Important Note for
Model I/I11
RSCOBOL Users

The object modules (described on page 32 of the Use section) are password
protected and cannot be copied (with COPY) from your system diskette. To
transfer these modules to another diskette, use BACKUP.

When you assign a program-name to a COBOL file (refer to page 29 of the
RSCOBOL section of this manual), you must use standard TRSDOS syntax
for the program-name. See the File Specification section of your Model III
owner's manual for specific details.

Thank-You!

Radioe fhaek

I A Division of Tandy Corporation

8759117-581

Important Note to
Model lll Users

From time to time, Radio Shack may release new versions of TRSDOS. the
TRS-80 disk operating system. Check with your local Radio Shack or the
TRS-80 Microcomputer News for notices and instructions on these
enhanced versions of TRSDOS.

If you receive a new version of TRSDOS. read the following before making
any modifications to your existing software packages (applications. lan-
guages. or system utilities):

- Do not convert your Radio Shack software packages for use with the new
version of TRSDOS unless you are instructed to do so.

« Before converting a Radio Shack supplied Model | software package to a
Model il format, check to see if Radio Shack provides a Model Il version
of the package. If so, you should obtain a copy of that version.

« If youre using several difterent software packages. press the RESET but-
ton whenever you change software.

Thank-You!

Radie Sfhaek

& A Division of Tandy Corporation

8759106

Important Notes for
RSCOBOL Users Cat. no. 26-2203

1. For your convenience, this package includes diskettes for both Model I and Model III owners. This
manual describes conversion procedures for Model III owners. These are no longer required.

These procedures are explained in the section titled Converting RSCOBOL to Model III, which is
in Appendix C. Please disregard them.

2. All Radio Shack software packages are designed for use under the version of the operating system

under which the package is released. Therefore do not use this package under prior versions of
TRSDOS. When using any other software package make sure you press the RESET button to insure
that the appropriate version of TRSDOS is loaded before using the software package.

3. In the RSCOBOL section. you will find some references to Model II. These references also apply to
your Model I or III.

Thank-You'

Radie fhaek

¢ A Division of Tandy Corporation

§759104-38"

* k *x kx k *x x k x k * *x Kk k %k *k *x %k

ALL USERS MODELS I/III
IMPORTANT NOTICE PLEASE READ FIRST

* % % % * *
* ¥ ¥ * % %

x * kX kx k% kx *x *x Xk * *x *x kx k*x kx %k * %

Make sure you read the indicated pages for the stock number
of the package that you are going to use.

STOCK ADDENDUM PAGES TO READ

NUMBER

26-2013 MODEL I version pages 1, 3, 4, 5, 6, and 7
MODEL III version page 2

26-2203 MODEL I version pages 1, 3, 4, 5, and 6
MODEL III version page 2

26-2204 MODEL I version pages 1, 3, 4, 5, and 6
MODEL III version page 2

26-2206 MODEL I pages 1, 3, 4, 5, and 6

26-2207 MODEL III page 2

26-2208 MODEL I pages 1, 3, 4, 5, and 6

26-2209 MODEL III page 2

x k k k %k kx k Kk k k k x kx k k k k %

MODEL I USERS
IMPORTANT NOTICE PLEASE READ FIRST

* * ¥ ¥ X W
% ¥ ¥ ¥ ¥ ¥

* * X * Xx k * Kk *x *x k x *x *x * *x * *

UPGRADE UTILITY ON TRSDOS 2.3B

The MODEL I diskette in this package contains a NEW version
of TRSDOS which is not compatible with OLD versions of
TRSDOS, see below for further details. TRSDOS 2.3B is
specially designed for use only with the below listed
packages: 1) 26-2013 SERIES I EDITOR/ASSEMBLER
2) 26-2204 BASIC Compiler, 26-2208 BASIC Runtime
3) 26-2203 COBOL Compiler, 26-2206 COBOL Runtime

OLD TRSDOS diskettes to be used under the NEW TRSDOS MUST be
UPGRADEd before use. Once UPGRADEd, a system or data
diskette becomes a NEW TRSDOS data diskette.

OLD diskettes used under NEW TRSDOS without UPGRADEing, may
cause extraneous information to be read at the end of files,
giving a false End Of File (EOF) indication. Some programs
will not function properly under these conditions.

NEW diskettes usel under OLD TRSDOS, may not access all
data and/or NEW programs may not run correctly.

If you determine that you need to use the UPGRADE utility
see page titled "TIPS ON USING THE MODEL I TRSDOS 2.3B
UPGRADE UTILITY" contained in this addendum.

NOTE: When changing from one TRSDOS to the other you must
use the RESET switch each time the diskette in drive 0
is changed.

RADIO SHACK APPLICATION PROGRAMS WHICH WERE DELIVERED ON AN
OLD TRSDOS DISKETTE SHOULD NOT BE UPGRADED.

OLD: TRSDOS 2.1, 2.2, and 2.3.

NEW: TRSDOS 2.3B.

file: A collection of information stored as one
named unit in the directory.

program: A file which causes the computer to
perform a function.

data: Information contained in a file which is

used by a program.

system diskette: A diskette containing TRSDOS. When this
diskette is placed in drive 0 and the
RESET switch is pressed, TRSDOS will begin
to run.

data diskette: A diskette which does not contain TRSDOS.
If this diskette is placed in drive 0 and
the RESET switch is pressed, the screen
will clear and "NO SYSTEM" will be
displayed.

UPGRADE: A program contained on the TRSDOS 2.3B
diskette.

* % * k *x kx * *x *x kx k kx kx %k k *x %k *

MODEL III USERS
IMPORTANT NOTICE PLEASE READ FIRST

* % o * ¥ ¥
* % * X X *

* k *x *x k kx k k k*x k Kk k k *x * %k *x *

XFERSYS UTILITY ON TRSDOS 1.3

The MODEL III diskette in this package contains a NEW
version of TRSDOS which is not compatible with OLD versions
of TRSDOS, see below for further details.

OLD TRSDOS diskettes to be used under the NEW TRSDOS MUST be
XFERSYSed before use. Once XFERSYSed, an OLD TRSDOS diskette
becomes a NEW TRSDOS diskette and should not be used with
OLD TRSDOS again. If you started with an OLD system or data
disk, the XFERSYSed diskette will be a NEW system or data
diskette respectively.

OLD diskettes used under NEW TRSDOS without XFERSYSing, may
cause extraneous information to be read at the end of files,
giving a false End Of File (EOF) indication. Some programs
will not function properly under these conditions.

NEW diskettes used under OLD TRSDOS, may not access all
data and/or NEW programs may not run correctly.

If you need to use the XFERSYS utility see the TRSDOS
section of your TRS-80 MODEL III Disk System Owner's Manual.

NOTE: When changing from one TRSDOS to the other you MUST
use the RESET switch each time the diskette in drive 0
is changed. You may also XFERSYS onto a NEW data disk.
If this is done, all system files of the system disk
will be moved onto the data disk.

RADIO SHACK APPLICATION PROGRAMS WHICH WERE DELIVERED ON AN
OLD TRSDOS DISKETTE SHOULD NOT BE XFERSYSD.

OLD: TRSDOS 1.1 and 1.2.

NEW: TRSDOS 1.3.

file: A collection of information stored as one
named unit in the directory.

program: A file which causes the computer to
perform a function.

data: Information contained in a file which is

used by a program.

system diskette: A diskette containing TRSDOS. When this
diskette is placed in drive 0 and the
RESET switch is pressed, TRSDOS will begin
to run.

data diskette: A diskette which does not contain TRSDOS.
If this diskette is placed in drive 0 and
the RESET switch is pressed, the screen
will clear and "Not a SYSTEM Disk" will be
displayed.

XFERSYS: A program contained on the TRSDOS 1.3
diskette.

Kk kx k k Kk * % k *k kx k * k %k *k *k * *k * *

OWNERS OF THE MODEL I, SERIES-I EDITOR
ASSEMBLER, BASIC Compiler, BASIC Runtime
COBOL Compiler, COBOL Runtime

* ¥ F Ak X% * *
* % X ¥ ¥ ¥ ¥

 k k kx k k % kx k k*x x * *x k *x * kx *x *x *x *

Differences between TRSDOS 2.3B and TRSDOS 2.3 are:

1. variable length records have been corrected, in all
aspects.

2. In most cases, your computer will not "hang up" when you
attempt use of a device which is not connected and
powered up.

3. The DEVICE command has been deleted.

4, The following commands have been added:

CLS
This command clears the display and puts it in the 64-

character mode.

PATCH 'filespec' (ADD = aaaa,FIND = bb,CHG = cc)
This command lets you make a change to a program file.
You need to specify:

'aaaa' - a four byte hexadecimal address specifying
the memory location of the data you want to
change

'bb' - the contents of the byte you want to find
and change. You can specify the contents of
more than one byte,

'cc' - the new contents to replace 'bb'

For example:

PATCH DUMMY/CMD (ADD=4567,FIND=CD3300,CHG=CD3B00)
changes CD3300, which resides at memory location 4567
(HEX) in the file named DUMMY/CMD, to CD3B0O.

If this command gives you a STRING NOT FOUND error
message, this means that either 'bb' does not exist, or
else 'bb' crosses a sector boundary. If 'bb' crosses a
sector boundary, you must patch your file one byte at

a time. For example:

PATCH DUMMY/CMD (ADD=4568,FIND=33,CHG=3B)

replaces the contents of the second byte in the above
example.

- 3 of 7

TAPE (S=source device,D=destination device)
This command transfers Z-80 machine-language programs
from one device to the other. You must specify the
'source device' and 'destination device' using these
abbreviations:

T - Tape

D - Disk

R - RAM (Memory)
The only valid entries of this command are:

TAPE (S=T,D=D) TAPE (S=T,D=R) TAPE (S=D,D=T)
For example

TAPE (S=D,D=T)
starts a disk-to-tape transfer. TRSDOS will prompt you
for the diskette file specification and ask you to press
<ENTER> when the cassette recorder is ready for
recording.

CAUTION: When doing a tape-to-RAM transfer, do not use a
loading address below 6000 (Hex), since this would write
over TRSDOS or the tape command.

These commands have been slightly changed:

BACKUP now checks to see if the diskette which will be
your backup copy is already formatted. If it is, BACKUP
will ask you if you want to REFORMAT it.

CLOCK will no longer increment the date when the time
goes beyond 23:59:59.

COPY now works with only one-drive. For example:

COPY FILE1l:0 to FILE3:0
duplicates the contents of FILEl to a file named FILE3
on the same diskette.

KILL will now allow you to kill a protected file without
knowing its UPDATE or protection level. To kill this
kind of file, type an exclamation mark (!) at the end of
the KILL command. For example:

KILL EXAMPLE !
kills the UPDATEd or protected file named EXAMPLE.
(Note the mandatory space between the file name and the
exclamation mark.)

LIST only lists the printable ASCII characters.
PROT no longer allows you to use the UNLOCK parameter.

DIR is now in this format:

Disk Name: TRSDOS Drive: 0 04/15/81

Filename Attrb LRL #Rec #Grn #$Ext EOF
JOBFILE/BLD N*X0 256 1 1 1 1
TERMINAL/V1 N*X0 256 5 2 1 126
LOADX/CMD N*X0 256 5 2 1 0

*** 171 Free Granules ***

1. Disk name is the name which was assigned to the disk
when it was formatted.

2. File Name is the name and extension which was
assigned to the file when it was created. The password (if
any) is not shown.

3. Attributes is a four-character field:
a. the first character is either I (Invisible file)
or N (Non-invisable file)
b. the second character is S (System file) or *

(User file)
c. the third character is the password protection
status of the file:
X - the file is unprotected (no password)
A - the file has an access word but no
update word
U - the file has an update word but no
access word
B - the file has both update and access
word
d. the fourth character specifies the level of
access assigned to the access word:
0 - total access
1 - kill the file and everything listed
below
2 - rename the file and everything listed
below
- this designation is not used
- write and everything listed below
read and everything listed below
- execute only
- no access

Ny b W
|

4. Number of Free Granules - how many free granules
remain on the diskette.

5. Logical Record Length - the record length which was
assigned to the file when it was created.

6. Number of Records - how many logical records have
been written.
7. Number of Granules - how many granules have been used

in that particular file.
8. Number of Extents - how many segments (contiguous

blocks of up to 32 granules) of disk space are allocated to
the file.

9. End of File (EQOF) - shows the last byte number of the
file.

s e e = = - > WS b Ay P S A = = — . o > A = = - —

TIPS ON USING THE MODEL I TRSDOS 2.3B UPGRADE UTILITY

If you determine that you need to use the UPGRADE
utility then proceed as indicated below.

Insert your TRSDOS 2.3B system diskette in drive 0,
press the RESET switch, and when TRSDOS READY is displayed
type UPGRADE <ENTER>. Your screen will display:

TRSDOS DIRECTORY UPGRADE UTILITY

FOR CONVERSION OF TRSDOS 2.1, 2.2, OR 2.3 TO
TRSDOS 2.3B DIRECTORY FORMAT.

ONCE UPGRADE HAS BEEN EXECUTED, YOUR DISKETTE SHOULD
NOT BE USED UNDER TRSDOS 2.1, 2.2, OR 2.3 AGAIN.

DO YOU WISH TO CONTINUE (Y/N/Q)?

This means that the directory format on your TRSDOS
2.1, 2.2, or 2.3 diskette will be converted to the TRSDOS
2.3B format. Once you type Y to continue, the screen will
display:

INSERT DISKETTE TO BE UPGRADED IN DRIVE 1.
PRESS <ENTER> WHEN READY.

Insert the diskette you want to convert in drive 1 and
press <ENTER>. After successful conversion, the screen will
display a CONVERSION COMPLETE message. If you are attempting
to convert a diskette which has already been converted, the
screen will display a DISKETTE IS ALREADY A 2.3B error
message.

TECHNICAL NOTE

For all files indicated in the directory that have an End Of
FIle (EOF) not equal to zero, UPGRADE will change the number
of records to be one less than the previous record count.
Note that in FILEl, the number of records indicated has been
changed from 10 to 9 after UPGRADE. For FILE2 the records
indicated remain the same since EOF=0.

BEFORE UPGRADE AFTER UPGRADE
TRSDOS 2.1, 2.2, 2.3 TRSDOS 2.3B
FILEl EOF=9 10 RECORDS 9 RECORDS
FILE2 EOF=0 10 RECORDS 10 RECORDS

If the TRSDOS 2.1, 2.2, or 2.3 diskette is a system
diskette, part of the conversion process will prohibit
accidental usage under the TRSDOS 2.1, 2.2, or 2.3 by
killing the files listed below:

SYS0/SYS SYS1/SYsS SYS2/SYS
SYS3/SYS SYS4/SYS SYS5/S8YS
SYS6/SYS FORMAT/CMD BACKUP/CMD
BASICR/CMD BASIC/CMD

SPECIAL NOTE FOR 26-2013 MODEL I SERIES I EDITOR/ASSEMBLER

The MODEL I diskette that contains your EDTASM package
includes TRSDOS 2.3B which is not compatible with TRSDOS
2.1, 2.2, or 2.3. Therefore, a machine language object file
created with this package file CAN NOT simply be COPYied
from TRSDOS 2.3B onto a TRSDOS 2.1, 2.2, or 2.3 diskette.

See below for instructions on how to move an object file
from TRSDOS 2.3B onto a TRSDOS 2.1, 2.2, or 2.3 diskette.

TIPS ON GETTING OBJECT FILES FROM TRSDOS 2.3B
ONTO TRSDOS 2.1, 2.2, OR 2.3 DISKETTES

If for example, you desire to use an assembly language
function written with TRSDOS 2.3B EDTASM as a "user's
external subroutine” under the TRSDOS 2.3 BASIC
interpreter,follow the given steps carefully:

1) Insert your TRSDOS 2.3B system diskette that contains the
EDTASM package in drive 0 and press the RESET switch.

2) Use the EDTASM package to enter and assemble a routine,
We have used the SHIFT routine given in Section 7 of your
TRSDOS & DISK BASIC Reference Manual as an example.

a) Save the source program using the command:
W SHIFT/SRC:0

b) Then assemble the source file with the command:
A SHIFT/CMD:0

c) Quit EDTASM with the command:
Q

d) At TRSDOS READY enter the command:
LOAD SHIFT/CMD:0

3) Remove your TRSDOS 2.3B diskette.

4) Insert your TRSDOS 2.3 diskette in drive 0 and press the
RESET switch.

5) At TRSDOS READY enter the command:
DUMP SHIFT/CMD:0 (START=X'7D00"' ,END=X"'7D09"' ,TRA=X'7D00")

Reference Section 4 of your manual and note that X'7000°

is the lowest address that may be used as the origin of
your programs.

6) The file on this diskette, named SHIFT/CMD, may now be
used as needed under TRSDOS 2.1, 2.2, or 2.3 with the

BASIC interpreter as a user's external subroutine.

875-9119

TRS-80 "

Overview of the Model I/III COBOL Documentation Package.

This binder contains the information you need to use the Radio
Shack COBOL system. It assumes you are familiar with the
general operation of the Computer, including use of the TRSDOS
operating system. The COBOL package is provided on two Model I
diskettes, the Development diskette and the Runtime diskette.
Model III users will have to use the CONVERT utility to copy the
COBOL package to Model III diskettes.

The COBOL system requires a minimal system of 48K RAM and two
diskette drives.

The package includes three manuals.

System User's Guide

Provides general information, start-up procedures, compiler
commands, creation and use of a minimal-system runtime diskette,
sample programs, and a sample session. Also included is a
sample session and a description of the conversion procedure for
Model III users.

CEDIT User's Guide

Describes how to create and edit COBOL source files, using the
COBOL editor CEDIT, which is supplied on the Development
diskette.

RSCOBOL Language Reference Manual

A complete description of the Radio Shack version of the COBOL

programming language. Newcomers to COBOL should consult a
standard COBOL textbook for tutorial material.

Radio fhaek

TRS~80 Model I/III

COBOL USER'S GUIDE

(RG/7COBOL 1. 3)

December, 1980

PREFACE

This document contains the information required to compile, Tun
and debug COBOL language programs on the Radio Shack TRS5-80 Model
I/I1I Microcomputer under the TRSDOS Disk Operating System.

It assumes the rteader is familisr with the COBOL Language, the
general operation of the TRS—80 Model 1 or Model II1
Microcomputer, and the TREDOS Operating System. The reader 1is
specifically referred to the following publications:

TRS-80 Mcdel I/111 COBOL Language Manual

TRS-80 Model I Operation Manual

TRS-80 Model I Disk Operating System Reference Manvual
TRS-80 Model III Disk Operating System Reference Manual

This guide is organized such that each chapter fully describes a
particular operational procedure. While the experienced user need
only refer to the appropriate chapter, it is recommended that the
first-time vuser read the complete guide prior toc operation of the
COBOL system.

PROPRIETARY RIGHTS NOTICE
TRS-80 Model I/I1I11 COBOIL. (RSCOBOL) is a proprietary product of:

Ryan—-McFarland Corporation
Software Products Group
licensed to:
Tandy Corporation
One Tandy Center
Fort Worth, Texas 746102
{817) 390-3583

The software described in this document is furnished to the user
under a license for use on a8 single computer system and may be
copied (with inclusion of the copyright notice) only in accordance
with the terms of such license.

Copyright 1980 by Ryan-McFarland Corporation. All Tights
Teserved. No part of this publication may be rteproduced. stored
in a retrieval system or transmitted, in any form or by any
means, electronic, mechanical, photocopying. recording. or

otherwise, without the prior written permission of Tandy
Corporation.

Section
CHAPTER 1 THE COBOL COMPILER
1.1 Compiler Overview e
1.2 Device Assignments
1.3 Executing the Compiler
1.3.1 Compiler Source Input
1.3. 2 Compiler Options
1.3 3 Compiler Messages
1.3.4 Examples e
1.4 The Program Listing
1.4.1 Listing Diagnostics
1.4.2 Diagnostic Messages
CHAPTER 2 THE COBOL RUNTIME
2.1 Runtime Overview e
2.2 Device Assignments
2.3 Executing the Compiled Program
2.3.1 Runtime Optians
2.3.2 Runtime Messages
2.3.3 Examples e
2.4 Runtime Diagnostics
2.5 File System Considerations
2.5.1 COBOL Sequential Files
2.5.2 COBOL Relative Files
2.95.3 COBOL Indexed Files
2.5. 4 COBOL Label Processing
2.6 Runtime Memory Usage
CHAPTER 3 INTERACTIVE DEBUG
3.1 Debug Overview e
3.2 User Interaction and Display
3.3 Debug Commands
CHAPTER 4 SYSTEM CONSIDERATIONS
4.1 The ACCEPT and DISPLAY Statements
4. 2 The CALL Statement
4.3 The COPY Statement
4.4 The WRITE... ADVANCING ZERO. .. Statement
CHAPTER 5 INSTALLATION PRGCEDURES
AFPENDIX A SAMPLE PROGRAMS e
APPENDIX B SAMPLE SESSION
APPENDIX € CONVERTING RSCOBOL TO MODEL IITI
MODEL I1/111 COBOL User’s Guide — i1 -~ {RSCOBOL.

TABLE OF CONTENTS

Page

7 = s

v
W

S OECNTPL

oo o

P ngpa

n

P P
g 0

W
Q

31

1.3)

CHAPTER 1

THE COBOL COMPILER

1.1 Compiler Overview

The COBOL Compiler operates on a 48K byte TRS-80 iModel I or Model
111 Microcomputer with at 1least two disk drives under the
appropriate TRSDOS Operating System. (Model I - version 2. 3,
Model III -~ version 1.1)

Once executed, the Compiler makes a single pass on the source
program, generating object and listing files concurrently. Upon
completion it reports compilation results on the display and
returns control to TRSDOS.

Compilation always proceeds to the end of the program, regardless
of the number of source errors found

A listing of the program is generated showing the original COROL
source statements, error information, data allocation, Interactive
Debug information and, optionally. a Cross Reference of all
program labels and data items. This listing can be directed to
the Console, the Printer and/or a disk file

The generated object file is in a form ready for immediate
execution by the COBOL Runtime. Object code is produced such that

an attempt to execute an erroneous statement will terminate
execution with an appropriate error message

1.2 Device Assignments

All communication between the Compiler and the User is through the
system conscle.

During operation, the Compiler will require one ot more of the
following devices:

Display % Keyboard compiler command input & compiler messages

Disk source input file

Disk listing file (optional)
Disk object file (optional)
Disk COPY input file (optional)
Display listing display (optional)
Printer listing print (optional)

MODEL I/II1 COBOL User’s Guide - 1 - (RSCOBOL. 1. 3)

1.3 Executing the Compiler

To compile a COBOL source program, issue the following command to

TRSDOS:

where:

filespec

options

RSCOBOL filespec (options) comment

is the file specification of the COBOL source file to be
compiled of the form:

filename/ext. password: d
‘filename’ is required.

‘/ext’ is an optional name—extension. When omitted, the
defauvlt ‘/CBL'’ is used.

‘. password’ is an optional password. Note: If the file
was created with a nonblank password, ‘. password’
becomes a required field.

