FB780

Floating-Point

Accelerator
EK-FP780-TD.001

EK-FP780-TD-001

FP780 Floating-Point Accelerator
Technical Description

digital equipment corporation - maynard, massachusetts

Ist Edi_tion, December 1978

Copyright € 1978 by Digital Equipment Corporation

The material in this manual is for informational
purposes and is subject to change without notice.
Digital Equipment Corporation assumes no re-
sponsibility for any errors which may appear in
this manual.

Printed in US.A.
This document was set on DIGITAL's DECset-8000

computerized typesetting system.

The following are trademarks of Digital Equipment Corporation,
Maynard, Massachusetts:

DIGITAL DECsystem-10 MASSBUS
DEC DECSYSTEM-20 OMNIBUS
PDP DIBOL 0s/8
DECUS EDUSYSTEM RSTS
UNIBUS VAX RSX

VMS IAS

PREFACE
CHAPTER1

By oy G S S Sy
O WD WA -

baamabaaanRbibEE

CHAPTER 2

coupwiv—

V= W= Wi -

N N N N N N T N T N NN e et
[S

LVLuLEBRBRBRLLLNNNNS= ==

N —

CONTENTS

Page
INTRODUCTION

GENERAL DESCRIPTION ..ottt e 1-1
Accelerator INterface...........oovveeireuiiie et 1-2
FPAINSTRUCTION SET ..ottt e 1-3
PHYSICAL DESCRIPTION ..ottt 1-4
REVIEW OF FLOATING POINT NUMBERS AND ARITHMETIC 1-5
INtrOUCHIONttt et 1-5
INEBETS .ottt 1-5
Floating-Point NUMDBeTs........c.cocoovimimiiiiiiieee oo 1-5
Decimal/Binary/Hexadecimal Conversion.............c.ooveeeooeeooeooeeooo 1-6
NOFMAlIZALION ..ot e I-11
VAX Floating-Point NOtation.........cceueoiiiiuiiiieeieeeeeeeeeeeeeeeeeeoon 1-12
Floating-Point Addition and Subtraction............coeeueeeveemoeeoeeeoeoeeo 1-13
Floating-Point Multiplication and DiviSioncccoeeevoveoeeeie 1-13
EXCESS 80 (EXCESS 2008) NOTATION.......uoiiiiiitineee oo 1-14

FUNCTIONAL DESCRIPTION
DATA FORMAT ...ttt ettt 2-1
Floating-Point NUMDbErS.......cccooniiiiniiiticeceeecetee e e 2-1
Integer NUMDETSoveiieiiiitic e e 2-4
LItErals.. .ottt e et e e 2-4
Zero and Reserved Operand Codes.........oeoueeeeeeeeeeeeeeeeeneseeeeeeee oo 2-7
Hidden, Overflow and Guard Bitscccoeeeveeeueeeeeeeeseeeeeeee oo 2-8
Overflow, Underflow, Zero, and Reserved Operands.............covoveevvevennenn 2-9
INSTRUCTIONS AND ALGORITHMS ..ot 2-12
Add/SUDBLIACE ...ttt e e e et 2-14
LO@G.uuiiiiic ettt 2-14
Add/SUDLIACE ..ottt 2-14
NOTMANIZE ..ot e e 2-15
Multiply (F10ating-POoint)cccoceeieiiieiiiieceeeeeeee oo 2-16
LO@G...uiiiicti e s 2-16
MUBLIPLY «cve et 2-16
NOTMANIZE ...ttt e e e e 2-17
MULL (Multiply Integer Longword).........cccovuueeeeeeiueeeeeeeeeereeeeee oo 2-17
LOAd....oiiiiii e e e e 2-17
Multiply and Return.........ccovuvirieiiieeceeeecee e 2-17
DIVIAE ..ottt e e ettt 2-17
L0ttt e 2-18
DIVIAE ..ttt e se et e et 2-19
NOFMALIZE ...ttt e e s eee s e eeason 2-19
EMOD (Extended Precision Multiply and Integerize)..........cecooveereenn....... 2-19
Operand Load ..ot 2-19
Result Calculation and Return............coceveveiieeeeeeereee e, 2-19

iii

oo
S W —

W N =

N v

PPN ULMLLLEBRBR L= ==
W -

SRR T VS IR IR VR R IR IR P R I I I N 0
W N -

N —

CONTENTS (Cont)

Page

POLY (Polynomial Evaluation)..........cccceuveveuiuiuceeeceeeeeeeeeeoooooo 2-20
INErOAUCLION ...ttt e 2-20

The Polynomial EXpressionc.e.eveueueueeeeceeeeenensoeeoooo 2-20

Normal POLY FIOWScouvieuniiiiiteeeeeececeeee e oo 2-20

POLY Exception FIOWS............ccccovuerreeniuieieeeceeeeees oo 2-23

BLOCK DIAGRAM AND UNIT DESCRIPTIONcooooouomioeeoo 2-25
CPU-FPA Interface.............ccoviiemenineneeeeenieeeeceeeee e 2-27
CPU-FPA Status and Control Interface..........ccooevevvrvemeroosooooo, 2-28
CPU-FPA Data INterfacecuoeuveveeeeenceeeeeneeeeeseneeooo oo 2-30

Trap and Diagnostic Informationcoeeueeeueeeeeeeemeeeoo 2-31

FPA Internal BUses............c.ccoueecrimeineuinneneeet e ese e e oo 2-34
Fraction Adder (FAD)cccooueeimimneiereetieetieeceee e 2-37
Fraction Normalizer/Divide (FNM)coooueiveeeeeeeeeeeeees oo 241
Normalize Operation.........c.eeeeueueeeeveenieeeneeseeeereeneees e 243

Divide Operation..........c.ccoceveeueveiuereireneneeeceeeeeeee oo 2445

Fraction Multiplier (FML and FMH)..........coooueeeeueemeeeneeeeooeooo 2-48

The PIPEline.......c.ouiiiiieeieeeetete e oo 2-50

FM COntrol........coiiiiiiiie ettt e oo 2-57
DIVISION...c.uiitiiii ettt e e 2-68
EXPONeNnt PrOCeSSOr........ucuviiiiicecee sttt e 2-68
Sign Processorccoceveevnirneeneenninnne. ettt e s e s sae s eraaesnnaes 2-74
Control Store and LOGICccccvueeevrnrrerereeieeeee e e eee e 2-76
IRD ettt e e e e e 2-77
Performing an FPA INStructionecoeoeeeveveveomeeeoooooooo 2-80
Exception Conditionseceeueureeeeeeeneereeeeeeeeeeeeseeeeee oo 2-81

FPA MICROCONTROL FIELDS........coouoetieeieteeeeeeeeeee oo 2-82
EPA MICROCODE STRUCTUREccooeitiiteeeeeeeeeeeee oo 2-84
FPA INTERFACE FIRMWARE ..ot 2-84
Major Interface FUNCHIONS.........c.oveueieuiueiinieieeeeee e 2-84
Major INStruction GroUPSc.ouuvmueeereveeeiteeeeeeeeeseeseces e s see e 2-87

iv

Figure No.

OEOSOORND
WA =N —

kN

—_ 0009 h

I.QNNNNI'\)NNNN—-—‘—
o

2-11

FIGURES

Title Page
TRE FPA .o et et ste e e st e e e e e eesaeees 1-2
FPA Physical LOCAtion........cccoviiniiiiniiiiinis ettt e e e 1-4
Positional Value of Binary NUMDErccociiiviiiiieiieeee e e 1-11
Floating-Point FOrmMat.........ccccoiviiiiiiiiiicccicceec et 2-2
Integer FOrmat.. ... et e s e 2-5
Short Literal FOrMatcooiiiiiiiiiici et s e e e e 2-6
Zero and Reserved Operand Code........couuiiiiiiiiiiiiiieoiieeeeereeeeeee e e seeeeee e 2-8
Hidden, Overflow, and Guard Bitscoooiiiiiiiiiinieeieeeee e e 2-8
Overflow and Underflow Ranges..........oouiiiiiiiiiiiiiieeeeeeeeeee e 2-11
FPA Block Diagrami........ccoiiiiiiiiiiiiie ettt e ee e e e e seen e aan 2-13
The POLY FIOW...oiiiiii ettt ettt e e e e e es e eans 2-21
FPA Block DIagram.......ccooviiiiiiiiiiiiiiiiienie et senie ettt e eeaes s ene e ensnes 2-26
CPU-FPA INterface.cccuumiiiiiiiieiiteciee ettt eeve e e e e e e e s soan 2-27
Status REGISLErovuruiiiiiiiiiiic e et e 2-28
Maintenance REGISTEr........cuiiiiiiiiiiiiiice et seee e e e see e s eee s et 2-32
FP BUS FOIMALS c.cuniiiiiiiiiiiiciccce et et eeebee e e e e e ennnnes 2-36
Fraction Adder Block Diagramccceeiiiiniiiiiiiieieecceeeeceeeeeeeeeeeee e e e s 2-37
SHFR OPeration...c.c.cuciiiiiiiiiiiiiieiiiniis e eniae e eesaesessseeecsseeeseen e sseesssssaeeseesssen 2-39
Fraction Normalizer /Divide Block Diagram............coocvvveiiiieceieeeeeeee e, 2-42
Normalize Shift Enable Control Hardware............ooveveveieeeveeeeee oo 2-43
Divide Sequence Hardware..........ocuuvuiniiiiiei et e esena s 2-47
Divide Sequence TIMINgGcovueviiimiiiniiiniientiecce et aeee e e seee e eee s eaeaa 2-48
Fraction Multiplier Block Diagramc.cccuiiiniieininiiiecieeeeeee e eeeeeee e e 2-49
The PIPEHNE ..ottt e s ae e 2-51
Loading and Accessing the Multiplicandcccovvivieiinceineneee e e 2-52
Loading and Accessing the Multiplier..........c..ccooiiviiiieeieieieeeeeeeeeee e 2-53
SALU Operation - Adding the Stored Carrys........ooceveeeeeeeeceeeneeeeeeeereeeeeenens 2-57
FM Control States.........ccoeiiiiiiiiiiiiiniiniiecreie et deeseseressesnenanane 2-58
FM COntrol LOGIC ... ccuiiiuiiiiiiiciiticirteinrce et s steesteestesest e cens e e sene e eenne s 2-61
MULF CONrol.....cooiiiiiiciieccttente et ssst st e s ereaee s e se e ees e s 2-62
The XFER State..... oottt ctee e st sete e ses saee e ee e e e aee s 2-64
MULD CONIOL...c..cuiiiiiiiiieniiiiieeiietirine e crae e eranesesbessteeeseeesessesaeeesansnessenneees 2-65
MULL CONErol.....cuuiiiiiiicitiicetniiern st cae s e re et e e s eaeeere s eaeeee e ee s ensas 2-69
Exponent Processor Block Diagramc.ccecceeniviineninecnecicrie e e 2-70
Sign Processor BIock Diagram.........ccccvicoueiiecinieneeiiecniiecseeeee e ceveeeesessneeens 2-74
Control Store and Logic Block Diagram............cccevueieeeiiineeeeeeeenseerenaeeeeeeesnnnns 2-76
INEXt AAAress LOZIC.....uuiiiuieiieiiieeiiieiieie et e e st e e e e ereeeesenes sennnnesea 2-78
FPA Control Word Fieldsccocoiniiiiiiiiiciececce et e ee e 2-82
FPA Microcode StTUCLUTEccceeiiiiiiintecceeee et et csreeeeeeenereeeensae e eeene e 2-85

