
Important Note for
Model I/III

RSCOBOL Users
The object modules (described on page 32 of the Use section) are password
protected and cannot be copied (with COPY) from your system diskette. To
transfer these modules to another diskette, use BACKUP.

When you assign a program-name to a COBOL file (refer to page 29 of the
RSCOBOL section of this manual), you must use standard TRSDOS syntax
for the program-name. See the File Specification section of your Model III
owner’s manual for specific details.

Thank-You!

Radio /hack
l A Division of Tandy Corporation

8759117-581

Important Note to
Model III Users

From time to time. Radio Shack may release new versions of TRSDOS, the
TRS-80 disk operating system. Check with your local Radio Shack or the
TRS-80 M icrocom puter News for notices and instructions on these
enhanced versions of TRSDOS.

If you receive a new version of TRSDOS, read the following before making
any modifications to your existing software packages (applications, lan
guages, or system utilities):

• Do not convert your Radio Shack software packages for use with the new
version of TRSDOS unless you are instructed to do so.

• Before converting a Radio Shack supplied Model I software package to a
Model III format, check to see if Radio Shack provides a Model III version
of the package. If so, you should obtain a copy of that version.

• If you're using several different software packages, press the RESET but
ton whenever you change software.

Thank-You!

Radio /hack
l A Division of Tandy Corporation

8759106

Important Notes for
RSCOBOL Users Cat. no. 26-2203

1. For your convenience, this package includes diskettes for both Model I and Model III owners. This
manual describes conversion procedures for Model III owners. These are no longer required.

These procedures are explained in the section titled Converting RSCOBOL to Model III, which is
in Appendix C. Please disregard them.

2. All Radio Shack software packages are designed for use under the version of the operating system
under which the package is released. Therefore do not use this package under prior versions of
trsdos. When using any other software package make sure you press the RESET button to insure
that the appropriate version of trsdos is loaded before using the software package.

3. In the RSCOBOL section, you will find some references to Model II. These references also apply to
your Model I or III.

V i

Thank-You!

Radio /hack
c A Division of Tandy Corporation

8759104-381

*
* *
* ALL USERS MODELS I/III *
* IMPORTANT NOTICE PLEASE READ FIRST *
* *
* * * * * * * * * * * * * * * * * * * *

Make sure you read the indicated pages for the stock number
of the package that you are going to use.

STOCK ADDENDUM PAGES TO READ
NUMBER

26-2013 MODEL
MODEL

I
III

version
version

pages
page If2 3, 4, 5, 6 , and

26-2203 MODEL
MODEL

I
III

version
version

pages
page If2 3, 4, 5, and 6

26-2204 MODEL
MODEL

I
III

version
version

pages
page If2

3, 4 , 5, and 6

26-2206 MODEL I pages If 3, 4 , 5 , and 6
26-2207 MODEL III page 2
26-2208 MODEL I pages 1, 3 , 4, 5, and 6
26-2209 MODEL III page 2

*
★ *
* MODEL I USERS *
* IMPORTANT NOTICE PLEASE READ FIRST *
* *
* * * * * * * * * * * * * * * * * * * *

UPGRADE UTILITY ON TRSDOS 2.3B
The MODEL I diskette in this package contains a NEW version
of TRSDOS which is not compatible with OLD versions of
TRSDOS, see below for further details. TRSDOS 2.3B is
specially designed for use only with the below listed
packages: 1) 26-2013 SERIES I EDITOR/ASSEMBLER

2) 26-2204 BASIC Compiler, 26-2208 BASIC Runtime
3) 26-2203 COBOL Compiler, 26-2206 COBOL Runtime

OLD TRSDOS diskettes to be used under the NEW TRSDOS MUST be
UPGRADEd before use. Once UPGRADEd, a system or data
diskette becomes a NEW TRSDOS data diskette.
OLD diskettes used under NEW TRSDOS without UPGRADEing, may
cause extraneous information to be read at the end of files,
giving a false End Of File (EOF) indication. Some programs
will not function properly under these conditions.
NEW diskettes usel under OLD TRSDOS, may not access all
data and/or NEW programs may not run correctly.
If you determine that you need to use the UPGRADE utility
see page titled "TIPS ON USING THE MODEL I TRSDOS 2.3B
UPGRADE UTILITY" contained in this addendum.
NOTE: When changing from one TRSDOS to the other you must
use the RESET switch each time the diskette in drive 0
is changed.
RADIO SHACK APPLICATION PROGRAMS WHICH WERE DELIVERED ON AN
OLD TRSDOS DISKETTE SHOULD NOT BE UPGRADED.

OLD: TRSDOS 2.1, 2.2, and 2.3.
NEW: TRSDOS 2.3B.
f ile: A collection of information stored as one

named unit in the directory.
program: A file which causes the computer to

perform a function.
data: Information contained in a file which is

used by a program.
system diskette: A diskette containing TRSDOS. When this

diskette is placed in drive 0 and the
RESET switch is pressed, TRSDOS will begin
to run.

data diskette: A diskette which does not contain TRSDOS.
If this diskette is placed in drive 0 and
the RESET switch is pressed, the screen
will clear and "NO SYSTEM" will be
displayed.

UPGRADE: A program contained on the TRSDOS 2.3B
diskette.

1 of 7

*
* *
* MODEL III USERS *
* IMPORTANT NOTICE PLEASE READ FIRST *
* *
* * * * * * * * * * * * * * * * * * * *

XFERSYS UTILITY ON TRSDOS 1.3
The MODEL III diskette in this package contains a NEW
version of TRSDOS which is not compatible with OLD versions
of TRSDOS, see below for further details.

OLD TRSDOS diskettes to be used under the NEW TRSDOS MUST be
XFERSYSed before use. Once XFERSYSed, an OLD TRSDOS diskette
becomes a NEW TRSDOS diskette and should not be used with
OLD TRSDOS again. If you started with an OLD system or data
disk, the XFERSYSed diskette will be a NEW system or data
diskette respectively.
OLD diskettes used under NEW TRSDOS without XFERSYSing, may
cause extraneous information to be read at the end of files,
giving a false End Of File (EOF) indication. Some programs
will not function properly under these conditions.
NEW diskettes used under OLD TRSDOS, may not access all
data and/or NEW programs may not run correctly.
If you need to use the XFERSYS utility see the TRSDOS
section of your TRS-80 MODEL III Disk System Owner's Manual.
NOTE: When changing from one TRSDOS to the other you MUST

use the RESET switch each time the diskette in drive 0
is changed. You may also XFERSYS onto a NEW data disk.
If this is done, all system files of the system disk
will be moved onto the data disk.

RADIO SHACK APPLICATION PROGRAMS WHICH WERE DELIVERED ON AN
OLD TRSDOS DISKETTE SHOULD NOT BE XFERSYSD.

OLD:
NEW:
file:
program:
data:
system diskette:

data diskette:

XFERSYS:

TRSDOS 1.1 and 1.2.
TRSDOS 1.3.
A collection of information stored as one
named unit in the directory.
A file which causes the computer to
perform a function.
Information contained in a file which is
used by a program.
A diskette containing TRSDOS. When this
diskette is placed in drive 0 and the
RESET switch is pressed, TRSDOS will begin to run.
A diskette which does not contain TRSDOS.
If this diskette is placed in drive 0 and
the RESET switch is pressed, the screen
will clear and "Not a SYSTEM Disk" will be
displayed.
A program contained on the TRSDOS 1.3
diskette.

2 OF 7

* *
*

*
*

* OWNERS OF THE MODEL I, SERIES-I EDITOR *
* ASSEMBLER, BASIC Compiler, BASIC Runtime *
* COBOL Compiler, COBOL Runtime *
* *
* *

Differences between TRSDOS 2.3B and TRSDOS 2.3 are:
1. Variable length records have been corrected, in all

aspects.
2. In most cases, your computer will not "hang up" when you

attempt use of a device which is not connected and
powered up.

3. The DEVICE command has been deleted.
4. The following commands have been added:

CLS
This command clears the display and puts it in the 64-
character mode.
PATCH 'filespec' (ADD - aaaa,FIND = bb,CHG = cc)
This command lets you make a change to a program file.
You need to specify:

'aaaa1 - a four byte hexadecimal address specifying
the memory location of the data you want to
change

'bb' - the contents of the byte you want to find
and change. You can specify the contents of
more than one byte.

1cc' - the new contents to replace 'bb'
For example:

PATCH DUMMY/CMD (ADD=4567,FIND=CD3300,CHG=CD3BO0)
changes CD3300, which resides at memory location 4567
(HEX) in the file named DUMMY/CMD, to CD3B00.
If this command gives you a STRING NOT FOUND error
message, this means that either 'bb' does not exist, or
else 'bb' crosses a sector boundary. If 'bb' crosses a
sector boundary, you must patch your file one byte at
a time. For example:

PATCH DUMMY/CMD (ADD=4568,FIND=33,CHG=3B)
replaces the contents of the second byte in the above
example.

3 of 7

TAPE (S=source device,D=destination device)
This command transfers Z-80 machine-language programs
from one device to the other. You must specify the
'source device' and 'destination device' using these
abbreviations:

T - Tape
D - Disk
R - RAM (Memory)

The only valid entries of this command are:
TAPE (S=T,D=D) TAPE (S=T,D=R) TAPE (S=D,D=T)

For example
TAPE (S=D,D=T)

starts a disk-to-tape transfer. TRSDOS will prompt you
for the diskette file specification and ask you to press
<ENTER> when the cassette recorder is ready for
recording.
CAUTION: When doing a tape-to-RAM transfer, do not use a
loading address below 6000 (Hex), since this would write
over TRSDOS or the tape command.

5. These commands have been slightly changed:
BACKUP now checks to see if the diskette which will be
your backup copy is already formatted. If it is, BACKUP
will ask you if you want to REFORMAT it.
CLOCK will no longer increment the date when the time
goes beyond 23:59:59.
COPY now works with only one-drive. For example:

COPY FILEl:0 to FILE3:0
duplicates the contents of FILEl to a file named FILE3
on the same diskette.
KILL will now allow you to kill a protected file without
knowing its UPDATE or protection level. To kill this
kind of file, type an exclamation mark (!) at the end of
the KILL command. For example:

KILL EXAMPLE !
kills the UPDATEd or protected file named EXAMPLE.
(Note the mandatory space between the file name and the
exclamation mark.)
LIST only lists the printable ASCII characters.
PROT no longer allows you to use the UNLOCK parameter.
DIR is now in this format:
Disk Name: TRSDOS Drive: 0 04/15/81
Filename Attrb LRL #Rec #Grn # Ext EOF
JOBFILE/BLD N*X0 256 1 1 1 1TERMINAL/VI N*X0 256 5 2 1 126LOADX/CMD N*X0 256 5 2 1 0*** 171 Free Granules ***

4 of 7

1. Disk name is the name which was assigned to the disk when it was formatted.
2. File Name is the name and extension which was

assigned to the file when it was created. The password (if
any) is not shown.

3. Attributes is a four-character field:
a. the first character is either I (Invisible file)

or N (Non-invisable file)
b. the second character is S (System file) or *

(User file)
c. the third character is the password protection

status of the file:
X - the file is unprotected (no password)
A - the file has an access word but no

update word
U - the file has an update word but no

access word
B - the file has both update and access

word
d. the fourth character specifies the level of

access assigned to the access word:
0 - total access
1 - kill the file and everything listed

below
2 - rename the file and everything listed

below
3 - this designation is not used
4 - write and everything listed below
5 - read and everything listed below
6 - execute only
7 - no access

4. Number of Free Granules - how many free granules
remain on the diskette.

5. Logical Record Length - the record length which was
assigned to the file when it was created.

6. Number of Records - how many logical records have
been written.

7. Number of Granules - how many granules have been used
in that particular file.

8. Number of Extents - how many segments (contiguous
blocks of up to 32 granules) of disk space are allocated to
the file.

9. End of File (EOF) - shows the last byte number of the
file .

5 of 7

TIPS ON USING THE MODEL I TRSDOS 2.3B UPGRADE UTILITY

If you determine that you need to use the UPGRADE
utility then proceed as indicated below.

Insert your TRSDOS 2.3B system diskette in drive 0,
press the RESET switch, and when TRSDOS READY is displayed
type UPGRADE <ENTER>. Your screen will display:

TRSDOS DIRECTORY UPGRADE UTILITY
FOR CONVERSION OF TRSDOS 2.1, 2.2, OR 2.3 TO
TRSDOS 2.3B DIRECTORY FORMAT.
ONCE UPGRADE HAS BEEN EXECUTED, YOUR DISKETTE SHOULD
NOT BE USED UNDER TRSDOS 2.1, 2.2, OR 2.3 AGAIN.
DO YOU WISH TO CONTINUE (Y/N/Q)?
This means that the directory format on your TRSDOS

2.1, 2.2, or 2.3 diskette will be converted to the TRSDOS
2.3B format. Once you type Y to continue, the screen will
display:

INSERT DISKETTE TO BE UPGRADED IN DRIVE 1.
PRESS <ENTER> WHEN READY.
Insert the diskette you want to convert in drive 1 and

press <ENTER>. After successful conversion, the screen will
display a CONVERSION COMPLETE message. If you are attempting
to convert a diskette which has already been converted, the
screen will display a DISKETTE IS ALREADY A 2.3B error
message.

TECHNICAL NOTE
For all files indicated in the directory that have an End Of
File (EOF) not equal to zero, UPGRADE will change the number
of records to be one less than the previous record count.
Note that in FILEl, the number of records indicated has been
changed from 10 to 9 after UPGRADE. For FILE2 the records
indicated remain the same since EOF=0.

BEFORE UPGRADE
TRSDOS 2.1, 2.2, 2.3

AFTER UPGRADE
TRSDOS 2.3B

FILEl EOF=9 10 RECORDS 9 RECORDS
FILE2 EOF=0 10 RECORDS 10 RECORDS

If the TRSDOS 2.1, 2.2, or 2.3 diskette is a system
diskette, part of the conversion process will prohibit
accidental usage under the TRSDOS 2.1, 2.2, or 2.3 by
killing the files listed below:

SYS0/SYS SYS1/SYS SYS 2/SYS
SYS 3/SYS SYS 4/SYS SYS5/SYS
SYS 6/SYS FORMAT/CMD BACKUP/CMD
BASICR/CMD BASIC/CMD

6 OF 7

SPECIAL NOTE FOR 26-2013 MODEL I SERIES I EDITOR/ASSEMBLER

The MODEL I diskette that contains your EDTASM package
includes TRSDOS 2.3B which is not compatible with TRSDOS
2.1, 2.2, or 2.3. Therefore, a machine language object file
created with this package file CAN NOT simply be COPYied
from TRSDOS 2.3B onto a TRSDOS 2.1, 2.2, or 2.3 diskette.
See below for instructions on how to move an object file
from TRSDOS 2.3B onto a TRSDOS 2.1, 2.2, or 2.3 diskette.

TIPS ON GETTING OBJECT FILES FROM TRSDOS 2.3B
ONTO TRSDOS 2.1, 2.2, OR 2.3 DISKETTES

If for example, you desire to use an assembly language
function written with TRSDOS 2.3B EDTASM as a "user's
external subroutine" under the TRSDOS 2.3 BASIC
interpreter,follow the given steps carefully:
1) Insert your TRSDOS 2.3B system diskette that contains the

EDTASM package in drive 0 and press the RESET switch.
2) Use the EDTASM package to enter and assemble a routine.

We have used the SHIFT routine given in Section 7 of your
TRSDOS & DISK BASIC Reference Manual as an example.
a) Save the source program using the command:

W SHIFT/SRC:0
b) Then assemble the source file with the command:

A SHIFT/CMD:0
c) Quit EDTASM with the command:

Q

d) At TRSDOS READY enter the command:
LOAD SHIFT/CMD:0

3) Remove your TRSDOS 2.3B diskette.
4) Insert your TRSDOS 2.3 diskette in drive 0 and press the

RESET switch.
5) At TRSDOS READY enter the command:
DUMP SHIFT/CMD:0 (START=X'7D00',END=X'7D09',TRA=X'7D00')
Reference Section 4 of your manual and note that X'7000'

is the lowest address that may be used as the origin of your programs.
6) The file on this diskette, named SHIFT/CMD, may now be

used as needed under TRSDOS 2.1, 2.2, or 2.3 with the
BASIC interpreter as a user's external subroutine.

875-9119

7 of 7

TRS-SO ™

Overview of the Model I/III COBOL Documentation Package.
This binder contains the information you need to use the Radio
Shack COBOL system. It assumes you are familiar with the
general operation of the Computer, including use of the TRSDOS
operating system. The COBOL package is provided on two Model I
diskettes, the Development diskette and the Runtime diskette.
Model III users will have to use the CONVERT utility to copy the
COBOL package to Model III diskettes.
The COBOL system requires a minimal system of 48K RAM and two
diskette drives.
The package includes three manuals.

System User's Guide
Provides general information, start-up procedures, compiler
commands, creation and use of a minimal-system runtime diskette,
sample programs, and a sample session. Also included is a
sample session and a description of the conversion procedure for
Model III users.

CEDIT User's Guide
Describes how to create and edit COBOL source files, using the
COBOL editor CEDIT, which is supplied on the Development
diskette.

RSCOBOL Language Reference Manual
A complete description of the Radio Shack version of the COBOL
programming language. Newcomers to COBOL should consult a
standard COBOL textbook for tutorial material.

- Radio /hack

IRS-80 Model I/III

COBOL USER'S GUIDE

(RS/COBOL 1 . 3)

D e c e m b e r^ 1 9 8 0

PREFACE

This document contains the information required to compile, run
and debug COBOL language programs on the Radio Shack TRS-80 Model
I/III Microcomputer under the TRSDOS Disk Operating System.
It assumes the reader is familiar with the COBOL Language, the
general operation of the TRS-SO Model I or Model III
Mi erocomputer, and the TRSDOS Operating System. The reader is
specifically referred to the following publications:

TRS-80 Model I/III COBOL Language Manual
TRS-80 Model I Operation Manual
TRS-80 Model I Disk Operating System Reference Manual
TRS-80 Model III Disk Operating System Reference Manual

This guide is organized such that each chapter fully describes a
particular operational procedure. While the experienced user need
only refer to the appropriate chapter, it is recommended that the
first-time user read the complete guide prior to operation of the
COBOL system.

PROPRIETARY RIGHTS NOTICE
TRS-80 Model I/III COBOL (RSCOBOL) is a proprietary product of:

Ryan-McFar1 and Corporation
Software Products Grouplicensed to:

Tandy Corporation
One Tandy Center

Fort Worth, Texas 76102
<817) 390-3583

The software described in this document is furnished to the user
under a license for use on a single computer system and may be
copied (with inclusion of the copyright notice) only in accordance with the terms of such license.
Copyright 1980 by Ryan-MeFar land Corporation. All rights
reserved. No part of this publication may be reproduced, stored
in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of TandyCor p ora t i on.

l

TABLE OF CONTENTS

Section Pa

CHAPTER 1 THE COBOL COMPILER
1.1 Compiler Overview
1.2 Device Assignments
1.3 Executing the Compiler

1.3. 1 Compiler Source Input
1.3.2 Compiler Options...............
1. 3. 3 Compiler Messages
1. 3. 4 Examp les

1. 4 The Program Listing
1.4. 1 Listing Diagnostics
1.4.2 Diagnostic Messages

CHAPTER 2 THE COBOL RUNTIME
2. 1 Runtime Overview....................
2.2 Device Assignments
2.3 Executing the Compiled Program

2.3. 1 Runtime Options................
2. 3. 2 Runtime Messages
2. 3. 3 Examp les

2.4 Runtime Diagnostics
2.5 File System Considerations

2.5.1 COBOL Sequential Files
2.5.2 COBOL Relative Files
2.5.3 COBOL Indexed Files............
2. 5. 4 COBOL Label Processing

2.6 Runtime Memory Usage
CHAPTER 3 INTERACTIVE DEBUG

3.1 Debug Overview
3.2 User Interaction and Display
3.3 Debug Commands

CHAPTER 4 SYSTEM CONSIDERATIONS
4.1 The ACCEPT and DISPLAY Statements
4.2 The CALL Statement
4.3 The COPY Statement
4. 4 The WRITE. . . ADVANCING ZERO. . . Statement

CHAPTER 5 INSTALLATION PROCEDURES
APPENDIX A SAMPLE PROGRAMS
APPENDIX B SAMPLE SESSION
APPENDIX C CONVERTING RSCOBOL TO MODEL III ..

ge

1
1
.1nt..
3
3
5
7
8
8
9
15
15
15
16
17
17
18
19
23
23
24
24
25
25
26
26
26
26
28
28
29
30
31
32
33
34
35

MODEL I/111 COBOL User 's Guide (RSCOBOL 1.3)

CHAPTER 1

THE COBOL COMPILER

1. 1 Compiler Overview

The COBOL Compiler operates on a 48K byte TRS-80 Model I or Model
III Microcomputer with at least two disk drives under the
appropriate TRSDOS Operating System. (Model I ~ version 2. 3,
Model III - version 1. 1).
Once executed, the Compiler makes a single pass on the source
program, generating object and listing files concurrently. Upon
completion it reports compilation results on the display and
returns control to TRSDOS.
Compilation always proceeds to the end of the program, regardless
of the number of source errors found.
A listing of the program is generated showing the original COBOL
source statements, error information, data allocation, Interactive
Debug information and, optionally, a Cross Reference of all
program labels and data items. This listing can be directed to
the Console, the Printer and/or a disk file.
The generated object file is in a form ready for immediate
execution by the COBOL Runtime. Object code is produced such that
an attempt to execute an erroneous statement will terminate
execution with an appropriate error message.

1.2 Device Assignments

All communication between the Compiler and the User is through the
system console.
During operation, the Compiler will require one or more of the
following devices:
Display & Keyboard compiler command input & compiler messages

Disk
Disk
Disk
Disk
Display
Printer

source input file
listing file (optional)
object file (optional)
COPY input file (optional)
listing display (optional)
listing print (optional)

MODEL I/III COBOL User's Guide 1 (RSCOBOL 1.3)

1.3 Executing the Compiler

To compile a COBOL source program, issue the following command to TRSDOS:
RSCOBOL filespec (options) comment

where:
fi lespec

is the file specification of the COBOL source file to be
compiled of the form:

filename/ext. password:d
'filename' is required.
'/ext' is an optional name-extension. When omitted, the
default '/CBL' is used.
'.password' is an optional password. Note: If the file
was created with a nonblank password, '.password'
becomes a required field.
':d' is an optional drive specification. When omitted,
the system does an automatic search, starting with drive
0.

options
allows the user to specify compiler and/or file options.
Each option must be specified as shown below, separated
by spaces. The left and right parenthesis are required
if any comments are present.
When no options are specified, the compiler will
automatically generate an object file but no listing
output.

MODEL I /111 COBOL User's Guide (RSCOBOL 1.3)

1.3. 1 Compiler Source Input

The Compiler expects the source input to be a sequential file,
containing logical records of ASCII text. These logical records
can be either of two forms; 'byte-stream' or 'fixed-':

'byte-stream' records consist of a string of ASCII
characters, terminated by a carriage-return character. This
format is typically stored on the disk as one byte records
<LRL=1), and is the format created by the standard TRSDOS
ed i tor(s).
'fixed' records consist of 80 ASCII characters each <L.RL=80>,
and do not contain carriage-return or other special
c harac ters.

1.3.2 Compiler Options

'D' instructs the compiler to compile all COBOL "Debug11
source lines, identified by a "D" in column 7. This
allows the user selective compilation of COBOL source
statements.
This option has no relationship to the COBOL Runtime
Interactive Debug facility and need not be specified to
allow such debugging.
The default is to treat such lines as comments.

'E' instructs the compiler to generate an 'Error Only'
listing instead of a full listing. This option is
effective only when a listing has been specified (L, P
and/or T options).
The listing generated will contain the page heading
information, all source lines in error with their
appropriate undermarks and messages, plus all summary informat i on.
The default is not to generate an error listing.

MODEL I/III COBOL User's Guide 3 < RSCOBOL 1.3)

L L=d
/L / indicates that the compiler listing is to be written
to a disk file with the name of the source file and a
filename-extension of '/LST'. The first available disk
is used.
Specifying a drive number <L=d) indicates that the
listing file is to be written to disk 'd'.
LST files may be displayed using the standard TRSDOS
LIST and PRINT utilities.
The default is not to generate a listing file.

0 0“d 0=N
"O' indictes that the Compiler object output is to be
written to a disk file with the name of the source file
and a filename-extension of '/COB'. The first available
disk is used.
Specifying a drive number <0=d> indicates that the
object file is to be written to disk 'd'. When omitted
the first available disk is used.
'Q=N' indicates that no object file is to be generated.
The default is to generate an object file on the first
available disk.

'P ' indicates that the listing is to be printed on the
printer.
The default is not to print the listing.

'T' indicates the listing is to be displayed on the
system display.
The default is not to display the listing.

'X' indicates a cross-reference of COBOL Procedure and
Data Division names is to be produced. This option is
effective only when a listing has been specified <L> P
or T options).
The default is not to generate a cross-reference.

MODEL I/III COBOL User's Guide 4 (RSCOBOL 1.3)

1.3.3 Compiler Messages

Messages which report the compiler's status» or its ability to
complete the compilation process are reported on the system
display as they are detected.

TRS-80 Model I /111 COBOL Compiler (RM/COBOL ver v. r)
Copyright 1980 by Tandy Corp. Licensed from Ryan-McFarland Corp.

Indicates that the compiler has been loaded and has begun to
compile the specified program. "ver v. r ' identifies the
version <v) and revision <r) level of the compiler.

COMPILATION COMPLETE: eeee ERRORS» wwww WARNINGS
Indicates that the compilation has been completed. The
values of 'eeee' and 'wwww' indicate the number of errors and
warnings, respectively, identified in the source program.
This message is repeated on the listing.

PARAMETER ERROR AT: vvvvvvvv
Indicates that an unrecoverab1e error was detected on the
command to execute the compiler. 'vvvvvvvv' will identify
the offending field.
The user should reenter the command with the necessary
c orr ec t i ons.

COMPILATION CANCELLED
Compiler cancelled by user with BREAK key.

MODEL I /111 COBOL User's Guide 5 (RSCOBOL 1.3)

COMPILER ERROR, NO: nnnn
An internal error has occurred which prevents continued
compilation. The value of 'nnnn' identifies the condition
which caused the error.
0001 Pointer overflow

The user program has exceeded internal compiler
pointers. Segment the program and recompile. If this
problem still exists, separate programs into main
program with multiple subroutines.

0002 Roll memory overflow
The user program has exceeded available work space.
Segment the program and recompile.

0010 Unable to locate or load a compiler overlay.
Install the RSCBLnvr program overlays as described in
the chapter on ' Insta11ation Procedures. '

0020 Invalid TRSDOS
Execution was attempted under an incorrect version of
TRSDOS Order correct version of TRSDOS.
Required TRSDOS versions are:
Model I - 2. 3
Model III - 1. 1

0030 Invalid Source Record
The Compiler has encountered an invalid source input
record. Verify records are ASCII text, formatted as
either:
a) Variable length records (LRL=1) terminated with a
carriage return, or;
b) Fixed length 80 character records (LRL=80) without
carriage return.

MODEL I / 111 COBOL User's Guide 6 (RSCOBOL 1.3)

1.3.4 Examples

RSCOBOL PAYROLL <P X)
locates and compiles the source program PAYROLL/CBL,
producing an object file <PAYROLL/COB) on the first available
disk and a listing/ with cross-reference/ on the printer.

RSCOBOL MORTGAGE/SRC:1 <L=2 Q=N>
compiles the source program MORTGAGE/SRC located on the disk
in drive 1/ producing a listing file <MORTGAGE/LST) on the
disk in drive 2, and no object file.

MODEL I/III COBOL User's Guide 7 (RSCOBOL 1.3)

1.4 The Program Listing

The compiler outputs 'source', 'a 11ocation', and "summary'
listings if a listing device or file is specified <L, P or T

options). When the 'X' option is specified, a 'cross-reference' listing is also produced.
The source listing includes a sequential line number, sentence
address, source image, and interspersed diagnostics.
The allocation listing includes the address, size, order, type,
and name of each identifier. The identifier names are indented to
show the record structure. (The order of an identifier is the
number of subscripts it requires).
The summary listing includes the number of errors, the number of
warnings, and the size of the program.
The cross-reference listing includes all identifier names in
alphabetical order, and the line number of each declaration,
source, and destination reference. The line number is surrounded
by slashes if the reference is a declaration; asteriks if the
reference is a possible modification. References to all
paragraphs and sections are included.
In all listings, numbers in decimal are represented as ddd... d,
numbers in hexadecimal are represented as >dd. . . d.

1.4.1 Listing Diagnostics

Source statements are checked for syntax and semantic errors as
they are scanned. Errors may cause interruption in scanning. In
this case, text is ignored until a recovery point is found and a
resume message is printed. Recovery points are chosen to minimize
the amount of unanalyzed text without producing irrelevant error
messages. In any case, the constructs at fault are undermarked
and error messages listed when the source line is printed. The
error message includes either E's or W's indicating error or
warning. For example:

004030 02 STOCK PIC 9<16)PPP COMPUTATIONAL.
$***** DPICTURE *E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E#E*E

Indicates a semantic number size error but
005040 02 PART PIC X(4BX(5) SYNC.

$ $***** 1)SYNTAX *E
***** 2)SCAN RESUME *W*W*W*W*W*W*W*W*W*W*W*W*W*W#W*W*W

MODEL l / I I I COBOL User's Guide 8 (RSCOBOL 1.3)

indicates a syntax error at the first undermark and a recover at
the second undermark.

The number preceding the error message is the undermark number;
counting from left to right. More than one message may refer to
the same undermark.
Global errors such as undefined paragraph names and illegal
control transfers are listed with the program summary at the end
of the source listing.

1.4.2 Diagnostic Messages

ACCESS CLASH
Nonsequential access given for sequential file.

BLANK WHEN ZERO
BLANK WHEN ZERO clause given for nonnumeric or group
item.

CLASS
The referenced identifier is not valid in a class
condition.

COPY
COPY statement failed because of permanent error
associated with the undermarked file-name.

CORRESPONDING
The CORRESPONDING phrase cannot be used with the
referenced identifier.

DATA OVERFLOW
The data area (working-storage and literals) is larger
than 65535 bytes in length.

DATA TYPE
Context does not allow data type of the referenced
identifier.

DEVICE CLASH
Random characteristics given to nonrandom device.

DEVICE TYPE
OPEN or CLOSE mode inconsistent with device type.

DOUBLE DECLARATION
Multiple declaration of a file or identifier attribute.

DOUBLE DEFINITION
Multiple definition of an identifier.

MODEL I /111 COBOL User's Guide 9 (RSCOBOL 1.3)

DUPLICATE
Warning only. Multiple USE procedure declared for same function or file.

FILE DECL ERROR
The referenced file-name is SELECTed and has an invalid or missing file description (FD).

FILE NAME ERROR
The referenced file-name has an invalid external file
name declaration.

FILE NAME REQUIRED
File name not given as referenced in I/O verb.

FILE RECORD KEY ERROR
The referenced file-name has a RECORD KEY which is
incorrectly qualified or is not defined as a data item
of the category alphanumeric within a record description
entry associated with that file name.

FILE RECORD SIZE ERROR
The referenced file-name has a declared record size
which conflicts with the actual data record descriptions
or is a relative organization file with variable length
records.

FILE RELATIVE KEY ERROR
The referenced file-name has a RELATIVE KEY which is
incorrectly qualified/ is defined in a record
description associated with that file-name/ or is not
defined as an unsigned integer.

FILE STATUS ERROR
The referenced file-name
incorrectly qualified/
WORKINQ-STORAGE SECTION,
alphanumeric item.

has a status item which is
is not defined in the
or is not a two-character

FILE TYPE
Access or organization of file conflicts with
undermarked statement.

FILLER LEVEL
A non-elementary FILLER item is declared.

GROUP CLASHUSAGE or VALUE clause of group member conflicts with
same clause for group.

GROUP VALUE CLASHWarning Only. An item subordinate to a group with the
VALUE IS clause is described with the SYNCHRONIZED,
JUSTIFIED, or USAGE (other than USAGE IS DISPLAY)
c lause.

MODEL I/111 COBOL User's Guide - 10 - (RSCOBOL 1.3)

IDENTIFIER
Identifier reference is incorrectly constructed or the
identifier has an invalid or double definition.

ILLEGAL ALTER
An ALTER statement references an unalterable paragraph
or violates the rules of segmentation.

ILLEGAL PERFORM
A PERFORM statement reference undefined or incorrectly
qualified paragraph or the reference violates the rules
of segmentation.

INVALID ID
The referenced identifier was not successfully defined.

INVALID PARAGRAPH
Context does not allow section name.

JUSTIFY
JUSTIFY clause given in conflict with other attributes.

KEY REQUIRED
Relative key not declared for random access relative
file or record key not declared for indexed file.

LABEL
Presence or absence of label record conflicts with
device standards.

LEVEL
Level-number given is invalid either intrinsically or
because of position within a group.

LINKAGE
An identifier in the USING clause of the PROCEDURE title
is not a linkage item or a statement references a
linkage item not subordinate to an identifier in the
USING clause of the PROCEDURE title.

LITERAL VALUE
Literal value given is incorrect in context.

MOVE
Operands of MOVE verb specify an invalid move.

MUST BE INTEGER
Context requires decimal integer.

MUST BE PROCEDURE
Context requires procedure name either as reference or
definition* or the reference must be a nondeclarative procedure-name.

MODEL I/111 COBOL User's Guide 11 (RSCOBOL 1.3)

MUST BE SECTION
Context requires procedure-name to be section.

NESTING
Illegal nesting of condition that is not an IF
c ond i t i on.

NOT IN REDEFINE
VALUE IS clause given in REDEFINES item.

OCCURS
OCCURS clause given at invalid level or after three have
been given for the same item.

OCCURS DEPENDING ERROR
The referenced object of a DEPENDING phrase has not been
defined correctly.

OCCURS-VALUE CLASH
VALUE IS and OCCURS in effect for the same item.

PICTURE
Invalid PICTURE syntax.

PICTURE-BWZ CLASH
Zero suppression and BLANK WHEN ZERO cannot be in effect
for the same item.

PICTURE-USAGE CLASH
USAGE clause or implied usage conflicts with usage
implied by picture.

PROCEDURE INDEPENDENCE
PERFORM given for procedures in independent segments not
in the current segment.

PROGRAM OVERFLOW
The instruction area is larger than 32767 bytes in
length.

RECORD KEY
Record key declared for other than an indexed
organization file or a START statement KEY phrase
references a data item not aligned on the declared key's
leftmost byte.

RECORD REQUIRED
Context requires record name.

REDEFINES REDEFINES given within an OCCURS or not redefining the
last allocated item.

MODEL I/111 COBOL User's Guide 12 (RSCOBOL 1.3)

REDEFINES ERRORThe referenced data-name redefines an item which does
not have the same number of character positions and is
not 1 eve 1 01.

REFERENCE INVALID
Reference given is not valid in context.

RELATION
Operands of relation test are incompatible.

RELATIVE KEY
Relative key declared for other than a relative
organization file or a START statement KEY pharase
references a data item other than the declared key.

RESERVED WORD CONFLICT
A COBOL reserved word or
word is required. In the s
about an ANSI COBOL res
implemented COBOL reserved

symbol is given where a user
ummary this is only a warn ing
erved
wor d.

word that is not an

SCAN RESUME
Warning only. Scanning was terminated at previous error
message and resumes at undermarked character.

SECTION CLASH
A VALUE IS clause appears in the FILE or LINKAGE
section.

SEGMENT
Warn ing only. Segment number given in an independ ent
segment i s not the same as the c urrent segment or the
numb er of a new independent segment. The c urrent
segment numb er is used.

SEPARATOR
Warning only. Redundant punctuation or a separator is
not followed by the required space.

SIGN
SIGN clause given in conflict with usage and picture.

SIZE
Warning only. Size of data referenced not correct for context.

SIZE ERROR
Declared size of record conflicts with present reference.

SUBSCRIPT
Incorrect number of subscripts or indices for a reference.

MODEL I /111 COBOL User's Guide 13 (RSCOBOL 1.3)

Synchronized clause given for a group item
SYNTAX

Incorrect character or reserved word given for context.
UNDEFINED

File referenced in FD entry was not defined.
UNDEFINED DECLARATIVE PROCEDURE

A declarative statement references a procedure not
defined within the DECLARATIVES.

UNDEFINED PROCEDURE
A GO TO statement references an undefined or incorrectly
qualified paragraph.

USE REQUIREDA DECLARATIVES section must begin with a USE statement.
USING COUNT

Warning only. The item count in the USING list of a
CALL statement is different from that of the first
reference to the same program name.

VALUE ERROR
Value given in VALUE IS required truncation of nonzero
digits.

VALUE
VALUE IS clause given in conflict with other declared
attributes.

VARIABLE RECORD
Warning only. The INTO phrase is not allowed with
variable size records.

SYNC

MODEL I/111 COBOL User's Guide 14 (RSCOBOL 1.3)

CHAPTER 2

THE COBOL RUNTIME

2.1 Runtime Overview

The COBOL runtime operates on a 48K byte TRS-SO Model I or Model
III Microcomputer with at least two disk drives under the
appropriate TRSDOS Operating System. (Model I - version 2.3,
Model III - version 1.1).
Once invoked* the runtime loads and executes the compiled object
program; automatica 11y loading any required segments.
Concurrently; it allocates memory for file buffers; and CALLed
COBOL and Assembly Language subprograms. Upon completion
appropriate messages are displayed and control is returned to the
operating system.

2.2 Device Assignments

All communication between Runtime and the User is through the
keyboard and display.
During operation the Runtime will require one or more of the
following devices:
Keyboard & Display runtime command input; Interactive Debug

command input; and runtime messages.
Keyboard & Display ACCEPT and DISPLAY; and Interactive Debug

display.
Printer PRINT output; if required.

NOTE: For PRINT output; the device name
"PRINTER" must be specified in the
SELECT statement; i. e;

SELECT filename, ASSIGN to PRINT, "PRINTER".

MODEL I/111 COBOL User's Guide 15 (RSCOBQL 1.3)

2.3 Executing the Compiled Program

To execute a compiled COBOL object program* issue the following
command to TRSDOS:

RUNCOBOL filespec (options) comment
where:
filespec

is the specification of the compiled COBOL object file
to be executed of the form:

fi1ename/ext.password:d
'filename' is required.
'/ext' is an optional name-extension. When omitted the
default '/COB' is used.
'.password' is an optional password. Note: If the file
was created with a nonblank password* '.password'
becomes a required field.
':d' is an optional drive specification. When omitted
the system does an automatic search* starting with drive
0 .

options allows the user to specify runtime options. Each option
must be specified as shown below* separated by spaces.
The left and right parenthesis are required if any
comments are present.
When no options are specified* the runtime will execute
the User's program without Interactive Debug* with all
switches set to 0* using all of available memory.

MODEL I /111 COBOL User's Guide 16 (RSCOBOL 1.3)

2. 3. 1 Runtime Options

D
'D' invokes the RSCOBOL Interactive Debug package. See
RSCOBOL Interactive Debug discussion, below, for
operating instructions.
The default is not to invoke Interactive Debug.

S=nn..n
"S' sets (or resets) the value of SWITCHES in the COBOL
program.
Each 'n' is a switch value» 0 for off» 1 for on»
numbered 1 to 8» left to right. Trailing zeroes need
not be specified.
The default is to set all switches off (0).

T=hhhh
'T ' sets the top of available memory to a value
different from the highest available address. This is
used to protect assembly language user subroutines, all
of which must be created to load above the hexadecimal
address 'hhhh '.
The default is to use all available memory.

2. 3. 2 Runtime Messages

Messages which report the runtime's status, or its ability to
execute the COBOL program, are reported on the system display as
they are detected.

TRS-80 Model I/111 COBOL Runtime (RM/COBOL ver v. r)
Copyright 1980 by Tandy Corp. Licensed from Ryan-McFarland Corp.

Indicates that the runtime has been loaded and has begun to
execute the specified program. 'ver v. r' identifies the
version (v) and revision (r) level of the runtime.

MODEL I/III COBOL User's Guide - 17 - (RSCOBOL 1.3)

COBOL STOP RUN AT xxyyyy IN nnnnnn
This is the normal termination message of a program.
"xxyyyy7 identifies the overlay (xx) and statement address
(yyyy) where the program terminated. "nnnnnn" are the first
six characters of the PROGRAM-ID.
If Debug was invoked on the command line» an "S" Debug command may be used to cause Debug to exit to the operating
system.

COBOL STOP literal AT xxyyyy IN nnnnnn
CONTINUE <Y/N>?

This message indicates that a STOP "literal" statement has
been encountered. "xxyyyy" identifies the overlay (xx) and
statement address (yyyy) where the program terminated,
"nnnnnn" are the first six characters of the PROGRAM-ID.
Responding with a "Y" will be the equivalent of a "pause"
statementi returning control to the next COBOL statement.
An "N" response will cause all program files to be closed and
control will be returned to the operating system.

2. 3. 3 Examp 1 es

RUNCOBOL PAYROLL <S=1011)
locates/ loads/ and executes the compiled COBOL program
PAYROLL/COB; and sets the value of SWITCHES 1, 3/ and 4 "on",
all others "off ".

RUNCOBOL MORTGAGE/TST:2 <D)
loadssthe compiled COBOL program MORTGAGE/TST from drive 2
along with the Interactive Debug package. Control is passed
directly to Debug.

RUNTIME ERROR, NO: nnnn
an internal error has occurred which prevents continued
execution. The value of "nnnn" identifies the condition
which caused the error.

0010 Unable to locate or load User Debug.Install RSCBLDvr as described in the chapter on
" Installation Procedures'.

MODEL I /111 COBOL User's Guide 18 (RSCOBOL 1.3)

0020 Invalid TRSDOS

Execution was attempted under an incorrect version of
TRSDOS Order correct version of TRSDOS.
Required TRSDOS versions are:
Model I - 1. 1
Model III - 2. 3

2.4 Runtime Diagnostics

Diagnostic messages are display if an internal error occurs* or if
an I/O error occurs that was not* or could not* be processed by an
appropriate USE procedure.
If Debug was invoked* Debug will be entered to allow examination
of program data values; otherwise* control will return to the
operating system.

COBOL error AT xxyyyy IN nnnnnn
Indicates an internal error condition has occurred* where
'error' identifies the error condition. 'xxyyyy' identifies
the overlay (xx) and statement address (yyyy) where the
program terminated. 'nnnnnn' are the first six characters of
the PROGRAM-ID.

COBOL filename 10 ERROR = cc AT xxyyyy IN nnnnnn
Identifies that an abnormal I/O condition* 'cc' has caused
the program to be aborted. 'xxyyyy' identifies the overlay
(xx) and statement address (yyyy) where the program
terminated. 'nnnnnn' are the first 6 characters of the
PROGRAM-ID.
The I/O error 'cc' has a different meaning depending on
whether the file's organization is sequential* relative or
indexed.

Sequential Files:
10 AT END.

The sequential READ statement was unsuccessfully executed
as a result of an attempt to read a record when no next
logical record exists in the file.

MODEL I/111 COBOL User's Guide - 19 (RSCOBOL 1.3)

30 PERMANENT ERROR.
The input-output statement was unsuccessfully executed as
the result of an input-output error, such as data check
parity error, or transmission error. May also indicate
attempted execution of an instruction not implemented in
the runtime (REWRITE to a variable length record < VLR)
file; CLOSE REEL). May also indicate that no more space
is available on the disk.

34 PERMANENT ERROR BOUNDARY VIOLATION.
The input-output statement was unsuccessfully executed as
the result of a boundary violation for a sequential file.

90 INVALID OPERATION.
An attempt has been made to execute a READ, WRITE, or
REWRITE statement that conflicts with the current open
mode or a REWRITE statement was not preceded by a
successful READ statement.

91 FILE NOT OPENED.
An attempt has been made to execute a DELETE, READ,
START, UNLOCK, WRITE, REWRITE or CLOSE statement on a
file which is not currently open.

92 FILE NOT CLOSED.
An attempt has been made to execute an OPEN statement on
a file which is currently open.

93 FILE NOT AVAILABLE.
An attempt has been made to execute an OPEN statement for
a file closed with LOCK.

94 INVALID OPEN.
An attempt has been made to execute an OPEN statement for
a file with no external correspondence or a file having
inconsistent parameters.

95 INVALID DEVICE.
An attempt has been made to execute a CLOSE REEL
statement, or to execute an OPEN statement for a file
which is assigned to a device in conflict with the
externally assigned device. Valid combinations are:
Program Assignment External Assignment

RANDOM Disk
INPUT Disk
OUTPUT Disk
PRINT Disk,
INPUT-OUTPUT Disk

MODEL I/III COBOL User's Guide - 20 - (RSCOBOL 1.3)

96 UNDEFINED CURRENT RECORD POINTER STATUS.
An attempt has been made to execute a READ statement
after the occurrence of an unsuccessful READ statement
without an intervening successful CLOSE and OPEN.

97 INVALID RECORD LENGTH.
An attempt has been made to execute a REWRITE statement
when the new record length is different from that of the
record to be rewritten* or to OPEN a file that was
defined with a maximum record length different from the
externally defined maximum record length* or to execute a
WRITE statement that specifies a record with a length
smaller than the minimum or larger than the maximum
record size.

Relative and Indexed Files:
10 AT END.

The Format 1 READ statement was unsuccessfully executed
as a result of an attempt to read a record when no next
logical record exists in the file.

21 SEQUENCE ERROR FOR A SEQUENTIALLY ACCESSED INDEXED FILE.
The ascending sequence requirement of successive record
key values has been violated or the record key value has
been changed by the COBOL program between the successful
execution of a READ statement and the execution of the
next REWRITE statement for that file.

22 DUPLICATE KEY VALUE.
An attempt has been made to WRITE a record that would
create a duplicate key on a file that does not allow
duplicates.

23 NO RECORD FOUND.
An attempt has been made to access a record* identified
by a key* and that record does not exist in the file.

24 BOUNDARY VIOLATION.
An attempt has been made to WRITE beyond the
externally-defined boundaries of a file.

30 PERMANENT ERROR.
The input-output statement was unsuccessfully executed as
the result of an input-output error* such as data check*
parity error* or transmission error. May also indicate
that no more space is available on the disk.

90 INVALID OPERATION.
An attempt has been made to execute a DELETE* READ*
REWRITE* START* or WRITE statement which conflicts with
the current open mode of the file or a sequential access
DELETE or REWRITE statement not preceded by a successful read statement.

MODEL I /111 COBOL User's Guide 21 (RSCOBOL 1 . 3)

91 FILE NOT OPENED.
An attempt has been made to execute a CLOSE, DELETE, READ, REWRITE, START, UNLOCK, or WRITE statement on a file which is not in an open mode.

92 FILE NOT CLOSED.
An attempt has been made to execute an OPEN statement on
a file that is currently open.

93 FILE NOT AVAILABLE.
An attempt has been made to execute an OPEN statement on
a file closed with LOCK.

94 INVALID OPEN.
An attempt has been made to execute an OPEN statement for
a file with no external correspondence or a file having
inconsistent parameters.

95 INVALID DEVICE.
An attempt has been made to execute an OPEN statement on
a file whose device description conflicts with the
externally assigned device. The device must be RANDOM
and the external correspondence must be a disk.

96 UNDEFINED CURRENT RECORD POINTER.
An attempt has been made to execute a Format 1 READ
statement when the current record pointer has an
undefined state. This can occur only as the result of a
preceding unsuccessful READ or START statement.

97 INVALID RECORD LENGTH.
An attempt has been made to execute a REWRITE statement
and the new record length is different from that of the
record to be rewritten, or to OPEN a file that was
defined with a maximum record length different from the
externally defined maximum record length, or to execute a
WRITE statement that specifies a record with a length
smaller than the minimum or larger than the maximum
record size.

98 INVALID INDEX.
An input-output statement on an indexed organization file
was unsuccessful as a result of invalid data in the
index. This can result if the externally assigned file
is not an index organization file or if an undetected
input-output error has occurred.

MODEL I / 111 COBOL User's Guide nn _ (RSCOBOL 1.3)

2.5 File System Considerations

Three types of files are supported by the COBOL Runtime:
sequential) relative (random); and indexed sequential. These
files exist on the disk as standard TRSDOS disk files. While the
user will not typically need file information to execute COBOL
programs» he is referred to the Technical Information Section of
the Disk Operating System Reference Manual if further information
i s desired.
Files are specified in the user's program SELECT statement
according to rules for the TRSDOS filespec» of the form:

filename/ext. password:d
where:

'filename' is required.
'/ext' is an optional name-extension.
'.password' is an optional password. Note: If the file
was created with a nonblank password» '.password'
becomes a required field.
':d' is an optional drive specification. When omitted
the system does an automatic search» starting with drive
0.

2. 5. 1 COBOL Sequential Files

COBOL sequential files consist of a serially accessible set of
'logical' records. These 'logical' records can exist on the disk
in either of two forms; 'variable' or 'fixed'.
'variable' records are identified in the File Description Entry
(FD) by specifying "RECORD CONTAINS n TO m CHARACTERS". 'fixed'
records are identified by specifying RECORD CONTAINS n
CHARACTERS". The user is cautioned to maintain a consistent
specification among all programs referring to the same file.
'variable' records contain a one byte length field at the
beginning of each record» followed by the actual data bytes. The
record length can vary from record to record. The second length
byte indicates the entire length of the record» including the
length byte. This can be any value from 2 to 255. This format is
stored on the disk as one byte records (LRL^i).
'fixed' records are all of the same length and do not contain a
length byte. These files exist on the disk as standard TRSDOS
fixed length records of length (LRL=) 1 to 255 characters.
MODEL I /111 COBOL User's Guide - 23 - (RSCOBOL 1.3)

2.5.2 COBOL Relative Files

COBOL relative files are addressable randomly by 'logical' record
number. These files exist on the disk as fixed length records.
COBOL relative file 'logical' records are internally formatted/
and can be created and/or accessed only by COBOL programs. Each
'logical' record can have a maximum length of 253 bytes.
COBOL relative files are dynamically allocated or extended as
required by TRSDOS.

2.5.3 COBOL Indexed Files

COBOL indexed files are created and maintained by the COBOL
runtime; implemented on the disk using TRSDOS fixed length records
of 256 bytes.
COBOL indexed files are internally formatted/ and can be created
and/or accessed only by COBOL programs. Each 'logical' record can
have a maximum length of 4096 bytes.
Indexed files contain an index structure for each key specified
interspersed with the data records. The use of ALTERNATE KEYS can
cause a geometric increase in the time required to create the
file; however/ access time will be relatively constant throughout
the file.
COBOL indexed files are dynamically allocated or extended as
required by TRSDOS. The calculation below provides an
approximation for the file space required for a given file:

NRECS = Int <<S + 33>/32> * R / 8
+ <R * 2) / Int (252/<Kn+8)) for each key
+ <R •* D) / 8 if duplicates

where:
R = maximum number of records desired
S = size of records (in bytes)
Kn = size of Kn (in bytes)
D = number of keys that allow duplicates

MODEL I/111 COBOL User's Guide 24 (RSCOBOL 1.3)

2. 5. 4 COBOL Label Processing

The COBOL language allows the specification of the existance, and
processing, of Label records on file type devices.
TRSDOS provides automatic maintenance and validation of file
specifications by name and file type. No additional Label
processing is performed unique to COBOL programs or files.
References to Label processing in the file description entry (FD),
OPEN statement, and CLOSE statement, are checked for correct
syntax by the compiler. They are largely ignored by the runtime
except that appropriate error codes will be returned, and any
applicable USE procedures will be executed.
2. 6 Runtime Memory Usage

The TRSDOS Operating System occupies lower memory from location
OOOOH to 05200H. The COBOL Runtime is loaded starting at Ö5200H.
The remaining memory is allocated as follows:

The main COBOL object program is loaded immediately behind
the COBOL Runtime. Space for COBOL overlays (SECTIONS
greater than 50) are included in this area.
Additional COBOL programs are loaded behind this main program
as they are CALLed (See the CALL statement below).
Assembly Language programs are loaded in high memory at the
address they were assigned at 'DUMP' time (See Runtime
"T^hhhh" option).
File buffers are dynamically allocated from high memory
downward, when OPENed, deallocated (space recovered for use
by other files) when CLOSEd.

MODEL I /111 COBOL User's Guide 25 (RSCOBOL 1.3)

f

CHAPTER 3
INTERACTIVE DEBUG

3. 1 Debug Overview

COBOL Interactive Debug is dynamically loaded when the user specifies the 'D' option on the RUNCOBOL statement. Debug is then
given control and supervises the execution of the user's program.
Interactive Debug is loaded directly behind COBOL Runtime,
requiring approximately 1000 bytes.

3.2 User Interaction and Display

All Debug commands» and all resultant displays, are through the
system console.
Debug will request command input by a prompt of1 the form

nnnnnn xxyyyy
where 'nnnnnn' are the first 6 characters of PROGRAM-ID, 'xx' is
the overlay number, and 'yyyy' is the hexadecimal location within
the specified overlay that will be executed next.
The values of 'xx' and 'yyyy' are taken directly from the Debug
column in the source listing for program 'nnnnnn'.

3.3 Debug Commands

All commands are specified by a single character, optionally
followed by one or more arguments. Optional fields are shown
surrounded by brackets; the brackets are never entered. All
numeric arguments are in hexadecimal unless otherwise noted.
Invalid commands will be rejected with 'ERROR' displayed;
corrected input will be requested with a reprompt.

AC xx lyyyyC,nnnnnn3 Address stop.
Executes object instructions until overlay number 'xx' and
location ' y y y y / in program nnnnnn is to be executed. Debug
will regain control immediately prior to the execution of the
specified COBOL sentence, and request further command input.

MODEL I/111 COBOL User's Guide - 26 - < RSCOBOL 1.3)

w

IDENTIFIER ^
Identifier reference is incorrectly constructed or the
identifier has an invalid or double definition.

ILLEGAL ALTER
An ALTER statement references an unalterable paragraph
or violates the rules of segmentation.

ILLEGAL PERFORM
A PERFORM statement reference undefined or incorrectly
qualified paragraph or the reference violates the rules
of segmentation.

INVALID ID
The referenced identifier was not successfully defined.

INVALID PARAGRAPH
Context does not allow section name.

JUSTIFY
JUSTIFY clause given in conflict with other attributes.

KEY REQUIRED
Relative key not declared for random access relative
file or record key not declared for indexed file.

LABEL
Presence or absence of label record conflicts with
device standards.

LEVEL
Level-number given is invalid either intrinsically or
because of position within a group.

LINKAGE
An identifier in the USING clause of the PROCEDURE title
is not a linkage item or a statement references a
linkage item not subordinate to an identifier in the
USING clause of the PROCEDURE title.

LITERAL VALUE
Literal value given is incorrect in context.

MOVE
Operands of MOVE verb specify an invalid move.

MUST BE INTEGER
Context requires decimal integer.

MUST BE PROCEDURE
Context requires procedure name either as reference or
definition, or the reference must be a nondeclarative
procedure-name.

MODEL I /111 COBOL User's Guide 11 (RSCOBOL 1.3)

MUST BE SECTION
Context requires procedure-name to be section.

NESTING
Illegal nesting of condition that is not an IF
c ond i t i on.

NOT IN REDEFINE
VALUE IS clause given in REDEFINES item.

OCCURS
OCCURS clause given at invalid level or after three have
been given for the same item.

OCCURS DEPENDING ERROR
The referenced object of a DEPENDING phrase has not been
defined correctly.

OCCURS-VALUE CLASH
VALUE IS and OCCURS in effect for the same item.

PICTURE
Invalid PICTURE syntax.

PICTURE-BWZ CLASH
Zero suppression and BLANK WHEN ZERO cannot be in effect
for the same item.

PICTURE-USAGE CLASH
USAGE clause or implied usage conflicts with usage
implied by picture.

PROCEDURE INDEPENDENCE
PERFORM given for procedures in independent segments not
in the current segment.

PROGRAM OVERFLOW
The instruction area is larger than 32767 bytes in
length.

RECORD KEY
Record key declared for other than an indexed
organization file or a START statement KEY phrase
references a data item not aligned on the declared key's
leftmost byte.

RECORD REQUIRED
Context requires record name.

REDEFINES
REDEFINES given within an OCCURS or not redefining the
last allocated item.

MODEL l / I I I COBOL User's Guide 12 (RSCOBOL 1.3)

REDEFINES ERROR
The referenced data-name redefines an item which does
not have the same number of character positions and is
not 1 eve 1 01.

REFERENCE INVALIDReference given is not valid in context.
RELATION

Operands of relation test are incompatible.
RELATIVE KEYRelative key declared for other than a relative

organization file or a START statement KEY pharase
references a data item other than the declared key.

RESERVED WORD CONFLICT
A COBOL reserved word or symbol is given where a user
word is required. In the summary this is only a warning
about an ANSI COBOL reserved word that is not an
implemented COBOL reserved word.

SCAN RESUME
Warning only. Scanning was terminated at previous error
message and resumes at undermarked character.

SECTION CLASH
A VALUE IS clause appears in the FILE or LINKAGE
section.

SEGMENT

SEPARATOR

SIGN

SIZE

Warning only. Segment number given in an independent
segment is not the same as the current segment or the
number of a new independent segment. The current
segment number is used.

Warning only. Redundant punctuation or a separator \s
not followed by the required space.

SIGN clause given in conflict with usage and picture.

Warning only. Size of data referenced not correct for
context.

SIZE ERROR
Declared size of record conflicts with present
reference.

SUBSCRIPT
Incorrect number of subscripts or indices for a
reference.

MODEL I/111 COBOL User's Guide 13 (RSCOBOL 1.3)

SYNC
Synchronized clause given for a group item

SYNTAX
Incorrect character or reserved word given for context.

UNDEFINED
File referenced in FD entry was not defined.

UNDEFINED DECLARATIVE PROCEDURE
A declarative statement references a procedure not
defined within the DECLARATIVES.

UNDEFINED PROCEDURE
A GO TO statement references an undefined or incorrectly
qualified paragraph.