‘:d’ is an optional drive specification. When omitted.
the system does an avtomatic search, starting with drive
0.

allows the user to specify compiler and/or file options.
Each option must be specified as shown below, separated
by spaces. The left and right parenthesis are required
it any comments are present.

When no options are specified, the compiler will
automatically generate an object file but no listing
output.

MODEL I/111 COBOL User’s Guide - 2 - {(RSCOBOL. 1. 3)

1.3.1 Compiler Source Input

The Compiler expects the source input to be a sequential file,
containing 1logical records of ASCII text. These logical records
can be either of two forms:i ‘byte-stream’ or ‘fixed’:

‘byte—stream’ records consist of a string of ASCII
characters, terminated by a carriage-return character. This
format is typically stored on the disk as one byte records
(LRL=1), and is the format created by the standard TRSDOS

editor(s).

‘fixed’ records consist of BO ASCII characters each (LRL=80),
and do not contain carriage-return or other special
characters.

1.3.2 Compiler Options

D
‘D’ instructs the compiler to compile all COBOL "Debug”
source lines, identified by a "D" in column 7. This
allows the wuser selective compilation of COBOL source
statements.
This option has no relationship to the COBOL Runtime
Interactive Debug facility and need not be specified to
allow such debugging.
The default is to treat such lines as comments.

E

'E’ instructs the compiler to generate an ‘Error Only’
listing instead of a full 1listing. This option is
effective only when a listing has been specified (L, P
and/or T options).

The listing generated will contain the page heading
information, all source lines in error with their
appropriate wundermarks and messages, plus all summary
information.

The default is not to generate an error listing

MODEL I/III COBOL User’s Guide - 3 - (RSCOBOL 1. 3)

0 O=d O=N

‘L’ indicates that the compiler listing is to be written
to a disk file with the name of the source file and a
filename—extension of ‘/LST’. The first available disk
is used.

Specifying a drive number (L=d) indicates that the
listing file is to be written to disk ’d’.

LST files may be displayed using the standard TRSDOS
LIST and PRINT utilities.

The default is not to generate a listing file

‘0’ indictes that the Compiler object output is to be
written to & disk file with the name of the source file
and a filename—extension of ‘/COB’. The first available
disk is used.

Specifying a drive number (0O=d) indicates that the
cbject file is to be written to disk ‘d’. When omitted
the first available disk is used.

‘O=N‘’ indicates that no object file is to be generated

The default is to generate an object file on the first
available disk.

‘P’ indicates that +the listing is to be printed on the
printer.

The default is not to print the listing.

‘T’ indicates the listing 1is to be displayed on the
system display.

The default is not to display the listing

‘X’ indicates a cross-reference of COBOL Procedure and
Data Division names 1is to be produced. This option is
effective only when a listing has been specified (L, F
or T options).

The default is not to generate a cross-reference

MODEL I/II1 COBOL User’s Guide - 4 - (RSCOBOL. 1. 3)

1.3.3 Compiler Messages

Messages which report the compiler’s status, or its ability to
complete +the compilation process are rteported on the system
display as they are detected.

TRS-B0 Model I/III COBOL Compiler (RM/COBOL ver v.T)
Copyright 1980 by Tandy Corp. Licensed from Ryan—McFarland Corp.

Indicates that the compiler has been loaded and has begun to

compile the specified program. ‘ver v. 17’ identifies the
version {(v) and revision (r) level of the compiler.

COMPILATION COMPLETE: eeee ERRORS, wwww WARNINGS

Indicates that the compilation has been completed. The
values of ‘eeee’ and ‘wwww’ indicate the number of errors and
warnings., respectively, identified 1in the source program.

This message is repeated on the listing.

PARAMETER ERROR AT: wvvvvvvvv

Indicates that an unrecoverable error was detected on the
command to execute the compiler. ‘vvvvvvvv’ will identify

the offending field.

The user should reenter the command with the necessary
corrections.

COMPILATION CANCELLED

Compiler cancelled by user with BREAK key

MODEL I/I11 COBOL User‘s Guide - 5 - (RSCOBOL. 1. 3)

COMPILER ERROR, NO: nnnn

An internal error has occurred which prevents continued
compilation. The wvalue of ’‘nnnn’ identifies the condition
which caused the error.

0001 Pointer overflow

The user program has exceeded internal compiler
pointers. Segment the program and recompile. I£ this
problem still exists, separate programs into main

program with multiple subroutines.

0002 Roll memory overflow
The user program has exceeded available work space.
Segment the program and recompile.

0010 Unable to locate or load a compiler overlay
Install the RSCBLnvr program overlays as described in
the chapter on ‘Installation Procedures. ’

0020 Invalid TRSDOS
Execution was attempted under an incorrect version of
TRSDOS Order correct version of TRSDOS.

Required TRSDOS versions are:

Model I - 2.3
Model III - 1.1

0030 Invalid Source Record
The Compiler has encountered an invalid source input
rTecord. Verify records are ASCII text, formatted as
either:

a) Variable length records (LRL=1) terminated with a
carriage return, or;

b) Fixed 1length 80 character records (LRL=B0) without
carriage return.

MODEL I/I11 COBOL User’s Guide - 6 - (RSCOBOL. 1. 3)

1.3.4 Examples

RSCOBOL PAYROLL (P X)

locates and compiles the souTce program PAYROLL./CBL.,
producing an object file (PAYROLL/COB) on the first available
disk and a listing, with cross-reference, on the printer.

RSCOBOL MORTGAGE/SRC: 1 (L=2 0O=N)

compiles the source program MORTGAGE/SRC located on the disk
in drive 1, producing a listing file (MORTGAGE/LST) on the

disk in drive 2, and no object file.

MODEL I/I11 COBOL User’s Guide - 7 - (RSCOBOL 1. 3)

1.4 The Program Listing

The compiler outputs ‘source’, ‘allocation’, and ‘summary’
listings if a 1listing device or file is specified (L, P or T
options). When the ‘X’ option is specified, a ‘cross-reference’

listing is also produced.

The source 1listing includes & sequential 1line number, sentence
address, source image. and interspersed diagnostics

The allocation 1listing includes the address, size, order, type,
and name of each identifier. The identifier names are indented to
show the record structure. (The order of an identifier is the
number of subscripts it requires).

The summary listing includes the number of errors, the number of
warnings, and the size of the program.

The cross—-reference 1listing includes all identifier names in

alphabetical order, and the line number of each declaration,
source, and destination reference. The line number is surrounded
by slashes if the reference is a declaration; asteriks if the
reference is a possible modification. References to all

paragraphs and sections are included

In all 1listings: numbers in decimal are represented as ddd...d.
numbers in hexadecimal are represented as >-dd... d.

1.4.1 Listing Diagnostics

Source statements are checked for syntax and semantic errors as
they are scanned. Errors may cause interruption in scanning. In
this case, text 1is ignored until a recovery point is found and a
resume message is printed. Recovery points are chosen to minimize
the amount of wunanalyzed text without producing irrelevant error
messages. In any case, the constructs at fault are undermarked
and error messages listed when the source line is printed. The
error message includes either E‘s ot W’s indicating error or
warning. For example:

004030 02 STOCK PIC 9{(14)PPP COMPUTATIONAL.
]
1IPICTURE #E#E#E#ExExE#E#E#ExEs#E#E#ExExE#ExE*E*E

Indicates a semantic number size error but
Q05040 02 PART PIC X(4BX(3) SYNC.
% 3

#axe® 1)SYNTAX HEHRERE#E#E#E#E#E#E#E#E#E*E#E#E#E#E#EH#E®E
#a5#% 2)SCAN RESUME #WaWiWaistWeeleWieWieWeWeWeWsWelWeW

MODEL I/III COBOL User’s Guide - 8 - (RSCOBOL 1. 3)

indicates a syntax error at the first undermark and a recover at
the second undermark

The number preceding the error message is the undermark number,
counting from left to right. More than one message may refer to
the same undermark

Global errors such as undefined paragraph names and illegal
control transfers are listed with the program summary at the end
of the source listing.

1.4.2 Diagnostic Messages
ACCESS CLASH
Nonsequential access given for sequential file

BLANK WHEN ZERO
BLANK WHEN ZERO clause given for nonnumeric oT group

item.

CLASS
The referenced identifier is not wvalid in a class
condition.

COPY
COPY statement failed becavse of permanent errvor
associated with the undermarked file-name.

CORRESPONDING

The CORRESPONDING phrase cannot be wused with the
referenced identifier.

DATA OVERFLOW
The data area (working-storage and literals) is larger
than 65535 bytes in length.

DATA TYPE
Context does not allow data type of the referenced
identifier.

DEVICE CLASH
Random characteristics given to nonrandom device

DEVICE TYPE
OPEN or CLOSE mode inconsistent with device type.

DOUBLE DECLARATION
Multiple declaration of a file or identifier attribute.

DOUBLE DEFINITION
Multiple definition of an identifier.

MODEL I/11I COBOL User’s Guide - 9 - (RSCOBOL 1. 3)

DUPLICATE

. . v
Warning only. Multiple USE procedure declared for same
function or file.

FILE DECL ERROR
The referenced file-name is SELECTed and has an invalid
or missing file description (FD).

FILE NAME ERROR
The referenced file—name has an invalid external file
name declaration.

FILE NAME REQUIRED
File name not given as referenced in I/0 verb.

FILE RECORD KEY ERROR
The referenced file-name has a RECORD KEY which is
incorrectly qualified or is not defined as a data item
of the category alphanumeric within a record description
entry associated with that file name.

FILE RECORD SIZE ERROR
The referenced file-name has a declared record size
which conflicts with the actual data record descriptions
or is a relative organization file with variable length
records.

FILE RELATIVE KEY ERROR
The referenced file—-name has a RELATIVE KEY which is
incorrectly qualified, is defined in a Tecord
description associated with that file-name, or is not
defined as an unsigned integer.

FILE STATUS ERROR
The referenced file—-name has a status item which is
incorrectly qualified, is not defined in the
WORKING-STORAGE SECTION, or 1is not a two—-character
alphanumeric item.

FILE TYPE
Access or srganization of file conflicts with
undermarked statement.

FILLER LEVEL
A non—elementary FILLER item is declared.

GROUP CLASH
USAGE or VALUE clause of group member conflicts with
same clause for group.

GROUP VALUE CLASH
Warning Only. An item subordinate to a group with the
VALUE IS «clause 1is described with the SYNCHRONIZED,
JUSTIFIED., or USAGE (other than USAGE IS DISPLAY)

clause.

MODEL I1/I111 COBOL User‘s Guide — 10 - (RSCOBOL. 1. 3)

IDENTIFIER
Identifier reference is incorrectly constructed or the

identifier has an invalid or double definition.

ILLEGAL ALTER
An ALTER statement references an unalterable paragraph
or violates the rules of segmentation.

ILLEGAL PERFORM
A PERFORM statement reference undefined or incorrectly
qualified paragraph or the reference violates the rules
of segmentation.

INVALID ID
The referenced identifier was not successfully defined.

INVALLID PARAGRAPH
Context does not allow section name.

JUSTIFY
JUSTIFY clause given in conflict with other attributes.

KEY REQUIRED
Relative key not declared for random access relative
file or record key not declared for indexed file

LAREL
Presence or absence of label record conflicts with
device standards.

LEVEL
Level-number given is invalid either intrinsically or
because of position within a group.

LINKAGE

An identifier in the USING clause of the PROCEDURE title
is not a linkage item or a statement references a
linkage item not subordinate to an identifier in the
USING clause of the PROCEDURE title.

LITERAL VALUE
Literal value given is incorrect in context

MOVE
Operands of MOVE verb specify an invalid move.

MUST BE INTEGER
Context requires decimal integer.

MUST BE PROCEDURE
Context requires procedure name either as reference or
definition, or the reference must be a nondeclarative
procedure—name.

MODEL I/III1 COBOL User’s Guide — 11 - (RSCOBOL 1. 3

MUST BE SECTION
Context requires procedure-name to be section.

NESTING

Illegal nesting of condition +that is not an IF —
condition.

NOT IN REDEFINE
VALUE IS clause given in REDEFINES item.

OCCURS
OCCURS clause given at invalid level or after three have
been given for the same item.

OCCURS DEPENDING ERROR
The referenced object of a DEPENDING phrase has not been
defined correctly.

OCCURS-VALUE CLASH
VALUE IS and OCCURS in effect for the same item.

PICTURE
Invalid PICTURE syntax.

PICTURE-BWZ CLASH
Zero suppression and BLANK WHEN ZERO cannot be in effect
for the same item.

PICTURE-USAGE CLASH
USAGE <clause or implied wusage conflicts with wusage
implied by picture.

PROCEDURE INDEPENDENCE
PERFORM given for procedures in independent segments not
in the current segment.

PROGRAM OVERFLOW
The instruction area 1is 1larger than 32747 bytes in
length.

RECORD KEY
Record key declared for other than an indexed
organization +file or a START statement KEY phrase
references a data item not aligned on the declared key’s
leftmost byte

RECORD REQUIRED
Context requires record name.

REDEF INES

REDEFINES given within an OCCURS or not redefining the
last allocated item.

MODEL I/111 COBOL User’s Guide = 12 - (RSCOBOL. 1. 3)

REDEFINES ERROR
The referenced data-name redefines an item which does
not have the same number of character positions and is
not level 01,

REFERENCE INVALID
Reference given is not valid in context.

RELATION
Operands of relation test are incompatible

RELATIVE KEY
Relative key declared for other than a rTelative
organization file or a B8TART statement KEY pharase
references a data item other than the declared key.

RESERVED WORD CONFLICT
A COBOL reserved word or symbol is given where a user
word is rTeguired. In the summary this is only a warning
about an ANSI COBOL reserved word that is not an
implemented COBOL reserved word.

SCAN RESUME
Warning only. Scanning was terminated at previocus error
message and resumes at undermarked character.

SECTION CLASH
A VALUE IS <clause appears in the FILE or LINKAGE

section.

SEGMENT
Warning only. Segment number given in an independent
segment is not the same as the current segment or the
number of a new independent segment. The current
segment number is used.

SEPARATOR
Warning only. Redundant punctuation or a separator is
not followed by the required space

SIGN
SIGN clause given in conflict with usage and picture.

SIZE
Warning only. Size of data referenced not correct for
context.

SIZE ERROR
Declared size of record conflicts with present
reference.

SUBSCRIPT

Incorrect number of subscripts or indices for a
reference.

MODEL I/I11 COBOL User‘s Guide - 13 - (RSCOBOL. 1. 3)

SYNC
Synchronized clause given for a group item

SYNTAX
Incorrect character or reserved word given for context

UNDEF INED
File referenced in FD entry was not defined

UNDEFINED DECLARATIVE PROCEDURE
A declarative statement references a procedure not
defined within the DECLARATIVES.

UNDEF INED PROCEDURE
A GO TO statement references an undefined or incorrectly
qualified paragraph.

USE REQUIRED
A DECLARATIVES section must begin with a USE statement.

USING COUNT
Warning only. The item count in the USING list of a
CALL statement 1is different from that of the first
reference to the same program name.

VALUE ERROR
Value given in VALUE IS required truncation of nonzero
digits.

VALUE
VALUE IS <clause given in conflict with other declared
attributes.

VARIABLE RECORD
Warning only. The INTO phrase 1is not allowed with
variable size records.

MODEL 1/111 COBOL User’s Guide - 14 - (RSCOBOL. 1. 3)

—

CHAPTER 2

THE COBOL RUNTIME

2.1 Runtime Overview

The COBOL runtime operates on a 48K byte TRS-80 Model I or Model
ITTI M™Microcomputer with at 1least two disk drives under the
appropriate TRSDOS Operating System. (Model I -~ wversion 2 3,
Model III - wversion 1.1).

Once invoked. the runtime 1loads and executes the compiled object
program, auvtomatically loading any required segments,
Concurrently. it allocates memory for file buffers, and CALLed
COBOL and Assembly Language subprograms. Upon completion

appropriate messages are displayed and control is returned to the
operating system.

2.2 Device Assignments
All communication between Runtime and the User is through the
keyboard and display.

During operation the Runtime will require one or more of the
following devices:

Keyboard & Display runtime command input. Interactive Debug
command input, and rTuntime messages.

Keyboard % Display ACCEPT and DISPLAY, and Interactive Debug

display.
Printer PRINT output, if required.
NOTE: For PRINT output, the device name

"PRINTER" must be specified in the
SELECT statement; i.e,

SELECT filename, ASSIGN to PRINT, "PRINTER".

MODEL I/III COBOL User’s Guide - 15 - (RSCOBOL 1. 3)

2.3 Executing the Compiled Program

To execute

a compiled COBOL object program, issue the following

command to TRSDOS:

where:

filespec

options

RUNCOBOL filespec f{options) comment

is the specification of the compiled COBOL obgject file
to be executed of the form:

filename/ext. password: d
‘filename’ is required.

‘/ext’ is an optional name—-extension. When omitted the
default ‘/COB’ is used.

‘. password’ is an optional password. Note: If the file
was created with a nanblank password, ‘. password’
becomes a required field.

‘:d’ is an optional drive specification. When omitted
the system does an auvtomatic search, starting with drive
0.

allows the user to specify runtime options. Each option
must be specified as shown below, separated by spaces.
The left and right parenthesis are required 1if any
comments are present.

When no options are specified, the runtime will execute
the User‘s program without Interactive Debug, with all
switches set to O, using all of available memory

MODEL I1/I111 COBOL User’s Guide - 16 - (RSCOBOL. 1. 3)

2.3.1 Runtime Options

D
‘D’ invokes the RSCOBOL Interactive Debug package. See
RSCOBOL Interactive Debug discussion, below. for
operating instructions.
The default is not to invoke Interactive Debug.

S=nn..n
‘S’ sets (or resets) the value of SWITCHES in the COBOL
program.
Each ‘n’ is a switch wvalvue, O for off, 1 for on,
numbered 1 to 8. left to right. Trailing zeroes need
not be specified.
The default is to set all switches off (0).

T=hhhh

‘T’ sets the top of available memory to a value
different from the highest available address. This is
used to protect assembly language user subroutines, all
of which must be created to load above the hexadecimal
address ‘hhhh”’.

The default is to use all available memory.

2.3.2 Runtime Messages

Messages which rteport the runtime’s status, or its ability to
execute the COBOL program: are reported on the system display as
they are detected.

TRS-B0O Model I/III COBOL Runtime (RM/COBOL ver v.r1)
Copyright 1980 by Tandy Corp. Licensed from Ryan-McFarland Corp
Indicates that the runtime has been loaded and has begun to

execute the specified program. ‘ver v.7’ identifies the
version (v) and revision (r) level of the runtime.

MODEL I/I11 COBOL User’s Guide — 17 - (RSCOBOL. 1. 3)

COBOL STOP RUN AT xxyyyy IN nnnnnn
This is the normal termination message of a program.

‘xxyyyy’ identifies the overlay (xx) and statement address
{yyyy) where the program terminated. ‘nannnn’ are the first
s5ix characters of the PROGRAM-ID.

If Debug was invoked on the command 1line, an ‘S’ Debug
command may be vused to cause Debug to exit to the operating
system.

COBOL STOP literal AT xxyyyy IN nnnnnn
CONTINUE (Y/N)7?

This message indicates that a STOP ‘literal’ statement has
been encountered. ‘xxyyyy’ identifies the overlay (zxx) and
statement address (yyuyy) where the program terminated
‘nnnnnn’ are the first six characters of the PROGRAM-ID.

Responding with a ‘Y’ will be the equivalent of a “pause"
statement, returning control to the next COBOL statement.

An ‘N’ response will cause all program files to be closed and
control will be returned to the operating system.

2.3 3 Examples

RUNCOBOL PAYROLL (S=1011)

locates, loads, and executes the compiled COBOL program
PAYROLL/COB; and sets the value of SWITCHES 1, 3, and 4 ‘on’,
all others ‘off’.

RUNCOBOL MDRTGAGE/TST:2 (D)

loads .the <compiled COBOL program MORTGAGE/TST from drive 2
along with the Interactive Debug package. Control is passed
directly to Debug.

RUNTIME ERROR., NO: nnnn

an internmal error has occurred which prevents continued
execution. The wvalue of ‘nnnn’ identifies +the condition
which caused the error.

0010 Unable to locate or load User Debug
Install RSCBLDvr as described in the chapter on
‘Installation Procedures’.

MODEL I1/111 COBOL User’s Guide - 18 - (RSCOBOL 1. 3)

0020 Invalid TRSDOS

Execution was attempted under an incorrect version of
TRSDOS Order correct version of TRSDOS.

Required TRSDOS versions are:

Model I - 1.

1
Model III 2. 3

2. 4 Runtime Diagnostics

Diagnostic messages are display if an internal error occurs, or if
an I/0 error occurs that was not, or could not, be processed by an
appropriate USE procedure.

If Debug was invoked, Debug will be entered to allow examination
of program data valves; ptherwise, control will return to the
operating system.

COBOL error AT xxyyyy IN nnnnnn

Indicates an internal error condition has occurred, where

‘error’ identifies the error condition. ‘xxyyyy’ identifies
the overlay (xx) and statement address {(yyyy) where the
program terminated. ‘nnnnnn’ are the first six characters of

the PROGRAM-ID.

COBOL filename IO ERROR = cc AT xxyyyy IN nnnnnn

Identifies that an abnormal I/0 condition, ’‘cc’ has caused

the program to be aborted. ‘xxyyyy’ identifies the overlay
(xx) and statement address {yyyy) where the program
terminated. ‘nnnnnn’ are the first & characters of the
PROGRAM-ID.

The 1I/0 errer ‘cc’ has a different meaning depending on
whether the file’s organization 1is sequential, relative or
indexed.

Sequential Files:

10 AT END.
The sequential READ statement was unsuccessfully executed
as a result of an attempt to read a record when no next
logical record exists in the file.

MODEL I/I11 COBOL User’s Guide - 19 - (RSCOBOL 1.3

30

34

90

91

Q2

?3

94

95

PERMANENT ERROR.

The input—output statement was unsuccessfully executed as
the result of an input-output error. such as data check
parity error, or transmission error. May also indicate
attempted execution of an instruction not implemented in
the runtime (REWRITE to a variable length record (VLR)
file; CLOSE REEL). May also indicate that no more space
is available on the disk.

PERMANENT ERROR BOUNDARY VIOLATION.
The input—-output statement was unsuccessfully executed as
the result of a boundary violation for a sequential file.

INVALID OPERATION.

An attempt has been made to execute a READ, WRITE, or
REWRITE statement that conflicts with the current open
mode or a REWRITE statement was not preceded by a
successful READ statement.

FILE NOT OPENED.

An attempt has been made to execute a DELETE, READ.
START, UNLLOCK, WRITE, REWRITE or CLOSE statement on a
file which is not currently open.

FILE NOT CLOSED.
An attempt has been made to execute an OPEN statement on
a file which is currently open.

FILE NOT AVAILABLE.
An attempt has been made to execute an OPEN statement for
a file closed with LOCK.

INVALID OPEN.