Table No.

o
W N =

I

NNI:)N—'—"——'
-&UN—

DRI 6B 1o R
—

NII\)N
et et ot
S W

2-15
2-16
2-17
2-1R
AN

2-20
221
2-22
2-23
2-24
2-25
2-26
2-27

Title Page
Related Hardware Manuals.............coocovnvvneeno seseresessesesnenseenssrrssnesssanarne 1-1
FPA INSIIUCLION Set ...ttt 1-3
FPA MOQUIES.......occooeiriiit et oo 1-5
Binary - Hex EQUIVaIeNtscouumeummnrrieeeceeeeoo 1-10
Floating Literals.............coviiuiinicceieiens oo 2-6
Zero Operand MICroCode.......uuuvvunivueeecenseereee oo cess oo 2-7
EXCeption CONAItIONSuuverviieiiece et 2-10
FALU OPErationc.ouveuimimciriioneee et 2-15
Special FAD OpPerationucceeeeeremeuneeneeieeeeeseeeeessesees oo 2-15
The Division LOad..........coovuiiiiiieciiece et 2-18
The Status REGISLEr.........c.ovuvvuiuiiicicee et 2-29
CSLINES ..ottt et oo 2-30
The Maintenance Register...............uuwcuemmmuermriinieeeceeeeeseneee oo 2-33
Signals Monitored by Visibility Bus..........c..oouoooumiveoememeeee 2-34
BSC Control Store Field...............uueuenceerieireeeeeeesee oo 2-35
Fraction Data Etryo.ouuiumnienienene oo 2-38
FALU OPErationcooiuiuiiimieieet et 2-40
FALU MUX CORLIOL.....ouimitiitieciiece sttt oo 2-41
Round Byte and Normalize CONtrol......c.ueevececveeveeemeeeeesreo o 2-44
Divide SEqQUENCE Statesvuuvveiieient et 2-48
Operand BUs SOUICE...........cuuiiuiuecceeciecee et oo 2-55
FM CONtrol StALes........ccovuvimuiiuninuieeceeeict et et 2-59
EAC Control Store Field..............cueueveneuirenreneiieeeeeeeceseeoooooo 2-71
EALU INput Control........vuimmienitncieecse ettt 2-72
EALU Control Store Fieldcecomieueruerrereieeeeeeeeeeces oo 2-73
SGNC Control Store Fieldcc.ovuuuernemuvoieee oo 2-75
Sign Processor OPErationeceeeveenrueeseveonoseoeeresseessessoooo oo 2-75
Next Address LiNesc.owuiuiuciuiecencee oo oo 2-78
BEN Control Store Field.................cccooeemnviioeeeceeeo 2-81
EPA Control Word Field Definitionsoouevcuereveoemeeeessooo 2-83
Interface MiCrocodeuuiumueieuiiciee et 2-86

CHAPTER 1
INTRODUCTION

This manual is a comprehensive description of the VAX Floating-Point Accelerator and is designed as
a training and field resource. Table 1-1 lists all related hardware manuals.

Table 1-1 Related Hardware Manuals

Title Document No. Comments

VAX-11 KA780 Central Processor EK-KA780-TD-PRE | In microfiche library
Technical Description

VAX-11/780 Architecture Handbook EB 07466 Available on hard copy*

*This document can be ordered from:
Digital Equipment Corporation
444 Whitney Street
Northboro, MA 01532
Attention: Communication Services (NR2/M15)
Customer Services Section

For information concerning microfiche libraries, contact:
Digital Equipment Corporation
Micropublishing Group, PK3-2/T12
129 Parker Street
Maynard, MA 01754

1.1 GENERAL DESCRIPTION
The FP78C Floating-Point Accelerator (FPA) is a hardware option available on the VAX-11 /780 -
computer system. This option, functioning in conjunction with the KA780 central processor, speeds
the execution of floating-point arithmetic instructions. This option overrides the CPU floating-point
microcode and uses dedicated hardware to execute the instructions faster. Some F PA operations over-
lap CPU operations; thus allowing the CPU to proceed with other tasks while the FPA completes the
floating-point instruction. This overlap helps to speed program execution. The operation of the FPA is
transparent to both macro level software and main machine microcode. The FPA also speeds the
execution of some integer arithmetic instructions. The FPA can handle both single (float) and double
precision data.

The FPA can handle a wide range of numbers. A floating-point number between -1.7Xx 1038 and 1.7 X
1038 can be represented. The smallest floating number the FPA can represent is .29 X 10-38, A single
precision number is accurate to about 7 decimal digits, a double precision number to about 16 decimal
digits. The FPA can also handle 32-bit signed integers from -2,147,483,648 to 2,147,483,647, inclusive.

1-1

The FPA is a microprogrammed device operating as a synchronous extension of the CPU data path.
Both the FPA and CPU operate using a 200 ns microcycle; FPA TO coincides with CPU TO. As an
extension of the CPU, the FPA does not access memory data. The CPU must do memory address
calculations, access the calculated address, and transmit the accessed data to the FPA. The CPU is also
responsible for fetching and storing the FPA results. The FPA performs only the required floating-
point or integer operation on the properly formatted operands transmitted to it.

The FPA can do floating-point addition, subtraction, multiplication, and division instructions. It re-
ceives a packed, normalized floating-point number containing a sign bit, fraction bits, and exponent
bits. The FPA breaks the number into parts and FPA data manipulation sections perform the oper-
ations required to carry out the instructions on each part. Once the result is completed, it normalizes
and packs the result for return to the CPU. Refer to Figure 1-1, a simplified diagram of the FPA.

-
< =TS —> FRACTION o
O PROCESSORS Q
g |a > -1+ 9
K ‘“—wERETs N 2 |8 N
N 3 g S
Q 2 -
CcPU N £ |8 =
CS BUS) < |2 z
4 E | & * ™ EXPONENT AND 2
< SIGN
K _CONTROL LINES A I PROCESSORS —»

FPA

TK-0522

Figure 1-1 The FPA

1.1.1 Accelerator Interface

The FPA is an optional hardware extension of the VAX CPU data path. It is the first of a series of
optional accelerators that can be plugged into slots 24 through 28 of the CPU backplane. To facilitate
design of these optional accelerators, a set of standard interface signals and buses is used to transfer
data and control information.

Two copies of the CPU general register set are kept in the FPA. These are read-only memory to the
FPA and provide rapid access to register operands when used in instructions. Every time the CPU
general registers are updated, a copy of the update data is transmitted via the DFMX bus to the FPA
copies and changes them.

All other data (memory and literal) is transmitted to the accelerator via the ID bus. Memory data is
transferred into the CPU D register and then onto the ID bus. Literal data is transferred from the
instruction buffer via the ID bus.

All op codes are received from the instruction buffer. The FPA uses dedicated hardware to handle

certain op codes. The op codes are decoded and, if part of the FPA implemented set, processing is
started.

FPA results are returned to the CPU via the DFMX bus. Any transfer of data (either operands or
results) between the CPU and FPA is controlled by the CPSYNC and FPSYNC. CPSYNC is trans-
mitted via the CS bus. When an operand is transferred to the FPA, CPSYNC asserted (by the CPU)
indicates that data is available on the ID bus and FPSYNC is asserted (by the FPA) to indicate data
has been received. When the FPA is returning a result, FPSYNC indicates result available and
CPSYNC indicates result received. When a result is transferred, the FPA also transmits the proper
condition codes to the CPU.

Traps and errors are handled with three signals: ACC ERROR (from FPA to CPU), FP TRAP (CPU
to FPA),and ACC TRAP (CPU to FPA). ACC ERROR (also called ERRSYNC) is asserted when the
FPA detects an internal error and is input to the CPU BEN mux. FP TRAP is used by the CPU to
initiate microdiagnostics stored in the FPA. ACC TRAP selects either the power-up trap or the abort
trap (both stored in the FPA microcode).

1.2 FPA INSTRUCTION SET

The FPA handles only a limited number of instructions (refer to Table 1-2). No floating-point instruc-
tions are available in VAX’s PDP-11 compatibility mode. As shown in the table, the FPA handles
single and double precision instructions in both 2 and 3-operand formats. The FPA handles the single
and double precision instruction variations internally. However, as stated before, the FPA does no
memory accessing. This means the CPU must do all address calculations and accessing for any input
operands stored in memory. Also, the FPA does not store any final results; it merely makes the results
. available to the DFMX bus. The’CPU must enable the result onto the DFMX bus, determine the
result destination, and put it into the destination. In a 3-operand instruction, the FPA begins com-
puting as soon as it has the 2 source operands while the CPU is computing the third, or destination,
address.

Table 1-2 FPA Instruction Set

Mpnemonic Description

ADDF* Add single-precision floating-point

ADDD* Add double-precision floating-point

SUBF* Subtract single-precision floating-point

SUBD* Subtract double-precision floating-point

MULF* Multiply single-precision floating-point

MULD* Multiply double-precision floating-point

DIVF* Divide single-precision floating-point

DIVD* Divide double-precision floating-point

POLYF Evaluate polynomial single-precision floating-point
POLYD Evaluate polynomial double-precision floating-point
EMODF Extended single-precision floating-point

EMODD Extended double-precision floating-point

MULL* Multiply integer longword

*The FPA instruction set includes both the 2-operand and 3-operand format of these instructions

1.3 PHYSICAL DESCRIPTION

The FPA consists of 5 hex-height, extended-length modules containing mostly Schottky TTL logic.
They replace blank modules 7014103 in slots 24 through 28 of the KA780 backplane. These slots are
designated as the accelerator option slots. The FPA is powered by an H7100 installed in power supply
position 1. When viewed from the rear, position | is the rightmost location in the VAX CPU cabinet.
Position 1 is left empty if an accelerator is not installed. The H7100isa 5 V, 100 A supply. Refer to
Figure 1-2 for the location of backplane slots and power supply. Refer to Table 1-3 for module desig-
nations and locations.

FPA MODULES

PP PR Pi
.":3;".(,(": TN
“ .‘-" \/‘.' n N

P4 RN
A OS50,

FPA POWER
SUPPLY

TK-0524

Figure 1-2 FPA Physical Location

14

Table 1-3 FPA Modules

Module No. | Slot Module Name | Module Function

M8285 24 FNM Normalization and fraction division

M8286 25 FMH Fraction multiplication (most significant bits)
M8287 26 FML Fraction multiplication (least significant bits)
M8288 27 FAD Fraction addition and subtraction

M8289 28 FCT Exponent manipulation and FPA control

1.4 FLOATING-POINT NUMBERS AND ARITHMETIC

1.4.1 Introduction

This section discusses some fundamentals of floating-point numbers and arithmetic. It provides useful
background for more advanced topics in later sections. The reader already familiar with floating-point
may skip this section.

