuperSoft C Compiler: User's Manual (c) 1983 SuperSoft 139

The code generator does not yet attach any unique prefixes
or suffixes to variable names. Thus global identifiers in
your C source code may conflict with the assembler's names
and keywords. You must therefore avoid the use in your C
source code of any of your assembler's reserved symbols or
keywords. This deficiency will be remedied in a future
release.

Parameterized ^DEFINES
preprocessor directives
standard C, lines are only scanned once
substitutions. This means that there is
indefinite looping during preprocessing.
means that the order of *DEFISEs is
instance, in—

and tIF (with expression)
are not yet supported. Unlike

for IDEFINE macro
no way to get into

al so
For

However, this
signi ficant.

fdefine x
^define y

Y
z

—x will be replaced with y and y
However, in—

ill be replaced with z

^define y
fdefine x

z
y

—both y and x will be replaced with z.

In SuperSoft C, there must be no intervening newline
a label and its associated ': ' . Array declaratio
contain only limited expressions. In particular, SIZ
parenthesized expressions are not allowed. Because
way SuperSoft C parses local declarations, a v
declared to be REGISTER will not truly refer to a r
unless it is the first REGISTER declaration and
declared by itself. So the following will declare x
true register variable, but y will be declared
ord inary local:• »

between
n s can
EOF and
of the
ar iaole
eg is~er
it is
as a

as an

funct ()
I .

register char x;
register char y;

The following will
register variable:

not succeed in declaring any true

I
SuperSoft C C o m i l e r User's Manual (c) 1983 SuperSoft 140

funct()

register char x, y;

Dup and fork as available under UNIX are not implemented,
mostly due to the inconvenience of single process operating
systems. Link operates differently than UNIX's link. Fopen
and fdopen have an additional parameter over the UNIX
implementation, allowing for clearer buffered I/O usage.
This poses no problems if the additional parameter is used
in most UNIX C implementations, since the final, additional
parameter is ignored.

Release 1.2 of SuperSoft C has
than the previous release (1.1)
record size limitations on file
read() and write(). Also there

fuller UNIX compatibility
There are no longer any
I/O. This has affected

has been a mode oara-aeter
added to creat(), and an arg3 parameter added to execl() to
bring SuperSoft C into line with" "UNIX. This release of C
also contains a much fuller set of preprocessor directives.

SuperSofc C Compiler User's Manual (c) 1933 SuoerSoft 141

Appendix B

Currently Available Machine and Operating System

Configurations of the SuperSoft C Compiler

Current operating systems are: CP/M-80, MP/M-80, CP/M-86,
Concurrent CP/M-86, CP/M+, CP/M-83 3.0, MP/M-86 One:
compatible); PC-DOS, MS-DOS (and compatible); UNIX, XENIX
(and compatible); and Central Data ZMOS.

Current host or target C?rJs are: Intel 8080, Intel 8083,
Intel 3036, Intel 3088, Intel 186, 'Intel 138, Zilog Z32,
Zilog Z3C01, Zilog Z3002, Zilog Z8003, and Zilog Z33G4.

SuperSoft supplies any valid combination of host, target,
and operating system. Those interested in such syste-r.s
should contact SuoerSofr for information about availability.

SuperSoft C Compiler User's Manual (c) 1933 SaoarSoft

Appendix C

Some Common Problems and Solutions

1. Problem:
Solution:

During assembly or link, a function is undefined.
Remember to include the files containing the
needed functions. See Chapter 4.

2. Problem: During assembly or link, some variables are
undefined .

Solution: Remember to declare all variables.

3. Problem:

Solution

During assembly or link, a function or variar.l
is flagged with duplicate definition errors.
Have you accidentally defined a function or
variable more than once? Have you used a name
that the C support uses? How many significant
letters (truncation limii) does your assembler
use?

Problem:

Solution

"P", or phase, error isDuring assembly a
i nd ica ted .
A variable or function has been defined r.^re
than once.

v
*

fr
t.

Problem:

Solution

During assenrbly a symbol is indicated as
being puolic and external at the same time.
This variable or function is misspelled and
the assembler is not catching it because tne
difference is an upper-lower case change or
a difference beyond the truncation limit of
the assembler. For example, TPuts and Touts
may be the same to the assembler, verylongname
and verylong name1 may be the same, also.