USE REQUIRED
A DECLARATIVES section must begin with a USE statement.

USING COUNT
Warning only. The item count in the USING list of a
CALL statement is different from that of the first
reference to the same program name.

VALUE ERROR
Value given in VALUE IS required truncation of nonzero
digits.

VALUE
VALUE IS clause given in conflict with other declared
attr i b utes.

VARIABLE RECORD
Warning only. The INTO phrase is not allowed with
variable size records.

MODEL I /111 COBOL User s Guide 14 (RSCOBOL 1.3)

CHAPTER 2

THE COBOL RUNTIME

2. 1 Runtime Overview

The COBOL runtime operates on a 48K byte TRS-80 Model I or Model
III Microcomputer with at least two disk drives under the
appropriate TRSDOS Operating System. (Model I - version 2.3*
Model III - version 1. 1).
Once invoked. the runtime loads and executes the compiled object
program/ automatica 11y loading any required segments.
Concurrently/ it allocates memory for file buffers/ and CALLed
COBOL and Assembly Language subprograms. Upon completion
appropriate messages are displayed and control is returned to the
operating system.

2.2 Device Assignments

All communication between Runtime and the User is through the
keyboard and display.
During operation the Runtime will require one or more of the
following devices:
Keyboard & Display runtime command input/ Interactive Debug

command input/ and runtime messages.
Keyboard & Display ACCEPT and DISPLAY/ and Interactive Debug

display.
Printer PRINT output/ if required.

NOTE: For PRINT output/ the device name
"PRINTER" must be specified in the
SELECT statement; i. e>

SELECT filename, ASSIGN to PRINT, "PRINTER".

MODEL I /111 COBOL User's Guide 15 (RSCOBOL 1.3)

2.3 Executing the Compiled Program

To execute a compiled COBOL object program, issue the following
command to TRSDOS:

RUNCOBOL filespec (options) comment
wh ere:
filespec

is the specification of the compiled COBOL object file
to be executed of the form:

fi1ename/ext. password:d
'filename' is required.
'/ext' is an optional name-extension. When omitted the
default '/COB' is used.
'. password' is an optional password. Note: If the file
was created with a nonblank password, '.password'
becomes a required field.
':d' is an optional drive specification. When omitted
the system does an automatic search, starting with drive
0.

options
allows the user to specify runtime options. Each option
must be specified as shown below, separated by spaces.
The left and right parenthesis are required if any
comments are present.
When no options are specified, the runtime will execute
the User's program without Interactive Debug, with all
switches set to 0, using all of available memory.

MODEL I/111 COBOL User's Guide 16 (RSCOBOL 1.3)

2. 3. 1 Runtime Options

D
'D' invokes the RSCOBOL Interactive Debug package. See
RSCOBOL Interactive Debug discussion, below, for
operating instructions.
The default is not to invoke Interactive Debug.

S=nn..n
'S' sets (or resets) the value of SWITCHES in the COBOL
program.
Each 'n' is a switch value, 0 for off, 1 for on,
numbered 1 to 8, left to right. Trailing zeroes need
not be specified.
The default is to set all switches off (0).

T=hhhh
'T' sets the top of available memory to a value
different from the highest available address. This is
used to protect assembly language user subroutines, all
of which must be created to load above the hexadecimal
address 'hhhh '.
The default is to use all available memory.

2. 3. 2 Runtime Messages

Messages which report the runtime's status, or its ability to
execute the COBOL program, are reported on the system display as
they are detected.

TRS-80 Model I/111 COBOL Runtime (RM/COBOL ver v. r)
Copyright 1980 by Tandy Corp. Licensed from Ryan-McFar1and Corp.

Indicates that the runtime has been loaded and has begun to
execute the specified program. 'ver v. r ' identifies the
version (v) and revision (r) level of the runtime.

MODEL I/III COBOL User's Guide 17 (RSCOBOL 1.3)

COBOL STOP RUN AT xxyyyy IN nnnnnn
This is the normal termination message of a program.
'xxyyyy7 identifies the overlay <xx) and statement address
(yyyy) where the program terminated. "nnnnnn7 are the first six characters of the PROGRAM-ID.
If Debug was invoked on the command line» an 7S 7 Debug command may be used to cause Debug to exit to the operating
system.

COBOL STOP literal AT xxyyyy IN nnnnnn
CONTINUE <Y/N>?

This message indicates that a STOP "literal7 statement has
been encountered. "xxyyyy7 identifies the overlay (xx) and
statement address <yyyy) where the program terminated.
"nnnnnn7 are the first six characters of the PROGRAM-ID.
Responding with a "Y" will be the equivalent of a "pause"
statement» returning control to the next COBOL statement.
An "N" response will cause all program files to be closed and
control will be returned to the operating system.

2.3.3 Examples

RUNCOBOL PAYROLL <S=1011>
locates» loads» and executes the compiled COBOL program
PAYROLL/COB; and sets the value of SWITCHES 1» 3, and 4 "on",
all others 7off 7.

RUNCOBOL MORTGAGE/TST: 2 <D>
loadssthe compiled COBOL program MORTGAGE/TST from drive 2
along with the Interactive Debug package. Control is passed
directly to Debug.

RUNTIME ERROR, NO: nnnn
an internal
execution,
which caused

error has
The value
the error.

occurred which prevents continued
of "nnnn7 identifies the condition

0010 Unable to locate or load User Debug.
Install RSCBLDvr as described in the chapter on
"Installation Procedures".

MODEL l / I I I COBOL User's Guide 18 (RSCOBOL 1.3)

0020 Invalid TRSDOS

Execution was attempted under an incorrect version of
TRSDOS Order correct version of TRSDOS.
Required TRSDOS versions are:
Model I - 1. 1
Model III - 2. 3

2.4 Runtime Diagnostics

Diagnostic messages are display if an internal error occurs# or if
an I/O error occurs that was not# or could not# be processed by an
appropriate USE procedure.
If Debug was invoked# Debug will be entered to allow examination
of program data values# otherwise# control will return to the
operating system.

COBOL error AT xxyyyy IN nnnnnn
Indicates an internal error condition has occurred# where
'error7 identifies the error condition. "xxyyyy7 identifies
the overlay (xx) and statement address (yyyy) where the
program terminated. "nnnnnn" are the first six characters of
the PROGRAM-ID.

COBOL filename 10 ERROR = cc AT xxyyyy IN nnnnnn
Identifies that an abnormal I/O condition# "cc" has caused
the program to be aborted. "xxyyyy" identifies the overlay
(xx) and statement address (yyyy) where the program
terminated. "nnnnnn" are the first 6 characters of the
PROGRAM-ID.
The I/O error "cc" has a different meaning depending on
whether the file's organization is sequential# relative or
indexed.

Sequential Files:
10 AT END.

The sequential READ statement was unsuccessfully executed
as a result of an attempt to read a record when no next
logical record exists in the file.

MODEL l / l l l COBOL User's Guide 19 (RSCOBOL 1.3)

30 PERMANENT ERROR.
The input-output statement was unsuccessfully executed as
the result of an input-output error* such as data check
parity error* or transmission error. May also indicate
attempted execution of an instruction not implemented in
the runtime (REWRITE to a variable length record < VLR)
file* CLOSE REEL). May also indicate that no more space
is available on the disk.

34 PERMANENT ERROR BOUNDARY VIOLATION.
The input-output statement was unsuccessfully executed as
the result of a boundary violation for a sequential file.

90 INVALID OPERATION.
An attempt has been made to execute a READ* WRITE* or
REWRITE statement that conflicts with the current open
mode or a REWRITE statement was not preceded by a
successful READ statement.

91 FILE NOT OPENED.
An attempt has been made to execute a DELETE* READ*
START* UNLOCK, WRITE* REWRITE or CLOSE statement on a
file which is not currently open.

92 FILE NOT CLOSED.
An attempt has been made to execute an OPEN statement on
a file which is currently open.

93 FILE NOT AVAILABLE.
An attempt has been made to execute an OPEN statement for
a file closed with LOCK.

94 INVALID OPEN.
An attempt has been made to execute an OPEN statement for
a file with no external correspondence or a file having
inconsistent parameters.

95 INVALID DEVICE.
An attempt has been made to execute a CLOSE REEL
statement* or to execute an OPEN statement for a file
which is assigned to a device in conflict with the
externally assigned device. Valid combinations are:
Program Assignment External Assignment

RANDOM Disk
INPUT Disk
OUTPUT Disk
PRINT Disk*
INPUT-OUTPUT Disk

MODEL I /111 COBOL User's Guide 20 (RSCOBOL 1.3)

96 UNDEFINED CURRENT RECORD POINTER STATUS.
An attempt has been made to execute a READ statement
after the occurrence of an unsuccessful READ statement
without an intervening successful CLOSE and OPEN.

97 INVALID RECORD LENGTH.
An attempt has been made to execute a REWRITE statement
when the new record length is different from that of the
record to be rewritten* or to OPEN a file that was
defined with a maximum record length different from the
externally defined maximum record length* or to execute a
WRITE statement that specifies a record with a length
smaller than the minimum or larger than the maximum
record size.

Relative and Indexed Files:
10 AT END.

The Format 1 READ statement was unsuccessfully executed
as a result of an attempt to read a record when no next
logical record exists in the file.

21 SEQUENCE ERROR FOR A SEQUENTIALLY ACCESSED INDEXED FILE.
The ascending sequence requirement of successive record
key values has been violated or the record key value has
been changed by the COBOL program between the successful
execution of a READ statement and the execution of the
next REWRITE statement for that file.

22 DUPLICATE KEY VALUE.
An attempt has been made to WRITE a record that would
create a duplicate key on a file that does not allow
dup 1 i cates.

23 NO RECORD FOUND.
An attempt has been made to access a record* identified
by a key, and that record does not exist in the file.

24 BOUNDARY VIOLATION.
An attempt has been made to WRITE beyond the
externally-defined boundaries of a file.

30 PERMANENT ERROR.
The input-output statement was unsuccessfully executed as
the result of an input-output error* such as data check*
parity error* or transmission error. May also indicate
that no more space is available on the disk.

90 INVALID OPERATION.
An attempt has been made to execute a DELETE* READ*
REWRITE* START* or WRITE statement which conflicts with
the current open mode of the file or a sequential access
DELETE or REWRITE statement not preceded by a successful
read statement.

MODEL I /111 COBOL User's Guide 21 (RSCOBOL 1.3)

91 FILE NOT OPENED.
An attempt has been made to execute a CLOSE, DELETE,
READ, REWRITE, START, UNLOCK, or WRITE statement on a file which is not in an open mode.

92 FILE NOT CLOSED.
An attempt has been made to execute an OPEN statement on
a file that is currently open.

93 FILE NOT AVAILABLE.
An attempt has been made to execute an OPEN statement on
a file closed with LOCK.

94 INVALID OPEN.
An attempt has been made to execute an OPEN statement for
a file with no external correspondence or a file having
inconsistent parameters.

95 INVALID DEVICE.
An attempt has been made to execute an OPEN statement on
a file whose device description conflicts with the
externally assigned device. The device must be RANDOM
and the external correspondence must be a disk.

96 UNDEFINED CURRENT RECORD POINTER.
An attempt has been made to execute a Format 1 READ
statement when the current record pointer has an
undefined state. This can occur only as the result of a
preceding unsuccessful READ or START statement.

97 INVALID RECORD LENGTH.
An attempt has been made to execute a REWRITE statement
and the new record length is different from that of the
record to be rewritten, or to OPEN a file that was
defined with a maximum record length different from the
externally defined maximum record length, or to execute a
WRITE statement that specifies a record with a length
smaller than the minimum or larger than the maximum
record size.

98 INVALID INDEX.
An input-output statement on an indexed organization file
was unsuccessful as a result of invalid data in the
index. This can result if the externally assigned file
is not an index organization file or if an undetected
input-output error has occurred.

MODEL I /111 COBOL User's Guide - 22 < RSCOBOL 1.3)

2. 5 File System Considerations

Three types of files are supported by the COBOL Runtime:
sequential# relative (random)# and indexed sequential. These
files exist on the disk as standard TRSDOS disk files. While the
user will not typically need file information to execute COBOL
programs# he is referred to the Technical Information Section of
the Disk Operating System Reference Manual if further information
is desired.
Files are specified in the user's program SELECT statement
according to rules for the TRSDOS filespec# of the form:

fi1ename/ext. password:d
where:

"filename' is required.
"/ext" is an optional name-extension.
".password" is an optional password. Note: If the file
was created with a nonblank password# ". password"
becomes a required field.
":d" is an optional drive specification. When omitted
the system does an automatic search# starting with drive
0.

2.5.1 COBOL Sequential Files

COBOL sequential files consist of a serially accessible set of
"logical" records. These "logical" records can exist on the disk
in either of two forms# "variable" or "fixed".
"variable" records are identified in the File Description Entry
(FD) by specifying "RECORD CONTAINS n TO m CHARACTERS". "fixed"
records are identified by specifying RECORD CONTAINS n
CHARACTERS". The user is cautioned to maintain a consistent
specification among all programs referring to the same file.
"variable" records contain a one byte length field at the
beginning of each record# followed by the actual data bytes. The
record length can vary from record to record. The second length
byte indicates the entire length of the record# including the
length byte. This can be any value from 2 to 255. This format is
stored on the disk as one byte records <LRL=i>.
"fixed" records are all of the same length and do not contain a
length byte. These files exist on the disk as standard TRSDOS
fixed length records of length (LRL=) 1 to 255 characters.
MODEL I /111 COBOL User's Guide - 23 (RSCOBOL 1.3)

2.5.2 COBOL Relative Files

COBOL relative files are addressable randomly by 'logical' record
number. These files exist on the disk as fixed length records.
COBOL relative file 'logical' records are internally formatted*
and can be created and/or accessed only by COBOL programs. Each
'logical' record can have a maximum length of 253 bytes.
COBOL relative files are dynamically allocated or extended as
required by TRSDOS.

2.5.3 COBOL Indexed Files

COBOL indexed files are created and maintained by the COBOL
runtime; implemented on the disk using TRSDOS fixed length records
of 256 bytes.
COBOL indexed files are internally formatted* and can be created
and/or accessed only by COBOL programs. Each 'logical' record can
have a maximum length of 4096 bytes.
Indexed files contain an index structure for each key specified
interspersed uiith the data records. The use of ALTERNATE KEYS can
cause a geometric increase in the time required to create the
file* however* access time will be relatively constant throughout
the file.
COBOL indexed files are dynamically allocated or extended as
required by TRSDOS. The calculation below provides an
approximation for the file space required for a given file:

NRECS = Int <<S + 33>/32> #• R / 8
+ (R * 2) / Int (252/<Kn+8)) for each key
+ <R * D) / 8 if duplicates

wh ere:
R sb maximum number of records desired
S = size of records (in bytes)
Kn = size of Kn (in bytes)
D = number of keys that allow duplicates

MODEL l / l l l COBOL User's Guide 24 (RSCOBOL 1.3)

2.5.4 COBOL Label Processing

The COBOL language allows the specification of the existance, and
processing^ of Label records on file type devices.
TRSDOS provides automatic maintenance and validation of file
specifications by name and file type. No additional Label
processing is performed unique to COBOL programs or files.
References to Label processing in the file description entry (FD)»
OPEN statement» and CLOSE statement» are checked for correct
syntax by the compiler. They are largely ignored by the runtime
except that appropriate error codes will be returned» and any
applicable USE procedures will be executed.
2. 6 Runtime Memory Usage

The TRSDOS Operating System occupies lower memory from location
OOOOH to 05200H. The COBOL Runtime is loaded starting at 05200H.
The remaining memory is allocated as follows:

The main COBOL object program is loaded immediately behind
the COBOL Runtime. Space for COBOL overlays (SECTIONS
greater than 50) are included in this area.
Additional COBOL programs are loaded behind this main program
as they are CALLed (See the CALL statement below).
Assembly Language programs are loaded in high memory at the
address they were
'T=hhhh ' option).

assigned at 'DUMP' time (See Runtime

File buffers are dynamically allocated from high memory
downward» when OPENed» deallocated (space recovered for use
by other files) when CLOSEd.

MODEL I /111 COBOL User's Guide - 25 (RSCOBOL 1.3)

CHAPTER 3

INTERACTIVE DEBUG

3. 1 Debug Overview

COBOL Interactive Debug is dynamically loaded when the user
specifies the ,D / option on the RUNCOBQL statement. Debug is then
given control and supervises the execution of the user's program.
Interactive Debug is loaded directly behind COBOL Runtime*
requiring approximately 1000 bytes.

3.2 User Interaction and Display

All Debug commands* and all resultant displays* are through the
system console.
Debug will request command input by a prompt of the form

nnnnnn xxyyyy
where "nnnnnn" are the first 6 characters of PROGRAM-ID* "xx" is
the overlay number* and "yyyy" is the hexadecimal location within
the specified overlay that will be executed next.
The values of "xx" and 'yyyy" are taken directly from the Debug
column in the source listing for program "nnnnnn".

3.3 Debug Commands

All commands are specified by a single character* optionally
followed by one or more arguments. Optional fields are shown
surrounded by brackets* the brackets are never entered. All
numeric arguments are in hexadecimal unless otherwise noted.
Invalid commands will be rejected with "ERROR" displayed;
corrected input will be requested with a reprompt.

AC xx1yyyyC*nnnnnn] Address stop.
Executes object instructions until overlay number "xx" and
location 'yyyy' in program nnnnnn is to be executed. Debug
will regain control immediately prior to the execution of the
specified COBOL sentence* and request further command input.

MODEL I/III COBOL User's Guide 26 (RSCOBOL 1.3)

If 'xx' is specified, 'yyyy' must be fully four hexadecimal
digits; if ' xx ' is not specified, then leading zeros are not
required for /yyyy/. If 'nnnnnn' is omitted, it is assumed
to be the first six characters of the program-id of the
currently executing program.

SCn3 Single step sentence.
Execute 'n ' COBOL sentences and return to the debug monitor.
The decimal argument 'n ' specifies the number of COBOL
sentences to be executed before returning the Debug.

Dx xxx, yyyyC, tt11D Dump by type.
Display the COBOL data item starting at hexadecimal location
'xxxx ' of decimal length 'yyyy' and type /tttt/. The values
for ;xxxx', 'yyyy', and 'tttt' are directly from the first
three columns of the allocation map. 'tttt' may be one of
the foil owing:

NSU NPS
NSS ABS
NCU ANS
NCS GRP
NBS ANSE
NSE HEX (hexadecimal)

Dump Display has the format:
x x x x tttt dddd. . . .
where dddd = data in the specified format
Note: Only items in the currently executing program can be
displayed. This does not include linkage items.

Q Quit Execution.
Terminate Debug and force an immediate STOP RUN. Enter 'S'
to return to TRSDOS.

E Exit
Exit the Debugger. Continue normal execution as if the
debugger had not been invoked on the command line.
f f ß P Ar - ■ !• A ' ■ 1 • ’ V ‘ •''

l . ;i ■ •* i t- /;■ j. 'i1-" >■ A w

MODEL I /111 COBOL User's Guide - 27 - (RSCOBOL 1.3)

CHAPTER 4

SYSTEM CONSIDERATIONS

4.1 The ACCEPT and DISPLAY Statements

The ACCEPT and DISPLAY statements support the transfer of data
between the keyboard and display and the User's program data area.
These statements allow the specification of general phrases which
may not be supported on every CRT.
Phrases which are not supported will compile correctly* but will
be ignored at runtime* causing no operation to take place. The
phrases which are not supported are:

ACCEPT. . . . HIGH, LOW, BLINK.
DISPLAY. . . . HIGH, LOW, BLINK, BEEP.

The ON EXCEPTION phrase of the ACCEPT statement is executed when
an invalid character is entered. Invalid characters include the
valid control characters (CNTR/n) below 020H, and non-ASCII
characters above and including 080H.
When an invalid character is entered, its ASCI equivalent is
placed in the specified data-name and the ON EXCEPTION phrase is
executed. To determine which control character was entered,
define the data-name as USAGE COMPUTATIONAL-1 and compare for its
ASCII value.
Certain keys affect the operation of the ACCEPT statement,
including:

<r—

C LEAR

Erases the current character and moves the
cursor back one position.
Backspace to the beginning of the field,
erasing ail characters in the field.

MODEL I/111 COBOL User's Guide 28 (RSCOBOL 1.3)

4.2 The CALL Statement

When "CALLed " the first time» COBOL and Assembly Language programs
are loaded by Runtime and entered at their initial location.
These "called7 programs remain in memory as long as the "calling"
program is active; i. e. * has not EXITed. Therefore* subsequent
CALLs from the "calling" program will enter the "called" program
directly* without requiring the "called" program to be reloaded.
Once the "calling" program has EXITed* all related "called"
programs are discarded and will be reloaded if subsequently CALLed
by any program* including the previous "calling" program.
Regardless of the sequence of "called" and "calling" programs* all
related files not explicitly closed are forced closed by the
interface upon EXIT from a given "called" program.
COBOL programs that are to be CALLed must have been previously
compiled. The default filename-extension for a program name in a
CALL statement is "/COB". A compiled COBOL program will have the
required extension. If the extension used is not "/COB" * then it
must be specified in the CALL statement.
Assembly language programs that are to be CALLed must be in TRSDOS
LOAD command format as created by DUMP* with a filename extension
other than "/COB". Assembly language programs must reside in high
memory* and the "T=nnnn " option must be specified on the Runtime
command line to protect all memory required by the routine. The
user is responsible for ensuring that the assembler programs do
not interfere with each other.
Assembly language programs are loaded and reused while the
"calling" program resides in memory. If the COBOL "calling"
program is reloaded in memory* then the assembler program will
again be reloaded when it is called.
At entry time to an assemb1y-1anguage routine register IX points
to the parameter list defined by the USING clause of the CALL
statement. The first word on the list contains the number of
bytes in the list. Subsequent words are addresses of the USING
arguments: e. g. * if the length word specifies 6 bytes* there are 2
addresses following the length word. For example:

(IX) => DW Argument List Length (n * 2 + 2)
DW USING Argument 1
DW USING Argument 2

DW USING Argument n
The format of each argument depends on its dataname PICTURE
definition* see the COBOL Language Manual* "the PICTURE Clause".
At exit time from an assembler routine* register A may be set
non-zero to request a STOP RUN.
MODEL I /111 COBOL User's Guide - 29 - (RSCOBOL 1.3)

4.3 The COPY Statement

The COPY statement provides the facility to copy (include) COBOL
source text from a user-specified file into the
The complete file is copied into the program,
the location of the COPY statement.

source program,
without change, at

The file to
statement

be copied is identified in the COBOL program by the

or
COPY filename

COPY “fi1ename/ext. password:d"
where:

'filename' is required.
'/ext' is an optional name-extension. When omitted the
default '/CBL: is used.
'.password' is an optional password. Note: If the file
was created with a nonblank password, '. password '
becomes a required field.
':d' is an optional drive specification. When omitted
the system does an automatic search, starting with drive
0.

A filename consisting only of letters and numbers (first character
must be letter) can be written without surrounding quotes. All
other forms must be surrounded by quotes.
Examples:

IDENTIFICATION DIVISION.
CQPY STDID.

ENVIRONMENT DIVISION.
COPY "STDENVIR/TST”.

DATA DIVISION.
COPY "STDDATA/CBL:1".

MODEL I / 111 COBOL User's Guide 30 (RSCOBOL 1.3)

4.4 The WRITE. .. ADVANCING ZERO. .. Statement

The sequential WRITE statement allows control of the vertical
positioning of each line on the printed page with the ADVANCING
phrase.
The ... ADVANCING ZERO LINE(s) ... phrase allows overprinting on
those print devices which support this feature. In all cases/ the
phrase will compile correctly, but may operate as though
...ADVANCING 1 LINE... was specified.
Standard Radio Shack Line Printers automatica 11y advance after
each line is printed. Therefore, the ...ADVANCING ZERO LINES...
phrase will execute as ... ADVANCING 1 LINE. The Compiler and
Runtime defaults to standard Radio Shack Line Printer operation.

MODEL I / 111 COBOL User's Guide 31 (RSCOBOL 1.3)

CHAPTER 5

INSTALLATION PROCEDURES

Installation of RSCOBOL requires only that the object modules be
copied from the Development and Runtime factory release diskettes
to the appropriate user diskette. NOTE: 'nn' indicates the
current release level* i. e. * release 1.3 will be /13/.
The modules required to compile COBOL programs are:

RSCOBOL
RSCBL2nn/0BJ
RSCBL3nn/0BJ
RSCBL4nn/0BJ

The modules required to execute compiled COBOL programs are:
RUNCOBOL
RSCBLDnn/OBJ

As with all Development and Runtime factory release diskettes* the
user should save it in a secure location in case re-creation is
required.

MODEL I / 111 COBOL User's Guide 32 (RSCOBOL i. 3)

APPENDIX A

SAMPLE PROGRAMS

MODEL I /111 COBOL User's Guide - 33 (RSCOBOL 1.3)

LINE DEBUG PG/LN A...B...

1 IDENTIFICATION DIVISION.
2 PROGRAM-ID.
3 CALCULATOR.
4
5 ENVIRONMENT DIVISION.
6 CONFIGURATION SECTION.

TRS-80 Model I/111 COBOL <RM/COBOL 1.3A) 10/31/80 00:15:44 PAGESOURCE FILE: CALCXMPL OPTION LIST: <p,T*G=2»X

7 SOURCE-COMPUTER. RMC.
8
9

OBJECT-COMPUTER. RMC.
10 DATA DIVISION.
1 1 WORKING-STORAGE SECTION.
1 2 77 RESULT PICTURE S9(9)V9(9) VALUE ZERO.
13 77 OPERAND-1 PICTURE S9(9)V9(9).
14 77 OPERAND-2 PICTURE S9 (9 >V9(9).
15 77 WAIT-CHAR PICTURE X.
16 0 1 GREETING.
17 02 FILLER PICTURE X (18)
18 VALUE "CALCULATOR PROGRAM".
19 0 1 OPERATION-MESSAGE.
2 0 02 FILLER PICTURE X (37)
2 1 VALUE "CHOOSE YOUR OPERATION (+,-,*»/> = ".
2 2 0 1 OPERATOR PICTURE X (2) .
23 0 1 RESULT-MESSAGE.
24 02 FILLER PICTURE X (12)
25 VALUE "RESULT IS = ".
26 02 RESULT-EDITED PICTURE -(9)9.9(9).
27 02 FILLER PIC X (4) VALUE SPACES.
28 02 OVERFLOW-FIELD PIC X(8) VALUE SPACES.
29 0 1 WAIT-MESSAGE a
30 02 FILLER PICTURE X (36)
31 VALUE "HIT NEWLINE TO> CONTINUE (Q TO QUIT)
32 0 1 OPERAND-1-MESSAGE.
33 02 FILLER PICTURE X(12)
34 VALUE "OPERAND-1 = ".
35 0 t 0PERAND-2-MESSAGE.
36 02 FILLER PICTURE X (12)
37 VALUE "OPERAND-2 = ".

34

T R S - 8 0 Model I / 111 COBOL (RM/COBOL 1.3A) 10/31/80 0 0 : 15:44
SOURCE FILE: CALCXMPL O P T I O N LIST: <P,T?0=2?X

1 T NE DEBUG PG/L.N A. .

— <38 / EJECT
39 PROCEDURE DIVISION.
40 >0 0 0 0 RESIDENT SECTION 1.
41 >0 0 0 0 NOT-START.
42 >0 0 0 0 GO TO DISPLAY-GREETING.
43 >0004 RE-TRY.
44 >0004 DISPLAY OPERATION-MESSAGE? LINE 2» ERASE.
45 >0 0 0C ACCEPT OPERATOR? POSITION 0? PROMPT? ECHO.
46 >0014 IF OPERATOR EQUAL "+ " GO TO ADDITION.
47 >001 C IF OPERATOR EQUAL "- ” GO TO SUBTRACTION.
48 >0024 IF OPERATOR EQUAL "* " GO TO MULTIPLICATION.
49 >0 0 2C IF OPERATOR EQUAL "/ " GO TO DIVI-SION.
50 >0034 IF OPERATOR EQUAL "Q " GO TO END-RUN.
51 >003C GO TO RE-TRY.
52 >003E DIBPLAY-RESULT.
53 >003E MOVE RESULT TO RESULT-EDITED.
54 >0042 DISPLAY RESULT-MESSAGE.
55 >0046 MOVE ZERO TO RESULT.
56 >004A MOVE SPACES TO OVERFLOW-FIELD.
57 >0050 WAIT-ENTRY.
58 >0050 DISPLAY WAIT-MESSAGE.
59 >0054 ACCEPT WAIT-CHAR? POSITION 0? PROMPT? ECHO.
60 >005 C IF WAIT-CHAR EQUAL "Q" GO TO END-RUN.
61 >0064 GO TO RE-TRY.
62 >0066 GET -OPERANDS.

s_ >̂3 >0066 DISPLAY OPERAND-1-MESSAGE? LINE 4.
64 >006C ACCEPT OPERAND-1? LINE 4? POSITION 13? SIZE 10?
65 PROMPT? CONVERT.
6 6 >0078 MOVE OPERAND-1 TO RESULT-EDITED.
67 >007 C DISPLAY RESULT-EDITED? LINE 4? POSITION 13.
68 >0084 DISPLAY 0PERAND-2-MESSAGE.
69 >0088 ACCEPT OPERAND-2 ? LINE 5? POSITION 13? SIZE 10
70 PROMPT? CONVERT.
71 >0094 MOVE OPERAND-2 TO RESULT-EDITED.
72 >0098 DISPLAY RESULT-EDITED? LINE 5? POSITION 13.
73 >0 0A2 END -RUN.
74 >00 A 2 EXIT PROGRAM.
75 >0 0A6 STOP-RUN.
76 >0 0A6 STOP RUN.

PAGE

35

3

LINE DEBUG

77
78>0100A8
79>0100A8
80>0100A8 81>0100AA
82
83>0100B8
84
85>0200A8
86>0200A8
87>0200A8
88>0200AA
89
90>0200B8
91
92>0300A8
93>0300A8
94>0300AS
95>0300AA
96
97>0300B8
98
99>0400A8
100>0400A8
101>0400A8
102>0400AA
103
104>04008A
105
106>0500A8
107>0500A8
108>0500AS
109>0500AC
110
111

T R S-80 Model
SOURCE FILE:

PG/LN A...B................................

I/ 111 COBOL (RM/COBOL 1.3A) 10/31/80 00 : 1 5 : 4 4 PAGE
CALCXMPL O P T ION L IST: (P ,T * 0=2»X

/ EJECT
OVERLAY-ADDITION SECTION 51.
ADDITION.

PERFORM GET-OPERANDS.
ADD OPERAND-1 OPERAND-2 GIVING RESULT

ON SIZE ERROR MOVE "OVERFLOW" TO OVERFLOW-FIELD.
GO TO DISPLAY-RESULT.

OVERLAY-SUBTRACTION SECTION 52.
SUBTRACTION.

PERFORM GET-OPERANDS.
SUBTRACT OPERAND-2 FROM OPERAND-! GIVING RESULT

ON SIZE ERROR MOVE "OVERFLOW" TO OVERFLOW-FIELD.
GO TO DISPLAY-RESULT.

OVERLAY-MULTIPLICATION SECTION 53.
MULTIPLICATION.

PERFORM GET-OPERANDS.
MULTIPLY OPERAND-1 BY OPERAND-2 GIVING RESULT

ON SIZE ERROR MOVE "OVERFLOW" TO OVERFLOW-FIELD.
GO TO DISPLAY-RESULT.

OVERLAY-DIVISION SECTION 54.
DIVI-SION.

PERFORM GET-OPERANDS.
DIVIDE OPERAND-1 BY OPERAND-2 GIVING RESULT ROUNDED

ON SIZE ERROR MOVE "OVERFLOW" TO OVERFLOW-FIELD.
GO TO DISPLAY-RESULT.

OVERLAY-DISPLAY-GREETING SECTION 98.
DISPLAY-GREETING.

DISPLAY GREETING.
GO TO WAIT-ENTRY.

END PROGRAM.

36

4TRS-80 Model I / 111 COBOL < RM/ COBOL i . 3 A) 10/31/80 00:15:44
SOURCE FILE: CALCXMPL O P T I O N LIST: <P?T»0=2iX

ADDRESS SIZE DEBUG ORDER TYPE NAME

>0004 19 NSS 0 NUMERIC SIGNED RESULT
>0018 19 N5S 0 NUMERIC SIGNED OPERAND-1

>0 0 2C 19 NSS 0 NUMERIC SIGNED OPERAND-2

>0040 1 ANS 0 ALPHANUMERIC WAIT-CHAR

>0042 18 GRP 0 GROUP GREETING

>0054 37 GRP 0 GROUP OPERATION-MESSAGE

>007A 2 ANS 0 ALPHANUMERIC OPERATOR

>007 C 44 GRP 0 GROUP RESULT-MESSAGE
>0088 20 NSE 0 NUMERIC EDITED RESULT-EDITED
>0 0A0 8 ANS 0 ALPHANUMERIC OVERFLOW-FIELD

>00 A 8 36 GRP 0 GROUP WAIT-MESSAGE

>00CC 1 2 GRP 0 GROUP OPERAND-1-MESSAGE

>0 0D8 1 2 GRP 0 GROUP 0PERAND-2-MESSAGE

READ ONLY BYTE SIZE = >01 BE

READ/WRITE BYTE" SIZE = >0 0EC

OVERLAY SEGMENT BYTE SIZE == >0 0 2E

TOTAL BYTE SIZE = >02D8

0 ERRORS

0 WARNINGS

PAGE

37

TRS-80 Mode 1 I/111 COBOL (RM/COBOL 1.3A) 10/31/80 00:15:-44 PAGE 5
SOURCE FILE: CALCXMPL OPTION1 LIST: (P» T ? 0==2» X
CROSS REFERENCE /DECL/ *DEST*
ADDITION 0046 /0079/
DISPLAY-GREETING 0042 /0107/
DISPLAY-RESULT /0052V 0083 0090 0097 0104
DIVI-SION 0049 /0 1 0 0 /
END-RUN 0050 0060 /0073/
GET-OPERANDS /0062/ 0080 0087 0094 0 1 0 1
GREETING /0016/ 0108
MULTIPLICATION 0048 /0093/
NOT-START /0041/
OPERAND-1 /0013/ *0064* 0066 0081 *0088* 0095 0 1 0 2
OPERAND-1-MESSAGE /0032V 0063
OPERAND-2 /0014/ *0069* 0071 0081 0088 *0095* 0 1 0 2
0PERAND-2-MESSAGE /0035/ 0068
OPERATION-MESSAGE /0019/ 0044
OPERATOR /0022V *0045* 0046 0047 0048 0049 0050
OVERFLOW-FIELD /0 0 2S/ *0056* *0082* *0089* *0096* *0103*
OVERLAY-ADDITION /0078/
OVERLAY-DISPLAY-GREETING /0106/
OVERLAY-DIVISION /0099/
OVERLAY-MULTI PLI CATION /0092/
OVERLAY-SUBTRACTION /0085/
RESIDENT /0040/
RESULT /0012V 0053 *0055* *0081* *0088* *0095* *0 1 0 2 *
RESULT-EDITED /0026/ *0053* *0066* 0067 *0071* 0072 __
RESULT-MESSAGE /0023/ 0054
RE-TRY /0043/ 005 1 0061
STOP-RUN /0075/
SUBTRACTION 0047 /0086/
WAIT-CHAR /0015/ *0059* 0060
WAIT-ENTRY /0057/ 0109
WAIT-MESSAGE /0029/ 0058

38

1T R S - 8 0 Model
SOURCE FILE:

I/III COBOL
ERRXMPL

(RM/COBOL 1.3A)
OPTION

10/31/80 00:22:43
LIST: (T ? P ? 0=2 7 X

PAGE

NE DEBUG PG/LN A, B

3
45
6
7
8
S

10

000010
000020
000030
000040
000050
000060
000070
000080
000090
000100

IDENTIFICATION DIVISION.
PROGRAM-ID.

ERROR-EXAMPLES.
ENVIRONMENT DIVISION.
CONFIGURATION SE CT ION.
SOURCE-COMPUTER. RMC-MINI
OBJE CT-COMPUTE R. RMC-MINI
INPUT-OUTPUT SECTION.

11 000110 FILE-CONTROL.
12 000120 SELECT INPUT-FILE
13 000130 ASSIGN TO INPUT 7 INPUT-NAME?
14 000140 FILE STATUS IS INPUT-STATUS.
15 000150 SELECT OUTPUT-FILE
16 000160 ASSIGN TO OUTPUT7 OUTPUT-NAME?
17 000170 FILE STATUS IS OUTPUT-STATUS.
18 000180
19 000190 DATA DIVISION.
20 000200 FILE SECTION.
21 000210 FD INPUT-FILE
22 000220 RECORD CONTAINS 80 CHARACTERS
23 000230 LABEL RECORD IS OMITTED.
24 000240 01 INPUT-REC.
;5 000250 05 FILLER PIC X(06).

"26 000260 05 INPUT-FLD PIC X(66).
27 000270 05 AREA-FLDS REDEFINES INPUT-FLD.
28 000280 10 AREA-C PIC X(01).
29 000290 10 AREA-A PIC X(04).
30 000300 10 AREA-B PIC X(61).
31 000310 05 FILLER PIC X(08).
32 000320 FD OUTPUT-FILE
33 000330 RECORD CONTAINS 80 CHARACTERS7
34 000340 LABEL RECORD IS OMITTED.
35 000350 01 OUTPUT-REC.
36 000360 05 SEO-FLD PIC 9(06).
37 000370 05 OUTPUT-FLD PIC X(66).
38 000380 05 FILLER PIC X(08).
39 000390 WORKING-STORAGE SECT I ON.
40 000400 77 INPUT-NAME PIC X (28).
41 000410 77 OUTPUT-NAME PIC X(28).
4 2 000420 77 COUNT PIC 9(06) VALUE 0.
43 000430 77 LARGE-VALUE PIC X(04) VALUE "ERROR".
44 000440 77 PIC-ERROR PIC *(05).*9.

1) PICTURE *E
**** 1) SCAN RESUME *w
45 000450 77 INPUT-STATUS PIC X(04).
46 000460 77 OUTPUT-STATUS PIC X(02).
7 000470 0 1 SEO-VALUE PIC 9(06).

^tS 000480

39

TR
S-
-8
0

Mo
de

 1
I /

11
1

CO
BO

L
(R

M/
CO

BO
L

1.
3A

)
10

/3
1/

80

00
:2

2:
43

PA
GE

SO
UR

CE
 F

IL
E:

 E
RR
XM
PL
.

OP
TI

ON
 L

IS
T:

<t

»P
?0

=2
»X

i.N

i l l

4

z_i\15Q_
LD
X
03LÜQ
UJZ
i— i_i

)1 LU Z
+ *
LU Z
* *
LU Z
* 4c
LU Z
4c *
LU Z
4= *
LU Z
* 4=
LU Z
* *
LU Z
* sk
LU Z
4c sk *w*
LU Z T
* * O
LU Z LU
4c *
LU Z 1—

r. 4c 4c uL
= LU Z H
cl 4c sk »A
lu LU Z £
c j * 4c a .
z . LU Z
LU LU 4= 5fe Q
X CO LU Z
•3 4 a •iff- 5jC SK z
U j CL CO LU Z 0
CO LU ■ 3 * * i—1

= H LU Z i—
Z Q . 4 4c * 1—1
4 roCM H LU Z CO
oc *« CO * * *3*
15 Z LU LU i LU Z CL
w Z J h * *
CL i- i H I—i LU Z UJ
CL H J L l £L * * z

« 1—1 H LU Z 4
Z J CO CO H X $ * z
tw* *w< *3* UJ X O ^ LU Z ■
1—I cu a . C J Q_ * * H
t n A 4 Z O LU Z X
i—i O rH 0- 1—1 |— 4c * ÜL
> 2 CO = LU Z z
i—i Lu i n 4= * l—l
Q > z > > - LU Z

<C i—i 4 4 ro * * i—
LU _ J _i _ j _ j . LU Z Q_
CL CL CL CL l u 4c * LU
X CO CO CO > LU Z O
C i l—i 1—1 1—1 0 * * CJ
Lu *
c j s

a Q Q X LU
*

4

o 0 LU LU
LT th * x
Cl. 0 Lu X

s * CO
S i S i 15? i1̂ S S LU 0
O'- 0 •n cm r o <j- n CL M3
-4 i n n n i n i n i n i n
£3 0 0 0 £3 0 0 LU Z 0
0 0 0 0 0 0 0 > 4 0
Q S Q Q i S Q Q O O 0

X CO
S3 S i <33 0 - 4 -0
0 0 S ’- 1 ’—1 1—i
0 0 0 0 0 t—1 f \ j 0
0 S i 0 0 0 0

4c *
o Ö •*—! cm n 4 i n >0 4c * r -
■4* m i n i n i n i n i n m * 4-’

* 4=
* *

U“i

LU Z¥ *
LU z4c *LU z* 5ic
LU z4c *
LU z*LU z* *
LU zsk A:
LU z. ^ *

O LU z_i_ 4c *CJ LU zLU * *LU zH 4= *CL LU zz * *
0 LU zCL * *CL LU z* *0 LU z* *
Z LU z B
O * * . =B f-i LU z a z= i— * * . LU zI—I | t 1Z LU CL 15CO - * * _i t LU QO LU LU z - H CÜ ZLU 0-------i * * Ll Z a LU_J i—i LU Z i CL LU 15i—iLU Ll * * H !— Z Z H

ll Z 1 UJ Z Z Z _J i-i <4 i— * * CL < CJH Z Z LU Z H > Z LUZ i CL * * z ‘w* : LU _iCL H Z LU z 0 H ■3 z 1—1
H D w ̂ * * LU <3 LlZ Cl LU Z H CO S E iAj H H * * Z LU CO H2 Z Z LU Z CL O Ai 2 ZO CL * * H C !— CL> Z LU Z Z CL > z4 H «-1 * * O CO 0 < 1—1
_J CL LU z _jOL LU Z * * z LU LU CL Q
co CJ LU LU Z LU > > 03 <C1—iO CL 4 c * CL A**« O i—i LU
Q 4 O A**i z Z Ci ■ CL0UJ 0Ci z CM

I—I z 0
CO0 0 0 Ci LU 0 0 0 0 0 0S CO O i-i CL Si t-i cm ro 4 U~1

in in in _j < i M3 M3 M3 M3
0 0 0 4 Z 0 0 0 0 0 ©
0 0 0 > < 0 0 0 0 0 0
0 0 0 z C J Si 0 0 0 0 0i—i COLU CM < 0 CM M3 <C 0 0i—i CM CM "" CM ro ro ro 4 40 Q Q 1—1 CM 0 0 0 0 0 00 Si 0 0 0 0 0 0 Si

* *
m 0s 0 * * t-i CM ro 4 in M3
in Ifi M3 * * < i < i M3 M3 M3 M3

* *
* *

) Z LU Z LU z U
/ ♦ * 5k 5k Jk 4c

lU z LU Z LU Z LU
* * * 5k •■k 4c 4c
UJ z LU Z UJ z LU
* * * * 5k 4c 4=
LU z LU z LU Z LU
* * 5k 'k 5k 4c 4:
LU z LU Z LU z LU
* * 5k 5k 5k 4: 4c
LU z LU Z ■ LU z LU
* * 5k 5k 0 * 4c 4c
LU z LU Z LU Z LU
* * 5k * Z 5k 4= 4:
LU z LU z O LU z LU
* * * * i—i sk 5k 4c
LU z LU z H LU Z LU
* * * 5k 1—1 sk sk 4c
LU z LU Z 03 UJ Z LU
* * sk 5k O 5k 5k 4c
LU z LU Z Cl LU Z LU
* * 5k 5k * sk 4=
LU z LU Z = LU Z LU
* * * * Ci * 4c 4c
LU Z LU z LU UJ Z LU
* * * 5k i—i sk 4c 4=
LU Z LU Z CL LU z UJ
* 5k 5k 5k O • 4S- 5k 4c 4c
LU Z LU Z . Cj LU LU Z LU
* * 5k sk Q _J * 4c 5k
LU z LU Z _J Ci i-< LU Z LU
* 5k sk 5k ■ Ll Z U . * 4c 4:
LU 2 LU Z Q i 4 i LU Z LU
* 5k 5k sk _i i— H 5k 4c 4c
UJ Z LU z Ll Z Ci Z LU Z LU
* * 5k 4c i CL LU CL 4c 4c sk
LU z LU z ‘S’ H CJ H LU Z LU
* * » 5k 5k « LU Z Z Z 5k 4c 4c
LU Z LL LU Z UJ CO A"*i LU O LU Z LU
* * CJ 5k 5k Z Z 5k 4c 4=
LU Z LU LU Z _i 1 J «._■« a '3 *■• LU Z LU
* 5k X 5k 5k <C H H CJ LU LU 5k sk 4c
LU ‘ Z c j LU Z > LU * CO J UJ z UJ
* 0 5k ! 5k 5k 1 LU O CL H r. 1—t 4c sk 4c
LU 0 Z H UJ Z <3 Z J i X H 03 U. LU Z LU
* ro * Z 5k 5k LU _ i Ll H Z Z Ci i * 4c 4c
LU 0 Z CL LU Z CO 4 i Z O - Z C£ H LU Z ■ LU
* 5k Z * 5k > H CL U 0 A**» O Z 5k 4c 0 4c
LU O Z H-. LU z 0 Z H 0 CJ CJ 0- UJ z a in ÜJ
* H 5k 5k 5k H <3 CL Z O CM LU Z 4c 4: Z i—i 4c
LU Z Z Z LU Z 0 H 0 > CL i-t -LB- LU z X 0
* O * QC sk 0 CO 1—1 4 4c 4= CL
LU lD & z 0 LU Z -- LU -r—l O z = LU LU Z A LU
* * ÜL CL 5k LU LU H H CL 03 4c 4c CL H CL
LU Z DC Z Z Ci > > >-i Q CO O LU Z A . X
* 5k LU Q 5k Ci *w‘ O CL Ci O 1—1 _J 4= 4c H A**« Q

G_ -H LU 4 X X Z 4 ID ■ Ci CJ 03 «5 H LU
C J 0 O

LU LU 0 LU O
Q Z CL X ro Ci X CL
I—I z CL z 0 i—i X CL

CO CO 03
Ci 0 LU 0 UJ LU 0 0 0 0 0 0 0 0 0 0 Q LU 0 0 LU
i-i M3 cl r - 03 CL 03 O' 0 - -1 cm ro 4 in M3 h- 1-1 CL 00 0 03
_J Mi *•*0 M3 Mi H h - h - h - h - H H h- _J r - H
<C 0 Z 0 i— Z 0 0 0 0 0 0 0 0 0 0 4 Z 0 0 i—
> 0 < 0 CO 4 0 0 0 0 0 0 0 0 0 0 > 4 0 0 03
Z 0 C J 0 z O 0 0 0 0 0 0 0 0 0 0 Z C J 0 0 X
1—1 CO z CO 1—1 03 X

M3 CO LU CM M3 CM 03 4 4 4 M3 03
— 4 ~ 4 •M iTi iTi M3 M3 M3 Mi N- . r - H /■s

1—1 i-i 0 T—1 i-i s 0 0 0 0 0 0 0 Si i—i CM 0 0 ■H
0 Si 0 0 0 0 0 0 0 0 0 0

* * * * 4c 4 : 4c
* h- * 0 5k * 0 0 cm ro 4 in M3 h- CO 4= 4c i> 0 4c
* M3 5k M3 5k 5k Mi r - H H H H H H r - 4c 4c r - 03 sk
* 5k 5k 5k 5k 4c 4c
* * =k 5k 4= 4c 4=

1)
SC

AN
 R

ES
UM

E
*W

*W
*W

*W
*W

*W
*W

*W
*W

*W
^W

*W
*W

*W
*W

*W
*W

*W
*W

*W
*W

#W
^W

*W
*W

*W
^‘l
'

00
08

00
 E

ND
 P

RO
GR

AM
.

TRS-80 Model I /111 COBOL (RM/COBOL 1.3A) 10/31/80 00:22:43
SOURCE FILE: ERRXMPL OPTION LIST: (T>P*0=2iX

ADDRESS SIZE DEBUG ORDER TYPE NAME

0 FILE INPUT-FILE
>0000 80 GRP 0 GROUP INPUT-REC
>0006 66 ANS 0 ALPHANUMERIC INPUT-FLD
>0006 66 GRP 0 GROUP AREA-FLDS
>0006 1 ANS 0 ALPHANUMERIC AREA-C
>0007 4 ANS 0 ALPHANUMERIC AREA-A
>000B 61 ANS 0 ALPHANUMERIC AREA-B

0 FILE OUTPUT-FILE
>0050 80 GRP 0 GROUP OUTPUT-REC
>0050 6 NSU 0 NUMERIC UNSIGNED SEQ-FLD
>0056 66 ANS 0 ALPHANUMERIC OUTPUT-FLD

>00 A4 28 ANS 0 ALPHANUMERIC INPUT-NAME

>00C0 28 ANS 0 ALPHANUMERIC OUTPUT-NAME

>00DC 6 NSU 0 NUMERIC UNSIGNED COUNT

>00E2 4 ANS 0 ALPHANUMERIC LARGE-VALUE

>00E6 166 ANS 0 ALPHANUMERIC PIC-ERROR

■-00EE 4 ANS 0 ALPHANUMERIC INPUT-STATUS

>00F2 ANS 0 ALPHANUMERIC OUTPUT--STATU!

>00F4 6 NSU 0 NUMERIC UNSIGNED SEQ-VALUE

RESERVED WORD CONFLICT *W*W*W*W*W*W*W*W*W*W*W*W COUNT

ILLEGAL PERFORM *E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E INPUT-CHECK

UNDEFINED PROCEDURE *E*E*E*E*E*E*E*E*E*E*E*E*E*E 0150

VALUE ERROR *E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*F_ LARGE-VALUE

FILE STATUS ERROR *E*E*E*E*E*E*E*E*E*E*E*E*E*E*E INPUT-FILE

READ ONLY BYTE SIZE = >017E

READ/WRITE BYTE- SIZE = >0138

OVERLAY SEGMENT BYTE SIZE = >0000
TOTAL BYTE SIZE ~ >02B6

.11 ERRORS

'8 WARNINGS

PAGE 3

41

TRS--80 Model
SOURCE FILE:

I/111 COBOL
ERRXMPL

(RM/COBOL 1.3A)
OPTION

10/31/80
LIST: (T * P» 0=

00:22:43
:2» X

CROSS REFERENCE /DECL/ *DEST*

AREA-A /0029/
AREA-B /0030/
AREA--C /0028/
AREA-FLDS /0027/
COUNT /0042V *0073* 0076
INPUT-CHECK 0068
INPUT-FILE /0012V /0021/
INPUT-FLD /0026/ /0027/ 0071
INPUT-NAME *0013* /0040/ *0057*
INPUT-REC /0024/
INPUT-STATUS *0014* /0045/
LARGE-VALUE /0043/
OUTPUT-FILE /0015/ /0032V 0061
OUTPUT-FLD /0037/ *0071*
OUTPUT-NAME *0016* /0041/ *0059*
OUTPUT-REC /0035/ *0062* *0072*
OUTPUT-STATUS *0017* /0046/
PIC-ERROR /0044V
SEQ-FLD /0036/ *0070*
SEO-VALUE /0047/ *0063* *0069*
0100 /0051/
0150 0080
0200 /0065/ 0074
0300 0067 /0075/

0070

PAGE

42

APPENDIX B

TRS-80 (R) MODEL I/III COBOL

SAMPLE SESSION

Radio/haek

TRS-80 ”

This section will take you through a compilation and execution
session, starting with a COBOL source file. We will use the
sample program, CALCXMPL/CBL, included with your COBOL
diskettes.

Note for Model III users: References will be made to the
separate Development and Runtime diskettes. Since Model III
diskettes will hold the complete system, your one diskette will
take the place of both the Development and Runtime diskettes.

STEP ONE. Create the source file.
In this session, we will use the sample program, CALCXMPL/CBL,
for the source file. To create your own source file, follow the
instructions in the COBOL Editor (CEDIT) User's Guide.

STEP TWO. Compile.
When compiling (RSCOBOL), the COBOL Development diskette must be
in one of the drives. The program being compiled must also be
on a diskette, although not necessarily on the same one as
RSCOBOL. Our sample program is on both the Development and the
Runtime diskettes. Also, there must be some free space on one
of the diskettes for the Compiler to write the compiled version
of your program.
With the COBOL Development diskette in one of the drives, type
under TRSDOS READY:

RSCOBOL CALCXMPL (T)
The T option causes a listing to be displayed at the console.
See Section 1.3.2 in the COBOL USER'S GUIDE for other Compiler
options that are available.
This command creates an object file that can be executed by the
COBOL Runtime. This file will automatically be named
CALCXMPL/COB. Compiled programs are always written to disk with
the /COB extension and will be written on the first available
diskette that has enough free space.

STEP THREE. Execute.
Model I users take out the Development diskette and replace it
with the Runtime diskette. Also be sure that the diskette

Radio /hack
44

TRS-8CD M

containing the newly compiled version of our sample program is
still on one of the drives.
Under TRSDOS READY, type:

RUNCOBOL CALCXMPL
The Runtime will execute the program CALCXMPL/COB. See Section
2.3.1 of the COBOL User's Guide for Runtime options.

Radio /hack
45

TRS-80

C O N V E R S I O N S E S S I O N
F O R M O D E L I I I U S E R S

The diskettes you have contain all the files needed to
compile and run COBOL programs. However, these diskettes are formatted for a Model I and need to be converted to Model
Illbefore you can use them. You will need one blank formatted
diskette for this procedure.

First, BACKUP your Model III system diskette to the blank
diskette. Take out your old Model III system disk and move the
newly created system disk to drive 0. Use the PURGE:0 (SYS)
command to delete all user files and all unnecessary system
files. CONVERT/CMD is the only system file that is essential
for the following procedure. You must have at least 130 free
granules of space on the new system diskette. Check the
directory to see how much space you do have.

Place the COBOL Development diskette in drive 1. Then use
the conversion utility as shown below.

TRSDOS Ready
CONVERT <ENTER>

The conversion utility will return with a prompt for Source
Drive (you will enter 1) and Destination Drive (you will enter
0). The password on both the Development and the Runtime
diskette is 'PASSWORD'.

The utility will convert the files to Model III format,
writing the converted version onto the diskette in drive 0.
Some of the files are passworded and the utility will prompt you
as in the example shown below:

Enter Password for RSCOBOL/CMD ?
Just press <ENTER> and the files will be converted and

transferred. Passwording does not prevent you in any way from
using them.

Five of the files are passworded and you will have to press
<ENTER> after every prompt. Four files are not passworded and
will automatically be converted and written on drive 0.

When the conversion is complete the utility displays a

Radio /hack
46

TRS-80 ™

message telling you that it is done and then returns control to
TRSDOS.

Put the COBOL Runtime diskette in drive 1 and once again
use the CONVERT utility the same way as described above. There
are some passworded files on this diskette also, so you will
have to press <ENTER> when asked for the file passwords. Also,
some of the files are stored on both diskettes. When trying to
CONVERT the file the second time you will get the following
message:

CALCXMPL/COB Existing file. Use it (Y/N/Q)?
Type N to use the previously converted file. The Y option

will Convert the file again unnecessarily and the Q option will
stop the CONVERT utility. To have more free space on the
diskette you may PURGE the CONVERT utility when the conversion
is complete, but it is not necessary. Label this new diskette
to show that it contains the complete COBOL package.

We suggest that you make backups of your new COBOL diskette
or keep the Model I version COBOL diskettes. This will give you
some security against losing your COBOL package.

You may want a diskette with just the minimal Runtime files
on it for running previously compiled programs. You will need a
blank formatted diskette. BACKUP your COBOL diskette onto this
new diskette. Then use the PURGE command to delete all but the
necessary Runtime files. The only files that you need to keep
on the new diskette are RUNCOBOL/CMD and RSCBLDnn/OBJ. (nn
refers to the version number.)

Remember that only programs that have been already compiled
using RSCOBOL can be used with this Runtime diskette.

Radio /hack
47

TRS-80 m

TRS-80 (R) MODEL I/III COBOL

C E D I T

SOURCE PROG-RAM EDITOR

USER'S GUIDE

(C) COPYRIGHT 1980, 1981 BY RADIO SHACK
A DIVISION OP TANDY CORPORATION

Radio/haod

TRS-80 MODEL I/III COBOL CEDIT
TRS-80 m

TABLE OF CONTENTS
INTRODUCTION 3
SOURCE FILE FORMAT 3
TO START THE E D I T O R 4
MODES OF OPERATION...........................5
USING THE COMMAND M O D E 6
SPECIAL KEYS IN THE COMMAND M O D E 7
COMMANDS..................................... 8

B (PRINT BOTTOM LINE) 8
C (CHANGE) 8
D (DELETE) 9
E (EDIT) 9
F (FIND)............................... 10
H (HARD COPY) 11
I (INSERT)............................. 11
L (LOAD FROM D I S K) 12
M (MEMORY USED/FREE) 13
N (RENUMBER)........................... 13
P (PRINT TO DISPLAY).................. 14
Q (QUIT SESSION) 14
R (R E P L A C E) 14
T (PRINT TOP L I N E) 15
W (WRITE TO D I S K) 15
X (CHANGE WITH PROMPTS) 15

Radio /hack

PAGE 2

TRS-80 MODEL I/III COBOL CEDIT
TRS-SO ™

INTRODUCTION

CEDIT lets you create and edit COBOL source files (the files
that are input to the COBOL Compiler).

Capabilities and features:
. Allows you to load in ("chain") multiple source files.
. Single-key abbreviations for many commands
. Powerful intra-line editing mode
. "M" command informs you of memory used/free at any time
. Global string find/change commands
. Editor provides line numbers in the range 0-65535

SOURCE FILE FORMAT

Source files are written to disk in the format required by the
COBOL compiler, as follows:
1. Files are fixed-length record (FLR) type, LRL=256 , as
described in the TRSDOS Reference Manual.
2. Each record in the file corresponds to one line of source
program. The first six data bytes in a record represent the
sequence number in ASCII form followed by the COBOL source code.
The carriage return (<ENTER>) used to terminate the line during
line insertion is stored.
3. Text is stored exactly as it is displayed on the video, e.g.,
spaces are stored as spaces, not as a tab character.