1.4.2 Integers

All data within a computer system could be represented in integer form. The numbers that could be
represented in a 32-bit machine range in magnitude from 00000000,6 to FFFFFFFF (or from 0 to
4,294,967,295). However, integer form imposes some limitations. Only whole numbers can be repre-
sented, i.e., no fraction or decimal parts; this imposes an accuracy limitation. Furthermore, numbers
greater than 4,294,967,295 cannot be represented; this imposes a range limitation.

These limitations are imposed by the stationary position of the radix point (e.g., the decimal point in
base 10 notation or the binary point in base 2 notation). An integer’s radix point is usually omitted in
integer representation because it always marks the integer’s least significant place. That is, there are
never any digits to the right of an integer’s radix point. For this reason, an integer is sometimes called a
fixed-point number. :

Integer notation, however, can be modified to overcome the range and accuracy limitations imposed
by the fixed radix point. This is done through the use of floating-point notation.

1.43 Floating-Point Numbers

Floating-point numbers, unlike integers, have no position restrictions imposed on their radix points. A
popular type of floating-point representation is called scientific notation. With scientific notation, a
floating-point number is represented by some basic value multiplied by the radix raised to some power.

Example
basic
value
exponent
1,000,000 = 1. X 106
radix

There are many ways to represent the same number in scientific notation, as shown in the following
example.

Right shifts Left shifts

512 = S12. X 10° 512 = 512 X 10°
= 51.2 X 10! = 5120 X 10!
= 512 X 10? = 51200 X 10?
= 512 X 103 = 512000 X 107

The convention chosen for representing floating-point numbers with scientific notation in the FPA
requires the radix point to always be to the left of the most significant digit in the basic value (e.g.,.512
X 103 in the above example). This modified basic value is called a fraction.

Notice that for each right shift of the basic value, the exponent is incremented and for each left shift the
exponent is decremented. The value of the number remains constant if the exponent is adjusted for
each shift of the basic value.

More examples of scientific notation are as follows.

Decimal Decimal Binary Hex Hex
Notation Scient. No. Notation Notation Scient. No.
4 64 X 102 1000000. 40,6 4 X 1672
33 - .33%x102 100001. 2146 21 X 1672
1/2(.5) 5% 100 0.1 816 8 X 160
3/32(.09375) 9375 X 10! 0.00011 186 .18 X% 160

1.4.4 Decimal/Binary/Hexadecimal Conversion

There are standard routines to convert from decimal notation to hexadecimal (also called hex) and
back. When converting from either decimal-to-hex or hex-to-decimal it is convenient to first convert to
binary notation and then to the final notation.

Decimal to Hex Conversion:

To convert a decimal number with both integer and fraction portion to a hex number, the integer and
fraction are separated and converted individually. The integer is converted to binary by a repeated
division technique, the fraction by a repeated multiplication technique.

1-6

To convert an integer to binary representation, the integer is divided by two. The remainder of this
division (either 1 or 0) becomes the LSB of the binary representation. The result of this division is
again divided by two. The remainder of this division goes to the left of the LSB, becoming “‘next to
LSB.” The result is divided again. This process is continued until the result is zero. Refer to Example 1.

Example 1 Convert 1979 to binary

STEP 1 98 R 1 1100 0101
2)197 L 1
STEP 2 49 R O
2) 98
STEP 3 24 R 1
2) a9
STEP 4 12 R 0
2 5 24
STEP 5§ 6 R O
2 5 12
STEP 6 3 R O
2) 6
STEP 7 1 R 1
2 5 3
STEP 8 0 R 1 —mu
2 5 1

19710 = 1100 01012

TK-0654

A repeated multiply-by-2 converts a decimal fraction to a binary fraction. The decimal fraction is
multiplied by two. If the result is 1.0 or more, a 1 is placed in the MSB of the fraction (directly to the
right of the binary point); if less than 1.0, a zero is placed there. The fraction portion only of this result
is again multiplied by two, if the result is 1.0 or more, a 1 goes to the right of the MSB, less than 1.0, a
zero. This continues until the fraction portion of the result is all zeros (refer to Example 2) or until
enough binary fraction bits have been generated to represent the decimal accurately enough (refer to
Example 3). Note that finite length decimal fractions can become repeating fractions in binary (Ex-
ample 3).

Example 2 Convert 3/8 (.375) to binary

STEP 1 375 011
2 J
@ .750 -0
STEP 2 .75
2
@ 50 —1
STEP 3 .50
2
® .00 —1
STOP 37510 = 011,
TK-0655

1-8

Example 3 Convert .6030 to binary

STEP 1 .603

2
@) 206 ——1

1001 1079

STEP 2 .206
2

412 —=0

STEP 3 412
2

S————

(©) 824 ~0

STEP 4 .824

STEP 5 .648

STEP 6 .296

STEP 7 -592

Q) .184 —1

DECIDE TO STOP

6030 .1001 101,

TK-0656

The conversion from binary to hex is very simple. Starting at the binary point, break the binary
number into groups of 4 digits each. (Zero fill at both right and left ends to complete groups of 4.)
Then replace each group of 4 with its hex equivalent. Refer to Table 14, and Example 4.

Table 1-4 Binary-Hex Equivalents

Binary Hex
0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
o111 7
1000 8
1001 9
1010 A
1011 B
1100 C
1101 D
1110 E
1111 F

Example 4 Convert 110010110.101101, to Hex
1. Break into groups of four and zero-fill left and right ends.

Zeros Zeros
Added Added

0001 1001 0110.1011 0100
4 4 4 4 4

2. Replace four digit groups with hex equivalents. Refer to Table 1-4.

0001 1001 0110.1011 0100

 JUNEE T T A
1 9 6 B 38

196.B8, ¢
11001 0110.1011 01,= 196.B8,

1-10

To convert from hex back to decimal. first replace each hex digit with its 4-bit binary equivalent (refe-
to Table 1-4). Each position in a binary number has a positional value based on which side of the
binary point it is and its distance from the binary point. The positional values are based on powers of
two. The bit in the unit column has a positional value of one. The positional value doubles each time
you move from right to left, and halves as you move from left to right. Refer to Figure 1-3 for a
summary of binary positional values in both powers of two and decimal value.

e 27 28 25 24 23 22 21 20 21 22 23 4 5 6 |
128 64 32 16 8 4 2 1 % % 1/8 116 1/32 1/64
5 .25 .125 l |

.0625 015625
.03125

TK-0657

Figure 1-3 Positional Value of Binary Number

To convert from binary notation to decimal notation, add the decimal positional value of each bit that
is a one. This sum will be the decimal equivalent of the binary number.

14.5 Normalization

As discussed previously, there are many ways to represent a particular floating-point number using
scientific notation and the convention chosen for representing floating-point numbersin VAX and the
FPA requires the radix point to be to the left of the most significant bit in the basic value. Refer to
Example 5. '

Example 5 Floating-Point Form

29,, = 11101, = 1110l. X 20 = 11101. X 20
1110.1 X 21 = 111010, Xx 27
111.01 X 22 = 1110100. X 22
11101 11.101 X 2% = 11101000. X 2-3
Fraction 1.1101 X 2¢ = 11101 0000. X 24
Chosen __ 11101 X 25 = 1110100000. X 25
5 Form 6 = -6
011101 X 2% = 11101000000. X 2

Exponent
0011101 X 27 = 111010000000. X 277

1-11

The process of ensuring that the first significant bit is directly to the right of the binary point is called
normalization. If the number is one or larger it involves right-shifting the basic value and incrementing
the exponent until the MSB (a one) is directly to the right of the binary point. If the number is a
fraction with leading zeros the basic value is left-shifted and the exponent is decremented. Examples 6
and 7 show conversion of numbers to VAX normalized form.

Example 6 Convert 7519 to a normalized binary number

1. Integer conversion
7510 = 100 1011,

2. Floating-point form
100 10113 = 100 10115 x 20

3. Normalized form
Right shift fraction 7 times
Increment exponent by 7

100 10112 X 20 = 100 1011 X 27

Fraction = .100 1011
Exponent = 7

Example 7 Convert 3/16 (.01875) to a normalized binary number.

1. Integer conversion
0187510 = .0011,

2. Floating-point form
0011 = 00115 X 20

3. Normalized form
Left shift fraction 2 times
Decrement exponent by 2

00113 X 20 = 11 x 2-2

Fraction = .11
Exponent = -2

1.46 VAX Floating-Point Notation

Two conventions are used in the FPA to conserve memory space without losing accuracy and to aid in
hardware manipulation. The first convention is called the hidden bit. All numbers transferred between
the CPU and FPA are normalized floating-point numbers. This means the first significant bit (always a
1) is always directly to the right of the binary point. To conserve memory space and data lines, the first
significant bit is not stored or transmitted to the FPA. For example, the fraction part of the nornalized
binary number .11000... X 2-2 will be stored and transmitted to the FPA as 100.... The normalized
fraction of 1/2 (.100... X 20) will be stored and transmitted as 000.... In both cases the first 1 (the
hidden bit), will be added by hardware in the FPA. When the FPA transfers a normalized answer back
to the CPU the hidden bit is not sent.

1-12

The 8-bit exponent portion of a ﬂoati‘ng~point number is stored using excess 80,6 notation. This nota-
tion simplifies the hardware that manipulates the exponent during floating-point arithmetic operation.

Excess 80j6 exponent notation is obtained by adding 10000000, (2003, 80,6, or 1280) to 2’s com-
plement notation.

Refer to Paragraph 1.5 for a further discussion of excess 80 notation.

1.4.7 Floating-Point Addition and Subtraction

In order to perform floating-point addition or subtraction, the exponents of the two floating-point
numbers involved must be aligned or equal. If they are not aligned, the fraction with the smaller
exponent is shifted right until they are. Each shift to the right is accompanied by an increment of the
associated exponent. When the exponents are aligned, the fractions can then be added or subtracted.
The exponent value indicates the number of places the binary point is to be moved to obtain the integer
representation of the number.

In example 8, the number 7)¢ is added to the number 40, using floating-point representation. Note
that the exponents are first aligned and then the fractions are added; the exponent value dictates the
final location of the binary points.

Example 8 Floating-Point Addition

0.1010 0000 0000 000 X 26 = 28,5 = 40;

+0.1110 0000 0000 000 X 23 = 74 = Tio

1. Toalign exponents, shift the fraction with one smaller exponent three places to the right and
increment the exponent by 3, and then add the two fractions.

0.1010 0000 0000 000 X 26 = 28;¢ = 40,9
6 = =
+0@l 1100 0000 000 X 2 Ti6 Tio

0.1011 1100 0000 000 X 26 = 2F,¢ = 47,9

2. To find the integer value of the answer, move the binary point six places to the right.

010 1111.0000 0000 0
N—*

1.4.8 Floating-Point Multiplication and Division)
In floating-point multiplication, the fractions are multiplied and the exponents are added. For float-
ing-point division, the fractions are divided and the exponents are subtracted. There is no requirement

to align the binary point in the floating-point multiplication or division. Example 9 shows floating-
point multiplication. Example 10 shows division.