Problem:

Solution

During linking a symbol that should be in a
library is not found.
Scan the library twice during linking. If the
symbol is then found, you need to reorder the
library. In the interim, double scanning should
be adequate. If the symbol is still not found,
then the symbol is not in the library.

iuperbort C Compiler User's Manual (c) 1983 SuperSoft 143

Problem: alloc0 is undefined during link.
Solution: You are calling functions without their

"matching" precursor. For instance, you are
calling fclose without fopen or free without
malloc.

Problem: Execution of a C program cannot be terminated
with Control-C under CP/M.

Solution: This is because CP/M is usually not interrupt
driven and cannot respond to characters frc.-n
the keyboard in an arbitrary circumstance.
However, during output to the console, typing
Control-S and then Control-C will work.

9. Problem:

Solution

The linker dies, halts your system, or says
that it is out of space.
Find more meir.ory or switch linkers. Under .
CP/M-80, we suggest SuperSoft's ELINK, a
disk-based linker, that should, not run out
of space.

Super So ft C Compiler User's Manual (c) 1982 Super So ft U

Appendix D

Locations of Supplied Functions and Externals

—ALLOC.C

alloc
realloc

free
isheao

malloc cailoc

•C2.RH, C2.R7, C2I36.RH, C2I36.R7, MDEP.C, C2I36.R73, C2I3S.R7X,
C2PRE.ASM, C2POS7.ASM, C2.R7M

bdos
ccalla
longjmp
setexit
coralen

bios
exit
out?
setjmp
comline

brk
inp
outp16
s treq
ccexit

ccall
inolo

errno

—CRUN72.C

evnbrk
isdigit
movmem
setmem
assert

getchar
islower
putchar
strlen
ugetchar

gets
isupper
puts
toupper
wrdbrk

isalpna
iswhi ta
sbrk
ubrk

—FUNC.C

abs
getval
i s a 1 n um
isprint
niin
poke
rindex
strcmp
strncpy

absval
index
isasci i
ispunct
max
putdec
sleep
strcpy
substr

atoi
ini tb
iscncrl
isspace
pause
qsort
srand
strncat
tolower

perror
initw
isnuraer ic
kbhit
peek
rand
strcat
strncmp
topofmem

SuperSoft C Compiler User's Manual (c) 1983 SuperSoft 145

— STDIO.C

close
execl
fgets
fwri te
link
pputc
rename
ungetc
lock
mktemp
isfd
fputc

cpmver
fabort
fopen
getc
open
putc
rtell
unlink
nice
clearerr
ferror
getZb

creat
fclose
fputs
getw
otell
putw
seek
write
swab
freopen
fi leno
put2b

exec
fflush
f read
access
pgetc
read
tell
wai t
isatty
fdopen
fgetc
chmod

*

'ORMATIO.C

fprintf
spr intf
xrev

fscanf
sscanf

printf
xrprintf

DOUBLE.C (Double Floating Point. See Appendix G.)

badd
bmbdulo
bneg
bint
bexp
btan
bgt
bge
bsxpo
bcdZint

bsub
bxtofy
bun eg
ben tier
bfac
barctan
beq
btest
bmov
bcheby

bdiv
s2bcd
babs
blog
bsin
bsign
bne
bseterrfIg
bround

scanf
xrscanf

bmul
bcd2s
buabs
bsqr
bcos
bit
ble
bm a n t
int2bcd

9b
h-

85

*K

LONG.C (Long Integer Functions. See Appendix H.)

cclprt
cclcom
ccZor
cc2imul
cc2or
cc3or

cclneg
cc2niov
cc2xor
cc2iadd
cc2neg
cc3xor

cclinc
cc2add
cc2cmp
cc2and
cc3add
cc3sub

ccldec
cc2coni
cc2rnul
cc2sub
cc3and
cc3div

SuperSoft C Compiler User's Manual (c) 1983 SuoerSoft 46

Appendix E

Using Overlays under CP/M-80

SuperSoft's ELINK (which is available as an additional cost
option to the C Compiler) allows the creation of overlayed
programs from existing C and assembler relocatable
ELINK is a disk based, stand-alone, multiple
(overlay) linkage editor and loader. ELINK
executable segments which run under CP/M-80 and is
process relocatable files produced by various

modules.
segment

produces
able to

assemblers
including M30 (Microsoft) and RMAC (Digital Research).
Relocatable files may be gathered to libraries and searched.
Large programs (up to 64k) may be linked, even under CP/M
systems with less than 64k memory. Even larger programs may
be divided into segments and overlayed. Overlayed programs
obviate many of the storage related limitations in your
programs and do so without chaining or changing your code.