An attempt has been made to execute an OPEN statement for
a file with no external correspondence or a file having
inconsistent parameters.

INVALID DEVICE.

An attempt has been made to execute a CLOSE REEL
statement. or to execute an OPEN statement for a file
which is assigned to a device in conflict with the

externally assigned device. Valid combinations are:
Program Assignment External Assignment
RANDOM Disk
INPUT Disk
QUTPUT Disk
PRINT Disk, line printer
INPUT-0QUTPUT Disk

MODEL 1I/II1I COBOL User’s Guide - 20 - ({RSCOBOL 1. 3)

6

97

UNDEFINED CURRENT RECORD POINTER STATUS.

An attempt has been made to execute a READ statement
after the occurrence of an unsuccessful READ statement
without an intervening successful CLOSE and OPEN.

INVALID RECORD LENGTH.

An attempt has been made to execute a REWRITE statement
when the new record length is different from that of the
record to be rewritten, or to OPEN & file that was
defined with a maximum Tecord length different from the
externally defined maximum record length, or to execute a
WRITE statement that specifies a rtecord with a length
smaller than the minimum or larger than the maximum
record size.

Relative and Indexed Files:

10

21

22

30

90

AT END.

The Format 1 READ statement was unsuccessfully executed
as a result of an attempt to read a record when no next
logical record exists in the file

SEQUENCE ERROR FOR A SEQUENTIALLY ACCESSED INDEXED FILE.
The ascending sequence requirement of successive record
key values has been violated or the record key value has
been changed by the COBOL program between the successful
execution of a READ statement and the execution of the
next REWRITE statement for that file.

DUPLICATE KEY VALUE.

An attempt has been made to WRITE a record that would
create a duplicate key on a file that does not allow
duplicates.

NO RECORD FOUND
An attempt has been made to access a record, identified
by a key, and that record does not exist in the file

BOUNDARY VIOLATION.
An attempt has been made to WRITE beyond the
externally—defined boundaries of a file.

PERMANENT ERROR.

The input—-output statement was unsuccessfully executed as
the result of an input-ocutput error, such as data check,
parity error, or transmission error. May also indicate
that no more space is available on the disk.

INVALID OPERATION.

An attempt has been made to execute a DELETE, READ,
REWRITE, START, or WRITE statement which conflicts with
the current open mode of the file or a sequential access
DELETE or REWRITE statement not preceded by a successful
Tead statement.

MODEL I/III COBOL User’s Guide - 21 - (RSCOBOL. 1. 3)

MODEL

91

FILE NOT OPENED.

An attempt has been made to execute a CLOSE, DELETE,
READ, REWRITE, START, UNLOCK, or WRITE statement on a
file which is not in an open mode.

92 FILE NOT CLOSED.
An attempt has been made to execute an OPEN statement on
a file that is currently open.

93 FILE NOT AVAILABLE.
An attempt has been made to execute an OPEN statement on
a file closed with LOCK.

94 INVALID OPEN.
An attempt has been made to execute an OPEN statement for
a file with no external correspondence or a +file having
inconsistent parameters.

95 INVALID DEVICE.
An attempt has been made to execute an OPEN statement on
a file whose device description conflicts with the
externally assigned device. The device must be RANDOM
and the external correspondence must be a disk.

96 UNDEFINED CURRENT RECORD POINTER.
An attempt has been made to execute a Format 1 READ
statement when the current record pointer has an
undefined state. This can occur only as the result of a
preceding unsuccessful READ or START statement.

97 INVALID RECORD LENGTH.
An attempt has been made to execute a REWRITE statement
and the new record length is different from that of the
record to be rtewritten, or to OPEN a file that was
defined with a maximum record length different from the
externally defined maximum record length, or to execute a
WRITE statement that specifies a record with a length
smaller than the minimum or larger than the maximum
record size.

98 INVALID INDEX.
An input-output statement on an indexed organization file
was unsuccessful as a result of invalid data in the
index. This can result if the externally assigned file
is not an index organization file or if an undetected
input—-output error has occurred.

1,111 COBOL User’s Guide - 22 - (RSCOBOL 1. 3)

2.5 File System Considerations

Three types of files are supported by the COBOL Runtime:
sequential, Telative (random), and indexed sequential. These
files exist on the disk as standard TRSDOS disk files. While the
user will not +typically need +file information to execute COBOL
programs, he is referred to the Technical Information Section of
the Disk Operating System Reference Manval if further information
ig desired.

Files are specified in the wuser’s program BSELECT statement
according to rules for the TRSDOS filespec:. of the form:

filename/ext. password: d
where:
‘#ilename’ is required.
‘/ext’ is an optional name—extension.
‘. password’ is an optional password. Note: If the file

was created with a nonblank password, ‘. password’
becomes a required field.

:d’ is an optional drive specification. When omitted
the system does an automatic search, starting with drive
0.

2.5 1 COBOL Sequential Files

COBOL sequential files <consist of a serially accessible set of
‘logical’ records. These ‘logical’ records can exist on the disk
in either of two forms; ‘variable’ or ‘fixed’

‘variable’ records are identified in the File Description Entry

(FD) by specifying "RECORD CONTAINS n TO m CHARACTERS". ‘fixed’
Tecords are identified by specifying RECORD CONTAINS n
CHARACTERS". The wuser is cautioned to maintain a consistent

specification among all programs referring to the same file.

‘variable’ records contain a one byte length field at the
beginning of each record, followed by the actual data bytes. The
record length can vary from record to record. The second length
byte indicates the entire length of the record, including the
length byte. This can be any value from 2 to 255. This format is
stored on the disk as one byte records {(LRL=1).

‘fixed’ records are all of the same length and do not contain a
length byte. These files exist on the disk as standard TRSDOS
fixed length records of length (LRL=) 1 to 255 characters.

MODEL I/III COBOL User’s Guide - 23 - (RECOBOL 1. 3)

2. 5.2 COBOL Relative Files

COBOL relative files are addressable randomly by ‘logical’ record
number. These files exist on the disk as fixed length records.

COBOL. relative file ‘logical’ records are internally formatted,
and can be <created and/or accessed only by COBBL programs. Each
‘logical’ record can have a maximum length of 253 bytes.

COBOL relative files are dynamically allocated or extended as
required by TRSDOS.

2.5 3 COBOL Indexed Files

COBOL indexed +files are created and maintained by the COBOL
Tuntime; implemented on the disk wsing TRSDOS fixed length records
of 254 bytes.

COBOL indexed files are internally formatted, and can be created
and/or accessed only by COBOL programs. Each ‘logical’ record can
have a maximum length of 4094 bytes.

Indexed files contain an index structure for each key specified
interspersed with the data records. The use of ALTERNATE KEYS can
cause a geometric increase in the time required to create the
file; however, access time will be relatively constant throughout
the file.

COBOL indexed files are dynamically allocated or extended as
Tequired by TRSDOS. The calculation below provides an
approximation for the file space required for a given file:
NRECS = Int ((§ + 33)/32) # R / 8
+ (R # 2) / Int (252/(Kn+8)) for each key
+ (R # D) /8 if duplicates
where:
= maximum number of records desired
= gize of records (in bytes)

R

S

Kn = size of Kn {(in bytes)

D number of keys that allow duplicates

MODEL 1/1I1 COBOL User’s Guide - 24 - (RSCOBOL 1. 3)

2.5 4 COBOL Label Processing

The COBOL language allows the specification of the existance, and
processing, of Label records on file type devices

TRSDOS provides auvtomatic maintenance and validation of file
specifications by name and file type. No additional Label
processing is performed unique to COBOL programs or files

References to Label processing in the file description entry (FD),
OPEN statement. and CLOSE statement, are checked for correct
syntax by the compiler. They are largely ignored by the runtime
except that appropriate error codes will be returned, and any
applicable USE procedures will be executed

2.4 Runtime Memory Usage

The TRSDOS Operating System occupies lower memory from location
0000H to O5200H. The COBOL Runtime is loaded starting at 05200H.
The remaining memory is allocated as follows:

The main COBOL object program is loaded immediately behind
the COBOL Runtime. Space for COBOL overlays (SECTIONS
greater than 50) are included in this area.

Additional COBOL programs are loaded behind this main program
as they are CALLed (See the CALL statement below).

Assembly Language programs are loaded in high memory at the
address they were assigned at ‘DUMP’ time (See Runtime
‘T=hhhh’ option).

File buffers are dynamically allocated from high memory
downward, when OPENed, deallocated (space rTecovered for use
by other files) when CLOSEd.

MODEL I/I11 COBOL User’s Guide - 25 - (RSCOBOL. 1. 3)

CHAPTER 3

INTERACTIVE DEBUG

3.1 Debug Overvieuw

COBOL Interactive Debug is dynamically losded when the user
specifies the ‘D’ option on the RUNCOBOL statement. Debug is then
given control and supervises the execution of the user’s program.

Interactive Debug is loaded directly behind COBOL Runtime,
requiring approximately 1000 bytes.

3.2 User Interaction and Display
All Debug commands, and all resultant displays, are through the
system console.
Debug will request command input by a prompt of the form

nNNNNN XXYyyyy
where ‘nnnnnn’ are the first 6 characters of PROGRAM-ID, ‘xx’ is
the overlay number, and ’‘yyyy’ is the hexadecimal location within

the specified overlay that will be executed next

The values of ‘xx’ and ‘yyyy’ are taken directly from the Debug
column in the source listing for program ‘nnnnnn’.

3.3 Debug Commands

All commands are specified by a single character., optionally
followed by one or more arguments. Optional fields are shoun
surrounded by brackets; the brackets are never entered. All

numeric arguments are in hexadecimal unless otherwise noted

Invalid commands will be rejected with ‘ERROR’ displayed;
corrected input will be requested with a reprompt

ALxxJyyyyl: nnnnnnl Address stop.

Executes object instructions wuntil overlay number ‘xx’ and
location ‘yyyy’ in program nnnnnn is to be executed. Debug
will regain control immediately prior to the execution of the
specified COBOL sentence, and request further command input

MODEL I/III COBOL User’s Guide — 26 — (RSCOBOL. 1. 3)

|
IDENTIFIER 4
Identifier rTeference is incorrectly constructed or the
identifier has an invalid or double definition.

ILLEGAL ALTER
An ALTER statement references an unalterable paragraph
or violates the rules of segmentation.

ILLEGAL. PERFORM
A PERFORM statement reference undefined or incorrectly
qualified paragraph or the reference violates the rules
of segmentation.

INVALID ID
The referenced identifier was not successfully defined.

INVALID PARAGRAPH
Context does not allow section name.

JUSTIFY
JUSTIFY clause given in conflict with other attributes.

KEY REQUIRED
Relative key not declared for random access relative
file or record key not declared for indexed file

LABEL
Presence or absence of label record conflicts with
device standards.

LEVEL
Level-number given is invalid either intrinsically or
becauvuse of position within a group

L INKAGE

An identifier in the USING clause of the PROCEDURE title
is not a linkage item or a statement references a

linkage item not subordinate to an identifier in the
USING clause of the PROCEDURE title.

LITERAL VALUE
Literal value given is incorrect in context

MOVE
Operands of MOVE verb specify an invalid move

MUST BE INTEGER
Context requires decimal integer.

MUST BE PROCEDURE
Context requires procedure name either as reference or
definition, or the reference must be a nondeclarative
procedure-name.

MODEL I/III COBOL User’s Guide — 11 - (RSCOBOL 1. 3)

MUST BE SECTION
Context requires procedure-name to be section.

NESTING
Illegal nesting of condition that is not an 1IF
condition.

NOT IN REDEFINE
VALUE IS clause given in REDEFINES item.

OCCURS
OCCURS clause given at invalid level or after three have
been given for the same item.

OCCURS DEPENDING ERROR
The referenced object of a DEPENDING phrase has not been
defined correctly.

OCCURS—-VALUE CLASH
VALUE IS5 and OCCURS in effect for the same item.

PICTURE
Invalid PICTURE syntax.

PICTURE-BWZ CLASH
Zero suppression and BLANK WHEN ZERO cannot be in effect
for the same item.

PICTURE~USAGE CLASH

USAGE «clause or implied wusage conflicts with wusage

implied by picture.

PROCEDURE INDEPENDENCE
PERFORM given for procedures in independent segments not
in the current segment.

PROGRAM OVERFLOW
The instruction area is larger than 327467 bytes in
length.

RECORD KEY
Record key declared for other than an indexed
organization +file or a START statement WKEY phrase
references a data item not aligned on the declared key’s
leftmost byte.

RECORD REQUIRED
Context requires record name.

REDEF INES
REDEFINES given within an OCCURS or not redefining the
last allocated item.

MODEL I/III COBOL User’s Guide - 12 - (RSCOBOL. 1. 3)

REDEFINES ERROR
The referenced data—-name redefines an item which does
nat have the same number of character positions and is
not level O1.

REFERENCE INVAL.ID
Reference given is not valid in context.

RELATION
Operands of relation test are incompatible

RELATIVE KEY
Relative key declared for other than a relative
prganization file or a BSTART statement KEY pharase
references a data item other than the declared key.

RESERVED WORD CONFLICT
A COBOL reserved word or symbol is given where a user
word is required. In the summary this is only a warning
about an ANSI COBOL reserved word that 1is not an
implemented COBOL reserved word.

SCAN RESUME
Warning only. Scanning was terminated at previocus error
message and resumes at undermarked character.

SECTION CILLASH
A VALUE IS clause appears in the FILE or LINKAGE

section.

SEGMENT
Warning only. Segment number given in an independent
segment is not the same as the current segment or the
number of a new independent segment. The current
segment number 1s used.

SEPARATOR
Warning only. Redundant punctuation or a separator is
not followed by the required space.

SIGN
S5IGN clause given in conflict with usage and picture.

SIZE
Warning only. Size of data referenced not correct for
context.

SIZE ERROR
Declared size of record conflicts with present
reference.

SUBSCRIPT

Incorrect number of subscripts or indices for a
Treference.

MODEL I/III COBOL User’s Guide - 13 - (RSCOBOL. 1. 3)

SYNC
Synchronized clause given for a group item

SYNTAX
Incorrect character or reserved word given for context

UNDEF INED
File referenced in FD entry was not defined.

UNDEFINED DECLARATIVE PROCEDURE
A declarative statement references a procedure not
defined within the DECLARATIVES.

UNDEF INED PROCEDURE
A GO TO statement references an undefined or incorrectly
qualified paragraph.

USE REQUIRED
A DECLARATIVES section must begin with a USE statement.

USING COUNT
Warning only. The item count in the USING list of a
CALL statement 1is different from that of the first
reference to the same program name.

VALUE ERROR
Value given in VALUE IS required truncation of nonzero
digits.

VALUE

VALUE IS <clause given in conflict with other declared
attributes.

VARIABLE RECORD
Warning only. The INTO phrase 1is not allowed with
variable size records.

MODEL I/II1 COBOL User’s Guide — 14 - (RSCOBOL. 1. 3)

—

CHAPTER 2

THE COBOL RUNTIME

2.1 Runtime Overvieuw

The COBOL runtime operates on a 48K byte TRS5-BO Model I or Model
IITI Microcomputer with at 1least two disk drives wunder the
appropriate TRSDOS Operating System. {Model I - wversion 2. 3,
Model III - version 1.1).

Once invoked, the Tuntime 1loads and executes the compiled object

program, sutomatically loading any required segments.
Concurrently, it allocates memory for +file buffers, and CALLed
CORBROL and Assembly Language subprograms. Upon completion

appropriate messages are displayed and control is returned to the
operating system.

2.2 Device Assignments
All communication between Runtime and the User 1is through the
keyboard and display.

During operation the Runtime will require one or more of the
following devices:

Keyboard & Display runtime command input, Interactive Debug
command input, and runtime messages.

Keyboard & Display ACCEPT and DISPLAY, and Interactive Debug

display.
Printer PRINT output:. if required.
NOTE: For PRINT output, the device name

"PRINTER" must be specified in the
SELECT statement; i. e,

SELECT filename, ASS5IGN to PRINT, "PRINTER".

MODEL I/III COBOL User’s Guide — 15 - (RSCOBOL 1. 3)

2.3 Executing the Compiled Program

To execute

a compiled COBOL object program, issue the following

command to TRSDOS:

where:

filespec

options

RUNCOBOL filespec (options) comment

is the specification of the compiled COBOL object file
to be executed of the form:

filename/ext. password: d
‘filename’ is required.

‘/ext’ is an optional name-extension. When omitted the
default ‘/C0OB’ is used

‘. password’ is an optional password. Note: If the file
was created with & nonblank password, ‘. password’
becomes & required field.

‘:d’ is an optional drive specification. When omitted
the system does an avtomatic search, starting with drive
0.

allows the user to specify runtime options. Each option
must be specified as shown below, separated by spaces
The left and rtight parenthesis are required if any
comments are present.

When no options are specified, the runtime will execute
the User’s program without Interactive Debug, with all
switches set to 0, using all of available memory

MODEL I/II1I COBOL User’s Guide - 16 - {RSCOBOL. 1. 3)

2.3.1 Runtime Options

D
‘D’ invokes the RSCOBOL Interactive Debug package. See
RSCOBOL Interactive Debug discussion, below for
operating instructions.
The default is not to invoke Interactive Debug

S=nn..n
‘S’ sets (or resets) the value of SWITCHES in the COBOL
program.
Each ‘n’ is a switch value, O for off, 1 for on,
numbered 1 to B8, left to right. Trailing zeroes need
not be specified.
The default is to set all switches off (0).

T=hhhh

‘T’ sets the top of available memory to a wvalue
different from the highest available address. This is
used to protect assembly language user subroutines, all
of which must be created to load above the hexadecimal

address ’‘hhhh’

The default is to use all available memory.

2.3.2 Runtime Messages

Messages which report the runtime’s status, or its ability to
execute the COBOL program, are reported on the system display as
they are detected.

TRS-80 Model I/III COBOL Runtime (RM/COBOL ver v.r7T)
Copyright 1980 by Tandy Corp. Licensed from Ryan—-McFarland Corp

Indicates that the runtime has been loaded and has begun to

execute the specified program. ‘ver v. 1’ identifies the
version (v) and revision {(r) level of the runtime.

MODEL I/III COBOL User’s Guide - 17 - (RSCOBOL. 1. 3)

COBOL STOP RUN AT xxyyyy IN nnnnnn
This is the normal termination message of a program.

‘xxyyyy’ identifies the overlay (xx) and statement address
(yyyy) where the program terminated. ‘nnnnnn’ are the first
six characters of the PROGRAM-ID.

I# Debug was invoked on the command line, an ‘S’ Debug
command may be wsed to cause Debug to exit to the operating
system.

COBOL STOP literal AT xxyyyy IN nnnnnn
CONTINUE (Y/N)?

This message indicates that a &8TOP ‘literal’ statement has
been encountered. ‘xxyyyy’ identifies the overlay (xx) and
statement address (yyyy) where the program terminated

‘nnnnnn’ are the first six characters of the PROGRAM-ID.

Responding with & ‘Y’ will be the equivalent of a "pause"
statement, returning control to the next COBOL statement

An ‘N’ tesponse will cause all program files to be closed and
control will be returned to the operating sustem.

2.3 3 Examples

RUNCOBOL PAYROLL (S=1011)

locates, loads, and executes the compiled COBOL program
PAYROLL./COB; and sets the value of SWITCHES 1, 3, and 4 ‘on’,
all others ‘off’.

RUNCOBOL MORTGAGE/TST: 2 (D)

loads .the compiled COBOL program MORTGAGE/TST from drive 2
along with the Interactive Debug package. €Control is passed
directly to Debug.

RUNTIME ERROR, NO: nnnn
an internal error has occurred which prevents continued

execution. The value of ‘nnnn’ identifies the condition
which caused the error.

0010 Unable to locate or load User Debug
Install RSCBLDvr as described in the chapter on
‘Installation Procedures’

MODEL I/III COBOL User‘s Guide — 18 - ({RSCOBOL. 1. 3)

0020 1Invalid TRSDOS

Execution was attempted under an incorrect version of
TRSDOS Order correct version of TRSDOS.

Required TRSDOS versions are:

Model I - 1.

1
Model III 2.3

2.4 Runtime Diagnostics

Diagnostic messages are display if an internal error occurs, or if
an I/0 error occurs that was not, or could not, be processed by an
appropriate USE procedure.

If Debug was invoked: Debug will be entered to allow examination
of program data values; otherwise, contreol will rteturn to the
operating system.

COBOL. error AT xxyyyy IN nnnnnn

Indicates an internal error condition has occurred, where

‘error’ identifies the error condition. ‘xxyyyy’ identifies
the overlay (xx) and statement address {(yyyy) where the
program terminated. ‘nnnnnn’ are the first six characters of

the PROGRAM~-ID.

COBOL ¢filename I0 ERROR = cc AT xxyyyy IN nnnnnn

Identifies that an abnormal I1/0 conditiaon, ‘cc’ has caused

the program to be aborted. ‘xxyyyy’' identifies the overlay
{xx) and statement address {yyyy) where the program
terminated. ‘nnnnnn’ are the first & characters of the
PROGRAM—-ID.

The 1/0 error ‘cc’ has a different meaning depending on
whether the file’s organization is sequential, relative or
indexed.

Sequential Files:

10 AT END.
The sequential READ statement was unsuccessfully executed
as a result of an attempt to read a record when no next
logical record exists in the file

MODEL I/III COBOL User’s Guide - 19 - (RSCOBOL 1. 3)

30

34

90

91

92

93

94

95

PERMANENT ERROR.

The input-output statement was unsuccessfully executed as
the result of an input-output error. swch as data check
parity error, or transmission error. May also indicate
attempted execution of an instruction not implemented in
the runtime (REWRITE to & variable length record (VLR)
file; CLOSE REEL). May also indicate that no more space
is available on the disk.

PERMANENT ERROR BOUNDARY VIOLATION.
The input-output statement was unsuccessfully executed as
the result of a boundary violation for a sequential file.

INVALID OPERATION.

An attempt has been made to execute a READ, WRITE, or
REWRITE statement that conflicts with the current oapen
mode or a REWRITE statement was not preceded by a
successful READ statement.

FILE NOT OPENED.

An attempt has been made to execute a DELETE, READ.
START, UNLOCK, WRITE. REWRITE or CLOSE statement on a
file which is not currently open.

FILE NOT CLOSED.
An attempt has been made to execute an OPEN statement on
a file which is currently open.

FILE NOT AVAILABLE.
An attempt has been made to execute an OPEN statement for
a file closed with LOCK.

INVALID OPEN.

An attempt has been made to execute an OPEN statement for
a file with no external correspondence or a file having
inconsistent parameters.

INVALID DEVICE.
An attempt has been made to execute a CLOSE REEL

statement, or to execute an OPEN statement for a file
which is assigned to a device in conflict with the
externally assigned device. Valid combinations are:
Program Assignment External Assignment

RANDOM Disk

INPUT Disk

QUTPUT Disk

PRINT Disk, line printer

INPUT-OUTPUT Disk

MODEL I/I11 COBOL User’s Guide — 20 - (RSCOBOL 1. 3)

96

7

UNDEFINED CURRENT RECORD POINTER STATUS.