Example 9:

Multiply 7,0 by 40,6.

1. 0.1110000 X 23 = 7 = 7,4
X 0.1010000 X 25 = 28, = 40,,
1110000
0000
11100

.1000110000 X 2° (Result already in normalized form.)

2. Move the binary point nine places to the right.

100011009.00000 = 118,5 = 280,,

Example 10:
Divide 1510 by 510.

1. .1111000 X 2¢
.1010000 X 23

1.100000
1010000)1 111000.000000

1010000

101000
101000

0

2. Exponent: 4-3 = |
3. Result: 1.100000 X 2!
Normalized Result: 1100000 X 22
Normalized Fraction = Normalized Exponent
Move binary point two places to the right.
\1&00000 = 316 = 310
1.5 EXCESS 80 NOTATION

The VAX and, consequently, the FPA use excess 80 notation to store and handle the exponent portion
of floating-point numbers. Excess 80 notation is the 2’s complement of exponent plus 1289 or 8046.

1-14

It is convenient to handle the exponent portion of the floating-point number in 2's complement nota-
tion. This allows a wide range of both positive and negative exponents to be represented. However, in
2’s complement notation an overflow must occur to go from the least negative number to zero. To
avoid this the bias of 128,¢ is added to the 2’s complement number.

Historically, minicomputers have been discussed and explained using octal notation. In octal, the bias
of 1289 is 200g. In previous manuals this exponent notation has been discussed using octal form. As a
result, it is called excess 200g or excess 200. However, the VAX is discussed using hexadecimal nota-
tion. Unfortunately, when discussing the excess 80 bias in VAX documentation, it has been called 80;,
1289, 200s, and 10000000, (sometimes the base is indicated, sometimes it isn't). When studying the
FPA print seis, technical manuals, and microcode listings, be aware of this variation in terminology. In
this manual hex notation is used and the exponent bias is called excess 80.

When multiply and divide operations are performed using floating-point numbers with excess 80 expo-
nent notation the resulting exponent must be adjusted by the bias to return the result to excess 80
notation. When a multiplication is performed exponents are added, 80;¢ must be subtracted from the

result to return it to excess 80 notation. To understand why 80 must be subtracted from the exponent
calculation during multiplication, consider the following.

Exponent A + 80
Excess 80 notation

Exponent B + 80

Exponent A + Exponent B + 100

Both exponent A and exponent B are biased by 80, yielding a bias of 100. However, only a bias of 80 is
desired in excess 80 notation.

Multiplication Example

2X3=6
Fraction Exponent
2=0.100 X 82
3=0.110 X 82

Fraction Calculation Exponent Calculation

2=0.100 82
3=0.110 +82
1000 104
100 =80

6=0.011000 X 84

1-15

Normalize the fraction by left-shifting one place and decreasing the exponent by 1.

Fraction Exponent

0.11000 X 83 = 6

When a division is performed, exponents are subtracted and 80;¢ must be added to the result to return
it to excess 80 notation. To understand why 80 must be added to the exponent calculation during
division, consider the following:

Exponent A + 80
- Exponent B + 80

Exponent A - Exponent B + 80 - 80 = Exponent A - Exponent B + 0

However, since the result is to be in excess 80 notation, 8016 must be added to the exponent, yielding
Exponent A - Exponent B + 80.

Division Example

16/4=4
Fraction Exponent
16 = .10000 X 85
4 = 10000 X 83
Fraction Exponent
Calculation Calculation
1.000 85
01000910 10009.000 =83
2
80
82

Normalize the fraction by right-shifting one place and incrementing the exponent.

Fraction Exponent
10000 X 83=4

1-16

CHAPTER 2
FUNCTIONAL DESCRIPTION

This chapter explains the operation of the FPA. The chapter can be divided into four areas: in-
troduction, algorithms, hardware operation, and microcode. The introduction (Paragraph 2.1) dis-
cusses the various types of data formats that may be handled by the FPA. The algorithms (Paragraph
2.2) lists the various instructions the FPA can do and explains the FPA operations required to perform
each operation. This section discusses the FPA operation based on instruction flow. Hardware oper-
ation (Paragraph 2.3) breaks the FPA into hardware blocks and discusses the operation of each. Both
the algorithm section and the hardware operation section should be read to get a thorough under-
standing of the FPA operation. They discuss the same equipment from different viewpoints. Micro-
code (Paragraphs 2.4 through 2.6) summarizes both the FPA microcode and the FPA specific
microcode in the CPU. This discussion focuses on the generation and monitoring of the various con-
trol signals passed between the units.

2.1 DATA FORMATS

The FPA handles single (float) and double precision floating-point data and signed integer longwords.
It receives normalized, packed data from the CPU and returns normalized, packed results to the CPU
over 32-bit wide buses. Within the FPA, intermediate data is transmitted over two 34-bit wide buses.
The data formats used by the FPA are compatible with these bus structures as well as the input and
output formats of the various data manipulation units within the FPA.

2.1.1 Floating-Point Numbers

Floating-point numbers consist of sign bit, exponent bits, and fraction bits. A single precision floating-
point number is stored in CPU memory as 4 contiguous bytes starting on an arbitrary byte boundary.
Bits are labeled from the right, O through 31. The number is specified by its address A, the address of
the byte containing bit 0 (Figure 2-1). The range of a single precision floating-point number is approx-
imately .29 X 10-38 through 1.7 X 1038. The precision is typically 7 decimal digits.

A double precision floating-point number is stored as 8 contiguous bytes. Bit labeling and addressing
is similar to a single precision floating-point number. A double precision number has a range similar to
a single precision, but its precision is about 16 decimal digits (Figure 2-1).

8ZSO-NL

NdJ 01 G3NUN13Y

(Q3ZITYWHON ‘a3Ndvd)
NdJ 01 NYN13Y HO4 AQV3Y

(S1INS34 Q3ZITYWHONNN
'QINIVANN) Ydd NI 33SN SV

(S1INS3y

ILVIGIWHILNI "G3ZITYIWNHONNN)
‘8SN8 dd + v SNA d3

‘S3SNY Vd4 NO Q3UYIISNVHL SV

'Vdi A8 Q3A1303Y
ANV 'Vdd Ol Q34Y3JISNVHL
‘AHOW3W XVA NI G3401S SV

‘NOILVIN3S3IHd3IY H¥3ILNJWOD

‘YIBWNN LINIOd
ONILYOTd Q3ZITVYIWHON Vv

uoIsag a[3uig ‘e

'118 N3AQAIH | V ONV ‘118 MOT4H3IA0 (0H32Z) 0 V SYH HIBWNN G3ZITYWHON Vv

't 310N
| wn~owovesonw | ANINOdX3 [| NOILLOVHS ‘0) |
0 z vl St ol i€
z%.m
| nNowowesow | 1N3NOdJX3 | 1] NOILOVH ‘0 " [1]o]
0 [3 1 [T 1€ Z€ €€ |
NaIS) “
| ANINOdX3 | | Noiovui01 | Nowoves'oH [u o] _Wu
) [}) NOIS
[4
N3QQIH
_) ¢ | Moo
| n~owowvwiow | 1NINOdX3 1] NOILOVHH 0 1 |11
0 b L b ¥l sL 91 IE 2€ €€
NOIS '
¢
| w~ouowus wagwom | ININOdX3 | | NOILOVHS H3QHO O 1 |
o L vl SL 91 » 1€
NOIS
t
,)
| mouvionoozssaoxa) | [eeeee x x x x 1]
S118 ININOIX3 S118 NOILOVY4 118 N9IS

ud
IN3NOdX3

LS9’ +
NOILOVY4 NOIS

Figure 2-1 Floating-Point Format (Sheet 1 of 2)

2-2

LESU ML

(S118 NOILOVHY LNVIIJINDIS L1SVv3T)
S1i18 TE - Y34SNVHL ANZ

(s118
NOILIVHY INVIIJINDIS LSOW ANV LNINOdJX3)
S118 Z€ - Y34SNVHL 1S1 NdD OL G3NHNL3Y

(Q3ZINVWYON
‘G3X2vd) NdD O NUN13Y Y04 AQV3Y

(S1INS3y
Q3ZINVIWHONNN ‘G3NIVdNN) vdd NI 03SN SV

(ATSNO3INVLINWIS Q3WHIISNVHL

$118 99) H3IBWNN 3137dW0OD

(S1INS3IH ILVIGIWHILNI ‘O3ZINYINHONNN)
S3SN8 d4 NO Q3HHIISNVHL SV

(434SNVHL ONOD3S €£9-Z€ Sli8
‘YIISNVHL LSHI4 1€-0 S118 ‘SHIISNVHL OML

NI G3HU34SNVYL) Vdd A8 Q3AI3I3Y ONV 'Vdd
Ol G34YIISNVHL "'AHOWIW XVA NI A3HOLS SV

NOILVIN3S3Hd3Y HILNJWOD

H3SWNN LNIOd ONILYOT3 Q3ZINVINHON Vv

UOISIIAL Aqno(°q

‘118 N3QAIH V ANV 'L18 MO14H3A0
(0432) 0 V SVH H38WNN Q3ZINVWHON Vv

-1 310N

o
| n~ouowus [~ouwowss |
o NS 0 1 S1 91 e
[1oves [axa | | wowowss]
0 9L v G191 b 13
mwz zuﬁm N lema 10N
| [exa [] ~ouwowus TiJo] wouowus [wouwowss | | |
0 9L & visiol LETE €€ O m;.w IE € €€
44
(
)
8s1 S.8SW
4 —A
a3 | | ~ouowvus [wNouwowus | Nouwdwved |NOILOVHd[H | o]
L NOIS
-
zm_oo_,ﬂsm._ J83N0 03sn 10N
8s1 1
| B t
[ovus | axa | | wowowss | | | wouowss | wouswvss | | |
o § o¢ vi Gl 9l] 1€ ZE €€ O St ol f 1€ Z€ €¢
NOIS 1
: 8s1
4 t i
| 1oves | axa | | wouwowss | Nowowui | Nouwowus]
0 oY TETED e ze Ly 8y €9
onM
:
rASNCASNAASN A
| vowvion ooz ssaoxa) | seeee x xx i
S8 ININOdX3 S118 NOLLOVH4 118 NOIS
n X LS9 +
—INaN0dX3 NOILOVHY NOIS

Figure 2-1 Floating-Point Format (Sheet 2 of 2)

Floating-point numbers are transmitted to the FPA as packed, normalized numbers without a hidden
or overflow bit. A single precision (float) number will have 24 fraction bits and a double precision
number will have 56 fraction bits. Hardware in the FPA inserts and handles both the hidden and
overflow bits. The number is split apart and used in various data manipulation units in the FPA.
Although all operations begin with normalized operands, the intermediate results produced by the
FPA data manipulation units can vary widely. Subtraction of nearly equal numbers can produce a
number very close to zero. Addition and division can produce numbers close to 2. As a result inter-
mediate results are transferred between data manipulation units as unnormalized numbers with both
hidden and overflow bits. After the result is normalized, it is ready to return to the CPU. When the
result is transmitted, it is transmitted as a packed, binary normalized number without hidden or over-
flow bits.