Creating overlays is a fairly automatic process. The C
source code does not have to be altered at ail to take into
account the differences between a call to a function in the
same overlay and a call to a function in another overlay.
The structure of the overlay is defined exclusively by
commands to ELINK, which separate modules into overlays and
a root executable .COM file. An overlay structure might
look like this (following the example in the ELINK
documentation):

level 0 (root) cmain.rel

level 1

level 2

covl.rel

\
\
\

covZ.rel

cov21.rel

\
\
\

cov22.rel

SuperSoft C Compiler User's Manual (c) 1983 SuperSoft 147

An overlay structure is a tree structure in which levels are
important. Each overlay (represented by a box in the above
diagram) can contain any number of local functions that will
be accessible to itself and its children. Each function in
an overlay can call any number of functions in other
overlays. You can have up to 85 overlays with up to 255
levels deep.

Overlays have the added benefit of requiring discipline in
structuring the modularity of a program. The tree structure
imposed by overlays is fortunately ideal for supporting a
number of types of systems, such as menu
The overlays can mirror exactly the
program.

driven programs,
structure of the

By putting the C libraries in the root, significant savings
can be made because they occur in only one place and do not
have to be loaded with each overlay.

ELINK does NO CALL PATH CHECKING and assumes that the parent
in the overlay tree is resident with the child. This ' means
simply that each overlay structure can only call routines in
the entire path to the root up the tree. You must avoid
having a function make an AUTO load call to a function in
another overlay at the same level in the structure. This
would cause the return to go non-resident function
because the function that was called overlayed the caller.

ELINK contains a modified C2.RH and C2.RT which use various
features of ELINK and are required for overlaying. The
changes are very simple and deal only with the locating c:
the top of the user
functions will not
files.)

Droa ram.
wor orooerly

(ALLOC and several other
without these modified

To create and execute an overlayed program perform the
following steps.

1. Compile all of the .C files with SuperSoft C and
assemble with M80. (RMAC may also work, but we have no
verification of this.)

2* With all the ".REL" files on the current disk, type:

, ELINK so(cex);

This will cause ELINK to read CEX.LNK for commands that
will create the overlay structure defined above. (For
furthur reference, see the ELINK documentation).

SuperSoft C Compiler User's Manual (c) 1933 SuoerSoft 143

CMAIN.COM and CMAIN.OVL are c
contain the root and C librar
time package. The source of
ELINX in case you wish to
CMAIN.OVL contains all of the
along with a directory to the
2.2 is required for single fi
points. Direct overlay of fi
1.4. See the ELINK manual fo

reated.
ies along
this run

customi
overlay
overlays

le overla
les is
r more de

The' .COM file should
with the ELINK run
time is included with
ze your environment.
code in absolute form
in the file. CP/M

ys and AuTO load entry
supported under C?/M
tails.

Simply typing CMAIN will execute the program,
will be called as needed.

The overlays

SuperSoft C Compiler User's Manual (c) 1983 SuperSoft 149

Appendix F

Error Messages

"A formal arg is not declared" (CC)

The function declaration that precedes this error has a
formal argument without a corresponding type declaration.
For instance:

f unc (a ,b)
char *a;

will generate this error.

"Already defined" (CC)

This is a function, formal argument, local (auto) , or
structure element that was previously defined.

"Array or pointer being lengthened" (CC)

This declaration increases the stated size of the array |
being referenced. In the case of a pointer this means thac *
the object that it points to will appear bigger than before, |
causing any pointer arithmetic to multiply or divide by the |
new size. This is not always in error, as it is common to H
declare externs with arbitrary size: J

extern char arr[J;

and then elsewhere declare a specific size:
.

char arr [99] ;

3

SuperSoft C Compiler User's Manual (c) 1933 SuperSoft 153

'Bad break" ' (CC)

A break was encountered outside of all loops (for, while,
do, or swi ten) .

"Bad register op" (C2 or COD2COD)

0-code error. A register is used on an opcode that does no
have a register mode.

'Bad register struct or union" (CC)

A register variable nay be a struct or a union, but its size
currently must be no larger than an int.

Sad register type" (CC)

Too complex a declaration is being applied to a register
For instance:

register, int arr[99J;

is not possible.