An attempt has been made to execute a READ statement
after the occurrence of an unsuccessful READ statement
without an intervening successful CLOSE and OPEN.

INVALID RECORD LENGTH.

An attempt has been made to execute a REWRITE statement
when the new record length is different from that of the
record to be rewritten, or to OPEN a file that was
defined with a maximum record length different from the
externally defined maximum record length, or to execute a
WRITE statement that specifies a record with a length
smaller than the minimum or larger than the maximum
record size.

Relative and Indexed Files:

10

21

22

30

90

AT END.

The Format 1 READ statement was unsuccessfully executed
as a result of an attempt to read & record when no next
logical record exists in the file

SEQUENCE ERROR FOR A SEQUENTIALLY ACCESSED INDEXED FILE.
The ascending sequence tTequirement of successive record
key values has been violated or the record key value has
been changed by the COBDL program between the successful
execution of a READ statement and the execution of the
next REWRITE statement for that file

DUPLICATE KEY VALUE.

An attempt has been made to WRITE & record that would
create a duplicate key on a file that does not allow
duplicates.

NO RECORD FOUND.
An attempt has been made to access a record, identified
by 2 key, and that record does not exist in the file

BOUNDARY VIOLATION,
An attempt has been made to WRITE beyond the
externally—defined boundaries of a file.

PERMANENT ERROR.

The input—-output statement was unsuccessfully executed as
the result of an input-output error, such as data check,
parity error, or transmission error. May also indicate
that no more space is available on the disk

INVALID OPERATION.

An attempt has been made to execute a DELETE, READ,
REWRITE, START, or WRITE statement which conflicts with
the current open mode of the file or a sequential access
DELETE or REWRITE statement not preceded by a successful
Tread statement.

MODEL I/I11 COBOL User’s Guide - 21 - (RSCOBOL 1. 3)

MODEL

?1

93

94

95

96

7

98

FILE NOT OPENED.

An attempt has been made to execute a CLOSE, DELETE,
READ, REWRITE, START, UNLOCK, or WRITE statement on a
file which is not in an open mode

FILE NOT CLOSED.
An attempt has been made to execute an OPEN statement on
a file that is currently open.

FILE NDT AVAILABLE.
An attempt has been made to execute an OPEN statement on
a file closed with LOCK.

INVALID OPEN.

An attempt has been made to execute an OPEN statement for
a file with no external correspondence or a #file having
inconsistent parameters.

INVALID DEVICE.

An attempt has been made to execute an OPEN statement on
a file whose device description conflicts with the
externally assigned device. The device must be RANDOM
and the external correspondence must be a disk.

UNDEFINED CURRENT RECORD POINTER.

An attempt has been made to execute a Format 1 READ
statement when the current rtecord pointer has an
undefined state. This can occur only as the result of a
preceding unsuccessful READ or START statement.

INVALID RECORD LENGTH.

An attempt has been made to execute a REWRITE statement
and the new rtecord length is different from that of the
record to be rewritten, or to OPEN a file that was
defined with a maximum record length different from the
externally defined maximum record length:. or to execute a
WRITE statement that specifies a rtecord with a length
smaller than the minimum or 1larger than the maximum
record size.

INVALID INDEX.

An input-output statement on an indexed organization file
was unsuccessful as a result of invalid data in the
index. This can result if the externally assigned file
is not an index organization file or if an undetected
input-output error has occurred.

I/111 COBOL User’s Guide - 22 ~ (RSCOBOL. 1. 3)

2.5 File System Considerations

Three types of files are supported by the COBOL Runtime:
segquential, relative (random), and indexed sequential. These
files exist on the disk as standard TRSDOS disk files. While the
user will not typically need file information to execute COBOL
programs, he is referred to the Technical Information Section of
the Disk Operating System Reference Manual if further information
is desired.

Files are specified in the wuser’s program SELECT statement
according to rules for the TRSDOS filespec, of the form:

filename/ext. password: d
where:
‘filename’ is Tequired.
‘/ext’ is an optionmal name—extension.
‘. password’ is an optional password. Note: If the file

was created with a nonblank password, ‘. password’
becomes a required field

‘:d’ is an optional drive specification. When omitted
the system does an automatic search, starting with drive
0.

2.5 1 COBOL Sequential Files

COBOL sequential files consist of a serially accessible set of
‘logical’ records. These ’‘logical’ records can exist on the disk
in either of two forms; ‘variable’ or ‘fixed’.

‘variable’ records are identified in the File Description Entry

(FD) by specifying "RECORD CONTAINS n TO m CHARACTERS". ‘fixed’
Tecords are identified by specifying RECORD CONTAINS n
CHARACTERS". The wuser 1is cautioned to maintain a consistent

specification among all programs referring to the same file

‘variable’ records contain a one byte 1length field at the
beginning of each record. followed by the actual data bytes. The
record length can vary from record to record. The second length
byte 1indicates the entire length of the rtecord, including the
length byte. This can be any value from & to 255 This format is
stored on the disk as one byte records (LRL=1).

‘fixed’ records are all of the same length and do not contain a
length byte. These files exist on the disk as standard TRSDOS
fixed length records of length (LRL=) 1 to 255 characters

MODEL I/III COBOL User’s Guide - 23 - {RSCOBOL. 1. 3)

2.5 2 COBOL Relative Files

COBOL relative files are addressable randomly by ‘logical’ record
number. These files exist on the disk as fixed length records.

COBOL relative file ‘logical’ records are internally formatted.
and can be created and/or accessed only by COBOL programs. Each
‘logical’ record can have a maximum length of 253 bytes

COBOL relative files are dynamically allocated or extended as
required by TRSDOS.

2.93.3 COBOL Indexed Files

COBOL. indexed +files are created and maintained by the COBOL
runtime; implemented on the disk wusing TRSDOS fixed length records
of 2546 bytes.

COBOL indexed files are internally formatted, and can be created
and/or accessed only by COBOL programs. Each ‘logical’ record can
have a maximum length of 4096 bytes.

Indexed files contain an index structure for each key specified
interspersed with the date records. The use of ALTERNATE KEYS can
cause a geometric increase in the time ~required to create the
file; however: access time will be relatively constant throughout
the file.

COBOL indexed +files are dynamically allocated or extended as
required by TRSDOS. The calculation below provides an
approximation for the file space required for a given file:
NRECS = Int ((8 + 33)/32) # R / 8
+ (R % 2) / Int (252/(Kn+8)) for each key
+ (R ¥ D) /7 8 if duplicates
where:
maximum number of rTecords desired
size of records (in bytes)

R

=}

Kn = size of Kn (in bytes)

D = number of keys that allow duplicates

MODEL I/II1 COBOL User’s Guide — 24 - {RSCOBOL 1. 3)

2.5 4 COBOL Label Processing

The COBOL language allows the specification of the existance, and
processing, of Label records on file type devices

TRSDOS provides automatic maintenance and validation of file
specifications by neme and file type. No additional Label
processing is performed unique to COBOL programs or files.

References to Label processing in the file description entry (FD),
OPEN statement, and CLOSE statement, are checked for correct
syntax by the compiler. They are largely ignored by the runtime
except that appropriate error codes will be rTeturned, and any
applicable USE procedures will be executed

2.6 Runtime Memory Usage

The TRSDOS Operating System occupies lower memory from location
O0000H to OS5200H. The COBOL Runtime is loaded starting at O5200H.
The remaining memory is allocated as follows:

The main COBOL object program is loaded immediately behind
the COBOL Runtime. Space for COBOL overlays (SECTIONS
greater than 50) are included in this area.

Additional COBOL programs are locaded behind this main program
as they are CALLed (See the CALL statement below).

Assembly Language programs are 1loaded in high memory at the
address they were assigned at ‘DUMP‘ time (S5ee Runtime
‘T=hhhh’ option).

File buffers are dynamically allocated from high memory
downward, when OPENed, deallocated (space recovered for use
by other files) when CLOSEd.

MODEL I/II1 COBOL User’s Guide — 25 - (RSCOBOL 1. 3)

CHAPTER 3

INTERACTIVE DEBUG

3.1 Debug Overview

COBOL Interactive Debug is dynamically loaded when the wuser
specifies the ‘D’ option on the RUNCOBOL statement. Debug is then
given control and supervises the execution of the user’s program.

Interactive Debug is loaded directly behind COBOL Runtime,
requiring approximately 1000 bytes.

3.2 User Interaction and Display
All Debug commands, and all resultant displays, are through the
system console.
Debug will request command input by a prompt of the form

NANNNN XXYyyyy
where ‘nnnnnn’ are the first 6 characters of PROGRAM-ID, ‘xx’ is
the overlay number, and ‘yyyy’ is the hexadecimal location within

the specified overlay that will be executed next

The valves of ‘xx’ and ‘yyyy’ are taken directly from the Debug
column in the source listing for program ‘nnnnnn’.

3.3 Debug Commands

All commands are specified by a single character, optionally
followed by one or more arguments. Optional fields are shown
surrounded by brackets; the brackets are never entered. All
numeric arguments are in hexadecimal unless otherwise noted

Invalid commands will be rejected with ‘ERROR’ displayed;
corrected input will be requested with a reprompt
ACxxJyyyyl, nnnnnnl Address stop.
Executes object instructions wuntil overlay number ‘xx’ and
location ‘yyyy’ in program nnnnnn is to be executed. Debug

will regain control immediately prior to the execution of the
specified COBOL sentence, and request further command input

MODEL I/III COBOL User‘s Guide — 26 - (RSCOBOL 1. 3)

If “xx’ 1is specified. ‘yyyy’ must be fully four hexadecimal
digits; if ‘xx’ is not specified, then leading zeros are not
Tequired for ‘yyyy’. If nnnnnn’ is omitted, i1t 1is assumed
to be the first six characters of the program-id of the
currently executing program.

Sinl Single step sentence
Execute ‘n’ COBOL sentences and teturn to the debug monitor.
The decimal argument ‘n’ specifies the number of COBOL
sentences to be executed before returning the Debug.
Dxxxx,yyyyl, tttt] Dump by type
Display the COBOL data item starting at hexadecimal location
‘xxxx’ of decimal length ‘yyyy’ and type ‘tttt’. The values
for “xxxx’, ‘yyyy’, and ‘tttt’ are directly from the first

three columns of the allocation map. ‘tttt’ may be one of
the following:

NSU NPS

NSS ABS

NCU ANS

NCS GRP

NBS ANSE

NSE HEX (hexadecimal)

Dump Display has the format:
xxxx tttt dddd. ..
where dddd = data in the specified format
Note: Only items in the currently executing program can be
displayed. This does not include linkage items.
Q Quit Execution.

Terminate Debug and force an immediate STOP RUN. Enter ‘S’
to return to TRSDOS.

E Exit
Exit the Debugger. Continue normal execution as if the
debugger had not been invoked on the command line.
crP)

t N3

MODEL I/III COBOL User’s Guide - 27 - (RSCOBOL 1. 3)

CHAPTER 4

SYSTEM CONSIDERATIONS

4 1 The ACCEPT and DISPLAY Statements

The ACCEPT and DISPLAY statements support the transfer of data
between the keyboard and display and the User’s program data area.
These statements allow the specification of general phrases which
may not be supported on every CRT.

Phrases which are not supported will compile correctly. but will
be ignored at runtime, <causing no operation to take place. The
phrases which are not supported are:

ACCEPT. .. . HIGH, LOW, BLINK.
DISPLAY. .. HIGH, LOW, BLINK, BEEP.

The ON EXCEPTION phrase of the ACCEPT statement is executed when
an invalid character is entered. Invalid characters include the
valid control characters (CNTR/n) below O0R20H, and non-ASCII
tharacters above and including O80H.

When an invalid character is entered, its ASCI equivalent is
placed in the specified data—-name and the ON EXCEPTION phrase is
executed. To determine which control character was entered,
define the data-name as USAGE COMPUTATIONAL-1 and compare for its
ASCII value.

Certain keys affect the operation of the ACCEPT statement.
including:

~

- Erases the current character and moves the
cursor back one position.

CLEAR Backspace to the beginning of the field,
erasing a1l characters in the field.

MODEL I/III COBOL User’s Guide - 28 - (RSCOBOL 1. 3)

4.2 The CALL Statement

When ‘CAlLLed’ the first time, COBOL and Assembly Language programs
are loaded by Runtime and entered at their initial location.
These ‘called’ programs remain in memory as long as the ‘calling’
pragram is active;, i.e., has not EXITed. Therefore, subsequent
CALLs from the ‘calling’ program will enter the ‘called’ program
directly, without requiring the ‘called’ program to be reloaded

Once the ‘calling’ program has EXITed, all related “‘called’
programs are discarded and will be reloaded if subsequently CALLed
by any program, including the previous ‘calling’ program.
Regardless of the sequence of ‘called’ and ‘calling’ programs, all
related files not explicitly closed are forced closed by the
interface upon EXIT from a given ’‘called’ program.

COBOL programs that are to be CALLed must have been previously

compiled. The default filename—extension for a program name in a
CALL statement is ‘/COB’. A compiled COBOL program will have the
required extension. If the extension used is not '/COB’ , then it

must be specified in the CALL statement.

Assembly lenguage programs that are to be CAlLLed must be in TRSDOS
LOAD command format as created by DUMP, with a filename extension

other than ‘/C0OB°. Assembly language programs must reside in high
memory., and the ‘T=nnnn’ option must be specified on the Runtime
command line to protect all memory required by the routine. The

user is Tesponsible for ensuring that the assembler programs do
not interfere with each other.

Assembly language programs are loaded &and Tteused while the
‘calling’ program resides in memorTy. If the COBOL ‘calling’
program is reloaded in memory, then the assembler program will

again be reloaded when it is called

At entry time to an assembly—-language routine register IX points
to the parameter list defined by the USING clause of the CALL
statement. The first word on the 1list contains the number of
bytes in the list. Subsequent words are addresses of the USING
arguments: e.g., if the length word specifies & bytes, there are 2
addresses following the length word. For example:

(IX) => DW Argument List Length (n # 2 + 2)
DW USING Argument 1
DW USING Argument 2
DW USING Argument n

The format of each argument depends on its dataname PICTURE
definition: see the COBOL Language Manual, ‘the PICTURE Clause’.

At exit time from an assembler routine, ' register A may be set
non—-zero to request a STOP RUN.

MODEL I/III COBOL User’s Guide - 29 - (RSCOBOL 1. 3)

4.3 The COPY Statement

The CORPY

statement provides the facility to copy (include) COBOL

source text from a user—~specified file into the source program.
The complete file 1is copied into the program, without change, at
the location of the COPY statement.

The file to be copied 1is identified in the COBOL program by the

statement

or

COPY +filename

COPY "filename/ext. password: d”

where:

‘filename’ 1is required.

‘/ext’ is an optional name—extension. When omitted the
default ‘/CBL: is used.

‘. password’ is an optional password. Note: If the file
was created with a nonblank password, ‘. password’
becomes a required field.

‘:d’ is an optional drive specification. When omitted
the system does an automatic search, starting with drive
0.

A filename consisting only of letters and numbers (first character

must be

letter) can be written without surrounding quotes. All

other forms must be surrounded by guotes

Examples:

IDENTIFICATION DIVISION.

CQPY STDID.

ENVIRONMENT DIVISION.

CorPY "STDENVIR/TST".

DATA DIVISION.

COPY "STDDATA/CBL: 1".

MODEL 1/111 COBOL User’s Guide — 30 - (RSCOBOL. 1. 3)

4.4 The WRITE... ADVANCING ZERO. .. Statement

The sequential WRITE statement allows control of the vertical
positioning of each line on the printed page with the ADVANCING
phrase.

The ... ADVANCING ZERO LINE(s) ... phrase allows overprinting on
those print devices which support this feature. In all cases, the
phrase will compile correctly, but may operate as though
... ADVANCING 1 LINE. .. was specified.

Standard Radio Shack Line Printers automatically advance after
each 1line is printed. Therefore, the ...ADVANCING ZERO LINES. ..
phrase will execute as ... ADVANCING 1 LINE. The Compiler and

Runtime defaults to standard Radio Shack Line Printer operation.

MODEL I/II1I COBOL User’s Guide — 31 - (RSCOBOL. 1. 3)

CHAPTER 5

INSTALLATION PROCEDURES

Installation of RSCOBOL requires only that the object modules be
copied from the Development and Runtime factory release diskettes
to the appropriate user diskette. NOTE: ‘nn’ indicates the
current release level, i.e., release 1.3 will be 137,

The modules required to compile COBOL programs are:

RSCOBOL.

RSCBL2nn/0BJ
RSCBL3nn/0BY
RSCBLANN /0B

The modules Tequired to execute compiled COBOL programs are:

RUNCOBOL
RSCBLDnn/0BJ

As with all Development and Runtime factory release diskettes, the

user should save it in a secure location in case te-creation is
required.

MODEL I/111 COBOL User’s Guide - 32 - (RSCOBOL. 1. 3)

APPENDIX A

SAMPLE PROGRAMS

MODEL. I/III COBOL User’s Guide - 33 - (RSCOBOL. 1. 3)

TRSE-80 Maodel

SOURCE FILE: CALCXMPL

LINE

MO ~N DI

30

o
L =

33
34
33
36
37

DERBUG PG/LN A,.

I/111 COROL (RM/COBOL 1.3A) 18/31/88 00:15:44 PAGE

OPTION LIST: (PsTa0=24X

Baooaaeas. feanaena fee e “asm s sre s crnm e

IDENTIFICATION DIVISION.
PROGRAM-ID.

CALCULATOR.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. RMC.
ORJECT-COMPUTER. RMC.

DATA DIVISION,
WORKING~5TORAGE SECTION.

77
77
77
77
21

@i

a1
@1

a1

a1

@

RESULT FICTURE 5%(2)V2(9) VALUE ZERO.
OPERAND-1 PICTURE S%(?)V7(9).

OPERAND~Z PICTURE S9(9)V9(9).

WAIT-CHAR PICTURE X.

GREETING.

@2 FILLER PICTURE X(18)

VALUE " CALCULATOR PROGRAM".
OPERATION-MESSAGE.

e FILLER PICTURE X(37)
VALUE "CHOQOSE YOUR OPERATION (+y—~a%s/) = ",
OPERATOR PICTURE X(Z).
RESULT-MESSAGE.
Pz FILLER PICTURE X (1)

VALUE "RESULT IS5 = ",
@2 RESULT-EDITED PICTURE -(9)9.9(9).
@2 FILLER PIC X{4) VALUE SPACES.
@z OVERFLOW-FIELD PIC X(8) VALUE SPACES.
WATT-MESEAGE.
2z FILLER PICTURE X(36)

VALUE "HIT NEWLINE TO CONTINUE (@ TO QUIT) ".
OPERAND-1-MESSAGE.

P2 FILLER PICTURE X{12)
VALUE "OPERAND-1 = ",

OPERAND-2~-MESSAGE.

B2 FILLER PICTURE X (1)

VALUE "OPERAND-Z = ",

34

TRS~-8@ Madel 1/111 COBOL (RM/COBOL 1.3A) 16/731/80 @@:15:44 PAGE

SOURCE FILE: CALCXMPL OPTION LIST: (PyTa0=24X
' TNE DEBUG PG/LN A...B.....ciceincannns Psaamaaan e s esces s n ceenasaanae
~38 / EJECT
39 PROCEDURE DIVIGION.
4B 0000 RESIDENT SECTION 1.
41 2000 NOT-8TART.
43 »PooY GO TO DISPLAY-GREETING.
43 -DBB4L RE-TRY.
44 FDOB4L DISPLAY OPERATION-MESSAGEs LINE X+ ERAGE.
45 »000Cc ACCEPT QOPERATOR» POSITION @s PROMPT, ECHO.
44 »QB14 IF OPERATOR EQUAL "+ " GO TO ADDITION.
47 2ai1c IF OPERATOR EQUAL "- " GO TO SUBTRACTION.
48 0024 IF OPERATOR EQUAL "% ¥ GO TO MULTIPLICATION.
49 eBzc IF OPERATOR EqUAL "/ " GO TO DIVI-SION.
50 0034 IF OPERATOR EQUAL " " GO TO END-RUN.
51 »@03C GO TO RE-TRY.
52 »BO3E DISPLAY-RESULT.
53 »BB3E MOVE RESULT TO RESULT-EDITED.
54 0042 DISPLAY RESULT-MESSAGE.
55 »0846 MOVE ZERO TO RESULT.
56 D04h MOVE SPACES TO OVERFLOW-FIELD.
57 0050 WAIT-ENTRY.
58 0050 DISPLAY WAIT-MESSAGE.
59 0054 ACCEPT WAIT~CHAR. POSITION B PROMPTs ECHO.
60 F005C IF WAIT-CHAR EaUAL "a" GO TO END-RUN.
61 0064 GO TO RE-TRY.
L2 0064 GET-OPERANDS.
a3 0066 DISPLAY OPERAND-1-MESSAGE:s LINE 4,
64 >BB6C ACCEPT OPERAND-1s LINE 4, POSITION 13s SIZE 10,
65 PROMPTs CONMVERT.
&6 0078 MOVE OPERAND-1 TO RESULT-EDITED.
&7 a7 C DISPLAY RESULT-EDITED: LINE 4s POSITION 13,
68 0084 DISPLAY OPERAND-Z-MESSAGE.
&9 D088 ACCEPT OPERAND~Z s LINE 5, POSITION 13, SIZE 10
70 PROMPTs CONVERT.
71 >0094 MOVE OPERAND-Z TO RESULT-EDITED.
72 »BB98 DISPLAY RESULT-EDITEDs LINE 55 POSITION 13.
73 :DOAZ END-RUN.
74 FDBAZ EXIT PROGRAM,
75 »00A&L STOP-RUN.
76 =DBASL 5TOP RUN.
S

35

101240048
102:04B0AA
103
104-0400BA
1@5
1060506048
107:0500A8
108050048
109:-8508AC
1142
111

TRG-80 Model I/III COROL (RM/COBOL 1.3A) i6/31/80 @O:15:44 PAGE
SOURCE FILE: CALCXMPL OPTION LIST: (PsTsQ=24X
LINE DEBUG PG/LN A...P..... e amessEmasEsEaseaasasaasrasannasanas s faeaaaa
77 / EJECT
78:-0100A8 OVERLAY-ADDITION SECTION 51.
79:0100A8 ADDITION,
BR:-0100A8 PERFORM GET-OPERANDS.
81:0100AA ADD OPERAND-1 OPERAND-2 GIVING RESULT
82 ON SIZE ERROR MOVE "OVERFLOW" TO OVERFLOW-FIELD.
83:-0100R0 GO TO DISPLAY-RESULT.
84
85:-0:00A8 OVERLAY-SUBTRACTION SECTION 52.
86020048 SUBTRACTION.
87-0200AR PERFORM GET-OPERANDS.
88:-0:00AA SUBTRACT OPERAND-Z FROM OPERAND-1 GIVING RESULT
89 ON SIZE ERROR MOVE "OVERFLOW" TO OVERFLOW-FIELD.
20>02008E28 GO TO DISPLAY-~RESULT.
91
G2-03B0AB OVERLAY-MULTIPLICATION SECTION 533.
Q3:0308A8 MULTIPLICATION.
94:030BAB PERFORM GET-OPERANDS.
95:-@32BAA MULTIPLY OPERAND-1 BY OPERAND-2 GIVING RESULT
96 ON SIZE ERROR MOVE "OVERFLOW" TO OVERFLOW-FIELD.
97030088 GO TO DISPLAY-RESULT.
98
9040048 OVERLAY-DIVISION SECTION 54.
100040048 DIVI-S5ION.