POLY uses specialized floating-point notation for intermediate results. In POLY, 7 additional bits are
used for fraction addition. POLY execution consists of multiply, add, multiply, etc. To maintain
maximum accuracy while functioning within the limitations of the FPA hardware, 7 additional LSBs
are transferred from the fraction multiply (FMH + FML) hardware to the fraction add hardware
(FAD). The 7 additional bits come from LSH <11:5> along FP bus A <14:08> into AR <06:00>
(also called ARX). The FPA performs the add on the extended precision number, then transfers the
addition result to the normalizer logic (FNM) where it is rounded, normalized, and held for the next
part of the POLY instruction.

The EMOD instruction causes a 32 X 24 (64 X 56 for double) bit fraction multiplication to be per-
formed in the FMH and FML. The extra 8 bits in the multiplicand are transferred over the ID bus to
FP bus B line <07:00> to MCINT (also called MCX). MCINT <07:00> drives MCAND bus
<07:00> for the fraction multiply. MPLIER is handled in the usual fashion. The result of the extended
precision multiply is transferred to the CPU in one 32-bit transfer (F) or two 32-bit transfers (D).

2.1.2 Integer Numbers

The FPA handles a single integer format instruction, MULL (multiply longword). A longword is
stored in CPU memory as 4 contiguous bytes starting on an arbitrary byte boundary. The FPA re-
ceives two 32-bit signed integers and multiplies them as unsigned integers to form a 64-bit product. The
product, a 64-bit number, is returned to the CPU in two 32-bit transfers (low half first) for further
processing. Refer to Figure 2-2 for summary of integer format.

2.1.3 Literals

The FPA handles float and double precision literal data. It receives the data from the CPU IB. Float
literal data is transferred from the IB to the FPA’s Literal Register (LR) using the ID bus. The FPA
then loads the LR data into FPA internal registers and begins processing. The first half of double
precision literal data is handled similarly. The second half comes from the CPU D-register via the ID
bus and is loaded directly from the ID bus into the FPA internal registers.

24

€ZSO-N1

H3J4SNVHL pug

H3I4SNVHL S|

(SN8 XW40 OL v SN8 dd
VIA) Ndd OL LINS3Y

Vdd NI Q3401S 171nS3y

$3SN8 Vdd4 NO d3HY3I4SNVHL SV

‘Vdd A8 Q3AI303Y
ONV Vd4 Ol Q3HY34SNVHL
AHOW3IW XVA NI Q340LS SV

a3sn LON SN8dd 40 €€ ANV 2ESLIE .

S |+
0 IE
as1 »
0 ! i€
as1 O34 HST nivvy nvs S
4 IE0 €0 1€
a3asn
10N
H3GWNN (IAILISOd) QINDISNN ~*
857 gSW
0 LECTEEE
H3IBWNN (G3INOIS) LNIWITdWO0D 5,2 zw__w
851 asw
0 0ELE

LVWHO4 (T7NW) H3OILNI

Figure 2-2 Integer Format

2-5

The FPA handles short literals. Short literals contain only six data bits and are part of the instruction.
The CPU formats the six data bits within the 32-bit data longword based on instruction type (floating-
point or integer instruction.) If it is an integer instruction (the FPA handles only MULL), the six data
bits are zero extended (26 zeros are added.) Any integer between 0 and 63j¢ can be written using a
short literal. If it is a floating-point instruction, the short literal is assumed to contain three exponent
bits and three fraction bits. The IB packs the data into standard FP format. This includes excess 80
notation for the exponent, a positive sign bit and a normalized fraction with a one hidden bit that is
not stored. Refer to Figure 2-3 for FPA short literal format, and Table 2-1 for data that can be
transferred using floating-point short literal form. Notice only positive numbers can be transferred.

If a double precision short literal is specified, the FPA accepts the first half and manufactures zeros to
fill the second half.

5 32 0

EXPONENT | FRACTION

A. SHORT LITERAL DATA; AS STORED IN INSTRUCTION STREAM

151413 10 9 4 3 0
ZEROS 1| ZEROS DATA ZEROS

B. SHORT LITERAL DATA: AS FORMATTED BY 1B AND
TRANSFERRED TO FPA FOR A FLOATING-POINT OPERATION

TK-0518

Figure 2-3 Short Literal Format

Table 2-1 Floating Literals

Exponent Fraction

0 1 2 3 4 5 6 7
0 1/2 9/16 5/8 11/16 3/4 13/16 7/8 15/16
1 1 1-1/8 1-1/4 1-3/8 1-1/2 1-5/8 1-3/4 1-7/8
2 2 2-1/4 2-1/2 2-3/4 3 3-1/4 3-1/2 3-3/4
3 4 4-1/2 5 5-1/2 6 6-1/2 7 7-1/2
4 8 9 0 11 12 13 14 15
5 16 18 20 22 24 26 28 30
6 32 36 40 44 48 52 56 60
7 64 72 80 88 96 104 112 120

2-6

The FPA also handles long literals (32 or 64 data bits). Thirty-two bits, either a complete single
precision transfer or the first half of a double precision, are transferred from the IB to the FPA LR.
The second half of the double precision number is taken directly from the ID bus. Float and double
precision floating-point data can be transferred using long literal format. The FPA also receives 32-bit
integer data using the long literal format. (The FPA does not handle any 64-bit integer operands.)

2.1.4 Zero and Reserved Operand Codes

The FPA checks all data received for zeros and reserved operands during the fraction processing. 8oth
zero and reserved operand function as codes transmitting special information. As discussed in Para-
graph 1.4, the FPA assumes all floating-point numbers to be normalized numbers (between 1/2 and 1)
with a hidden bit that is not stored. The hidden bit is normally inserted by data manipulation hard-
ware. A zero cannot be represented as a normalized number and the hardware that inserts the hidden
bit only increases the problem of representing and using zero. As a result, zero is represented by a code
with zeros in the exponent bits (no excess 200 notation) and a clear sign bit. The fraction bits do not
matter. Whenever this combination of bits is sensed, the FPA accesses special microcode that simu-
lates the special properties of addition, subtraction, multiplication, and division with zero. Refer to
Table 2-2 for the result of an operation with zero, and Figure 2-4 for the zero code.

Table 2-2 Zero Operand Microcode

Operation Operand(s) Operation Result
Add 0+X, X+0 X operand returned
0+0 Zero returned*
Subtract 0-X -X returned
X-0 X operand returned
0-0 Zero returned
Multiply 0X0, XX0,0xX Zero returned*
Divide 0+ X (dividend is zero) Zero returned*
X0 (divisor is zero;
divide by zero) v Error conditiont

* Zero code is returned, 0 in sign and exponent.

t+ FPA informs CPU that division by zero was attempted by asserting FPA error and PSL V bit and
not-asserting FP SYNC.

2-7

ZERO CODE

31 161514 76 0
DON’'T CARE 0 ZERO DONT CARE
FRACTION SIGN EXPONENT FRACTION

RESERVED OPERAND CODE

31 161514 76 (o}

[¢—————— DON'T CARE 1[¢— ZERO ——®}<- DON'T CARE®|
FRACTION SIGN EXPONENT FRACTION

TK-0517

Figure 2-4 Zero and Reserved Operand Code

The code for reserved operand is zeros (cleared) in the exponent bits and a one (set) in the sign bit. One
in the sign bit normally indicates a minus number so this sometimes called minus zero. A reserved
operand indicates invalid data. It indicates data was accessed from a location that had not had data
loaded into it, or a previous exception. Refer to Figure 2-4 for reserved operand code.

2.1.5 Hidden, Overflow and Guard Bits ,

The FPA uses extra fraction data bits during fraction manipulation to completely represent the frac-
tion data, to handle result overflow, and to ensure accuracy of fraction result. Refer to Figure 2-5 for
location of hidden, overflow, and guard bits.

USED BY FPA

ADDE [
v DATA FROM CPU
FPA 1 16 15 14 7 ~ 0le—FPBUS
3332[3 6 ol FP8U
FRACTION EXPONENT FRACTION
OVERFLOW SIGN WHERE GUARD
BITS ARE
HIDDEN TRANSFERRED
» TK-0518

Figure 2-5 Hidden, Overflow, and Guard Bits

As discussed previously, the CPU stores floating-point numbers in a packed normalized form with the
MSB of the fraction (called the hidden bit) not stored (since it is always a 1). The FPA receives the
floating-point numbers in this form. To facilitate fraction calculation, logic on FNM adds the hidden
bit to all CPU fraction data as it transported over the FP buses. The hidden bit is transmitted on FP

bus (32). This means that all fraction data received by FPA fraction manipulation units have correct
hidden bits.

2-8

The FPA also transmits an overflow bit between fraction manipulation units using FP bus (33). The
overflow bit handles unnormalized intermediate fraction results. The combination (addition, sub-
traction, or division) of two normalized fractions can create a result greater than 1. The overflow bit
enables the FPA to transmit this unnormalized result from the fraction computation units to the
fraction normalizer logic (FNM).

To ensure accuracy of fractional results, the FPA data manipulation units add seven zeros called guard
bits to the low order end of the fraction data they receive. This means a float fraction is 32-bits wide; a
double, 64-bits wide. The POLY instruction loads extra data bits rather than zeros at the low order end
of each coefficient fraction. The instruction also transfers additional low order data bits from the
fraction multiply logic to the fraction add logic. These guard bits are dropped each time the POLY
accumulation is normalized and rounded but they do ensure that the final answer is accurate. Without
the guard bits, the right-shifting of a FP fraction to align radix points for addition and subtraction, or
to normalize the result would lose the least significant bits off the right end of the shifted fraction. In
some cases this loss would cause the last bit of the normalized result to be wrong. The guard bits
prevent this. Guard bits are transmitted between FP data manipulation units using FP bus A (,4:08).
These lines normally transmit exponent data. This arrangement allows the FPA to maximize accuracy
without additional hardware overhead.