Bad usage" (CC)

This usage of a variable is inconsistent with its
declaration.

Can't open include file" (CC)

A ^include preprocessor directive has been encountered but
the specified file does not exist.

'Can't subscript" . (CC)

Attempt to subscript any expression (including a variable)
that is not â , array or a pointer.

f
fc

t

\

SuperSoft C Compiler User's Manual (c) 1993 SupecSoft 151

'Can't take address" (CO

Attempt to tafce the address of an expression

"Can't write to output file (CC, C2, or C002COD)

Attempt to write to the output file, but an I/O error has
occurred. Usually indicates that the output file system -is
full. See the -ofile option for a remedy.

(CC)

An attempt to use casts. May not work.

'Continue without matching loop" (CC)

A continue has been encountered outside of an enclosing for,
while, or do statement.

'Declaration mismatch" (CC)

A redeclaration of a variable is different from a previous
declaration. This message will not.appear if a variable is
redeclared identically to previous declarations.

'Divide by 0" (C2 or COD2COD)

During optimization (constant folding) a divide by zero was
detected. Your algorithm should not require a divide by
zero.

'Don't add pointers (CC)

An attempt to add a pointer (or array) to a pointer (or
array). This is not an appropriate use of pointer
arithmetic, which expects one side of the binary operator to
be a pure value.

SuperSoft C Compiler User's Manual (c) 1983 SuperSoft 152

'Don't negate pointers" (CC)

A subexpression of the form int-pointer was found.
you meant pointer-int.

Perhaos

'Duplicate default" (CC)

More than one default "label" has appeared in the context of
the current switch. Nested switches can each have one
default.

cpecting formal arg" (CO

This error appears when, inside of the argument list
declaration of a function, an identifier is expected. That
is, a '(', or a ',' has been seen.

Ixpecting function body"

All of the formal arguments for this
have been declared. The first '{' ofC 4.

expected at this point.

(CO

function declaration
he function body is

Ixpecting or ')'" (CC)

Inside of a function formal argument list, neither a
a ')' was found when expected.

or

Ixpecting ' ,' or ' ;I W (CO

A declaration of the type of a formal argument was not
followed by a ' , ' or a ';'. Sometimes indicates confusion
on the part of the compiler with regard to your intentions
in declarations. It appears that the C syntax leaves little
opportunity for error recovery in declarations.

Expecting ')' or ',' in function call" (CC)

Refers to a badly formed function call.

r •n
5

SuperSoft C Compiler User's Manual (c) 1933 SuperSoft 153

Expecting type declaration" (CC)

A struct element declaration is expected. This should start
with a base type declaration such as int or char.

File close error" (CC, C2, or COD2COD)

An output error has occurred while writing the last- few
bytas to the output file or during the actual close.
Usually indicates that there is just short of enough space
on the output file system. See the -ofile option for a
remedy.

"gen err tl" (C2I36)

An invalid U-code has been seen. Either an invalid U-code
was read by C2I36. or there is a memory problem internal to
C2I86.

"gen err t2" (C2I36)

An invalid U-code has been seen. Either an invalid U-code
was read by C2I36 or there is a memory problem internal to
C2I86.

"gen err t3" (C2I36)

An invalid U-code has been seen. Either an invalid U-code
was read by C2I36 or there is a memory problem internal to

' C2I85.

'gen err t6" (C2I36)

An invalid U-code has been seen. Either an invalid U-code
was read by C2I86 or there is a memory problem internal to
C2I86.

SuperSoft C Compiler User's Manual (c) 1983 SuperSoft 154

'gen err t7" . (C2I86)

An invalid U-code has been seen. Either an invalid U-code
was read by C2I86 or there is a memory problem internal to
C2I86.

Internal error: close on bad fd" (CC)

A close oh an include file that should have succeeded
didn't. This should never happen and usually means that the
compiler's stack has been overwritten. Add more memory to
your system or decrease the number of declarations in this
compile (for instance by splitting the program into more
files, each separately compiled). Also see the -bufsiz
option for decreasing the compiler's I/O buffer sizes.

nternal error: extra free" (CC)
!