PERFORM GET-OPERANDS.

DIVIDE OPERAND-1 BY OPERAND-~Z GIVING RESULT ROUNDED
ON SIZE ERROR MOVE "OVERFLOW" TO OVERFLOW-FIELD.

GO TO DISPLAY-RESULT.

OVERLAY-DISPLAY-GREETING SECTION 98.
DISPLAY-GREETING.

DISPLAY GREETING.

GO TO WAIT-ENTRY.

END PROGRAM,

36

TRS-80 Model

SOURCE FILE: CALCXMPL

ADDRESS

S—
» 0004 19
+0018 19
»002C 19
+0040 1
= 0047 18
*005 4 37
>007A z
*@07C 44
» 0088 70
*00AD 8
>00AB 36
*00CC 12
*QODB 1z

S

READ ONLY BYTE

READ/WRITE BRYTE SIZE

OVERL.AY SEGMENT BYTE SIZE

NSS
NS5
NSS
ANS
GRP
GRP
ANS
GRFP
NSE
ANS
GRP
GRF

GRP

SIZE

TOTAL BYTE SIZE =

@ ERRORS

D WARNINGS

I/111 COBOL

(RM/COROL 1.3A)
OPTION LIST:

S5I1ZE DERBUG ORDER TYPE

MUMERIC SIGNED
NUMERIC SIGNED
NUMERIC SIGNED
ALPHANUMERIC
GROUP

GROUP
ALPHANUMERIC
GROUP

NUMERIC EDITED
ALPHANUMERIC
GROUP

GROUP

GROUP

*D1BE
*ROEC

*ORZE

37

186/731/80 Q@:15:44
(PsTsO=249X

PAGE

NAME

RESULT
OPERAND-1
OPERAND-2
WAIT-CHAR
GREETING
OPERATION-MESSAGE
OPERATOR
RESUL T-MESEAGE
RESULT-EDITED
OVERFLOW-FIELD
WAIT-MESSAGE
OPERAND-1-MESSAGE

OPERAND-2-MESSAGE

TRG-80 Model I/I111 COROL
SOURCE FILE: CALCXMPL

CROSS5 REFERENCE

ADDITION
DISPLAY-GREETING
DISPLAY-RESULT
DIVI-SION

END—-RUN
GET-0OPERANDS
GREETING
MULTIPLICATION
NOT-START
OPERAND~1
OPERAND-1-MESSAGE
OPERAND-2
OPERAND--2~-MESSAGE
ORPERATION-MESSAGE
OPERATOR
OVERFLOW-FIELD
OVERLAY~ADDITION
OVERLAY~-DISPLAY-GREETING
OVERLAY-DIVISION
OVERLAY-MULTIPLICATION
OVERLAY-SUBRTRACTION
RESIDENT

RESULT
RESULT-EDITED
RESULT-MESSAGE
RE-TRY

STOP--RUN
SUBTRACTION
WAIT-CHAR
WAIT~-ENTRY
WAIT-MESSAGE

(RM/COROL. 1.3A)

/DECL/

BB4s
Ba42
/80527
o479
2O50
/QB62/
/BB16/
B248
/08341 /
/@0113/
/8@3:s/
/0@atr4/
/0B35/
/AB19/
/802z/
/Baz8/
/a078/
/018367
/0899/
/Ba9zs
/eags/
/0040/
/Qarzs
/D267
/QDz3/
/0437
/QB75/
@a47
/00157
/0B57/
/0029 /

DEST

/087%/
/a1a7/
B83
/B108/
kit
280
D108
/0B93/

DBO6L4
il
*DBET %
DR&B
PB4 4
*AD45%
DD56

ap53
*DD53%

@54

Bo51

/0086/
*PD59+%
@109
po58

38

18/31/88 AB:15:44 PAGE 5
OPTION LIST:

lriigtal

/0073/
v@87

BRs6s

2071

po4s

PABex *ABB7*

*BO55% %0081 *

BALL

61

alra oyl

(PsTsO=24X
a7 D104
A4 2101
@rs1 *=DOKE*
wasl 2088
47 an4as
¥R EH*
AR8Ex

Bas7

*BA7 1%

B35 B1o=

*AA95% 1oz

PR4e 2050
*A103%

*AAF5% *@10Z*
a7z

TRS-8@ Model I1/I1I1I1 COROL. (RM/COBOL 1.3A) 10/31/80 BB:22:43 PAGE 1

SOURCE FILE: ERRXMPL OPTION LIST: (TesPsO=2sX

NE DERUG PG/LN AL .B...cevcesnnscnanaa e easemmasanmcassasacEe e neaEE KRR n e
1 Q02210 IDENTIFICATION DIVISION.

e NOBRZO

3 POAO3A PROGRAM-ID.

4 NaDB4>B ERROR-EXAMPLES.

5 2aoOs50

b PBROALB ENVIRONMENT DIVISION.

7 DOBO7B CONFIGURATION SECTION.

8 P00080 SOURCE-COMPUTER. RMC-MINI.

g ooob7d ORJECT-COMPUTER. RMC-MINI.

1@ QD1 INPUT-OUTPUT SECTION.

11 ABA110 FILE-CONTROL.

12 11 e SELECT INPUT-FILE

13 POR130 ASSIGN TO INPUTs INPUT-NAMES

14 PAD140 FILE STATUS IS INPUT-STATUS.

15 PBOB1560 SELECT OUTPUT-FILE

16 voR1&0 ASSIGN TO OUTPUTs OUTPUT-NAME:

17 PEBiI7a FILE STATUS IS5 OUTPUT-STATUS.

18 200180

19 BAB1I9G DATA DIVISION.
20 D326 FILE SECTION.
=1 BRBz1® FD INPUT-FILE
22 ralra v ey} RECORD CONTAINS 80 CHARACTERS
23 BDO:230D LAREL RECORD IS OMITTED.
24 APoz42 B1 INPUT-REC.

5 200250 5 FILLER PIC X(@&6).

26 noRzed @5 INPUT-FLD PIC X(&b).

27 aOoz70 @5 AREA-FLDS REDEFINES INPUT-FLD.
=8 raJvalr e =ivi) 1@ AREA-C FIC X(01).

29 PRD290 1@ AREA-A PIC X(B4).
2@ 2AR300 1@ AREA-B PIC X(b61).
31 PAO310 @5 FILLER PIC X(@8).
3% Pae3z8 FD OQOUTPUT-FILE
33 PBO330 RECORD CONTAINS 8@ CHARACTERS.
34 200340 LABEL RECORD I& OMITTED.
35 PRO350 81 OUTPUT-REC.
& PRG350 5 SEe-FLD PIC 9(@&).
37 PRB3I70 @5 OUTPUT-FLD PIC X(b66).
i PR30 P5 FILLER PIC X(@8).
39 BRB398 WORKING-STORAGE SECTION.
49 P24 77 INPUT-NAME PIC X(28).
41 pEB41B 77 OUTPUT-NAME PIC X(2R).
42 QR4 77 COUNT PIC 9(@&) VALUE 0.
43 poR43d 77 LARGE-VALUE PIC X(B4) VALUE "ERROR".
44 BRR440 77 PIC-ERROR PIC *#(@5).x%.

%
* %K%K ¥ 1) PICTURE *E*ExExExExExExExExExE*ExE*EEXE*ExExExEXExE*EXExE*ExExExE*E
* X K 1) SCAN RESUME *WEWRWRWEWEWEWE KW 6 W WEWEWE W WL R W W% W5 W W W W2 W % W% W % W

43 PBB45@ 77 INPUT-5TATUS PIC X(04).

4é o046l 77 OUTPUT~STATUS PIC X((Q2).

7 Pad47d 01 SE-VALUE PIC 9(@6).
~— B Ao0480

39

0¥

. "WYHDOHd N3 028000 13
¥ MAMAMAMAEMEMAMEMAEMEMEMAMAMEMAMEMEIMEMEMEMHMEMAEMEMAMEME TWNNSTY NYIS (T TR
A% A% % A% o w o F 3 3 A 3% A A IR I IR IR TR T I AT I AHNA3D0OHd 3T 1SN (T * 3% H %

%

AGIi 0L 0D R&6L008 8.00 @3

"NNY 401LS @B8.L200 2L0@< &L
MEMEMEMAEMEMEMAMEMIMAMEMAMAEMEMAMAMEMXEMAMEMEMAMEMEMEMEMEME FWNSTY NYDIS (Z * 3% %% %
AT T T e Jx T T T T T T I % Je e e e e e Je I I J*J % I% I % dI JITIYANT (T T T

% E
AN A-LNdLNG f3ANTA-LNdNT 35072 DLL000 v.0@: 8L
@ NOILISOd «d3I400 ANV dEON3IND3IS SayuOd3y . @7.,.000 L
fINNOD AVTIdSIA BEL000 Y900 L
00D DYL000 VIAD< &L
"20I@ oL 09 QL0808 8900 Y.L
TLNNGD 0L T aav ATLOBB S0 £L
TOAM-LNdINO FLTHM ATL200 2520 ZL
"TUA-LNdLNO L dT4-LNdNT 3AOW AAL2AB ZSBD: 1L
"JM4-035 0L ANTIVYA-03S AA0KW B67800 IY20< AL
TANTIVA-8ES 0L a1 gav 287000 8vYAR: &9

MAMFMAMFMAEMEMEMAMAMEMEMEMEMAMAMEMAMAMAMEMEMEMEMEMEMAEMEME QWNSTY NYDS (T * M ¥
Fxdxdxdede 33T TeDx T T T T T T T TR AT IR T% 3% AHNAI00Hd 39 LSNKW (T % %

;3

"MOIHI~LNANI WHOAY A QL7000 Y2 89

MEMEMEMAEMEMEMEMEMEMAMEMEMEMEMEMEMEMEMEMEMAMAMEMEMEMEMEME DWNSTY NYIS (T LR S 2
%

— "ART@ 0L 09D 277000 L9

AR IR IR IR TH TR T IR IR T I T TR TR TH T I T A% IR T x FeFx I T A% d1 dITYANL (1 22T T
b

aN= LY 31 4-LNdNT av3d Q57000 QYA 99

PRI 2v9000 BvYDo< G9

TWNNDE3 ONIININDIAS . AVIdBIA QL0080 ViDL %9

TANIVA-BZS 0L @ FAOW RIF000 Frae: €9

DAU-LNLLNO 0L S30VdS FA0W 2179008 ~ved: I9

AT A-1NdLNO LNdLNG N3JO 207088 OZ@d: 19

MEMH¥MAMFIMEMEMAMEMAMEMEMAMEMAMEMEMEMAMIMEMEMEMAMAMEMAEMAEME FUNSTY NYIS (7 T T
A3 TAxTxTe T T T I I T I T IR I T T I I I I I Ax Ix I I JxI* dl dITYANI (1 ¥R KK

% %
AT A-LNANT LNGNT NIdO LG VIDB: @9
TOHOA LdWOdd @ NOTILISOd FWYN-LN4LNO L4300V ELARY IIOD: L%
w2 FATIIA LNALNOL AYTIHSIA R.C000 310 8¢
TOHDA LdWOMd @ NOTLISOd FWYN-LN4ANT Ld300V 276008 F12@< LG

MH*EMEMEMEMAMEMEMHIMEMEMAMEMHIMEMIMEMEMEMEMEMAMEMEMAMEMEMEMFE DWNSTY NYIS (T ¥ 33 %
ELER bbb b L e e b e Le b Ee et e b EaeE e P b e b Eae E e e b e e B E e Eoe o E o BT ANOK (T % 3% 9

£ %

THALYLS-INdLINO OL S°F HAOK AG5200 Y10@< 95

o 2T LNANI W AVTIASIA 2YS200 YIAAB g4

"ZOANITT SAJVHS AYTIASTA QECDOD Yae: %G

TAGYHI A2 NOILISOd T ANIT 2IcB0d £

ChHIDININDES WYHH0Hd 0a0d. AVIASIA 215000 2000+ G

00TY 20SO0D QA< 1G

"NOISIAIA 3MNTII0HL4 B4HYO00 asg

2 / &Y
Illl-.llll-lllllllllllllllllllllllllIllllll-llllllillllnmlll¢ le—\—.u& mewQ-wZHl—
XEZ=0¢6d*1) LSIT NOILAO AdWXdEa 13714 304N08S

= A9vd EvilZi00 A8/1</01 (VE®T 104003 /kWd) 103023 III/1I L2Pp2W @8-SHL

TRE-B@ Mode]

S0URCE FILE: ERRXMPL

ADDRESS SIZE DERPUG ORDER TYPE

C—

%]

edvalvalvaln] 80
*QABs &b
pdvalralra 1 (=1
+00B6 1
*Roa7 4
g a7] 2) 61
i)

+*0B50 80
@50 b
*B@54 bb
BOAL 28
*Q0Cy 28
*Bebe &
» DOE 4
*BRESL 166
“@PEE 4
TRODF s
+ D04)

RESERVED WORD CONFLICT ®WxWeWeWxblxlxlWeldxel)xlixl

TLLEGAL PERFORM *ExExExExExExExExExExExExExExExE
UNDEF INED PROCEDURE *ExExExExExExExExExExExE*E*E
VALUE ERROR »E#ExExE+ExExExExExExExExExExExE#E*E

FILE STATUS ERROR *E+EsExExExE*ExExExE*E*E*E*E*E

READ ONLY BYTE SIZE =

READ/WRITE BYTE

OVERLAY SEGMENT

TOTAL BYTE SIZE

11 ERRORS

— 8 WARMINGS

FILE

GRP @ GROUP

ANS 2 ALPHANUMERIC

GRP] GROUP

ANS 2 ALPHANUMERIC

ANS @ ALPHANUMERIC

ANS @ ALPHANUMERIC
FILE

GRP @ GROUP

NSU] NUMERIC UNSIGNED

ANS] ALPHANUMERIC

ANS @ ALPHANUMERIC

ANS] ALPHANUMERIC

NSU 2 NUMERIC UNSIGNED

ANS @ ALPHANUMERIC

ANS @ ALPHANUMERIC

ANS @ ALPHANUMERIC

ANEG 4 AL PHANUMERIC

NSU @ NUMERIC UNSIGNED

*A17E
QIZE = *@138
BYTE SIZE = 0000

. *QZB6

I/7111 COBOL (RM/COROL 1.3A)
OPTION LIST:

41

18/31/88 QB:22:43
(THPyO=24X

PAGE

NAME

INPUT-FILE
INPUT-REC
INPUT~FLD
AREA-FLDS
AREA-C
AREA-—A
AREA-B
OUTPUT~FILE
OUTPUT-REC
SEa-FL.D
OUTPUT-FLD
INPUT~NAME
QUTPUT~NAME
COUNT
LARGE-VALUE
PIC-ERROR
INPUT-STATUS
OUTPUT-STATUS
SEQ-VAILLUE
COUNT
INPUT~CHECK
@15@
LARGE-VAILLUE

INPUT-FILE

TRS-80 Model I/II1 CORBOL (RM/COBOL 1.3A) 18/31/780 0022343 PAGE

SOURCE FILE: ERRXMPL OPTION LIST: (TaPy0O=24X
CROSS REFERENCE /DECL/ *DEST#*

AREA—-A /0029 /

AREA-P /0030/

AREA-C /0Bz8/

AREA-FLDS /0027/

COUNT /BB42/ xBB73x DA76
INPUT~-CHECK P68

INPUT-FILE /Qad1z/s soB21/
INPUT-FLD /00267 70027/ BDO71
INPUT~NAME *Q@1 3% /00407 *QO57%
INPUT-REC /08B:24/

INPUT-5TATUS *QQ14% /DD45/
LARGE-VALUE /00437

OUTPUT-FILE /0@15/ /08327 0061
QUTPUT-FLD /0@037/ *0DB71%
QUTPUT-NAME *QB16% /00417 *DOST*
OUTPUT-REC /00357 *QDL2* *PBT72*
QUTPUT-STATUS *0A17% /0048/
PIC-ERROR /044 /

SEQ-FLD /DQ36/ *D0B70*
SEQ-VALUE /0@47/ *»BBL3x *QDLI*x @70
2100 /051 /

2150 vt 1]

200 /00657 @B74

2300 bB6e7 /00757

42

TRS-80 ™

APPENDIX B

TRS-80 (R) MODEL I/III COBOL
SAMPLE SESSION

Radio fhaek

TRS-80 ™

This section will take you through a compilation and execution
session, starting with a COBOL source file. We will use the
sample program, CALCXMPL/CBL, included with your COBOL
diskettes.

Note for Model III users: References will be made to the
separate Development and Runtime diskettes. Since Model III
diskettes will hold the complete system, your one diskette will
take the place of both the Development and Runtime diskettes.

STEP ONE. Create the source file.

In this session, we will use the sample program, CALCXMPL/CBL,
for the source file. To create your own source file, follow the
instructions in the COBOL Editor (CEDIT) User's Guide.

STEP TWO. Compile.

When compiling (RSCOBOL), the COBOL Development diskette must be
in one of the drives. The program being compiled must also be
on a diskette, although not necessarily on the same one as
RSCOBOL. Our sample program is on both the Development and the
Runtime diskettes. Also, there must be some free space on one
of the diskettes for the Compiler to write the compiled version
of your program.

With the COBOL Development diskette in one of the drives, type
under TRSDOS READY:

RSCOBOL CALCXMPL (T)
The T option causes a listing to be displayed at the console.
See Section 1.3.2 in the COBOL USER'S GUIDE for other Compiler
options that are available.

This command creates an object file that can be executed by the
COBOL Runtime. This file will automatically be named
CALCXMPL/COB. Compiled programs are always written to disk with
the /COB extension and will be written on the first available
diskette that has enough free space.

STEP THREE. Execute.

Model I users take out the Development diskette and replace it
with the Runtime diskette. Also be sure that the diskette

Radio fhaek

44

TRS-80 "

containing the newly compiled version of our sample program is
still on one of the drives.

Under TRSDOS READY, type:

RUNCOBOL CALCXMPL
The Runtime will execute the program CALCXMPL/COB. See Section
2.3.1 of the COBOL User's Guide for Runtime options.

Radio fhaek

45

TRS-80 "

CONVERSTION SESSION
O R

F M ODEL I ITI USERS

The diskettes you have contain all the files needed to
compile and run COBOL programs. However, these diskettes are
formatted for a Model I and need to be converted to Model
IIIbefore you can use them. You will need one blank formatted
diskette for this procedure.

First, BACKUP your Model III system diskette to the blank
diskette. Take out your old Model III system disk and move the
newly created system disk to drive 0. Use the PURGE:0 (SYS)
command to delete all user files and all unnecessary system
files. CONVERT/CMD is the only system file that is essential
for the following procedure. You must have at least 130 free
granules of space on the new system diskette. Check the
directory to see how much space you do have.

Place the COBOL Development diskette in drive 1. Then use
the conversion utility as shown below.

TRSDOS Ready
CONVERT <ENTER>

The conversion utility will return with a prompt for Source
Drive (you will enter 1) and Destination Drive (you will enter
0). The password on both the Development and the Runtime
diskette is 'PASSWORD'.

The utility will convert the files to Model III format,
writing the converted version onto the diskette in drive 0.
Some of the files are passworded and the utility will prompt you
as in the example shown below:

Enter Password for RSCOBOL/CMD ?

Just press <ENTER> and the files will be converted and
transferred. Passwording does not prevent you in any way from
using them.

Five of the files are passworded and you will have to press
<ENTER> after every prompt. Four files are not passworded and
will automatically be converted and written on drive 0.

When the conversion is complete the utility displays a

Radio fhaek

46

TRS-80 ™"

message telling you that it is done and then returns control to
TRSDOS.

Put the COBOL Runtime diskette in drive 1 and once again
use the CONVERT utility the same way as described above. There
are some passworded files on this diskette also, so you will
have to press <ENTER> when asked for the file passwords. Also,
some of the files are stored on both diskettes. When trying to
CONVERT the file the second time you will get the following
message:

CALCXMPL/COB Existing file. Use it (Y/N/Q)?

Type N to use the previously converted file. The Y option
will Convert the file again unnecessarily and the Q option will
stop the CONVERT utility. To have more free space on the
diskette you may PURGE the CONVERT utility when the conversion
is complete, but it is not necessary. Label this new diskette
to show that it contains the complete COBOL package.

We suggest that you make backups of your new COBOL diskette
or keep the Model I version COBOL diskettes. This will give you
some security against losing your COBOL package.

You may want a diskette with just the minimal Runtime files
on it for running previously compiled programs. You will need a
blank formatted diskette. BACKUP your COBOL diskette onto this
new diskette. Then use the PURGE command to delete all but the
necessary Runtime files. The only files that you need to keep
on the new diskette are RUNCOBOL/CMD and RSCBLDnn/OBJ. (nn
refers to the version number.)

Remember that only programs that have been already compiled
using RSCOBOL can be used with this Runtime diskette.

@

Radio fhaek
47

TRS-80

TRS-80 (R) MODEL I/III COBOL
CEDIT
SOURCE PROGRAM EDITOR

USER'S GUIDE

(C) COPYRIGHT 1980, 1981 BY RADIO SHACK
A DIVISION OF TANDY CORPORATION

Radio fhaek

TRS-80 MODEL I/III COBOL

TABLE OF CONTENTS

INTRODUCTION
SOURCE FILE FORMAT . . .
TO START THE EDITOR . .
MODES OF OPERATION . . .
USING THE COMMAND MODE .

TRS-80 "

CEDIT

SPECIAL KEYS IN THE COMMAND MODE

COMMANDS
(PRINT BOTTOM LINE)
(CHANGE)
(DELETE)
(EDIT) . « « « . .
(FIND) . . . e .
(HARD COPY) .« e .
(INSERT)
(LOAD FROM DISK)

(MEMORY USED/FREE)
(RENUMBER)
(PRINT TO DISPLAY)
(QUIT SESSION) . .
(REPLACE) .
(PRINT TOP LINE)
(WRITE TO DISK)

X ETHPODONUZ2rHIHEEOOW

PAGE 2

(CHANGE WITH PROMPTS)

Radio fhaek

WWooowow~NIoy N i Www

HHEF e
VU B BEWWN RO

TRS-80 MODEL I/III COBOL CEDIT

TRS-80 ™

INTRODUCTION

CEDIT lets you create and edit COBOL source files (the files
that are input to the COBOL Compiler).

Capabilities and features:

. Allows you to load in ("chain") multiple source files.
. Single-key abbreviations for many commands

. Powerful intra-line editing mode

. "M" command informs you of memory used/free at any time
. Global string find/change commands

. Editor provides line numbers in the range 0-65535

SOURCE FILE FORMAT

Source files are written to disk in the format required by the
COBOL compiler, as follows:

l. Files are fixed-length record (FLR) type, LRL=256, as
described in the TRSDOS Reference Manual.