2.1.6 Overflow, Underflow, Zero, and Reserved Operands

The FPA monitors all operands and results for exceptional conditions. When the FPA senses one or
more of these conditions it informs the CPU via various bits and combinations of bits. Either one or
both units begin special operations designed to minimize the effect of the condition. In some cases it
stops the FPA’s current operation and returns the FPA to the IRD state where all logic and registers
are cleared in anticipation of a new FP instruction. The following paragraphs discuss these various
unusual conditions. Table 2-3 summarizes the FPA and CPU operations caused by the unusual condi-
tions. :

29

Table 2-3 Exception Conditions

Exceptions Encountered

Op Code Zero Operand Reserved Operand Result
ADD, Microcode simulates FPSYNC (ACCO) clear All operations handle the
SUBT, arithmetic operation ERRSYNC (ACC1) set occurrence ot zero, underflow,
MULT, with zero (Table 2-2). | CPU traps FPA to IRD and overflow results similarly.*
EMOD
DIVIDE ZERO DIVIDEND - FPSYNC (ACCO) clear ZERO — The zero code and
Microcode returns ERRSYNC (ACC1) set FPSYNC are sent. PSL Z bit
zero as result PSL V bit clear is set.
ZERO DIVISOR — UNDERFLOW — Zero code,
Divide by zero FPSYNC, and ERRSYNC are
ERROR — FPSYNC sent. PSL Z is set. If PSL U
(ACCO) clear (underflow) is set underflow
ERRSYNC (ACCl1) set causes a trap, otherwise
PSL V bit set operations continue.
CPU differentiates between ZERO DIVISOR and OVERFLOW - Reserved
RESERVED OPERAND by examining PSL V code, FPSYNC, and ERR
bit. In both cases, CPU traps FPA to IRD. SYNC are sent. PSL V is set.
CPU traps FPA to IRD.
POLY* POLY microcode FPSYNC (ACCO) set
simulates POLY ERRSYNC (ACC1) set
operations with zero. In STATUS REGISTER,
(Table 2-2 and minus ZERO ERROR
Paragraph 2.2.6). bit set.
CPU checks argument =
RESERVED OPERAND.
FPA checks coefficient
= RESERVED
OPERAND.
MULL No checking of MULL operands or results is performed by FPA software or

hardware. Any combination of bits can be interpreted as an acceptable integer.

* When POLY flows note a RESERVED OPERAND, UNDERFLOW, or OVERFLOW, both FPSYNC (ACC0)
and ERRSYNC (ACC1) are set. CPU examines PSL and FPA STATUS REGISTER to determine exception
condition. RESERVED OPERAND sets the MINUS ZERO ERROR bit. OVERFLOW sets the PSL V bit.
UNDERFLOW sets PSL Z bit.

2-10

Overflow ard Underflow

The FPA can handle a very large but bounded, range of numbers. Numbers too large (overflow) or too
small (underflow) cannot be accurately handled (Figure 2-6). Special hardware monitors the results of
all FPA operations for overflow and underflow conditions. The FPA checks for overflow and under-
flow by monitoring the exponent results. The monitoring is straightforward because of the excess 80
notation used. If the exponent with its excess 80 bias exceeds FF ¢ an overflow has occurred. If the
exponent is less than 0, an underflow has occurred.

OVERFLOW —.111 X27F — . 1X2-3%0 UNDERFLOW AX27% 111 X277 OVERFLOW
RANGE RANGE * RANGE
-— - —> —_—
~ 1.7 X 10%% ~—=29 x 10°8 ~29x 10°® ~17X10%®
| most I
NEGATIVE ZERO
NUMBER

SMALLEST SMALLEST
NEG. NUM. POS. NUM.

* EXACT ZERO DOES NOT CAUSE UNDERFLOW

TK-0521

Figure 2-6 Overflow and Underflow Ranges

If an overflow condition is sensed, the overflowed number is useless. The FPA manufactures a reserved
operand and informs the CPU that an overflow occurred. The CPU notes the overflow and stores the
reserved operand. The FPA returns to IRD.

Underflow is not as serious a problem. It merely indicates that the number is so small and so close to
zero that the FPA cannot accurately represent it. If an underflow occurs the FPA sets the underflowed
number to zero and informs the CPU that an underflow has occurred by asserting both FP SYNC and
ERR SYN. It is important to inform the CPU that a zero has been returned because the CPU may at
some later time attempt a division by the result (division by zero results in an error).

Zero

If a zero code is encountered in an operand transmitted to the FPA from the CPU, FPA microcode -
simulates the special properties of addition, subtraction, multiplication, and division with zero. Refer
to Table 2-2 for the result of an operation with zero. If an exact zero is generated as a result of an FPA
operation, the zero code is returned to the CPU and the condition code bits are set for a zero result.
Zero can be generated in a normal arithmetic add or subtract operation (equal or equal-opposite
operands) or in a microcode simulated arithmetic operation with a zero operand. An operation that
generates an exact zero does not assert ERR SYN like an underflow operation (although both return a
zero code).

Reserved Operand

Refer to Table 2-3 for the condition codes returned to the CPU when a reserved operand is encoun-
tered by the FPA.

2-11

2.2 INSTRUCTIONS AND ALGORITHMS

This section concentrates on the microcontrol used to carry out each FPA instruction. Each instruc-
tion accesses different microcontrol addresses to correctly move and load operands, compute inter-
mediate results, and ready the final result for return to the CPU. Special instructions check for and
handle errors and exceptional conditions.

This section details the data flow between hardware required to carry out the selected instruction. It
only summarizes the hardware actions started once the data has been loaded by the microcontrol.
Paragraph 2.3 contains a complete and detailed description of the hardware in each FPA section.
Paragraph 2.2 and 2.3 complement each other and both should be read to thoroughly understand how
the hardware implements each FPA instruction.

As stated before this section concentrates on data flow. Figure 2-7, FPA block diagram, shows the
data bus interconnections and the various register in the FPA. Although this figure is not specifically
referenced in the discussion it will help in understanding the data flow and should be referred to
frequently.

2-12

£l

wesdeiq yo0/g Vdd LT 20Bid

)

NOISID34d
318n00

H3ZIMYWHON NOILOVYS H3INJILINW NOILDVHS

H30QV NOLLVHY

ANINOdX3

40SS300Hd ININOJX3

‘HOSS300Ud NOIS “TOULNOD Vdd

('S"1) <00:1€> XNW4Qa SN8 — <00:1€> SN\ QI WILSAS ! — <00:S6> SN8 SI
x® _ _ |
wix _ $5340AV AX3N
SH3IAING _ A _ —l
sne _ .
48 [24T
Suoj VMO _ N _ 2001vas | “aog [T]., 24018 08! 1= suaia03es
8y viy _ v al] wow 0UINCO — 300040
7yt 3 HOLVWA c:Q _ 044NCO o
| <00:eE> 843508 | \ 10MINOD Vd4
m u34x _) ! |
<00:€c> vdisna| | L
— m f — [
1 1
53
XN 4 - 843 N0 1n0
(e i _ Ll SV e |0 lee _ N8 | nois mv3
_ 4na1no nvy)l o _ vas
XIHLVI, XIULVI _]
_ 8 WO, V WOY _ Q.
_ |) [
_ 0 ' 01
_ ue xuv| uv 3
— s 1 — ! Q;\ GL\ .Aw
_ " | ‘
e _ 21907 e+ 300240
| ||
HS WOuN
_ ‘1

92 1075 99Z8N WN4 _ 97 1015/52 1018 LOZOWORZEN TWI/HN

LT 101S 88Z8N QY4

82 1078 e8Zen LO4

During IRD (instruction decode) the FPA performs some operations that are prerequisites to many
FPA instructions. The FPA assumes a R-R float instruction and begins FPA register loading. The
FPA has two copies of the CPU general registers. During IRD, it receives specifier information from
the IB and accesses the register addresses contained. The contents of the first specifier is placed on
FPA bus A, the content of the second on bus B.

The data on bus A is loaded in AR, LA, SA, MCl, and MPO; bus B loads BRI, LB, SB, MPI, and
MCI. ARI and BRI are fraction registers used for the addition and subtraction of floating-point
numbers. LA and LB are loaded with the exponents of the numbers and immediately the hardware
begins an exponent difference calculation. The exponent difference and/or which exponent is larger is
needed for floating-point additions, subtractions, and multiplications. SA and SB are input registers
for the sign-processing hardware. Fraction data from specifier 1 (on bus A) is loaded into multiply
registers, MC1 (multiplicand) and MPO (multiplier). Fraction data from specifier 2 (on bus B) is
loaded into MP1 (multiplier) and MCI (multiplicand-integer). MC1 and MP] hold operand data for
MULF and EMODEF instructions. The hardware multiply begins the MULF or EMODF fraction
multiply operation during IRD using MC1 and MPI. MCI and MPO contain the operand for a
MULL instruction.

During IRD, numerous FPA instructions have been started. If the instruction is a float register-to-
register, both operands are already loaded and ready in the FPA. Exponent manipulations needed for
add, subtract, and multiply operations have started. MULF and EMODF fraction multiplication have
started. If the instruction decoded is a MULL, the multiplier and multiplicand have already been
loaded into the proper registers.

2.2.1 Add/Subtract
The FPA add/subtract operations can be broken into three states:

1. Load
2. Add/Subtract
3. Normalize.

22.1.1 Load - While the FPA is in IRD, it is setting up for a float, R-R operation. This means that

specifiers 1 and 2 from the instruction buffer are being placed on FP buses A and B, respectively. Bus

g loads ARI (fraction register), LA (exponent register) and SA (sign latch). Bus B loads BRI, LB, and
B.

When the FPA decodes a floating-point instruction, it enters A-Fork and selects a microword address
based on op code and specifier types. If the instruction is a float R-R A/S, the FPA enters the opti-
mized add/subtract execution state immediately. If, however, it is not, the F PA, under <ontrol of the
selected microword, receives and stores the required data during A-Fork and possibly B-Fork flows. If
it is double-precision, 32 additional fraction bits are loaded into both ARO (extension of ARl) and
BRO (extension of BR1.) If it is not an R-R operation, the new data from the correct source is loaded
into ARI, LA, SA, BRI, LB, and SB.

As tne final correct operands are loaded, whether during IRD (in the case of float R-R operations) or
during some following microcontrol state in A-Fork or B-Fork, the exponent difference of the two
operands is determined by comparing LA and LB in DALU and CALU. Based on the exponent
difference, the fraction associated with the smaller exponent is loaded into SHMX and right-shifted by
ASHR until the radix points align. This happens before entering the add/subtract state.

2.2.1.2 Add/Subtract - In this state, the fractional result is computed. Based on the op codes, signs of
the operands, and exponent difference, FALU operation is selected. Normally, the FALU adds or
subtracts the already aligned fractions for the fractional result. Refer to Table 2-4 for normal FALU
operation, and Table 2-5 for special FAD operation criterion.

2-14

Table 24 FALU Operation

Op Code Operand Sign FALU Operation
ADD Same Add

ADD Diff Subtract

SUBT Same Subtract

SUBT Diff Add

Table 2-5 Combination of Conditions Initializing Special FAD Operation

FALU Subtract Exponent Diff Op Code Precision
Yes Greater than7 X D
Yes Greater than | POLY D
Yes Less than 2 POLY X

X = Don’t care

The special FAD operation is used to ensure maximum accuracy in the result while operating within
the FPA hardware constraints. The special FAD operation involves complementing the fraction asso-
ciated with the smaller exponent by subtracting the fraction from zero in the FAD, returning the
complemented number to the fraction register (either AR or BR) it was in originally, and then loading
it into SHFMX and right-shifting and sign-extending based on exponent difference until the radix
points align. This special operation takes an extra microstep but ensures maximum accuracy. As a
result, the actual fraction subtraction to produce the result does not take place until this third state.

During the add/subtract state, the larger exponent is transferred to the PR.