Radio/hack

PAGE 3

TRS-80 MODEL I/III COBOL CEDIT
TRS-BO ™

TO START THE EDITOR

The editor program is included on the COBOL program diskette.
It has the file name CEDIT.
To use the editor, put the COBOL diskette into one of your
drives, and under TRSDOS READY, type:

CEDIT
The editor will start up with the prompt:

TRS-80 Cobol Editor Ver v.r
Copyright (c) 1980 Tandy Corp.
>

Where v is the version and r is the release number. The >
indicates you are in the command mode.

Radio /hack

PAGE 4

TRS-80 MODEL I/III COBOL CEDIT
TRS-SO ™

MODES OF OPERATION

There are three modes of operation:
. COMMAND, for entering the editor commands
. INSERT, for entering your text lines
. EDIT, for interactive editing of a line of text

I COMMAND MODE /
The > prompt followed by the blinking cursor indicates the
editor is waiting for you to type in a command. Every command
must be completed by pressing <ENTER>. To cancel a command,
press <BREAK>.

/INSERT MODE t
You enter text one line at a time; a line consists of up to 255
characters, including the five-digit line number provided by
CEDIT. Line numbers can range from 0 to 65535.
The I command puts you in the insert mode. When you start
inserting a line, the editor displays the five-digit line number
followed by the blinking cursor. Your text can begin in column
seven. (See the COBOL Language Reference Manual for
column-field uses in COBOL source programs.)
To store the current line, press <ENTER>. The editor will
display the next line number, and you can begin inserting into
that line. To cancel the current line and return to the command
mode, press <BREAK>. See I Command for details.

/EDIT MODE /
There are many powerful edit sub-commands— identical in most
cases to those in Model I and III BASIC's Edit Mode. There is
also a sub-edit insertion mode in which the keys you type are
inserted into the line at the current cursor position.
To start editing a line, use the E command. After editing the
line, press <ENTER> to save the corrected line and return to the
command mode. To cancel all changes made and return to the
command mode, press <Q>. For further details, see E Command.

RadM/haek*

PAGE 5

TRS-80 MODEL I/III COBOL C E D IT

TRS-SO ™

USING THE COMMAND MODE

Special terms used in the command descriptions:

"text", "text buffer", "text area"
All refer to the COBOL source program currently in RAM.

"current line"
The line most recently inserted, displayed or referenced in a
command. When there is no text in RAM, current line is set to
100. Immediately after a file is loaded, the current line is
set to the beginning of the text.

"increment"
The value which is added to the current line number whenever the
editor needs to compute a new line number. After startup,
loading a new file, and when there is no text in RAM, the
increment is set to 10.

"line-reference"
Either an actual line number from 0 to 65535, or one of the
following special abbreviations:

Symbol Meaning
Beginning line of text (lowest-numbered line)
. Current line
* Last line of text (highest-numbered line)

"line-range"
This can be either a single-line reference or a pair of
line-references separated by a colon:

Sample
Command Meaning
P100 Prints line 100 only
P100:300 Prints all lines from 100 to 300
P#:. Prints all lines from beginning to current

"delimiter"
A special character used to delimit (mark the beginning and end
of) a string. Any of the following characters can be used:

Radio /hack

PAGE 6

TRS-80 MODEL I/III COBOL C E D IT

TRS-8Q ™

! " # $ % & ' ()* + , - . / : ;< = > ?
Whichever character is used to mark the beginning of a string
must also be used to mark the end of the string.

Sample use... Marks this string...
'THIS " MARK'
/X'8000'/
& &

THIS " MARK
X'8000 '

(seven blanks)
(The symbol represents a blank space. It is used only where
necessary for emphasis or illustration.)

SPECIAL KEYS IN THE COMMAND MODE

<BREAK>
Press this key to cancel the command you are entering, or to
abort a command which is currently being executed.

<right-arrow>
Advances the cursor to the next four-column boundary
(boundaries are at columns 4, 8, 12, ...)

<ENTER>
Pressing this key at the beginning of a command line displays
the current line.

<up-arrow>
Pressing this .key at the beginning of a command line displays
the line which precedes the current line.

<down-arrow>
Pressing this key at the beginning of a command line displays
the next line after the current line.

shift<left-arrow>
Erases the command you are entering.

<@>
Pauses H and P commands. Press any other key to continue.

---Radio/hack------------------------------

PAGE 7

TRS-80 MODEL I/III COBOL CEDIT

TRS-80 m

COMMANDS

Note: Spaces are not significant in command lines. For example,
P 1 : 5

has the same effect as
PI: 5

The P command is explained later on.

B
Displays the bottom line (last line in the text area).

C/search-string/replacement-string/n
Finds, changes, and displays the first n lines, from the current
line, that contain search-string. In each of these lines
search-string is changed to replacement-string. ONLY THE FIRST
OCCURRENCE OF search-string IN A SINGLE LINE IS COUNTED AND
CHANGED. If the end of text is reached before n finds, the
message "string not found" will be displayed.
Upon completion of the command, the current line is set to the
line of the last find, or to the first line of text when "string
not found" is displayed.
/search-string/ is a sequence of characters delimited by

a matched pair of characters from the set:
I " # $ % & ' () * + , - . / : ; < = > ?

replacement-string/ is a sequence of characters terminated
by the same character used to delimit search-string.

n Tells the maximum number of "changes" you want, n can
be a number or an asterisk. The asterisk means change
and list all occurrences. If n is omitted, only the
first occurrence is changed and listed.
Sample
Commands Notes
C/VAR=/NET=/ Changes the first occurrence of

"VAR=" to "NET=" in the first
line that contains it.

C"VAR="NET=" Same as above.
-------------------- ------------- Radio /h a ck -------------------

PAGE 8

TRS-80 MODEL I/III COBOL C E D IT

TRS-SO M
C/RETRY/R/4 Changes the first occurrence of

"RETRY" to "R" in the first four
lines that contain it.

C/MISPELING/MIS-SPELLING/*
Changes the first occurrence of
"MISPELING" to "MIS-SPELLING" in
every line that contains it.

C/EXTRA//* Changes the first occurrence of
"EXTRA" to "" (null string)
i.e., deletes the first "EXTRA" in
line that contains it.

every

D line-range
Deletes lines in the specified range and renumbers the following
lines using the current increment. If line-range is omitted,
the current line is deleted.

Sample
Commands Notes
D . or D
D2
D98:115
D1000:*

Deletes the current line.
Deletes line number 2.
Deletes lines found in the range 98 to
115.
Deletes all lines numbered 1000 or
higher to end of text.

E line-reference
Starts edit mode using the specified line. If line-reference is
omitted, the current line is used.
Edit sub-commands:

<ENTER> Ends editing and returns to command mode.
shift<up-arrow> Causes escape from sub-edit insertion

(X, I, and H sub-commands) and returns to
edit mode.

n < SPCBAR> Advances cursor n columns.
If n is omitted, 1 is used.

L

X

I

"Lists" working copy of the line and
starts a new working copy.
"Extends" line: positions cursor to end
of line and enters sub-edit insertion mode.
Use shift<up-arrow> to escape to edit mode.
Enters sub-edit "insertion" mode at the
---------Radio /h a ck --------------------------------------

PAGE 9

TRS-80 MODEL I/III COBOL CEDIT

current cursor position; use shift<up-arrow>
to escape to edit mode.

A ("Again") Cancels changes and starts a new
working copy of the line.

E ("End") Saves edited line and exits to
command mode, > prompt.

Q ("Quit") Cancels changes and returns to
command mode, > prompt.

H "Hacks" remainder of line beginning at
current cursor position and enters sub-edit
insertion mode. Use shift<up-arrow> to
escape to edit mode.

nD "Deletes" n characters beginning at current
cursor position. If n is omitted, 1 is used.
The deletion is not echoed; use <L> to see
the line with characters deleted.

nC "Changes" next n characters from the current
cursor position, using the next n characters
typed. If n is omitted, 1 is used.

nSc ("Search") Moves cursor to nth occurrence of
character c. Search starts at next character
after the cursor. If n is omitted, 1 is
used.

nKc ("Kill") Deletes all characters from current
cursor position up to nth occurrence
of character c, counting from current
cursor position. If n is omitted, 1 is
used. The deletion is not echoed; use <L>
to see the line with characters deleted.

--TRS-80 ™--

F/search-string/n
Finds and displays the first n lines which contain
search-string, starting at the current line. ONLY THE FIRST
OCCURRENCE OF search-string IN A SINGLE LINE IS COUNTED. If the
end of text is reached before n finds, the message "string not
found" will be displayed.
Upon completion of the command, the current line is set to the
line of the last find, or to the first line of text when "string
not found" is displayed.
/search-string/ is a sequence of characters delimited by
---Radio /hack--

PAGE 10

TRS-80 MODEL I/III COBOL C E D IT

-------------------TRS-SO M------------
a matched pair of delimiters chosen from the set:
I " # $ % & ' ()* + , - . / : ;< = > ?

n Tells the maximum number of "finds" you want. n can be a
number or an asterisk. The asterisk means find and list all
occurrences. If n is omitted, only the first occurrence is
listed.
Sample
Commands Notes
F /V A R = /

F " VAR = "
F/RETRY/4

F/MISPELING/*

Finds and displays the first line that
contains the string "VAR=".
Same as above.
Finds and displays the first eight lines
containing at least one occurrence of
"RETRY".
Finds and displays every line containing
at least one occurrence of "MISPELING".

H line-range
("Hard-copy") Lists to the printer all lines found in the
specified range. If line-range is omitted, all the lines after
and including the current line are printed.
The printer should be initialized (with FORMS) before you
execute this command.

Sample
Commands Notes
H # : *
H7020
H672:800

Lists all lines to the printer.
Lists line 7020 to the printer.
Lists all lines found in the range 672 to
800 .

I start-line, increment
Starts the insert mode.
start-line is a line-reference telling the editor where to begin

inserting into the text. If omitted, the current line
is used.

,increment is a number telling the editor how to compute
successive line numbers. If omitted, the current increment
is used.

-- Radio /h a ck --
PAGE 11

TRS-80 MODEL I/III COBOL C E D IT

TRS-80 ™
next line number (start-line + increment).
Special Keys in the Insert Mode
-> Advances the cursor to the next eight-column

boundary (8, 16, 24, ...).
shift <- Erases the line and starts over.
<- Backspaces the cursor and erases the character.
<ENTER> Marks the end of the current line. The editor will

store the current line and start a new one, using
increment to generate the next line number.

Overwriting lines
An automatic line numberer is provided to prevent you from
accidentally overwriting lines already entered. If a line
number conflict occurs the complete file will be renumbered from
the current start-line by the current increment.

Sample
Commands Notes
I
Ir 1

145,2

1100

Start inserting at current line number,
using current increment.
Start inserting at current line number,
using 1 as an increment. If current line
number is in use, start with current line
plus 1.
Start inserting at line 45 with an
increment of 2. If line 45 is in use,
start with line 47.
Start inserting at line 100, using the
current increment. If line 100 is in
use, start with 100 plus increment.

L filespec
Loads a source file from disk. If there is already text in RAM,
the editor will ask whether you want to chain the new text onto
the end of the old, or clear out the old first. If you chain
the new text onto the old, the line numbers will start at the
current start-line and be incremented by the current increment.
filespec is a TRSDOS file specification for a FLR text file.

The file may have been created by this COBOL editor or by
another means. However, it must be in the COBOL source file
format. (See Source File Format.)

Radio/haelf
PAGE 12

TRS-80 MODEL I/III COBOL CEDIT

TRS-80
Sample
Commands
L DEMO/BAS:1
L XDATA

Notes
Load DEMO/BAS
Load XDATA

from drive 1.

M
Prints the number of characters in the source text (excluding
the editor's line numbers) and the amount of memory free for
text storage.

Sample
Command Notes
M A typical response in a 48K system

might look like this:
000427- TEXT
039383- MEMORY
Meaning you have 427 bytes of text, and
39383 free bytes of memory available.

N start-line,increment
Renumbers the entire text.
Note: The renumbering commands DO NOT RENUMBER LINE REFERENCES
inside your program text; do not use them unless you are not
concerned wth line references (GOTO, IF...THEN ..., GOSUB,
etc.). To renumber your program properly, use the Compiler
COBOL RENUMBER command.
start-line becomes the lowest line number when the text is

renumbered. If start-line is omitted, the current line
number is used.

increment is used in computing successive line numbers. If
omitted, the current increment is used.

The current line before numbering is also the current line after
renumbering.

Sample
Commands Notes
N
N100

Repeats the last renumbering command.
Renumbered text will start with line 100;
successive lines computed with the
---------Radio /h a ck -----------------------------------

PAGE 13

TRS-80 MODEL I/III COBOL C E D IT

current value of increment.
N100,25 As above; line numbers at increments

of 25.

---TRS-80 ---

P line-range
Prints the specified lines to
omitted, 14 lines starting at

the display. If line-range is
the current line are displayed.

Sample
Commands Notes
P
P233
P.
P*
P140:615

Prints 14 lines starting at current
line.
Prints line 233.
Prints the current line.
Prints the last line.
Prints the lines within the specified
range. Lines 140 and 615 don't have to
be existing line numbers.

Q

Terminates session and returns to TRSDOS. The source text is
not written to disk.

R line-reference, increment
Replaces contents of the specified line and continue in insert
mode. If line-reference is omitted, the current line is used.
If increment is omitted, the current increment is used. Also
renumbers the complete file using the current start-line and the
new increment.
The R command is equivalent to the D (delete) command followed
by the I (insert) command. When you enter the command, the
editor deletes the specified line and puts you into the insert
mode, starting with the line just deleted.
After you press <ENTER>, the editor will contine in the insert
mode, prompting you to enter the text of the next line number.
To escape from the insert mode, press <BREAK>.

Sample
Commands Notes
R125,3 Prompts you to insert replacement

text for line 125. Subsequent line
numbers will be generated with an
increment of 3.

---------------------------------- Radio /h a ck ------------------------
PAGE 14

TRS-80 MODEL I/III COBOL CEDIT

-----------------------TRS-80 ™-------------------
R* Prompts you to insert replacement

text for the highest numbered line in
the text area; subsequent lines will
be generated using the current increment.

T
Displays the top line (first line in the text area)

W filespec
Writes the text in RAM into the specified file.
filespec is a TRSDOS file specification. If file already exists,

its previous contents will be lost.
Sample
Commands Notes
W DEM0/CBL:1 Save DEMO/CBL onto drive 1.
W XDATA Save XDATA/CBL onto first available drive.

X/search-string/replacement-string/n
This command is exactly like the C (Change) command, except that
it displays the line to be changed and queries you (Change?)
each time it finds search-string. If you answer Y, the line will
be changed; any other answer leaves the line unchanged. In
either case, the process continues until all first occurrences
have been found.

Sample
Command Notes
X/MISPELING/MSP/*

Changes the first occurrence of
"MISPELING" to "MSP"
in every line that contains it, but asks
you to confirm each change before it
is made.

Radio /hack
PAGE 15

I I I I

O I. 8.A IM G l J A, G E:

:9 S .OCZÜ M o h:::S & 1

M A IM U A I .

JANUARY? 1981

COPYRIGHT NOTICE

TRS-80 (R) Model I/III COBOL
(C) (P) 1980, 1981 Ly Ryan-McFarland Corporation, Aptos,
California 95003; Licensed to Tandy Corporation* Fort
Worth, Texas 76102. All rights reserved.

TRS-80 (R) Model I/III TRSDOS DISK OPERATION SYSTEM
(TRSDOS) (C) (P) 1978, 1980 Ly Tandy Corporation. All
rights reserved.

TRS-80 (R) Model I/III COBOL LANGUAGE REFERENCE MANUAL
(C) 1980, 1981 Ly Ryan-McFarland Corporation; Licensed
to Tandy Corporation. All rights reserved.

Reproduction or use, without express written permission
from Tandy Corporation of any portion of this manual is
prohibited. While reasonable efforts have been taken in
the preparation of this manual to assure its accuracy,
Tandy Corporation assumes no liability resulting from any
errors or omissions in this manual, or from the use of the
information obtained herein.

PREFACE

This reference document describes the COBOL Language as
implemented on the Radio Shack TRS-80 Model I and Model III
Microcomputer under the TRSDOS Disk Operating System.

It assumes the reader is familiar with the COBOL Language,
the general operation of the TRS-80 Model I or Model III
Microcomputer, and the TRSDOS Operating System. The reader
is specifically referred to the following publications:

TRS-80 Model I/III COBOL User’s Guide
. TRS-80 Model I or Model III Operation Manual
. TRS-80 Model I or Model III Disk System Owner’s Manual

ACKNOWLEDGEMENT

Much of the material in this manual is extracted from the ANSI
X3. 23-1974 C030L Standard. Accordingly* the following
acknowledgement is made as required in that document.

COBOL is an industry language and is not the property of any
company or group of companies* or of any organization or group of
organi zations.

No warranty* expressed or implied* is made by any contributor or
by the CODASYL Programming Language Committee as to the accuracy
and functioning of the programming system and language. Moreover*
no responsibility is assumed by any contributor* or by the
committee* in connection therewith.

The authors and copyright holders of the copyrighted material used
herein

FLOW-MATIC (trademark of Sperry Rand C o r p o r a t i o n)* Programming
for the UNIVAC I and II* Data Automation Systems copyrighted
1958* 1959* by Sperry Rand Corporation* IBM Commercial
Translator Form No. F28- 8013* copyrighted 1959 by IBM* FACT*
DSI 27A5260-2760* copyrighted 1960 by M i n n e a p o 1is-Honeywe 11

have specifically authorized the use of this material in whole or
in part* in the COBOL specifications. Such authorization extends
to the reproduction and use of COBOL specifications in programming
manuals or similar publications.

TABLE OF CONTENTS

Page
I. I NTRODUCTION.. 1

INTRODUCTION TO C O B O L 2
What is C O B O L ? 2
The History of C O B O L 3
The Standardi zat ion of C O B O L 4

CONVENTIONS USED IN THIS M A N U A L 5
W o r d s .. 5
Brackets and B r a c e s 5
E l l i p s e s .. 5
P u n c t u a t i o n .. 6
Special C h a r a c t e r s 6
System Dependent Information.................... 6

II. THE STRUCTURE OF THE COBOL L A N G U A G E 7

THE LANGUAGE S T R U C T U R E 8
Character S e t 8
S e p a r a t o r s ... 10
Charac ter-Str ings.................................. 11
COBOL W o r d s .. 11
User W o r d s ... 12
Reserved W o r d s 15
L i t e r a l s .. 18
Picture S t r i n g 19
C o m m e n t - E n t r y 19
System N a m e s ... 19

THE PROGRAM STRUCTURE. .
Source Format.....
Statements........
Sentences.........
Clauses and Entries
Paragrap h s........
Sections..........
Divisions.........

20
20
22
23
23
24
24
24

THE COPY STATEMENT 25

III. IDENTIFICATION D I V I S I O N 27

I NTRODUCTION.. 28

PROGRAM I DENTIFICATION................................. 28
The PROGRAM-ID P a r a g r a p h 29
The AUTHOR, INSTALLATION, DATE-WRITTEN,

SECURITY P a r a g r a p h s 29

IV. ENVIRONMENT D I V I S I O N 30

I NTRODUCTION.. 31

CONFIGURATION S E C T I O N 32
The SOURCE-COMPUTER P a r a g r a p h 32
The OBJECT-COMPUTER P a r a g r a p h 33
The SPECIAL-NAMES P a r a g r a p h 34

INPUT-OUTPUT S E C T I O N 36
The FILE-CONTROL P a r a g r a p h 36
The Sequential File Control E n t r y 37
The Relative File Control E n t r y 39
The Indexed File Control E n t r y 41
The 1-0 CONTROL P a r a g r a p h 44

V. DATA D I V I S I O N ... 45

I NTRODUCTION.. 46

FILE S E C T I O N .. 48
The File Description E n t r y 49
The BLOCK CONTAINS C l a u s e 50
The RECORD CONTAINS C l a u s e 51
The LABEL RECORD C l a u s e 52
The VALUE OF C l a u s e 52
The DATA RECORDS C l a u s e 53

W ORKING-STORAGE S E C T I O N 54

LINKAGE S E C T I O N .. 54

RECORD DESCRIPTION E N T R Y 55
L e v e l - N u m b e r s 55
Elementary Items.................................... 55

77 LEVEL DESCRIPTION E N T R Y 56

THE DATA DESCRIPTION E N T R Y 57
The L e v e l - N u m b e r 60
The Data Name or FILLER C l a u s e 61
The REDEFINES C l a u s e 62
The PICTURE C l a u s e 64
The USAGE C l a u s e 75
The SIGN C l a u s e 77
The OCCURS C l a u s e 78
The SYNCHRONIZED C l a u s e 80
The JUSTIFIED C l a u s e 82
The BLANK WHEN ZERO C l a u s e 83
The VALUE IS C l a u s e 84
The RENAMES C l a u s e 87

DATA S T R U C T U R E S .. 89
Classes of D a t a 89
Representation of Numeric Items................. 90
Representation of Algebraic S i g n s 90
Standard Alignment R u l e s 91

Q U A L I F I C A T I O N ... 92

S U B S C R I P T I N G .. 94

INDEXING... 95

IDENTIFIER... 96

C O N D I T I O N - N A ME ... 97

TABLE H A N D L I N G ... 98

PROCEDURE D I V I S I O N 101

THE PROCEDURE D I V I S I O N 102
S t r u c t u r e ... 103
D e c l a r a t i v e s ... 104
P r o c e d u r e s ... 104
E x e c u t i o n ... 104

PROCEDURE R E F E R E N C E S 105

S E G M E N T A T I O N .. 107
S e g m e n t s 107
Segmentation C l a s s i f i c a t i o n 108
Segmentation C o n t r o l 108
Restrictions on Program F l o w 108

THE USE S T A T E M E N T 110

ARITHMETIC S T A T E M E N T S 112
Arithmetic E x p r e s s i o n s 112
Arithmetic O p e r a t o r s 113
Formation and Evaluation R u l e s 113

C O N D I T I O N A L S .. 114
Relation C o n d i t i o n 115
Class C o n d i t i o n 118
Condition-name (Conditional V a r i a b l e) 119
Switch-Status C o n d i t i o n 120
Complex C o n d i t i o n s 120
Negated Simple C o n d i t i o n s 121
Combined and Negated Combined

C o n d i t i o n s 121
Condition Evaluation R u l e s 122

SEQUENTIAL O R GANIZATION INPUT-OUTPUT.............. 123
F u n c t i o n .. 123
O r g a n i z a t i o n ... 123
Access M o d e .. 123
Current Record P o i n t e r 123
1-0 S t a t u s ... 124

RELA T I V E O R G A N IZATION I NPUT-OUTPUT................. 126
F u n c t i o n .. 126
O r g a n i z a t i o n ... 126
Access M o d e s ... 126
Current Record P o i n t e r 127
1-0 S t a t u s ... 127
The INVALID KEY C o n d i t i o n 129
The AT END C o n d i t i o n 130

INDEXED ORGANIZATION I NPUT-OUTPUT.................. 131
F u n c t i o n .. 131
O r g a n i z a t i o n ... 131
Access M o d e s ... 131
Current Record P o i n t e r 132
1-0 S t a t u s ... 132
The INVALID KEY C o n d i t i o n 136
The AT END C o n d i t i o n 136

PROCEDURAL S T A T E M E N T S 137
ACCEPT. . . FROM S t a t e m e n t 137
ACCEPT Statement (Terminal I-O)................ 139
ADD S t a t e m e n t 145
ALTER S t a t e m e n t 149
CALL S t a t e m e n t 150
CLOSE Statement (Sequential 1-0).............. 152
CLOSE Statement (Relative & Indexed I-O). . . . 154
COMPUTE S t a t e m e n t 155
DELETE Statement (Relative & Indexed I-O)... 157
DISPLAY Statement (Terminal I-O).............. 158
DIVIDE S t a t e m e n t 162
EXIT S t a t e m e n t 165
GO TO S t a t e m e n t 166
IF S t a t e m e n t ... 167
INSPECT S t a t e m e n t 169
MOVE S t a t e m e n t 177
MULTIPLY S t a t e m e n t 182
OPEN Statement (Sequential I-O)................ 184
OPEN Statement (Relative & Indexed I-O)..... 188
PERFORM S t a t e m e n t 192
READ Statement (Sequential I-O)................ 203
READ Statement (Relative & Indexed I-O)..... 205
REWRITE Statement (Sequential I-O)............ 209
REWRITE Statement (Relative & Indexed I-O).. 211
SET S t a t e m e n t 213
START Statement (Relative & Indexed I-O).... 215
STOP S t a t e m e n t 217
SUBTRACT S t a t e m e n t 218
UNLOCK S t a t e m e n t 222
WRITE Statement (Sequential I-O).............. 223
WRITE Statement (Relative & Indexed I-O). . . . 226

APPENDIX A: ERROR M E S S A G E S 229

APPENDIX B: RESERVED W O R D S 237

APPENDIX C: G L O S S A R Y .. 242

APPENDIX D: COMPOSITE LANGUAGE SKELETON............ 267

I

INTRODUCTION

PAGE 1

INTRODUCTION TO COBOL

What is COBOL?

COBOL (COmmon Business Oriented Language) is an English oriented
programming language designed primarily for developing business
applications on computers. It is described as English oriented
because its free form enables a programmer to write in such a way
that the final result can be read easily and the general flow of
the logic can be understood by persons not necessarily as closely
allied with the details of the problem as the programmer himself.

Because COBOL is a programming language it can be translated to
serve as communication between the programmer and the computer.
The COBOL program (the source program) which has been written by
the programmer is input to the COBOL compiler. The COBOL compiler
then translates the COBOL program into a machine readable form
(the object program).

Although each computer has its own unique COBOL compiler program*
an industry-wide COBOL effort has resulted in a degree of
compatibility so that a COBOL source program can be exchanged
among different computers of one manufacturer or among computers
of different m a n u f a c t u r e r s.

A COBOL program is both a readable document and an efficient
computer program. Throughout the study of the COBOL language# it
is important to keep these two basic capabilities of COBOL in mind
and to observe the close relationship between them.

The readability factor of the COBOL language facilitates
communication not only between programmer and management# but also
among programmers# with a minimum of additional documentation. The
readability factor need not affect the other equally important
capability of constituting an efficient computer program. It is
precisely here that the attention of a good COBOL programmer is
centered. He can produce a solution in the form of a
well-integrated COBOL program by combining the
following: knowledge of the problem* programming technique*
capability of the equipment* and familiarity with the available
elements of the COBOL language.

PAGE 2

The History of COBOL

Development of the COBOL programming language is a continuing
process performed by the Programming Language Committee (PLC) of
the Conference on DAta SYstems Languages (CODASYL). This committee
is made up of representatives of computer manufacturers and
computer users.

The first version of the COBOL programming language to be
published by CODASYL was called C0B0L-60. The second version;
called COBOL-61; contained changes in the organization of the
Procedure Division and thus was not completely compatible with
C O B O L —60.

In 1963 the third version; called COBOL-61 Extended; was released.
It was basically COBOL-61 with the addition of the sort feature;
the addition of the report writer feature; and the modification of
the arithmetics to include multiple receiving fields and the
CORRESPONDING option.

The fourth version of the COBOL programming language; COBOL-65;
consists of COBOL-61 Extended with the inclusion of a series of
options to provide for the reading; writing; and processing of
mass storage files and the addition of table handling features.

Beginning in 1968 the CODASYL COBOL Programming Language Committee
began to report its developmental work in a Journal of
Development. The first report to be published was the CODASYL
COBOL Journal of Development — 1968. This journal is the official
report of the CODASYL COBOL Programming Language Committee and it
documents the developmental activities of CODASYL through July
1968. COBOL-68 is based on COBOL-65 with certain additions and
deletions.

Additional COBOL Journal of Development reports were published in
1969; 1970 and 1973. Each documented the developmental activities
of C0DA8YL from the previous report; resulting in continually
varying COBOL definitions.

PAGE 3

The Standardization of COBOL

In September 1962 the American National Standards Institute (ANSI)
set up a committee to work on the definition of a standard COBOL
programming language. This standardization effort was based on the
technical content of COBOL as defined by CODASYL. In August 1968
an American National Standard COBOL was approved which was based
upon the developmental work of CODASYL through January 1968. This
first version was called American National Standard COBOL 1968.

In May 1974 a revision of American National Standard COBOL was
approved. This revision* called American National Standard COBOL
1974* is based upon the developmental work of CODASYL through
December 1971. The COBOL programming
described in this document is based on
Standard COBOL 1974.

language and
the American

comp i 1 er
National

PAGE 4

CONVENTIONS USED IN THIS MANUAL

This manual presents the language definition and capabilities of
COBOL in a generally accepted syntax consistent with the 1974
American National Standard COBOL document. As a result» COBOL
Syntax is specified by formats employing special notation.

Words

All underlined uppercase words are key words and are required when
the functions of which they are a part are used. Uppercase words
which are not underlined are optional and may or may not be
present in the source program. Uppercase words» whether underlined
or not» must be spelled correctly.

Lowercase words are generic terms used to represent COBOL words»
literals» PICTURE character-strings» comment-entries» or a
complete syntactical entry that must be supplied by the user. When
generic terms are repeated in a general format» a number or letter
appendage to the term serves to identify that term for explanation
or discussion.

Brackets and Braces

When a portion of a general format is enclosed in brackets» C3»
that portion may be included or omitted at the user's choice.
Braces» <>» enclosing a portion of a general format means a
selection of one of the options contained within the braces must
be made. In both cases» a choice is indicated by vertically
stacking the possibilities. When brackets or braces enclose a
portion of a format» but only one possibility is shown» the
function of the brackets or braces is to delimit that portion of
the format to which a following ellipsis applies. If an option
within braces contains only reserved words that are not key words»
then the option is a default option (implicity selected unless one
of the other options is explicitly indicated).

Ellipsis

The ellipsis (...) represents the position at which repetition may
occur at the user's option.

PAGE 5

Punetuation

The punctuation characters comma and semicolon are shown in
formats. Where shown in the formats/ they are optional and may
included or omitted by the user. In the source program these
punctuation characters are interchangeable and either may be
anywhere one of them is shown in the formats. Neither one
appear immediately preceding the first clause of an entry
paragraph.

some
be

two
used
may
or

If desired/ a semicolon or comma may be used between statements in
the Procedure Division.

Paragraphs within the Identification and Procedure Divisions/ and
the entries within the Environment and Data Divisions must be
terminated by the separator period.

Special Characters

The characters '+'/ '-'/ ' > ' > *<*, '='/ when appearing in formats/
although not underlined/ are required when such formats are used.

System Dependent Information

Selected features in ANSI COBOL are inten
implementor/ to accomodate the capabiliti
the host system. These system dependen
the COBOL Users Guide.

ded for
es and
t items

definition by the
restrictions of

are summarized in

PAGE 6

II

THE STRUCTURE OF THE COBOL LANGUAGE

PAGE 7

THE LANGUAGE STRUCTURE

The smallest element in the COBOL language is the character. A
character is a digit« a letter of the alphabet« or a symbol. A
COBOL word is one possible result obtained when one or more COBOL
characters are joined in a sequence of contiguous characters. Just
as English words are determined by rules of spelling« so COBOL
words are formed by following a specific set of rules.

Using the COBOL rules of grammar« the COBOL words and COBOL
punctuation characters are combined into statements« sentences«
paragraphs« and sections. When writing normal English« a failure
to follow the rules of grammar and sentence structure may cause
misunderstanding; the same is true when writing COBOL. It must be
emphasized that a thorough knowledge of the rules of COBOL
structure is a prerequisite to writing a workable COBOL program.

Character Set

The

some

COBOL character set consists of fifty-on'

Digits 0 through 9

Letters A through Z

Punctuation Blank (or space)
9 Comma
9 Semicolon
. Period
If Quote
(Left parenthesis
) Right parenthesis

Special y Greater than
< Less than
+ Plus
- Minus (or hyphen)
* Asterisk
/ Slash (or Stroke)
s Equal
* Currency

>e characters determine the structure of
> constructs« such as comments« other

COBOL program. In

but they have no grammatical meaning.

PAGE 8

Characters are combined to form either a separator or a
character-string.

The COBOL character set is a proper subset of the ASCII character
code set native to the computer. The complete character set may be
used only uiithin non numeric literals and comments. The chart
below gives the hexadecimal and decimal codes for the complete
character set.

larac ter
Hexadec imal

Value
Dec imal
Value Character

Hexadec i m a 1
Va 1 ue

Dec ii
Va 1

Space 20 32 @ 40 64
i 21 33 A 41 65
H 22 34 B 42 66
23 35 C 43 67
% 24 36 D 44 68
7. 25 37 E 45 69
& 26 38 F 46 70
/ 27 39 G 47 71
< 28 40 H 48 72
) 29 41 I 49 73
* 2A 42 J 4A 74
+ 2B 43 K 4B 75
» 2C 44 L 4C 76
- 2D 45 M 4D 77
♦ 2E 46 N 4E 78
/ 2F 47 0 4F 79
0 30 48 P 50 80
1 31 49 Q 51 81
2 32 50 R 52 82
3 33 51 S 53 83
4 34 52 T 54 84
5 35 53 U 55 85
6 36 54 V 56 86
7 37 55 w 57 87
8 38 56 X 58 88
9 39 57 Y 59 89
; 3A 58 Z 5A 90
i 3B 59 C 5B 91
< 3C 60 \ 5C 92
ss 3D 61 3 5D 93
> 3E 62 A 5E 94
? 3F 63 5F 95

PAGE 9

Separators

A Separator
Punctuation

is a string of one or more punctuation characters,

characters belong to the following set:

Space
9 Comma
=S Equal sign
(Left parenthesis

Period
I I Quotation mark (dou
) Right parenthesis
» Semicolon

Separators are

1. A space is
separator»

2. Comma» sem
followed by
explicitly

formed according to the

a separator. Anywher
more than one space may

icolon» and period are
a space. These separat

permitted.

3. Parentheses are separators which
pairs of left and right parenthe
indices» arithmetic expressions or

Left parentheses must be preceded
parenthesis.

fol lowi ng rules:

e a sp ace i s used ais a
be used •

separat ors when immed ia te iy
ors may a p pear only wh en

may app ear only in balanc ed
ses del imi ting subscri pt 5»
c on diti ons

by a sep ara tor sj>ace or le ft

Right
space»

parenthesis must be followed by one of the separators:
period» semicolon» comma or right parenthesis.

4. Quotes are separators which may appear only in balanced pairs
delimiting the nonnumeric literals except when the literal is
c ont inued.

An opening quotation mark must be immediately preceded by a
space or left parenthesis.

A closing quotation mark must be immediately followed by one
of the separators: space» comma» semicolon» period or right
parenthesis.

PAGE 10

5. The separator space may optionally immediately precede all
separators except:

As specified by reference format rules.

As the separator closing quotation mark. In this case# a
preceding space is considered as part of the nonnumeric
literal and not as a separator.

The separator space may optionally immediately follow any
separator except the opening quotation mark. In this case# a
following space is considered as part of the nonnumeric
literal and not as a separator.

Any punctuation character which appears as part of the
specification of a PICTURE character-string or numeric literal is
not considered as a punctuation character# but rather as a symbol
used in the specification of that PICTURE character-string or
numeric literal. PICTURE character-strings are delimited only by
the separators space# comma# semicolon# or period.

These rules do not apply to the characters within nonnumeric
literals# picture strings# or comments.

Charac ter-Str ings

A character-string is a sequence of one or more characters that
form a COBOL word# literal# picture string# or comment. A
character-string is delimited by separators.

COBOL Words

A COBOL word is a character-string of not more than 30
which form either a user word or a reserved word. All
one or the other.

characters
words are

PAGE 11

User Words

User words are compos
and the hyphen charac
hyphen. With the
level-number and se
contain at least one
of user words:

ed of the alphabeti
ter. A user word mu
exception of para
g m e n t - n u m b e r # all
alphabetic charact

c characters#
st not begin
graph-name#
user-defined

er. There are

the numbers#
or end with a
section -name#

words must
twelve types

program-name
file-name
record-name
data-name
paragrap h-name
section-name

cond ition-name
index-name
alphabet-name
te x t-name
1evel-number
segment-numb er

Program-Name

The program-name identifies the COBOL source and object
The name must contain at least one alphabetic character,
first 6 characters are associated with the object program.

program.
Only the

Fi 1e-Name

File-names are th
program. They are
given to the
alphabetic charac

e internal names for files ac
not necessarily the same as

files. File-names must con
ter and must be unique.

cessed by the source
the external names
tain at least one

Record-Name

Rec ord-names
must contain
must be made

are used
at least
unique by

to name data r
one alphabetic
qualification

ecords within
character and#
with the file

a file. They
if not unique#

name.

Data-Name

A group of contiguous
as a unit of data is cal
data-name must conta
References to data items
the appending of subscr
references to data items

or a word o
item# name
t one a

must be made unique
ipts (or indices) or
are called identifi

f binary data treated
d by a data-name. A
lphabetic character,
by qualification or
both. Complete unique

ers.

charac ters
led a data
in at leas

PAGE 12

Paragraph-Name

A paragraph-name is a procedure name that identifies the beginning
of a set of COBOL procedural sentences. If not unique* a
paragraph-name must be made unique by qua 1ification with a
section-name.

Sec t i on-Name

A section-name is a procedure name that identifies the beginning
of a set of paragraphs. Section-names must be unique.

Condition-Name

A condition-name may be defined in the SPECIAL-NAMES paragraph
within the Environment Division or in a level-number 88
description within the Data Division.

A SPECIAL-NAMES condition-name is assigned to ON STATUS or OFF
STATUS of one of eight system software switches.

A level-number 88 condition-name is assigned to a specific value*
set of values* or range of values within a complete set of values
that a data item may assume. The data item itself is called a
conditional variable.

A condition-name is used only in conditions as an abbreviation for
the relation condition which assumes that the associated switch or
conditional variable is equal to one of the set of values to which
that condition-name is assigned.

Index-Name

An index-name names an index associated with a specific table. It
must contain at least one alphabetic character and must be unique.

Alphabet-Name

An alphabet-name is used to specify a character code set. It must
contain at least one alphabetic character and must be unique.

Text-Name

A text-name is the name of a COBOL library text file. It must
correspond exactly to a valid file access-name as described in the
operating system documentation.

PAGE 13

Level-Number

A level-number is used to specify the position of a data item
within a data hierarchy. A level-number is a one- or two-digit
number in the range 01-49* 66* 77 or 88.

Level-numbers 66* 77 and 88 identify special properties of a data
description entry.

Segment-Number

A segment-number specifies the segmentation classification of a
section. It is a one- to two-digit number in the range 01-99.

PAGE 14

Reserved Words

The structure of COBOL governs the use of certain COBOL words
called reserved words. Reserved words» recognized by the COBOL
compiler» aid the compiler in determining how to generate a
program. A programmer cannot devise a reserved word for a COBOL
program; he must use the word designated by the format of the
language. A reserved word must not appear as a user-defined word
within a program. A list of all reserved words recognized by the
compiler is shown in Appendix B.

Five kinds of reserved words are recognized by the compiler:

Key words
Optional words
Connectives
Figurative constants
Special-characters

Key Words

Key words are required elements of COBOL formats. Their presence
indicates specific compiler action.

Optional Words

Optional
presence

words are optional elements of COBOL
has no effect on the object program.

f ormats. Their

Connectives

The connectives OF and IN are used
qualifiers to a user word. The words
connectives and are used in the formati

interchangeably to
AND and OR are

on of conditions.

c onnec t
logical

PAGE 15

Figurative Constants

Figurative constants identify commonly used constant values. These
constant values are generated by the compiler according to the
context in which the references occur. Note that figuratives
represent values/ not literal occurrences. Thus QUOTE cannot be
used to delimit a nonnumeric literal/ SPACE is not a separator/
and so forth. Singular and plural forms of figuratives are
equivalent and may be used i n t e r c h a n g e a b 1y .

ZERO
ZEROS
ZEROES

Represents the value 0 or one or more zero (0) characters/
depending on context.

SPACE
SPACES

Represents one or more space () characters.

HIGH-VALUE
HIGH-VALUES

Represents one or more of the highest characters in the
collating sequence (hexadecimal FF).

LOW-VALUE
LOW-VALUES

Represents one or more of the lowest characters in the
collating sequence (hexadecimal 00).

QUOTE
QUOTES

Represents one or more quote <") characters.

PAGE 16

ALL literal

Represents one or more of the characters comprising the literal.
The literal must be either a nonnumeric literal or a figurative
constant. When a figurative constant is used* the word ALL is
redundant.

When a figurative constant represents a string of one or more
characters* the length of the string is determined by the compiler
from context according to the following rules:

1. When a figurative constant is associated with another data
item* as when the figurative constant is moved to or compared
with another data item* the string of characters specified by
the figurative constant is repeated character-by-character on
the right until the size of the resultant string is equal to
the size in characters of the associated data item. This is
done prior to and independent of the application of any
JUSTIFIED clause that may be associated with the data item.

2. When a figurative constant is not associated with another
data item* as when the figurative constant appears in a
DISPLAY or STOP statement* the length of the string is one
character.

A figurative constant may be used wherever a literal appears in a
format* except that whenever the literal is restricted to having
only numeric characters in it* the only figurative constant
permitted is ZERO (ZEROS* ZEROES).

Each reserved word which
constant value is a distinct
of the construction 'ALL
distinct character-strings.

is used to reference a figurative
character-string with the exception
literal' which is composed of two

Special Characters

The special character words are the arithmetic operators and
relation characters:

+ Plus sign (indexing)
- Minus sign (indexing)
> Greater than
< Less than
= Equal to

PAGE 17

Literals

A literal is a character-string whose form determines its value.
Literals are either nonnumeric or numeric.

Nonnumeric Literals

A nonnumeric literal is a character-string enclosed in quotes. Any
characters in the COBOL character set may be used. Quote
characters within the string are represented by two contiguous
quotes. The value of the literal is the string itself excluding
the delimiting quotes and one of each contiguous pair of imbedded
quotes. The value of the literal may contain from 1 to 2047
characters.

Examples:

Literal Va 1 ue

“AGE?"
" ” "T W E N T Y " "?"
i t i t H i i i i

AGE?
" T W E N T Y “?
illegal (odd number of quotes)

Numeric Literals

A numeric literal represents a numeric value»
character-string. Numeric literals are composed according
following rules:

not a
to the

1. The literal must contain from 1 to 18 digits.

2. The literal may contain a single plus or minus sign if it is
the first character.

3. The literal may contain a single decimal point if it is not
the last character. The decimal point must be represented with
a comma if the DECIMAL-POINT IS COMMA phrase is specified in
the SPECIAL-NAMES paragraph.

Examples:

1234
+ 1234
-1. 234
. 1234

+ . 1234

PAGE 18

Picture String

A picture string consists of certain combinations of characters
from the COBOL character set used as symbols. Any punctuation
character appearing as part of a picture string is considered to
be a symbol/ not a punctuation character.

Comment-Entry

A comment-entry is an entry in the Identification Division that
may contain any characters from the computer 's character set.

System Names

System names identify certain hardware or software system
components. System names consist of device-names and switch-names.

Device-Names Component

PRINT
INPUT
OUTPUT

printer or print file
input only device
output only device
input-output device
disc

INPUT-OUTPUT
RANDOM

Switch-Names Comp onent

SWITCH-1

software switches

SWITCH-8

PAGE 19

THE PROGRAM STRUCTURE

Source Format

COBOL programs are accepted as a sequence of formatted lines (or
records) of 80 characters or less. Each line is divided into five
a r e a s :

Columns Area

1-6 sequence numb er
7 ind i cator
8-11 A
12-72 B
73-80 identification

The se quence number and i d ent i f i cat i on areas are used for c 1 er ical
and do cumentation purpo ses They are ignored by the compi 1 er.

The indicator ar ea is used for d enoting line cont inuat ion»
c ommen ts» and debugging

Areas A and B c ontai n the actual program according to the
foi:L ow ing rules:

1. Di vision hea ders» section headers» paragraph head er 5»
se c t i on-names» and paragraph-names must b egin in area A.

2. Th e Data Divis ion 1eve 1 indicator FD and level-number s 01 and
77 must begin in area A. Other level-numbers may begin in area
A or area B» although B is preferable.

3. The key word DECLARATIVES and the key words END DECLARATIVES»
precede and follow» respectively» the declaratives portion of
the Procedure Division. Each must appear on a line by itself
and each must begin in area A and be followed by a period and
a space.

4. Any other
immediately

language
foilows»

element must begin in area B
on the same line» an element in

unless it
area A.

PAGE 20

Continuation of Lines

Whenever a sentence» entry» phrase» or clause requires more than
one line» it may be continued by starting subsequent line(s) in
area B. These subsequent lines are called the continuation
line(s). The line being continued is called the continued line.
Any word or literal may be broken in such a way that part of it
appears on a continuation line» according to the following rules:

1. A hyphen in the indicator area of a line indicates that the
first nonblank character in area B of the current line is the
successor of the last nonblank character of the preceding line
without any intervening space. However» if the continued line
contains a nonnumeric literal without closing quotation mark»
the first nonblank character in area B on the continuation
line must be a quotation mark» and the continuation starts
with the character immediately after that quotation mark. All
spaces at the end of the continued line are considered part of
the literal. Area A of continuation line must be blank.

2. If there is no hyphen in the indicator area of a line» it is
assumed that the last character in the preceding line is
followed by a space.

Blank Lines

A blank line is one that is blank in the indicator» A and B areas.
A blank line can appear anywhere in the source program» except
immediately preceding a continuation line with a hyphen in the
indicator area.

Comment Lines

A comment line is any line with an asterisk <•*) in the indicator
area of the line. A comment line can appear as any line in a
source program after the Identification Division header. Any
combination of characters from the computer's character set may be
included in area A and area B of that line. The asterisk and the
characters in area A and area B will be produced on the listing
but serve as documentation only.

Successive comment lines are allowed. Continuation of comment
lines is permitted» except that each continuation line must
contain an asterisk in the indicator area.

A special form of comment line represented by a slash (/) in the
indicator area of the line causes page ejection prior to printing
the comment.

PAGE 21

A debugging line is any line with a D in the indicator area of the
line. Any debugging line that consists solely of spaces from area
A to the identifier area is considered to be a blank line.

A program that contains debugging lines must be syntactically
correct with or without the debugging lines.

A debugging line will be considered to have all the
characteristics of a comment line if the debug option is not
specified at compiler invocation.

Successive debugging lines are allowed. Continuation of debugging
lines is permitted* except that each continuation line must
contain a D in the indicator area# and character strings may not
be broken across two lines.

Debugging Lines

Statements

COBOL statements always begin with a key word called a verb. There
are three kinds of statements: directive* conditional* and
imperative.

A directive statement specifies action to be taken by the compiler
during compilation. The directive statements are:

The COPY and USE statements.

A conditional statement specifies that the truth value of a
condition is to be determined and that the subsequent action of
the object program is dependent on this truth value. The
conditional statements are:

An IF statement.

A READ statement with the AT END or INVALID KEY phrase.

A DELETE* REWRITE or START statement with the INVALID KEY
phrase.

A WRITE statement with the INVALID KEY phrase.

An arithmetic statement (ADD, COMPUTE, DIVIDE* MULTIPLY,
SUBTRACT) with the SIZE ERROR phrase.

PAGE 22

An imperative statement specifies an unconditional action to be
taken by the object program. The imperative statements are:

A READ statement without the AT END or INVALID KEY phrase.

A DELETE/ REWRITE or START statement without the INVALID KEY
phrase.

A WRITE statement without the INVALID KEY phrase.

An arithmetic statement (ADD/ COMPUTE/ DIVIDE/ MULTIPLY/
SUBTRACT) without the ON SIZE ERROR phrase.

An ACCEPT/ ALTER/ CLOSE/ DISPLAY, EXIT, GO, INSPECT, MOVE,
OPEN, PERFORM, SET or STOP statement.

Whenever the term imperative-statement appears in the format of a
COBOL verb, it refers to one or more consecutive imperative
statements. The sequence ends with a period separator or an ELSE
associated with an IF verb.

Sentences

A sentence is a sequence of one or more statements terminated by
the period separator. There are three kinds of sentences:
directive, conditional, and imperative.

A directive sentence may contain only a single directive
statement.

A conditional sentence is a conditional statement, optionally
preceded by a sequence of imperative statements, terminated by a
period followed by a space.

An imperative sentence is one or more imperative statements
terminated by a period separator.

Clauses and Entries

An entry is an item of descriptive
of consecutive clauses. Each clause
entry. Clauses are separated by
separators. The entry is terminated

or declaratory nature composed
specifies an attribute of the
space, comma, or semicolon

by a period separator.

PAGE 23

Paragrap hs

A paragraph
zero» of
Environment
called a paragraph
paragraph begins with

is a sequence of an arb
sentences or entries

Divisions, each paragra
header. In
a user-define

itrary number, whi
In the Identifi

ph begins with a res
the Procedure Divi
d paragraph-name.

ch ma
cat i on
erved
s ion.

y be
and

word
each

Sections

A section is a sequence of an arbitrary number, which may be zero,
of paragraphs in the Environment and Procedure Divisions and a
sequence of an arbitrary number, which may
the Data Division. In the Environment and
section begins with reserved words called a
Procedure Division, each section begins
sec t i on-name.

be zero, of entries in
Data Divisions, each
section header. In the
with a user-defined

Divisions

Each COBOL program con
paragraphs or sections
Data, and Procedure di
required. Each divis
called a division head

sists of four divisions
These are the Identif

visions, in that order,
ion begins with a gr
er.

; each is composed of
ication, Environment,

All divisions are
oup of reserved words

PAGE 24

THE COPY STATEMENT

The COPY statement provides the facility for copying text from
user-specified files into the source program. Text is copied from
the file without change. The effect of the interpretation of the
COPY statement is to insert text into the source program, where it
will be treated by the compiler as part of the source program.

COBOL library text is placed on the COBOL library as a function
independent of the COBOL program and according to operating system
techniques.

FORMAT

COPY text-name.

The COPY statement must be preceded by a space and terminated by
the separator period. There must not be any additional text in
area B following the separator period.

Text-name is the external identification of the file containing
the text to be copied. Its format conforms to the rules for
filename (or pathname) construction of the host operating system.
If the external identification contains any characters that are
not letters or digits, or if the first character is not a letter,
then the text-name must be written as a nonnumeric literal and
enclosed in quotation marks.

A COPY statement may occur in the source program anywhere a
characterstring or separator may occur except that a COPY
statement must not occur within a COPY statement.

The compilation of a source program containing COPY statements is
logically equivalent to processing all COPY statements prior to
the processing of the resulting source program.

The effect of processing a COPY statement is that the library text
associated with text-name is copied into the source program,
logically replacing the entire COPY statement, beginning with the
reserved word COPY and ending with the punctuation character
period, inclusive.

The library text is copied unchanged.

Debugging lines are permitted within library text. If a COPY
statement is specified on a debugging line, then the COPY
statement will be processed only if the debug option has been
specified in the compiler invocation options.

PAGE 25

The text produced as a result of processing a COPY statement may
not contain a COPY statement.

The syntactic correctness of the library text cannot be
independently determined. The syntactic correctness of the entire
COBOL source cannot be determined until all COPY statements have
been completely processed.

Library text must conform to the rules for COBOL source format.

COPY Examples:

FILE-CONTROL.
COPY FLCTRL.

PROCEDURE DIVISION.
COPY " INPUTP. C O B O L “.

PAGE 26

I l l

IDENTIFICATION DIVISION

PAGE 27

INTRODUCTION

The Identification Division must be included in every COBOL source
program. This division identifies both the source program and the
resultant object program. In addition# the user may include other
commentary information.

FORMAT

IDENTIFICATION DIVISION.

PROGRAM-ID. program-name.

[AUTHOR. [comment-entry! ... 3

[INSTALLATION. Cco m m e n t - e n t ry 3 ... 3

[DATE-WRITTEN. [c o m m e n t - e n t r y 3 ...3

[SECURITY, [comment-entry! ... 3

PROGRAM IDENTIFICATION

The Identification Division must begin with the reserved words
IDENTIFICATION DIVISION followed by a period and a space.

Paragraph headers identify the type of information contained in
the paragraph. The name of the program must be given in the first
paragraph# which is the PROGRAM-ID paragraph. The other paragraphs
are optional and may be included at the user's choice# in the
order of presentation shown.

PAGE 28

The PROGRAM-ID Paragraph

The PROGRAM-ID paragraph# containing the program-name» ident
the source program# the object program# and all lis
pertaining to a particular program. A program-name i
user-defined word made up of only those characters from the
set.

A program-name cannot exceed 8 characters in length# and
contain at least one alphabetic character located in any pos
within the program-name. Each program-name must be unique.

i f i es
tings
s a
word

must
i t i on

The AUTHOR# INSTALLATION, DATE-WRITTEN, SECURITY Paragraphs

The AUTHOR, INSTALLATION# DATE-WRITTEN, and SECURITY paragraphs
are optional. The programmer may use these paragraphs to document
information pertaining to the paragraph header.

The comment-entry may be any combination of characters from the
computer's character set. The
the use of the hyphen in
however# the comment-entry may be contained

continuation of the comment-entry by
the indicator area is not permitted#

on one or more lines.

PAGE 29

IV

ENVIRONMENT DIVISION

PAGE 30

INTRODUCTION

The Environment Division describes the hardware configuration of
the compiling computer (source computer) and the computer on which
the object program is run (object computer). It also describes the
relationship between the files and the input/output media.

The Environment Division must be included in every COBOL source
program.

There are two sections in the Environment Division: the
Configuration Section and the Input-Output Section.

FORMAT

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER, computer-name.

OBJECT-COMPUTER, computer-name.

CSPECIAL-NAMES. spec ial-names-entry U.

CINPUT-OUTPUT SECTION.

FILE-CONTROL. -Cf i le-control-entry> ...

[I-O-CONTROL. input-output-control-entrylU.

PAGE 31

CONFIGURATION SECTION

The Configuration Section deals with the characteristics of the
source computer and the object computer. This section is divided
into three paragraphs:

the SOURCE-COMPUTER paragraph» which describes the computer
configuration on which the source program is compiled

the OBJECT-COMPUTER paragraph» which describes the computer
configuration on which the object program produced by the
compiler is to be run

the SPECIAL-NAMES paragraph» which relates names used by the
compiler to user-names in the source program.

The SOURCE-COMPUTER Paragraph

The SOURCE-COMPUTER paragraph identifies the computer upon which
the program is to be compiled.

FORMAT

SOURCE-COMPUTER, computer-name.

Computer-name is a user-defined word and is only commentary.

PAGE 32

The OBJECT-COMPUTER Paragraph

The OBJECT-COMPUTER paragraph identifies the computer on which the
program is to be executed.

FORMAT

OBJECT-COMPUTER, computer-name

C>MEMORY SIZE integer {WORDS >3

{CHARACTERS}

{MODULES }

l , PROGRAM COLLATING SEQUENCE IS a 1p h a b e t - n a m e 3.

Compute!— name is a user-defined word and is only commentary.

The MEMORY SIZE definition is treated as commentary.

The PROGRAM COLLATING SEQUENCE clause specifies the program
collating sequence to be used in determining the truth value of
any nonnumeric comparisons. The Program Collating Sequence clause
is treated as commentary; the collating sequence is always ASCII.

PAGE 33

The SPECIAL-NAMES Paragraph

The SPECIAL-NAMES paragraph relates names used by the compiler to
user-names in the source program.

[SPECIAL-NAMES. I , switch-name

«CON STATUS IS cond-name-1 C,OFF STATUS IS cond-name-23>3. . .

{OFF STATUS IS cond-name-2 C,ON STATUS IS cond-name-1 3}

[/alphabet-name IS { S T A N D A R D - 1>3. . .

-CNATIVE >

C< CURRENCY SIGN IS literal-13

C/DECIMAL-POINT IS COMMA3 .3

Su/itch-name may be SWITCH-1« . .., SWITCH-8.

At least one condition-name must be associated with each
switch-name given. The status of the switch is specified by
condition-names and interrogated by testing the condition-names.

The alphabet-name clause provides a means for relating a name to a
specified character code set and/or collating sequence. The
a 1phabet-name definition is treated as commentary; the collating
sequence is always ASCII.

PAGE 34

The literal which appears in the CURRENCY SIGN IS literal clause
is used in the PICTURE clause to represent the currency symbol.
The literal is limited to a single character and must not be one
of the following characters:

digits 0 through 9#

alphabetic characters A; B# C# D# L# P# R# S# V# X# Z# or the
space#

special characters '*'# '+'# '-'# '# '# '. '# ')/n/ # / / ' — '

If this clause is not present# only the currency sign <$) is used
in the PICTURE clause.

The clause DECIMAL-POINT IS COMMA means that the function of comma
and period are exchanged in the character-string of the PICTURE
clause and in numeric literals.

PAGE 35

INPUT-OUTPUT SECTION

The INPUT-OUTPUT section names the files and external media
required by an object program and provides information required
for transmission and handling of data during execution of the
object program. This section is divided into two paragraphs:

the FILE-CONTROL paragraph which names and associates the
files with external media.

the I-O-CONTROL paragraph which defines special control
techniques to be used in the object program.

FORMAT

CINPUT-OUTPUT SECTION.

FILE-CONTROL.

{file-control-entry} ...

CI-O-CONTROL.

I-O-c ontrol-entry3 3

The FILE-CONTROL Paragraph

The FILE-CONTROL paragraph names each file and allows
specification of other file-related information.

FORMAT

FILE-CONTROL. *C f i le-control-entry > ...

The content of the file-control-entry
organization of the file named.

is dependent upon the

PAGE 36

The Sequential File Control Entry

FORMAT

SELECT file-name

ASSIGN TO device-type/ {"external-f i le-name'1)
------- -Cdata-name-1 >

Li ORGANIZATION IS SEQUENTIAL!