An expression left a sub-expression dangling. Should never
happen. Perhaps means that the compiler's heap has been
overwritten. Add more memory to your system or decrease the
number of declarations in this compile (for instance by
splitting the program into more files, each separately
compiled). Also see the -bufsiz option for decreasing the
compiler's I/O buffer sizes.

internal error: missing free" (CC)

An expression contained a spurious sub-expression. Should
^ never happen. Perhaps means that the compiler's heap has

been overwritten. Add more memory to your system, or
decrease the number of declarations in this compile (for
instance by splitting the program into more files, each
separately compiled). Also see the -bufsiz option for
decreasing the compiler's I/O buffer sizes.

Internal error.:- optdel" (C2 or COD2COD)

An attempt was made to delete a U-code from an invalid
location in the internal memory of the optimizer. This
should never happen. May mean a memory overrun has
happened. Reduce"the size of the largest function or use
the -o option. Also see the -bufsiz option for decreasing
the compiler's I/O buffer sizes.

SuperSoft C Compiler User's Manual (c) 1933 SuperSoft 155

"Internal warning: basic block" (C2 or COD2COD)

Ignore this warning: . indicates a minor inconsistency in the
optimizer basic olock processing.

inval pseudo op type" (C2I36)

An invalid U-code has been seen. Either an invalid U-code
was read by C2I86 or there is a memory problem internal "to
C2I86.

Line too long (CC)

A source line is too long or a line becomes too long after
preprocessing. What the compiler "sees" is printed with the
+1 option.

:issing bracketing symbol" (CC)

A bracketing symbol, usually ']'/ ')'/
missing.

or '}', is
The exact symbol is printed in the output file.

(COMissing ' } '"

End of file was seen before the last '}' was seen. This
an insidious error, as it can involve an extra '{' or a
missing '}' that is other than the last '}'. Check the
proper closure of all previous comoound statements.

Missing i . I n

A ':' is missing
operator, ' ? ' .

(CO

while trying to parse the ternary if
s

I

'Missing label'1" (CC)

A label was missing from a goto statement.

*
m»

3

t<

r.

rj
H

i
h

SaperSoft: C Compiler user's Manual (c) 1333 SupecSoft 156

Missing quote or apostrophe" (CC)

A string is being read that has"no terminating quote or a
character Literal is being read that has no terminating
apostrophe.

Missing ' ;'" (CC)

A semicolon is expected at the end of a statement or
declaration.

'Missing while" . (CC)

Missing while at end of a do statement.

Mjst be a constant" (CC) " !
i

Expecting a constant in an array declaration. Currently j
sizeof is not allowed in array declarations. Parenthesized
expressions are not currently allowed. Variables never will
be allowed.

Must be lvalue" (CC)

A valid left-hand-side is expected at this point. A
left-hand-side must have an address and must be able to hold
a variable value. Note that an array name may not be
assigned to, and thus is not a good, left-hand-side.

'Nonsensical pointer operation" (CC)

The pointer operation you are performing would not normally
be considered valid or sensible, but it will be performed
anyway.

No symbol table room" ' (CC)

The compiler's heap is filled up or has been overwritten.
Add more memory to your system or decrease the number of
declarations in this compile (for instance by splitting the

E

i

SuperSoft C Compiler User's Manual (c) 1983 SuperSoft 15

program into more files, each separately compiled). Also
see the -bufsiz option for decreasing the compiler's I/O
buffer sizes.

"Not a label" (CC)

Attempt to perform a goto to something that is not a label

"Not an array or pointer" (CC)

Attempt to subscript a variable that is not an array or
pointer.

<iot a, pointer or array" (CC)

An attempt to use the indirection operator,
something other than a pointer or array.

'*' on

Not a pointer to a function" (CC)

A call to a function is being attemp-ed, but the called
function has been previously declared as something other
than a function. For instance, the following will cause
this message:

int fn;

fn();

Not a struct or union element" (CC)

An attempt to use a '.' operator or a '->' operator, but the
right hand side of the operation is not a struct or union
element.

Not declared" (CC)

an undeclared variable. This errorAn attempt to use
message will appear only on the first such occurrence of
var iable.

the

buper^ott C Compiler User's Manual (c) 1933 SuperSort L55

"Opcode error" . . ' (C2 or COD2COD)

Either an invalid U-code was input to C2 (or COD2COD) or the
optimizer generated a bad opcode: most.Likely an internal
error .

'Open failure" (CC, C2I36, COD2COD, or C2)

Can't open the output file. Such an error could be caused
if the file system does not exist, if it is not correctly
set-up (i.e. no disk in drive), if there is no room on the
disk, or if the filename is incorrectly formed.