2. Each record in the file corresponds to one line of source
program. The first six data bytes in a record represent the
sequence number in ASCII form followed by the COBOL source code.
The carriage return (<ENTER>) used to terminate the line during
line insertion is stored.

3. Text is stored exactly as it is displayed on the video, e.g.,
spaces are stored as spaces, not as a tab character.

Radio fhaek

PAGE 3

TRS-80 MODEL I/III COBOL CEDIT
TRS-80 ™

TO START THE EDITOR

The editor program is included on the COBOL program diskette.
It has the file name CEDIT.

To use the editor, put the COBOL diskette into one of your
drives, and under TRSDOS READY, type:

CEDIT

The editor will start up with the prompt:

TRS-80 Cobol Editor Ver v.r
Copyright (c) 1980 Tandy Corp.

>

Where v is the version and r is the release number. The >
indicates you are in the command mode.

Radio Shaek

PAGE 4

TRS-80 MODEL I/III COBOL CEDIT

TRS-80 ™"

MODES OF OPERATION

There are three modes of operation:
COMMAND, for entering the editor commands
INSERT, for entering your text lines
EDIT, for interactive editing of a line of text

| COMMAND MODE /
The > prompt followed by the blinking cursor indicates the
editor is waiting for you to type in a command. Every command
must be completed by pressing <ENTER>. To cancel a command,
press <BREAK>.

[INSERT MODE [

You enter text one line at a time; a line consists of up to 255
characters, including the five-digit line number provided by
CEDIT. Line numbers can range from 0 to 65535.

The I command puts you in the insert mode. When you start
inserting a line, the editor displays the five-digit line number
followed by the blinking cursor. Your text can begin in column
seven. (See the COBOL Language Reference Manual for
column-field uses in COBOL source programs.)

To store the current line, press <ENTER>. The editor will
display the next line number, and you can begin inserting into
that line. To cancel the current line and return to the command
mode, press <BREAK>. See I Command for details.

JEDIT MODE |

There are many powerful edit sub-commands--identical in most
cases to those in Model I and III BASIC's Edit Mode. There is
also a sub-edit insertion mode in which the keys you type are
inserted into the line at the current cursor position.

To start editing a line, use the E command. After editing the
line, press <ENTER> to save the corrected line and return to the
command mode. To cancel all changes made and return to the
command mode, press <Q>. For further details, see E Command.

Radio fhaek

PAGE 5

TRS-80 MODEL I/III COBOL CEDIT

TRS-80 ™"

USING THE COMMAND MODE

Special terms used in the command descriptions:

"text", "text buffer", "text area"
All refer to the COBOL source program currently in RAM.

"current line"

The line most recently inserted, displayed or referenced in a
command. When there is no text in RAM, current line is set to
100. Immediately after a file is loaded, the current line is
set to the beginning of the text.

"increment"

The value which is added to the current line number whenever the
editor needs to compute a new line number. After startup,
loading a new file, and when there is no text in RAM, the
increment is set to 10.

"line-reference"
Either an actual line number from 0 to 65535, or one of the
following special abbreviations:

Symbol Meaning

Beginning line of text (lowest-numbered line)
. Current line
* Last line of text (highest-numbered line)

"line-range"
This can be either a single-line reference or a pair of
line-references separated by a colon:

Sample

Command Meaning

P100 Prints line 100 only

P100:300 Prints all lines from 100 to 300

P#:. Prints all lines from beginning to current

"delimiter"
A special character used to delimit (mark the beginning and end
of) a string. Any of the following characters can be used:

Radio fhaek

PAGE 6

TRS-80 MODEL I/III COBOL CEDIT
TRS-80 ™"

VYT ES Y& () +, - /s <=7

Whichever character is used to mark the beginning of a string
must also be used to mark the end of the string.

Sample use... Marks this string...
'"THIS " MARK' THIS " MARK
/X'8000"'/ X'8000'
&S &8 TTTTETT (seven blanks)
(The "~" symbol represents a blank space. It is used only where

necessary for emphasis or illustration.)

SPECIAL KEYS IN THE COMMAND MODE

<BREAK>
Press this key to cancel the command you are entering, or to
abort a command which is currently being executed.

<right-arrow>
Advances the cursor to the next four-column boundary

(boundaries are at columns 4, 8, 12, ...)

<ENTER>
Pressing this key at the beginning of a command line displays
the current line.

<up-arrow>
Pressing this.key at the beginning of a command line displays
the line which precedes the current line.

<down-arrow>
Pressing this key at the beginning of a command line displays
the next line after the current line.

shift<left-arrow>
Erases the command you are entering.

<e>
Pauses H and P commands. Press any other key to continue.

Radio fhaek

PAGE 7

TRS-80 MODEL I/III COBOL CEDIT

TRS-80 ™
COMMANDS
Note: Spaces are not significant in command lines. For example,
P1l:5
has the same effect as
P1l:5

The P command is explained later on.

lw)

Displays the bottom line (last line in the text area).

E/search—string/replacement-string/n

Finds, changes, and displays the first n lines, from the current
line, that contain search-string. 1In each of these lines
search-string is changed to replacement-string. ONLY THE FIRST
OCCURRENCE OF search-string IN A SINGLE LINE IS COUNTED AND
CHANGED. If the end of text is reached before n finds, the
message "string not found" will be displayed.

Upon completion of the command, the current line is set to the
line of the last find, or to the first line of text when "string
not found" is displayed.

/search-string/ 1is a sequence of characters delimited by
a matched pair of characters from the set:

!P"ESs s (), -0/ <=0

replacement-string/ 1is a sequence of characters terminated
by the same character used to delimit search-string.

n Tells the maximum number of "changes" you want. n can
be a number or an asterisk. The asterisk means change
and list all occurrences. If n is omitted, only the
first occurrence is changed and listed.

Sample

Commands Notes

C/VAR=/NET=/ Changes the first occurrence of
"VAR=" to "NET=" in the first
line that contains it.

C"VAR="NET=" Same as above.

Radio fhaek

PAGE 8

TRS-80 MODEL I/III COBOL CEDIT

C/RETRY/R/4

TRS-80 ™

Changes the first occurrence of
"RETRY" to "R" in the first four
lines that contain it.

C/MISPELING/MIS-SPELLING/*

C/EXTRA//*

:E line-range

Changes the first occurrence of
"MISPELING" to "MIS-SPELLING" in

every line that contains it.

Changes the first occurrence of

"EXTRA" to "" (null string)

i.e., deletes the first "EXTRA" in every
line that contains it.

Deletes lines in the specified range and renumbers the following
lines using the current increment. If line-range is omitted,
the current line is deleted.

Sample
Commands

D2
D98:115

D1000:*

E line-reference

Deletes the current line.

Deletes line number 2.

Deletes lines found in the range 98 to
115.

Deletes all lines numbered 1000 or
higher to end of text.

Starts edit mode using the specified line. 1If line-reference is
omitted, the current line is used.

Edit sub-commands:
<ENTER>

shift<up-arrow>

n <SPCBAR>

Ends editing and returns to command mode.

Causes escape from sub-edit insertion
(X, I, and H sub-commands) and returns to
edit mode.

Advances cursor n columns.
If n is omitted, 1 is used.

"Lists" working copy of the line and
starts a new working copy.

"Extends" line: positions cursor to end
of line and enters sub-edit insertion mode.
Use shift<up-arrow> to escape to edit mode.

Enters sub-edit "insertion" mode at the

Radio fhaek

PAGE 9

TRS-80 MODEL I/III COBOL CEDIT

TRS-80 ™

current cursor position; use shift<up-arrow>
to escape to edit mode.

A ("Again") Cancels changes and starts a new
working copy of the line.

E ("End") Saves edited line and exits to
command mode, > prompt.

Q ("Quit") Cancels changes and returns to
command mode, > prompt.

H "Hacks" remainder of line beginning at
current cursor position and enters sub-edit
insertion mode. Use shift<up-arrow> to
escape to edit mode.

nD "Deletes" n characters beginning at current
cursor position. If n is omitted, 1 is used.
The deletion is not echoed; use <L> to see
the line with characters deleted.

nC "Changes" next n characters from the current
cursor position, using the next n characters
typed. If n is omitted, 1 is used.

nSc ("Search") Moves cursor to nth occurrence of
character c¢. Search starts at next character
after the cursor. If n is omitted, 1 is
used.

nKc ("Kill") Deletes all characters from current
cursor position up to nth occurrence
of character ¢, counting from current
cursor position. If n is omitted, 1 is
used. The deletion is not echoed; use <L>
to see the line with characters deleted.

F/search-string/n

Finds and displays the first n lines which contain
search-string, starting at the current line. ONLY THE FIRST
OCCURRENCE OF search-string IN A SINGLE LINE IS COUNTED. If the
end of text is reached before n finds, the message "string not
found" will be displayed.

Upon completion of the command, the current line is set to the
line of the last find, or to the first line of text when "string
not found" is displayed.

/search-string/ 1is a sequence of characters delimited by

Radie fhaek

PAGE 10

TRS-80 MODEL I/III COBOL CEDIT

TRS-80 ™

a matched pair of delimiters chosen from the set:

' " E S s s (), - s < =>72

n Tells the maximum number of "finds" you want. n can be a
number or an asterisk. The asterisk means find and list all

occurrences. If n is omitted, only the first occurrence is

listed.

Sample

Commands Notes

F/VAR=/ Finds and displays the first line that
contains the string "VAR=".

F"VAR=" Same as above.

F/RETRY/4 Finds and displays the first eight lines
containing at least one occurrence of
"RETRY".

F/MISPELING/* Finds and displays every line containing

at least one occurrence of "MISPELING".

H line-range

("Hard-copy") Lists to the printer all lines found in the
specified range. 1If line-range is omitted, all the lines after
and including the current line are printed.

The printer should be initialized (with FORMS) before you
execute this command.

Sample

Commands Notes

H#:* Lists all lines to the printer.

H7020 Lists line 7020 to the printer.

H672:800 Lists all lines found in the range 672 to

I start-line, increment

Starts the insert mode.

start-line is a line-reference telling the editor where to begin
inserting into the text. If omitted, the current line
is used.

rincrement is a number telling the editor how to compute
successive line numbers. If omitted, the current increment

is used. ~
Radio fhaek

PAGE 11

TRS-80 MODEL I/III COBOL CEDIT

TRS-80 "

next line number (start-line + increment).
Special Keys in the Insert Mode

-> Advances the cursor to the next eight-column
boundary (8, 16, 24, ...).

shift <- Erases the line and starts over.
<- Backspaces the cursor and erases the character.
<ENTER> Marks the end of the current line. The editor will

store the current line and start a new one, using
increment to generate the next line number.

Overwriting lines

An automatic line numberer is provided to prevent you from
accidentally overwriting lines already entered. 1If a line
number conflict occurs the complete file will be renumbered from
the current start-line by the current increment.

Sample

Commands Notes

I Start inserting at current line number,
using current increment.

I,1 Start inserting at current line number,
using 1 as an increment. If current line
number is in use, start with current line
plus 1.

I45,2 Start inserting at line 45 with an

increment of 2. If line 45 is in use,
start with line 47.

1100 Start inserting at line 100, using the
current increment. If line 100 is in
use, start with 100 plus increment.

L filespec

Loads a source file from disk. If there is already text in RAM,
the editor will ask whether you want to chain the new text onto
the end of the old, or clear out the old first. If you chain
the new text onto the old, the line numbers will start at the
current start-line and be incremented by the current increment.

filespec is a TRSDOS file specification for a FLR text file.
The file may have been created by this COBOL editor or by
another means. However, it must be in the COBOL source file
format. (See Source File Format.)

Radie fhaek

PAGE 12

TRS-80 MODEL I/III COBOL CEDIT

TRS-80 "
Sample
Commands Notes
L DEMO/BAS:1 Load DEMO/BAS from drive 1.
I, XDATA Load XDATA

=\

Prints the number of characters in the source text (excluding
the editor's line numbers) and the amount of memory free for
text storage.

Sample
Command Notes
M A typical response in a 48K system

might look like this:

000427~ TEXT

039383- MEMORY

Meaning you have 427 bytes of text, and
39383 free bytes of memory available.

N start-line,increment

Renumbers the entire text.

Note: The renumbering commands DO NOT RENUMBER LINE REFERENCES
inside your program text; do not use them unless you are not
concerned wth line references (GOTO, IF...THEN ..., GOSUB,

etc.). To renumber your program properly, use the Compiler
COBOL RENUMBER command.

start-line becomes the lowest line number when the text is
renumbered. If start-line is omitted, the current line
number 1is used.

increment is used in computing successive line numbers. If
omitted, the current increment is used.

The current line before numbering is also the current line after
renumbering.

Sample
Commands Notes
N Repeats the last renumbering command.
N100O Renumbered text will start with line 100;
successive lines computed with the
@
Radio fhaek

PAGE 13

TRS-80 MODEL I/III COBOL CEDIT

TRS-80 "

current value of increment.
N10O, 25 As above; line numbers at increments
of 25.

P line-range

Prints the specified lines to the display. If line-range 1is
omitted, 14 lines starting at the current line are displayed.

Sample

Commands Notes

P Prints 14 lines starting at current
line.

P233 Prints line 233.

P. Prints the current line.

p* Prints the last line.

P140:615 Prints the lines within the specified

range. Lines 140 and 615 don't have to
be existing line numbers.

1ol

Terminates session and returns to TRSDOS. The source text is
not written to disk.

R line-reference, increment

Replaces contents of the specified line and continue in insert
mode. If line-reference is omitted, the current line is used.
If increment is omitted, the current increment is used. Also
renumbers the complete file using the current start-line and the
new increment.

The R command is equivalent to the D (delete) command followed
by the I (insert) command. When you enter the command, the
editor deletes the specified line and puts you into the insert
mode, starting with the line just deleted.

After you press <ENTER>, the editor will contine in the insert
mode, prompting you to enter the text of the next line number.
To escape from the insert mode, press <BREAK>,

Sample
Commands Notes
R125,3 Prompts you to insert replacement

text for line 125. Subsequent line
numbers will be generated with an
increment of 3.

Radio fhaek

PAGE 14

TRS-80 MODEL I/III COBOL CEDIT

TRS-80 "

R* Prompts you to insert replacement
text for the highest numbered line in
the text area; subsequent lines will
be generated using the current increment.

i3\

Displays the top line (first line in the text area)

W'filespec
Writes the text in RAM into the specified file.

filespec is a TRSDOS file specification. If file already exists,
its previous contents will be lost.

Sample

Commands Notes

W DEMO/CBL:1 Save DEMO/CBL onto drive 1.

W XDATA Save XDATA/CBL onto first available drive.

iysearch—string/replacement—string/n

This command is exactly like the C (Change) command, except that
it displays the line to be changed and queries you (Change?)
each time it finds search-string. If you answer Y, the line will
be changed; any other answer leaves the line unchanged. In
either case, the process continues until all first occurrences
have been found.

Sample
Command Notes
X/MISPELING/MSP/*

Changes the first occurrence of
"MISPELING" to "MSP"

in every line that contains it, but asks
you to confirm each change before it

is made.

Radio fhaek

PAGE 15

RRER - B3 P e o e Tr-1TIX

Rl o L PR O D P e U e

JAHNUARY « 1981

COPYRIGHT NOTICE

TRS-80 (R) Model I/III COBOL

(C) (P) 1980, 1981 by Ryan-McFarland Corporation, Aptos,
California 95003; Licensed to Tandy Corporation; Fort
Worth, Texas 76102. All rights reserved.

TRS-80 (R) Model I/III TRSDOS DISK OPERATION SYSTEM
(TRSDOS) (C) (P) 1978, 1980 by Tandy Corporation. All
rights reserved.

TRS~-80 (R) Model I/III COBOL LANGUAGE REFERENCE MANUAL
(C) 1980, 1981 by Ryan-McFarland Corporation; Licensed
to Tandy Corporation. All rights reserved.

Reproduction or use, without express written permission
from Tandy Corporation of any portion of this manual is
prohibited. While reasonable efforts have been taken in
the preparation of this manual to assure its accuracy,
Tandy Corporation assumes no liability resulting from any
errors or omissions in this manual, or from the use of the
information obtained herein.

PREFACE

This reference document describes the COBOL Language as
implemented on the Radio Shack TRS-80 Model I and Model III
Microcomputer under the TRSDOS Disk Operating System.

It assumes the reader is familiar with the COBOL Language,
the general operation of the TRS-80 Model I or Model III
Microcomputer, and the TRSDOS Operating System. The reader
is specifically referred to the following publications:

5 TRS-80 Model I/III COBOL User's Guide
. TRS-80 Model I or Model III Operation Manual
TRS-80 Model I or Model III Disk System Owner's Manual

ACANOWLEDGEMENT

Much of the material in this manual is extracted from the ANSI
X3. 23-1974 coBoL Standard. Accordingly., the following
acknowledgement is made as required in that document.

COBOL is an industry language and is not the property of any

company or group of companies, or of any organization or group of
organizations.

No warranty, expressed or implied., is made by any contributor or
by the CODASYL Programming Language Committee as to the accuracy
and functioning of the programming system and language. Moreover,
no responsibility is assumed by any contributor, or by the
committee, in connection therewith.

The authors and copyright holders of the copyrighted material used
herein

FLOW-MATIC (trademark of Sperry Rand Corporation), Programming
for the UNIVAC I and I1, Data Avtomation Systems copyrighted
1958, 1959, by Sperry Rand Corporation; IBM Commercial
Translator Form No. F28- 8013, copyrighted 1959 by IBM: FACT,
DS1 27A5260-2740, copyrighted 1960 by Minneapolis-Honeywell

have specifically authorized the use of this material in whole or
in part, in the COBOL specifications. Such authorization extends
to the reproduction and use of COBOL specifications in programming
manuals or similar publications.

TABLE OF CONTENTS

Page

I INTRODUCTION. o e e e e e e e e e e e e e e 1
INTRODUCTION TO COBOL. it 2
What is COBOL™?. i, 2

The History of COBOL..........., 3

The Standardization of COBOL................ 4
CONVENTIONS USED IN THIS MANUAL. S
Words. e e e e e 5
Brackets and Braces............ 5}
Ellipses. e)
Punctuation. e 6
Special Characters............... b6
System Dependent Information................ 6

I1. THE STRUCTURE OF THE COBOL LANGUAGE............ 7
THE LANGUAGE STRUCTURE. 8
Character Set. 8
Separators. 10
Character—-Strings. 11
COBOL Words. i e e i 11
User Words. @ .. @ i 12
Reserved Words. 15
Literals. e i8
Picture String. 19
Comment—-Entry....... 19
System Names. 19

THE PROGRAM STRUCTURE. 20
Source Format. e, 20
Statements. e e 22
Sentences. 23
Clauses and Entries. 23
Paragraphs. L e 24
Sections, e 24
Divisions. e 24

THE COPY STATEMENT. 25

III.

Iv.

IDENTIFICATION DIVISION.
INTRODUCTION.
PROGRAM IDENTIFICATION. ...

The PROGRAM-ID Paragra

The AUTHOR,. INSTALLATI
SECURITY Paragraph
ENVIRONMENT DIVISION.
INTRODUCTION.

CONFIGURATION SECTION.

ph.
ON, DATE—-WRITTEN,
= e -

......................

The SOURCE-COMPUTER Paragraph...............
The OBJECT-COMPUTER Paragraph...............
The SPECIAL-NAMES Paragraph.................

INPUT-0UTPUT SECTION.

The FILE-CONTROL Paragraph..................
The Sequential File Control Entry...........
The Relative File Control Entry.............
The Indexed File Control Entry..............
The I-0 CONTROL Paragraph...................

DATA DIVISION.
INTRODUCTION.

FILE SECTION.

The File Description Entry...

The BLOCK CONTAINS Cla

Use. 0.

The RECORD CONTAINS Clause..................

The LABEL RECORD Claus
The VALUE OF Clause. .
The DATA RECORDS Claus

WORKING-STORAGE SECTION. ..
LINKAGE SECTION.
RECORD DESCRIPTION ENTRY. .

Level-Numbers.........

Elementary Items......

77 LEVEL DESCRIPTION ENTRY

......................

27
28

28
29

29

30

31

32
32
33
34

36
36
37
39
a1
44

45

46

48
49
50
51
52
52
53

54
54
99
55
55

26

VI.

THE DATA DESCRIPTION ENTRY.. 97

The Level—-Number. 60

The Data Name or FILLER Clause.............. 61

The REDEFINES Clavuse. 62

The PICTURE Clause. iuiuiueenin. &4

The USAGE Clause., 79

The SIGN Clause. 77

The OCCURS Clause.c.uuuiuinienn. 78

The SYNCHRONIZED Clause. 80

The JUSTIFIED Clause. 82

The BLANK WHEN ZERO Clause.................. 83

The VALUE IS Clause., 84

The RENAMES Clause. 87
DATA STRUCTURES. e 89
Classes of Data. 89
Representation of Numeric Items.............. Q0
Representation of Algebraic Signs............ 90
Standard Alignment Rules. 91
QUALIFICATION. e e e e 92
SUBSCRIPTING. e 94
INDEXING. e e 93
IDENTIFIER. e e e e e 96
CONDITION-NAME. e 97
TABLE HANDLING. e 98
PROCEDURE DIVISION. 101
THE PROCEDURE DIVISION. 102
Structure. 103
Declaratives. 104
Procedures. e 104
Execution. e 104
PROCEDURE REFERENCES. 105
SEGMENTATION. e 107
Segments. 107
Segmentation Classification. 108
Segmentation Control. 108
Restrictions on Program Flow................ 108

THE USE STATEMENT. 110

ARITHMETIC STATEMENTS. 112

Arithmetic Expressions. 112
Arithmetic Operators. 113
Formation and Evaluation Rules.............. 113
CONMDITIONALS. e e s i 114
Relation Condition. 115
Class Condition. 118
Condition—-name (Conditional Variable)....... 119
Switch-8tatus Condition..................... 120
Complex Conditions. 120
Negated Simple Conditions................... 121
Combined and Negated Combined
Conditions., 121
Condition Evaluation Rules. 122
SEQUENTIAL ORGANIZATION INPUT-OUTPUT............ 123
Function. e 123
Organization. i . 123
Access Mode. 123
Current Record Pointer. 123
I-0 Status. e 124
RELATIVE ORGANIZATION INPUT-OUTPUT.............. 1246
Function. e 126
Organization. 126
Access Modes. e 126
Current Record Pointer. 127
I-0 Status. e 127
The INVALID KEY Condition................... 129
The AT END Condition. 130
INDEXED ORGANIZATION INPUT-DUTPUT............... 131
Function. e 131
Organization. 131
Access Modes. 131
Current Record Pointer. 132
I-0 Status. e e 132
The INVALID KEY Condition................... 136

The AT END Condition........................ 136

PROCEDURAL STATEMENTS. i
ACCEPT. . . FROM Statement.
ACCEPT Statement (Terminal I-0).............
ADD Statement.
ALTER Statement.
cAaLL Statement.
CLOSE Statement (Sequential I-0)............
CLOSE Statement (Relative & Indexed I1-0)....
COMPUTE Statement.
DELETE Statement (Relative & Indexed I-0)...
DISPLAY Statement (Terminal I-0)............
DIVIDE Statement.