Li ACCESS MODE IS SEQUENTIAL!

C;FILE STATUS IS data-name-2!.

The SELECT clause must be specified first in the file control
entry. The clauses which follow the SELECT clause may appear in
any order.

Each file described in the Data Division must be named once and
only once as file-name in the FILE-CONTROL paragraph. Each file
specified in the file control entry must have a file description
entry in the Data Division.

The ASSIGN clause specifies the association of the file referenced
by file-name to a storage medium.

Device-type must be one of the device names INPUT, INPUT-OUTPUT,
OUTPUT, PRINT, or RANDOM according to the operations to be
performed.

External-file-name specifies the file access name. It can be from
one to thirty characters in length and must be enclosed in
quotation marks. A name longer than thirty characters will be
diagnosed as an error. The name may contain any sequence of
characters supported by the operating system for file access
names.

Data-name-1 must be defined in the Data Division as a data item of
category alphanumeric and must not be defined in the Linkage
Section. Its value at the time of an OPEN statement execution will
be used as the file access name. Data-name-1 may be qualified.

PAGE 37

The ORGANIZATION clause specifies the logical structure of a file.
The file organization is established at the time a file is created
and cannot subsequently be changed.

Records in the file are accessed in the sequence dictated by the
file organization. This sequence is specified by
predecessoi— successor record relationships established by the
execution of WRITE statements when the file is created or
extended.

When the ORGANIZATION clause is not specified, ORGANIZATION IS
SEQUENTIAL is implied.

The ACCESS MODE clause specifies the order in which records are
read or written.

If the ACCESS MODE clause is not specified, ACCESS MODE IS
SEQUENTIAL is implied.

When the FILE STATUS clause is specified, a value will be moved by
the operating system into the data item specified by data-name-2
after the execution of every statement that references that file
either explicitly or implicitly. This value indicates the status
of execution of the statement.

Data-name-2 must be defined in the Data Division as a
two-character data item of the category alphanumeric and must not
be defined in the File Section. Data-name-2 may be qualified.

PAGE 38

The Relative File Control Entry

FORMAT

SELECT file-name

ASSIGN TO RANDOM, -C"externa 1-fi 1 e - n a m e ">
------- ------- {data-name-1 >

iORGANIZATION IS RELATIVE

C; ACCESS MODE IS { SEQUENTIAL C,RELATIVE KEY IS data- n a m e - 2 3 >3

{{RANDOM > ,RELATIVE KEY IS data-name-2 >

{ { D Y N A M I O >

Li FILE STATUS IS data-name-33.

The SELECT clause must be specified first in the file control
entry. The clauses which follow the SELECT clause may appear in
any order.

Each file described in the Data Divison must be named once and
only once as file-name in the FILE-CONTROL paragraph. Each file
specified in the file control entry must have a file description
entry in the Data Division.

The ASSIGN TO RANDOM clause specifies the association of the file
referenced by file-name to a storage medium.

External-file-name specifies the file access name and must be
enclosed in quotation marks. It can be from one to thirty
characters in length. A name longer than thirty characters will be
diagnosed as an error. The name may contain any characters
supported by the operating system for file access names.

Data-name-1 must be defined in the Data Division as a data item of
category alphanumeric and must not be defined in the Linkage
Section. Its value at the time of an OPEN statement execution will
be used as the file access name. Data-name-1 may be qualified.

PAGE 39

The ORGANIZATION IS RELATIVE clause specifies the logical
structure of a file. The file organization is established at the
time a file is created and cannot subsequently be changed.

All records stored in a relative file are uniquely identified by
relative record numbers. The relative record number of a given
record specifies the record's logical ordinal position in the
file. The first logical record has a relative record number of one
(!>/ and subsequent logical records have relative record numbers
of 2* 3 , 4* ... n.

The ACCESS MODE clause specifies the order in which records are to
be accessed.

When the ACCESS MODE IS SEQUENTIAL* records in the file are
accessed in the sequence dictated by the file organization. This
sequence is the order of ascending relative record numbers of
existing records in the file.

If the ACCESS MODE IS RANDOM* the value of the RELATIVE KEY data
item indicates the record to be accessed.

If a relative file is to be referenced by a START statement* the
RELATIVE KEY phrase must be specified for that file.

When the ACCESS MODE IS DYNAMIC* records in the file may be
accessed sequentially and/or randomly.

Data-name-2 must not be defined in a record description entry
associated with that file-name. The data item referenced by
data-name-2 must be defined as an unsigned integer. Data-name-2
may be qualified.

If the ACCESS MODE clause is not specified* ACCESS MODE IS
SEQUENTIAL is implied.

When the FILE STATUS clause is specified* a value will be moved by
the operating system into the data item specified by data-name-3
after the execution of every statement that references that file
either explicitly or implicitly. This value indicates that status
of execution of the statement.

Data-name-3 must be defined in the Data Division as a
two-character data item of the category alphanumeric and must not
be defined in the File Section.

PAGE 40

The Indexed File Control Entry

FORMAT

SELECT file-name

ASSIGN TO RANDOM, < " e x t e r n a l - f i 1 e-name")
------- ------- -Cda t a - n a m e - 1 >

C;ORGANIZATION IS INDEXED

C;ACCESS MODE IS <SEQUENTIAL> 3

•{RANDOM >

{DYNAMIC >

;RECORD KEY IS data-name-2

C i ALTERNATE RECORD KEY IS data-name-3 {WITH D U P L I C A T E S] 3.. .

C > FILE STATUS IS d a t a - n a m e - 4 3 .

The SELECT clause must be specified first in the file control
entry. The clauses which follow the SELECT clause may appear in
any order.

Each file described in the Data Division must be named once and
only once as file-name in the FILE-CONTROL paragraph.

Each file specified in the file control entry must have a file
description entry in the Data Division.

The ASSIGN TO RANDOM clause specifies the association of the file
referenced by file-name to a storage medium.

External-file-name specifies the file access name and must be
enclosed in quotation marks. It can be from one to thirty
characters in length. A name longer than thirty characters will be
diagnosed as an error. The name may contain any characters
supported by the operating system for file access names.

PAGE 41

D a t a —n a m e — 1 must be defined in the Data Division as a data item of
category alphanumeric and must not be defined in the Linkage
Section. Its value at the time of an OPEN statement execution will
be used as the file access name. Data-name-1 may be qualified.

The ORGANIZATION IS INDEXED clause specifies the logical structure
of a file. The file organization is established at the time a file
is created and cannot subsequently be changed.

The ACCESS MODE clause specifies the order in which records are to
be accessed.

When the ACCESS MODE IS SEQUENTIAL, records in the file are
accessed in the sequence dictated by the file organization. For
indexed files this sequence is the order of ascending record key
values within a given key of reference.

If the ACCESS MODE IS RANDOM, the value of the RECORD KEY data
item indicates the record to be accessed.

When the ACCESS MODE IS DYNAMIC, records in the file may be
accessed sequentially and/or randomly.

If the ACCESS MODE clause is not specified, ACCESS MODE IS
SEQUENTIAL is implied.

The RECORD KEY clause specifies the record key that is the prime
record key for the file. This prime record key provides an access
path to records in an indexed file.

An ALTERNATE RECORD KEY clause specifies a record key that is an
alternate record key for the file. This alternate record key
provides an alternate access path to records in an indexed file.

The data description of data-name-2 and data-name-3 as well as
their relative locations within a record must be the same as that
used when the file was created. The number of alternate keys for
the file must also be the same as that used when the file was
created.

The data items referenced by data-name-2 and data-name-3 must each
be defined as a data item of the category alphanumeric within a
record description entry associated with that file-name.

Neither data-name-2 nor data-name-3 can describe an item whose
size is variable.

PAGE 42

Data-name-3 cannot reference an item whose leftmost character
position corresponds to the leftmost character position of an item
referenced by data-name-2 or by any other data-name-3 associated
with this file.

Data-name-2 and data-name-3 may be qualified.

The WITH DUPLICATES phrase specifies that the value of the
associated alternate record key may be duplicated within any of
the records in the file. If the WITH DUPLICATES phrase is not
specified# the value of the associated alternate record key must
not be duplicated among any of the records in the file.

When the FILE STATUS clause is specified# a value will be moved by
the operating system into the data item specified by data-name-4
after the execution of every statement that references that file
either explicitly or implicitly. This value indicates the status
of execution of the statement.

Data-name-4 must be defined in the Data Division as a
two-character data item of the category alphanumeric and must not
be defined in the File Section.

PAGE 43

The I-G CONTROL Paragraph

The 1-0 CONTROL paragraph specifies the memory area which is to be
shared by different files.

FORMAT

I-O-CONTROL.

C; SAME AREA FOR file-name-1 Z, file-name-23 ...3 ...

The I-O-CONTROL paragraph is optional.

The SAME AREA clause specifies that two or more files are to use
the same memory area during processing. The area being shared
includes all storage area assigned to the files specified;
therefore, it is not valid to have more than one of the files open
at the same time.

More than one SAME clause may be included in a program; however, a
file-name must not appear in more than one SAME AREA clause.

The files referenced in the SAME AREA clause need not all have the
same organization or access.

PAGE 44

V

DATA DIVISION

PAGE 45

INTRODUCTION

The Data Division describes the data that the object program is to
accept as input/ to manipulate/ to create/ or to produce as
output. Data to be processed falls into three categories:

That which is contained in files and enters or leaves the
internal memory of the computer from a specified area or
areas.

That which is developed internally and placed into
intermediate or working storage/ or placed into specific
format for output reporting purposes.

Constants which are defined by the user.

The Data Division/ which is one of the required divisions in a
program/ is subdivided into three sections:

The FILE SECTION defines the structure of data files. Each
file is defined by a file description entry and one or more
record descriptions. Record descriptions are written
immediately following the file description entry.

The WORKING-STORAGE SECTION describes records and
noncontiguous data items which are not part of external data
files but are developed and processed internally. It also
describes data items whose values are assigned in the source
program and do not change during the execution of the object
program.

The LINKAGE SECTION in a program is meaningful if and only if
the object program is to function under the control of a CALL
statement/ and the CALL statement in the calling program
contains a USING phrase.

The Linkage Section is used for describing data that is
available through the calling program but is to be referred to
in both the calling and the called program. No space is
allocated in the program for data items referenced by
data-names in the Linkage Section of that program. Procedure
Division references to these data items are resolved at object
time by equating the reference in the called program to the
location used in the calling program. In the case of
index-names. no such correspondence is established.
Index-names in the called and calling program always refer to
separate indices.

PAGE 46

Data items defined in the Linkage Section of the called
program may be referenced within the Procedure Division of the
called program only if they are specified as operands of the
USING phrase of the Procedure Division header or are
subordinate to such operands/ and the object program is under
the control of a CALL statement that specifies a USING phrase.

FORMAT

DATA DIVISION.

CFILE SECTION.

Cfile-description-entry
C r e c o r d - d e s c ri p t i o n - e n t r y 3 ... 3 ... 3

CWORKING-STORAGE SECTION.

C77-level-description-entry 3 ... 3
Crecord-description-entry 3

CLINKAGE SECTION.

C 7 7 - l e v e l - d e sc r i p t i o n - e n t r y 3 ... 33
Crecord-description-entry 3

PAGE 47

FILE SECTION

The File Section header is followed by a file description entry
consisting of a level indicator (FD)# a file-name and a series of
independent clauses. The FD clauses specify the size of the
logical and physical records# the presence or absence of label
records# the value of label items# and the names of the data
records which comprise the file. The entry itself is terminated by
a period.

In a COBOL program the file description entry (FD) represents the
highest level or organization in the File Section.

FORMAT

FILE SECTION.

C f i 1 e-description-entry
C r e c o r d - d e s c ri p t i o n - e n t r y 3 ... 3 . . .

PAGE 48

The File Description Entry

The File Description furnishes information concerning the physical
structure^ identification* and record name pertaining to a given
file.

FORMAT

FD file-name

C;BLOCK CONTAINS Cinteger-l T03 integer-2 -CRECORDS >3

{CHARACTERS}

C;RECORD CONTAINS Cinteger-3 T03 integer-4 CHARACTERS!

; LABEL {RECORD IS > {STANDARD}

•{RECORDS ARE} {OMITTED}

Z iVALUE OF LABEL IS C literal-1 33

Hi DATA -CRECORD IS } data-name-1 C/ d a t a - n a m e - 2 3 . . . 3.

CRECORDS ARE}

The 1 eve 1 indicator FD id en t ifies th e beg:Inning of a file
desc:r i p t i on and must precede the f i 1 e-name.

The c lauses which fol low the name of the file are optional in many
cases/ and their order of ap p eara nee is n ot significant.

One or more record descrip t i on entries must follow the file
desc:r i p t i on e n t r y .

A fil 1 e desc ription en try mus t end with a period separator.

PAGE 49

The BLOCK CONTAINS Clause

The BLOCK CONTAINS clause specifies the size of a physical record.

FORMAT

BLOCK CONTAINS Cinteger~l T03 integer-2 -(RECORDS >

{CHARACTERS}

This clause is required except when:

A physical record contains only one complete logical record.

The device assigned to the file has only one physical record
s i z e .

The device assigned to the file has a standard record s i z e ,
although the device may have more than one physical record
size. In this case» the absence of this clause denotes the
standard physical record size.

The size of the physical record may be stated in terms of RECORDS»
unless one of the following situations exist» in which case the
RECORDS phrase must not be used:

In mass storage files where logical records may extend across
physical records.

The physical record contains padding.

Logical records are grouped in such a manner that an
inaccurate physical record size would be implied.

When the word CHARACTERS is specified» the physical record size is
specified in terms of the number of character positions required
to store the physical record» regardless of the types of
characters used to represent the items within the physical record.

If only integer-2 is shown» it represents the exact size of the
physical record. If integer-1 and integer-2 are shown» they refer
to the minimum and maximum size of the physical record»
respectively.

PAGE 50

The RECORD CONTAINS Clause

The RECORD CONTAINS clause specifies the size of the data records.

FORMAT

RECORD CONTAINS [integer-1 T03 integer-2 CHARACTERS

The size of each data record is completely defined with the record
description entry* therefore this clause is never required. When
present* however* the following notes apply:

Integer-2 may not be used by itself unless all the data
records in the file have the same size. In this case integer-2
represents the exact number of characters in the data record.

If integer-1 and integer-2 are both shown* they refer to the
minimum number of characters in the smallest size data record
and the maximum number of characters in the largest size data
record* respectively.

The size is specified in terms of the number of character
positions required to store the logical record* regardless of
the types of characters used to represent the items within the
logical record. The size of a record is determined by the sum
of the number of characters in all fixed length elementary
items plus any filler characters generated between elementary
items because of the SYNCHRONIZED clause.

PAGE 51

The LABEL RECORD Clause

The LABEL RECORD clause specifies whether labels are present.

FORMAT

LABEL {RECORD IS > {STANDARD}

{RECORDS ARE> {OMITTED }

This clause is required in every file description entry.

STANDARD specifies that labels exist for the file or the device to
which the file is assigned and the labels conform to the operating
system specification. STANDARD must be specified for files
assigned to a RANDOM device.

OMITTED specifies that no explicit labels exist for the file or
the device to which the file is assigned.

The VALUE OF Clause

The VALUE OF clause p a r t i c u l a r i z es the description of an item in
the label records associated with a file.

FORMAT

VALUE OF LABEL IS literal-1

This clause is treated as commentary.

This clause must not be specified if OMITTED is specified in the
LABEL RECORDS clause.

PAGE 5 2

The DATA RECORDS Clause

The DATA RECORDS clause serves only as documentation for the names
of data records with their associated file.

FORMAT

DATA -CRECORD IS > data-name-1 C, d a t a - n a m e ~ 2 3 . . .

{RECORDS ARE>

Data-name-1 and data-name-2 are the names of data records and must
have 01 level-number record descriptions« with the same name,
associated with them.

The presen c e of mor e
contains mor e than
of d i f f er ing sizes, d
they are 1 ist ed is no

Cone ep t u a 1ly, all da
This is in no way a It
data r ec or d w i th in th

than one data-name indicates that the file
one type of data record. These records may be
ifferent formats, etc. The order in which
t significant.

ta records within a file share the same area,
ered by the presence of more than one type of
e file.

PAGE 53

WORKING-STORAGE SECTION

The Working-Storage Section is composed of the section header/
followed by data description entries for 77 level description
entries and/or record description entries.

The data-name of a Ol-level data description entry in the
Working-Storage Section must be unique since it cannot be
qualified. Subordinate data-names need not be unique if they can
be made unique by qua 1 ification.

FORMAT

WORKING-STORAGE SECTION.

C77-level-description-entry 3
tree ord-description-entry 3

LINKAGE SECTION

The structure of the Linkage Section is
Working-Storage Section/ beginning with a secti
by data description entries for noncontiguous
record description entries.

the same as for the
on header/ followed
data items and/or

Each Linkage Section record-name and noncontiguous
be unique within the called program since it cannot

item name must
be qualified.

FORMAT

LINKAGE SECTION.

C77 - l e v e l - d e sc r i p t i o n - e n t r y 3 ...
Crecord-description-entry 3

PAGE 54

RECORD DESCRIPTION ENTRY

A record description entry consists of a set of data description
entries which describe the c h a r a c t e r istics of a particular record.
Each data description entry consists of a level-number followed by
a data-name and a series of independent clauses, as required.

FORMAT

<data-d e s c r i pt i o n - e n t r y > . . .

Level-Numbers

The first data description of a record must have a level-number of
01 or 1, and must start in area A of a source line.

Each data description entry can be subdivided into multiple data
description entries, each having the same 1 eve 1- n u m b e r ; which must
be greater than the level-number of the subdivided entry, but less
than 50. Level-numbers do not necessarily have to be successive.
Thus, a record is a hierarchy of data description entries.

Elementary Items

Any data description entry which is not further subdivided is
called an elementary item. A record itself may be an elementary
item, consisting of a single level 01 data description entry. A
subdivided data description entry with its subdivisions is called
a group and is n o n - e 1ement a r y . Therefore, a group includes all
group and elementary items following it until a level-number less
than or equal to the level-number of that group is encountered.

Note that certain clauses of the data description entry may occur
only in elementary items. They may not occur in 01-level entry as
they may affect the subdivisions of that entry. An elementary item
must have either a PICTURE clause or INDEX usage; it may not have
both.

PAGE 55

77 LEVEL DESCRIPTION ENTRY

In the Working-Storage and
level-number of 77 can be used
are not subdivisions of other
subdivided. These data descrip
data items. Such a data descript

Linkage
in data
items;

tion entr
ion entry

Sec t i ons; a sp ec ia
d e scr i p t i on ent r ies ujh i c
an d are not th ems e 1ve
i e 5 S p ec i fy non c 0nt igu ou
is e 1e m e n t a r y .

1
h
s
s

A 77 level descript
the PICTURE claus
contain an OCCURS c
used to complete th

i
e
1
e

on entry must contain
or the USAGE IS

ause. Other clauses ar
description of the it

a data name a
INDEX clause;
e optional an
em if necessar

nd
bu
d
y-

either
t cannot
can be

FORMAT

data-description-entry

PAGE 56

THE DATA DESCRIPTION ENTRY

A data description entry specifies the characteristics of a
particular item of data.

FORMAT 1

level-number -Cdata-name-1 >
-CFILLER >

{; REDEFINES data-name-23

C; {PICTURE)- IS charac ter-s tr ing 3

■CPIC >

{; CUSAGE IS3 -(COMPUTATIONAL >

{COMP >

•CCOMPUTATIONAL-1 >

{COMP-1 >

{COMPUT AT10NAL-3>

{COMP-3 >

{DISPLAY >

•{INDEX > 3

Li CSIGN IS3 -{TRAILING)- {SEPARATE C H A R A C T E R 3 3

C;-{OCCURS -{integer-1 TIMES >
------- < integei— 1 TO integer-2 TIMES DEPENDING ON data-name-3>

{INDEXED BY index-name-1 {(index-name-23 ... 33

{; -{SYNCHRONIZED)- {LEFT 3

CSYNC > {RIGHT33

PAGE 5 7

C# {JUSTIFIED)- R I G H T 3

•{JUST >

Ci BLANK WHEN Z E R O 3

C;VALUE IS literal 3

FORMAT 2

66 d a t a - n a m e - 1 # RENAMES data-name-2 C{THROUGH> data-name-33.

{THRU >

FORMAT 3

88 condition-name# {VALUE IS > literal-1 C{THROUGH> literal-23

{VALUES ARE> {THRU >

C,literal-3 C{THROUGH> literal-433

{THRU >

The clauses may be written in any order with two exceptions:

the data-name-i or FILLER clause must immediately follow the
level-number#

the REDEFINES clause# when used# must immediately follow the
data-name-1 clause.

The PICTURE clause must be specified for every elementary item
except an index data item# in which case use of this clause is
prohibited.

The words THRU and THROUGH are equivalent.

The clauses SYNCHRONIZED, PICTURE# JUSTIFIED# and BLANK WHEN ZERO#
must not be specified except for an elementary data item.

PAGE 58

Format 3 is used for each condition-name. Each condition-name
requires a separate entry with level-number 88. Format 3 contains
the name of the condition and the value# values# or range of
values associated with the condition-name. The condition-name
entries for a particular conditional variable must follow the
entry describing the item with which the condition-name is
associated. A condition-name can be associated with any data
description entry which contains a level-number except the
foil o w i n g :

Another condition-name.

A group containing items with descriptions including
JUSTIFIED, SYNCHRONIZED or USAGE (other than USAGE IS
DISPLAY).

An index data item.

A level 6 6 item.

Each data description entry must end with a period separator.

PAGE 59

The Level—Number

The level-number shows
record. In addition#
storage items# linkage
c lause.

the hierarchy of data
it is used to identify
items# condition-name

within a
entries for

s and the

1og ica 1
wor king
RENAMES

FORMAT

level-number

A level-number is required as the first element in each data
description entry.

Data description entries subordinate to an FD entry must have
level-numbers with the values 01 through 49# 66 or 88.

Data description entries in the Working-Storage Section and
Linkage Section must have level-numbers with the values 01 through
49, 66, 77 or 88.

The level-number 01 identifies the first entry in each record
description.

Level-number 66 is assigned to identify RENAMES entries.

Level-number
storage data

Level-number
with a condi

77 is assigned to identify noncontiguous working
items and noncontiguous linkage data items.

88 is assigned to identify condition-names associated
tional variable.

Multiple level 01 entries subordinate to any given level
FD# represent implicit redefinitions of the same area.

indicator

PAGE 60

The Data-Name or FILLER Clause

A data-name specifies the name of the data being described. The
word FILLER specifies an elementary item of the logical record
that cannot be referred to explicity.

FORMAT

•Cda ta-name>
•{FILLER >

A data-name or the key word FILLER must be the first
following the level-number in each data description entry.

word

The key word FILLER may be used to name an elementary item in a
record. Under no c i r c u m s t a n c es can a FILLER item be referred to
explicitly. However# the key word FILLER may be used as a
conditional variable because such use does not require explicit
reference to the FILLER item# but to its value.

The key
with a 1#

word FILLER may not be used
01# 77# or 88 level-number.

in data description entries

PAGE 61

The REDEFINES Clause

The REDEFINES clause allows the same computer storage area to be
described by different data description entries.

FORMAT

level-number data-name-1; REDEFINES data-name-2

NOTE: Level-number» data-name-1 and the semicolon are shown in
the above format to improve clarity. Level-number and
data-name-1 are not part of the REDEFINES clause.

The REDEFINES clause» when specified» must immediately follow
data - n a m e - 1 .

The level-numbers of data-name-1 and data-name-2 must be identical
but must not be 66 or 88.

This clause must not be used in level 01 entries in the File
Section.

The data
REDEFINES
contains a
data-name-
may be su
c onta ins
data-name~
indexed,
include an
clause.

description entry for data-name-2 canno
clause. Data-name-2 may be subordinate to an

REDEFINES clause. The data description
2 cannot contain an OCCURS clause. However»
bordinate to an item whose data descri
an OCCURS clause. In this case» the r
2 in the REDEFINES clause may not be sub
Neither the original definition nor the rede
item whose size is variable as defined in

t contain a
entry which
entry for

data-name-2
ption entry
eference to
scripted or
finition can
the OCCURS

No entry having a level-number numerically lower than the
level-number of data-name-2 and data-name-1 may occur between the
data description entries of data-name-2 and data-name-1.

Redefinition starts at data-name-2 and ends when a level-number
less than or equal to that of data-name-2 is encountered.

When the level-number of data-name-1 is other than 01» it must
specify the same number of character positions that the data item
referenced by data-name-2 contains. It is important to observe
that the REDEFINES clause specifies the redefinition of a storage
area» not of the data items occupying the area.

PAGE 62

Multiple redefinitions of the same character positions are
permitted. The entries giving the new descriptions of the
character positions must follow the entries defining the area
being redefined without intervening entries that define new
character positions. Multiple redefinitions of the same character
positions must all use the data-name of the entry that originally
defined the area.

The entries giving the new description of the character positions
must not contain any VALUE clauses except in condition-name
entries.

Multiple level 01 entries subordinate to any given level indicator
represent implicit redefinitions of the same area.

PAGE 63

The PICTURE Clause

The PICTURE clause describes the general characteristics and
editing requirements of an elementary item.

FORMAT

{PICTURE}- IS charac ter-str ing

{PIC >

A PICTURE clause can be specified only at the elementary item
1 eve 1.

A character-string consists of certain allowable
characters in the COBOL character set used
allowable combinations determine the category of
item.

combinations of
as symbols. The
the elementary

The maximum number of characters allowed in the character-string
is 30.

The PICTURE
except an
proh i b i ted.

clause must
index data

be specified for every elementary item
item/ in which case use of this clause is

PIC is an abbreviation for PICTURE.

There are five categories of data that can be described with a
PICTURE clause:

alphabetic
numer i c
a 1phanumer i c
alphanumeric edited
numeric edited

To define an item as alphabetic:

Its PICTURE character-string can only contain the symbols 'A'/
and/or 'B'.

Its contents when represented in standard data
any combination of the twenty-six (26) letters
alphabet and the space from the COBOL character

format must be
of the Roman
set.

PAGE 64

To define an item as numeric:

Its PICTURE character-string can only contain the symbols '9',
'P', 'S'/ and 'V'. The number of digit positions that can be
described by the PICTURE character-string must range from 1 to
18 inclusivei and

If unsigned, its contents when represented in standard data
format must be a combination of the Arabic numerals ' O' , ' 1',
'2', '3', ' 4 ' , '5', '6', ' 7 ' , ' Q' , ' 9 if signed, the item
may also contain a or other representation of an
operational sign.

To define an item as a 1p h a n u m e r i c :

Its PICTURE character-string is restricted to certain
combinations of the symbols ' 4 ' , 'X', ' 9 ', and the item is
treated as if the character-string contained all X's. A
PICTURE character-string which contains all A's or all 9's
does not define an alphanumeric item; and

Its contents, when represented in standard data format, are
allowable characters in the computer's character set.

To define an item as alphanumeric edited:

Its PICTURE character-string is restricted to certain
combinations of the following symbols: 'A', ' X' , ' 9 ' , 'B',
'O', and '/' (stroke);

The character-string must contain at least one 'B' and at
least one 'X' or at least one 'O' (zero) and at least one 'X'
or at least one '/' (stroke) and at least one 'X'; or

The character-string must contain at least one 'O' (zero) and
at least one 'A' or at least one '/' (stroke) and at least one
'A'; and

The contents when represented in standard data format are
allowable characters in the computer's character set.

PAGE 65

To define an item as numeric edited:

Its PICTURE character-string is restricted to certain
combinations of the following symbols: 'B'* '/' (stroke)* 'P'»
'V'* 'Z'* ' O' , '9', ' , ' , '. ', '*'* '+'* ' C R '» ' D B S and
the currency symbol. The allowable combinations are determined
from the order of precedence of symbols and the editing rules*
and

The number of digit positions that can be represented in the
PICTURE character-string must range from 1 to 18 inclusive*
and

The character-string must contain at least one 'O ' * 'B'* '/'
(stroke)* 'Z'* '*'* '+'* S ' , '. '* '-'* 'CR'* ' D B S or
currency symbol.

The contents of the character positions of these symbols that
are allowed to represent a digit in standard data format* must
be one of the numerals.

The size of an elementary item* where size means the number of
character positions occupied by the elementary item in standard
data format* is determined by the number of allowable symbols that
represent character positions. An integer which is enclosed in
parentheses following the symbols 'A'* '* '* 'X'* '9'» 'P'* ' Z ' ,

' B ' , '/' (stroke)* 'O'* '+'* '-'* or the currency symbol
indicates the number of consecutive occurrences of the symbol.
Note that the following symbols may appear only once in a given
PICTURE: 'S', 'V'* '. ', 'CR'* and 'DB'.

The functions of the symbols used to describe an elementary item
are explained as follows:

Each 'A' in the character-string represents a character
position which can contain only a letter of the alphabet or a
space.

Each 'B' in the character-string represents a character
position into which the space character will be inserted.

PAGE 66

Each ' P ' indicates an assumed decimal scaling position and is
used to specify the location of an assumed decimal point when
the point is not within the number that appears in the data
item. The scaling position character 'P' is not counted in the
size of the data item. Scaling position characters are counted
in determining the maximum number of digit positions (18) in
numeric edited items or numeric items. The scaling position
character 'P' can appear only to the left or right as a
continuous string of 'P's within a PICTURE description! since
the scaling position character 'P' implies an assumed decimal
point (to the left of 'P's if 'P's are leftmost PICTURE
characters and to the right if 'P's are rightmost PICTURE
characters)! the assumed decimal point symbol 'V' is redundant
as either the leftmost or rightmost character within such a
PICTURE description. The character ' P ' and the insertion
character ' (period) cannot both occur in the same PICTURE
character-string. If! in any operation involving conversion of
data from one form of internal representation to another! the
data item being converted is described with the PICTURE
character 'P'i each digit position described by a 'P' is
considered to contain the value zero! and the size of the data
item is considered to include the digit positions so
described.

The letter 'S' is used in a character-string to indicate the
presence! but neither the representation nor! necessarily! the
position of an operational sign; it must be written as the
leftmost character in the PICTURE. The 'S' is counted in
determining the size (in terms of standard data format
characters) of elementary items having DISPLAY or
COMPUTATIONAL usage.

The 'V' is used in a character-string to indicate the location
of the assumed decimal point and may only appear once in a
character-string. The 'V ' does not represent a character
position and therefore is not counted in the size of the
elementary item. When the assumed decimal point is to the
right of the rightmost
redundant.

symbol in the string the 'V' i s

Each 'X' in the character-string i s used to represent a
character position which contains any allowable character from
the computer's character set.

Each 'Z' in a character-string may only be used to represent
the leftmost leading numeric character positions which will be
replaced by a space character when the contents of that
character position is zero. Each 'Z' is counted in the size of
the item.

PAGE 67

Each '9' in the character-string represents a character
position which contains a numeral and is counted in the size
of the item.

Each 'O' (zero) in the character-string represents a character
position into which the numeral zero will be inserted. The 'O'
is counted in the size of the item.

Each '/' (stroke) in the character-string represents a
character position into which the stroke character will be
inserted. The '/' (stroke) is counted in the size of the item.

Each '# ' (comma) in the character-string represents a
character position into which the character '/ ' will be
inserted. This character position is counted in the size of
the item. The insertion character ' must not be the last
character in the PICTURE c h a r a c t e r - s t ri n g .

When the character '. ' (period) appears in the
character-string it is an editing symbol which represents the
decimal point for alignment purposes and in addition/
represents a character position into which the character '. '
will be inserted. The character '. ' is counted in the size of
the item. For a given program the functions of the period and
comma are exchanged if the clause DECIMAL-POINT IS COMMA is
stated in the S P ECIAL-NAMES paragraph. In this exchange the
rules for the period apply to the comma and the rules for the
comma apply to the period wherever they appear in a PICTURE
clause. The insertion character '. ' must not be the last
character in the PICTURE character-string.

+/ -/ CR> DB. These symbols are used as editing sign control
symbols. When used/ they represent the character position into
which the editing sign control symbol will be placed. The
symbols are mutually exclusive in any one charactei— string and
each character used in the symbol is counted in determining
the size of the data item.

Each (asterisk) in the character-string represents a
leading numeric character position into which an asterisk will
be placed when the contents of that position is zero. Each
is counted in the size of the item.

The asterisk when used as the zero suppression symbol and the
clause BLANK WHEN ZERO may not appear in the same entry.

PACE 68

The currency symbol in the character-string represents a
character position into which a currency symbol is to be
placed. The currency symbol in a character-string is
represented by either the currency sign or by the single
character specified in the CURRENCY SIGN IS clause in the
SPECIAL-NAMES paragraph. The currency symbol is counted in the
size of the item.

There are two general methods of performing editing in the PICTURE
clause» either by insertion or by suppression and replacement.
There are four types of insertion editing available:

Simple insertion
Special insertion
Fixed insertion
Floating insertion

There are two types of suppression and replacement editing:

Zero suppression and replacement with spaces
Zero suppression and replacement with asterisks

The type of editing which may be performed upon an item is
dependent upon the category to which the item belongs. The
following table specifies which type of editing may be performed
upon a given category:

!CATEGORY TYPE OF EDITING !
„ linM ,r _. l i r - - _____ IT. lllri —lr- T|. - 1i -1" — - ■ ■ ■ ■ ■

1 Alphabetic
r -

Simple insertion 'B' only !
1»

!Numer i c
* ̂ l

None 1
I r" ™" "" "" ,,T" l_UJ " " ̂
!Alphanumeric
1

I
None !

1 . M n . . ■ ■ l U . U L J L - J J L .

!Alphanumer i c
!Ed i ted
•

... " '" 1 "" n r"" "L LJ,,,T" '11 L 1 ' k ' l
Simple insertion 'O'» ' B ' , !
and ' / ' (stroke) !

!Numer i c
!Ed i ted

All» subject to rules below !
il

Floating insertion editing and editing by zero suppression and
replacement are mutually exclusive in a PICTURE clause. Only one
type of replacement may be used with zero suppression in a PICTURE
clause.

PAGE 69

Simple Insertion Editing

The '# ' (comma)# 'B' (space)# 'O'# (zero)# and '/' (stroke) are
used as the insertion characters. The insertion characters are
counted in the size of the item and represent the position in the
item into which the character will be inserted.

Special Insertion Editing

The '. ' (period) is used as the insertion character. In addition
to being an insertion character it also represents the decimal
point for alignment purposes. The insertion character used for the
actual decimal point is counted in the size of the item. The use
of the assumed decimal point# represented by the symbol 'V' and
the actual decimal point# represented by the insertion character#
in the same PICTURE character-string is disallowed. The result of
special insertion editing is the appearance of the insertion
character in the item in the same position as shown in the
character-string.

Fixed Insertion Editing

The currency symbol and the editing sign control symbols# '+'#
'-'» 'CR'» 'DB'# are the insertion characters. Only one currency
symbol and only one of the editing sign control symbols can be
used in a given PICTURE character-string. When the symbols ' C R ' or
'DB' are used they represent two character positions in
determining the size of the item and they must represent the
rightmost character positions that are counted in the size of the
item.

The symbol '+' or '-'# when used# must be either the leftmost or
rightmost character position to be counted in the size of the
item.

The currency symbol must be the leftmost character position to be
counted in the size of the item except that it can be preceded by
either a '+' or a symbol.

Fixed insertion editing results in the insertion character
occupying the same character position in the edited item as it
occupied in the PICTURE character-string.

PAGE 70

Editing sign control symbols produce the following results
depending upon the value of the data item:

EDITING SYMBOL IN
PICTURE

CHARACTER-STRING

RESULT

DATA ITEM
POSITIVE OR ZERO

DATA ITEM
NEGATIVE

+ + —

- space
CR 2 spaces CR
DB 2 spaces DB

Floating Insertion Editing

The currency symbol and editing sign control symbols; ' + ' or
are the floating insertion characters and as such are mutually
exclusive in a given PICTURE c h a r a c t e r - s t ri n g .

Floating insertion editing is indicated in a PICTURE
character-string by using a string of at least two of the floating
insertion characters. This string of floating insertion characters
may contain any of the fixed insertion symbols or have fixed
insertion characters immediately to the right of this string.
These simple insertion characters are part of the floating string.

The leftmost character of the floating insertion string represents
the leftmost limit of the floating symbol in the data item. The
rightmost character of the floating string represents the
rightmost limit of the floating symbols in the data items.

The second floating character from the left represents the
leftmost limit of the numeric data that can be stored in the data
item. Nonzero numeric data may replace all the characters at or to
the right of this limit.

In a PICTURE c h a r a c t e r - s t ri n g ; there are only two ways of
representing floating insertion editing. One way is to represent
any or all of the leading numeric character positions on the left
of the decimal point by the insertion character. The other way is
to represent all of the numeric character positions in the PICTURE
character-string by the insertion character.

PAGE 71

If the insertion characters are only to the left of the decimal
point in the PICTURE character-string# the result is that a single
floating insertion character will be placed into the character
position immediately preceding either the decimal point or the
first nonzero digit in the data represented by the insertion
symbol string/ whichever is farther to the left in the PICTURE
character-string. The character positions preceding the insertion
character are replaced with spaces.

If all numeric character positions in the PICTURE character-string
are represented by the insertion character# the result depends
upon the value of the data. If the value is zero the entire data
item will contain spaces. If the value is not zero# the result is
the same as when the insertion character is only to the left of
the decimal point.

To avoid truncation# the minimum size of the PICTURE
character-string for the receiving data item must be the number of
characters in the sending data item# plus the number of
non-floating insertion characters being edited into the receiving
data item# plus one for the floating insertion character.

Zero Suppression Editing

The suppression of leading zeroes in numeric character positions
is indicated by the use of the alphabetic character 'Z' or the
character (asterisk) as suppression symbols in a PICTURE
character-string. These symbols are mutually exclusive in a given
PICTURE character-string. Each suppression symbol is counted in
determining the size of the item. If is used the replacement
character will be the space and if the asterisk is used# the
replacement character will be

In a PICTURE c h a r a c t e r - s t ri n g # there are only two ways of
representing zero suppression. One way is to represent any or all
of the leading numeric character positions to the left of the
decimal point by suppression symbols. The other way is to
represent all of the numeric character positions in the PICTURE
character-string by suppression symbols.

If the suppression symbols appear only to the left of the decimal
point# any leading zero in the data which corresponds to a symbol
in the string is replaced by the replacement character.
Suppression terminates at the first nonzero digit in the data
represented by the suppression symbol string or at the decimal
point# whichever is encountered first.

PAGE 72

If all numeric character positions in the PICTURE character-string
are represented by suppression symbols and the value of the data
is not zero the result is the same as if the suppression
characters were only to the left of the decimal point. If the
value is zero and the suppression symbol is 7Z7, the entire data
item will be spaces. If the value is zero and the suppression
symbol is 7* 7, the data item will be all 7* 7 except for the actual
decimal point.

The symbols 7+ 7, 7- 7, ' # ' > 7Z 7, and the currency symbol, when used
as floating replacement characters, are mutually exclusive within
a given character-string.

The picture precedence chart shows the order of precedence when
using characters as symbols in a c h a r a c t e r - s t r ing. An ' X 7 at an
intersection indicates that the symbol(s) at the top of the column
may precede, in a given character-string, the symbol(s) at the
left of the row. Arguments appearing in braces indicate that the
symbols are mutually exclusive. The currency symbol is indicated
by the symbol 7c s 7.

At least one of the symbols 'A', 'X', 7Z 7, 79 7 , or 7* 7, or at
least two of the symbols 7+ 7, 7- 7, or " c s 7 must be present in a
PICTURE string.

Nonfloating insertion symbols 7+ 7 and /~ /, floating insertion
symbols 7Z 7, 7* 7, 7+ 7, 7- 7, and 7c s 7, and other symbol 7P 7 appear
twice in the PICTURE character precedence chart. The leftmost
column and uppermost row for each symbol represents its use to the
left of the decimal point position. The second appearance of the
symbol in the chart represents its use to the right of the decimal
point position.

PAGE 73

\lst
\Sym-

2nd\bol
Sym~\
bol \

Non-Floating
Insertion Symbols

B S 0 S / ! '!.
: ; ; i

< + > I< + > ! <CR>
<-> S -C-> ! -CDB>

CS

Floating
Insertion Symbols

<Z> i-CZ> M » ! {+> i CS ! CS
{ * > ! - C * > M » ! -C-> J !

B XIXIXIXIXI X 1 11 1I X X I X 1 X X X 1 X x !x : ixi ix

0 Y • Y 1 Y 1 Y * Y i A t A 1 A i A i A i X f1 •1 11 X X I X 11 X X XI X Y i y i I Y * i Y A i A i i A i i A

/ X I X S X I X 1 X I X 11 11 11 X X 1 X I> X X XI X Y • Y 1 1 Y • • Y A i A i i A i « A

I X 1 X 1 X 1 X 1 X 1 X 11 1 11 X X I X 11 X X X 1 X X X X

* XIXIXIXI 1 X 11 11 1t X X 1 1t

1
1

1
X
 i

1
1

1
_1 XI Y i i i i iA i i i i i

+ - 1 1 1 1 « 1 1 1 1 1 1 1 t 1 1 1 I I I I I 1 1 1 1 I 1 1 1 1 1 1 1 1 1 1

+ - X 1 X 1 X 1 X I X 1 1« 11 11 X X I X 11 XI X

XXX—

1

x

i

CR DB yiviyiviyiA 1 A 1 A 1 A 1 A 1 11 11 11 X X 1 X 1 XI X XI 1 1XIX 1 X

CS i i i i) y i < « i i t i i A i i < 1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 1 1 1 t 1

Z * XIXIXIXI I X (1 11 «1 X Y * * i i i A i i i i i i l f « i 1 1 1 1 1

Z * X 1 X 1 X 1 X 1 X 1 X (1 •1 11 X X 1 X 11 »1

XX

+ — y i Y i y i y i i A i A i A i A i i I1 11 11 X 1i 11 X 11 1 1 1 1 1 1 1 1 1 1

+ - Y * Y • Y • Y • Y > A i A i A • A i A i 11 11 11 X 1t 11 X X 11

XX

CS XIXIXIXI I X 11 11 11 1 1 1 1 XI 1 1 1 1 1 1 1 1 1 «

CS Y * Y < Y * Y * Y 1 A i A i A i A i A » X f1 11 11 1 1 1 I XIX

XX

!

9 X I X 1 X I X 1 X 1 X 11 11 11 X X 1 11 X XI XIXIXIXI IX

A X XIXIXI 1 I 1 1 1 1 1 1 1 1 • 1 1 1 1 XIXI 1 1 I

S 1 f 1 1 1 1 1 1 1 * 1 1 1 « 1 1 1 1 1 1 I I 1 1 1 1 1 1 1) 9 1 1 1 1 1 1

V XIXIXIXI 1 X 11 11 1I X X I 1I X XI

!
X

X
!
—

1!
X

P XIXIXIXI I X 11 11 11 X X 1 1» X X! Y i « Y 1 9 Y 1 A i) A « i A i

P 1 1 t 1 1 1 1 1 1 1 X 11 11 11 X I 1 1 1 1 1 1 1 1 1

1
x

1
x

1
x

O ther
Symbols

9! A
IX

VIPIP

N
0
N
F
L
0
A
T
I
N
Gl

PICTURE Character Precedence Chart

PAGE 74

The USAGE Clause

The USAGE clause specifies the format of a data item in the
computer storage.

FORMAT

CUSAGE IS1 {COMPUTATIONAL >

{COMP >

{ C O M P U T A T I O N AL - ! >

{COMP-1 >

{C0MPUTATI0NAL-3}

{COMP-3 >

{DISPLAY >

{INDEX >

This clause specifies the manner in
represented in the storage of a computer,
use of the data item* although the
statements in the Procedure Division may
of the operands referenced.

which a data item is
It does not affect the
specifications for some

restrict the USAGE clause

The USAGE clause can be written at any level. If the USAGE clause
is written at a group level; it applies to each elementary item in
the group. The USAGE clause of an elementary item cannot
contradict the USAGE clause of a group to which the item belongs.

If the USAGE clause is not specified for an elementary item; or
for any group to which the item belongs; the usage is implicitly
DISPLAY.

A COMPUTATIONAL (C O M P U T A T I O N A L - 1 , C0MPUTATI0NAL-3) item represents
a value to be used in computations and must be numeric. If a group
is described as COMPUTATIONAL; then the elementary items in the
group are COMPUTATIONAL. The group itself is not COMPUTATIONAL
(cannot be used in computations.)

PAGE 7 5

The format of a COMPUTATIONAL item is one decimal digit per
character position (hexadecimal 00-09). If an 'S' appears in the
PICTURE character-string* a trailing byte contains the sign with
> 2B being generated for positive and > 2D being generated for
negative. COMPUTATIONAL items will be treated as negative if the
sign character is > 2D* otherwise they will be considered
positive.

The format of a COMPUTATIONAL-1 item (abbreviated COMP-1) is 16
bit two's complement signed binary* independent of the number of
nines or appearance of 'S' in the PICTURE character-string. The
number of nines is significant when the value is converted to
decimal during data manipulation. The value of a COMPUTATIONAL-1
item ranges between -32768 and 32767.

The format of a C 0 M P U TATI0NAL-3 item is two decimal digits per
character position.

The PICTURE character-string of a COMPUTATIONAL* COMPUTATIONAL-1
or CGMPUTATIONAL-3 item can contain only '9's* the operational
sign character 'S'* the implied decimal point character 'V'* one
or more 'P's. Since a COMPUTATIONAL-1 item must have zero scale it
cannot contain any 'P's in its PICTURE character string and if it
has a 'V' in its PICTURE charactei— string the 'V' must be the
rightmost character.

The USAGE IS DISPLAY clause indicates that the format of the data
is ASCII.

An elementary item described with the USAGE IS INDEX clause is
called an index data item and contains a value which must
correspond to an occurrence number of a table element. If a group
item is described with the USAGE IS INDEX clause the elementary
items in the group are all index data but the group item name
cannot be used in the SET statement or in a relation condition.

An index data item can be referenced explicitly only in a SET
statement or a relation condition.

The initial value of an index item is undefined.

The SYNCHRONIZED* JUSTIFIED, PICTURE, VALUE and BLANK WHEN ZERO
clauses cannot be used to describe group or elementary items
described with the USAGE IS INDEX clause.

An index data item can be part of a group which is referred to in
a MOVE or input-output statement* in which case no conversion will
take place.

The external and internal format of an index data item is the same
as a C O M P U T A T O N A L — 1 item.

PAGE 76

The SION Clause

The SION clause specifies the position and the mode of
representation of the operational sign when it is necessary to
describe these properties explicitly.

FORMAT

CSION IS] <TRAILINO> [SEPARATE CHARACTER]

The optional SION clause» if present» specifies the position and
the mode of representation of the operational sign for the numeric
data description entry to which it applies» or for each numeric
data description entry subordinate to the group to which it
applies. The SIGN clause applies only to numeric data description
entries whose PICTURE contains the character 'S'.

The operational sign will be presumed to be the trailing character
position of the elementary numeric data item; this character
position is not a digit position.

The letter 'S' in a PICTURE character-string is counted in
determining the size of the item (in terms of standard data format
c h a r a c t e r s).

The operational signs for positive and negative are the standard
data format characters '+' and '-'» respectively.

The numeric data description entries to which the SIGN clause
applies must be described as usage is DISPLAY.

At most one SION clause may apply to any given numeric data
description entry.

PAGE 77

The OCCURS Clause

The OCCURS clause eliminates the need for separate entries for
repeated data items and supplies information required for the
application of subscripts or indices.

FORMAT 1

OCCURS integer-1 TIMES

CINDEXED BY index-name-1 C* index-name-23 ...3

FORMAT 2

OCCURS integer-1 TO integer-2 TIMES DEPENDING ON data-name-1

CINDEXED BY index-name-1 C*index-name-23 ...3

The OCCURS clause is used in defining tables and other homogeneous
sets of repeated data items. Whenever the OCCURS clause is used*
the data-name which is the subject of this entry must be either
subscripted or indexed whenever it is referred to in a statement.
Further* if the subject of this entry is the name of a group item*
then all data-names belonging to the group must be subscripted or
indexed whenever they are used as operands* except as the object
of a REDEFINES clause.

The OCCURS clause cannot be specified in a data description entry
that:

Has an 01* 66* 77* or an 88 level-number.

Describes an item whose size is variable. The size of an item
is variable if the data description of any subordinate item
contains Format 2 of the OCCURS clause.

Except for the OCCURS clause itself* all data description clauses
associated with an item whose description includes an OCCURS
clause apply to each occurrence of the item described.

PAGE 78

The number of occurrences of the subject entry is defined as
foil ows :

In Format 1» the value of integer-1 represents the exact
number of occurrences.

In Format 2* the current value of the data item referenced by
data-name-1 represents the number of occurrences.

This format specifies that the subject of this entry has a
variable number of occurrences. The value of integer-2
represents the maximum number of occurrences and the value
of integer-1 represents the minimum number of occurrences.
This does not imply that the length of the subject of the
entry is variable! but that the number of occurrences is
var iab 1 e.

The value of the data item referenced by data-name-1 must
fall within the range integei— 1 through integer-2.
Reducing the value of the data item referenced by
data-name-1 makes the contents of data items; whose
occurrence numbers now exceed the value of the data item
referenced by data-name-1; unpredictable.

Where both integer-1 and integer-2 are used; the value of
integer-1 must be less than the value of integer-2.

The data description of data-name-1 must describe a
positive integer. Data-name-1 may be qualified.

A data description entry that contains Format 2 of the
OCCURS clause may only be followed; within that record
description; by data description entries which are
subordinate to it.

When a group item; having subordinate to it an entry that
specifies Format 2 of the OCCURS clause; is referenced; only that
part of the table area that is specified by the value of
data-name-1 will be used in the operation.

An INDEXED BY phrase is required if the subject of this entry; or
an entry subordinate to this entry; is to be referred to by
indexing. The index-name identified by this clause is not defined
elsewhere since its allocation and format are dependent on the
hardware; and not being data; cannot be associated with any data
hierarchy.

PAGE 79

The SYNCHRONIZED Clause

The SYNCHRONIZED clause specifies the alignment of an elementary
item on an even byte boundary.

FORMAT

{SYNCHRONIZED)- CLEFT 1

{SYNC > CRIGHT)

This clause specifies that the subject data item is to be aligned
in the computer such that no other data item occupies any of the
character positions between the leftmost and rightmost natural
boundaries delimiting this data item. If the number of character
positions required to store this data item is less than the number
of character positions between those natural boundaries* the
unused character positions <or portions thereof) must not be used
for any other data item. Such unused character positions* however*
are included in:

The size of any group item(s) to which the elementary item
belongs* and

The character positions redefined when this data item is the
object of a REDEFINES clause.

S Y NCHRONIZED LEFT specifies that the elementary item is to be
positioned such that it will begin at the left character position
of the next available even byte. If the data item contains an odd
number of bytes* one trailing byte of FILLER is implied.

SYNCHRONIZED not followed by either RIGHT or LEFT is equivalent to
the clause SYNCHRONIZED LEFT.

SYNC is an abbreviation for SYNCHRONIZED.

This clause may only appear with an elementary item.

S YNCHRONIZED RIGHT specifies that the elementary item is to be
positioned such that it will terminate on the right character
position of an integral even byte boundary. If the data item
contains an odd number of bytes* a leading byte of FILLER is
imp lied.

PAGE 80

Whenever a SYNCHRONIZED item is referenced in the source program;
the original size of the item; as shown in the PICTURE clause; is
used in determining any action that depends on size; such as
justifiction; truncation or overflow.

If the data description of an item contains the SYNCHRONIZED
clause and an operational sign; the sign of the item appears in
the normal operational sign position; regardless of whether the
item is SYNCHRONIZED LEFT or S YNCHRONIZED RIGHT.

When the SYNCHRONIZED clause is specified in a data description
entry of a data item that also contains an OCCURS clause; or in a
data description entry of a data item subordinate to a data
description entry that contains an OCCURS clause; then:

Each occurrence of the data item is SYNCHRONIZED.

Any implicit FILLER generated for other data items within that
same table are generated for each occurrence of those data
i terns.

Records of a file and index data items are automatically
synchronized left. Records and noncontiguous data-items in
working-storage begin on the next available byte unless the first
elementary item is synchronized.

The format on external media of records or groups containing
elementary items described with the SYNCHRONIZED clause includes
any implied FILLER bytes.

When the data item preceding a data item described with the
SYNCHRONIZED clause does not terminate on a byte whose address is
even; then one implied FILLER byte is generated. Such
a u toma t i ca 11y generated FILLER positions are included in:

The size of any group to which the FILLER item belongs; and

The number of character positions allocated when the group
item of which the FILLER item is a part appears as the object
of a REDEFINES clause.

PAGE 81

The JUSTIFIED Clause

The JUSTIFIED clause specifies nonstandard positioning of data
within a receiving data item.

FORMAT

{JUSTIFIED} RIGHT

•C JUST >

When a receiving data item is described with the JUSTIFIED clause
and the sending data item is larger than the receiving data item/
the leftmost characters are truncated. When the receiving data
item is described with the JUSTIFIED clause and it is larger than
the sending data item/ the data is aligned at the rightmost
character position in the data item with space-fill for the
leftmost character positions.

When the JUSTIFIED clause is omitted/ the standard rules for
aligning data within an elementary item apply.

The JUSTIFIED clause cannot be specified for any data item
described as numeric or for which editing is specified.

The JUSTIFIED clause can be specified only at the elementary item
1 eve 1.

JUST is an abbreviation for JUSTIFIED.

PAGE 82

The BLANK WHEN ZERO Clause

The BLANK WHEN ZERO clause permits the blanking of an item when
its value is zero.

FORMAT

BLANK WHEN ZERO

The BLANK WHEN ZERO clause can be used only for an elementary item
whose PICTURE is specified as numeric or numeric edited.

The BLANK WHEN ZERO clause cannot appear in the same entry with a
PICTURE clause having an asterisk as the zero suppression symbol.

When the BLANK WHEN ZERO clause is used/ the item will contain
nothing but spaces if the value of the item is zero.

When the BLANK WHEN ZERO clause is used for an item whose PICTURE
is numeric/ the category of the item is considered to be numeric
ed ited.

PAGE S3

The VALUE IS Clause

The VALUE IS clause defines the initial value of working storage
items/ and the values associated with a condition-name.

FORMAT 1

VALUE IS literal

FORMAT 2

{VALUE IS > literal-1

■(VALUES ARE>

C/ literal-3 [-(THROUGH} literal-413 ...

■(THRU }

The VALUE clause cannot be stated for any items whose size is
variable.

A signed numeric literal must have associated with it a signed
numeric PICTURE c h a r a c t e r - s t ri n g .

All numeric literals in a VALUE clause of an item must have a
value which is within the range of values indicated by the PICTURE
clause/ and must not have a value which would require truncation
of nonzero digits. Nonnumeric literals in a VALUE clause of an
item must not exceed the size indicated by the PICTURE clause.

The words THRU and THROUGH are equivalent.

The VALUE clause must not conflict with other clauses in the data
description of the item or in the data description within the
h ierarchy of the item. The following rules apply:

1. If the category of the item is numeric/ all literals in the
VALUE clause must be numeric. If the literal defines the value
of a working storage item» the literal is aligned in the data
item according to the standard alignment rules.

[{THROUGH} literal-23

{THRU }

PAGE 84

2. If the category of the item is alphabetic, alphanumeric,
alphanumeric edited or numeric edited, all literals in the
VALUE clause must be nonnumeric literals. The literal is
aligned in the data item as if the data item had been
described as a 1p h a n u m e r i c . Editing characters in the PICTURE
clause are included in determining the size of the data item
but have no effect on initialization of the data item.
Therefore, the VALUE of an edited item is presented in an
edited form.

Initialization takes place independent of any BLANK WHEN ZERO or
JUSTIFIED clause that may be specified.

A figurative constant may be substituted in both Format 1 and
Format 2 wherever a literal is specified.

Condition-Name Rules

In a condition-name entry, the VALUE clause is required. The VALUE
clause and the condition-name itself are the only two clauses
permitted in the entry. The c h a r a c t e r istics of a condition-name
are implicitly those of its conditional variable.

Format 2 can be used only in connection with condition-names.
Wherever the THROUGH (THRU) phrase is used, literal-1 must be less
than literal-2, literal-3 less than literal-4, etc.

Data Description Entries Other Than Condition-Names

Rules governing the use of the VALUE clause differ with the
respective sections of the Data Division:

In the File Section, the VALUE clause may be used only in
condition-name entries.

In the Working-Storage Section, the VALUE clause must be used
in condition-name entries. The VALUE clause may also be used
to specify the initial value of any other data item; in which
case the clause causes the item to assume the specified value
at the start of the object program. If the VALUE clause is not
used in an item's description, the initial value is undefined.

In the Linkage Section, the VALUE clause may be used only in
condition-name entries.

PAGE 85

The VALUE clause must not be stated in a data description entry
that contains an OCCURS clause# or in an entry that is subordinate
to any entry containing a REDEFINES clause. This rule does not
apply to condition-name entries.

If the VALUE clause is used in an entry at the group level# the
literal must be a figurative constant or a nonnumeric literal# and
the group area is initialized without consideration for the
individual elementary or group items contained within this group.
The VALUE clause cannot be stated at the subordinate levels within
this group.

The VALUE clause must not be written for a group containing items
with descriptions including JUSTIFIED# SYNCHRONIZED# or USAGE
(other than USAGE IS DISPLAY).

PAGE 86

The RENAMES Clause

The RENAMES clause permits alternative» possibly overlapping,
groupings of elementary items.

FORMAT

66 d a t a - n a m e - 1 ;

RENAMES data-name-2 C-CTHROUGH} d a t a - n a m e - 3 3 .

•CTHRU >

NOTE: Level-number 66, data-name-1 and the semicolon are shown
in the above format to improve clarity. Level-number and
data-name-1 are not part of the RENAMES clause.

All RENAMES entries referring to data items within a given logical
record must immediately follow the last data description entry of
the associated record description entry.