"Operation on incompatible pointers" (CC)

Two pointers are used in an arithmetic operation, but they
point to different objects.

"Optimizer table overflow" (C2 or COD2COD)

An attempt was made to add a U-code to the internal memory
of the optimizer but there was no room. This indicates that
the optimizer is out of memory. Reduce the size of the
largest function or use the -o option. Also see tne -bufsiz
option for decreasing the compiler's I/O buffer sizes.

'Optout empty" (C2 or COD2COD)

theAttempt to emit a U-code from the internal memory of
optimizer, but none was found. This should never happen and
even if it does, it should have no effect on the correctness
of the code that is generated.

'Out of heap" (CC)

This usually means that the compiler's heap is out of room
or has been overwritten. Add more memory to your system, or
decrease the number of declarations in this compile (for
instance by splitting the program into more files, each
separately compiled). Also see the -bufsiz option for
decreasing the compiler's I/O buffer sizes.

SuperSoft C Compiler User's Manual (c) 1983 SaperSoft 159

psu err t4" (C2I86}

An invalid U-code has been seen. Either an invalid U-code
was read by C2I86 or there is a memory problem internal to
C2I86.

'psu err t5" (C2I36)

An invalid rj-code has been seen. Either an invalid U-code
was read by C2I36 or there is a memory problem internal to
C2I86.

edeclaration of a label" • (CC)

A label .has-been declared more than once inside of a single,
function. Labels are declared just by following them by
':'. You probably shouldn't be using labels anyway.

Redeclaration of struct type" (CC)

A struct type has been declared more than once

struct x {
struct x {

i n t i ;
char j ;

In the above, x has been redeclared.

^ Rede f ined" . (CC)

A fde f ined i d e n t i f i e r has been redeclared. This message
will only appear if the new dec la ra t ion is a d i f f e r e n t
string than the old.

"Registers have no address" (CC)

An attempt has been made to take the address ('&' operator)
of a register variable. This error message will appear if
and only if the register variable is a true reg ister
variable.

SuperSoft C Compiler User's Manual (c) 1983 SuperSoft 1

shli error" (C2 or COD2CGD)

An invalid U-code has been seen. Either an invalid U-code
was read by C2I86 or there is a memory problem internal to
C2I36.

String size exceeded" ' (CC)

A string is larger than the compiler can handle. The string
may be unterminated. Otherwise, try using strcat at run
time.

'Too many ' &' s" (CC)

Attempt to take the address, using the 'i' operator, of an
address.

Undefined struct" . (CC)

The keyword struct has been followed by an identifier that
has never been defined.

"Unrecognized ' I ' " (CC)

A fr is followed by a directive that is not recognized. Sor>e
valid directives are if, ifdef, ifndef, else, endif,
include, and define.

'"Variable or constant expected" (CC)
K

A variable or a constant was expected at this point in the H

program. Most likely a badly formed expression has been
used.

t.
I

SuperSoft C Compiler User's Manual (c) 1982 SuperSoft 151

Appendix G

Doable Floating Point Functions
«

*•

The functions in DOUBLE.C can be divided into four groups:

Group 1 contains the three operand arithmetic functions of
addition, subtraction, multiplication, division and modulus
(remainder). These functions return the computed value in
their first argument. The return value is the address of
this first argument.

Group 2 functions are for the most part two argument
functions which return the computed value in the second
argument. These commands are double to string, string to
double, integer truncation, sine, cosine, tangent, square
root, exponentiation, natural logarithm, negation, absolute
value, and factorial. Radians are used for functions
requiring or returning angle measurement.

Group 3 contains, for the most part, two operand conditional
and testing functions. These functions return TRUE (1) if
the given condition is met between the arguments; otherwise,
FALSE (0). Group 3 commands are equal, not equal, greater
than, greater than or equal to, less than, and less than or
equal to. Also available is a test function which returns
POSITIVE (1), ZERO (3), or NEGATIVE (-1) depending upon the
argument. These functions do not set Berrflag.

Group 4 contains miscellaneous functions. - -.