OPEN Statement (Sequential I-0).............
OPEN Statement (Relative % Indexed I-0).....
PERFORM Statement.
READ Statement (Sequential I-0).............
READ Statement (Relative & Indexed I-0).....
REWRITE Statement (Sequential I-0)..........
REWRITE Statement (Relative & Indexed I-0)..
SET Statement.
START Statement (Relative & Indexed I-0)....
STOP Statement.

WRITE Statement (Sequential I-0)............
WRITE Statement (Relative & Indexed I-0). ..

APPENDIX A: ERROR MESSAGES.
APPENDIX B: RESERVED WORDS.
APPENDIX C: GLOSSARY.
APPENDIX D: COMPOSITE LANGUAGE SKELETON.............

INTRODUCTION

PAGE 1

INTRODUCTION TO COBOL

What is COBOL?

COBOL (COmmon Business Oriented Language) is an English oriented
programming language designed primarily for developing business
applications on computers. It is described as English oriented
becavse its free form enables a programmer ¢to write in such a way
that the final result can be read easily and the general flow of
the logic can be understood by persons not necessarily as closely
allied with the details of the problem as the programmer himseléf.

Because COBOL 1is a programming language it can be translated to
serve as communication between the programmer and the computer.
The COBOL program (the source program) which has been written by
the programmer is input to the COBOL compiler. The COBOL compiler
then translates the COBOL program into a machine readable form
(the object program).

Although each computer has its own unique COBOL compiler program,
an industry-wide COBOL effort has resulted in a degree of
compatibility so that a COBOL source program can be exchanged
among different computers of one manufacturer or among computers
of different manufacturers.

A COBOL program is both a readable document and an efficient
computer program. Throughout the study of the COBOL language. it
is important to keep these two basic capabilities of COBOL in mind
and to observe the close relationship between them.

The readability factor of the COBOL language facilitates
communication not only between programmer and management, but also
among programmers:; with a minimum of additional documentation. The
readability factor need not affect the other equally important
capability of constituting an efficient computer program. It 1is
precisely here that the attention of a good COBOL programmer is
centered. He can produce a solution in the form of a
well-integrated COBOL program by combining the
following: knowledge of the problem, programming technique,
capability of the equipment, and familiarity with the available
elements of the COBOL language.

PAGE 2

The History of COBOL

Development of the COBOL programming language is a centinuing
process performed by the Programming Language Committee (PLC) of
the COnference on DAta SYstems Languages (CODASYL). This committee
is made up of representatives of computer manufacturers and
computer users.

The +first version of the COBOL programming language to be
published by CODASYL was called COBOL-60. The second version,
called COBOL-61, contained changes 1in the organization of the
Procedure Division and thus was not completely compatible with
COBOL.-60.

In 1963 the third version, called COBOL-61 Extended., was rteleased

It was basically COBOL-61 with the addition of the sort feature,
the addition of the report writer feature, and the modification of
the arithmetics to include multiple receiving #fields and the
CORRESPONDING option.

The fourth version of the COBOL programming language, COBOL-435,
consists of COBOL-61 Extended with the inclusion of a series of
options to provide for the reading, writing. and processing of
mass storage files and the addition of table handling features.

Beginning in 19468 the CODASYL COBOL Programming lLanguage Committee

began to report its developmental work in a Journal of
Development. The first report to be published was the CODASYL
COBOL Journal of Development —— 1948. This journal is the official

report of the CODASYL COBOL Programming Language Committee and it
documents the developmental activities of CODASYL through July
1968. COBOL—-68 is based on COBOL-65 with certain additions and
deletions.

Additional COBOL Journal of Development reports were published in
1969, 1970 and 1973. Each documented the developmental activities
of CODASYL from the previous report, resulting in continually
varying COBOL definitions.

PAGE 3

The Standardization of COBOL

In September 19462 the American National Standards Institute (ANSI)
set up a committee to work on the definition of a standard COBOL
programming language. This standardization effort was based on the
technical content of COBOL as defined by CODASYL. In August 1968
an American National Standard COBOL was approved which was based
upon the developmental work of CODASYL through January 1968. This
first version was called American National Standard COBOL 1948.

In May 1974 a revision of American National Standard COBOL was
approved. This revision, called American NMational Standard COBOL
1974, is based upon the developmental work of CODASYL through
December 1971. The COBOL programming language and compiler
described in this document is based on the American National
Standard COBOL 1974.

PAGE 4

CONVENTIONS USED IN THIS MANUAL

This manual presents the language definition and capabilities of
COBOL in a generally accepted syntax consistent with the 1974
American National Standard COBOL document. As a result, COBOL
Syntax is specified by formats employing special notation.

Words

All underlined uppercase words are key words and are required when
the functions of which they are a part are vused. Uppercase words
which are not wunderlined are optional and may or may not be
present in the source program. Uppercase words, whether underlined
or not, must be spelled correctly.

Lowercase words are generic terms vused to represent COBOL words,
literals, PICTURE character-strings, comment—-entries, or a
complete syntactical entry that must be supplied by the user. When
generic terms are repeated in a general format, a number or letter
appendage to the term serves to identify that term for explanation
or discussion.

Brackets and Braces

When a portion of a general format is enclosed in brackets, [1,
that portion may be included or omitted at the user’s choice.
Braces, {), enclosing a portion of a general format means a
selection of one of the options contained within the braces must
be made. In both <cases, a «choice is indicated by vertically

stacking the possibilities. When brackets or braces enclose a
portion of a format, but only one possibility is shown, the
function of the brackets or braces is to delimit that portion of
the format to which a following ellipsis applies. If an option

within braces contains only reserved words that are not key words,
then the option is 8 defauvlt option (implicity selected unless one
of the other options is explicitly indicated).

Ellipsis

The ellipsis (...) represents the position at which repetition may
occur at the user ‘s option.

PAGE S5

Punctuation

The punctuation characters comma and semicolon are shown in some
formats. Where shown in the formats, they are optional and may be
included or omitted by the user. In the source program these two
punctuation characters are interchangeable and either may be wused
anywhere one of them is shown in the formats. Neither one may
appear immediately preceding the first clause of an entry or
paragraph.

If desired, a semicolon or comma may be used between statements in
the Procedure Division.

Paragraphs within the Identification and Procedure Divisions, and
the entries within the Environment and Data Divisions must be
terminated by the separator period.

Special Characters

The characters “+/, -/, ‘>7,/¢’, '=‘, when appearing in formats,
although not underlined, are required when such formats are used.

System Dependent Information

Selected features in ANSI COBOL are intended for definition by the
implementor, to accomodate the capabilities and restrictions of

the host system. These system dependent items are summarized in
the COBOL Users Guide.

PAGE 6

II

THE STRUCTURE OF THE COBOL LANGUAGE

PAGE 7

THE LANGUAGE STRUCTURE

The smallest element in the COBOL language is the character. A
character 1is a digit, a letter of the alphabet, or a symbol. A
COBOL word is one possible result obtained when one or more COBOL
characters are joined in a sequence of contiguous characters. Just
as English words ‘are determined by rules of spelling, so COBOL
words are formed by following a specific set of rules.

Using the COBOL rules of grammar, the COBOL words and COBOL
punctuation characters are combined into statements, sentences,
paragraphs, and sections. When writing normal English, a failure
to follow the rules of grammar and sentence structure may cause
misunderstanding; the same is true when writing COBOL. It must be
emphasized that a thorough knowledge of the rules of COBOL
structure is a prerequisite to writing a workable COBOL program.

Character Set

The COBOL character set consists of fifty—one characters:
Digits 0 through 9
l.etters A through Z

Punctuation Blank (or space)
s Comma
i Semicolon
. Period
" Quote
Left parenthesis
Right parenthesis

o~

Greater than

l.ess than

Plus

Minus (ot hyphen)
Asterisk

Slash (or Stroke)
Equal

Currency

Special

Nk AN

These characters determine the structure of a COBOL program. In
some constructs, such as comments, other characters may be used
but they have no grammatical meaning.

PAGE 8

Characters are combined to form either a separator or a
character—-string.

The COBOL character set is a proper subset of the ASCII character
code set native to the computer. The complete character set may be
used only within non numeric literals and comments. The chart
below gives the hexadecimal and decimal codes for the complete

character set.

e S S S e S S MG SR AR D D G D S G R T S G D S S S M S Smn B S S T — e S e — i S " T M S e S by S G e ST S e e S S v

Hexadecimal Decimal Hexadecimal Decimal
Character Value Value Character Valve Value
Space 20 32 e 40 64
! 21 33 A 41 &5
" 22 34 B 42 66
23 35 (o 43 &7
$ 24 36 D 44 68
% 25 37 E 45 69
& 26 38 F 446 70
’ 27 39 G 47 71
(28 40 H 48 72
) 29 41 I 49 73
* 2A 42 J 44A 74
+ 2B 43 K 4B 75
’ 2C 44 (1 4C 76
- 2D 45 M 4D 77
. 2E 44 N 4E 78
/ 2F 47 0 4F 79
0 30 48 P 50 80
1 31 49 Q 51 81
2 32 S50 R 52 82
3 33 S51 S 93 83
4 34 292 T o4 84
S 35 53 U 995 85
- 36 o4 v 96 86
7 37 295 W %7 87
8 38 96 X 58 88
9 39 57 Y 99 B89
: 3A o8 Z S5A 90
i 3B 59 L SB ?1
< ac &0 A\ SC 92
= 3D 61 bl SD 93
> 3E 62 ~ SE 94
? 3F 63 - SF 95

PAGE 9

Separators

A separator is a string of one or more punctuation characters.

Punctuation characters belong to the following set:

Space
. Comma
= Equal sign
(Left parenthesis
Period
Quotation mark (double)
) Right parenthesis
i Semicolon

Separators are formed according to the following rules:

1.

A space is a separator. Anywhere a space is vused as a
separator, more than one space may be used

Comma, gsemicolon, and period are separators when immediately
followed by a space. These separators may appear only when
explicitly permitted

Parentheses are separators which may appear only in balanced
pairs of left and right parentheses delimiting subscripts,
indices, arithmetic expressions or conditions.

Left parentheses must be preceded by a separator space or left
parenthesis.

Right parenthesis must be followed by one of the separators:
space, period, semicolon, comma or tight parenthesis.

Quotes are separators which may appear only in balanced pairs
delimiting the nonnumeric literals except when the literal is
continued.

An opening quotation mark must be immediately preceded by a
space or left parenthesis.

A closing quotation mark must be immediately followed by one

of the separators: space, comma, semicolon, period or rTight
parenthesis.

PAGE 10

5. The separator space may optionally immediately precede all
separators except:

As specified by reference format ruvles.

As the separator closing quotation mark. In this case; a
preceding space is considered as part of the nonnumeric
literal and not as a separator.

The separator space may optionally immediately follow any
separator except the opening quotation mark. In this case, a
following space 1s <ctonsidered as part of the nonnumeric
literal and not as a separator.

Any punctuation character which appears as part of the
specification of a PICTURE character-string or numeric literal is
not considered as a punctuation character, but rather as a symbol
used in the specification of ¢that PICTURE character—-string or
numeric literal. PICTURE character—strings are delimited only by
the separators space, comma, semicolon, or period

These rules do not apply to the characters within nonnumeric
literals, picture strings, or comments.

Character-Strings

A character-string is a sequence of one or more characters that
form a COBOL word, literal, picture string, or comment. A
character~string is delimited by separators.

COBOL Words

A COBOL word is a character-string of not more than 30 characters
which form either a user word or a reserved word. All words are
one or the other.

PAGE 11

User Worids

User words are composed of the alphabetic characters. the numbers,
and the hyphen character. A user word must not begin or end with a
hyphen. With the exception of paragraph—-name, section—-name,
level-number and segment-number, all wuser—defined words must
contain at least one alphabetic character. There are twelve types
of user words:

program—name condition—name

file—name index—name

record—-name alphabet—-name

data—-name text-name

paragraph—-name level—-number

section—name segment-number
Program—Name

The program—name identifies the COBOL source and object program.
The name must contain at least one alphabetic character. Only the
first 6 characters are associated with the object program

File—Name

File-names are the internal names for files accessed by the source
program. They are not necessarily the same as the external names
given to the #files. File—names must contain at least one
alphabetic character and must be unique.

Record—Name

Record—names are used to name data records within a file. They
must contain at least one alphabetic character and, if not unique,
must be made unique by qualification with the file name.

Data—-Name

A group of contiguous characters or a word of binary data treated
as a unit of data is called a data item, named by a data-name. A
data-name must contain at least one alphabetic <character.
References to data items must be made unique by qualification or
the appending of subscripts (or indices) or both. Complete unique
references to data items are called identifiers.

PAGE 12

Paragraph—Name

A paragraph—-name is a procedure name that identifies the beginning
of a set of COBOL procedural sentences. If not wunique, a
paragraph-name must be made wunique by qualification with a
section—name.

Section—Name

A section-name is a procedure name that identifies the beginning
of a set of paragraphs. Section-names must be unique.

Condition—Name

A condition—name may be defined in the SPECIAL-NAMES paragraph
within the Environment Division or in a level—number 88
description within the Data Division.

A SPECIAL-NAMES condition-name is assigned to ON STATUS or OFF
STATUS of one of eight system software switches.

A level-number 88 condition—name is assigned to a specific wvalvue,
set of values, or range of values within a complete set of values
that a data item may assume. The data item itself 1is called a
conditional variable.

A condition-name is used only in conditions as an abbreviation for
the relation condition which assumes that the associated switch or
conditional variable is equal to one of the set of values to which
that condition-name is assigned.

Index—Name

An index—name names an index associated with a specific table. It
must contain at least one alphabetic character and must be unique.
Alphabet—-Name

An alphabet-name is used to specify a character code set. It must
contain at least one alphabetic character and must be unique.
Text—Name

A text-name is the name of a COBOL library text file. It must

correspond exactly to a valid file access—name as described in the
operating system documentation.

PAGE 13

Level—-Number

A level-number is used to specify the position of a data item
within a data hierarchy. A level-number is a one— or two-digit
number in the range 01-49, 64, 77 or 88.

Level-numbers 66, 77 and 88 identify special properties of a data
description entry.

Segment—Number

A segment-number specifies the segmentation classification of a
section. It is a one- to two-digit number in the range 01-99.

PAGE 14

Reserved Words

The structure of COBOL governs the wuse of certain COBOL words
called reserved words. Reserved words: recognized by the COBOL
compiler, aid the compiler in determining how to generate a
program. A programmer cannot devise a reserved word for a COBOL
program; he must use the word designated by the format of the
language. A reserved word must not appear as a user—defined word
within a program. A list of all reserved wards recognized by the
compiler is shown in Appendix B.

Five kinds of reserved words are recognized by the compiler:
Key words
Optional words
Connectives
Figurative constants
Special-characters
Key Words
Key words are required elements of COBOL formats. Their presence
indicates specific compiler action.
Optional Words
Optional words are optional elements of COBOL formats. Their
presence has no effect on the object program.
Connectives
The connectives OF and IN are used interchangeably to connect

qualifiers to a user word. The words AND and OR are logical
connectives and are used in the formation of conditions.

PAGE 15

Figurative Constants

Figurative constants identify commonly used constant values. These
constant wvalues are generated by the compiler according to the
context in which the references occur. Note that figuratives
represent valvues, not 1literal occurrences. Thus QUOTE cannot be
used to delimit a nonnumeric literal, SPACE is not a separator,
and so forth. Singular and plural forms of figuratives are
equivalent and may be used interchangeably.

ZERO

ZEROS

ZEROES

Represents the value O or one or more zeraoa (0) characters,
depending on context

SPACE

SPACES

Represents one or more space () characters.

HIGH-VALUE

HIGH-VALUES

Represents one or more of ¢the highest «characters in the
collating sequence (hexadecimal FF).

LOW-VALUE

LOW-VALUES

Represents one or more of the 1lowest characters in the
collating sequence (hexadecimal 00).

QUOTE

QUOTES

Represents one or more quote (") characters.

PAGE 16

ALL literal

Represents one or more of the characters comprising the literal.
The literal must be either a nonnumeric literal or a +figurative
constant. When a figurative <constant is used, the word ALL is
redundant.

When a figurative constant represents a string of one or more
characters, the length of the string is determined by the compiler
from context according to the following rules:

1. When a figurative constant is associated with another data
item, as when the figurative constant is moved to or compared
with another data item, the string of characters specified by
the figurative constant is repeated character—-by-character on
the right until the size of the resultant string is equal ¢to
the size in characters of the associated data item. This is
done prior to and independent of the application of any
JUSTIFIED clause that may be associated with the data item.

2. When a figurative constant 1is not associated with another
data item:, as when the figurative constant appears in a
DISPLAY or STOP statement, the length of the string is one
character.

A figurative constant may be used wherever a literal appears in a
format, except that whenever the literal is restricted to having
only numeric characters in it, the only figurative constant
permitted is ZERO (ZEROS, ZEROES).

Each reserved word which 1is wused to reference a figurative
constant value is a distinct character-string with the exception
of the construction ‘ALL 1literal’ which 1is composed of two
distinct character—-strings

Special Characters

The special character words are the arithmetic operators and
relation characters:

Plus sign (indexing)
Minus sign (indexing)
Greater than

Less than

Equal to

BPAVI ¢+

PAGE 17

L.iterals

A literal is a character—string whose form determines its valve.
Literals are either nonnumeric or numeric.

Nonnumeric Literals

A nonnumeric literal is a character—string enclosed in gquotes. Any
characters in the COBOL character set may be used. Quote
characters within the string are represented by two contiguous
quotes. The value of the literal is the string itself excluding
the delimiting quotes and one of each contiguous pair of imbedded

quotes. The valuve of the literal may contain from 1 to 2047
characters.

Examples:
Literal Value
“AGE?" AGE?
[1) IITNENTY [1] It?" [1] TwENTY ll?

illegal (odd number of quotes)

Numeric Literals

A numeric literal represents a numeric value, not a

character—-string. Numeric literals are composed according ¢to the
following rules:

1. The literal must contain from 1 to 18 digits.

2. The 1literal may contain a single plus or minus sign if it is
the first character.

3. The literal may contain a single decimal point if it 1is not
the last character. The decimal point must be represented with
a comma if the DECIMAL-POINTY IS COMMA phrase is specified in
the SPECIAL-NAMES paragraph.

Examples:

1234
+1234
-1. 234

. 1234
+. 1234

PAGE 18

Picture String

A picture string consists of certain combinations of characters
from the COBOL character set wused as symbols. Any punctuation
character appearing as part of a picture string is considered +to
be a symbol, not a punctuation character.

Comment—-Entry

A comment-entry is an entry in the Identification Division that
may contain any characters from the computer ‘s character set.

System Names

System names identify certain hardware or software system
components. System names consist of device-names and switch—-names.

Device—Names Component

PRINT printer or print file
INPUT input only device
QUTPUT output only device
INPUT-OQUTPUT input-output device
RANDOM disc

Switch—Names Component

SWITCH-1

software switches

SWITCH-8

PAGE 19

THE PROGRAM STRUCTURE

Source Format

COBOL programs are accepted as a sequence of formatted lines (or
records) of B0 characters or less. Each line is divided into five
areas:

Columns Area

1-46 sequence number
7 indicator

8-11 A

12-72 B

73-80 identification

The sequence number and identification areas are used for clerical
and documentation purposes. They are ignored by the compiler.

The indicator area is wused for denoting 1line continuation,
comments, and debugging.

Areas A and B contain the actual program according to the
following rules:

i. Division headers, section headers, paragraph headers,
section-names, and paragraph-names must begin in area A.

r

The Data Division level indicator FD and level-numbers 01 and
77 must begin in area A. Other level-numbers may begin in area
A or area B, although B is preferable.

3. The key word DECLARATIVES and the key words END DECLARATIVES,
precede and follow, respectively, the declaratives portion of
the Procedure Division. Each must appear on a line by itself#f
and each must begin in area A and be followed by a period and
a space.

4. Any other language element must begin in area B unless it
immediately follows, on the same line, an element in area A.

PAGE 20

Continuation of Lines

Whenever a sentence, entry., phrase. or clauvse trequires more than

one line, it may be continued by starting subsequent line(s) in
area B. These suvbsequent 1lines are called the continuation
line(s). The 1line being continued is called the continued line.

Any word or literal may be broken in such a way that part of it
appears on a continuation line, according to the following rules:

1. A hyphen in the indicator area of a line indicates that the
first nonblank character in area B of the current line is the
successor of the last nonblank character of the preceding line
without any intervening space. However, if the continued line
contains a nonnumeric literal without closing quotation mark,
the first nonblank character in area B on the continuation
line must be a quotation mark, and the continvation starts
with the character immediately after that quotation mark. All
spaces at the end of the continued line are considered part of
the literal. Area A of continuation line must be blank.

2. If there is no hyphen in the indicator area of a line, it is
assumed that the last character in the preceding line is
followed by a space.

Blank Lines

A blank line is one that is blank in the indicator, A and B areas.
A blank line can appear anywhere in the source program except
immediately preceding a continuation 1line with a hyphen in the
indicator area.

Comment Lines

A comment line is any line with an asterisk (#) in the indicator
area of the line. A comment line can appear as any line in a
source program after the Identification Division header. Any
combination of characters from the computer’s character set may be
included in area A and area B of that line. The asterisk and the
characters in area A and area B will be produced on the listing
but serve as documentation only.

Successive comment 1lines are allowed. Continuvation of comment
lines is permitted, except that each continuation line must
contain an asterisk in the indicator area.

A special form of comment line represented by a slash (/) in the
indicator area of the line causes page ejection prior to printing
the comment.

PAGE 21

Debugging Lines

A debugging line is any line with a D in the indicator area of the
line. Any debugging line that consists solely of spaces from area
A to the identifier area is considered to be a blank line.

A program that contains debugging 1lines must be syntactically
correct with or without the debugging lines.

A debugging line will be considered to have all the
characteristics of a comment line if the debug option is not
specified at compiler invocation.

Successive debugging lines are allowed. Continuation of debugging
lines is permitted, except that each contifnuation line must
contain a D in the indicator area, and character strings may not
be broken across two lines.

Statements

COBOL statements always begin with a key word called a verb. There
are three kinds of statements: directive, conditional, and
imperative.

A directive statement specifies action to be taken by the compiler
during compilation. The directive statements are:

The COPY and USE statements.
A conditional statement specifies <that the truth wvalue of a
condition is to be determined and that the subsequent action of
the object program is dependent on this truth valuve. The
conditional statements are:

An IF statement.

A READ statement with the AT END or INVALID KEY phrase.

A DELETE, REWRITE or START statement with the INVALID KEY
phrase.