Data-name-2 and data-name-3 must be names of elementary items or
groups of elementary items in the same logical record, and cannot
be the same data-name. A 66 level entry cannot rename another 66
level entry nor can it rename a 77, 88, or 01 level entry.

Data-name-1 cannot be used as a qualifier, and can only be
qualified by the names of the associated level 01 or FD entries.
Neither data-name-2 nor data-name-3 may have an OCCURS clause in
its data description entry nor be subordinate to an item that has
an OCCURS clause in its data description entry.

The beginning of the area described by data-name-3 must not be to
the left of the beginning of the area described by data-name-2.
The end of the area described by data-name-3 must be to the right
of the end of the area described by data-name-2. Data-name-3,
therefore, cannot be subordinate to data-name-2.

Data-name-2 and data-name-3 may be qualified.

None of the items within the range, including data-name-2 and
data-name-3, if specified, can be an item whose size is variable
as defined in the OCCURS clause.

PAGE 87

One or more RENAMES entries can be written for a logical record.

When data-name-3 is specified» data-name-1 is a group item which
includes all elementary items starting with data-name-2 (if
data-name-2 is an elementary item) or the first elementary item in
data-name-2 (if data-name-2 is a group item)» and concluding with
data-name-3 (if data-name-3 is an elementary item) or the last
elementary item in data-name-3 (if data-name-3 is a group item).

When data-name-3 is not specified» data-name-2 can be either a
group or an elementary item» when data-name-2 is a group item»
data-name-1 is treated as a group item» and when data-name-2 is an
elementary item» data-name-1 is treated as an elementary item.

The words THRU and THROUGH are equivalent.

PAGE 88

DATA STRUCTURES

Classes of Data

The five categories of data items (see the PICTURE Clause) are
grouped into three classes:

alphabetic
numeri c
a 1p hanumer i c

For alphabetic and numeric* the classes and categories are
synonymous.

The alphanumeric class includes the categories of alphanumeric
edited* numeric edited and alphanumeric (without editing).

Every elementary item except for an index data item belongs to one
of the classes and further to one of the categories. The class of
a group item is treated at object time as alphanumeric regardless
of the class of elementary items subordinate to that group item.

The following chart depicts the relationship of the class and
categories of data items:

!LEVEL OF ITEM
1 - - T _ .

CLASS CATEGORY !

1
1
1

Alphabetic Alphabetic !
1
1
1

! Elementary
1
1
1t
1
1
1

Numeri c Numeric !

A1phanumeri c Numeric Edited !
Alphanumeric Edited »
Alphanumeric !

!Nonelementary
!(Group)
l
1
1t
1
1

A1phanumer i c Alphabetic !
Numeric !
Numeric Edited !
Alphanumeric Edited !
Alphanumeric I

PAGE 89

Representation of Numeric Items

The value of a numeric item may be represented in either binary,
decimal or packed decimal form depending on the USAGE clause
associated with the item. There are two ways of expressing
decimal: DISPLAY and COMPUTATIONAL. Binary is C O M P U T A T I O N A L - 1 .
Packed decimal is C0MPUTATI0NAL-3.

The selection of the proper representation is dependent upon the
usage of the numeric item. Items which must be used for input and
output should be of DISPLAY usage to eliminate conversions to
external forms. For efficiency of arithmetic operations,
COMPUTATIONAL, C O M P U T A T I O N A L - 1 , or C 0 MPUTATI0NAL-3 should be used.
To reduce conversions and increase efficiency, types should not be
mixed in operations except where required by program needs.

Representation of Algebraic Signs

Algebraic signs fall into two categories:

operational signs which are associated with signed numeric
data items, and signed numeric literals to indicate their
algebraic properties; and

editing signs which appear to identify the sign of the item.

For DISPLAY, COMPUTATIONAL, and C0MPUTATI0NAL-3, an unsigned
numeric item is assumed to have an operational sign which is
positive and will receive the absolute value of signed items. A
signed numeric item maintains the operational sign as a separate
trailing character.

For COMPUTATIONAL-1 (which is always signed), the operational sign
is maintained as part of the item in two's complement signed
binary form.

Editing signs are inserted into a data item through the use of the
sign control symbols of the PICTURE clause.

PAGE 90

Standard Alignment Rules

The standard rules of positioning data within an elementary item
depend on the category of the receiving item:

If the receiving data item is described as numeric:

a. The data is aligned by decimal point and is moved to the
receiving character positions with zero fill or truncation
on either end as required.

b. When an assumed decimal point is not explicitly specified,
the data item is treated as if it had an assumed decimal
point immediately following its rightmost character and is
aligned as in a. above.

If the receiving data item is a numeric edited data item, the
data moved to the edited data item is aligned by decimal point
with zero-fill or truncation at either end as required within
the receiving character positions of the data item, except
where editing requirements cause replacement of the leading
z eros.

If the receiving data item is alphanumeric (other than a
numeric edited data item), alphanumeric edited or alphabetic,
the sending data is moved to the receiving character positions
and aligned at the leftmost character position in the data
item with space-fill or truncation to the right, as required.

If the JUSTIFIED clause is specified for the receiving item, these
standard rules are modified as described in the JUSTIFIED clause.

PAGE 91

QUALIFICATION

Every user-specified name that defines an element in a COBOL
source program must be unique* either because no other name has
the identical spelling and hyphenation* or because the name exists
within a hierarchy of names such that references to the name can
be made unique by mentioning one or more of the higher levels of
the hierarchy. The higher levels are called qualifiers and this
process that specifies uniqueness is called qualification. Enough
qua 1 ification must be mentioned to make the name unique* however*
it may not be necessary to mention all levels of the hierarchy.
Within the Data Division* all data-names used for qualification
must be associated with a level indicator or a level-number.
Therefore* two identical data-names must not appear as entries
subordinate to a group item unless they are capable of being made
unique through qualification.

In the hierarchy of qualification* names associated with a level
indicator are the most significant* then those names associated
with level-number 01* then names associated with level-number 02*
...* 49. The most significant name in the hierarchy must be unique
and cannot be qualified.

Qualification is performed by following a data-name* by one or
more phrases composed of a qualifier preceded by IN or OF. IN and
OF are logically equivalent.

FORMAT 1

-Cdata-name-l> C*COF> data-name-2 3. . .

•Ccondition-name> -CIN>

FORMAT 2

paragraph-name C<OF> section-name3

•C INI-

PAGE 92

The rules for qua 1 ification are as follows:

1. Each qualifier must be of a successively higher level and
within the same hierarchy as the name it qualifies.

2. The same name must not appear at two levels in a hierarchy.

3. If a data name is assigned to more than one data item in a
source program» the data-name must be qualified each time it
is referred to in the Procedure» Environment» and Data
Divisions (except in the REDEFINES clause where qualification
is unnecessary and must not be used. >

4. A paragraph-name must not be duplicated within a section. When
a paragraph-name is qualified by a section-name» the word
SECTION must not appear. A paragraph-name need not be
qualified when referred to from within the same section.

5. A data-name cannot be subscripted when it is being used as a
qualifier.

6. A name can be qualified even though it does not need
qualification: if there is more than one combination of
qualifiers that ensures uniqueness» then any such set can be
used. The complete set of qualifiers for a data-name must not
be the same as any partial set of qualifiers for another
data-name. Qualified data-names may have any number of
qualifiers up to a limit of 49.

PAGE 93

SUBSCRIPTING

Subscripts can be used only when reference is made to an
individual element within a list of a table of like elements that
have not been assigned individual data-names (see The OCCURS
C l a u s e).

The subscript can be represented either by a numeric literal that
is an integer or by a data-name. The data name must be a numeric
elementary item that represents an integer. When the subscript is
represented by a data-name» the data-name may be qualified but not
subscripted.

The subscript may be signed and» if signed» it must be positive.
The lowest possible subscript value is 1. This value points to the
first element of the table. The next sequential elements of the
table are pointed to by subscripts whose values are 2» 3» . . . n.
The highest permissible subscript value» in any particular case»
is the maximum number of occurrences of the item as specified in
the OCCURS clause.

The subscript» or set of subscripts» that identifies the table
element is delimited by the balanced pair of separators» left
parenthesis and right parenthesis» following the table element
data-name. The table element data-name appended with a subscript
is called a subscripted data-name or an identifier. When more than
one subscript is required» they are written in the order of
successively less inclusive dimensions of the data organization.

FORMAT

•Cdata-name > (subscript-1 Csubscript-2 C» s u b s c r i p t - 3 3 3)
■Ccond i t ion-name >

PAGE 94

INDEXING

References can be made to individual elements within a table of
like elements by specifying indexing for that reference. An index
is assigned to that level of the table by using the INDEXED BY
phrase in the definition of a table. A name given in the INDEXED
BY phrase is known as an index-name and is used to refer to the
assigned index. The value of an index corresponds to the
occurrence number of an element in the associated table. An
index-name must be initialized before it is used as a table
reference. An index-name can be given an initial value by a SET
statement* or a FORMAT 4 PERFORM statement.

Direct indexing is specified by using an index-name in the form of
a subscript. Relative indexing is specified when the index-name is
followed by the operator + or -* followed by an unsigned integer
numeric literal all delimited by the balanced pair of separators*
left parenthesis and right parenthesis* following the table
element data-name. The occurrence number resulting from relative
indexing is determined by incrementing (where the operator + is
used) or decrementing (when the operator - is used)* by the value
of the literal* the occurrence number represented by the value of
the index. When more than one index-name is required* they are
written in the order of successively less inclusive dimensions of
the data organization.

At the time of execution of a statement which refers to an indexed
table element* the value contained in the index referenced by the
index-name associated with the table element must neither
correspond to a value less than one (1) nor to a value greater
than the highest permissible occurrence number of an element of
the associated table. This restriction also applies to the value
resultant from relative indexing.

FORMAT

•Cdata-name> ({ ind e x-name-1 [{+> literal-23>
■Ccond ition-name> -Cliteral-1 {-> >

C* -Cindex-name-2 C-C+3- literal-433-
-Cliteral-3 <-> >

C* -Cindex-name-3 C-C + 3- 1 i teral-633-3 3)
-Cliteral-5 <-> >

PAGE 95

IDENTIFIER

An identifier is a term used to reflect that a data-name* if not
unique in a program* must be followed by a syntactically correct
combination of qualifiers* subscripts or indices necessary to
ensure uniqueness. The general formats for identifiers are:

FORMAT 1

data-name-1 C-COFT data-name-23 ... C (subscrip t-1

-C IN}

C*subscript-2 C* s u b s c r i p t - 3 3 3)3

FORMAT 2

data-name-1 C-COF} data-name-23

<IN>

C (-Cindex-name-1 C-C+> literal-23}
{literal-1 <-> >

C* -Cindex-name-2 C-C+}
•Cliteral~3 {-}

literal-43}
}

[* -Cindex-name-3 C<+}
Tliteral-5 -C-}

1 i tera 1-63}3 3)3
}

Restrictions on qua 1 ification* subscripting and indexing are:

A data-name must not itself be subscripted nor indexed when
that data-name is being used as an index* subscript or
qualifier.

Indexing is not permitted where subscripting is not permitted.

An index may be modified only by the SET and PERFORM
statements. Data items described by the USAGE IS INDEX clause
permit storage of the values associated with index— names as
data in a form specified by the compiler. Such data items are
called index data items.

Literal-1* literal-3* literal-5 in the above format must be
positive numeric integers. Literal-2* literal-4, literal-6*
must be unsigned numeric integers.

PAGE 96

CONDITION-NAME

Each condition-name must be unique» or be made unique through
qualification and/or indexing, or subscripting.

If qualification is used to make a condition-name unique, the
associated conditional variable may be used as the first
qualifier. If qua 1 ification is used, the hierarchy of names
associated with the conditional variable or the conditional
variable itself must be used to make the condition-name unique.

If references to a conditional variable require indexing or
subscripting, then references to any of its condition-names also
require the same combination of indexing or subscripting.

The format and restrictions on the combined use of qualification,
subscripting, and indexing of condition-names is exactly that of
'identifier' except that data-name-1 is replaced by
cond i t i o n - n a m e - 1.

In the general formats, 'condition-name' refers to a
condition-name qualified, indexed or subscripted, as necessary.

PAGE 97

TABLE HANDLING

Tables of data are common components of business data processing
problems. Although items of data that make up a table could be
described as contiguous data itemsi there are two reasons why this
approach is not satisfactory. First; from a documentation
standpoint» the underlying homogeneity of the items would not be
readily apparent; and second# the problem of making available an
individual element of such a table would be severe when there is a
decision as to which element is to be made available at object
time.

Tables composed of contiguous data items are" defined in COBOL by
including the OCCURS clause in their data description entries.
This clause specifies that the item is to be repeated as many
times as stated. The item is considered to be a table element and
its name and description apply to each repetition or occurrence.
Since each occurrence of a table element does not have assigned to
it a unique data-name# reference to a desired occurrence may be
made only by specifying the data-name of the table element
together with the occurrence number of the desired table element.
Subscripting and indexing are the two methods that are used to
specify the occurrence number of a desired table element.

Table Definition

To define a one-dimensional table# the programmer uses an OCCURS
clause as part of the data description of the table element# but
the OCCURS clause must not appear in the description of group
items which contain the table element.

Example 1:

01 TABLE-1.
02 TABLE-ELEMENT OCCURS 20 TIMES.

03 NAME
03 SSAN

Defining a one-dimensional table within each occurrence of an
element of another one-dimensional table gives rise to a
two-dimensional table. To define a two-dimensional table# then# an
OCCURS clause must appear in the data description of the element
of the table# and in the description of only one group item which
contains that table. In the description of a three-dimensional
table# the OCCURS clause should appear in the data description of
2 nested group items which contain the element. In COBOL# tables
of up to 3 dimensions are permitted.

PAGE 98

Example 2 shows a table which has one dimension for
CONTINENT-NAME/ two dimensions for COUNTRY-NAME* and three
dimensions for CITY-NAME and CITY-POPULATION. The table includes
100,510 data items— 10 for CONTINENT-NAME, 500 for COUNTRY-NAME,
50,000 for CITY-NAME, and 50,000 for CITY-POPULATION. Within the
table there are ten occurrences of CONTINENT-NAME. Within each
CONTINENT-NAME there are 50 occurrences of COUNTRY-NAME and within
each COUNTRY-NAME there are one hundred occurrences of CITY-NAME
and CITY-POPULATION.

01 CENSUS-TABLE.
05 CONTINENT-TABLE OCCURS 10 TIMES.

10 CONTINENT-NAME PIC XXXXXX.
10 COUNTRY-TABLE OCCURS 50 TIMES.

15 COUNTRY-NAME PIC XXXXXXXX.
15 CITY-TABLE OCCURS 100 TIMES.

20 CITY-NAME PIC XXXXXXXXXX.
20 C I TY-POPULATION PIC 999999999999.

References to Table Items

Whenever the user refers to a table element, the reference must
indicate which occurrence of the element is intended. For access
to a one-dimensional table, the occurrence number of the desired
element provides complete information. For access to tables of
more than one dimension, an occurrence number must be supplied for
each dimension of the table accessed. In Example 2 then, a
reference to the 4th C O N T INENT-NAME would be complete, whereas a
reference to the 4th COUNTRY-NAME would not. To refer to
COUNTRY-NAME, which is an element of a two-dimensional table, the
user must refer to, for example, the 4th COUNTRY-NAME within the
6th CONTINENT-TABLE.

One method by which occurrence numbers may be specified is to
append one or more subscripts to the data-name. A subscript is an
integer whose value specifies the occurrence number of an element.
The subscript can be represented either by a literal which is an
integer or by a data-name which is defined elsewhere as a numeric
elementary item with no character positions to the right of the
assumed decimal point. In either case, the subscript, enclosed in
parentheses, is written immediately following the name of the
table element. A table reference must include as many subscripts
as there are dimensions in the table whose element is being
referenced. That is, there must be a subscript for each OCCURS
clause in the hierarchy containing the data-name, including the
data-name itself. In Example 2, references to CONTINENT-NAME
require only one subscript, reference to COUNTRY-NAME requires
two, and references to CITY-NAME and CITY-POPULATION require
three.

PAGE 99

When more than one subscript is
order of successively less in
organization. When a data-name is
used to refer to items in many di
not have elements of the same si
as the only subscript with one it
subscripts with another item,
literal and data-name subscripts
(10, NEWKEY, 42).

required
elusive
used as

fferent
ze. The
em and a
Also,

, for

, they are written in
dimensions of the data
a subscript, it may be

tables. These tables need
data-name may also appear
s one of two or three
it is permissible to mix
example: C I TY-POPULATION

IS cl ause) to an
lau se There is no
■ i ts definition is
der ed data per se.
11 c orrespond to
on of the table to

Another method of referring to items in a table is indexing. To
use this technique, the programmer assigns one or more index-names
(defined with the INDEXED-BY phrase of the OCCURS
item whose data description contains an OCCURS clause,
separate entry to describe the index-name
completely hardware-oriented and it is not
At object time the contents of the index-name will
an occurrence number for that specific dim
which the index-name was assigned. The
index-name at object time is not determina
must be initialized by the SET statement bef

When a reference is made to a table element,
a table element, and the name of the i
related index-name or names in parentheses,
number required to complete the reference
the respective index-name. The index-name th
whose value is used in any table refe
index ing.

ini t ia 1 value of an
ble an d th e ind ex- name
ore us e

or to an item wi thin
tern is fol 1 owed by its
then each oc curr enc e
wi 1 1 be ob tain ed from

us a c t s as a su bsc r ipt
renc e tha t sp ec if ies

PAGE 100

PROCEDURE DIVISION

VI

PAGE 101

THE PROCEDURE DIVISION

The Procedure Division must be included in every COBOL source
program. This division may contain declaratives and nondeclarative
procedures.

The Procedure Division is identified by and must begin with the
following header:

PROCEDURE DIVISION CUSING data-name-1 l , data-name-23 ...3 .

The USING phrase is present if and only if the object program is
to function under the control of a CALL statement/ and the CALL
statement in the calling program contains a USING phrase.

Each of the operands in the USING phrase of the Procedure Division
header must be defined as a data item in the Linkage Section of
the program in which this header occurs/ and it must have a 01 or
77 level-number.

Within a called program/ Linkage Section data items are processed
according to their descriptions given in the called program. Of
those items defined in the Linkage Section only data-name-1/
data-name-2/ items subordinate to these data-names/ and
condition-names and/or index-names associated with such data-names
and/or subordinate data items/ may be referenced in the Procedure
Division.

When the USING phrase is present/ the object p
if data-name-1 of the Procedure Division
program and data-name-1 in the USING phrase of
in the calling program refer to a single
equally available to both the called and calli
definitions must contain the same data descrip
need not be the same name. In like manner/ th
relationship between data-name-2/ .../ in the
called program and data-name-2/ .../ in the
CALL statement in the calling program. A data-
more than once in the USING phrase in the
header of the called program; however/ a
appear more
statement.

than once in the same USING

rogram operates as
header in the called
the CALL statement
set of data that is

ng programs. Their
tions; however/ they
ere is an equivalent
USING phrase of the
USING phrase of the

name must not appear
Procedure Division
given data-name may
phrase of a CALL

PAGE 102

Struc ture

The body of the Procedure Division must conform to one of the
following formats:

FORMAT 1

PROCEDURE DIVISION [USING data-name-1 [/ data-name-2!. . . !.

[DECLARATIVES.

{section-name SECTION [segment-number!, declarative-sentence

[paragraph-name, [sentence! . . . ! . . . > ...

END DECLARATIVES. !

{section-name SECTION [segment-number!.

[paragraph-name, [sentence! ...! ...> ...

[END PROGRAM!.

FORMAT 2

PROCEDURE DIVISION [USING data-name-1 [,data-name-2!. . . !.

•[paragraph-name. Lsentence! . . . > ...

[END PROGRAM!.

The segment-number must be an integer ranging in value from 0
through 127.

If the segment-number is omitted from the section header/ the
segment-number is assumed to be 0.

Sections in the declaratives must contain segment-numbers less
than 50.

PAGE 103

All sections which have the same segment-number constitute a
program segment. Sections with the same segment-number must be
physically contiguous in the source program.

Segments
portion o
through
follow fi

with segment-numbers 0 through 49 belong to the fixed
f the object program. Segments with segment-numbers 50
127 are independent segments. Independent segments must
xed segments.

Declaratives

Declarative sections must be
Procedure Division preceded
followed by the key words END

grouped at the beginning of the
by the key word DECLARATIVES and

DECLARATIVES.

Procedures

A procedure is composed of
paragraphs* or a section*
the Procedure Division. If
paragraphs must be in sect
refer to a paragraph or
(which may be qualified)*

A section consists of a se
successive paragraphs. A
section or at the end of
declaratives portion of
END DECLARATIVES.

a paragraph* or group of successive
or a group of successive sections within
one paragraph is in a section* then all

ions. A procedure-name is a word used to
section. It consists of a paragraph-name
or a section-name.

ction header followed by zero* or more
section ends immediately before the next

the Procedure Division or* in the
the Procedure Division* at the key words

A paragraph consists of
a space and by zero
ends immediately before
at the end of the Proc
portion of the Pro
DECLARATIVES. A paragra

a paragraph-name followed by
* or more successive sentence
the next paragraph-name or s

edure Division or* in the
cedure Division* at the k
ph-name must not be duplica

a period and
s. A paragraph
ection-name or

declaratives
ey words END
ted within a

section.

Execution

Execution begins with the first statement of
Division* excluding declaratives. Statements are th
the order in which they are presented for comp
where the rules indicate some other order.

the Procedure
en executed in
ilation* except

PAGE 104

PROCEDURE REFERENCES

A procedure is referred to by its p a ragraph— name or section— name.
Paragraph-names may be qualified by the section-name of the
section containing the paragraph* whether or not it needs
qualification. When referring to a section-name or when using a
section-name as a qualifier* the word SECTION must not appear.
Qualification is performed by following a paragraph-name with a
section-name preceded by IN or OF. IN and OF are logically
equivalent. The general format for paragraph qualification is:

paragraph-name C-COFJ section-name]

•C IN>

A paragraph-name need not be qualified when referred to from
within the same section or when the paragraph-name is unique.

Explicit and Implicit Transfers of Control

The mechanism that controls program flow transfers control from
statement to statement in the sequence in which they were written
in the source program unless an explicit transfer of control
overrides this sequence or there is no next executable statement
to which control can be passed. The transfer of control from
statement to statement occurs without the writing of an explicit
Procedure Division statement* and therefore* is an implicit
transfer of control.

COBOL provides both explicit and implicit means of altering the
implicit control transfer mechanism.

In addition to the implicit transfer of control between
consecutive statements* implicit transfer of control also occurs
when the normal flow is altered without the execution of a
procedure branching statement. COBOL provides the following types
of implicit control flow alterations which override the
statement-to-statement transfers of control:

If a paragraph is being executed under control of another
COBOL statement (for example* PERFORM and USE) and the
paragraph is the last paragraph in the range of the
controlling statement* then an implied transfer of control
occurs from the last statement in the paragraph to the control
mechanism of the last executed controlling statement. Further*
if a paragraph is being executed under the control of a
PERFORM statement which causes iterative execution and that
paragraph is the first paragraph in the range of that PERFORM
statement* an implicit transfer of control occurs between the
control mechanism associated with that PERFORM statement and

PAGE 105

the first statement in that paragraph for each iterative
execution of the paragraph.

When any COBOL statement is executed which results in the
execution of a declarative section» an implicit transfer of
control to the declarative section occurs. Note that another
implicit transfer of control occurs after execution of the
declarative.

An explicit transfer of control consists of an alteration of the
implicit control transfer mechanism by the execution of a
procedure branching or conditional statement. An explicit transfer
of control can be caused only by the execution of a procedure
branching or conditional statement. The execution of the procedure
branching statement ALTER does not in itself constitute an
explicit transfer of control» but affects the explicit transfer of
control that occurs when the associated GO TO statement is
e x ec u t e d .

In this document» the term 'next executable statement' is used to
refer to the next COBOL statement to which control is transferred
according to the rules above and the rules associated with each
language element in the Procedure Division.

There is no next executable statement following:

The last statement in a declarative section when the paragraph
in which it appears is not being executed under the control of
some other COBOL statement. In COBOL» the result would be an
implicit transfer of control to the first nondeclarative
statement.

The last statement in a program when
appears is not being executed under
COBOL statement. The result would be
RUN statement were executed.

the paragraph in which it
the control of some other
as if an implicit STOP

PAGE 106

SEGMENTATION

COBOL segmentation is a facility that provides a means by which
the user may communicate with the compiler to specify object
program overlay requirements. COBOL segmentation deals only with
segmentation of procedures.

Segments

When segmentation is used* the entire Procedure Division must be
in sections. In addition, each section must be classified as
belonging either to the fixed portion or to one of the independent
segments of the object program as determined by the assignment of
segment numbers. All source paragraphs which contain the same
segment-numbers can range from 00 through 127, it is possible to
subdivide any object program into a maximum of 128 segments.
Segmentation in no way affects the need for qualification of
procedure-names to insure uniqueness.

Fixed Portion

The fixed portion is defined as that part of the object program
which is always in memory. This portion of the program is composed
of segments with segment-numbers 0 through 49.

Independent Segments

An independent segment is defined as part of the object program
which can overlay, and can be overlaid by, another independent
segment. An independent segment has a segment-number 50 through
127.

An independent segment is in its initial state whenever control is
transferred (either implicitly or explicitly) to that segment for
the first time during the execution of a program.

On subsequent transfers of control to the segment, an independent
segment is also in its initial state when:

Control is transferred to that segment as a result of the
implicit transfer of control between consecutive statements
from a segment with a different segment-number.

Control is transferred explicitly to that segment from a
segment with a different segment-number.

PAGE 107

On subsequent transfer of control to the segment, an independent
segment is in its last-used state when control is transferred
implicitly to that segment from a segment with a different
segment-number.

Segmentation Classification

Sections which are to be segmented are classified using a system
of segment-numbers and the following criteria:

Logic R e q u i r e m e n t s — Sections which must be available for
reference at all times, or which are referred to very
frequently, are normally classified as belonging to one of the
permanent segments; sections which are used less frequently
are normally classified as belonging to one of the independent
segments, depending on logic requirements.

Frequency of U s e — Generally, the more frequently a section is
referred to, the lower its segment-number; the less frequently
it is referred to, the higher its segment-number.

Relationship to Other Sections
communicate with one another
segment-numbers.

Sections which
should be given

frequently
the same

Segmentation Control

The logical sequence of the
sequence except for specifi
transferred within a source
that is, it is not mandatory
of a section.

program is the same as
c transfers of control,
program to any paragraph
to transfer control to

the physical
Control may be
in a section;

the beginning

Restrictions on Program Flow

When segmentation is used, the following restrictions are placed
on the ALTER and PERFORM statements.

PAGE 108

The ALTER STATEMENT

A GO TO statement in a section whose segment-number is greater
than or equal to 50 must not be referred to by an ALTER statement
in a section with a different segment-number.

The PERFORM STATEMENT

A PERFORM statement that appears in a section that is not in an
independent segment can have within its range* in addition to any
declarative sections whose execution is caused within that range*
only one of the following:

Sections and/or paragraphs wholly contained in one or more
fixed segments* or

Sections and/or paragraphs wholly contained in a single
independent segment.

A PERFORM statement that appears in an independent segment can
have within its range* in addition to any declarative sections
whose execution is caused within that range* only one of the
following:

Sections and/or
fixed segments*

paragraphs wholly con
or

tained in one or more

Sections and/or paragraphs wholly c onta ined in the same
independent segment as that PERFORM statement.

PAGE 109

THE USE STATEMENT

The USE statement specifies
handling that are in additi
by the input-output control
statement required in each d

procedures for
on to the standard
system. It is a
eclarative section

input-output error
procedures provided
compiler directing

FORMAT

USE AFTER STANDARD {EXCEPTION)-

TERROR >

PROCEDURE ON Tfile-name-1 L, file-name-23 . . . >

-C INPUT >

{OUTPUT }

TI-0 >

TEXTEND >

A USE s
header in
period f
consist o
procedure

tatementi when present/ must
the declaratives section an

ollowed by a space. The r
f zero/ one or more procedura
s to be used.

immediately
d must be
emainder of
1 paragrahs

follow a section
followed by a

the section must
that define the

The USE statement itself is never executed; it merely defines the
conditions calling for the execution of the USE procedure.

The same file-name can appear in only one USE statement.

The words ERROR and EXCEPTION are synonymous and may be used
i nterchangeably.

The designated procedures can be executed by the input-output
system after completing the standard input-output error routine/
or upon recognition of the INVALID KEY or AT END conditions/ when
the INVALID KEY phrase or AT END phrase/ respectively/ has not
been specified in the input-output statement.

After execution of a USE procedure/ control is returned to the
invoking routine.

PAGE 110

Within a USE procedure» there must not be any reference to any
nondeclarative procedures. Conversely» in the nondeclarative
portion there must be no reference to procedure-names that appear
in the declarative portion» except that PERFORM statements may
refer to a USE statement or to the procedures associated with such
a USE statement.

Within a USE procedure» there must not be the execution of any
statement that would cause the execution of a USE procedure that
had previously been invoked and had not yet returned control to
the invoking routine.

USE Example:

PROCEDURE DIVISION.
DECLARATIVES.
IO-ERROR SECTION.

USE AFTER STANDARD ERROR PROCEDURE ON I-O.
IO-ERROR.

DISPLAY "INPUT-OUTPUT ERROR OCCURRED".
ACCEPT CONTINUE-FLAG POSITION ZERO.
IF CONTINUE-FLAG * "NO" STOP RUN.

END DECLARATIVES.

PAGE 111

ARITHMETIC STATEMENTS

The arithmetic statements ADD/ COMPUTE/ DIVIDE/ MULTIPLY/ and
SUBTRACT have several common features:

The data descriptions of the operands need not be the same;
any necessary conversion and decimal point alignment is
supplied throughout the calculation.

Arithmetic operations are calculated in either binary/
decimal/ packed decimal/ or mixed depending on the USAGE of
the operands and receiving item according to the following
rules:

If the receiving data item of a divide operation is
DISPLAY or COMPUTATIONAL/ the operation is always
calculated in decimal with any necessary conversions.

Intermediate and final results are calculated in binary if
all preceding intermediate results are binary and the next
operand has COMPUTATIONAL-1 usage (except as noted in
previous paragraph). Otherwise/ the remaining intermediate
and final results are calculated in decimal with any
necessary conversions.

The maximum size of each operand is eighteen (18) decimal
digits. The composite of operands/ which is a hypothetical
data item resulting from the super-imposition of specified
operands in a statement aligned on their decimal points/ must
not contain more than eighteen decimal digits.

Arithmetic Expressions

An arithmetic expression can be an identifier of a numeric
elementary item/ a numeric literal/ such identifiers and literals
separated by arithmetic operators/ two arithmetic expressions
separated by an arithmetic operator/ or an arithmetic expression
enclosed in parentheses. Any arithmetic expression may be preceded
by a unary operator. The permissible combinations of variables/
numeric literals/ arithmetic operator and parentheses are given in
Combination of Symbols in Arithmetic Expressions Table.

Those identifiers and literals appearing in an arithmetic
expression must represent either numeric elementary items or
numeric literals on which arithmetic may be performed.

PAGE 112

Arithmetic Operators

There are four binary arithmetic operators and two unary
arithmetic operators that may be used in arithmetic expressions.
They are represented by specific characters that must be preceded
by a space and followed by a space.

Binary Arithmetic
Operators Mean i ng

*
/

Addition
Sub trac t i on
Multip 1ication
Division

Unary Arithmetic
Op erators Meaning

+ The effect of multiplication
by numeric literal +1

- The effect of multiplication
by numeric literal -1.

Formation and Evaluation Rules

Parentheses may be used in arithmetic expressions to specify the
order in which elements are to be evaluated. Expressions within
parentheses are evaluated first, and within nested parentheses»
evaluation proceeds from the least inclusive set to the most
inclusive set. When parentheses are not used» or parenthesized
expressions are at the same level of inclusiveness» the following
hierarchical order of execution is implied:

1st - Unary plus and minus
2nd - Multiplication and division
3rd - Addition and subtraction

PAGE 113

Parentheses are used either to eliminate ambiguities in logic
where consecutive operations of the same hierarchical level appear
or to modify the normal hierarchical sequence of execution in
expressions where it is necessary to have some deviation from the
normal precedence. When the sequence of execution is not secified
by parentheses* the order of execution of consecutive operations
of the same hierarchical level is from left to right.

The ways in which operators/ variables/ and parentheses may be
combined in an arithmetic expression are summarized in the
following table/ where:

The letter ' P ' indicates a permissible pair of symbols.

The character '-' indicates an invalid pair.

'Variable' indicates an identifier or literal.

FIRST
SYMBOL

SECOND SYMBOL

Variable */-+ Unary + or - <)

Var iable - P - - P

* / + - P - P P -

Unary + o t — P - - P -

< P - P P -

) _ P _ — P

An arithmetic expression may only begin with the symbol '<'# '+'»
'-'/ or a variable and may only end with a ')' or a variable.
There must be a one-to-one correspondence between left and right
parentheses of an arithmetic expression such that each left
parenthesis is to the left of its corresponding right parenthesis.

Arithmetic expressions allow the user to combine arithmetic
operations without the restrictions on composite of operands
and/or receiving data items.

CONDITIONALS

The conditions are relation/ class# condition-name# and
switch-status. A condition has a truth value of 'true' or 'false'.

PAGE 114

Relation Condition

A relation condition causes a comparison of two operands» each of
which may be the data item referenced by an identifier or a
literal. A relation condition has the truth value of 'true' if the
relation exists between the operands.

Comparison of two numeric operands is permitted regardless of the
formats specified in their respective USAGE clauses. However, for
all other comparisons the operands must have the same usage. If
either of the operands is a group item, the nonnumeric comparison
rules apply.

The general format of a relation condition is as follows:

{identifier -IT •CIS [NOT! GREATER THANMidentifier-2 >

•Cl i teral-1 > {IS [NOTH LESS THAN >{1i tera 1-2 >

{ index-name -1> {IS [NOT! EQUAL TO >{index-name-2 >

{IS [NOT! > >

{IS [NOT! < >

{IS [NOT! SS >

The first operand (identifier-1, literal-1 or index-name-1) is
called the subject of the condition; the second operand
(identifier-2, literal-2 or index-name-2) is called the object of
the condition. The relation condition must contain at least one
reference to a variable.

PAGE 115

The relational operator specifies the
made in a relation condition. A space must
reserved word comprising the relational op
and the next key word or relation charact
operator that defines the comparison
value; e. g. # 'NOT EQUAL' is a truth
comparison; 'NOT GREATER' is a truth test
comparison. The meaning of the relational

type of comparison to be
precede and follow each

erator. When u s e d , 'NOT'
er are one relational
to be executed for truth
test for an ' u n e q u a l '
for an 'equal' or 'less'
operators is as follows:

Meaning Relational Operator

Greater than or not greater than IS [NOT 3 GREATER THAN

IS [NOT 3 >

Less than or not less than IS [NOT 3 LESS THAN

IS [NOT 3 <

Equal to or not equal to IS [NOT 3 EQUAL TO

IS [NOT 3 vsz

NOTE: The required relational characters '>'# '<'# and '==' are
not underlined to avoid confusion with other symbols such
as (greater than or equal to).

Comparison of Numeric Operands

For operands whose class is numeric a comparison is made with
respect to the algebraic value of the operands. The length of the
literals or operands# in terms of number of digits represented# is
not significant. Zero is considered a unique value regardless of
the sign.

Comparison of these operands is permitted regardless of the manner
in which their usage is described. Unsigned numeric operands are
considered positive for purposes of comparison.

PAGE 116

For nonnumeric operands/ or one numeric and one nonnumeric
operand/ a comparison is made with respect to a specified
collating sequence of characters. If one of the operands is
specified as numeric/ it must be an integer data item or an
integer literal and:

If the nonnumeric operand is an elementary data item or a
nonnumeric literal/ the numeric operand is treated as though
it were moved to an elementary alphanumeric data item of the
same size as the numeric data item (in terms of standard data
format characters)/ and the contents of this alphanumeric data
item were then compared to the nonnumeric operand.

If the nonnumeric operand is a group item/ the numeric operand
is treated as though it were moved to a group item of the same
size as the numeric data item (in terms of standard data
format characters)/ and the contents of this group item were
then compared to the nonnumeric operand.

A noninteger numeric operand cannot be compared to a nonnumeric
operand.

The size of an operand is the total number of standard data format
characters in the operand. Numeric and nonnumeric operands may be
compared only when their usage is the same. There are two cases to
consider: operands of equal size and operands of unequal size.

Operands of equal size: If the operands are of equal size/
comparison effectively proceeds by comparing characters in
corresponding character positions starting from the high order end
and continuing until either a pair of unequal characters is
encountered or the low order end of the operand is reached/
whichever comes first. The operands are determined to be equal if
all pairs of characters compare equally through the last pair/
when the low order end is reached.

The first encountered pair of unequal characters is compared to
determine their relative position in the collating sequence. The
operand that contains the character that is positioned higher in
the collating sequence is considered to be the greater operand.

Operands of unequal size: If the operands are of unequal size/
comparison proceeds as though the shorter operand were extended on
the right by sufficient spaces to make the operands of equal size.

Comparison of Nonnumeric Operands

PAGE 117

If two index-names are compared the result is the same as if the
corresponding occurrence numbers were compared.

For an index-name and a data item (other than an index data item)
or literali the comparison is made between the occurrence number
that corresponds to the value of the index-name and the data item
or literal.

When a comparison is made between an index data item and an
index-name or another index data item* the actual values are
compared without conversion.

The result of the comparison of an index data item with any data
item or literal not specified above is undefined.

Comparisons of Index-Names and/or Index Data Items

Class Condition

The class condition determines whether the operand is numeric*
that isi consists entirely of the characters 'O'* '1'* '2'* '3'*
...i '9'# with or without the operational sign# or alphabetic#
that is* consists entirely of the characters 'A'* 'B'* 'C'* ...*
'Z'* space. The general format for the class condition is as
f o i l o w s :

identifier IS CNOT3 CNUMERIC >

•C ALPHABETIC}

The usage of the operand being tested must be described as
display. When used# 'NOT' and the next key word specify one class
condition that defines the class test to be executed for truth
value* e. g. * 'NOT NUMERIC' is a truth test for determining that an
operand is nonnumeric.

PAGE 118

The NUMERIC test cannot be used with an item whose data
description describes the item as alphabetic or as a group item
composed of elementary items whose data description indicates the
presence of operational sign(s). If the data description of the
item being tested does not indicate the presence of an operational
sign/ the item being tested is determined to be numeric only if
the contents are numeric and an operational sign is not present.
If the data description of the item does indicate the presence of
an operational sign# the item being tested is determined to be
numeric only if the contents are numeric and a valid operational
sign is present. Valid operational signs for data items are the
standard data format characters# ' + ' and

The ALPHABETIC test cannot be used with an item whose data
description describes the item as numeric. The item being tested
is determined to be alphabetic only if the contents consist of any
combination of the alphabetic characters 'A' through 'Z ' and the
space.

Condition-name (Conditional Variable)

In a condition-name condition# a conditional variable is tested to
determine whether or not its value is equal to one of the values
associated with a condition-name. The genera1-format for the
condition-name condition is as follows:

cond it ion-name

If the condition-name is associated with a range of values# then
the conditional variable is tested to determine whether or not its
value falls in this range# including the end values.

The rules for comparing a conditional variable with a
condition-name value are the same as those specified for relation
cond i tions.

The result of the test is true if one of the values corresponding
to the condition-name equals the value of its associated
conditional variable.

PAGE 119

Switch-Status Condition

A switch-status condition determines the 'on' or 'off' status of a
software switch. The switch-name and the 'on' or 'off' value
associated with the condition must be named in the SPECIAL-NAMES
paragraph of the Environment Division. The general format for the
switch-status condition is as follows:

c ond i t i on-name

The result of the test is true if the switch is set to the
specified position corresponding to the condition-name.

Complex Conditions

A complex condition is formed by combining simple conditions*
combined conditions and/or complex conditions with logical
connectors (logical operators 'AND' and 'OR') or negating these
conditions with logical negation (the logical operator 'NOT'). The
truth value of a complex condition* whether parenthesized or not*
is that truth value which results from the interaction of all the
stated logical operators on the individual truth values of simple
conditions* or the intermediate truth values of conditions
logically connected or logically negated. The logical operators
and their meanings are:

Logical Operator Meaning

AND Logical conjunction* the truth value
is 'true' if both of the conjoined
conditions are true* 'false' if one
or both of the conjoined conditions
is false.

OR Logical inclusive OR* the truth value
is 'true' if one or both of the
included conditions is true* 'false'
if both included conditions are false.

NOT Logical negation or reversal of truth
value* the truth value is 'true'
if the condition is false*
'false' if the condition is true.

The logical operators must be preceded by a space and followed by
a space.

PAGE 120

Negated Simple Conditions

A simple condition is negated through the use of the logical
operator 'NOT'. The negated simple condition effects the opposite
truth value for a simple condition. Thus the truth value of a
negated simple condition is 'true' if and only if the truth value
of the simple condition is 'false'; the truth value of a negated
simple condition is 'false' if and only if the truth value of the
simple condition is 'true'. The inclusion in parentheses of a
negated simple condition does not change the truth value.

The general format for a negated simple condition is:

NOT simple-condition

Combined and Negated Combined Conditions

A combined condition results from connecting conditions with one
of the logical operators 'AND' or 'OR'. The general format of a
combined condition is:

condition <<AND> condition)- ...

•COR >

Where 'condition' may be:

A simple condition» or

A negated simple condition» or

A combined condition» or

A negated combined condition; i. e. » the 'NOT' logical operator
followed by a combined condition enclosed within parentheses»
or

Combinations of the above.

PAGE 121

Although parentheses need never be used when either ' A N D 7 or 'OR'
(but not both) is used exclusively in a combined condition/
parentheses may be used to affect the final truth value when a
mixture of 'AND'/ 'OR' and 'NOT' is used.

Condition Evaluation Rules

Condition Evaluation Rules indicate the ways in which conditions
and logical operators may be combined and parenthesized. There
must be a one-to-one correspondence between left and right
parentheses such that each left parenthesis is to the left of its
corresponding right parenthesis.

Parentheses may be used to specify the order in which individual
conditions of complex conditions are to be evaluated when it is
necessary to depart from the implied evaluation precedence.
Conditions within parentheses are evaluated first/ and/ within
nested parentheses/ evaluation proceeds from the least inclusive
condition to the most inclusive condition. When parentheses are
not used/ or parenthesized conditions are at the same level of
inclusiveness/ the following hierarchical order of logical
svluation is implied until the final truth value is determined:

Truth values for simple conditions are established.

Truth values for negated simple conditions are established.

Truth values for combined conditions are established:

'AND' logical operators/ followed by
'OR' logical operators.

Truth values for negated combined conditions are established.

When the sequence of evaluation is not completely specified by
parentheses/ the order of evaluation of consecutive operations
of the same hierarchical level is from left to right.

PAGE 122

SEQUENTIAL ORGANIZATION INPUT-OUTPUT

The sequential organization input-output statements in the
Procedure Division are the CLOSE/ OPEN, READ, REWRITE, UNLOCK,
USE, and WRITE statements.

Func t i on

Sequential organization input-output provides a capability to
access records of a file in established sequence. The sequence is
established as a result of writing the records to the file.

Organi zation

Sequential files are organized such that each record in the file
except the first has a unique predecessor record, and each record
except the last has a unique successor record. These
predecessor-successor relationships are established by the order
of WRITE statements when the file is created. Once established,
the predecessor-successor relationships do not change except in
the case where records are added to the end of the file.

Access Mode

In the sequential access mode, the sequence in which records are
accessed is the order in which the records were originally
written.

Current Record Pointer

The current record pointer is a conceptual entity used in this
document to facilitate specification of the next record to be
accessed within a given file. The concept of the current record
pointer has no meaning for a file opened in the output mode. The
setting of the current record pointer is affected only by the OPEN
and READ statements.

PAGE 123

1-0 Status

If the FILE STATUS clause is specified in a file control entry/ a
value is placed into the specified t w o - c h a r a c t er data item during
the execution of an OPEN, CLOSE, READ, WRITE, or REWRITE statement
and before any applicable USE procedure is executed, to indicate
to the COBOL program the status of that input-output operation.

Status Key 1

The leftmost character position of the FILE STATUS data item is
known as status key 1 and is set to indicate one of the following
conditions upon completion of the input-output operation:

'O' - Successful Completion. The input-output statement was
successfully executed.

'1' - At End. The sequential READ statement was unsuccessfully
executed as a result of an attempt to read a record when no
next logical record exists in the file.

'3' - Permanent Error. The input-output statement was
unsuccessfully executed as the result of a boundary violation
for a sequential file or as the result of an input-output
error, such as data check parity error, or transmission error.

'9' - General Error. The input-output statement was
unsuccessfully executed as a result of a condition that is
specified by the value of status key 2.

Status Key 2

The rightmost character position of the FILE STATUS data item is
known as status key 2 and is used to further describe the results
of the input-output operation. This character will contain a value
as follows:

If no further information is available concerning the
input-output operation, then status key 2 contains a value of
'O'.

When status key 1 contains a value of '3' indicating a
permanent error condition, status key 2 may contain a value of
'4' indicating a boundary violation. This condition indicates
that an attempt has been made to write beyond the externally
defined boundaries of a sequential file.

PAGE 124

When status key 1 contains a value of '9' indicating an
operating system error condition* the value of status key 2
may contain a:

'O' indicating an invalid operation. This condition
indicates that an attempt has been made to execute a READ*
WRITE* or REWRITE statement that conflicts with the current
open mode or a REWRITE statement not preceded by a
successful READ statement.

'1' indicating file not opened. This condition indicates
that an attempt has been made to execute a DELETE* START*
UNLOCK* READ* WRITE* REWRITE or CLOSE statement on a file
which is not currently open.

'2' indicating file not closed. This condition indicates
that an attempt has been made to execute an OPEN statement
on a file which is currently open.

'3' indicating file not available. This condition indicates
that an attempt has been made to execute an OPEN statement
for a file closed WITH LOCK.

'4' indicating an invalid open. This condition indicates
that an attempt has been made to execute an OPEN statement
for a file with no external correspondence or a file having
inconsistent parameters.

'5' indicating invalid device or no next reel. This
condition indicates that an attempt has been made to open a
file having parameters (e.g.* open mode or o r g a n i z a t i o n)
which conflict with the device assignment (RANDOM* INPUT*
PRINT* . . .) or that an attempt has been made to execute a
CLOSE REEL statement for the last reel/unit of a multi-reel
file. In the case of a CLOSE REEL* the file has been
closed.

' 6 ' indicating an undefined current record pointer status.
This condition indicates that an attempt has been made to
execute a READ statement after occurrence of an
unsuccessful READ statement without an intervening
successful CLOSE and OPEN.

'7' indicating an invalid record length. This condition
indicates an attempt has been made to open a file that was
defined with a maximum record length different from the
externally defined maximum record length* or to execute a
WRITE statement that specifies a record with a length
smaller than the minimum or larger than the maximum record
size* or a REWRITE statement when the new record length is
different from that of the record to be rewritten.

PAGE 125

RELATIVE ORGANIZATION INPUT-OUTPUT

The Relative input-output statements in the Procedure Division are
the CLOSE, DELETE, OPEN, READ, REWRITE, START, UNLOCK and WRITE
statements.

Function

Relative input-output provides a capability to access records of a
mass storage file in either a random or sequential manner. Each
record in a relative file is uniquely identified by an integer
value greater than zero which specifies the record's logical
position in the file.

Organi zation

Relative file organization is permitted only on mass storage
devices (RANDOM device).

A relative file consists of records which are identified by
relative record numbers. The file may be thought of as composed of
a serial string of areas, each capable of holding a logical
record. Each of these areas is denominated by a relative record
number, an integer value greater than zero. Records are stored and
retrieved based on this number. For example, the tenth record is
the one addressed by relative record number 10 and is the tenth
record area, whether or not records have been written in the first
through the ninth record areas.

Access Modes

In the sequential access mode, the sequence in which records are
accessed is the ascending order of the relative record numbers of
all records which currently exist within the file.

PAGE 126

In the random access mode* the sequence in which records are
accessed is controlled by the programmer. The desired record is
accessed by placing its relative record number in a relative key
data item.

In the dynamic access mode/ the programmer may change at will from
sequential access to random access using appropriate forms of
input-output statements.

Current Record Pointer

The current record pointer is a conceptual entity used in this
document to facilitate specification of the next record to be
accessed within a given file. The concept of the current record
pointer has no meaning for a file opened in the output mode. The
setting of the current record pointer is affected only by the
OPEN, READ, and START statements.

1-0 Status

If the FILE STATUS clause is specified in a file control entry, a
value is placed into the specified two-character data item during
the execution of an OPEN, CLOSE, READ, WRITE, REWRITE, DELETE, or
START statement and before any applicable USE procedure is
executed, to indicate to the COBOL program the status of that
input-output operation:

Status Key 1

The leftmost character position of the FILE STATUS data item is
known as status key 1 and is set to indicate one of the following
conditions upon completion of the input— output operation:

'O' — Successful Completion. The input— output was successfully
executed.

'1' - At End. The statement was unsuccessfully executed as a
result of an attempt to read a record when no next logical
record exists in the file.

PAGE 127

' 2 ' - Invalid Key. The input- output statement was
unsuccessfully executed as a result of one of the f o l l o w i n g :

Duplicate Key
No Record Found
Boundary Violation

' 3 ' — Permanent Error. The input- output statement was
u n s u c c e s s f u l 1y executed as the result of an input-output
error# such as data check# parity error# or transmi ss i on
error.

' 9 ' - General Error. The input- output statement was
unsuccessfully executed as a result of a condition that is
specified by the value of status key 2.

Status Key 2

The rightmost character position of the FILE STATUS data item is
known as status key 2 and is used to further describe the results
of the input-output operation. This character will contain a value
as follows:

If no further information is available concerning the
input-output operation# then status key 2 contains a value of
' O' .

When status key 1 contains a value of ' 2 ' indicating an
INVALID KEY condition# status key 2 is:

' 2 ' indicating a duplicate key value. An attempt has been
made to write a record that would create a duplicate key.

' 3 ' indicating no record found. An attempt has been made
to access a record# identified by a key# and that record
does not exist in the file.

'4' indicating a boundary violation. An attempt has been
made to write beyond the externally-defined boundaries of
a file.

When status key 1 contains a value of ' 9 ' indicating an
operating system error condition# the value of status key 2
i s :

' O' indicating invalid operation. An attempt has been made
to execute a DELETE# READ, REWRITE# START, or WRITE
statement which conflicts with the current open mode of
the file or a sequential access DELETE or REWRITE
statement not preceded by a successful READ statement.

PAGE 128

'1' indicating file not opened. This condition indicates
that an attempt has been made to execute a DELETE» START»
UNLOCK, READ, WRITE, REWRITE, or CLOSE statement on a file
which is not currently open.

'2' indicating file not closed. An attempt has been made
to execute an OPEN statement on a file that is currently
open.

'3' indicating file not available. An attempt has been
made to execute an OPEN statement for a file closed WITH
LOCK.

,4 / indicating invalid OPEN. An attempt has been made to
execute an OPEN statement for a file with no external
correspondence or a file having inconsistent parameters.

'5' indicating invalid device. This condition indicates
that an attempt has been made to open a file having
parameters <e. g. , open mode or o r g a n i z a t i o n) which
conflict with the device assignment (RANDOM, INPUT, PRINT,
. . .).

' 6 ' indicating an undefined current record pointer status.
This condition indicates that an attempt has been made to
execute a sequential READ statement after the occurrence
of an unsuccessful READ or START statement without an
intervening successful CLOSE and OPEN.

'7' indicating an invalid record length. This condition
indicates that an attempt has been made to OPEN, a file
that was defined with a maximum record length different
from the externally defined maximum record length, or to
execute a WRITE statement that specifies a record with a
length smaller than the minimum or larger than the maximum
record size, or a REWRITE statement when the new record
length is different from that of the record to be
rewritten.

The INVALID KEY Condition

The INVALID KEY condition can occur as a result of the execution
of a START, READ, WRITE, REWRITE, or DELETE statement.

When the INVALID KEY condition is recognized, the System takes
these actions in the following order:

PAGE 129

A value is placed into the FILE STATUS data item» if specified
for this file/ to indicate an INVALID KEY condition.

If the INVALID KEY phrase is specified in the statement
causing the condition/ control is transferred to the INVALID
KEY imperative statement. Any USE procedure specified for this
file is not executed.

If the INVALID KEY phrase is not specified/ but a USE
procedure is specified/ either explicitly or implicitly/ for
this file/ that procedure is executed.

When the INVALID KEY condition occurs/ execution of the
input-output statement which recognized the condition is
unsuccessful and the file is not affected.

The AT END Condition

The AT END condition can occur as a result of the execution of a
READ statement. When the AT END condition occurs/ execution of the
READ statement is unsuccessful.

PAGE 130

INDEXED ORGANIZATION INPUT-OUTPUT

Indexed input-output statements in the Procedure Division are the
CLOSE, DELETE, OPEN, READ, REWRITE, START, UNLOCK and WRITE
statements.

Function

Indexed input-output provides a capability to access records of a
mass storage file in either a random or sequential manner. Each
record in a nonsequential organization file is uniquely identified
by a key.

Organization

A file whose organization is indexed is a mass storage file in
which data records may be accessed by the value of a key. A record
description may include one or more key data items, each of which
is associated with an index. Each index provides a logical path to
the data records according to the contents of a data item within
each record which is the recorded key for that index.

The data item named in the RECORD KEY clause of the file control
entry for a file is the prime record key for that file. For
purposes of inserting, updating and deleting records in a file,
each record is identified solely by the value of its prime record
key. This value must, therefore, be unique and must not be changed
when updating the record.

Access Modes

In the sequential access mode, the sequence in which records are
accessed is the ascending order of the keys of all records which
currently exist within the file.

In the random access mode, the sequence in which records are
accessed is controlled by the programmer. For indexed files, the
desired record is accessed by placing the value of its record key
in a record key data item.

PAGE 131

In the dynamic access mode# the programmer may change at will from
sequential access to random access using appropriate forms of
input-output statements.

Current Record Pointer

The current record pointer is a conceptual entity used in this
document to facilitate specification of the next record to be
accessed within a given file. The concept of the current record
pointer has no meaning for a file opened in the output mode. The
setting of the current record pointer is affected only by the
OPEN# READ» and START statements.

1-0 Status

If the FILE STATUS clause is specified in a file control entry» a
value is placed into the specified two-character data item during
the execution of an OPEN» CLOSE» READ» WRITE» REWRITE» DELETE» or
START statement and before any applicable USE procedure is
executed» to indicate to the COBOL program the status of that
input-output operation:

Status Key 1

The leftmost character position of the FILE STATUS data item is
known as status key 1 and is set to indicate one of the following
conditions upon completion of the input-output operation:

'O' - Successful Completion. The input-output was successfully
executed.

'1' - At End. The Format 1 READ statement was unsuccessfully
executed as a result of an attempt to read a record when no
next logical record exists in the file.

'2' - Invalid Key. The input-output statement was
unsuccessfully executed as a result of one of the following:

Sequence Error
Duplicate Key
No Record Found
Boundary Violation

PAGE 132

'3' - Permanent Error. The input-output statement was
unsuccessfully executed as the result of an input-output
error/ such as data check/ parity error/ or transmission
error.

'9' - General Error. The input-output statement was
unsuccessfully executed as a result of a condition that is
specified by the value of status key 2.

Status Key 2

The rightmost character position of the FILE STATUS data item is
known as status key 2 and is used to further describe the results
of the input-output operation. This character will contain a value
as follows:

If no further information is available concerning the
input-output operation/ then status key 2 contains a value of
'O'.

When status key 1 contains a value of 0/ indicating a
successful completion/ status key 2 may contain a value of 2 ,
indicating a duplicate key. This condition indicates:

For a READ statement/ the key value for the current key of
reference is equal to the value of that same key in the
next record within the current key of reference.

For a WRITE or REWRITE statement/ the record just written
created a duplicate key value for at least one alternate
record key for which duplicates are allowed.

When status key 1 contains a value of '2' indicating an
INVALID KEY condition/ status key 2 is:

'1' indicating a sequence error for a sequentially
accessed indexed file. The ascending sequence requirement
of successive record key values has been violated or the
record key value has been changed by the COBOL program
between the successful execution of a READ statement and
the execution of the next REWRITE statement for that file.

PAGE 133

'2' indicating a duplicate key value. An attempt has been
made to write a record that would create a duplicate key.

' 3 ' indicating no record found. An attempt has been made
to access a record/ identified by a key# and that record
does not exist in the file.

' 4 ' indicating a boundary violation. An attempt has been
made to write beyond the externally-defined boundaries of
a file.

When status key 1 contains a value of '9' indicating an
operating system error condition/ the value of status key 2
is:

'O' indicating invalid operation. An attempt has been made
to execute a DELETE/ READ/ REWRITE/ START/ or WRITE
statement which conflicts with the current open mode of
the file or a sequential access DELETE or REWRITE
statement not preceded by a successful READ statement.

' 1 ' indicating file not opened. This condition indicates
an attempt has been made to execute a delete/ start/
unlock/ read/ write/ rewrite/ or close statement on a file
that is not currently open.

' 2 ' indicating file not closed. An attempt has been made
to execute an OPEN statement on a file that is currently
open.

' 3 ' indicating file not available. An attempt has been
made to execute an OPEN statement for a file closed with
LOCK.

' 4 ' indicating invalid open. An attempt has been made to
execute an OPEN statement for a file with no external
correspondence or a file having inconsistent parameters.

'5' indicating invalid device. This condition indicates
that an attempt has been made to open a file having
parameters (e. g. / open mode or organization which conflict
with the device assignment (RANDOM/ INPUT/ PRINT/ ...)).

' 6 ' indicating an undefined current record pointer status.
This condition indicates that an attempt has been made to
execute a sequential READ statement after the occurrence
of an unsuccessful READ or START statement without an
intervening successful CLOSE and OPEN.