SuperSoft C Compiler User's Manual (c) 1983 SuperSoft 152

Group 1

double *
Badd(dest, argl, arg2) double *dest, *argl, *arg2;

Three operand addition: |
»

*dest * *argl - *arg2;

double * I
Bsub(dest, argl, arg2) double *dest, *argl, *arg2; £

I
Three operand subtraction: ' I

&
*dest = *argl + *arg2; £

double * .. • £
Bdiv(dest, argl, arg2) double *dest, *argl, *arg2; |

t
Three operand division: E

£
F

*dest = *argl /

double * I
Brnul(dest, argl, arg2) double *dest, *argl, *arg2; I

K

Three operand multiplication: *

*dest = *argl * *arg2;

double *
Bmodulo(dest, arglf arg2) double *dest, *argl, *arg2;

Three operand modulus:

*dest * *argl % *arg2;

Bmodulo assumes *arg2 is positive.

SuperSoft C Compiler User's Manual (c) 1983 SuperSoft 163

doub le *
3x to fy (des t , a r g l , a r g 2) double *dest, *a rg l , * a r g 2 ;

Three operand exponen t i a t i on :

*arg2
*dest = *argl

I

f

^-4

i

SuperSoft C Compiler User's Manual (c) 19S3 SuperSoft 164

Group 2

double *
s23cd(ddest, strsource) double *ddest; char *strsource;

string to double:
ddest is the address of a double variable in
which is placed the value of number in the
string strsource.

char *
3cd2s(strdest, dsource) char *strdest; double *dsource;

double to str ing:
This function is the inverse of s2bcd, where
strdest must be long enough to fit the
representation of the given dsource number.
The maximum size for a double number is
currently twenty-one bytes. This includes
the exponent and the two signs, plus an extra
byte for null termination.

double *
3nec(destr argl) double *dest, *argl;

*
Two ooerand neqation: t

double *
3 r Jneg(dest) double *dest;

• •

One operand negation:

*dest = -*dest

double * JE
Babs(des t , a rg l) double *dest, *argl ; I

Two operand absolute value: |
3

*dest * |*argl| " ^

^

5

SuperSoft C Compiler User's Manual (c) 1933 ScoarSoft 153

double *
BUabs(dest) double *dest;

One operand absolute value:

*dest = I*dest

Bint(dest, argl) double *dest/ *argl;

Returns the integer part of *argl in
*dest (towards 0) .

Bentier (dest , argl) double *dest, *argl; Î

Returns the floor (entier) of *argl I
into *dest (towards -infinity). • • I

double * '•
31og(dest, argl) double *dest , *argl; . i

Returns the natural log of *argl in *dest. Ii
*dest - log (*argl) ; . I

i
double * |
3sqr(desc, argl) double *dest, *argl; *

•

Return the square root of *argl in *dest. j
»

*dest = sqrt(*argl) |

*argl is tested against being negative. ' j

double * !
Bexp(destf argl) double *dest, *argl; |

s

Raises e (e *» 2.7) to the *argl power: \
• •

*argl ;
*dest = e)

*argl is tested against being too large. . j

SuperSoft C Compiler User's Manual (c) 1933 SuperSoft 165

double *
3fac(dest, argl) double *dest, *argl;

Takes the factorial of *argl:

*dest » (*argl)1;

*argl is tested against being negative or too large

transcendental functions:

double *
3sin(dest, argl) double *dest, *argl;

Returns the sine of *argl in *dest:

*dest = sin(*argl);

double *
Bcos(dest, argl) double *destf *argl;

Returns the cosine of *argl in *dest

*dest = cos(*arg1);

double *
3tan(dest, argl) double *dest, *argl;

Returns the tangent of *argl in *dest

*dest = tan(*argl);

double *
Barctan(dest, argl) double *destf *argl;

Sets *dest to the arc tangent of *argl:
*

*dest - arctan(*argl);

S u p e r S o f t C C o m p i l e r U s e r ' s M a n u a l (c) 1933 S u p e r S o f t 167

•Group 3

Bsign (x)
double *x;

Returns 1 if *x is positive;
0 if *x is zero;

-1 if *x otherwise.

31t(x, y) double *x, *y; .

Returns 1 iff *x < *y

3gt(x, y) double *x, *y;

Returns 1 iff *x > *y

3eq(x, y) double *x, *y;

Returns 1 iff *x ~- *

3ne(x, y) double *x, *y;

Returns 1 iff *x != *y

Ble(x, y) double *x, *y;

Returns 1 iff *x <- *y

Bge(xr y) double *x, *y;

Returns 1 iff *x >= *y

Btest(x, y) double *x, *y

Returns 1 if *x > *y;
0 if *x »= *y;

-1 if otherwise

SuperSoft C Compiler User's Manual (c) 1933 SuperSoft 163

BseterrfIg(5)

Sets the global Berrflg to e if it is clear.