A WRITE statement with the INVALID KEY phrase

An arithmetic statement (ADD, COMPUTE, DIVIDE, MULTIPLY,
SUBTRACT) with the SIZE ERROR phrase

PAGE 22

An imperative statement specifies an unconditional action +to be
taken by the object program. The imperative statements are:

A READ statement without the AT END or INVALID KEY phrase.

A DELETE, REWRITE or START statement without the INVALID KEY
phrase.

A WRITE statement without the INVALID KEY phrase

An arithmetic statement (ADD, COMPUTE, DIVIDE, MULTIPLY,
SUBTRACT) without the ON SIZE ERROR phrase

An ACCEPT, ALTER. CLOSE., DISPLAY, EXIT, GO, INSPECT, MOVE,
OPEN, PERFORM., SET or STOP statement.

Whenever the term imperative-statement appears in the format of a
COBOL verb, it refers to one or more consecutive imperative
statements. The sequence ends with a period separator or an ELSE
associated with an IF verb.

Sentences

A sentence 1is a sequence of one or more statements terminated by
the period separator. There are three kinds of sentences:
directive, conditional, and imperative.

A directive sentence may contain only a single directive
statement.
A conditional sentence is a conditional statement, optionally

preceded by a sequence of imperative statements, terminated by a
period followed by a space.

An imperative sentence is one or more imperative statements
terminated by a period separator.

Clauses and Entries

An entry is an item of descriptive or declaratory nature composed
of consecutive clauses. Each clause specifies an attribute of the
entry. Clauses are separated by space, comma, or semicolon
separators. The entry is terminated by a period separator.

PAGE 23

Paragraphs

A paragraph is a sequence of an arbitrary number, which may be

1eTo, of sentences or entries. In the Identification and
Environment Divisions, each paragraph begins with a reserved word
called a paragraph header. In the Procedure Division, each

paragraph begins with a user—defined paragraph—name.

Sections

A section is a sequence of an arbitrary number, which may be zero,
of paragraphs in the Environment and Procedure Divisions and a
sequence of an arbitrary number, which may be 2ero, of entries in
the Data Division. In the Environment and Data Divisions, each
section begins with reserved words called a section header. In the
Procedure Division, each section begins with a user—-defined
section—-name.

Divisions

Each COBOL program consists of four divisions; each is composed of
paragraphs or sections. These are the Identification, Environment,
Data, and Procedure divisions, in that order. All divisions are
required. Each division begins with a group of reserved words
called a division header.

PAGE 24

THE COPY STATEMENT

The COPY statement provides the facility for copying text from
vser—specified #files into the source program. Text is copied from
the file without change. The effect of the interpretation of the
COPY statement is to insert text into the source program, where it
will be treated by the compiler as part of the source program

COBOL library text is placed on the COBOL library as a function
independent of the COBOL program and according to operating system
techniques.

FORMAT

COPY text—-name.

The COPY statement must be preceded by a space and terminated by
the separator period. There must not be any additional text in
area B following the separator period.

Text-name is the external identification of the +file containing
the text ¢to be <copied. Its format conforms to the rules for
filename (or pathname) construction of the host operating system.
I+ the external identification contains any characters that are
not letters or digits, or if the first character is not a letter,
then the text-name must be written as a nonnumeric literal and
enclosed in quotation marks

A COPY statement may occur in <the source program anywhere a
characterstring or separator may occur except that a COPY
statement must not occur within a COPY statement.

The compilation of a source program containing COPY statements is
logically equivalent ¢to processing all COPY statements prior to
the processing of the resulting source program.

The effect of processing a COPY statement is that the library text
associated with text-name is copied into +the source program,
logically replacing the entire COPY statement, beginning with the
reserved word COPY and ending with the punctuation character
period, inclusive.

The library text is copied unchanged.
Debugging 1lines are permitted within 1library text. If a COPY
statement is specified on a debugging 1line, then the COPY

statement will be processed only if the debug option has been
specified in the compiler invocation options.

PAGE 25

The text produced as a result of processing a COPY statement may
not contain a COPY statement.

The syntactic correctness of the 1library text cannot be
independently determined. The syntactic correctness of the entire
COBOL source cannot be determined until all COPY statements have
been completely processed.

Library text must conform to the rules for COBOL source format.

COPY Examples:

FILE-CONTROL.
COPY FLCTRL.

PROCEDURE DIVISION.
COPY "INPUTP. COBOL"™.

PAGE 26

II1I

IDENTIFICATION DIVISION

PAGE 27

INTRODUCTION

The Identification Division must be included in every COBOL source
program. This division identifies both the source program and the
resultant object program. In addition, the user may include other
commentary information.

FORMAT

IDENTIFICATION DIVISION.

e e o ety e o ey e ey T v o e o e e e

PROGRAM—ID. program—name.

o s e e e s s 0 =

[égzﬁgi. [comment-entryl ...]
[if?IAEEfTIDT. Ccomment—-entryl ... 1]
[9?TE—8RITTEN. Lcomment—entryl ...]
[SECURITY. [comment-entryl ... 1]

PROGRAM IDENTIFICATION

The Identification Division must begin with the reserved words
IDENTIFICATION DIVISION followed by a period and a space.

Paragraph headers identify the type of information contained in
the paragraph. The name of the program must be given in the first
paragraph, which is the PRDGRAM-ID paragraph. The other paragraphs
are optional and may be included at the user’s choice, in the
order of presentation shown.

PAGE 28

The PROGRAM—ID Paragraph

The PROGRAM-ID paragraph, containing the program—-name. identifies
the source program, the object program, and all 1listings
pertaining to a particular program. A program-name is a
user—defined word made up of only those characters from the word
set.

A program—name cannot exceed 8 characters in 1length. and must

contain at least one alphabetic character located in any position
within the program-name. Each program—-name must be unique

The AUTHOR, INSTALLATION, DATE-WRITTEN, SECURITY Paragraphs

The AUTHOR, INSTALLATION, DATE-WRITTEN., and SECURITY paragraphs
are optional. The programmer may use these paragraphs to document
information pertaining to the paragraph header.

The comment-entry may be any combination of characters from the
computer’s character set. The continuation of the comment-entry by
the use of the hyphen in the indicator area is not permitted;
however, the comment-entry may be contained on one or more lines.

PAGE 29

IV

ENVIRONMENT DIVISION

PAGE 30

INTRODUCTION

The Environment Division describes the hardware configuration of
the compiling computer (source computer) and the computer on which
the object program is run (object computer). It also describes the
relationship between the files and the input/output media.

The Environment Division must be included in every COBOL source
program.

There are two sections in the Environment Division: the
Configuration Section and the Input-Output Section.
FORMAT

ENVIRONMENT DIVISION.

S e Besks s e A S S S S e S At S, D o S SOt Spate e

CONFIGURATION SECTION.

SOURCE-COMPUTER. computer—name.

OBJECT-COMPUTER. computer—-name.

[SPECIAL-NAMES. special—names—-entryl.

e e B ST G o B e e i v G — e 900 S

FILE~CONTROL. {file—control-entryl} ..

[I-0-CONTROL. input-output-control-entryll.

PAGE 31

CONFIGURATION SECTION

The Configuration Section deals with the characteristics of the
source computer and the object computer. This section is divided
into three paragraphs:

the SOURCE-COMPUTER paragraph: which describes the computer
configuration on which the source program is compiled

the OBJECT-COMPUTER paragraph: which describes the computer
configuration on which the object program produced by the
compiler is to be run

the SPECIAL-NAMES paragraph, which relates names used by the
compiler to user—-names in the source program.

The SOURCE-COMPUTER Paragraph

The SOURCE-COMPUTER paragraph identifies the computer upon which
the program is to be compiled.

FORMAT

SOURCE-COMPUTER. computer-—-name.

Computer-name is a user~defined word and is only commentary.

PAGE 32

The OBJECT-COMPUTER Paragraph

The OBJECT-COMPUTER paragraph identifies the computer on which the
program is to be executed

FORMAT

OBJECT-COMPUTER. computer—name

f. MEMORY SIZE integer <{WORDS 313

Computer-name is a user—defined word and is only commentary.
The MEMORY SIZE definition is treated as commentary.

The PROGRAM COLLATING SEQUENCE clause specifies the program
collating sequence ¢to be used in determining the truth value of
any nonnumeric comparisons. The Program Collating Sequence clause
is treated as commentary; the collating sequence is always ASCII.

PAGE 33

The SPECIAL-NAMES Paragraph

The SPECIAL-NAMES paragraph relates names used by the compiler to
user—names in the source program.

[SPECIAL-NAMES. L[, switch—-name

{ON STATUS IS cond-name-1 [,0FF STATUS IS cond—-name-21}1. ..

—_—

{0FF STATUS IS cond—-name—-2 [, ON STATUS IS cond—-name-—~1 1}

[.alphabet-name IS {STANDARD-13}1]...

oo s s e e

. i e s g e e s

{, DECIMAL-POINT IS COMMAl .]

e s e i o A S o e e it gt b s i i s o e

Switch—name may be SWITCH-1, ..., SWITCH-8.

At least one condition-name must be associated with each
switch—-name given. The status of the switch 1is specified by
condition—names and interrogated by testing the condition-names.

The alphabet-name clause provides a means for relating a name to a
specified character code set and/or <collating sequence. The
alphabet-name definition is treated as commentary; the collating
sequence is always ASCII.

PAGE 34

The literal which appears in the CURRENCY SIGN IS 1literal clause
is wused in the PICTURE clause to represent the currency suymbol.
The literal is limited to a8 single character and must not be one
of the following characters:

digits O through 9i

alphabetic characters A, B, C, D, L, P, R:. S V., X, Z, or the
space;

P S Y v s ‘.ot Py ry s
+7, =7) .0 A (7, ¥4

special characters ‘*’,

21 2 ¢ 22 4 7
’ '] -

If this clause is not present, only the currency sign (%) is used
in the PICTURE clause

The clause DECIMAL-POINT IS COMMA means that the function of comma
and period are exchanged in the character-string of the PICTURE
clause and in numeric literals.

PAGE 35

INPUT-OUTPUT SECTION

The INPUT-OUTPUT section names the files and external media
required by an object program and provides information required
for transmission and handling of data during execution of the
object program. This section is divided into two paragraphs:

the FILE-CONTROL paragraph which mnames and associates the
files with external media.

the I-0-CONTROL paragraph which defines special control
techniques to be used in the object program.
FORMAT

CINPUT-0OUTPUT SECTION.

{file—control-entryl

(I-0-CONTROL.

I-O-control-entryll

The FILE-CONTROL Paragraph

The FILE-CONTROL paragraph names each file and allouws
specification of other file-related information.
FORMAT

FILE-CONTROL. {file-control—-entryl

The content of the file-control-entry 1is dependent upon the
organization of the file named.

PAGE 36

The Sequential File Control Entry

FORMAT

SELECT file-name

ASSIGN TO device—type, {"external—-file-name"2
—————— {data—-name-1 >

The SELECT clause must be specified first in the #file control
entry. The clauses which follow the SELECT clause may appear in
any order.

Each file described in the Data Division must be named once and
only once as file—name in the FILE-CONTROL paragraph. Each file
specified in the file control entry must have a file description
entry in the Data Division.

The ASSIGN clause specifies the association of the file referenced
by file-name to a storage medium.

Device—-type must be one of the device names INPUT, INPUT-OUTPUT,
OUTPUT, PRINT, or RANDOM according to the operations to be
performed.

External-file—-name specifies the file access name. It can be from
one to thirty characters in length and must be enclosed in
quotation marks. A name longer than thirty characters will be
diagnosed as an error. The name may contain any sequence of
characters supported by the operating system +¢for file access
names.

Data-name—1 must be defined in the Data Division as a data item of
category alphanumeric and must not be defined in the Linkage
Section. Its value at the time of an OPEN estatement execution will
be used as the file access name. Data—name-~1 may be qualified

PAGE 37

The ORGANIZATION clause specifies the logical structure of a file.
The file organization is established at the time a file is created
and cannot subsequently be changed.

Records in the file are accessed in the sequence dictated by the
file organization. This sequence is specified by
predecessor—successor tvecord relationships established by the
execution of WRITE statements when the file is created or
extended.

When the ORGANIZATION clause is not specified, ORGANIZATION IS
SEQUENTIAL is implied.

The ACCESS MODE clause specifies the order in which records are
read or written.

If the ACCESS MDODE clause 1is not specified. ACCESS MODE IS
SEQUENTIAL is implied.

When the FILE STATUS clause is specified. a value will be moved by
the operating system into the data item specified by data-name-2
after the execution of every statement that references that file
either explicitly or implicitly. This value indicates the status
of execution of the statement.

Data-name-2 must be defined in the Data Division as a

two-character data item of the category alphanumeric and must not
be defined in the File Section. Data-name—-2 may be qualified.

PAGE 38

The Relative File Contrel Entry

FORMAT

SELECT file—name

ASSIGN TO RANDOM, {"external—-file-name"}
———————————— {data-name-1 >

i ORGANIZATION IS RELATIVE

Ci ACCESS MODE IS { SEQUENTIAL [,RELATIVE KEY IS5 data—-name-211}]

- e e v o = e e et e oo e o e e e oo s oty e i e

{{RANDOM ¥ » RELATIVE KEY IS data-name-2 2

{{DYNAMIC> >

The SELECT clause must be specified first in the file control
entry. The clauses which follow the SELECT clause may appear in
any order.

Each file described in the Data Divison must be named once and
only once as file-name in the FILE-CONTROL paragraph. Each file
specified in the file control entry must have a file description
entry in the Data Division.

The ASSIGN TO RANDOM clause specifies the association of the file
referenced by file-name to a storage medium.

External-file-name specifies the file a&gccess name and must be

enclosed in quotation marks. It can be from one to thirty
characters in length. A name longer than thirty characters will be
diagnosed as an errvor. The name may contain any characters

supported by the operating system for file access names.

Data-name—~1 must be defined in the Data Division as a data item of
category alphanumeric and must not be defined in the Linkage
Section. Its value at the time of an OPEN statement execution will
be used as the file access name. Data-name-1 may be qualified.

PAGE 39

The ORGANIZATION IS RELATIVE <clause specifies the 1loegical
structure of a file. The file organization is established at the
time a file is created and cannot subsequently be changed.

All records stored in a relative file are uniquely identified by
relative record numbers. The relative record number of a given
record specifies the record’s logical ordinal position in the
file. The first logical record has a relative record number of one
(1), and subsequent logical records have relative record numbers
of 2, 3, 4, ...n.

The ACCESS MODE clause specifies the order in which records are to
be accessed.

When the ACCESS MODE IS SEQUENTIAL. records in the file are
accessed in the sequence dictated by the file organization. This
sequence is the order of ascending relative record numbers of
existing records in the file

If the ACCESS MODE IS RANDOM, the value of the RELATIVE KEY data
item indicates the record to be accessed.

If a relative file is to be referenced by a START statement, the
RELATIVE KEY phrase must be specified for that file

When the ACCESS MODE IS DYNAMIC, records in the #file may be
accessed sequentially and/or randomly.

Data-name-2 must not be defined in a record description entry
associated with that file-name. The data item rteferenced by
data-name-2 must be defined as an unsigned integer. Data-name-2
may be qualified.

If the ACCESS MODE clause 1is not specified, ACCESS MODE IS
SEQUENTIAL is implied.

When the FILE STATUS clause is specified. a value will be moved by
the operating system into the data item specified by data—-name-3
after the execution of every statement that references that #file
either explicitly or implicitly. This value indicates that status
of execution of the statement.

Data—-name-3 must be defined in the Data Division as a

two-character data item of the category alphanumeric and must not
be defined in the File Section.

PAGE 40

The Indexed File Control Entry

FORMAT

SELECT file—name

ASSIGN TO RANDOM, {"external-file—name"}
———————————— {data-name-1 }

[; ORGANIZATION IS INDEXED

(i ACCESS MODE IS {SEQUENTIAL}]

e o e s e e - e o e 0 —
s e e e gt

o e i e e

The SELECT clause must be specified first in the file control
entry. The clavses which follow the SELECT clause may appear in
any order.

Each file described in the Data Division must be named once and
only once as file-name in the FILE-CONTROL paragraph.

Each file specified in the file control entry must have a file
description entry in the Data Division.
The ASSIGN TO RANDOM clause specifies the association of the file

referenced by file—-name to a storage medium.

External—-file—~name specifies ¢the file access name and must be

enclosed in quotation marks. It can be from one to thirty
characters in length. A name longer than thirty characters will be
diagnosed as an error. The name may contain any characters

supported by the operating system for file access names.

PAGE 41

Data-name—1 must be defined in the Data Division as a data item of
category alphanumeric and must not be defined in the Linkage
Section. Its value at the time of an OPEN statement execution will
be used as the file access name. Data—-name—-1 may be qualified.

The ORGANIZATION IS INDEXED clause specifies the logical structure
of a file. The file organization is established at the time a file
is created and cannot subsequently be changed

The ACCESS MODE clause specifies the order in which records are to
be accessed.

When the ACCESS MODE IS SEQUENTIAL, records in the file are
accessed in the sequence dictated by the file organization For
indexed files this sequence is the order of ascending record key
values within a given key of reference

If the ACCESS MODE IS RANDOM, the value of the RECORD KEY data
item indicates the record to be accessed

When the ACCESS MODE IS DYNAMIC, records in the file may be
accessed sequentially and/or randomly.

If the ACCESS MODE clause 1is not specified, ACCESS MODE 1S
SEQUENTIAL is implied.

The RECORD KEY clause specifies the record key that is the prime
record key for the file. This prime record key provides an access
path to records in an indexed file.

An ALTERNATE RECORD KEY clause specifies a record key that is an
alternate record key for the file. This alternate record key
provides an alternate access path to records in an indexed file

The data description of data-name-2 and data—name-3 as well as
their relative locations within a record must be the same as that
used when the file was created. The number of alternate keys for
the file must also be the same as that uvsed when the file was
created.

The data items referenced by data-name-2 and data-name-3 must each
be defined as a data item of the category alphanumeric within a
record description entry associated with that file—name.

Neither data—-name~2 nor data—-name—3 can describe an item whose
size is variable.

PAGE 42

Data—name—-3 cannot reference an item whose leftmost character
position corresponds to the leftmost character position of an item
referenced by data—-name-2 or by any other data-name-3 associated
with this file.

Data-name—-2 and data—-name-3 may be qualified

The WITH DUPLICATES phrase specifies that the wvalue of the
associated alternate record key may be duplicated within any of
the records in the file. If the WITH DUPLICATES phrase is not
specified, the value of the associated alternate record key must
not be duplicated among any of the records in the file.

When the FILE STATUS clause is specified, a value will be moved by
the operating system into the data item specified by data-name-4
after the execution of every statement that references that file
either explicitly or implicitly. This value indicates the status
of execution of the statement.

Data-name—-4 must be defined in the Data Division as a

two-character data item of the category alphanumeric and must not
be defined in the File Section.

PAGE 43

The I-0 CONTROL Paragraph

The I-0 CONTROL paragraph specifies the memory area which is to be
shared by different files.

FORMAT

I-0-CONTROL.

[; SAME AREA FDR file-name—-1 [, file-name-23 ...]

The I-0-CONTROL paragraph is optional.

The SAME AREA clause specifies that two or more files are to wuse
the same memory area during processing. The area being shared
includes all storage area assigned to the files specified;
therefore, it is not valid to have more than one of the files open
at the same time.

More than one SAME clause may be included in a program; however, a
file—-name must not appear in more than one SAME AREA clause.

The files referenced in the SAME AREA clause need not all have the
same organization ar access.

PAGE 44

DATA DIVISION

PAGE 45

INTRODUCTION

The Data Division describes the data that the object program is to
accept as input, to manipulate, te create, or to produce as
output. Data to be processed falls into three categories:

That which is contained in files and enters or leaves the
internal memory of the computer from a specified area or

areas.
That which is developed internally and placed into
intermediate or working storage, or placed into specific

format for output reporting purposes.
Constants which are defined by the user.

The Data Division, which is one of the required divisions in a
program, 1is subdivided into three sections:

The FILE SECTION defines the structure of data files. Each
file is defined by a file description entry and one or more
record descriptions. Record descriptions are written
immediately following the file description entry.

The WORKING-STORAGE SECTION describes records and
noncontiguous data items which are not part of external data
files but are developed and processed internally. It also

describes data items whose values are assigned in the source
program and do not change during the execution of the object
program.

The LINKAGE SECTION in a program is meaningful if and only if
the object program is to function under the control of a CALL
statement, and the CALL statement in the calling program
contains a USING phrase.

The Linkage Section is wused for describing data that is
available through the calling program but is to be referred to
in both the <calling and the «called program. No space is
allocated in the program for data items referenced by
data-names in the Linkage Section of that program. Procedure
Division references to these data items are resolved at object
time by equating the reference in the called program to the
location used in the calling program. In the case of
index—names, no such correspondence is established.
Index-names in the called and calling program always refer to
separate indices.

PAGE 46

Data items defined in the Linkage Section of the <called
program may be referenced within the Procedure Division of the
called program only if they are specified as operands of the
USING phrase of the Procedure Division header ar are
subordinate to such operands, and the object program is under
the control of a CALL statement that specifies a USING phrase

FORMAT

DATA DIVISION.

o e e e v S e e e s

[file—description-entry
[record-description-entryl ...3 ...1]

[WORKING-STORAGE SECTION.

o o ey e e =

(77-1level—-description—-entryl ... 3]
Crecord—description—-entry 1

[LINKAGE SECTION.

[77-1level—-description~entryl ... 11
(record-description-entry 1

PAGE 47

FILE SECTION

The File Section header is followed by a file description entry
consisting of a level indicator (FD), a file-name and a series of
independent clauses. The FD clauses specify the size of the
logical and physical records, the presence or absence of label
records, the value of label items, and the names of the data
records which comprise the file. The entry itself is terminated by
a period.

In a COBOL program the file description entry (FD) represents the
highest level or organization in the File Section.

FORMAT

FILE SECTION.

[file-description—entry
[record—description—~entryl ... 1]

PAGE 48

The File Description Entry

The File Description furnishes information concerning the physical
structure, identification, and record name pertaining to a given
file.

FORMAT

FD file—name

—— e — o e e e e e

i LABEL. {RECORD IS » <{STANDARDY

R — e e i e = e e e e e

——— . e e e

The 1level indicator FD identifies the beginning of a file
description and must precede the file-name.

The clauses which follow the name of the file are optional in many
cases, and their order of appearance is not significant.

One or more rvecord description entries must follow the file
description entry.

A file description entry must end with a period separator.

PAGE 49

The BLOCK CONTAINS Clause

The BLOCK CONTAINS clause specifies the size of a physical record

FORMAT

o e o e e e atn oot

i S B s g i sty

This clause is required except when:
A physical record contains only one complete logical record.

The device assigned to the file has only one physical record
size.

The device assigned to the file has a standard record size.
although the device may have more than one physical record
size. In this case, the absence of this clause denotes the
standard physical record size.

The size of the physical record may be stated in terms of RECORDS,
unless one of the following situations exist, in which case the
RECORDS phrase must not be used:

In mass storage files where logical records may extend across
physical records.

The physical record c<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>