PAGE 134

'7' indicating an invalid record length. This condition
indicates that an attempt has been made to open a file
that was defined with a maximum record length different
from the externally defined maximum record length/ or to
execute a WRITE statement that specifies a record with a
length smaller than the minimum or larger than the maximum
record size# or a REWRITE statement when the new record
length is different from that of the record to be
rewritten.

'8' indicating an invalid indexed file. This condition
indicates that the indexed file contains inconsistent
data. This is a catastrophic error from which there is no
recovery at the present time.

PAGE 135

The INVALID KEY Condition

The INVALID KEY condition can occur as a result of the execution
of a START, READ, WRITE, REWRITE, or DELETE statement.

When the INVALID KEY condition is recognized, the System takes
these actions in the following order:

A value is placed into the FILE STATUS data item, if specified
for this file, to indicate an INVALID KEY condition.

If the INVALID KEY phrase is specified in the statement
causing the condition, control is transferred to the INVALID
KEY imperative statement. Any USE procedure specified for this
file is not executed.

If the INVALID KEY phrase is not specified, but a USE
procedure is specified, either explicitly or implicitly, for
this file, that procedure is executed.

When the INVALID KEY condition occurs, execution of the
input-output statement which recognized the condition is
unsuccessful and the file is not affected.

The AT END Condition

The AT END condition can occur as a result of the execution of a
READ statement. When the AT END condition occurs, execution of the
READ statement is unsuccessful.

PAGE 136

PROCEDURAL STATEMENTS

The ACCEPT . . . FROM Statement

The ACCEPT statement causes the information requested to be
transferred to the data item specified by identifier-1 according
to the rules of the MOVE statement. DATE, DAY, and TIME are
conceptual data items and, therefore, are not described in the
COBOL program.

FORMAT

ACCEPT identifier-1 FROM *CDATE>

•CDAY >

•CTIME>

DATE is composed of the data elements year of century, month of
year, and day of month. The sequence of the data element codes is
from high order to low order (left to right), year of century,
month of year, and day of month. Therefore, July 1, 1979 would be
expressed as 790701. DATE, when accessed by a COBOL program
behaves as if it had been described in the COBOL program as an
unsigned elementary numeric integer data item six digits in
length.

DAY is composed of the data elements year of century and day of
year. The sequence of the data element codes is from high order to
low order (left to right) year of century, day of year. Therefore,
July 1, 1979 would be expressed as 79181. DAY, when accessed by a
COBOL program as an unsigned elementary numeric integer data item
five digits in length.

PAGE 137

TIME is composed of the data elements hours/ minutes/ seconds and
hundredths of a second. TIME is based on elapsed time after
midnight on a 24-hour clock basis— thus/ 2:41 p.m. would be
expressed 14410000. TIME/ when accessed by a COBOL program behaves
as if it had been described in a COBOL program as an unsigned
elementary numeric integer data item eight digits in length. The
minimum value of TIME is 00000000; the maximum value of TIME is
23595999.

ACCEPT ... FROM Examples

ACCEPT YEAR-DAY FROM DAY.
ACCEPT CLOCK FROM TIME.

PAGE 138

The ACCEPT Statement (Terminal 1-0)

The ACCEPT statement causes low volume data to be accepted from
the CRT terminal and transferred to the specified data item.
ACCEPT statement phrases allow the specification of position; form
and format of the accepted data.

FORMAT

ACCEPT -Cidentif ier-1 IMUNIT <identifier-2>3
------- ---- <1i tera 1-1 >

C # LINE -Cidentif ier-3>3 IMPOSITION < i dent i f i er-4> 3
----- ^literal-2 > ---------- Cliteral-3 >

JMSIZE -Cidentif ier-5>3 ^ P R O M P T Cliteral-533
----- C 1i tera 1-4 > -------

C; ECHO! C; CONVERT3 C;TAB3 C, ERASED EM NO BEEP 3

C; OFF3 C; -CHIGH3- 3 Z, BLINK3 C> R E V E R S E D >. . .

CLOW >

C;ON EXCEPTION identifier-6 imp e r a t i v e - s t a t em e n t 3

The ACCEPT statement causes the transfer of data from the CRT
device. This data replaces the contents of the data item named by
identifier-1. The receiving data item must have usage DISPLAY if
ECHO is specified; otherwise; it may have any usage except INDEX.

When an ACCEPT statement contains more than one operand; the
values are transferred in the sequence in which the operands are
encountered. ACCEPT phrases apply to the previously specified
identifier-1 only. A subsequent identifier-1 in the same ACCEPT
statement will be treated as if no previous phrases have been
specified.

An ACCEPT statement may contain no more than one ON EXCEPTION
phrase; and if present it must be associated with the last (or
only) identifier-1.

Note: Features which require support of the host operating
system and/or terminal hardware may not be supported on
all systems. Any features which are not supported will
compile correctly; but will be ignored at runtime. See
the User's Guide for specific details.

PAGE 139

The UNIT Phrase

The UNIT phrase must be the first phrase if used. The other
phrases may be written in any order.

The value of identifier-2 or literal-1 in the UNIT phrase
specifies the station identifier of the CRT from which the data is
to be accepted. If the UNIT phrase is omitted* the CRT which
executed the program will be accessed.

The LINE Phrase

The value of identifier-3 or literal-2 in the LINE phrase
specifies the line number from which the data is to be accepted
from the screen of the CRT terminal* with 1 being the top line. If
the value is greater than the number of lines on the CRT screen*
it is adjusted to the maximum line number.

If the value is zero or the LINE phrase is not present in an
ACCEPT statement* then data is to be accepted from the next line
below the current position of the cursor on the CRT screen unless
the value specified in the POSITION phrase is also zero* in which
case the data is to be accepted from the line at the current
position of the cursor on the CRT screen.

The POSITION Phrase

The value of identifier-4 or literal-3 in the POSITION phrase
specifies the number of the character positions to which the
cursor is to be positioned within the specified line prior to the
accepting of data from the CRT terminal* with 1 being the leftmost
character position within a line. If the value is greater than the
maximum number of characters within a line on the CRT screen* it
is adjusted to the maximum character number.

If the POSITION phrase is not specified* a value of 1 is assumed
for the first accepted operand and O for each additional operand
accepted in the same statement. If a value of 0 is specified* the
data is to be accepted starting at the next field on the CRT
screen (starting character position plus size of last ACCEPT or
DISPLAY).

PACE 140

The SIZE Phrase

The value of identifier-5 or literal-4 in the SIZE phrase
specifies the maximum number of characters to be accepted from the
CRT terminal, overriding the Data Division definition of the
field. If the SIZE phrase is not present or a value of 0 is
specified# then the size of identifier-1# (identifier-5# ...) is
used. A size greater than 80 is treated as equal to SO.

The size of the accepted field is determined by the SIZE phrase.
The number of characters transferred from the CRT is less than or
equal to the size of the accepted field. Input is terminated by
depression of the return key (which is not considered part of the
input). The number of characters actually input is the size of the
source in the following:

If the receiving item is not numeric# the accepted input is
stored according to the rules of the MOVE statement for an
alphanumeric source and destination. If the receiving item is
described JUSTIFIED RIGHT# the clause will apply to the MOVE
rules.

If the receiving item is numeric# the accepted input is stored
according to the rules of the MOVE statement for a numeric
source and destination. If the CONVERT phrase is not
specified# the source has the same scale as the receiving
item. If the receiving item has a trailing sign and the
CONVERT phrase is not specified# the input must contain digits
followed by a sign character. If the CONVERT phrase is
specified# then the input is converted according to the rules
of the CONVERT phrase. The CONVERT phrase is recommended when
accepting numeric items.

The PROMPT Phrase

The presence of the key word PROMPT in an ACCEPT statement causes
the data to be accepted with prompting. The action of prompting is
to display fill characters on the CRT screen in the positions from
which data is to be accepted. Literal-5 must be a single character
nonnumeric literal which specifies the fill character to be used
in prompting. If literal-5 is omitted in the PROMPT phrase# then
an underscore will be used as the fill character.

When the PROMPT phrase is not specified# then the data is to be
accepted without prompting# the original contents of the field on
the CRT will be undisturbed before accepting input.

PAGE 141

The ECHO Phrase

The presence of the key word ECHO within an ACCEPT statement
causes the contents of identifier-1 to be displayed on the screen
of the CRT terminal. Conversion (see CONVERT Phrase)» decimal
alignment» and justification are performed prior to display. If
the specified size is greater than the size of the receiving
data-item» the data-item is displayed right justified in the
accept field with leading blanks. If the specified size is less
than the size of the receiving data-item» the display is truncated
on the right. When the ECHO phrase is not specified» the original
input data remains in the accept field.

The CONVERT Phrase

If the receiving data-item is numeric» the presence of the key
word CONVERT within an ACCEPT statement causes the conversion of
an accepted field to a t r a i 1 ing-signed decimal field. The
t r a i 1 ing-sign decimal field is then stored in identifier-1. The
conversion is accomplished by a 1eft-to-right scan and the rules:

Set the sign according to the rightmost sign given in the
input or positive if no sign is present.

Set the scale according to the rightmost period given in the
input or to zero if no period is present. If the DECIMAL POINT
IS COMMA clause was specified in the source program» a comma
replaces the period in determining the scale.

Delete all nonnumeric characters from the accepted field.

When the CONVERT phrase is not specified» or the receiving
data-item is not numeric» then the data is to be stored without
the above conversion.

The TAB Phrase

The presence of the key word TAB in an ACCEPT statement causes a
wait for a tab» return or backspace key in reaching the end of the
input field» the return will then terminate input» the backspace
character will position the cursor back one character» the tab
will reposition the cursor to the beginning of the field and all
other input will be ignored. If the key word TAB is omitted» input
will a u toma t i ca 11y be terminated if the end of the input field is
encountered.

PAGE 142

The ERASE Phrase

The presence
causes the
positioning.

of the key word ERASE w
screen of the CRT to
When the ERASE phrase is

thin an ACCEPT statement
b e erased prior to cursor
not spec ified, then the

s i t ioning.

The NO BEEP Phrase

The presence of the key words NO BEEP in an
causes supression of the beep signal upon cursor
the key words NO BEEP are omitted» a beep signa
cursor positioning prior to data input.

ACCEPT statement
positioning. If

1 will occur upon

The OFF Phrase

The presence of the key word OFF within an ACCEPT statement causes
data to be input from the terminal keyboard but not displayed to
the screen. Blank characters are displayed to the screen in lieu
of data characters.

The HIOH/LOW Phrase

The presence of the key word HIGH
character and the accepted data
spec i f i e d) to be d i splayed at the sp

or LOW causes the PROMPT
if CONVERT and/or ECHO was
ified intensity.

When HIGH or LOW is not specified, the default display is HIGH.

The BLINK Phrase

The presence of the
and any displayed
specified, no BLINK

key word BLINK causes the PROMPT character,
data, to be BLINKed. When BLINK is not

is provided.

The REVERSE Phrase

The presence of the
and any displayed
When REVERSE is not

key word REVERSE causes the PROMPT character,
data, to be displayed in a reverse image mode,
specified, normal display is provided.

PAGE 143

The ON EXCEPTION Phrase

The presence of ON EXCEPTION causes the imperative~statement to be
executed if an invalid character is entered. The invalid character
(in ASCII format) will be placed in identifier-6 prior to
execution of the imperative-statement. The invalid character may
be determined by declaring identifier-6 as USAGE COMP-1 and
testing for its ASCII value.

When ON EXCEPTION and CONVERT are both specified and a conversion
error occurs, an error code of M9 8 ” is returned in identifier-6.

ACCEPT Examples

ACCEPT A N S W E R - 1, ANSWER-2.

ACCEPT START-VALUE LINE 1, POSITION K,
PROMPT, ECHO, CONVERT.

ACCEPT NEXT-N POSITION 0,
PROMPT, ECHO.

ACCEPT YEAR, LINE YR-LN, POSITION YR-POS;
MONTH, LINE MN-LN, POSITION MN-POS.

PAGE 144

The ADD Statement

The ADD statement causes two or more numeric operands to be summed
and the result to be stored.

FORMAT 1

ADD -Cidentifier-1 > C* identifier-21 . . .

■Cliteral-1 > C* literal-2 3

TO identifier-m [R O U N D E D 3

C;ON SIZE ERROR i m p e r a t i v e - s ta t e m e n t 3

FORMAT 2

ADD -Cidentif ier-l>* -Cidentif ier-2> C * ident i fier-33 ...

•Cliteral-1 > -Cliteral-2 > C, literal-3 3

GIVING identifier-m [R O U N D E D 3

CiON SIZE ERROR i m p e r a t i v e - s ta t e m e n t 3

FORMAT 3

ADD -{CORRESPONDING> identifier-1 TO identifier-2 EROUNDED3

■CCQRR >

C; ON SIZE ERROR i m p e r a t i v e - s ta t e m e n t 3

In Format 1* the values of the operands preceding the word TO are
added together* then the sum is added to the current value of
identifier-m storing the result immediately into identifier-m.

In Format 2* the values of the operands preceding the word GIVING
are added together* then the sum is stored as the new value of
identifier-m.

PAGE 145

In Formats 1 and 2* each identifier must refer to an elementary
numeric item» except that in Format 2 identifier-m following the
word GIVING must refer to either an elementary numeric item or an
elementary numeric edited item.

In Format 3# data items in identifier-1 are added to and stored in
the corresponding data items in identifier-2.

In Format 3* each identifier must refer to a group item.

Each literal must be a numeric literal.

The ROUNDED Phrase

The ADD statement may optionally include the ROUNDED phrase.

If» after decimal point alignment/ the number of places in the
fraction of the result of the arithmetic operation is greater than
the number of places provided for the fraction of the
resultant-identifier» truncation is relative to the size provided
for the resultant-identifier. When rounding is requested» the
absolute value of the r e s u l t a n t - i d e n t i f i er is increased by one
(1) whenever the most significant digit of the excess is greater
than or equal to five (5).

When the low-order integer positions in a resultant identifier are
represented by the character 'P ' in the picture for that
resultant-identifier» rounding or truncation occurs relative to
the rightmost integer position for which storage is allocated.

The SIZE ERROR Phrase

If» after appropriate decimal point alignment» the absolute value
of the result exceeds the largest value that can be contained in
the associated resultant-identifier» a size error condition
exists. If the ROUNDED phrase is specified» rounding takes place
before checking for size error.

If the CORRESPONDING phrase is specified» and any of the
individual additions produces a size error condition» the
imperative-statement is not executed until all of the individual
additions are completed.

If the resultant-identifier has C O M P U T A T I O N A L ^ usage» size error
is correctly detected only for data items declared with an odd
length picture clause. Therefore all C O M P —3 data items should be
declared with an odd number of character positions.

PAGE 146

If the SIZE ERROR phrase is not specified and a size error
condition exists* the value of the resultant-identifier is
undefined.

If the SIZE ERROR phrase is specified and a size error condition
exists* the value of the r esu 1 tant- i d e n t i f i er is not altered and
the imperative statement of the SIZE ERROR phrase is executed.

The CORRESPONDING Phrase

If the CORRESPONDING phrase is used* selected items within
identifier-1 are ADDed to* and the result stored in* the
corresponding items in identifier-2.

Data items referenced by the CORRESPONDING phrase must adhere to
the following rules:

A data item in identifier-1 and a data item in identifier-2
must not be designated by the key word FILLER and must not
have the same data-name and the same qualifiers up to* but not
including* identifiers-l and identifier-2.

Both of the data items must be elementary numeric data items.

The description of identifier-1 and identifier-2 must not
contain level-number 66* 77* or 88 or the USAGE IS INDEX
c lause.

A data item that is subordinate to identifier-1 or
identifier-2 and contains a REDEFINES, RENAMES, OCCURS or
USAGE IS INDEX clause is ignored* as well as those data items
subordinate to the data item that contains the REDEFINES*
OCCURS* or USAGE IS INDEX clause. However* identifier-1 and
identifier-2 may have REDEFINES or OCCURS clauses or be
subordinate to data items with REDEFINES or OCCURS clauses.

CORR is an abbreviation for CORRESPONDING.

PAGE 147

ADD Examples

ADD SALARY TO SALARY.
(doubles the value of SALARY)

ADD JOHNS-PAY, PAULS-PAY, ALBERTS-PAY
GIVING COMPANY-PAY.

ADD ACCELERATION TO VELOCITY ROUNDED
ON SIZE ERROR GO TO SOUND-BARRIER.

ADD CORRESPONDING ELEMENT (X)
TO ELEMENT (Y>.

ADD CORR SUB-TOTAL-RECORD TO TOTAL-RECORD ROUNDED
ON SIZE ERROR GO TO ERR.

PAGE 148

The ALTER Statement

The ALTER statement modifies a predetermined sequence of
operations.

FORMAT

ALTER proc ed u re-name-1 TO [PROCEED TO 3 proc e d u re-name-2

C# procedure-name-3 TO [PROCEED TO 3 procedure-name-43

Each p r o c e d u r e - n a me - 1 # procedure-name-3# ...» is
paragraph that contains a single sentence consisting
statement without the DEPENDING phrase.

the name of a
of a GO TO

Each procedure-name-2; procedure-name-4# ...
paragraph or section in the Procedure Division.

is the name of a

Execution of the ALTER
the paragraph named
that subsequent executi
transfer of control
respectively. Modified
may# under some circ
states.

statement modifies the GO TO statement in
procedure-name-1# procedure-name-3#...# so
ons of the modified GO TO statements cause
to procedure-name-2# proc e d u r e - n a me - 4 # ... #
GO TO statements in independent segments
umstances# be returned to their initial

A GO TO statement in
than or equal to 50
in a sec tion with a d

a section whose seg
must not be referred
ifferent segment-numb

ment-numb
to by an
er.

er is
ALTER

gr
sta t

eater
emen t

PAGE 149

The CALL Statement

The CALL statement causes control to be transferred from one
object program to another, within the run unit.

FORMAT

CALL <identifier-l> [USING data-name-l C,data-name-23
----- {literal-1 > ------

. . 1

The execution of a CALL statement causes control to pass to the
program whose name is specified by the value of literal-1 or
identifier-1, the 'called' program.

Literal-1 must be a nonnumeric literal.

Identifier-1 must be defined as an alphanumeric data item such
that its value can be a program name.

The called program can be another COBOL program or an assembly
language program. Refer to the User's Guide for specific details.

Called programs may contain CALL statements. However, a called
program must not contain a CALL statement that directly or
indirectly calls the calling program.

The CALL statement may appear anywhere within a segmented program.
When a CALL statement appears in a section with a segment-number
greater than or equal to 50, the EXIT PROGRAM statement returns
control to the calling program.

The USING Phrase

The data-names s
indicate those
be referred to i
the data-names
USING phrase i
Corresponding d
available to the
positional, not
c orresp ond enc e
calling program

p ec i fi e d by the
data i t ems avail
n the cailed pro
in the USING ph

n the Proc edur
a ta-names r ef er
cal led and call

b y name . In the
is establis hed.
a lway s refer to

USING phrase of the CALL stat
able to a calling program tha
gram. The order of appearanc
rase of the CALL statement an
e Division header is crit

to a single set of data whi
ing program. The corresponden

case of index-names, no
Index-names in the calle

separate indices.

ement
t may
e of
d the
i cal.
ch is
ce is
such

d and

PAGE 150

The USING phrase is included in the CALL statement only if there
is a USING phrase in the Procedure Division header of the called
program# and the number of operands in each USING phrase must be
identical.

Each of the operands in the
a data item in the File
Linkage Section# and must
Data-name-1# data-name-2,
reference data items defined

USING phrase must have been
Section# Working-Storage

have a level-number of
... # may be qualified

in the File Section.

defined as
Section# or
01 or 77.
when they

CALL Examples:

CALL "SUB P R G 1 ".

CALL REORDER
USING TABLE# INDEX-1, RESULT.

PAGE 151

The CLOSE Statement (Sequential I-O)

The CLOSE statement terminates the processing of files.

FORMAT

CLOSE f i 1 e-name-1 C{REEL> CWITH NO REWIND! 3

<UNIT>

CWITH {NO REWIND> 3

■CLOCK >

C, file-name-2 C-£REEL> CWITH NO REWIND! 3 3 . . .

■CUNIT3-

CWITH -CNO REWIND> 3

CLOCK >

The function of a CLOSE statement
the operating system to close
OUTPUT* the operating system also
file.

(with no options) is to cause
the file. For files opened for

writes an EOF as it closes the

If a STOP RUN statement is executed
operating system will close the file

A CLOSE statement may only be execut

Once a CLOSE statement has been
statement can be executed that r
explicitly or implicitly, unless an
that file is executed.

The execution of a
STATUS data-item,
(f i 1e-name-2, . . .) to

CLOSE statemen
if any, as
be updated.

pr ior to cl
w ithout an

ed for a f i

e x ec uted f
ef e r enc es
in terveni ng

t causes th
so c iated

osing the file, the
EOF.

le in an open mode.

or a file, no other
that file, either
OPEN statement for

e value of the FILE
with f i 1 e-name-1

PAGE 152

The REEL and UNIT Phrases

The CLOSE REEL and CLOSE UNIT statements are documentary only and
may be included or omitted at the user's discretion.

The NO REWIND Phrase

CLOSE WITH NO REWIND prevents page advancing on files assigned to
the printer. It has no effect on other files.

The LOCK Phrase

The function of the CLOSE WITH LOCK statement is to perform the
CLOSE function and set a flag to prevent the file from being
OPENed again during execution of this program.

CLOSE Examples

CLOSE TRANSACTION-FILE.

CLOSE DATA-BASE WITH LOCK.

CLOSE PRINT-FILE WITH NO REWIND.

PAGE 153

The CLOSE S t a t e m e n t (R e l a t i v e and I n d e x e d I / O)

The CLOSE statement terminates the processing of files.

FORMAT

CLOSE file-name-1 CWITH LOCK!

C, file-name-2 CWITH LOCK33 ...

The function of a CLOSE statement (with no options) is to cause
the operating system to close the file. For files opened for
OUTPUT, the operating system also writes an EOF prior to closing
the file.

If a STOP RUN statement is executed prior to closing the file, the
operating system will close the file without an EOF.

The files referenced in the CLOSE statement need not all have the
same organization or access.

A CLOSE statement may only be executed for a file in an open mode.

If a CLOSE statement has been executed for a file, no other
statement can be executed that references that file, either
explicitly or implicitly, unless an intervening OPEN statement for
that file is executed.

The execution of the CLOSE statement causes the value of the
specified FILE STATUS data item, if any, associated with
file-name-1 (file-name-2, ...) to be updated.

The LOCK Phrase

The function of the CLOSE WITH LOCK statement is to perform the
CLOSE function and set a flag to prevent the file from being
OPENed during the execution of the program.

CLOSE Examples:

CLOSE TRANSACTION-FILE.

CLOSE DATA-BASE WITH LOCK.

PAGE 154

The COMPUTE Statement

The COMPUTE statement assigns the value of an arithmetic
expression to a data item.

FORMAT

COMPUTE identifier-1 [R O U N D E D 3 = arithmetic-expression

C; ON SIZE ERROR i m p e r a t i v e - s ta t e m e n t 3

Identifiei— 1 must refer to either an elementary numeric item or an
elementary numeric edited item.

An arithmetic expression consisting of a single identifier or
literal provides a method of setting the value of identifier-1
equal to the value of the single identifier or literal.

The COMPUTE statement allows the user to combine arithmetic
operations without the restrictions on composite operands and/or
receiving data items imposed by the arithmetic statements ADD/
SUBTRACT, MULTIPLY and DIVIDE.

Note: Exponentiation is not supported.

The ROUNDED Phrase

The COMPUTE statement may optionally include the ROUNDED phrase.
If/ after decimal point alignment/ the number of places in the
fraction of the result of an arithmetic operation is greater than
the number of places provided for the fraction of the
identifier-1/ truncation is relative to the size provided for the
identifier-1. When rounding is requested/ the
the resultant-identifier is increased by one
significant digit of the excess is greater
< 5).
When the low-order integer positions in
represented by the character ' P ' in th
identifier/ rounding or truncation occurs

a bsolute value of
< 1) wh enever the most
than or equalL to five

an i d ent i f i er-1 are
e picture 1Por that

r elative to the
i s allocated.

PAGE 155

The SIZE ERROR Phrase

If# after appropriate decimal point alignment/ the absolute value
of the result exceeds the largest value that can be contained in
identifier-1/ a size error condition exists. If the ROUNDED phrase
is specified/ rounding takes place before checking for size error.

If identifier-1 has C Ü MPUTATI0NAL-3 usage/ size error is detected
only for data items declared with an odd length picture clause.
Therefore all COMP-3 data items should be declared with an odd
number of character positions.

Division by zero always causes a size error condition.

If the SIZE ERROR phrase is not specified and a size error
condition exists/ the value of the identifier-1 is undefined.

If the SIZE ERROR phrase is specified and a size error condition
exists/ the value identifier-1 is not altered and the
imperative-statement in the SIZE ERROR phrase is executed.

COMPUTE Examples

COMPUTE SALARY ROUNDED = WAGES * HOURS.

COMPUTE SECONDS = <<<HRS * 60) + MIN) * 60) + SEC.

COMPUTE AVERAGE = TOTAL / KOUNT
ON SIZE ERROR MOVE 0 TO AVERAGE.

COMPUTE PAY (DATE) ROUNDED

= RATE * 8.

PAGE 156

The DELETE Statement (Relative and Indexed 1-0)

The DELETE statement logically removes a record from a mass
storage file.

FORMAT

DELETE file-name RECORD t;INVALID KEY i m p e r a t i v e - s ta t e m e n t 3

After the successful execution of a DELETE statement/ the
identified record has been logically removed from the file and can
no longer be accessed.

The execution of a DELETE statement does not affect the contents
of the record area associated with file-name.

The associated file must be opened in the 1-0 mode at the time of
execution of this statement.

For files in the sequential access mode/ the last input-output
statement executed for file-name prior to the execution of the
DELETE statement must have been a successfully executed READ
statement. The system logically removes from the file the record
that was accessed by that READ statement.

For a file in random or dynamic access mode/ the system logically
removes from the file that record identified by the contents of
the key data item associated with file-name. If the file does not
contain the record specified by the key/ an INVALID KEY condition
exists.

The execution of the DELETE statement causes the value of the
specified FILE STATUS data item/ if any/ associated with file-name
to be updated.

The INVALID KEY Phrase

The INVALID KEY phrase must not be specified for a DELETE
statement which references a file which is in sequential access
mode.

The INVALID KEY phrase must be specified for a DELETE statement
which references a file which is not in sequential access mode and
for which an applicable USE procedure is not specified.

The current record pointer is not affected by the execution of a
DELETE statement.

PAGE 157

The DISPLAY Statement

The DISPLAY statement causes low volume data to be displayed on
the specified CRT terminal. DISPLAY statement phrases allow the
specification of position/ form and format of the displayed data.

FORMAT

DISPLAY CCidentifier-l> C/UNIT -Cidentifier-2>3

Cliteral-1 > -Cliteral-2 >

E/ LINE Cidentifier-3>3 L, POSITION Cidentifier~4>3

•Cl iteral-3 > Cliteral-4 >

C/SIZE fidentifier-5>3 C# B E E P 3 C, E R A S E 3 >

<literal-5 >

C/CHIGH3-3 C/ BLINK! C , R E V E R S E 3> ...

CLOW >

The DISPLAY statement causes the contents of each operand
(identifier-1 or literal-1) to be transferred to the CRT device in
the order listed. The sending data item must have DISPLAY usage.

When a DISPLAY statement contains more than one operand/ the
values of the operands are transferred in the sequence in which
the operands are encountered.

Note: Features which require support of the host operating
system and/or terminal hardware may not be supported on
all systems. Any features which are not supported will
compile correctly/ but will be ignored at runtime. See
the User's Guide for specific details.

The UNIT Phrase

The UNIT phrase/ if specified/ must be written first. The other
phrases may be written in any order.

The value of identifier-2 or literal-2 in the UNIT phrase
specifies the station identifier of the CRT upon which the data is
to be displayed. If the UNIT phrase is omitted/ the CRT which
executed the program will be accessed.

PAGE 158

The LINE Phrase

The value of identifiei— 3 or literal-3 in the LINE phrase
specifies the line number upon which the data is to be displayed
on the screen of the CRT terminal; with one being the top line. If
the value is greater than the number of lines on the CRT screen»
it is adjusted to the maximum line number. If the value is zero or
the LINE phrase is not present in a DISPLAY statement» then data
is to be displayed on the next line below the current position of
the cursor on the CRT screen unless the value specified in the
POSITION phrase is also zero» in which case the data is to be
displayed on the line at the current position of the cursor on the
CRT screen. If incrementing to the next line generates a line
number greater than the maximum number of lines on the CRT screen»
the new line is displayed at the bottom.

The POSITION Phrase

The value of identifier-4 or literal-4 in the POSITION phrase
specifies the number of the character to which the cursor is to be
positioned within the specified line prior to the displaying of
data on the screen of the CRT terminal» with 1 being the leftmost
character position within a line. If the value is greater than the
maximum number of characters within a line on the CRT screen» it
is adjusted to the maximum character number.

If the POSITION phrase is not specified» a value of one is assumed
for the first displayed operand and zero for each additional
operand displayed in the same statement. If a value of zero is
specified» the data is to be displayed starting at the next field
on the CRT screen (starting character position plus size of the
last ACCEPT or DISPLAY).

The SIZE Phrase

The value of identifier-5 or literal-5 in the SIZE phrase
specifies the number of characters to be displayed on the screen
of the CRT terminal» overriding the Data Division definition of
the field. If the SIZE phrase is not present or a value of zero is
specified» the size of identifier-1 or literal-1 is used. If
literal-1 is a figurative constant» the literal has a size of one.
A size greater than 80 is treated as equal to 80.

PAGE 159

If the size of the display field is less than the size of the
sending data item# only the leftmost characters are displayed. If
the specified size is greater than the size of the sending date
item# the results are unpredictab 1 e. If the sending item is a
figurative constant# the constant fills the display field. No
conversions are made in the transfer to the display field.

The BEEP Phrase

The presence of the key word BEEP within a DISPLAY statement
causes a beep signal to occur on cursor positioning prior to the
display of the data. If the BEEP key word is omitted# no signal is
given on cursor positioning.

The ERASE Phrase

The presence of the key word ERASE within a DISPLAY statement
causes the screen of the CRT terminal to be erased before the
content of identifier-1 or literal-1 is displayed on the screen.
When the ERASE phrase is not specified# then the screen is not
erased prior to the display of the data.

The HIGH/LOW Phrase

The presence of HIGH or LOW causes the data to be displayed at the
specified intensity. When HIGH or LOW is not specified# the
default display is HIGH.

The BLINK Phrase

The presence of thekey word BLINK causes the displayed data to be
BLINKed. the normal mode is no blink.

The REVERSE Phrase

The REVERSE key word causes the data to be displayed in REVERSE
video. The normal mode is no reverse.

PAGE 160

DISPLAY Examples

DISPLAY "FLIGHT ARRIVING AT GATE", LINE FLT-LN,
POSITION 1, ERASE; GATE-NUMBER, HIGH, BLINK.

DISPLAY "ENTER JOB CODE:

DISPLAY CRT-HEADER LINE 1 ERASE.

DISPLAY ZEROES SIZE 5.

DISPLAY QUOTE.

PAGE 161

The D I V I D E S t a t e m e n t

The DIVIDE statement divides one numeric data item into another
and stores the quotient.

FORMAT 1

DIVIDE {identifier-1} INTO identifier-2 [ROU N D E D 3

{literal-1 }

[;ON SIZE ERROR imperative-statement]

FORMAT 2

DIVIDE {identifier-l> INTO {identifier-2>

{literal-1 > {literal-2 >

GIVING identifier-3 [R O U N D E D 3

C;ON SIZE ERROR i m p e r a t i v e - s ta t e m e n t 3

FORMAT 3

DIVIDE {identifier-1} BY {identifier-2}

{literal-1 } {literal-2 }

GIVING identifier-3 [R O U N D E D 3

[;ON SIZE ERROR impe r a t i v e - s ta t e m e n t 3

In Format 1, th e value of identifier-1 or 1 iteral -1 is divided
into the value of identif]Ler-2. The value of the dividend
< identifier -2) is ref) laced by this quotient.

In Format 2, th e value of identifier-1 or literal -1 is divided
into the value of identifier-2 or literal-2 and the result is
stored in identifier-3.

PAGE 162

In Format 3/ the value of identifier-1 or literal-1 is divided by
the value of identifier-2 or literal-2 and the result is stored in
identifier-3.

Each identifier must refer to an elementary numeric item; except
that any identifier associated with the GIVING phrase must refer
to either an elementary numeric item or an elementary numeric
edited item.

Each literal must be a numeric literal.

The ROUNDED Phrase

The DIVIDE statement may optionally include the ROUNDED phrase.

If# after decimal point alignment; the number of places in the
fraction of the result of an arithmetic operation is greater than
the number of places provided for the fraction of the
resultant-identifier; truncation is relative to the size provided
for the resultant-identifier. When rounding is requested; the
absolute value of the resultant-identifier is increased by one
(1) whenever the most significant digit of the excess is greater
than or equal to five (5).

When the low-order integer positions in a resultant identifier are
represented by the character ' P ' in the picture for that
resultant-identifier# rounding or truncation occurs relative to
the rightmost integer position for which storage is allocated.

The SIZE ERROR Phrase

If# after appropriate decimal point alignment# the absolute value
of the result exceeds the largest value that can be contained in
the associated r e s u 1t a n t - i d e n t ifie r # a size error condition
exists. If the ROUNDED phrase is specified# rounding takes place
before checking for size error.

If the resultant-identifier has C O M P U T A T I O N A L — 3 usage# size error
is detected only for data items declared with an odd length
picture clause. Therefore all COMP-3 data items should be declared
with an odd number of character positions.

Division by zero always causes a size error condition.

If the SIZE ERROR phrase is not specified and a size error
condition exists# the value of the r e s u l t a n t — identifier is
undefined.

PAGE 163

If the SIZE ERROR phrase is specified and a size e r r o r condition
exists, the value of the resultant-identifier is not altered and
the imperative statement in the SIZE ERROR phrase is executed.

DIVIDE Examples

DIVIDE 10 INTO TOTAL-WORK-LOAD
GIVING MORRISS-WORK-LOAD

DIVIDE TOTAL-WORK-LOAD BY 2. 5
GIVING A L F REDS-WORK-LOAD ROUNDED
ON SIZE ERROR GO TO ALFRED-QUIT.

DIVIDE 2. 5 INTO TOTAL.

PAGE 164

The EXIT Statement

The EXIT statement provides a common end point for a series of
procedures or the logical end of a called program.

FORMAT

EXIT CPROGRAMH.

The EXIT statement must appear in a sentence by itself.

The EXIT sentence must be the only sentence in the paragraph.

An EXIT statement without the word
the user to assign a procedure-name
Such an EXIT statement has no other
execution of the program.

PROGRAM serves only to enable
to a given point in a program,
effect on the compilation or

An execution of an EXIT
causes control to be passed
an EXIT PROGRAM statement in
as if the statement were
PROGRAM.

PROGRAM statement in a
to the calling program,
a program which is not
an EXIT statement wi

CALLED program
Execution of

called behaves
thout the word

PAGE 165

The GO TO Statement

The GO TO statement causes control to be transferred from one part
of the Procedure Division to another.

FORMAT 1

GO TO procedure-name-1.

FORMAT 2

GO TO procedure-name-i C# procedure-name~2II . . . #

procedure-name-n DEPENDING ON identifier-1.

If a Format 1 GO TO statement appears in a consecutive sequence of
imperative statements within a sentence# it must appear as the
last statement in that sequence.

When a Format 1 GO TO statement is executed# control is
transferred to procedure-name-1 or to another procedure-name if
the GO TO statement has been modified by an ALTER statement.

When a paragraph is referenced by an ALTER statement# that
paragraph can consist only of a paragraph header followed by a
Format-1 GO TO statement.

The DEPENDING ON Phrase

When a Format 2 GO TO statement is executed# control is
transferred to procedure-name-1# procedure-name-2# etc.# depending
on the value of the identifier — 1 being 1# 2# . . . # n. If the value
of the identifier-1 is anything other than the positive or
unsigned integers 1# 2# . . . # n# then no transfer occurs and
control passes to the next statement in the normal sequence for
execution.

Identifiei— 1 is the name of a numeric integer elementary item.

PAGE 166

The IF Statement

The IF statement causes a specified condition to be evaluated. The
subsequent action of the object program depends on whether the
value of the condition is true or false.

FORMAT

IF condition; {statement-1 > -C; ELSE statement-2 >

{NEXT SENTENCE}- {; ELSE NEXT SENTENCE}

Statement-1 and statement-2 represent either an imperative
statement or a conditional statement# and either may be followed
by a conditional statement.

When an IF statement is executed# the following transfers of
control occur:

If the condition is true# statement-1 is executed if
specified. If statement-1 contains a procedure branching or
conditional statement# control is explicitly transferred in
accordance with the rules of that statement. If statement-1
does not contain a procedure branching or conditional
statement# the ELSE phrase# if specified# is ignored and
control passes to the next executable sentence.

If the condition is true
specified instead of
specified# is ignored
executable sentence.

and the NEXT SENTENCE
statement-1# the ELSE

and control passes to

phrase is
phrase# if
the next

PAGE 167

If the condition is false# statement-1 or its surrogate NEXT
SENTENCE is ignored# and statement-2# if specified# is
executed. If statement-2 contains a procedure branching or
conditional statement# control is explicitly transferred in
accordance with the rules of that statement. If statement-2
does not contain a procedure branching or conditional
statement# control passes to the next executable sentence. If
the ELSE statement-2 phrase is not specified# statement-1 is
ignored and control passes to the next executable sentence.

If the condition is false# and the ELSE NEXT SENTENCE phrase
is specified# statement-1 is ignored# if specified# and
control passes to the next executable sentence.

Statement-1 and/or statement-2 may contain an IF statement. In
this case the IF statement is said to be nested.

IF statements within IF statements may be considered as paired IF
and ELSE combinations# proceeding from left to right. Thus# any
ELSE encountered is considered to apply to the immediately
preceding IF that has not been already paired with an ELSE.

The ELSE NEXT SENTENCE phrase may be omitted if it immediately
precedes the terminal period of the sentence.

IF Examples

IF CHAR-STR IS ALPHABETIC#
MOVE CHAR-STR TO ALPHA-STR;

ELSE IF CHAR-STR IS NUMERIC#
MOVE CHAR-STR TO NUM#
DISPLAY NUM#

ELSE NEXT SENTENCE.

IF NUM = OLD-NUM GO TO RE-SET.

IF ALPHA-STR NOT - “TEST"
ADD 1 TO ERROR-CNT.

IF NUM < LIMIT# ADD 1 TO NUM.

IF NUM IS LESS THAN LIMIT
ADD 1 TO NUM.

IF PRINT-SWITCH PERFORM PRINT-ROUTINE.

PAGE 168

The INSPECT Statement

The INSPECT statement provides the ability to tally (Format 1>*
replace (Format 2), or tally and replace (Format 3) occurrences of
single characters or groups of characters in a data item.

FORMAT 1

INSPECT identifier-1

TALLYING identifier-2 FOR -C-CALL > -Cidentifiei— 3>>
---------- --- --- -Cliteral-1 >

■C<LEADING> >

■C CHARACTERS >

C-CBEFORE)- INITIAL { identifier-43>3
------- {literal-2 >

•CAFTER >

FORMAT 2

INSPECT identifier-1

REPLACING -C-CALL > -Cidentifier-5>> BY Cidentifier-6>
----------- --- -C1 i t era 1-3 > — -C1 i t era 1 -4 >

■C-CLEADING3- >

-C-CFIRST > >

■C CHARACTERS >

C<BEFORE> INITIAL < i de n t ifier-7> 1
------- -Cl i teral-5 >

<AFTER >

PAGE 169

FORMAT 3

INSPECT identifier-1

TALLYING identifier— 2 FOR -C-CALL > -Cidentifier-3>>
---------- --- -Cliteral-1 >

{{LEADING)- >

■C CHARACTERS >

C-CBEFORE> INITIAL -Cidentifier-4>3
------ < 1 itera1-2 >

•CAFTER >

REPLACING C-CALL > -Cidentifier-5>> BY -Cidentifier-6>
--- -Cliteral-3 > -Cliteral-4 >

•C-CLEADING} >

■C-CFIRST > >

•C CHARACTERS >

CCBEFORE> INITIAL

•CAFTER >

•Cidentif ier-7>3
-Cliteral-5 >

Identifier-1 must reference either a group item or any category of
elementary item* described (either implicitly or explicitly) as
usage is DISPLAY.

Identifier-3 .
alphabetic*
implicitly or
c harac ter.

identifier-n must reference either an elementary
alphanumeric or numeric item described (either
explicitly) as usage is DISPLAY and a size of one

Each literal may be either a figurative constant (which is treated
as a one-character data item) or a nonnumeric literal one
character in length.

The general rules that apply to the INSPECT statement are:

1. Inspection (which include
establishment of boundari
and the mechanism for tally
leftmost character position
identifier-1* regardless o
to right to the rightmost c
general rules 4 through 6.

s the comparison cycle* the
es for the BEFORE or AFTER phrase*
ing and/or replacing) begins at the
of the data item referenced by

f its class* and proceeds from left
haracter position as described in

PAGE 170

2. For use in the INSPECT statement/ the contents of the data
item referenced by identifier-1» identifier-3» identifier-4»
identifier-5» tHentifier-6 or identifier-7 will be treated as
f o i l o w s :

a. If any of identifier-1» identifier-3» identifier-4»
identifier-5» identifier-6» or identifier-7 are described
as alphanumeric» the INSPECT statement treats the contents
of each such identifier as a character-string.

b. If any of identifier-1» identifier-3» identifier-4»
identifier-5» identifier-6» or identifier-7 are described
as alphanumeric edited» numeric edited or unsigned numeric»
the data item is inspected as though it had been redefined
as alphanumeric (see general rule 2a) and the INSPECT
statement had been written to reference the redefined data
item.

c. If any of the identifier-1» identifier-3» identifier-4»
identifier-5» identifier-6» or identifier-7 are described
as signed numeric» the data item is inspected as though it
had been moved to an unsigned numeric data item of the same
length and then the rules in general rule 2b had been
applied. (See the MOVE s t a t e m e n t .)

3. In general rules 4 through 10» all references to literal-1»
literal-2» literal-3» literal-4» and literal-5 apply equally
to the contents of the data item referenced by identifier-3»
identifier-4» identifier-5» identifier-6» and identifier-7»
respectively.

4. During inspection of the contents of the data item referenced
by identifier-1» each properly matched occurrence of literal-1
is tallied (Formats 1 and 3) and/or each properly matched
occurrence of literal-3 is replaced by literal-4 (Formats 2
and 3).

5. The comparison operation to determine the occurrences of
literal-1 to be tallied and/or occurrences of literal-3 to be
replaced» occurs as follows:

a. The character specified by literal-1» literal-3 is compared
to successive characters» starting with the leftmost
character position in the data item referenced by
identifier-1. Literal-1» literal-3 and that portion of the
contents of the data item referenced by identifier-1 match
if, and only if, they are equal.

PAGE 171

b.

d.

e.

6. Th
by

a.

If no match
literal-3# the
next character

occurs in the comparison of
comparison is repeated starting
position of identifier-1.

1 iteral-1#
with the

Whenever a match occurs, tal
place as described in general
character position in the
identifier-1 immediately to th
position that caused the match
leftmost character position of
identifier-1# and the compar
literal-1# literal-3.

The comparison operation cont
character position of the
identifier-1 has participated
considered as the leftmost c
occurs# inspection is terminate

lying and/or replacing takes
r ules 8 th rough 10. The
data item referenced by

e right of the chara c ter
is now c onsi dered to be the

th e data item referenced by
is on eye le starts again with

in ues until the rightmost
data i tern ref erenced by

in a match or has been
haracter posi tion. When this
d.

If the CHARACTERS phrase
one-character operand parti
in paragraphs 5a through
comparison to the contents
identifier-1 takes place,
considered always to match
contents of the data item
participating in the current

is specif
cipates in
5d above#
of the data
This impli
the leftmo
reference

c ompari son

ied# an imp
the cycle descr
except that
item reference

ed character
st character of
d by identifi
cycle.

lied
ibed

no
d by

i s
the

er-i

comparison operation defined in general rule 5 is affected
the BEFORE and AFTER phrases as follows:

If the BEFORE and AFTER phrase is not
literal-3 or the implied operand of
participates in the comparison operati
general rule 5.

specified# literal-1#
the CHARACTERS phrase
on as described in

PAGE 172

b. If the BEFORE phrase is specified, the associated
literal-1, literal-3 or the implied operand of the
CHARACTERS phrase participates only in those comparison
cycles which involve that portion of the contents of the
data item referenced by identifier-1 from its leftmost
character position up to, but not including the first
occurrence of literal-2, literal-5 within the contents of
the data item referenced by identifier-1. The position of
this first occurrence is determined before the first cycle
of the comparison operation described in general rule 5 is
begun. If, on any comparison cycle, literal-1, literal-3 or
the implied operand of the CHARACTERS phrase is not
eligible to participate, it is considered not to match the
contents of the data item referenced by identifier-1. If
there is no occurrence of literal-2, literal-5 within the
contents of the data item referenced by identifier-1, its
associated literal-1, literal-3, or the implied operand of
the CHARACTERS phrase participates in the comparison
operation as though the BEFORE phrase had not been
specified.

c. If the AFTER phrase is specified, the associated literal-1,
literal-3 or the implied operand of the CHARACTERS phrase
may participate only in those comparison cycles which
involve that portion of the contents of the data item
referenced by identifier-1 from the character position
immediately to the right of the rightmost character
position of the first occurrence of literal-2, literal-5,
within the contents of the data item referenced by
identifier-1 and the rightmost character position of the
data item referenced by identifier-1. The position of this
first occurrence is determined before the first cycle of
the comparison operation described in general rule 5 is
begun. If, on any comparison cycle, literal-1, literal-3,
or the implied operand of the CHARACTERS phrase is not
eligible to participate, it is considered not to match the
contents of the data item referenced by identifier-1. If
there is no occurrence of literal-2, literal-5 within the
contents of the data item referenced by identifier-1, its
associated literal-1, literal-3, or the implied operand of
the CHARACTERS phrase is never eligible to participate in
the comparison operation.

Format 1

7. The contents of the data item referenced by identifier-2 is
not initialized by the execution of the INSPECT statement.

PAGE 173

8. The rules for tallying are as follou/s:

a. If the ALL phrase is specified# the contents of the data
item referenced by identifier-2 is incremented by one (1)
for each occurrence of literal-1 matched within the
contents of the data item referenced by identifier-1.

b. If the LEADING phrase is specified# the contents of the
data item referenced by identifier-2 is incremented by one
(1) for each contiguous occurrence of literal-1 matched
within the contents of the data item referenced by
identifiei— 1# provided that the leftmost such occurrence is
at the point where comparison began in the first comparison
cycle in which literal-1 was eligible to participate.

c. If the CHARACTERS phrase is specified# the contents of the
data item referenced by identifier-2 is incremented by one
(1) for each character matched# in the sense of general
rule 5e# within the contents of the data item referenced by
identifier-1.

Format 2

9. The rules for replacement are as follows:

a. When the CHARACTERS phrase is specified# each character
matched# in the sense of general rule 5e# in the contents
of the data item referenced by identifier-1 is replaced by
1 i teral-4.

b. When ALL is specified# each occurrence of literal-3 matched
in the contents of the data item referenced by identifier-1
is replaced by literal-4.

c. When LEADING is specified# each contiguous occurrence of
literal-3 matched in the contents of the data item
referenced by identifier-1 is replaced by literal-4#
provided that the leftmost occurrence is at the point where
comparison began in the first comparison cycle in which
literal-3 was eligible to participate.

d. When FIRST is specified# the leftmost occurrence of
literal-3 matched within the contents of the data item
referenced by identifier-1 is replaced by literal-4.

PAGE 174

Format 3

10. A Format 3 INSPECT statement is interpreted and executed as
though two successive INSPECT statements specifying the same
identifier-1 had been written with one statement being a
Format 1 statement with TALLYING phrases identical to those
specified in the Format 3 statements and the other statement
being a Format 2 statement with REPLACING phrases identical to
those specified in the Format 3 statement. The general rules
given for matching and counting apply to the Format 1
statement and the general rules given for matching and
replacing apply to the Format 2 statement.

PAGE 175

INSPECT Examples:

INSPECT word TALLYING count FOR LEADING II II BEFORE INITIAL "A".

Where
Wh ere

word»LARGE/ count»!,
word=ANALYST # count=0.

INSPECT word TALLYING count FOR LEADING "A" BEFORE INITIAL "L".

Wh ere
Wh ere

word=LARGE, count=0.
word=ANALYSTi count»l.

INSPECT word TALLYING count FOR ALL "L", REPLACING LEADING "A" BY
"E" AFTER INITIAL "L".

Where word=CALLAR> count=2/ word=CALLER.
Where word=SALAMI, count=l> word=SALEMI.
Where word=LATTER, c o u n t = L word=LETTER.

INSPECT word REPLACING ALL "A" BY "Ö" BEFORE INITIAL "X".

Where word=ARXAXi word=GRXAX.
Where word=HANDAX* word=HGNDGX.

INSPECT word TALLYING count FOR CHARACTERS AFTER INITIAL "J“
REPLACING ALL "A" BY "B".

Where word»ADJECTIVE/ count»6, word=BDJECTIVE.
Where word=JACK, count=3/ word=JBCK.
Where word=JUJMABi count=5/ word=JUJMBB.

INSPECT word REPLACING ALL "W" BY "Q" AFTER
INITIAL “R 11.

Where word=RXXBQWY, word»RXXBQGY.
Where word=YZACDWBR, word=YZACDWBR.
Where word=RAWRXEB, word=RAGRXEB.

INSPECT word REPLACING CHARACTERS BY "B" BEFORE INITIAL "A".

word before: 12 XZABCD
word after: BBBBBABCD

PAGE 176

The MOVE Statement

The MOVE statement transfers data; in accordance with the rules of
editing» to one or more data areas.

FORMAT 1

MOVE {identifiei— 1> TO identifier-2 t» identifier-33. . .

{literal >

FORMAT 2

MOVE {CORRESPONDING}- identifier-1 TO identifier-2

{CORR >

Identifier-1 and literal-1 represent the sending area;
identifier-2» identifier-3» ...» represent the receiving area(s).

An index data item cannot appear as an operand of a MOVE
statement.

The data designated by literal-1 or identifiei— 1 is moved first to
identifiei— 2» then to identifier-3» The rules referring to
identifier-2 also apply to the other receiving areas. Any
subscripting or indexing associated with identifier-2» ...» is
evaluated immediately before the data is moved to the respective
data item.

Any subscripting or indexing associated with identifiei— 1 is
evaluated only once» immediately before data is moved to the first
of the receiving operands. The result of the statement

MOVE a TO b» c (b)

is equivalent to:

MOVE a <b) TO temp
MOVE temp TO b
MOVE temp TO c (b).

PAGE 177

Any MOVE in which the sending and receiving items are both
elementary items is an elementary move. Every elementary item
belongs to one of the following categories: numeric» alphabetic*
alphanumeric* numeric edited* alphanumeric edited. These
categories are described in the PICTURE clause. Numeric literals
belong to the category numeric* and nonnumeric literals belong to
the category alphanumeric. The figurative constant ZERO belongs to
the category numeric. The figurative constant SPACE belongs to the
category alphabetic. All other figurative constants belong to the
category alphanumeric.

The following rules apply to an elementary move between these
categories:

1. The figurative constant SPACE* a numeric edited*
alphanumeric edited* or alphabetic data item must not be
moved to a numeric or numeric edited data item.

2. A numeric literal* the figurative constant ZERO* a numeric
data item or a numeric edited data item must not be moved
to an alphabetic data item.

3. A non integer numeric literal or a non integer numeric data
item must not be moved to an alphanumeric or alphanumeric
edited data item.

4. All other elementary moves are legal and are performed
according to the rules given below.

Any necessary c onvers ion of data from one form of internal
representation to another takes p lac e dur ing legal elementary
moves* along with any editing spec if ied for the receiving data
item:

1. When an alphanumeric edited or alphanumeric item is a
receiving item* alignment and any necessary space-filling
takes place as defined under Standard Alignment Rules. If
the size of the sending item is greater than the size of
the receiving item* the excess characters are truncated on
the right after the receiving item is filled. If the
sending item is described as being signed numeric* the
operational sign will not be moved* if the operational sign
occupies a separate character position (see the SIGN
clause)* that character will not be moved and the size of
the sending item will be considered to be one less than its
actual size (in terms of standard data format characters).

PAGE 178

2. When a numeric or numeric edited item is the receiving
item» alignment by decimal point and any necessary
zero-filling takes place as defined under the Standard
Alignment Rules except where zeroes are replaced because of
editing requirements.

When a signed item is the receiving item» the sign of the
sending item is placed in the receiving item. (See the SIGN
clause). Conversion of the representation of the sign takes
place as necessary. If the sending item is unsigned» a
positive sign is generated for the receiving item.

When an unsigned numeric item is the receiving item» the
absolute value of the sending item is moved and no
operational sign is generated for the receiving item.

When a data item described as alphanumeric is the sending
item» data is moved as if the sending item were described
as an unsigned numeric integer.

3. When a receiving field is described as alphabetic»
justification and any necessary space-filling takes place
as defined under the Standard Alignment Rules. If the size
of the sending item is greater than the size of the
receiving item» the excess characters are truncated on the
right after the receiving item is filled.

Any move that is not an elementary move is treated exactly as if
it were an alphanumeric to alphanumeric elementary move» except
that there is no conversion of data from one form of internal
representation to another. In such a move» the receiving area will
be filled without consideration for the individual elementary or
group items contained within either the sending or receiving area»
except as noted in the OCCURS clause.

When a sending and receiving item share a part of their storage
areas» the result of the execution of such a statement is
undefined.

PAGE 179

The CORRESPONDING Phrase

When the CORRESPONDING phrase is specified# data items in
identifier-i are moved to corresponding data items in identifier-2
according to the following rules:

A data item in identifier-1 and a data item in identifier-2
are not designated by the key word FILLER and have the same
qualifiers up to# but not including# identifier-1 and
identifier-2.

At least one of the data items is an elementary data item.

The description of identifier-1 and identifier-2 must not
contain level-number 66# 77# or 88 or the USAGE IS INDEX
clause.

A data item that is subordinate to identifier-1 or
identifier-2 and contains a REDEFINES# RENAMES# OCCURS or
USAGE IS INDEX clause is ignored# as well as those data items
subordinate to the data item that contains the REDEFINES#
OCCURS# or USAGE IS INDEX clause. However# identifier-1 and
identifier-2 may have REDEFINES or OCCURS clauses or be
subordinate to data items with REDEFINES or OCCURS clauses.

PAGE 180

Data in the following chart summarizes the legality of the various
types of MOVE statements.

CATEGORY OF RECEIVING DATA ITEM

CATEGORY OF
SENDING

DATA ITEM ALPHABETIC

ALPHANUMERIC
EDITED

ALPHANUMERIC

NUMERIC INTEGER
NUMERIC NON-INTEGER
NUMERIC EDITED

ALPHABETIC YES YES NO

ALPHANUMERIC YES YES YES

ALPHANUMERIC EDITED YES YES NO

!INTEGER
M l I M C D T r I

NO YES YES
IN U l I L n i - - - - - - -

!NON-INTEGER NO NO YES

NUMERIC EDITED NO YES NO

MOVE Examples

MOVE INCOME TO TOTAL-INCOME.

MOVE 1 TO PAGE-COUNT, LINE-NUM

MOVE "MARMACK INDUSTRIES" TO TITLE-HEADER.

MOVE PERSON IN FILE-RECORD TO
PERSON OF ALABAMA (I-A OF ALABAMA),
PERSON OF CROSS-CENSUS.

MOVE NUM TO NUM-ED

MOVE TABLE-ELT (N, 1, M) TO NEXT-ENTRY
PREVIOUS-ENTRY

MOVE -36. 7 TO DEFICIT.

MOVE QUOTES TO SECTION-DIVIDER.

MOVE ZERO TO COUN-TER

MOVE ZEROES TO COUN-TER.

PAGE 181

The MULTIPLY Statement

The MULTIPLY statement causes numeric data items to be multiplied
and stores the result.

FORMAT 1

MULTIPLY -Cidentifier-l>

•C1 i t era 1-1 >

BY identifier-2 GROUNDED]

C;ON SIZE ERROR i m p e r a t i v e - s ta t e m e n t 3

FORMAT 2

MULTIPLY C i d en t i f i er-1 > BY -Cidentif ier-2>

■Cliteral-1 > -Cliteral-2 >

GIVING identifier-3 C R O U N D E D 3

C;ON SIZE ERROR imperative-statement!

In Format 1# the value of identifier-1 or literal-1 is multiplied
by the value of identifier-2. The value of the multiplier
(identifier-2) is replaced by this product.

In Format 2/ the value of identifier-1 or literal-1 is
by identifier-2 or literal-2 and the result is
i d ent i f i er-3.

multiplied
stored in

Each identifier must refer to a numeric elementary item/ except
that in Format 2 the identifier following the word GIVING must
refer to either an elementary numeric item or an elementary
numeric edited item.

Each literal must be a numeric 1 i tera 1.

PAGE 182

The ROUNDED Phrase

The MULTIPLY statement may optionally include the ROUNDED phrase.

If» after decimal point alignment/ the number of places in the
fraction of the result of an arithmetic operation is greater than
the number of places provided for the fraction of the
resultant-identifier/ truncation is relative to the size provided
for the resultant-identifier. When rounding is requested/ the
absolute value of the resultant-identifier is increased by one
(1) whenever the most significant digit of the excess is greater
than or equal to five (5).

When the low-order integer positions in a resultant-identifier are
represented by the character ' P ' in the picture for that
resultant-identifier/ rounding or truncation occurs relative to
the rightmost integer position for which storage is allocated.