SuperSoft C Compiler User's Manual (c) L933 SuparSoft 169 j
•

Group 4

Brnov(dest, argl) double *dest, *argl;

opies *argl into *dest:

*dest =- *argl;

C

Bround(dest, i) double *dest; int i;

Rounds *dest by adding 5.0Ei to the *dest
(mantissa 5 with exponent' i).

intZbcd(dest, i) double *dest; int i;

Converts from integer to double.

BcdZint(argl) double *argl;

Returns the integer part of *argl, rounded
away from zero.

double * '
Bmant(dest, n) double *n; .char *dest;

i
Places the m a n t i s s a of *n in to *dest. ;* t

The functions Bmant and Bexpo return values ;
a and b respectively where the argument x is |
of the form x = a * 10**b for .1 <= |a| < 1. i
(except when x -= 0) . - ,

i
i

. »
i

Bexpo(x) double *x; :

Returns the integer exponent of *x. . :

The functions Bmant and Bexpo return values j
a and b respectively where the argument x is j
of the forrn'x = a * 10**b for .1 <* ! a l < 1.
(except when x == 3). i

SuperSoft C Compiler User's Manual (c) 1983 SapecSoft 17C

double *
Bcheby(res, x, coef, n) double *res, *x, coef[n][3CDS]; in

Returns in res the nth approximation of the
function whose Chebyshev coefficients are
in coef evaluated at *x.

SuperSoft C Compiler User's Manual (c) 1983 SuperSoft 171

Appendix H

Long Integer Functions

The following functions are available in the file LONG.C

cclprt(a) long *a;
»j

Prints *a in hexadecimal. • 1

cclneg(d) long *d; . .
i

One operand negate: • • *,

*d = -*d;

cclinc(a) long *a;

One o e r a n d increment:

C3ldec(a) long *a;

One operand decrement

—*a

cclcom(a) long *a;

One operand complement

SuperSoft C Compiler User's Manual (c) 1933 SuperSoft

cc2mov(a,b) long *a, *b;

Two operand copy:

cc2add(a,b) long *a, *b;

Two operand addition:

*a += *b

cc2com(a,b) long *z, *b;

Two operand complement

cc2or(a,b) long *a, *b;

Two operand logical or:

*a != *b

cc2xor(afb) long *a, *b;

Two operand xor:

*a ** *

cc2cmp(a/b)"long *a, *b;

Two operand comparison

Returns 1 if *x > *y;
0 if *x »» *y;

-1 if otherwise

S u p e r S o f t C C o m p i l e r 'user 's M a n u a l (c) 1982 . - u p e r S o f t 173

•

c c 2 m u l (p a , ? b) L o n g * r a , *pb;

Two operand multiplication:

* r* a * = * •" rs •' -

cc2imul (x , b 0 , b l) lonr. *x ; in t b0 , b l ;

Two ope rand i^T\ediate mul t ip l i ca t ion
wh=re b3, bl are integers that fo rm the
m'jst s i g n i f i c a r r t and least s i g n i f i c a n t
pa r t (respect ively) of tne immediate l o n g :

*x *-- (b 0 , b l)

cc2iadd (x ,b2F, si) long *x; int b0, bl;

Two operand ini.T.ediate addition where bC
bl are integers that form the most
significant and least significant part
(respectively) of the immediate long:

*x -= (b0,bl)

cc2and(a,b) long *a , *b;

Two operand logical and:

cc2neg(a,j, long *a, *b;

Two operand negation:

*a = -*b

cc2sub(afb» long *a, *b;

Two operand subtraction:

*a -= b

SuperSoft C Compiler User's Manual (c) 1983 SuperSof

cc3aJd(q,a,b) long *q, *a, *b;

Three operand addition:

*q » *a + *b

cc3and(a,b,c) long *a, *bf *c;

Tnree operand logical and:

cc3or(a,b,c) long *a, *b/ *c;

Three operand logical or

cc3xor(a,b,c) long *af *bf *c;

Three coerand exclusive or

*a ^ *b

cc3sub(a,b,c} long *a, *b, *c;

Three operand subtraction:

_*a =

ccldiv (d , s rccxdjea) long *cl, *sf *ccxdrem;

A fct^i of three operand signed division
with remainder:

*ccxdrer- =