2.2.1.3 Normalize - In this state, the answer is readied for return to the main machine. This involves
final normalization of the fraction, adjustment of the exponent and determination of the resultant sign.
If the calculation involved special FAD operations as discussed in the previous paragraph, the fraction
subtraction will first be carried out and then the result will be readied for return to the main machine.

When entering the normalization flows, the FPA checks three conditions:

1. Exponents equal zero
2. FALU subtract with exponent difference less than two
3. Subtract, exponent difference less than 7, and DP.

If a zero operand is noted, the other (non-zero) operand is transferred to the output and if it is the
subtrahend in a FALU subtraction, the sign is complemented (minuend - subtrahend = remainder; 0 -
X = -X). A FALU subtraction with exponent difference of 1 or 0 initiates special flows because the
subtraction of two nearly equal numbers can result in a very small fraction (numerous leading zeros)
which might require many shifts before the first significant bit is located. The special flow initiated can
shift the result up to sixty places to find the first signficant bit before it is transferred to the standard
normalize routine. If a first significant bit is not found after 60 bits have been shifted, a zero is readied
as a result. If the third branch is taken, the addition state described in Paragraph 2.2.1.2 results, then
flow reenters the normalization routine. '

2-15

Usually, the unnormalized result requires a shift of four places or less. If this is the case, the four MSBs
are examined to locate the first significant bit. Based on the location of the first significant bit, a
rounding byte is added to the fraction. If the result from a FALU subtraction is negative, the FALU
result is subtracted from the rounding byte to return the number to sign magnitude notation and round
itin a single step. Once the FALU result is added to or subtracted from the rounding byte, the fraction
is shifted and least significant bits are dropped.

In all cases, the number of shifts required to ready the fraction for return to the CPU is computed and
is used to adjust the exponent in the PR. Once completed, the exponent, the normalized fraction, and
the sign of the result are placed on the FP bus A. When the complete result is on the bus, standard
routines handle the actual transfer to the main machine.

2.2.2 Multiply (Floating-Point)

The FPA multiply operation can be broken into three operations: load, multiply, and normalize. In the
process of carrying out a FP multiply, the FPA receives the operands (each consisting of an exponent,
fraction, and sign bits), checks for zeros and reserved operands; loads the exponent, fraction, and sign
bits into the appropriate registers; starts the hardware to carry out the required calculations; and
assembles and readies the result for return to the CPU when notified that the hardware calculation is
finished.

22.2.1 Load - To maximize speed, the FPA is continuously setting up for a float R-R operation. This
means that in IRD specifiers, 1 and 2 from the instruction buffer are addressing the GPRs (general-
purpose register) in the CPU, and the register data is being placed on FP buses A and B, respectively.
Bus A loads MCI (multiplicand register), LA (exponent register) and SA (sign latch.) Bus Bloads MPI
(multiplier register), LB, and SB.

When the FPA decodes a floating-point instruction, it enters A-Fork and branches to a specific micro-
word based on op code and specifier types. If the instruction is a float R-R multiply, the operands are
already loaded and the FPA enters the multiply state immediately. If, however, it is not, the FPA,
under control of the selected microword receives and stores the required data during A-Fork and
possibly B-Fork flows. If it is a double-precision multiply, 32 additional fraction bits are loaded into
both MCO (extension of MC1) and MPO (extension of MPL.) If one or both of the specifiers are not
registers, ail new data will be loaded into MCI1, LA, SA, MPI, LB, and SB.

As the final correct operands are loaded, whether during IRD (in the case of float R-R operations) or
during some following microcontrol state, the fraction multiplier begins the fraction multiply by
breaking the fractions into nibbles and beginning the hardware multiplication using the first multiplier
nibble.

2.2.2.2 Multiply - In the multiply state, the fraction multiplication continues until a final fraction (as
yet unnormalized) is computed, the exponents are added, and the sign of the result is computed. The
fraction multiplication is initiated when the multiply flows issue MCONT (multiply continue.)

As MCONT is issued, the FPA checks for operands equal to zero or minus zero (reserved operand.) If
a zero operand is found, computation stops and the FPA immediately returns a zero to the base
machine. If a reserved operand is found, the operation aborts. If neither are found, computation
continues. In the case of a float (single-precision) multiply, the fraction multiplication is completed as
the exponent calculation is completed. The product is transferred to the NR. In a double-precision
multiply, the microcontrol enters a wait state. While waiting during a double-precision multiply, the
FPA continually transfers the output of the fraction multiplier to the normalizer. This enables the FPA
to begin normalizing the fraction result as soon as the multiplication is complete. It remains in the wait
state until a hardware counter in the fraction multiply logic asserts MUL/DIV DONE indicating the
fraction multiply is complete.

2-16

While the fraction multiply and the check for zeros and reserved operands is taking place, the expo-
nents are added If no zeros or reserved operands are found, the fraction multiply and exponent
processing continues. After the exponents are added, a bias of 200g or 806 is subtracted from the
exponent result to return the exponent to excess 80 notation (refer to Paragraph 1.5).

In a multiply operation, the sign of the result is the exclusive-OR of the operand signs.

By the time the fraction multiply is complete, the exponents have been added, and exponent bias
subtracted, and the sign of the result has been calculated. The result of the fraction multiply is moved
to NR.

2.2.2.3 Normalize - The normalize state of a floating-point multiply is very simple. Since the input
operands are always between 1/2 and 1, the result is always between 1/4 and 1. This means that the
result can be normalized with a single shift of four bits, or less. In the normalize state, the fraction is
rounded and shifted, and the exponent is adjusted to reflect the normalization shift. The normalized
fraction, adjusted exponent, and sign bit are placed on the FP bus A. Once the complete result is on the

bus, standard routines handle the actual data transfers to the main machine.

2.2.3 MULL (Multiply Integer Longword)

The FPA’s MULL algorithm is the simplest and most straightforward of all the operation flows. The
FPA receives two 32-bit signed integers, performs an unsigned multiplication, and returns the 64-bit
answer to the base machine. The FPA performs no result normalization, no checks for reserved oper-
ands, zero operands, or other error conditions. Microcode in the base machine generates the condition
codes and handles all the checks and manipulations required to ensure a correct result.

223.1 Load - As discussed in introductory Paragraph 2.2, the FPA during IRD loads MPO and
MCI (the two registers used in MULL operations) with the register contents of specifier 1 and 2,
respectively. If the instruction decoded in the A-Fork flows is a R-R MULL, the FPA can begin the
multiply immediately. If it is a MULL but not an R-R, the FPA will, under the control of the selected
microaddress, load data from the correct source into either or both MP0O and MCI.

223.2 Multiply and Return - The decoding of a MULL causes the fraction multiply hardware to
abandon set-up of a MULF and begin accessing the registers used for MULL (MCI and MP0.) When
the proper data has been loaded, MCONT is issued by the FPA. This indicates to the fraction multiply
hardware that the correct data is in MPO and MCI, and that the data accesses started previously were
accessing correct data.

MCONT enables the fraction multiply hardware to continue multiplying. The multiply continues,
controlled by a hardware sequencer within fraction multiply hardware, while the FPA waits two ma-
chine cycles. The answer accumulates in ACCM and LSH. After two wait cycles, the multiply is
finished. The hardware stops and the FPA makes the 32 low-order bits (from LSH) available to the
CPU. When the CPU responds with CPSYNC, indicating the low-order bits have been stored, the
FPA readies the high 32 bits from SALU for transmission to the CPU.

2.2.4 Divide

The FPA divide operation can be broken into three steps: load, divide, and normalize. To do a float-
ing-point divide, the FPA receives the operands (each consisting of sign, fraction, and exponent bits),
loads the operands into holding registers, tranfers the operands from the holding registers into the
correct division registers, starts the hardware to do the fraction division, checks for zero and reserved

operands, starts the hardware to store the result, and normalizes and packs the result for return to the
CPU.

2-17

2.2.4.1 Load - The loading of division operands takes place in two substeps: data fetch, and division
register load. Unlike the FPA add/subtract, multlply, and MULL operations, the FPA does not load
division operands into the proper division registers during IRD (Table 2-6).

Table 2-6 The Division Load

Specifier 1 Specifier 2
IRD Register and float assumed (divi- Register and float assumed
sor) Register data to ARI, LA, SB (dividend). Register data to
BRI, LB, SB
Data Fetch Substep Op code decoded, specifiers and

precision known

New data loaded into AR! and New data loaded into BRI

ARO*, LA, and SA, if needed. and BRO*, LA, and SB, if
needed.

Division Register Load Ist Microword - move LA (divisor Move BR (divident fraction)
Substep 2 microwords exponent) to XR. to NR.

2nd Microword - move AR (divi- Move NR (dividend fraction)
sor fraction) to just vacated NR. to RR and right shifts the just
loaded divident fraction to
compensate for RR's hard
wired left shift. This right shift
ensures initial dividend is
properly represented.

Subtract XR (divisor exponent)
from LB (divident exponent).

*ARO and BRO are fraction extension registers for double precision operations.

During IRD a R-R float operand is assumed. This means that both specifier | and 2 are assumed to be
registers. The contents of the first register named is placed in AR, LA, and SA, the content of the
second in BR, LB, and $B. If the operation decode is a R-R float divide, the data fetch substep is done
and division register load may begin.

However, if it is not an R-R float, divide microcode waits for data from the correct specifier and loads
it into either AR, LA, and SA; and/or BR, LB, and SB. When the divisor is in AR, LA, and SA, and
the dividend is in BR, LB, and SB; the data fetch substep is finished.

The division register load substep loads the divisor’s and the dividend's fraction and exponent com-
ponents into the registers required to do a division. The loading of the proper registers takes two
microcode steps. The first microcode step loads the divisor exponent into XR and loads the dividend
fraction into the NR. The second microcode step finishes the register loading by moving dividend
fraction (in the NR) to the RR and loading the just vacated NR with the divisor fraction from the AR.
It also starts the fraction division hardware, checks for zeros and reserved operands, and subtracts the
divisor exponent (XR) from the dividend exponent (LB) (LB - XR).

2-18

2.2.4.2 Divide - The divide operation continues unless a zero, or reserved operand is found. If a zero
dividend is found, operations cease and a zero is readied for return to the CPU. Finding a zero divisor
or a reserved operand initiates error states. The FPA will remain in these error states until returned to
IRD by a CPU signal.

If no zeros or reserved operands are found, the division continues. A bias 80 is added to the result of
the exponent subtraction to return it to excess 80 notation (Paragraph 1.5.) The fraction multiply
hardware is started. This hardware is used to store the result of the fraction division as it is generated.
The division continues under hardware control as the FPA microcode remains in a divide wait loop.

The hardware uses the restoring, repeated subtraction technique to divide. The dividend is initially
loaded into the RR and the divisor is stored in the NR. The divisor (contents of NR) is subtracted
from the dividend (contents of RR). If the result is negative, a zero is left-shifted into result register in
the fraction multiply hardware and the contents of the RR is left-shifted by one. If the result is positive
or zero, a 1 is left-shifted into the result register, and the result is loaded into the remainder register left
shifted by one. The divisor (contents of NR) is continually subtracted from the contents of the RR
until 26 bits (58 bits for double precision) of quotient are generated. MUL/DIV DONE is now as-
serted.