The SIZE ERROR Phrase

If/ after appropriate decimal point alignment/ the absolute value
of the result exceeds the largest value that can be contained in
the associated r e s u 1 tant- i d e n t i f i e r / a size error condition
exists. If the ROUNDED phrase is specified/ rounding takes place
before checking for size error.

If the resultant-identifier has C0MPUTATI0NAL-3 usage/ size error
is detected only for data items declared with an odd length
picture clause. Therefore all CQMP-3 data items should be declared
with an odd number of character positions.

If the SIZE ERROR phrase is not specified and a size error
condition exists/ the value of the resultant-identifier is
undefined.

If the SIZE ERROR phrase is specified and a size error condition
exists/ the value of the resultant-identifier is not altered and
the imperative statement is the SIZE ERROR phrase is executed.

MULTIPLY Examples

MULTIPLY 10 BY INCOME.

MULTIPLY PRINCIPAL BY INTEREST-RATE
GIVING INTEREST ROUNDED.

MULTIPLY INFLATION-RATE BY EXPENSES
ON SIZE ERROR MOVE 0 TO ECONOMY-RATING.

PAGE 183

The OPEN Statement (Sequential I-Ü)

The OPEN statement initiates the processing of sequential files.

FORMAT

OPEN -C-C INPUT -Cfile-name-1 CWITH NO REWIND! >. . . >. . .

■(OUTPUT -Cf ile-name-2 CWITH NO REWIND! >. . . > ...

-CI-0 -Cf ile-name-3 >. . . > ...

TEXTEND -Cf i 1 e-name-4 >. . . > . . . > . . .

The successful execution of an OPEN statement determines the
availability of the file and results in the file being in an open
mode.

The successful execution of an OPEN statement makes the associated
record area available to the program.

The files referenced in the OPEN statement need not all have the
same organization or access.

Prior to the successful execution of an OPEN statement for a given
file# no statement can be executed that references that file/
either explicitly or implicitly.

An OPEN statement must be successfully executed prior to the
execution of any of the permissible input-output statements. In
the Permissible Statements Table below/ 'X' at an intersection
indicates that the specified statement/ used in the sequential
access mode/ may be used with the sequential file organization and
open mode given at the top of the column.

PAGE 1S4

Open Mode

Statement Input Output Input-Output Extend

READ X X

WRITE X X

REWRITE X

Permissible Statements Table

A file may be opened with the INPUT/ OUTPUT/ EXTEND/ and 1-0
phrases in the same program. Following the initial execution of an
OPEN statement for a file/ each subsequent OPEN statement
execution for that same file must be preceded by the execution of
a CLOSE statement/ without the LOCK phrase/ for that file.

Execution of the OPEN statement does not obtain or release the
first data record.

The file description entry for f i 1 e - n a m e - 1 / file-name-3 or
file-name-4 must be equivalent to that used when this file was
created.

The execution of an OPEN statement causes the value of the
specified FILE STATUS data item/ if any/ associated with
file-name-1 ... to be updated.

The INPUT Phrase

For files being opened with the INPUT phrase/ the OPEN statement
sets the current record pointer to the first record currently
existing within the file. If no records exist in the file/ the
current record pointer is set such that the next executed READ
statement for the file will result in an AT END condition.

The OUTPUT Phrase

Upon successful execution of an OPEN statement with the OUTPUT
phrase specified/ a file is created. At that time the associated
file contains no data records.

PAGE 185

The EXTEND Phrase

When the EXTEND phrase is specified; the OPEN statement positions
the file immediately following the last logical record of that
file. Subsequent WRITE statements referencing the file will add
records to the file as though the file has been opened with the
OUTPUT phrase.

The EXTEND phrase and NO REWIND phrase can be used only for
sequential files. The EXTEND phrase must not be specified for a
file whose device-type is INPUT.

When the EXTEND phrase is specified and the LABEL RECORDS clause
indicates label records are present/ the execution of the OPEN
statement includes the following:

The beginning file labels are processed only in the case of a
single reel/unit file.

Processing then proceeds as though the file has been opened
with the OUTPUT phrase.

The 1-0 Phrase

The 1-0 phrase permits the opening of a mass storage file for both
input and output operations. Since this phrase implies the
existence of the file/ it cannot be used if the mass storage file
is being initially created.

The I-Q phrase can be used only for mass storage files (files
assigned to the RANDOM device-type).

When the 1-0 phrase is specified and the LABEL RECORDS clause
indicates that label records are present/ the execution of the
OPEN includes the following:

The labels are checked.

New labels are written.

The OPEN statement sets the current record pointer to the first
record currently existing in the file. If no records exist in the
file/ the current record pointer is set such that the next
executed READ statement for that file will result in an AT END
cond ition.

PAGE 186

The NO REWIND Phrase

The NO REWIND phrases can only be used with sequential single
reel/unit files. Both phrases will be ignored if they do not apply
to the storage media on which the file resides.

If the storage medium for the file permits rewinding» the
following rule applies:

When neither the EXTEND nor the NO REWIND phrase is specified»
execution of the OPEN statement causes the file to be
positioned at its beginning.

When the NO REWIND phrase is specified» execution of the OPEN
statement does not cause the file to be repositioned» the file
must be already positioned at its beginning prior to the
execution of the OPEN statement.

PAGE 187

The OPEN Statement (Relative and Indexed I-O)

The OPEN statement initiates the processing of mass storage files.

FORMAT

OPEN -C-CINPUT •Cf i 1 e-name-1 >. .. >. . .

•COUTPUT <file-name-2 >. . . >. . .

-CI-0 Tfile-name-3 >. .

The successful execution of an OPEN statement determines the
availability of the file and results in the file being in an open
mode.

The successful execution of the OPEN statement makes the
associated record area available to the program.

The files referenced in the OPEN statement need not all have the
same organization or access.

Prior to the successful execution of an OPEN statement for a given
file; no statement can be executed that references that file»
either explicitly or implicitly.

A file may be opened with the INPUT» OUTPUT» and 1-0 phrases in
the same program. Following the initial execution of an OPEN
statement for a file» each subsequent OPEN statement execution for
that same file must be preceded by the execution of a CLOSE
statement» without the LOCK phrase» for that file.

Execution of the OPEN statement does not obtain or release the
first data record.

If label records are specified for the file» the beginning labels
are processed as follows:

When the INPUT phrase is specified» the execution of the OPEN
statement causes the labels to be checked in accordance with
the System conventions for input label checking.

When the OUTPUT phrase is specified» the execution of the OPEN
statement causes the labels to be written in accordance with
the System conventions for output label writing.

PAGE 188

The behavior of the OPEN statement when label records are
specified but not present/ or when label records are not
specified but are present, is undefined.

The file description entry for file-name-1 or file-name-3 must be
equivalent to that used when this file was created.

The execution of the OPEN statement causes the value of the
specified FILE STATUS data item, if any, associated with
file-name-1 ... to be updated.

An OPEN statement must be successfully executed prior to the
execution of any of the permissible input-output statements. In
the Permissible Statements Table below, 'X' at an intersection
indicates that the specified statement, used in the access mode
given for that row, may be used with the open mode given at the
top of the column.

PAGE 189

Open Mode

File Access
Mode Statement Input Output Input-Output

Sequent i a 1 READ X X

WRITE X

REWRITE X

START X X

DELETE X

Random READ X X

WRITE X X

REWRITE X

START

DELETE X

Dynamic READ X X

WRITE X X

REWRITE X

START X X

DELETE X

Permissible Statements Table

The INPUT Phrase

For files being opened with the INPUT phrase# the OPEN statement
sets the current record pointer to the first record currently
existing within the file. If no records exist in the file# the
current record pointer is set such that the next executed Format 1
READ statement for the file will result in an AT END condition.

PAGE 190

The OUTPUT Phrase

Upon successful execution of an OPEN statement with the OUTPUT
phrase specified# a file is created. At that time the associated
file contains no data records.

The 1-0 Phrase

For files being opened with the 1-0 phrase# the
sets the current record pointer to the first
existing within the file. If no records exist in
current record pointer is set such that the next
READ statement for the file will result in an AT

OPEN statement
record currently
the file# the

executed Format 1
END condition.

PAGE 191

The PERFORM Statement

The PERFORM statement is used to transfer control explicitly to
one or more procedures and to return control implicitly whenever
execution of the specified procedure is complete.

FORMAT 1

PERFORM procedure-name-1 C-CTHROUGH> procedure-name-23

■CTHRU >

FORMAT 2

PERFORM procedure-name-1 C{THROUGH)- procedure-name-23

•CTHRU >

{identifier-13- TIMES

•Cinteger >

FORMAT 3

PERFORM procedure-name-i C<THROUGH> procedure—n a m e —23

•CTHRU >

UNTIL condition-1

PAGE 192

FORMAT 4

PERFORM procedure-name-1 C-CTHROUOH> procedure-name-23

{THRU >

VARYING {identifier-2} FROM {identifier-3}

{index-name-1} {index-name-2}
{literal-1 >

BY { i d e n t ifier-4} UNTIL condition-1

{literal-2 >

CAFTER {identifier-5> FROM {identifier-6}

{index-name-3} {index-name-4}
{literal-3 }

BY {identifier-7} UNTIL condition-2

{literal-4 }

CAFTER {identifier-8} FROM {identifier-9}

{index-name-5} {index-name-6}
{literal-5 }

BY {identifier-10} UNTIL condition-333

{literal-6 }

Format 1 is the basic PERFORM statement. A procedure referenced by
this type of PERFORM statement is executed once and then control
passes to the next executable statement following the PERFORM
statement.

Format 2 is the PERFORM. .. TIMES. The procedures are performed the
number of times specified by integer or by the initial value of
the data item referenced by identifiei— 1 for that execution. If,
at the time of execution of a PERFORM statement, the value of the
data item referenced by identifier-1 is equal to zero or is
negative, control passes to the next executable statement
following the PERFORM statement. Following the execution of the
procedures the specified number of times, control is transferred
to the next executable statement following the PERFORM statement.

PAGE 193

During execution of
identifiei— 1 cannot alter
to be executed from that
of identifier-1.

the PERFORM statement/ references to
the number of times the procedures are
which was indicated by the initial value

Format 3 is the PERFORM. .. UNTIL. The specified procedures are
performed until the condition specified by the UNTIL phrase is
true. When the condition is true/ control is transferred to the
next executable statement after the PERFORM statement. If the
condition is true when the PERFORM statement is entered/ no
transfer to procedure-name-1 takes place/ and control is passed to
the next executable statement following the PERFORM statement.

Format 4 is the PERFORM. .. VARYING. This
statement is used to augment the values r
identifiers or index-names in an ord
execution of a PERFORM statement. In th
every reference to identifier as the obj
and FROM (current value) phrases also ref
index-name appears in a VARYING and/
initialized and subsequently augmented
according to the rules of the SET s
appears in the FROM phrase/ identifier/
associated VARYING or AFTER phrase/ is
the rules of the SET statement; subsequ
described below.

variation of the PERFORM
eferenced by one or more
erly fashion during the
e following discussion/
ect of the VARYING/ AFTER
ers to index-names. When
or AFTER phrase/ it is

(as described below)
tatement. When index-name
when it appears in an
initialized according to

ent augmentation is as

In Format 4/ when one identifier is varied/ identifier-2 is set to
the value of literal-1 or the current value of identifier-3 at the
point of initial execution of the PERFORM statement; then/ if the
condition of the UNTIL phrase is false/ the sequence of
procedures/ procedure-name-1 through procedure-name-2/ is executed
once. The value of identifier-2 is augmented by the specified
increment or decrement value (the value of identifier-4 or
literal-2) and condition-1 is evaluated again. The cycle continues
until this condition is true; at which point/ control is
transferred to the next executable statement following the PERFORM
statement. If condition-1 is true at the beginning of execution of
the PERFORM statement/ control is transferred to the next
executable statement following the PERFORM statement.

Each identifier represents a numeric elementary item described in
the Data Division. In Format 2/ identifier-1 must be described as
a numeric integer.

Each literal represents a numeric literal.

The words THRU and THROUGH are equivalent.

PAGE 194

If an index-name is specified in the VARYING or AFTER phrase/
then:

The identifier in the associated FROM and BY phrases must be
an integer data item.

The literal in the associated FROM phrase must be a positive
integer.

The literal in the associated BY phrase must be a non zero
integer.

If an index-name is specified in the FROM phrase» then:

The identifier in the associated VARYING or AFTER phrase must
be an integer data item.

The identifier in the associated BY phrase must be an integer
data item.

The literal in the associated BY phrase must be an integer.

Literal in the BY phrase must not be zero.

Condition-1# condition-2» condition-3 mag be any conditional
expression.

When procedure-name-1 and procedure-name-2 are both specified and
either is the name of a procedure in the declarative section of
the program then both must be procedure-names in the same
declarative section.

The data items referenced by identifier-4» identifier-7» and
identifier-10 must not have a zero value.

If an index-name is specified in the VARYING or AFTER phrase» and
an identifier is specified in the associated FROM phrase» then the
data item referenced by the identifier must have a positive value.

When the PERFORM statement is executed» control is transferred to
the first statement of the procedure named procedure-name-1. This
transfer of control occurs only once for each execution of a
PERFORM statement. For those cases when a transfer of control to
the named procedure does take place» an implicit transfer of
control to the next executable statement following the PERFORM
statement is established as follows:

PAGE 195

If procedure-name-1 is a paragraph-name and procedure-name-2
is not specified* then the return is after the last statement
of procedure-name-1.

If procedure-name-1 is a section-name and procedure-name-2 is
not specified* then the return is after the last statement of
the last paragraph in procedure-name~l.

If procedure-name-2 is specified and it is a paragraph-name*
then the return is after the last statement of the paragraph.

If procedure-name-2 is specified and it is a section-name*
then the return is after the last statement of the last
paragraph in the section.

There is no necessary relationship between procedure-name-1 and
procedure-name-2 except that a consecutive sequence of operations
is to be executed beginning at the procedure named
procedure-name-1 and ending with the execution of the procedure
named procedure-name-2. In particular* GO TO and PERFORM
statements may occur between procedure-name-1 and the end of
procedure-name-2. If there are two or more logical paths to the
return point* then procedure-name-2 may be the name of a paragraph
consisting of the EXIT statement* to which all of these paths must
1 ead.

If control passes to these proce
PERFORM statement* control will pass
the procedure to the next executable
statement mentioned these procedures.

dures by means
through the last
statement as if

other than a
statement of
no PERFORM

PAGE 196

ENTRANCE
II
V

!Set identifiei— 2 equal toJ
! current FROM value !

II
V

/------------- \ True
> ! Condition-1 !---------------- > Exit

\------------- /
II
V False

! Execute procedure-name-1!
! THRU procedure-name-2 !

V

‘Augment identifier-2 with!
! current BY value !

Flowchart for the VARYING Phrase of a PERFORM Statement Having One
Condition.

PAGE 197

In Format 4# when two identifiers are varied# identifier-2 and
identifier-5 are set to the current value of identifier-3 and
identifier-6# respectively.

After the identifiers have been set# condition-1 is evaluated# if
true# control is transferred to the next executable statement# if
false# condition-2 is evaluated. If condition-2 is false#
procedure-name-1 through procedure-name-2 is executed once# then
identifer-5 is augmented by identifier-7 or literal-4 and
condition-2 is evaluated again. This cycle of evaluation and
augmentation continues until this condition is true. When
condition-2 is true# identifier-5 is set to the value of literal-3
or the current value of identifier-6# identifier-2 is augmented by
identifier-4 and condition-1 is re-evaluated. The PERFORM
statement is completed if condition-1 is true# if not# the cycles
continue until condition-1 is true.

During the execution of the procedures associated with the PERFORM
statement# any change to the VARYING variable (identifier-2 and
index-name-1)# the BY variable <identifier-4)# the AFTER variable
(identifier-5 and index-name-3)# or the FROM variable
(identifier-3 and index-name-2) will be taken into consideration
and will affect the operation of the PERFORM statement.

PAGE 198

ENTRANCE
II
V

{Set identifier-2 and identifier-51
» to current FROM values !

/

I
I

V
\

>{ Condition-1
\-----------------/

II
V False

/-----------------\
•> I Condition-2

\-----------------/
II
V False

True
> Exit

True

V

{Execute p r o c e d u r e - n a m e - 1 ! ISet identifier-5 to its!
I THRU procedure-name-2 I ! current FROM value !

I

V V

{Augment identifier-5 with!
! current BY value !

{Augment identifier-2 with!
! current BY value !

Flowchart for the VARYING Phrase of a PERFORM Statement Having Two
Conditions.

PAGE 199

ENTRANCE

II
I

I
II
II
I
i
ii
I
II
II

V

Set
identifier-2# identifier-5/

identifier-8
to current FROM values

True
•> Exit

True

V
/------------- \

->! Conditon-1 !
\-------------/

{ False
V

/ ----------------\
>i Condition-2 S

\-------------- /
I False
V

/-------------- \
>! Condition-3 I

\-------------- /
» False
V

Execute
proc edure-name-1
THRU procedure-

name-2

II
V

Augment !
identifier-8 with!
current BY value!

True

II
II
V

Set
identifier-8
to its current

FROM value

«I
V

Augment !
identifier-5 with!
current BY value!

V

Set
identifier-5
to its current

FROM value

«I
V

Augment
identifier-2 with
current BY value

II
I

Flowchart for the VARYING Phrase of a PERFORM Statement Having
Three Conditions.

PAGE 200

At the termination of the PERFORM statement identifier-5 contains
the current value of identifier-6. Identifier-2 has a value that
exceeds the last setting by an increment or decrement value;
unless condition-1 was true when the PERFORM statement was
entered# in which case identifier-2 contains the current value of
identifier-3.

When two identifiers are varied» identifier-5 goes through a
complete cycle (FROM# BY# UNTIL) each time identifier-2 is varied.

For three identifiers the mechanism is the same as for two
identifiers except that identifiei— 8 goes through a complete cycle
each time that identifier-5 is augmented by identifier-7 or
literal-4» which in turn goes through a complete cycle each time
identifier-2 is varied.

After the completion of a Format 4 PERFORM statement» identifier-5
and identifier-8 contain the current value of identifier-6 and
identifier-9 respectively. Identifier-2 has a value that exceeds
its last used setting by one increment or decrement value» unless
condition-1 is true when the PERFORM statement is entered# in
which case identifier-2 contains the current value of
identifier-3.

If a sequence of statements referred to by a PERFORM statement
includes another PERFORM statement» the sequence of procedures
associated with the included PERFORM must itself either be totally
included in# or totally excluded from» the logical sequence
referred to by the first PERFORM. Thus an active PERFORM
statement# whose execution point begins within the range of
another active PERFORM statement# must not allow control to pass
to the exit of the other active PERFORM statement# furthermore#
two or more such active PERFORM statements may not have a common
exit. See the valid i 11ustrations below.

x PERFORM a THRU m

a ---------------------

d PERFORM f THRU j

h

m ---------------------

f ------------
I»

j --------------------------

PAGE 201

x PERFORM a THRU m

a ----------------------

d PERFORM f THRU j

f ------------
II

J -----------

m ----------------------

x PERFORM a THRU m

a ---------------------

f -----------
fI

m ---------- !---------
ii

j --------------------------

d PERFORM f THRU j

A PERFORM statement that appears in a section that is not in an
independent segment can have within its range* in addition to any
declarative sections whose execution is caused within that range*
only one of the following:

Sections and/or paragraphs wholly contained in one or more
non-independent segments.

Sections and/or paragraphs wholly contained in a single
independent segment.

A PERFORM statement that appears in an independent segment can
have within its range* in addition to any declarative sections
whose execution is caused within that range* only one of the
foil o w i n g :

Sections and/or paragraphs wholly contained in one or more
non-independent segments.

Sections and/or paragraphs wholly contained in the same
independent segment as the PERFORM statement.

PAGE 202

The READ Statement (Sequential I/O)

The READ statement makes available the next logical record from a
file.

FORMAT

READ file-name RECORD CINTO identifier}

CiAT END imperative-statement 3

The associated file must be open in the INPUT or 1-0 mode at the
time this statement is executed.

The record to be made available by the READ statement is
determined as follows:

If the c urrent record pointer was positioned by the execution
of the OPEN statement/ the record pointed to by the current
record pointer is made availa b 1 e.

If the current record pointer was positioned by the execution
of a previous READ statement/ the current rec ord pointer is
updated to point to the next existing record in the file and
then that record is made available.

The execution of the READ statement causes the value of the FILE
STATUS data item/ if any/ associated with file-name to be updated.

When the logical records of a file are described with more than
one record description the contents of any data items which lie
beyond the range of the current data record are undefined at the
completion of the execution of the READ statement.

If/ at the time of execution of a READ statement/ the position of
the current record pointer for that file is undefined/ the
execution of that READ statement is unsuccessful.

Following the unsuccessful execution of any READ statement/ the
contents of the associated record area and the position of the
current record pointer are undefined.

PAGE 203

The INTO P h ra s e

If the INTO phrase is specified, the record being read is moved
from the record area to the area specified by identifier according
to the rules specified for the MOVE statement. The implied MOVE
does not occur if the execution of the READ statement was
unsuccessful. Any subscripting or indexing associated with
identifier is evaluated after the record has been read and
immediately before it is moved to the data item.

When the INTO phrase is used, the record being read is available
in both the input record area and the data area associated with
identifier.

The INTO phrase must not be used when the input file contains
logical records of various sizes as indicated by thier record
descriptions. The storage area associated with identifier and the
record area associated with file-name must not be the same storage
area.

The AT END Phrase

If, at the time of the execution of a READ statement, no next
logical record exists in the file, the AT END condition occurs,
and the execution of the READ statement is considered
unsuccessful.

When the AT END condition is recognized the following actions are
taken in the specified order.

A value is placed into the FILE STATUS data item, if specified
for this file, to indicate an AT END condition.

If the AT END phrase is specified in the statement causing the
condition, control is transferred to the AT END
imperative-statement. Any USE procedure specified for this
file is not executed.

If the AT END phrase is not specified, then a USE procedure
must be specified, either explicitly or implicitly, for this
file and that procedure is executed.

When the AT END condition has been recognized, a READ statement
for that file must not be executed without first executing a
successful CLOSE statement followed by the execution of a
successful OPEN statement for that file.

The AT END phrase must be specified if no applicable USE procedure
is specified for file-name.

PAGE 204

The READ Statement (Relative and Indexed 1-0)

The READ statement makes available a specified record from a mass
storage file.

FORMAT 1

READ file-name [NEXT! RECORD [WITH NO LOCK! [INTO identifier!

C#AT END i m p e r a t i v e - s ta t e m e n t 3

FORMAT 2

READ file-name RECORD [WITH NO LOCK! [INTO identifier!

C#• KEY IS data-name!

C#INVALID KEY i m p e r a t i v e - s ta t e m e n t !

Format 1 must be used for all files in sequential access mode.

The NEXT phrase must be specified for files in dynamic access
mode# when records are to be retrieved sequentially.

Format 2 is used for files in random access mode or for files in
dynamic access mode when records are to be retrieved randomly.

The INVALID KEY phrase or the AT END phrase must be specified if
no applicable USE procedure is specified for file-name.

The associated files must be open in the INPUT or 1-0 mode at the
time this statement is executed.

The KEY phrase may be specified only when the organization of
file-name is index. When the KEY clause is present# data-name must
be the name of one of the record keys associated with file-name.
Data-name may be qualified.

PAGE 205

The record to be made available by a Format 1 READ statement is
determined as follows:

The record/ pointed to by the current record pointer/ is made
available provided that the current record pointer was
positioned by the START or OPEN statement and the record is
still accessible through the path indicated by the current
record pointer. If the record is no longer accessible/ which
may have been caused by the deletion of the record/ the
current record pointer is updated to point to the next
existing record in the file and that record is then made
avai lab le.

If the current record pointer was positioned by the execution
of a previous READ statement/ the current record pointer is
updated to point to the next existing record in the file and
then that record is made available.

The execution of the READ statement causes the value of the FILE
STATUS data item/ if any/ associated with file-name to be updated.

When the logical records of a file are described with more than
one record description/ these records automatically share the same
storage area; this is equivalent to an implicit redefinition of
the area. The contents of any data items which lie beyond the
range of the current data record are undefined at the completion
of the execution of the READ statement.

If/ at the time of execution of a Format 1 READ statement/ the
position of current record pointer for that file is undefined/ the
execution of that READ statement is unsuccessful.

The INTO Phrase

If the INTO phrase is specified/ the record being read is moved
from the record area to the area specified by identifier according
to the rules specified for the MOVE statement. The implied MOVE
does not occur if the execution of the READ statement was
unsuccessful. Any subscripting or indexing associated with
identifier is evaluated after the record has been read and
immediately before it is moved to the data item.

When the INTO phrase is used/ the record being read is avai
in both the input record area and the data area associated
identifier.

The INTO phrase must not be used when the input file con
logical records of various sizes as indicated by their r
descriptions. The storage area associated with identifier and
record area associated with file-name must not be the same st
area.

lab 1 e
with

tains
ecord

the
orage

PAGE 206

Following the unsuccessful execution of any READ statement/ the
contents of the associated record area and the position of the
current record pointer are undefined.

For relative files if the RELATIVE KEY phrase is specified/ the
execution of a Format 1 READ statement updates the contents of the
RELATIVE KEY data item such that it contains the relative record
number of the record made available.

For relative files the execution of a Format
the current record pointer t o , and makes
whose relative record number is contained in
in the RELATIVE KEY phrase for the file
contain such a record/ the INVALID KEY
execution of the READ statement is unsuccess

2 READ statement sets
available/ the record
the data item named
If the file does not

condition exists and
ful.

For an indexed file being sequentially accessed/ record
the same duplicate value in an alternate record key which
key of reference are made available in the same order
they are released by execution of WRITE statements/
execution of REWRITE statements which create such d
values.

s having
is the

in which
or by

up 1 i cate

For an indexed file if the KEY phrase is specified in a Format 2
READ statement/ data-name is established as the key of reference
for this retrieval. If the dynamic access mode is specified/ this
key of reference is also used for retrievals by any subsequent
executions of Format ! READ statements for the file until a
different key of reference is established for the file.

If the KEY phrase is not specified in a Format 2 READ statement/
the prime record key is established as the key of reference for
this retrieval.

If the dynamic access mode is specified/ this key of reference is
also used for retrievals by any subsequent executions of Format 1
READ statements for the file until a different key of reference is
established for the file.

For indexed files the execut
causes the value of the key of r
value contained in the corre
records in the file/ until the f
is found. The current record po
which is then made available. If
the INVALID KEY condition ex
statement is unsuccessful.

ion of a Format 2 READ statement
eference to be compared with the
sponding data item of the stored
irst record having an equal value
inter is positioned to this record
no record can be so identified/

ists and execution of the READ

PAGE 207

The AT END Phrase

If; at the time of the execution of a Format 1 READ statement* no
next logical record exists in the file* the AT END condition
occurs* and the execution of the READ statement is considered
unsuccessful.

When the AT END condition is recognized* the following actions are
taken in the specified order:

A value is placed into the FILE STATUS data item* if specified
for this file* to indicate an AT END condition.

If the AT END phrase is specified in the statement causing the
condition* control is transferred to the AT END
imperative-statement. Any USE procedure specified for this
file is not executed.

If the AT END phrase is not specified* then a USE procedure
must be specified* either explicitly or implicitly* for this
file* and that procedure is executed.

When the AT END condition occurs* execution of the
input-output statement which caused the condition is
unsuccessful.

When the AT END condition has been recognized* a Format 1 READ
statement for that file must not be executed without first
executing one of the following:

A successful CLOSE statement followed by the execution of a
successful OPEN statement for that file.

A successful START statement for that file.

A successful Format 2 READ statement for that file.

For a file for which dynamic access mode is specified* a Format 1
READ statement with the NEXT phrase specified causes the next
logical record to be retrieved from the file.

PAGE 208

The REWRITE Statement (Sequential I/O)

The REWRITE statement logically replaces a record existing in a
mass storage file.

FORMAT

REWRITE record-name [FROM identiferl

Record-name and identifier must not refer to the same storage
area.

Record-name is the name of a logical record in the File Section of
the Data Division and may be qualified.

The file associated with record-name must be a mass storage file
and must be open in the 1-0 mode at the time of execution of this
statement.

The last input-output statement executed for the associated file
prior to the execution of the REWRITE statement must have been a
successfully executed READ statement.

The number of character positions in the record referenced by
record-name must be equal to the number of character positions in
the record being replaced.

The logical record released by successful execution of the REWRITE
statement is no longer available in the record area.

The current record pointer is not affected by the execution of a
REWRITE statement.

The execution of the REWRITE statement causes the value
FILE STATUS data item; if any; associated with the file
updated.

of
to

the
b e

PAGE 209

The FROM Phrase

The execution of a REWRITE statement with the FROM phrase is
equivalent to the execution of:

MOVE identifier TO record-name

followed by the execution of the same REWRITE statement without
the FROM phrase. The contents of the record area prior to the
execution of the implicit MOVE statement have no effect on the
execution of the REWRITE statement.

PAGE 210

The REWRITE Statement (Relative and Indexed 1-0)

The REWRITE statement logically replaces a record existing in a
mass storage file.

FORMAT

REWRITE record-name CFROM identifier!

Ci INVALID KEY imp e r a t i v e - s t a t e m e n t 3

Record-name and identifier must not
area.

Record-name is the name of a logical
the Data Division and may be qualifi

refer to th

record in the
e d .

e same storage

File Section of

For relative
for a REWRITE
access mode.

files the INVALID KEY phrase
statement which references a

must not be specified
file in sequential

The INVALID KEY phrase must
for files in the random or
appropriate USE procedure is

be specified in
dynamic access
not specified.

the REWRITE statement
mode for which an

For indexed files the INVALID KEY phrase must be specified in the
REWRITE statement for files for which an appropriate USE procedure
is not specified.

The file associated with record-name must be open in the 1-0 mode
at the time of execution of this statement.

For files in the sequen
statement executed for the
of the REWRITE statement

record-name must be equal
the record being replaced.

The logical record released
REWRITE statement is no Ion

itial acc ess mode / the last input -ou tp ut
associat ed file prior to th e ex ecu ti on
: must ha ve been a suec essf u 11 y e xec ut ed
WITH NO LOCK phrase.

► i t ions in the r ec or d re f er en c ed by
to the n umb er of c hara c ter posit i on s in

by a su c c ess f ul e xec ut i on of the
iger avai lab 1 e in the r ec or d area

PAGE 211

The current record pointer is not affected by the execution of a
REWRITE statement.

The execution of the REWRITE statement causes the value of the
FILE STATUS data item, if any, associated with the file to be
updated.

The INVALID KEY Phrase

For a relative file accessed in either random or dynamic access
mode, the System logically replaces the record specified by the
contents of the key data item associated with the file. If the
file does not contain the record specified by the key, the INVALID
KEY condition exists.

For indexed files the INVALID KEY condition exists when:

The access mode is sequential and the value contained in the
prime record key data item of the record to be replaced is not
equal to the value of the prime record read from the field, or

The value contained in the prime record key item does not
equal that of any record stored in the file.

When the INVALID KEY condition exists the updating operation does
not take place and the data in the record area is unaffected.

The FROM Phrase

The execution of a REWRITE statement with the FROM phrase is
equivalent to the execution of:

MOVE identifier TO record-name

followed by the execution of the same REWRITE statement without
the FROM phrase. The contents of the record area prior to the
execution of the implicit MOVE statement have no effect on the
execution of the REWRITE statement.

PAGE 212

The SET Statement

The SET statement establishes reference points for table handling
operations by setting index-names associated with table elements.

FORMAT 1

SET -C i d ent i f i er-1 > C / i d en t i f i er-23 ...> TO i i d ent i f i er-3>
--- — {index -name-3>

■Cindex-name-l> C/ index-name-23 {integer-1 >

FORMAT 2

SET index-name-4 C; index-name-53 •CUP BY > {identifier-4>

{DOWN BY> {integer-2 >

All references to i n dex-name-i> identifier-1; and index-name-4
apply equally to index-name-2; identifier-2; and index-name-5;
respectively.

Identifier-1 and identifier-3 must name either index data items;
or elementary items described as an integer.

Identifier-4 must be declared as an elementary numeric integer.

Integer-1 and integer-2 may be signed. Integer-1 must be positive.

Index-names are considered related to a given table and are
defined by being specified in the INDEXED BY clause.

If index-name-3 is specified; the value of the index before the
execution of the SET statement must correspond to an occurrence
number of an element in the associated table.

If index-name-4; index-name-5 is specified; the value of the index
both before and after the execution of the SET statement must
correspond to an occurrence number of an element in the associated
table. If index-name-1; index-name-2 is specified; the
the index after the execution of the SET statement must
to an occurrence number of an element in the associated
value of the index associated with an index-name
execution of a PERFORM statement may be undefined.

value of
correspond
table. The
after the

PAGE 213

In Format 1# the following action occurs:

Index-name-1 is set to a value causing it to refer to the
table element that corresponds in occurrence number to the
table element referenced by index-name-3# identifier-3# or
integer-1. If identifier-3 is an index data item# or if
index-name-3 is related to the same table as index-name-1# no
conversion takes place.

If identifier-1 is an index data item# it may be set equal to
either the contents of index-name-3 or identifier-3 where
identifiei— 3 is also an index data item# no conversion takes
place in either case.

If identifier-1 is not an index data item# it may be set only
to an occurrence number that corresponds to the value of
index-name-3. Neither identifier-3 nor integer-1 can be used
in this case.

The process is repeated for index-name-2# identifier-2# etc. #
if specified. Each time the value of index-name-3 or
identifier-3 is used as it was at the beginning of the
execution of the statement. Any subscripting or indexing
associated with identifier-1# etc.# is evaluated immediately
before the value of the respective data item is changed.

In Format 2# the contents of index-name-4 are incremented (UP BY)
or decremented (DOMN BY) by a value that corresponds to the number
of occurrences represented by the value of integer-2 or
identifiei— 4» thereafter# the process is repeated for
index-name-5# etc. Each time the value of identifier-4 is used as
it was at the beginning of the execution of the statement.

Data in the following chart represents the validity of various
operand combinations in the SET statement.

Sending Item

Receiving Item

Integer Data
Item

Index
Name

Index Data
Item

Integer Literal No Valid No
Integer Data Item No Valid No
Index-Name Valid Valid V a 1 id*
Index Data Item No Valid* Valid*

*No conversion takes place

PAGE 214

The START Statement (Relative and Indexed I-O)

The START statement provides a basis for logical positioning
within a file# for subsequent sequential retrieval of records.

FORMAT

START file-name CKEY -CIS EQUAL TO > data-name!

■CIS = >
•CIS GREATER THAN >

■CIS > >
■CIS NOT LESS THAN}

■CIS NOT < >

C#INVALID KEY i m p e r a t i v e - s ta t e m e n t !

Note: The required relational characters '>'# '<' and '=' are
not underlined to avoid confusion with other symbols.

File-name must be the name of a file with sequential or dynamic
access.

Data-name may be qualified.

The INVALID KEY phrase must be specified if no applicable USE
procedure is specified for file-name.

If file-name is the name of a relative file then data-name# if
specified# must be the data item specified in the RELATIVE KEY
phrase of the associated file control entry.

If file-name is the name of an indexed file then data-name# if
specified# may reference the data items specified as the record
keys associated with file-name or it may reference any data item
of category alphanumeric whose leftmost character position
corresponds to the leftmost character position of a record key
data item.

File-name must be open in the INPUT or 1-0 mode at the time that
the START statement is executed.

If the KEY phrase is not specified the relational operator 'IS
EQUAL TO' is implied.

PAGE 215

The type of comparison specified by the relational operator in the
KEY phrase occurs between a key associated with a record in the
file referenced by file-name and a data item.

If file-name references a relative file; the data item used in
the comparison is the relative key associated with file-name.

If file-name references an indexed file; the data item used in
the comparison is either the prime record key associated with
file-name or; if the KEY phrase is specified; the data item
referenced in the KEY phrase. If the operands of the
comparison are of unequal size; comparison proceeds as though
the longer one were truncated on the right such that its
length is equal to that of the shorter. All other nonnumeric
comparison rules apply except that the presence of the PROGRAM
COLLATING SEQUENCE clause will have no effect on the
comparison.

The current record pointer is positioned to the first logical
record currently existing in the file whose key satisfies the
comparison.

If the comparison is not satisfied by any record in the file;
an INVALID KEY condition exists; the execution of the START
statement is unsuccessful; and the position of the current
record pointer is undefined.

The execution of
STATUS data item;

the START statement causes the value of
if any; associated with file-name to be

the FILE
updated.

PAGE 216

The STOP Statement

The STOP statement causes a permanent or temporary suspension of
the execution of the object program.

FORMAT

STOP {RUN >

•Cl iteral>

The literal may be numeric or nonnumeric or may be any figurative
constant.

If a STOP RUN statement appears in a consecutive sequence of
imperative statements within a
last statement in that sequence.

If the RUN phrase is used/ then a
the execution is terminated.

If STOP literal is specified/
" 1 iteral-value" message and the e

STOP Examples:

sentence/ it must appear as the

STOP RUN message is logged and

the literal is logged in a STOP
xecution is suspended.

STOP RUN.
STOP "END OF PROCEDURE".

PAGE 217

The SUBTRACT Statement

The SUBTRACT statement is used to subtract one* or the sum of two
or more* numeric data items from a numeric data item and store the
result.

FORMAT 1

SUBTRACT {identifier-1} t,identifier-23 ...

{literal-1 } C* literal-2 3

FROM identifier-m C R O U N D E D 3

Li ON SIZE ERROR i m p e r a t i v e - s ta t e m e n t 3

FORMAT 2

SUBTRACT {identifier-1} identifier-23 . . .

{literal-1 } C* literal-2 3

FROM {identifier-m} GIVING identifier-n CROUN D E D 3

{literal-m }

C;ON SIZE ERROR imperative-statement!

FORMAT 3

SUBTRACT {CORRESPONDING} identifier-1

{CORR }

FROM identifier-2 C R O U N D E D 3

Li ON SIZE ERROR i m p e r a t i v e - s ta t e m e n t 3

In Format 1* all literals or identifiers preceding the word FROM
are added together and this total is subtracted from the current
value of identifier-m storing the result immediately into
identifier-m.

PAGE 218

In Format 2# all literals or identifiers preceding the word FROM
are added together# the sum is subtracted from literal-m or
identifier-m and the result of the subtraction is stored as the
new value of identifiei— n.

If Format 3 is used# data items in identifier-1 are subtracted
from and stored into corresponding data items in identifier-2.

Each identifier must refer to a numeric elementary item except
that:

In Format 2# the identifier following the word GIVING must
refer to either an elementary numeric item or an elementary
numeric edited item.

In Format 3# the identifiers must refer to group items.

Each literal must be a numeric literal.

The ROUNDED Phrase

The SUBTRACT statement may optionally include the ROUNDED phrase.

If# after decimal point alignment# the number of places in the
fraction of the result of an arithmetic operation is greater than
the number of places provided for the fraction of the
resultant-identifier# truncation is relative to the size provided
for the resultant-identifier. When rounding is requested# the
absolute value of the resultant-identifier is increased by one (1)
whenever the most significant digit of the excess is greater than
or equal to five <5>.

When the low-order integer positions in a resultant-identifier are
represented by the character 'P' in the picture for that
resultant-identifier# rounding or truncation occurs relative to
the rightmost integer position for which storage is allocated.

The SIZE ERROR Phrase

If# after appropriate decimal point alignment# the absolute value
of the result exceeds the largest value that can be contained in
the associated resultant-identifier# a size error condition
exists. If the ROUNDED phrase is specified# rounding takes place
before checking for size error.

PAGE 219

If the resultant-identifier has CGMPUTATIONAL-3 usage, size error
is detected only for data items declared with an odd length
picture clause. Therefore, all COMP-3 data items should be
declared with an odd number of character positions.

If the SIZE ERROR phrase is not specified and a size error
condition exists, the value of the resultant-identifier is
undefined.

If the SIZE ERROR phrase is specified and a size error condition
exists, the value of the r e s u l t a n t - i d en t i f i e r <s) affected by the
size error is not altered.

If the CORRESPONDING phrase is specified, and any of the
individual subtractions produce a size error condition, the
imperative-statement is not executed until all of the individual
subtractions are completed.

The CORRESPONDING Phrase

If the CORRESPONDING phrase is used, selected items within
identifier-1 are SUBTRACTed from, and the result stored in, the
corresponding items in identifier-2. Data items referenced by the
CORRESPONDING phrase must adhere to the following rules:

A data item in identifier-1 and a data item in identifiei— 2
must not be designated by the key word FILLER and must not
have the same data-name and the same qualifiers up to, but not
including, identifier-1 and identifier-2.

Both of the data items must be elementary numeric data items.

The description of identifier-1 and identifier-2 must not
contain level-numbers 66, 77 or 88 or the USAGE IS INDEX
c lause.

A data item that is subordinate to identifier-1 or
identifier-2 and contains a REDEFINES, RENAMES, OCCURS or
USAGE IS INDEX clause is ignored, as well as those data items
subordinate to the data item that contains the REDEFINES,
OCCURS, or USAGE IS INDEX clause. However, identifier-1 and
identifier-2 may have REDEFINES or OCCURS clauses or be
subordinate to data items with REDEFINES or OCCURS clauses.

CORR is an abbreviation for CORRESPONDING.

PAGE 220

SUBTRACT EXAMPLES

SUBTRACT TAXES FROM INCOME.

SUBTRACT 1 FROM TALLY GIVING TALLY-1.

SUBTRACT 2. 68, INTEREST, PENALTY
FROM PRINCIPAL ROUNDED
ON SIZE ERROR GO TO ERROR-HANDLER.

PAGE 221

The UNLOCK Statement

The UNLOCK statement makes available to other programs the most
recently accessed record in a file that was read and locked.

FORMAT

UNLOCK file-name RECORD.

Note: The UNLOCK statement is nonstandard# but provides for
compatibility with existing programs written for
environments that allow multiple programs to concurrently
update a data file. For systems that do not provide this
capability# the UNLOCK statement will not affect execution
except as described below.

The file associated with the file-name must be
mode.

open in the 1-0

If no record in the file is locked# execution of an UNLOCK
statement causes no action to be taken. If a record in the file is
locked (unavailable to other programs)# the last record to be
locked is then made available to any other program upon execution
of the UNLOCK statement.

The current record pointer is not affected by the execution of the
UNLOCK statement. The FILE STATUS data item associated with the
file# if one exists# is updated.

The UNLOCK statement may not be used to unlock records locked by
other programs.

Note: Records that are read and locked are automatically unlocked
by any subsequent operation on that file from the same
program.

PAGE 222

The WRITE Statement (Sequential I/O)

The WRITE statement releases a logical record for an output file.
It can also be used for vertical positioning of lines within a
logical page.

04 ' - 4 '

FORMAT

WRITE record-name CFROM identifier-13

C{BEFORE)- ADVANCING { { identifier-2> CLINE 3>3

{AFTER > C-Cinteger > CLINESD3-

{ PAGE >

Record-name and identifier-1 must not reference the same storage
area.

The record-name is the name of a logical record in the File
Section of the Data Division and may be qualified.

When identifier-2 is used in the ADVANCING phrase# it must be the
name of an elementary integer data item.

Integer or the value of the data item referenced by identifier-2
may be zero.

The associated file must be open in the OUTPUT or EXTEND mode at
the time of the execution of this statement.

The logical record released by the execution of the WRITE
statement is no longer available in the record area.

Upon completion of a WRITE statement# the information in the area
referenced by identifier-1 is available even though the
information in the area referenced by record-name may not be
avai lab le.

The current record pointer is unaffected by the execution of a
WRITE statement.

The execution of the WRITE statement causes the value of the FILE
STATUS data item# if any# associated with the file to be updated.

The maximum record size for a file is established at the time the
file is created and must not subsequently be changed.

PAGE 223

The number of character positions on a mass storage device
required to store a logical record in a file may or may not be
equal to the number of character positions defined by the logical
description of that record in the program.

The execution of the WRITE statement releases a logical record to
the operating system. The contents of the record area are not
changed.

When an attempt is made to u/rite beyond the externally defined
boundaries of a sequential file/ an exception condition exists.
The following action takes place:

The value of the FILE STATUS data item/ if any/ of the
associated file is set to a value indicating a boundary
violation.

If a USE AFTER STANDARD EXCEPTION declarative is explicitly or
implicitly specified for the file/ that declarative procedure
will then be executed.

If a USE AFTER S TANDARD EXCEPTION declarative is not
explicitly or implicitly specified for the file/ the result is
undefined.

The FROM Phrase

The results of the execution of the WRITE statement with the FROM
phrase is equivalent to the execution of the statement

MOVE identifier-1 TO record-name

according to the rules specified for the MOVE statement/ followed
by the same WRITE statement without the FROM phrase.

The contents of the record area prior to the execution of the
implicit MOVE statement have no effect on the execution of this
WRITE statement.

PAGE 224

The ADVANCING Phrase

The ADVANCING phrase allows control of the vertical positioning of
each line on a representation of a printed page. If the ADVANCING
phrase is not used* automatic advancing will be provided by the
compiler to act as if the user had specified AFTER ADVANCING 1
LINE. If the ADVANCING phrase is used* advancing is provided as
follows:

If identifier-2 is specified* the representation of the
printed page is advanced the number of lines equal to the
current value associated with identifier-2.

If integer is specified* the representation of the printed
page is advanced the number of lines equal to the value of
integer.

If the BEFORE phrase is used* the line is presented before the
representation of the printed page is advanced.

If the AFTER phrase is used* the line is presented after the
representation of the printed page is advanced.

If PAGE is specified* the record is presented on the logical
page before or after (depending on the phrase used) the device
is repositioned to the next logical page.

The ADVANCING phrase is valid only if the device-type assigned to
the file is PRINT.

PAGE 225

THE WRITE STATEMENT (Relative and Indexed 1-0)

The WRITE statement releases a logical record for an output or
input-output file.

FORMAT

WRITE record-name CFROM identifier!

C; INVALID KEY i m p e r a t i v e - s ta t e m e n t !

Record-name and identifier must not reference the same storage
area.

The record-name is the name of a logical record in the File
Section of the Data Division and may be qualified.

The INVALID KEY phrase must be specified if an applicable USE
procedure is not specified for the associated file.

The associated file must be open in the OUTPUT or 1-0 mode at the
time of the execution of this statement.

The logical record released by the execution of the WRITE
statement is no longer available in the record area.

The current record pointer is unaffected by the execution of a
WRITE statement.

The execution of the WRITE statement causes the value of the FILE
STATUS data item# if any# associated with the file to be updated.

The maximum record size for a file is established at the time the
file is created and must not subsequently be changed.

The number of character positi
required to store a logical record
equal to the number of character
description of that record in the

ons on a mass storage device
in a file may or may not be

positions defined by the logical
program.

The
the

execution
operating

of the WRITE statement releases a
system.

logical record to

PAGE 226

When a relative file is opened in the output mode/ records may be
placed into the file by one of the following:

If the access mode is sequential/ the WRITE statement will
cause a record to be released to the System. The first record
will have a relative record number of one (1) and subsequent
records released will have relative record numbers of 2/ 3/ 4/
... If the RELATIVE KEY data item has been specified in the
file control entry for the associated file/ the relative
record number of the record just released will be placed into
the RELATIVE KEY data item by the System during execution of
the WRITE statement.

If the access mode is random or dynamic/ prior to the
execution of the WRITE statement the value of the RELATIVE KEY
data item must be initialized in the program with the relative
record number to be associated with the record in the record
area. That record is then released to the System by execution
of the WRITE statement.

When a relative file is opened in the 1-0 mode and the access mode
is random or dynamic/ records are to be inserted in the associated
file. The value of the RELATIVE KEY data item must be initialized
by the program with the relative record number to be associated
with the record . in the record area. Execution of a WRITE
statement then causes the contents of the record area to be
released to the System.

For an indexed file# the data item specified as the prime record
key must be set by the program to the desired value prior to the
execution of the WRITE statement. Records may be placed into the
file by one of the following:

If the access mode is sequential/ records must be released to
the System in ascending order of prime record key values.

If the access mode is random or dynamic/ records may be
released to the System in any program-spec ified order.

The FROM Phrase

The results of the execution of the WRITE statement with the FROM
phrase is equivalent to the execution of the statement:

MOVE identifier-1 TO record-name

according to the rules specified for the MOVE statement/ followed
by the same WRITE statement without the FROM phrase.

PAGE 227

The contents of the record area prior to the execution of the
implicit MOVE statement have no effect on the execution of this
WRITE statement.

The INVALID KEY Phrase

The INVALID KEY condition exists under the following
c ircumstances:

When the access mode is sequential for an indexed file opened
in the output mode» and the value of the prime record key is
not greater than the value of the prime record key of the
previous record» or

When an indexed file is opened in the output or I-Q mode# and
the value of the prime record key is equal to the value of a
prime record key of a record already existing in the file# or

When a relative file has random or dynamic access mode and the
RELATIVE KEY data item specifies a record which already exists
in the file# or

When an attempt is made to write beyond the externally defined
boundaries of the file.

When the INVALID KEY condition is recognized the execution of the
WRITE statement is unsuccessful# the contents of the record area
are unaffected and the FILE STATUS data item# if any# associated
with file-name of the associated file is set to a value indicating
the cause of the condition.

PAGE 228

APPENDIX A

ERROR MESSAGES

PAGE 229

ERROR MESSAGES (Compile Time)

The text of the source program is checked for syntax and semantic
errors as it is scanned. Errors may cause interruption in
scanning. In this case* text is ignored until a recovery point is
found and a resume message is printed. Recovery points are chosen
to minimize the amount of unanalyzed text without producing
irrelevant error messages. In any case the constructs at fault are
undermarked and error messages listed when the source line is
printed. The error message includes either E's or W's indicating
error or warning. For example:

004030 02 STOCK PIC 9<16)PPP COMPUTATIONAL.
$

***** 1)PICTURE * E * E * E * E * E * E *E * E * E *E*E*E*E*E*E*E*E*E*E

indicates a semantic number size error but

005040 02 PART PIC X(4BX<5) SYNC.
* $

***** 1)SYNTAX *E*E*E*E*E*E*E*E* E * E * E * E * E * E * E * E * E * E * E *E
***** 2) SCAN RESUME *W*W*W*W*W*W*W*W* W * W * W * W * W * W * W * W * W

indicates a syntax error at the first undermark and a recovery to
the second undermark.

The number preceding the error message is the undermark number»
counting from left to right. More than one message may refer to
the same undermark.

Global errors such as undefined paragraph names and illegal
control transfers are listed with the program summary at the end
of the source listing.

Compilation always proceeds to the end of the program» regardless
of the number of errors found. Object code is produced such that
an attempt to execute an erroneous statement will terminate
execution with an appropriate error message.

PAGE 230

COMPILER ERROR MESSAGES

ACCESS CLASH
Nonsequential access given for sequential file.

BLANK W HEN ZERO
BLANK WHEN ZERO clause given for nonnumeric or group
i tern.

CLASS
The referenced identifier is not valid in a class
condition.

COPY
COPY statement failed because of permanent error
associated with the undermarked file-name.

CORRESPONDING
The CORRESPONDING phrase cannot be used with the
referenced identifier.

DATA OVERFLOW
The data area (working-storage and literals) is larger
than 65535 bytes in length.

DATA TYPE
Context does not allow data type of the referenced
identifier.

DEVICE CLASH
Random characteristics given to nonrandom device.

DEVICE TYPE
OPEN or CLOSE mode inconsistent with device type.

DOUBLE DECLARATION
Multiple declaration of a file or identifier attribute.

DOUBLE DEFINITION
Multiple definition of an identifier.

DUPLICATE
Warning only. Multiple USE procedure declared for same
function or file.

FILE DECL ERROR
The referenced file-name is SELECTed and has an invalid
or missing file description (FD).

PAGE 231

FILE NAME ERROR
The referenced file-name has an invalid external file
name declaration.

FILE NAME REQUIRED
File name not given as reference in I/O verb.

FILE RECORD KEY ERROR
The referenced file-name has a RECORD KEY which is
incorrectly qualified or is not defined as a data item
of the category alphanumeric within a record description
entry associated with that file name.

FILE RECORD SIZE ERROR
The referenced file-name has a declared record size
which conflicts with the actual data record descriptions
or is a relative organization file with variable length
records.

FILE RELATIVE KEY ERROR
The referenced file-name has a RELATIVE KEY which is
incorrectly qualified* is defined in a record
description associated with that file-name* or is not
defined as an unsigned integer.

FILE STATUS ERROR
The referenced file-name has a status item which is
incorrectly qualified* is not defined in the
WORKING-STORAGE SECTION* or is not a two-character
alphanumeric item.

FILE TYPE
Access or organization of file conflicts with
undermarked statement.

FILLER LEVEL
A nonelementary FILLER item is declared.

GROUP CLASH
USAGE or VALUE clause of group member conflicts with
same clause for group.

GROUP VALUE CLASH
Warning only. An item subordinate to a group with the
VALUE IS clause is described with the SYNCHRONIZED*
JUSTIFIED* or USAGE (other than USAGE IS DISPLAY)
c lause.

IDENTIFIER
Identifier reference is incorrectly constructed or the
identifier has an invalid or double definition.

PAGE 232

ILLEGAL ALTER
An ALTER statement references an unalterable paragraph
or violates the rules of segmentation.

ILLEGAL PERFORM
A PERFORM statement references undefined or incorrectly
qualified paragraph or the reference violates the rules
of segmentation.

INVALID ID
The referenced identifier was not successfully defined.

INVALID PARAGRAPH
Context does not allow section name.

JUSTIFY
JUSTIFY clause given in conflict with other attributes.

KEY REQUIRED
Relative key not declared for random access relative
file or record key not declared for indexed file.

LABEL
Presence or absence of label record conflicts with
device standards.

LEVEL
Level-number given is invalid either intrinsically or
because of position within a group.

LINKAGE
An identifier in the USING clause of the PROCEDURE title
is not a linkage item or a statement references a
linkage item not subordinate to an identifier in the
USING clause of the PROCEDURE title.

LITERAL VALUE
Literal value given is incorrect in context.

MOVE
Operands of MOVE verb specify an invalid move.

MUST BE INTEGER
Context requires decimal integer.

MUST BE PROCEDURE
Context requires procedure name either as reference or
definition# or the reference must be a nondeclarative
procedure-name.

MUST BE SECTION
Context requires procedure-name to be section.

PAGE 233

NESTING
Illegal nesting of condition that is not an IF
condition.

NOT IN REDEFINE
VALUE IS clause given in REDEFINES item.

OCCURS
Occurs clause given at invalid level or after three have
been given for the same item.

OCCURS DEPENDING ERROR
The referenced object of a DEPENDING phrase has not been
defined correctly.

O CCURS-VALUE CLASH
VALUE IS and OCCURS in effect for the same item.

PICTURE
Invalid picture syntax.

PICTURE-BWZ CLASH
Zero suppression and BLANK WHEN ZERO cannot be in effect
for the same item.

PICTURE-USAGE CLASH
USAGE clause or implied usage conflicts with usage
implied by picture.

PROCEDURE INDEPENDENCE
PERFORM given for procedures in independent segments not
in the current segment.

PROGRAM OVERFLOW
The instruction area is larger than 32767 bytes in
length.

RECORD KEY
Record key declared for other than an indexed
organization file or a START statement KEY phrase
references a data item not aligned on the declared key's
leftmost byte.

RECORD REQUIRED
Context requires record name.

REDEFINES
REDEFINES given within an OCCURS or not redefining the
last allocated item.

PAGE 234

REDEFINES ERROR
The referenced data-name redefines an item which does
not have the same number of character positions and is
not level 01.

REFERENCE INVALID
Reference given is not valid in context.

RELATION
Operands of relation test are incompatible.

RELATIVE KEY
Relative key declared for other than a relative
organization file or a START statement KEY phrase
references a data item other than the declared key.

RESERVED WORD CONFLICT
A COBOL reserved word
word is required. In
about an ANSI COBOL
implemented COBOL res

or symbol
the summar
reserved

erved word.

is g
y th
wor

iven wher
is is only
d that i

e
a

s

a user
warning
not an

SCAN RESUME
Warning only. Scanning was terminated at previous error
message and resumes at undermarked character.

SECTION CLASH
A VALUE IS clause appears in the FILE or LINKAGE
sect i on.

SEGMENT
Warning only. Segment number given in an independent
segment is not the same as the current segment or the
number of a new independent segment.

SEPARATOR
Warning only. Redundant punctuation or a separator is
not followed by the required space.

SIGN
SIGN clause given in conflict with usage and picture.

SIZE
Warning only. Size of data referenced not correct for
c onte x t.

SIZE ERROR
Declared size of record conflicts with present
reference.

PAGE 235

SUBSCRIPT
Incorrect number of subscripts or indices for a
reference.

SYNC
Synchronized clause given for a group item.

SYNTAX
Incorrect character or reserved word given for context.

UNDEFINED
File referenced in FD entry was not defined.

UNDEFINED DECLARATIVE PROCEDURE
A declarative statement references a procedure not
defined within the DECLARATIVES.

UNDEFINED PROCEDURE
A GO TO statement references an undefined or incorrectly
qualified paragraph.

USE REQUIRED
A DECLARATIVES section must begin with a USE statement.

USING COUNT
Warning only. The item count in the USING list of a CALL
statement is different from that of the first reference
to the same program name.

VALUE ERROR
Value given in VALUE IS required truncation of nonzero

VALUE

d ig i ts.

VALUE IS clause given in conflict with other declared
attributes.

VARIABLE RECORD
Warning only. The INTO phrase is not allowed with
variable size records.

PAGE 236

APPENDIX B

RESERVED WORDS

PAGE 237

RESERVED WORD LIST

The following is a list of RM/COBOL reserved words where:

* denotes reserved words not reserved in ANSI standard COBOL

+ denotes ANSI COBOL reserved words not reserved by the
compiler. Their appearance will generate a warning at the end
of the compilation listing.

♦♦ denotes system-name.

ACCEPT
ACCESS
ADD
ADVANCING
AFTER
ALL

♦BEEP
BEFORE
BLANK

CALL
♦CANCEL
♦CD
+CF
+CH
CHARACTER
CHARACTERS

+CLOCK-UNITS
CLOSE

+COBQL
♦CODE

DATA
DATE

♦DATE-COMPILED
DATE-WRITTEN
DAY

+DE
♦DEBUG-CONTENTS
♦DEBUG-ITEM
+DEBUG-LINE
+DEBUG-NAME

ALPHABETIC
+ALSO
ALTER
ALTERNATE
AND
ARE

♦BLINK
BLOCK

+BOTTOM

+CODE-SET
COLLATING

+COLUMN
COMMA

+COMMUNICATION
COMP

♦COMP-1
♦COMP-3
COMPUTATIONAL

♦COMPUT A T I O N A L - 1
♦COMPUT ATIONAL-3

+DEBUG-SUB-1
+DEBUG-SUB-2
+DEBUG-SUB-3
♦DEBUGGING
DECIMAL-POINT
DECLARATIVES
DELETE

♦DELIMITED
♦DELIMITER
DEPENDING

AREA
♦AREAS
♦ASCENDING
ASSIGN
AT
AUTHOR

BY

COMPUTE
CONFIGURATION
CONTAINS

♦CONTROL
♦CONTROLS
♦CONVERT
COPY
CORR
CORRESPONDING

♦COUNT
CURRENCY

♦DESCENDING
♦DESTINATION
♦DETAIL
♦DISABLE
DISPLAY
DIVIDE
DIVISION
DOWN
DUPLICATES
DYNAMIC

PAGE 238

»ECHO
♦EG I
ELSE

♦EMI
♦ENABLE
END

FD
FILE
FILE-CONTROL

+GENERATE
GIVING

♦HEADING
»HIGH

1-0
I-O-CONTROL
IDENTIFICATION
IF
IN
INDEX

JUST

KEY

LABEL
♦LAST
LEADING
LEFT

♦LENGTH
LESS

MEMORY
♦MERGE
♦MESSAGE

NATIVE
♦NEGATIVE
NEXT

+END-OF-PAGE
♦ENTER
ENVIRONMENT

+EOP
EQUAL

»ERASE

FILLER
♦FINAL
FIRST

GO
GREATER

HIGH-VALUE
HIGH-VALUES

INDEXED
♦INDICATE
INITIAL

♦INITIATE
INPUT
INPUT-OUTPUT

JUSTIFIED

♦LIMIT
♦LIMITS
♦LINAGE
♦LINAGE-COUNTER
LINE

♦LINE-COUNTER

MODE
MODULES
MOVE

NO
NOT

♦NUMBER

ERROR
♦ESI
♦EVERY
EXCEPTION
EXIT
EXTEND

♦FOOTING
FOR
FROM

♦GROUP

INSPECT
INSTALLATION
INTO
INVALID
IS

LINES
LINKAGE
LOCK
LOW
LOW-VALUE
LOW-VALUES

♦MULTIPLE
MULTIPLY

NUMERIC

PAGE 239

OBJECT-COMPUTER
OCCURS
OF
OFF

PAGE
♦PAGE-COUNTER
PERFORM
♦PF
♦PH
PIC
PICTURE

+QUEUE

RANDOM
+RD
READ

♦RECEIVE
RECORD
RECORDS
REDEFINES
REEL

♦REFERENCES
RELATIVE

♦RELEASE

SAME
+SD
♦SEARCH
SECTION
SECURITY

♦SEGMENT
♦SEGMENT-LIMIT
SELECT

♦SEND
SENTENCE
SEPARATE
SEQUENCE
SEQUENTIAL
SET
SIGN

OMITTED
ON
OPEN

♦OPTIONAL

♦PLUS
♦POINTER
POSITION

♦POSITIVE
«■PRINT
♦PRINTING
PROCEDURE

QUOTE

♦REMAINDER
♦REMOVAL
RENAMES
REPLACING

♦REPORT
♦REPORTING
♦REPORTS
♦RERUN
♦RESERVE
♦RESET
♦RETURN

SIZE
♦SORT
♦SORT-MERGE
♦SOURCE
SOURCE-COMPUTER
SPACE
SPACES
SPECIAL-NAMES
STANDARD
S T A N D A R D - 1
START
STATUS
STOP

♦STRING
♦ S U B - Q U E U E - 1

OR
ORGANIZATION
OUTPUT

♦OVERFLOW

♦PROCEDURES
PROCEED
PROGRAM
PROGRAM-ID

«PROMPT

QUOTES

«REVERSE
♦REVERSED
REWIND
REWRITE

+RF
+RH
RIGHT
ROUNDED
RUN

+SUB-QUEUE-2
+SUB-QUEUE-3
SUBTRACT

♦SUM
♦SUPPRESS

««SWITCH-1
««SWITCH-2

««SWITCH-8
♦SYMBOLIC
SYNC
SYNCHRONIZED

PAGE 240

•»•TAB ♦TEXT TO
♦TABLE THAN ♦TOP
TALLYING THROUGH TRAILING

+TAPE THRU ♦TYPE
♦TERMINAL TIME
♦TERMINATE TIMES

UNIT UNTIL USAGE
•»UNLOCK UP USE
♦UNSTRING ♦UPON USING

VALUE VALUES VARYING

WHEN WORDS WRITE
WITH WORKING-STORAGE

ZERO ZEROES ZEROS

+ > *
- < /
= * *

PAGE 241

APPENDIX C

GLOSSARY

PAGE 242

GLOSSARY

The terms in this appendix are defined in accordance with their
meaning as used in this document describing COBOL and may not have
the same meaning for other languages.

These definitions are also intended to be either reference
material or introductory material to be reviewed prior to reading
the detailed language specifications. For this reason# these
definitions are, in most instances# brief and do not include
detailed syntactical rules.

Access Mode:
The manner in which records are to be operated upon within a file.

Actual Decimal Point:
The physical representation# using either of the decimal point
characters period (.) or comma C#)# of the decimal point position
in a data item.

A1p hab e t - N a m e :
A user-defined word# in the SPECIAL-NAMES paragraph of the
Environment Division# that assigns a name to a specific character
set and/or collating sequence.

Alphabetic Character:
A character that belongs to the following set of letters: A# B# C#
D# E, F# G, H, I# J, K# L# M, N# 0# P, Q# R# S, T# U# V# W# X, Y#
Z# and the space.

Alphanumeric Character:
Any character in the computer's character set.

Alternate Record Key:
A key# other than the prime record key# whose contents identify a
record within an indexed file.

Arithmetic Expression:
An arithmetic expression can be an identifier or a numeric
elementary item# a numeric literal# such identifiers and literals
separated by arithmetic operators# two arithmetic expressions
separated by an arithmetic operator# or an arithmetic expression
enclosed in parentheses.

PAGE 243

Arithmetic Operator:
A single character that belongs to the following set:

Character Meaning

addition
subtraction
multiplication
division

Ascending Key:
A key upon the values of which data is ordered starting with the
lowest value of key up to the highest value of key in accordance
with the rules for comparing data items.

*
/

Assumed Decimal Point:
A decimal point position which does not involve the existence of
an actual character in a data item. The assumed decimal point has
logical meaning but no physical representation.

At End Condition:
A condition caused during the execution of a READ statement for a
sequentially accessed file.

Block:
A physical unit of data that is normally composed of one or more
logical records. For mass storage files* a block may contain a
portion of a logical record. The size of a block has no direct
relationship to the size of the file within which the block is
contained or to the size of the logical record(s) that are either
continued within the block or that overlap the block. The term is
synonymous with physical record.

Called Program:
A program which is the object of a CALL statement combined at
object time with the calling program to produce a run unit.

Calling Program:
A program which executes a CALL to another program.

C h a r a c t e r :
The basic indivisible unit of the language.

PAGE 244

Character Position:
A character position is the amount of physical storage required to
store a single standard data format character described as USAGE
is DISPLAY (one byte).

C h a r a c t e r - S t r i n g :
A sequence of contiguous characters which form a COBOL word; a
literal, a PICTURE character-string, or a comment-entry.

Class Condition:
The proposition, for which a truth value can be determined, that
the content of an item is wholly alphabetic or is wholly numeric.

Clause:
A clause is an ordered set of consecutive COBOL character-strings
whose purpose is to specify an attribute of an entry.

COBOL Character Set:
The complete COBOL character set consists of the 51 characters
listed below.

Character Meaning

0, 1, . . . , 9
A, B, . . . , Z

+

/

*

(
>
>
<

digit
letter
space (blank)
plus sign
minus sign (hyphen)
asterisk
stroke (virgule, slash)
equal sign
currency sign
comma (decimal point)
semicolon
period (decimal point)
quotation mark
left parenthesis
right parenthesis
greater than symbol
less than symbol

COBOL Word. (See Word)

Collating Sequence:
The sequence in which the characters that are acceptable in a
computer are ordered for purposes of comparing.

PAGE 245

Col uflin:
A character position within a print line. The columns are numbered
from 1# by 1/ starting at the leftmost character position of the
print line and extending to the rightmost position of the print
1 ine.

Combined Condition:
A condition that is the result of connecting two or more
conditions with the 'AND' or the 'OR' logical operator.

C o m m e n t - E n t r y :
An entry in the Identification Division that may be any
combination of characters from the computer character set.

Comment Line:
A source program line represented by an asterisk in the indicator
area of the line and any characters from the computer's character
set in area A and area B of that line. The comment line serves
only for documentation in a program. A special form of comment
line represented by a stroke (/) in the indicator area of the line
and any characters from the computer's character set in area A and
area B of that line causes page ejection prior to printing the
c ommen t.

Comp i 1e - T i m e :
The time at which a COBOL source program is translated/ by a COBOL
compiler, to a COBOL object program.

Compiler Directing Statement:
A statement, beginning with a compiler directing verb, that causes
the compiler to take a specific action during compilation.

Complex Condition:
A condition in which one or more logical operators act upon one or
more conditions.

Comp u t e r - N a m e :
A system-name that identifies the computer upon which the program
is to be compiled or run (commentary only).

PAGE 246

Cond i ti on:
A status of a program at execution time for which a truth value
can be determined. Where the term 'condition' (condition-1#
condition-2# ...) appears in these language specifications in or
in reference to 'condition' (condition-1# condition-2# ...) of a
general format# it is a conditional expression consisting of a
simple condition# optionally parenthesized# consisting of the
syntactically correct combination of simple conditions# logical
operators# and parentheses# for which a truth value can be
determined.

Condition-Name:
A user-defined word assigned to a specific value# set of values#
or range of values# within the complete set of values that a
conditional variable may possess# or the user-defined word
assigned to a status of a system software switch.

Condition-Name Condition:
The proposition# for which a truth value can be determined# that
the value of a conditional variable is a member of the set of
values attributed to a condition-name associated with the
conditional variable.

Conditional Expression:
A simple condition or a complex condition specified in an IF or
PERFORM statement.

Conditional Statement:
A conditional statement specifies that the truth value of a
condition is to be determined and that the subsequent action of
the object program is dependent on this truth value.

Conditional Variable:
A data item one or more values of which has a condition name
assigned to it.

Configuration Section:
A section of the Environment Division that describes overall
specifications of source and object computers.

PAGE 247

C o n n e c t i v e :
A reserved u/ord that is used to:

Associate a data-name/ paragraph-name or condition-name with
its qualifier.

Link two or more operands written in a series.

Form conditions (logical connectives).

Contiguous Items:
Items that are described by consecutive entries in the Data
Division# and that bear a definite hierarchic relationship to each
other.

Counter:
A data item used for storing numbers or number representations in
a manner that permits these numbers to be increased or decreased
by the value of another number/ or to be changed or reset to zero
or to an arbitrary positive or negative value.

Currency Sign:
The character of the COBOL character set.

Currency Symbol:
The character defined by the CURRENCY SION clause in the
SPECIAL-NAMES paragraph. If no CURRENCY SIGN clause is present in
a COBOL source program/ the currency symbol is identical to the
currency sign.

Current Record:
The record which is available in the record area associated with
the file.

Current Record Pointer:
A conceptual entity that is used in the selection of the next
r e c o r d .

Data Clause:
A clause that appears in a data description entry in the Data
Division and provides information describing a particular
attribute of a data item.

PAGE 248

Data Description Entry:
An entry in the Data Description that is composed of a
level— number followed by a data-name/ if required/ and then
followed by a set of data clauses/ as required.

Data Item:
A character or a set of contiguous characters (excluding in either
case literals) defined as a unit of data by the COBOL program.

D a t a - N a m e :
A user-defined word that names a data item described in a data
description entry in the Data Division. When used in the general
formats/ 'data-name' represents a word which can neither be
subscripted/ indexed/ nor qualified unless specifically permitted
by the rules for that format.

Debugging Line:
A debugging line is any line with 'D' in the indicator area of the
line.

Declarat ives:
A set of one or more special purpose sections/ written at the
beginning of the Procedure Division/ the first of which is
preceded by the key word DECLARATIVES and the last of which is
followed by the key words END DECLARATIVES. A declarative is
composed of a section header/ followed by a USE compiler directing
sentence/ followed by a set of zero/ one or more associated
paragrap h s.

Declarat ive-Sentenc e :
A compiler-directing sentence consisting of a single USE statement
terminated by the separator period.

D e l i m i t e r :
A character or a sequence of contiguous characters that identify
the end of a string of characters and separates that string of
characters from the following string of characters. A delimiter is
not part of the string of characters that it delimits.

Digit Position:
A digit position is the amount of physical storage required to
store a single digit. This amount may vary depending on the usage
of the data item describing the digit position.

PAGE 249

Division:
A set of zero# one or more sections of paragraphs* called the
division body* that are formed and combined in accordance with a
specific set of rules. There are four (4) divisions in a COBOL
program: Identification* Environment* Data* and Procedure.

Division Header:
A combination of words followed by a period and a space that
indicates the beginning of a division. The division headers are:

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
DATA DIVISION.
PROCEDURE DIVISION [USING data-name-1 Cdata-name-23. . . 3.

Dynamic Access:
An access mode in which specifi
from or placed into a mass storag
(see Random Access) and obtained
manner (see Sequential Access)*
statement.

c logical r
e file in a
from a f

during the

ec ord
non

i 1 e
scope

s can be obtained
sequential manner
in a sequential
of the same OPEN

Editing Character:
A single character or fixed two-character combination belonging to
the following set:

Charac ter Meaning

B space
0 zero
+ plus
- minus
CR credit
DB debit
Z zero suppress
* check protect
* currency sign
i comma (decimal p

period (decimal
/ stroke (virgule*

Elementary Item:
A data item that is described as not being further logically
subd ivided.

End of Procedure Division:
The physical position in a COBOL source program after which no
further procedures appear.

PAGE 250

E n t r y :
Any descriptive set of consecutive clauses terminated by a period
and written in the Identification Division/ Environment Division*
or Data Division of a COBOL source program.

Environment Clause:
A clause that appears as part of an Environment Division entry.

Execution Time. (See Object Time)

Extend Mode:
The state of a file after execution of an OPEN statement* with the
EXTEND phrase specified* for that file and before the execution of
a CLOSE statement for that file.

Figurative Constant:
A compiler generated value referenced through the use of certain
reserved words.

File:
A collection of records.

File Clause:
A clause that appears as part of the file description (FD) entries
in the Data Division.

FILE-CONTROL:
The name of an Environment Division paragraph in which the data
files for a given source program are declared.

File Description Entry:
An entry in the File Section of the Data Division that is composed
of the level indicator FD* followed by a file-name* and then
followed by a set of file clauses as required.

File-Name:
A user-defined word that names a file described in a file
description entry within the File Section of the Data Division.

File Organization:
The permanent logical file structure established at the time that
a file is created.

PAGE 251

File Section:
The section of the Data Division that contains file description
entries together with their associated record descriptions.

F o r m a t :
A specific arrangement of a set of data.

Group Item:
A named contiguous set of elementary or group items.

I-Q-CQNTROL:
The name of an Environment Division paragraph in which sharing of
same areas by several data files is specified.

1-0-Mode:
The state of a file after execution of an OPEN statement, with the
1-0 phrase specified, for that file and before the execution of a
CLOSE statement for that file.

Id ent i f i e r :
A data-name, followed as required, by the syntactical ly correct
combination of qualifiers, subscripts, and indices necessary to
make unique reference to a data item.

Imperative Statement:
A statement that begins with an imperative verb and specifies an
unconditional action to be taken. An imperative statement may
consist of a sequence of imperative statements.

Index:
A data item, the contents of which represent the identification of
a particular element in a table.

Index Data Item:
A data item in which the value associated with an index-name can
be stored.

Index-Name:
A user-defined word that names an index associated with a specific
table.

PAGE 252

Indexed Data-Name:
An identifier that is composed of a data-name» followed by one or
more index-names enclosed in parentheses.

Indexed File:
A file with indexed organization.

Indexed O r g a n i z a t i o n :
The permanent logical file structure in which each record is
identified by the value of one fixed length key within that
record.

Input File:
A file that is opened in the input mode.

Input Mode:
The state of a file after execution of an OPEN statement/ with the
INPUT phrase specified/ for that file and before the execution of
a CLOSE statement for that file.

Input-Output File:
A file that is opened in the 1-0 mode.

Input-Output Section:
The section of the Environment Division that names the files and
the external media required by an object program and which
provides information required for transmission and handling of
data during execution of the object program.

Integer:
A numeric literal or a numeric data item that does not include any
character positions to the right of the assumed decimal point.
Where the term 'integer' appears in general formats/ integer must
not be a numeric data item/ and must not be signed/ nor zero/
unless explicitly allowed by the rules of that format.

Invalid Key Condition:
A condition/ at object time/ caused when a specific value of the
key associated with an indexed or relative file is determined to
be invalid.

K e y :
A data item which identifies the location of a record.

PAGE 253

Key Word:
A reserved word whose presence is required when the format in
which the word appears is used in a source program.

Level Indicator:
Two alphabetic characters that identify a specific type of file or
a position in hierarchy.

Level-Number:
A user-defined word which indicates the position of a data item in
the hierarchical structure of a logical record or which indicates
special properties of a data description entry. A level-number is
expressed as a one- or two-digit number. Level-numbers in the
range 1 through 49 indicate the position of a data item in the
hierarchical structure of a logical record. Level-numbers in the
range 1 through 9 may be written either as a single digit or as a
zero followed by a significant digit. Level-numbers 77 and 88
identify special properties of a data description entry.

Li brary-Name:
A user-defined word that names a COBOL library that is to be used
by the compiler for a given source program compilation.

Linkage Section:
The section in the Data Division of the called program that
describes the data items available from the calling program. These
data items may be referred to by both the calling and called
pr ogram.

L i t e r a l :
A character-string whose value is implied by the ordered set of
characters comprising the string.

Logical Operator:
One of the reserved words AND# OR# or NOT. In the formation of a
condition# both or neither of AND and OR can be used as logical
connectives. NOT can be used for logical negation.

Mass Storage:
A storage medium on which data may be organized and maintained in
both a sequential and nonsequential manner.

PAGE 254

Mass Storage File:
A collection of records that is assigned to a mass storage medium.

Mnemoni c-Name:
A user-defined word that is associated in the Environment Division
with a specified system-name.

Native Character Set:
The character set associated with the COBOL Compiler (ASCII).

Native Collating Sequence:
The collating sequence associated with the native character set.

Negated Combined Condition:
The ' N O T 7 logical operator immediately followed by a parenthesized
combined condition.

Negated Simple Condition:
The 'NOT' logical operator immediately followed by a simple
condition.

Next Executable Sentence:
The next sentence to which control will be transferred after
execution of the current statement is complete.

Next Executable Statement:
The next statement to which control will be transferred after
execution of the current statement is complete.

Next Record:
The record which logically follows the current record of a file.

Noncontiguous Items:
Elementary data items* in the Working-Storage and Linkage
Sections* which bear no hierarchic relationship to other data
items.

Nonnumeric Item:
A data item whose description permits its contents to be composed
of any combination of characters taken from the computer's
character set. Certain categories of nonnumeric items may be
formed from more restricted character sets.

PAGE 255

Nonnumeric Literal:
A character-string bounded by quotation marks. The string of
characters may include any character in the computer's character
set. To represent a single quotation mark character within a
nonnumeric literal* two contiguous quotation marks must be used.

Numeric Character:
A character that belongs to the following set of digits: 0* 1* 2*
3* 4, 5, 6, 7* 8* 9.

Numeric Item:
A data item whose description restricts its contents to a value
represented by characters chosen from the digits 'O' through '9';
if signed* the item may also contain a '+'* '-'* or other
representation of an operational sign.

Numeric Literal:
A literal composed of one or more numeric characters that also may
contain either a decimal point* or an algebraic sign* or both. The
decimal point must not be the rightmost character. The algebraic
sign* if present* must be the leftmost character.

O B J E C T - C O M P U T E R :
The name of an Environment Division paragraph in which the
computer environment* within which the object program is executed*
is described.

Object of Entry:
A set of operands and reserved words* within a Data Division
entry* that immediately follows the subject of the entry.

Object Program:
A set or group of executable instructions and other material
designed to interact with data to provide problem solutions. In
this context* an object program is generally the result of the
operation of a COBOL compiler on a source program. Where there is
no danger of ambiguity* the word 'program' alone may be used in
place of the phrase 'object program'.

Object Time:
The time at which an object program is executed.

PAGE 256

Op
Th
f i
Th
e i

en
e
1 e
e
th

Mode:
state of a file after
and before the executi
particular open mode

er INPUT, OUTPUT, I-O,

execution of an OPEN statement for
on of a CLOSE statement for that f

is specified in the OPEN statemen
or EXTEND.

that
i 1 e.
t as

Occurrence Number:
The relative data item number in a table.

O p e r a n d :
Whereas the general definition of operand
is operated upon', for the purposes of
lowercase word (or words) that appears
format may be considered to be an operand
implied reference to the data indicated by

Operational Sign:
An algebraic sign, associated with a
numeric literal, to indicate whether its
negative.

s 'that c omponent which
th is pub 1 ication, any
in a statement or entry
and , as such, iL s an
the operand.

numer i c data item or a
value is pos itive or

Optional Word:
A reserved word that is included in
improve the readability of the language
optional to the user when the format in
used in a source program.

a specific format only
and whose presence

which the word appears

to
i s
i s

Output File:
A file that is opened in either the output mode or extend mode.

Output Mode:
The state of a file after execution of an OPEN statement, with the
OUTPUT or EXTEND phrase specified, for that file and before the
execution of a CLOSE statement for that file.

P a r a g r a p h :
In the Procedure Division, a paragraph-name
and a space and by zero, one, or more
Identification and Environment Divisions,
followed by zero, one, or more entries.

followed by a period
sentences. In the

a paragraph header

PAGE 257

Paragraph Header:
A reserved word/ followed by a period and a space that indicates
the beginning of a paragraph in the Identification and Environment
Divisions. The permissible paragraph headers are:

In the Identification Division:

PROGRAM-ID.
AUTHOR.
INSTALLATION.
DATE-WRITTEN.
SECURITY.

In the Environment Division:

SOURCE-COMPUTER.
OBJECT-COMPUTER.
SPECIAL-NAMES.
FILE-CONTROL.
I-0— CONTROL.

Paragraph-Name:
A user-defined word that identifies and begins a paragraph in the
Procedure Division.

Phrase:
A phrase is an ordered set of one or more consecutive COBOL
character-strings that form a portion of a COBOL procedural
statement or of a COBOL clause.

Physical Record. (See Block)

Prime Record Key:
A key whose contents
file.

uniquely identify a record within an indexed

Procedure:
A paragraph or group of logically successive paragraphs/ or a
section or group of logically successive sections/ within the
Procedure Division.

Procedure-Name:
A usei— defined word which is used to name a paragraph or section
in the Procedure Division. It consists of a paragraph-name (which
may be qualified)/ or a section-name.

PAGE 258

Program-Name:
A user-defined word that identifies a COBOL source program.

Punctuation Character:
A character that belongs to the following set:

Character Meaning

<
>

c omma
semicolon
period
quotation mark
left parenthesis
right parenthesis
space
equal sign

Qualified Data-Name:
An identifier that is composed of a data-name followed by one or
more sets of either of the connectives OF and IN followed by a
data-name qualifier.

Q u a l i f i e r :
A data-name which is used in a reference together with another
data name at a lower level in the same hierarchy. A section-name
which is used in a reference together with a paragraph-name
specified in that section.

Random Access:
An access mode in which the program-specified value of a key data
item identifies the logical record that is obtained from* deleted
from/ or placed into a relative or indexed file.

Record Area:
A storage area allocated for the purpose of processing the record
described in a record description entry in the File Section.

Record Description. (See Record Description Entry)

Record Description Entry:
The total set of data description entries associated with a
particular record.

PAGE 259

Record Key:
The prime record key whose contents uniquely identify a record
within an indexed file.

Rec o r d - N a m e :
A user-defined word that names a record described in a record
description entry in the Data Division.

Reference Format:
A format that provides a standard method for describing COBOL
source programs.

Relation. (See Relational Operator)

Relation Character:
A character that belongs to the following set:

Relation Condition:
The p r o p o s i t i o n for which a truth value can be determined# that
the value of a data item has a specific relationship to the value
of another data item. (See Relational Operator)

Character Meaning

>
<

greater than
less than
equal to

PAGE 260

Relational Operator:
A reserved uiord# a relation character# a group of consecutive
reserved words# or a group of consecutive reserved words and
relation characters used in the construction of a relation
condition. The permissible operators and their meanings are:

Relational Operator Meaning

IS [NOT3 GREATER THAN
IS CNOT3 >

Greater than or not
greater than

IS CNOT3 LESS THAN
IS [NOTH <

Less than or not
less than

IS CNOT3 EQUAL TO
IS CNOT3 *

Equal to or not
equal to

Relative File:
A file with relative organization.

Relative Key:
A key whose contents identifies a
file.

logical record in a relative

Relative O r g a n i z a t i o n :
The permanent logical file structure in which each record is
uniquely identified by an integer value greater than zero# which
specifies the record's logical ordinal position in the file.

Reserved Word:
A COBOL word specified in the list of words which may be used in
COBOL source programs# but which must not appear in the programs
as user-defined words or system-names.

Run Unit:
A set of one or more object programs which function at object
time# as a unit to provide problem solutions.

Section:
A set of zero# one# or more paragraphs or entries# called a
section body# the first of which is preceded by a section header.
Each section consists of the section header and the related
section body.

PAGE 261

Section Header:
A combination of words followed by a period and a space that
indicates the beginning of a section in the Environment/ Data and
Procedure Division.

In the Environment and Data Divisions/ a section header is
composed of reserved words followed by a period and a space. The
permissible section headers are:

In the Environment Division:

CONFIGURATION SECTION.
INPUT-OUTPUT SECTION.

In the Data Division:

FILE SECTION.
W ORKING-STORAGE SECTION.
LINKAGE SECTION.

In the Procedure Division/ a section header is composed of a
section-name/ followed by the reserved word SECTION/ followed by a
segment-number (optional)/ followed by a period and a space.

Section-Name:
A user-defined word which names a section in the Procedure
Division.

S e g m e n t - N u m b e r :
A user-defined word which classifies sections in the Procedure
Division for purposes of segmentation. Segment-numbers may contain
only the characters 'O'/ '1'/...# '9'. A segment-number may be
expressed either as a one- or two-digit number.

S e n t e n c e :
A sequence of one or more statements/ the last of which is
terminated by a period followed by a space.

Separator:
A punctuation character used to delimit character-strings.

Sequential Access:
An access mode in which logical records
placed into a file in a consecutive
logical record sequence determined by the
file.

are obtained from or
predecessor-to-successor
order of records in the

PAGE 262

Sequential File:
A File with sequential organization.

Sequential Organization:
The permanent logical file structure in which a
identified by a predecessor-successor relationship
when the record is placed into the file.

record is
e s t a b 1 i shed

Simple Condition:
Any single condition chosen from the set:

relation condition
class condition
condition-name condition
switch-status condition
(sim p l e - c o n d it i o n)

SOURCE-COMPUTER:
The name of an Environment Division paragraph in which the
computer environment/ within which the source program is compiled/
is described.

Source Program:
A syntactically correct set of COBOL statements beginning with an
Identification Division and ending with the end of the Procedure
Division. In contexts where there is no danger of ambiguity/ the
word ' p r o g r a m 7 alone may be used in place of the phrase 'source
program. '

PAGE 263

Special Character:
A character that belongs to the following set

Character Meaning

+ plus sign
— minus sign
* asteri sk
/ stroke (virgule# slash
= equal sign
$ currency sign
9 comma (decimal point)
9 semicolon
. period (decimal point)
II quotation mark
(left parenthesis
) right parenthesis
> greater than symbol
< less than symbol

Special-Character Word:
A reserved word which is an arithmetic operator
character.

a relation

SPECIAL-NAMES:
The name of an Environment Division paragraph in
switch-names are related to user-defined words.

which

Standard Data Format:
The concept used in describing the charac
COBOL Data Division under the characteris
data are expressed in a form oriented
data on a printed page of infinite length
a form oriented to the manner in whi
internally in the computer« or on a parti

ter ist ics of data in a
tics or proper ties of the
to the appearance of the
and br eadth* rath er than

ch the data i s stored
cular e xternal med ium .

Statement:
A syntactically valid combination of words and symbols written in
the Procedure Division beginning with a verb.

Subject of Entry:
An operand or reserved word that appears
level indicator or the level-number in a

immediately following
Data Division entry.

the

Subprogram. (See Called Program)

PAGE 264

Subscript:
An integer whose value identifies a particular element in a table.

Subscripted Data-Name:
An identifier that is composed of a data-name followed by one or
more subscripts enclosed in parentheses.

Switch-Status Condition:
The proposition# for which a truth value can be determined that a
switch# capable of being set to an ' o n 7 or " o f f 7 status# has been
set to a specific status.

System-Name:
A COBOL word which is used to communicate with the operating
environment.

Table:
A set of logically consecutive items of data that are defined in
the Data Division by means of the OCCURS clause.

Table Element:
A data item that belongs to the set of repeated items comprising a
table.

Text-Name:
A file access name that identifies library text.

Truth Value:
The representation of the result of the evaluation of a condition
in terms of one of two values:

true
false

Unary Operator:
A plus (+) or a minus (—) sign# which precedes a variable or a
left parenthesis in an arithmetic expression and which has the
effect of multiplying the expression by +1 or -1 respectively.

User-Defined Word:
A COBOL word that must be supplied by the user to satisfy the
format of a clause or statement.

PAGE 265

Variable:
A data item whose value may be changed by execution of the object
program. A variable used in an arithmetic expression must be a
numeric elementary item.

V e r b :
A word that expresses an action to be taken by a COBOL compiler or
object program.

W o r d :
A character-string of not more than 30 characters which forms a
user-defined word« a system-name, or a reserved word.

Working-Storage Section:
The section of the Data Division that describes working storage
data items. composed either of noncontiguous items or of working
storage records or of both.

7 7 - L e v e l - D e s c r i p t i o n - E n t r y :
A data desccription entry that describes a noncontiguous data item
with the level-number 77.

PAGE 266

APPENDIX D

COMPOSITE LANGUAGE SKELETON

PAGE 267

COMPOSITE LANGUAGE SKELETON

This section contains the composite language skeleton of the
American National Standard COBOL. It is intended to display
complete and syntactically correct formats.

For the general formats of the
is equivalent to margin A
indentation after the leftmost
a COBOL source program.

four divisions the leftmost margin
in a COBOL source program. The first
margin is equivalent to margin B in

For the general formats of the
margin indicates the beginning
The first indentation aft
continuation of the format of

verbs and conditi
of the format for

er the leftmost
the COBOL verb.

ons the leftmost
a new COBOL verb,
margin indicates

The following is a summary of the formats shown on the following
pages:

- Identification Division general format
- Environment Division general format
- The three formats of the file control entry
- Data Division general format
- The three formats for a data description entry
- The format for a field definition entry
- Procedure Division general format
- General format of verbs listed in alphabetical order
- General format for conditions
- Formats for qualification* subscripting/ indexing/ and

an identifier
- General format for a COPY statement

PAGE 268

RM/COBOL LANGUAGE SYNTAX

The RM/COBOL language is based upon the ANSI X3. 23-1974 COBOL
standard. Minor departures from that document are reflected in the
syntax description which follows but are not separately noted.
Semantic rules are not changed.

The description is in a condensed form of the standard COBOL
syntax notation. In some cases separate formats are combined and
general terms are employed for user names.

System-names and implementation restrictions are:

c omp uter-name
p r o g r a m - n a m e :
switch-names:
device-types:

external-file-name:

Usei— defined word
8-character name
SWITCH-1, . . . , SWITCH-8
PRINT
INPUT
OUTPUT
INPUT-OUTPUT
RANDOM
One- to thirty-character name

PAGE 269

IDENTIFICATION DIVISION GENERAL FORMAT

IDENTIFICATION DIVISION.

PROGRAM-ID. program-name.

[AUTHOR, [comment-entry! ... 3

[INSTALLATION. [comment-entry 3 ... 3

[DATE-WRITTEN. [c o m m e n t - e n t r y 3 ... 3

[SECURITY. [comment-entry! ... 3

PAGE 270

ENVIRONMENT DIVISION GENERAL FORMAT

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. c omp u t er-n a m e .

OBJECT-COMPUTER. computer-name

Z, MEMORY SIZE integer {WORDS >3

{CHARACTERS)-

{MODULES >

Z, PROGRAM COLLATING SEQUENCE IS a 1 p h a b e t - n a m e 3.

CSPECIAL-NAMES. L • switch-name

{ON STATUS IS condition-name-1 C# OFF STATUS IS condit i o n - n a me - 2 3 >3

{OFF STATUS IS condition-name-2 C* ON STATUS IS condition-name-1 3>3

Z, alphabet-name IS { S T A N D A R D - 1 >3 ...

{NATIVE >

Z, CURRENCY SIGN IS literal-13

Z, DECIMAL-POINT IS C O M M A 3 . 3

PAGE 271

CINPUT-OUTPUT SECTION.

FILE-CONTROL.

•Cf i le-control-entry > ...

CI-O-CONTROL.

Zi SAME AREA FOR file-name-1 C, file-name-23

PAGE 272

FILE CONTROL ENTRY GENERAL FORMAT

FORMAT 1

SELECT file-name

ASSIGN TO device-type { “external-file-name">
------- {data-name-1 >

i i ORGANIZATION IS SEQUENTIAL!

C i ACCESS MODE IS SEQUENTIAL!

C i FILE STATUS IS d a t a - n a m e - 2 ! .

FORMAT 2

SELECT file-name

ASSIGN TO RANDOM, { “e x t e r n a 1- f i 1 e - n a m e ">
------- ------- {data-name-1 >

i ORGANIZATION IS RELATIVE

data-name-21> !

data-name-2 >

>

C; FILE STATUS IS d a t a - n a m e - 3 ! .

C; ACCESS MODE IS { SEQUENTIAL C, RELATIVE KEY IS

{{RANDOM > , RELATIVE KEY IS

{ { D Y N A M I C >

PAGE 273

FORMAT 3

SELECT file-name

ASSIGN TO RANDOM, { “external-file-name"}
------- ------- {data-name-1 >

i ORGANIZATION IS INDEXED

Ci ACCESS MODE IS { S E Q U E N T I A L > 3

{RANDOM >

{DYNAMIC >

; RECORD KEY IS data-name-2

Ci ALTERNATE RECORD KEY IS data-name-3 CWITH D U P L I C A T E S ! 3.

Ci FILE STATUS IS data-name-43.

PAGE 274

DATA DIVISION GENERAL FORMAT

DATA DIVISION.

CFILE SECTION.

CFD file-name

C; BLOCK CONTAINS Cinteger-1 T03 integer-2 {RECORDS >

{CHARACTERS}-

C* RECORD CONTAINS Cinteger-3 T03 integer-4 CHARACTERS!

i LABEL {RECORD IS > {STANDARD}-

{RECORDS ARE> {OMITTED >

C; VALUE OF LABEL IS nonnumeric-literal-13

C; DATA {RECORD IS > data-name-1 C* data-name-23 ... 3

{RECORDS ARE>

Crec o r d - d e s c ri p t i o n - e n t r y 3 ... 3 ...

CWORKING-STORAGE SECTION.

C77- l e v e l - d e sc r i p t i o n - e n t r y 3 ... 3
Crecord-description-entry 3

CLINKAGE SECTION.

C 7 7 - l e v e l - d e sc r i p t i o n - e n t r y 3 ... 33
Crecord-description-entry 3

PAGE 275

DATA DESCRIPTION ENTRY GENERAL FORMAT

FORMAT 1

level-number {data-name-l>
{FILLER >

[; REDEFINES data-name-23

[; {PICTURE)- IS character-str ing 3

{PIC >

Li CUSAGE IS3 {COMPUTATIONAL >3

{COMP >

{COMPUTATIONAL-!)-

{COMP-1 >

{COMPUT ATIONAL-33-

{COMP-3 >

{DISPLAY >

{INDEX >

Li [SIGN IS3 TRAILING [SEPARATE CHARACTER) 3

Li OCCURS {integer-1 TIMES >
------- {integer-1 TO integer-2 TIMES DEPENDING ON data-name-33-

[INDEXED BY index-name-1 [, index-name-23 ...3 3

PAGE 276

Ci {SYNCHRONIZED} CLEFT 3 3

{SYNC > CRIGHT3

Ci {JUSTIFIED} RIGHT3

{JUST }

Ci BLANK WHEN Z E R O 3

Ci VALUE IS 1 itera 1 3 .

FORMAT 2

66 data-name-1; RENAMES data-name-2 C{THROUGH} data-name-33.

{THRU }

FORMAT 3

88 condition-name; {VALUE IS }

{VALUES ARE}

literal-1 C{THROUGH} literal-23

{THRU }

C, literal-3 C{THROUGH} literal-43 3 ...

{THRU }

PAGE 277

PROCEDURE DIVISON GENERAL FORMAT

FORMAT 1

PROCEDURE DIVISION CUSING data-name-1 C, data-name-23 ... 3 .

CDECLARATIVES.

{section-name SECTION C s e g m e n t - n u m be r 3. declarative-sentence

Cparagraph-name. Csentence3 ... 3 . . . > . . .

END DECLARATIVES. 3

{section-name SECTION Csegment-number 3.

Cparagraph-name. Csentence3 ... 3 . . . > . . .

END PROGRAM.

FORMAT 2

PROCEDURE DIVISION CUSING data-name-1 C,data-name-23 ... 3 .

Cparagraph-name. Csentence3 ... > . . .

END PROGRAM.

PAGE 278

GENERAL FORMAT FOR VERBS

ACCEPT {identifier-1 C> UNIT {ident ifier-2>3
{literal-1 >

C, LINE {identifier
----- {literal-2

-3>3
>

C, POSITION {identifier-4>3
----------{ H t e r a i - 3 >

C, SIZE {identifier
----- {literal-4

-5> 3
>

C, PROMPT C 1 iteral-53 3

C, E C H O 3 C, CONVERT] Z, T A B 3 Z, ERASE3 Z, NO B E E P 3

C# {OFF}] C# ON EXCEPTION identifier-6 imperative statement]}-.

ACCEPT identifier FROM {DATE}

-CDAY >

{TIME}

ADD {identifier-l> C* identifier-23 ... TO identifier-m CROUNDED3
--- -Cliteral-1 > C# literal-2 3 — ---------

Ci ON SIZE ERROR impe r a t i v e - s ta t e m e n t 3

ADD {identifier-1}* -Cidentifier-2> Z, identifier-33 . . .
--- -Cliteral-1 > -Cliteral-2 > Z, literal-3 3

GIVING identifier-m CROUNDED3

Ci ON SIZE ERROR i m p e r a t i v e - s ta t e m e n t 3

ADD {CORRESPONDING> identifier-1 TO identifier-2

{CORR >

CRGUNDED3 C; ON SIZE ERROR imperat i v e - s ta t e m e n t 3

PAGE 279

C» procedure-name-3 TO CPROCEED TOD procedure-name-4D . .

CALL {identifier-l> CUSING data-name-1 C* data-name-2D ... D
-----{1 i te r a 1-1 > -------

CLOSE file-name-1 CCREELD- CWITH NO REWINDD D

•CUNITT

WITH {NO REWIND>

•CLOCK >

ALTER procedure-name-l TO CPROCEED TOD procedure-name-2

C, file-name-2 C{REEL> CWITH NO REWINDD D D . . .

{UNIT>

WITH -CNO R E W I N D >

CLOCK >

COMPUTE identifier-1 CROUNDEDD = arithmetic-expression

C# ON SIZE ERROR imp erative-statementD

DELETE file-name RECORD Ci INVALID KEY imperative-statementD

DISPLAY C-Cidentifier-1 > C, UNIT {identifier-2> D
--------- { li t e r a 1-1 > -----{ 1 i teral-2 >

C, LINE {identifier-3>DC, POSITION {identifier-4>D
-----{literal-3 > ---------- { 1i t e r a 1-4 >

C, SIZE {identifier-5>DC, BEEPDC* ERASED
-----{ 1 i tera 1 -5 > ----- ------

C, {HIGH3-DC# BLINKDC, REVERSED> ...

{LOW >

PAGE 280

[i ON SIZE ERROR imperative-statement]

DIVIDE Cidentifier-l> INTO Cidentifier-2> GIVING identifier-3
------- d i t e r a i - i > ------ Cl iteral-2 > ---------

[ROUNDED] C; ON SIZE ERROR i m p e r a t i v e - s ta t e m e n t]

DIVIDE Cidentifier-l> BY Cidentifier-2> GIVING identifier-3 [ROUNDED]
------- Cliteral-1 > — Cliteral-2 > --------- ---------

[i ON SIZE ERROR i m p e r a t i v e - s ta t e m e n t]

EXIT [PROGRAM].

GO TO procedure-name-1

GO TO procedure-name-1 [, procedure-name-2] ... # procedure-name-n

DEPENDING ON identifier

IF condition* Cstatement-1 > C; ELSE statement-2 >

CNEXT SENTENCE)- C; ELSE NEXT SENTENCE}

DIVIDE Cidentifier-l> INTO identifier-2 [ROUNDED]
------d iteral-1 > ---- -------

PAGE 281

INSPECT identifier-1

NOTE:

CTALLYING identifier-2 FOR -C-CALL > { identif ier-3>>
---------- --- --- { i i tera 1-1 >>

{{LEADING}

{ CHARACTERS >

[{BEFORE} INITIAL

{AFTER >

•Ci dent if ier-4})3
{literal-2 >

[[REPLACING {{ALL > {identifier ~5>> BY {identifier--6>
--- {literal-3 > — {literal-4 >

{{LEADING)- >

{{FIRST > >

{ CHARACTERS >

[{BEFORE}

{AFTER >

INITIAL {identifier-7>3)
{literal-5 >

The TALLYING option» the REPLACING option» or both
options must be selected.

PAGE 282

MOVE {CORRESPONDING> identifier-i TO identifier-2

•CCQRR >

MULTIPLY -Cidentifier-l> BY identifier-2 [R O U N D E D 3
----------{ 1 i tera 1-1 > — ---------

[; ON SIZE ERROR i m p e r a t i v e - s ta t e m e n t 3

MULTIPLY -Cidentifier-l> BY -Cidentifier-2> GIVING identifier-3
---------- {1 itera 1-1 > — -Cl iteral-2 > -------

[ROUN D E D 3 [; ON SIZE ERROR imp e r a t i v e - s t a t e m e n t 3

MOVE {identifier-l> TO identifier-2 C, identifier-33...
----{1 i tera 1 > —

OPEN {{INPUT f i 1 e-name-1 [WITH NO REWIND3 >

[, f i1 e-name-2 [WITH NO R E W I N D ! .

{OUTPUT file-name-3 [WITH NO R E W I N D ! >

[, f i1 e-name-4 [WITH NO R E W I N D ! 3

-CI-0 f i le-name-5>[, file-name-63...

•CEXTEND file-name-7>[, file-name-83. ..>...

PAGE 283

{THRU >

PERFORM procedure-name-1 [{THROUGH} procedure-name-23

{THRU >

{identifier-1} TIMES
{literal-1 } ------

PERFORM procedure-name-1 [{THROUGH} procedure-name-23

{THRU }

PERFORM procedure-name-l [{THROUGH} procedure-name-23

UNTIL condition-1

PERFORM procedure-name-i [{THROUGH} procedure-name-23

{THRU }

VARYING {identifier-2} FROM {identifier-3}
--------- {index-name-1} ----- {index-name-2}

{literal-1 }

BY {identifier-4} UNTIL condition-1
— {literal-3 } ------

[AFTER {identifier-5} FROM {identifier-6}
------ {index-name-3} ----- {index-name-4}

{literal-3 }

BY {identifier-7} UNTIL condition-2
— {literal-4 } ------

[AFTER {identifier-8} FROM {identifier-9}
------ {index-name-5} ----- {index-name-6}

{literal-5 }

BY {identifier-10} UNTIL condition-3 3 3
— {literal-6 } ------

PAGE 284

Ci AT END i m p e r a t i v e - s ta t e m e n t]

READ file-name CNEXT] RECORD CWITH NO LOCK] CINTO identifier]

Ci AT END i m p e r a t i v e - s ta t e m e n t]

READ file-name RECORD CWITH NO LOCK] CINTO identifier]

Ci KEY IS data-name]

C; INVALID KEY i m p e r a t i v e - s ta t e m e n t]

REWRITE record-name CFROM identifier]

Ci INVALID KEY i m p e r a t i v e - s ta t e m e n t]

SET Cidentifier-1 C,identifier-2] ...> TO -Cidentif ier-3>
--- -Cindex-name-1 C* index-name-2] . . . > — { index-name-3>

-Cinteger-1 >

SET index-name-4 C* index-name-5] ... -CUP BY > -Cidentif ier-4>
--- — — -Cinteger-2 >

-CDOWN BY>

READ file-name RECORD CINTO identifier]

PAGE 285

> data— name]START file-name CKEY -CIS EQUAL TO

•CIS = >
•CIS GREATER THAN >

•CIS > >
•CIS NOT LESS THAN>

•CIS NOT < >

Ci INVALID KEY impe r a t i v e - s ta t e m e n t 3

STOP CRUN >

< 1 i teral >

SUBTRACT -Cidentifier-l> C, identifier-23 ... FROM identifier-m
----------{literal-1 > C, literal-2 3 -----

C R O U N D E D 3 Ci ON SIZE ERROR i m p e r a t i v e - s ta t e m e n t 3

SUBTRACT -Cidentif ier-l> l , identifier-23 ... FROM -Cidenti f ier-m>
----------Cliteral-1 > C, literal-2 3 -----< 1 itera1-m >

GIVING identifier-n C R O U N D E D 3

C; ON SIZE ERROR i m p e r a t i v e - s ta t e m e n t 3

SUBTRACT CORRESPONDING)- identifier-1 FROM identifier-2 CROUNDFD3

CCORR >

Ci ON SIZE ERROR imp e r a t i v e - s t a t e m e n t 3

UNLOCK file-name-1 RECORD

PAGE 286

USE AFTER STANDARD {EXCEPTION!-

>

>

>

>

>

WRITE record-name CFROM identifier-13

-CBEFORE3- ADVANCING { { identifier-2> -CLINE >>
------- {{integer > {LINES>>

{AFTER > { PAGE >

WRITE record-name CFROM identifier!

C; INVALID KEY imperative-statement!

{ERROR >

PROCEDURE ON {file-name-1 C, file-name-2! .

{INPUT

{OUTPUT

{ 1-0

{EXTEND

PAGE 287

GENERAL FORMAT FOR CONDITIONS

RELATION CONDITION:

Cidentif ier-1 > -ns CNOT3 GREATER THAN> -Ci dent i f ier-2 >
{ 1 i teral-l > — — -Cl i teral-2 >
•Cinde x-name-1 > •CIS CNOT3 LESS THAN > Cindex-name-2 >

■CIS CNOT3 EQUAL TO >

-CIS CNOT3 > >

•CIS CNOT3 < >

■CIS [NOT 3 = >

CLASS CONDITION:

identifier IS CNQT3 -(NUMERIC >

•C ALPHABETIC)-

CONDITION-NAME CONDITION:

condition-name

SWITCH-STATUS CONDITION:

c ond i t i on-name

NEGATED SIMPLE CONDITION:

NOT simple-condition

PAGE 288

COMBINED CONDITION:

condition -C-CAND3- condition)- ...

■COR >

PAGE 289

M I S CELLANEOUS FORMATS

QUALIFICATION:

{data-name-1 > C-COF> data-name-23 . . .
•Ccond i t i on-name} —

{IN>

paragraph-name C{QF> section-name]

{IN>

SUBSCRIPTING:

-Cdata-name > (subscript-1 C> subscript-2 C* subscript-33 3 >
•Ccond i t i o n - n a m e >

INDEXING:

•Cdata-name > < -Cindex-name-1 t-C+3- literal-233-
{condition-name} {literal-1 {-> >

C i {index-name-2C{+> literal-43>
•Cl iteral-3 -C-> >

C» {index-name-3 C{+> literal-63 > 3 3)
{literal-5 {-> >

PAGE 290

IDENTIFIER:

FORMAT 1

data-name-1 C-COF3- data-name-23 ...

<IN>

C <subscript-1 C# subscript-2 l> subscript-33 3) 3

FORMAT 2

data-name-1 C<OF> data-name-23

-CIN>

C(Cindex-name-1 C-C+} literal-23
■Cliteral-1 <->

C# -Cinde x-name-2 C{+> 1 i teral-43>
< 1 iteral-3 C-> >

C# -Cindex-name-3 C{+> 1 i t e r a 1-63> 33)3
■Cl i teral-5 <-> >

PAGE 291

GENERAL FORMAT FOR COPY STATEMENT

COPY !;ext-name

PAGE 292

COBOL LEVEL OF IMPLEMENTATION

Function Module Implementation

Nucleus Leve 1 2.
Table Handling Leve 1 1+.
Sequential I/O Level 2.
Relative I/O Leve 1 2.
Indexed I/O
Sort-Merg e
Report Writer

Leve 1
Null.
Null.

2.

Segmentation Leve 1 1.
Library Leve 1 1.
Debug N/S. Conditional compile and

execution time interactive debugger
Inter-program Communication Leve 1 1.
Communication Modified ACCEPT and DISPLAY for

terminal communication.

ANSI COBOL X3. 23 1974

11
11
! MODULE
11
1l
1

FEDERAL INFORMATION
PROCESSING STANDARD (FIPS)

RM !
C O B O L !HIGH

HIGH
INTERMEDIATE

LOW
INTERMEDIATE LOW

! NUCLEUS 2 2 1 1 2 :
! TABLE HANDLING 2 2 1 1 1+ !
! SEQUENTIAL I/O 2 2 1 1 2 !
! RELATIVE I/O 2 2 1 - 2 ;
! INDEXED I/O 2 - - - 2 ;
! SORT-MERGE 2 1 - — !
! REPORT WRITER - - - - - j
! S EGMENTATION 2 1 1 - i ;
! LIBRARY 2 1 1 - l :
J DEBUG 2 2 1 - N/S !
! INTER-PROGRAM
1 COMMUNICATION 2 2 1 - 1+ !
! COMMUNICATION 2 2 — — N/S !

N/S = Nonstandard

PAGE 293

EXTENSIONS BEYOND STATED LEVELS

Level 2 Nucleus (2 N U C):

- Data description includes a USAGE type of COMPUTATIONAL-i or
COMP-1 for describing single word two's complement signed
binary data (n o n s t a n d a r d).

- Data description includes a USAGE type of C 0 M P U TATI0NAL-3 or
COMP-3 for describing packed decimal data (n o n s t a n d a r d).

- The ACCEPT statement allows multiple operands (n o n s t a n d a r d).

- The ACCEPT statement includes syntax for specifying CRT
control information (n o n s t a n d a r d).

- The DISPLAY statement includes syntax for specifying CRT
control information (n o n s t a n d a r d).

Level 1 Table Handling (1 TBL):

- Variable group size (OCCURS DEPENDING).

Level 2 Sequential 1-0 (2 SEQ):

- The file control SELECT clause allows specification of the
external file name as a literal or data item (n o n s t a n d a r d).

- The READ statement includes the WITH NO LOCK option
(n o n s t a n d a r d).

- The UNLOCK statement is included (n o n s t a n d a r d).

Level 2 Relative 1-0 (2 REL):

- The file control SELECT clause allows specification of the
external file name as a literal or data item (n o n s t a n d a r d).

- The READ statement includes the WITH NO LOCK option
(n o n s t a n d a r d).

The UNLOCK statement is included, (nonstandard)

PAGE 294

Level 2 Indexed 1-0 (2 INX):

- The file control SELECT clause allows spec ification of the
external file name as a literal or data item (n o n s t a n d a r d).

- The READ statement includes the WITH NO LOCK option
(n o n s t a n d a r d).

- The UNLOCK statement is included <n o n s t a n d a r d).

Level 1 Debug (1 DEB):

- An interactive execution time debug facility is provided
(nonstandard).

Level 1 Intel— Program Communication (1 IPC):

- The CALL statement allows literals in USING phrase
(nonstandard).

- The CALL statement allows identifiers in the USING phrase to
be described with level number 01 through 49 and level
number 77 (nonstandard).

- The CALL statement supports specification of a variable
program name as identifier-1 (level 2 IPC).

Level 1 Communication (1 COM):

- ACCEPT and DISPLAY allow specificat ion of complete screen
format in the Procedure Division (nonstandard).

PAGE 295

EXCEPTIONS TO STATED LEVELS

Level 2 Nucleus (2 N U C):
- DATE-COMPILED is not supported in the Identification

Di vi son.

- In data description the SIGN clause cannot specify LEADING
for the operational sign; omission of the SEPARATE phrase
has no effect; all operational signs are separate trailing
characters.

- A1phabet-name IS literal or implementor-name may not be
specified in S P E C I A L-NAMES paragraph.

- Multiple results are not supported in arithmetic statements.

- REMAINDER is not supported in DIVIDE statement.

- A procedure-name is required in GO TO statements.

- INSPECT data items are restricted to single character.

- Compound TALLYING and REPLACING clauses in the INSPECT
statement are not supported.

- When used in the Procedure Division* the numeric literal in
the ALL form of a figurative constant may not contain more
than one character.

- Arithmetic expressions may be used only in COMPUTE
statements.

- Exponentiation to a noninteger power is not supported.

- Sign conditions are not supported.

- Abbreviated combined relation conditions are not supported.

- The STRING and UNSTRING statements are not supported.

Level 2 Sequential 1-0 <2 SEQ):

- OPTIONAL and RESERVE may not be specified in the SELECT
clause.

- RERUN* SAME AREA or MULTIPLE FILE clauses are not supported
in I-0— CONTROL.

PAGE 296

- CODE-SET and LINAGE clauses may not be specified in a file
description entry.

- The mnemonic-name and EOP options of the WRITE statement are
not supported.

- The REVERSED option of the OPEN statement is not supported.

- The FOR REMOVAL option of the CLOSE statement is not
supported.

Level 2 Relative 1-0 (2 REL):

The RESERVE clause of the SELECT entry is not supported.

- RERUN, SAME AREA or MULTIPLE FILE clauses are not supported
in I— 0— CONTROL.

- The VALUE OF clause in an FD entry must not specify a data
name.

Level 2 Indexed 1-0 (2 INX):

- The RESERVE clause of the SELECT entry is not supported.

- RERUN, SAME AREA or MULTIPLE FILE clauses are not supported
in I-0— CONTROL.

Level 1 Segmentation <1 SEG):

- All independent segments must physically follow the fixed
permanent segments in the source program.

Level 1 Library (1 LIB):

- A copy sentence must be the last entry in area B of a source
record.

Level 1 Inter-Program Communication (1 IPC):

- A CALLed program is a u t o m a t i ca 11y cancelled upon execution
of the EXIT PROGRAM statement.

PAGE 297

w

•Sv SK«

M g

IMPORTANT NOTICE
ALL RADIO SHACK COMPUTER PROGRAMS ARE LICENSED ON AN
“AS IS” BASIS WITHOUT WARRANTY.

Radio Shack shall have no liability or responsibility to customer or any
other person or entity with respect to any liability, loss or damage caused
or alleged to be caused directly or indirectly by computer equipment or
programs sold by Radio Shack, including but not limited toany interrup
tion of service, loss of business or anticipatory profits or consequential
damages resulting from the use or operation of such computer or
computer programs.
NOTE: Good data processing procedure dictates that the user test the

program, run and test sample sets of data, and run the system in
parallel with the system previously in use for a period of time
adequate to insure that results of operation of the computer or
program are satisfactory.

RADIO SHACK SOFTWARE LICENSE
A. Radio Shack grants to CUSTOMER a non-exclusive, paid up license to
use on CUSTOMER’S computer the Radio Shack computer software
received. Title to the media on which the software is recorded (cassette
and/or disk) or stored (ROM) is transferred to the CUSTOMER, but not
title to the software.

B. In consideration for this license, CUSTOMER shall not reproduce
copies of Radio Shack software except to reproduce the number of copies
required for use on CUSTOMER’S computer (if the software allows a
backup copy to be made), and shall include Radio Shack’s copyright
notice on all copies of software reproduced in whole or in part.

C. CUSTOMER may resell Radio Shack’s system and applications soft
ware (modified or not, in whole or in part), provided CUSTOMER has
purchased one copy of the software for each one resold. The provisions
of this software License (paragraphs A, B, and C) shall also be applicable
to third parties purchasing such software from CUSTOMER.

//.’ff;,A \
•j#||

y'«C5j ’/£»(!]

£o;

kzS $;;•
vva* .«W/

» a
a v *saw

RADIO SHACK o
a A DIVISION OF TANDY CORPORATION

U.S.A.: FORT WORTH, TEXAS 76102
CANADA: BARRIE, ONTARIO L4M 4W5

AUSTRALIA
280-316 VICTORIA ROAD
RYDALMERE, N S W. 2116

TANDY CORPORATION

__________ BELGIUM__________
PARC INDUSTRIEL DE NANINNE

5140 NANINNE

UK.
BILSTON ROAD WEDNESBURY
WEST MIDLANDS WS10 7JN

PRINTED IN U S A.