Asserting MUL/DIV DONE stops the division and ends the divide wait loop. The divide result is
transferred from the fraction multiply hardware where it was stored during generation to the normal-
ize register (NR) in the normalize hardware. :

2.2.4.3 Normalize - Since the two initial operands are normalized (between 1/2 and 1), the result is
always positive and between 1/2 and 2. This means the normalize and round operation is simple and
will take only one microstep. The result is examined, a round byte is selected and added, and the data is
shifted as needed to produce a normalized result. The exponent result is adjusted to reflect the direc-
tion and amount of the fraction shift. The normalized fraction, adjusted exponent, and sign bit are
placed on the FP bus(es). Once the result is on the bus(es), standard storage routines handle the actual
transfer to the CPU.

2.2.5 EMOD (Extended Precision Multiply and Integerize)

The EMOD operation is partially done in the FPA. The FPA performs an unsigned 32 X 24-bit (64 X
56-bit for double precision) multiplication and returns the fraction result to the main machine. The
main machine does all further processing. The FPA EMOD operation can be broken into two steps:
operand load, and result calculation and return.

2.2.5.1 Operand Load - Loading the EMOD operands involves loading the multiplicand, an 8-bit
multiplicand extension, and the multiplier into proper registers. The multiplicand (either single or
double precision) is loaded into MC during A-Fork. In B-Fork, EMOD flows are started. These flows
wait for the CPU to fetch the multiplicand extension (8 bits) and transmit it to the FPA via the ID bus. *
The FPA loads the extension into MCX which is part of the MCI register. The second operand is then
transmitted to the FPA and loaded into appropriate multiplier register MPO and MP1. The multiplier
is not extended. The FPA receives and stores the exponent and sign associated with both operands but
does not use them.

2.2.5.2 Result Calculation and Return - Once the operands are loaded, MCONT is asserted and the
FMOD multiply begins. The operands are tested for zeros or reserved operands. If zeros are found,
special flows stop the multiply and return a zero to the CPU. Finding reserved operands initiates error
flows. If no exceptions are found, the multiply sequencer, started by MCONT asserted, continues
multiplying. A single precision (float) multiply is finished in one microstep after the exponent test. A
double precision multiply causes the FPA to enter a wait loop. It remains in the wait loop until the
multiply sequencer asserts MUL/DIV DONE indicating the result is computed.

2-19

When the result computation is finished, the fraction (32-bit float, 64-bits double) is transmitted to the
CPU. The CPU does all further processing including sign computation, removal of the integer part,
normalization, and exponent calculation.

22.6 POLY (Polynomial Evaluation)

22.6.1 Introduction - POLY is an FPA implemented instruction. The FPA does the majority of
calculations required to evaluate a polynomial expression. This involves storing a constant, and an
accumulation; receiving coefficients; repeated additions and multiplications using the constant, the
accumulation, and the new coefficient, and the readying of a final result to be returned to the CPU. It
also uses specialized operations (both hardware and microcode) to ensure maximum accuracy within
the FPA hardware limits.

The following paragraphs explain POLY flows, polynomial expression and define various terms, and
POLY exceptions in detail. Also discussed are the numerous flows required to handle errors, under-
flows, overflows, and zeros.

2.2.6.2 The Polynomial Expression - The generalized polynomial may be written:
f(x) = ag + a;x + ax2 + ... + axn.

The x, a constant within each polynomial, is called the argument and is raised to various powers: x!,
x2, %3, ..., x". The highest power represented here by n superscript is called the degree of the equation.
The ag, aj, ay, ..., ap are the coefficients. Rearrangement and factoring produces f(x) = ag + x(a; + x
(a2 +...+ x(an-1+ xa,))). The result, f(x), may be computed: a, times x then add a,_; ; the resultant

answer times x and thenadd a,_3... The generalized form is: (accumulation times x) plus the new
coefficient, aj, equals the new accumulation.

The POLY instruction formatis POLY argument, degree, coefficients table. The FPA receives and
stores theargument. The CPU uses the degree operand to determine when it has accessed the last
coefficient of the table so it may inform the FPA thatthe POLY calculation is done. The coefficient
tableis arranged in ag, an_, ap-2, ...,ay, and ag order. The CPU transmits the coefficients to the
FPA as needed: a, first, a,_| next, ...

2.2.6.3 Normal POLY Flows - The FPA begins special POLY flows in B-Fork. The POLY argument
is transferred to the FPA during A-Fork and then loaded into the argument registers. The argument
fraction is loaded into MP, the exponent into XR, and the sign is SX. The argument remains in these
registers throughout POLY execution. The FPA waits for the first coefficient to be sent so the POLY
computation can begin.

POLY computation can be divided into three large categories:
1. Argument and First Coefficient Handler
2. Generalized POLY Computation (neither first term or last term)
3. POLY DONE Handler (handles Ag, the last coefTicient).
This section will discuss the flow by these three categories. Within each category, microcode controls

the normal operations, checks for exceptional conditions, and attempts to recover from any excep-
tional conditions. Refer to Figure 2-8 for a summary of the POLY flow.

2-20

AQV3Y S| HIMSNVY ONILVIIONI INASdS LHISSY

1 NS34 40 NOIS S~ VS
AN3INOdJX3 1SNrav Hd — Ud
NOIL)VHY TYIWHON UN - 4HSN

SMO14 3ZITYIWHON HVINO3H 0L 09.
HOHY3 ‘MOTJH3A0 4I.
IN3NOdX3 1237138 (81'VIIXVN - Hd
SNOILOVH4 aav HE8+HVY —~ UN
NOLLVINWNIIOV ONIWHO4 11NS3Y LINW ANV 1N31DI44300 aav.

_

AH3A0D3d V ONILdWILLY
SMOT3 A10d TVHINIO FNNILNOD ‘MO14H3ANN/MOTIHIA0 di.

NOIS 31NdNOD XS'HOX'VS - VS
S1IN3INOdX3 LSNrav B aav 8T1-UX+Yd — dd
NOILYINWNIJV . INIWNOUY JOWN.dW— UV

L1INSIY'LINW ONINHOL LNIWNOUY ANV NOLLVINWNIIVY ATdILTNN.
OH3Z O1 13S SI NOULVINWNIIVY MO13HIANN dI.
HOUH3 "MOTIH3IA0 dI.

NOLLYINWNIJV 40 NOIS HS— VS
Q3ZITYWHON Hd — dd
Q3ZINYINYON HUN-JOW

AN3INOdX3 123138 (81 VIXVIA = Hd
SNOILOVHd aav H8+Hv -~ 8N

NOLLYINWNIJV ONIWHO4 1INS3H LINW ANV LN31D144300 aav.

NOIS LIN31D144302 nv-as NOIS IN312144300 (v -8s
tN3NOJX3 1N312133300 (v - a1 LN3NOJX3 LN3IDI3430D v-al
NOILOVHS LN31214430D (v —'us NOILOVYS LN3ID134300 (lv—88

SH31SI93Y OL LN3ID144300 JAON. SH3LSI193H 0L IN3IDIF330D IAON.
AIN312144302 HO4 LIVM. AN312144300 HO4 LivM.
(Q3143SSV INOQ A10d) H3TANVH LN31D134300 1SV aNog (INOG A10d ON) SMO14 A10d 1VH3INID
A10d
AHIN3 AHIN3
MOT4H3IANN/MOTIHIAO TVWHON |
AQV3Y S| HIMSNV ONILVIIGNI INASdS LHISSY AY3A0D3Y V
NOILOVHY HIISNVHL YN~ JHSN ONILdW3L1Y SMOT4 A10d TvHINID HILNI MOTIHIANN/MOTIHIAO 41,
SMOT4 3HOLS YVINOD3Y 0L 09. N9IS 3LNdWO0J XS HOX'VS = VS
NOIS H3ISNVHL 8s—-vs SLN3INOJX3 1SNrav 8 aav 8Z1-81+UX— Hd'V
NOILOVYY HIISNVHL 8~ UN SNOILIVHY ATdILINW IN.dWN - UV
LN3INOJX3 H3ISNVHL 81— 4d 1INS3Y L1INW ONINEOL LINIWNOUY ANV LN3ID14430D ANdILINW.
NHNL3H HO4 IN3ID13430D AQV3IY. NOIS IN3I1214430D HIISNVHL gs—vs
LIN310144300 1SV 1SNI SI HIMSNV NOIS IN312144300 (N)v—8S
(0=33¥93G 40 INJWNDYV GNV 0314355V INOQA A104) LIN3INOJX3 IN31214430D NIV =81
H3TONVH IN31D133300 1SV INOQ NOILOVYS IN3ID14430D (N)V - 48O
A10d SH3LS193Y OL IN31D14430D IAOW,

AN31J144300 1SHId HOS LIVM.

INOQ AT0d A8 G3O9VTd4 38 T1TIM HOIHM LN31D134300 1SV
HOd ONILIVM HITANVH SIHL NI SNIVIW3Y MO1d ‘OH3Z SI IN3WNOYYV Ji ,

NOIS ANIWNOUY VS — XS
LN3INOJX3 LINIWNOHV V1= Ux
NOILOVHY AINIWNOHY Hv -~ dW

SH31SI1934 OL1 INIWNOYY 3AONW.
H3ITANVH LN31J144300 1SHId

?

VS ANV 'V ‘HV
NI INJWNOHY
HLIM SNID38 A10d

TK-0828

Figure 2-8 The POLY Flow

Within the flows different microcode handles float and double precision operation. In POLY double
coefficient, argument, and accumulation fractions each use an additional 32 low-order bits. The differ-
ences between float and double precision are not discussed in each operation because it is normally
limited to longer fraction multiply times and slower fraction transfers. These come about because there
are more bits to be multiplied and moved.

When the first coefficient, Ay, is sent, it is loaded in MC, LB, and SB. Since the argument has not yet
been checked, both the argument and the coefficient are checked for exception conditions and POLY
DONE is checked. If any exception condition is noted, special flows are accessed. POLY DONE
asserted indicates that the coefficient just sent was the final coefficient (in this case, the first coefficient
is also the last coefficient). If the argument (x) is zero, all terms except the Ag term of the polynomial
will be zero. Either POLY DONE asserted or x equals zero causes the FPA to access a special last
coefficient routine in the argument and first coefficient handler that returns Ag to the CPU as the result
of the polynomial calculation.

After both the argument and the coefficient are checked and no exception conditions are found, the
first multiply takes place. While the fractions are multiplied in the fraction multiply logic (FML and
FMH), the exponents are added and adjusted to return the excess 80 notation (FCT) and the sign of
the result is computed (FCT). When the multiply is done, the fraction is moved to AR for the addition
operation. To maximize calculation accuracy, no normalization is performed after the multiplication
and 8 additional low-order fraction bits are transferred to the AR register and stored in AR X. These 8
bits are used when the new coefficient is added to the multiplication result to produce the new accumu- -
lation.

While the multiplication fraction result is being transferred to AR, the exponent result is checked for
exponent overflow or underflow. If no overflow or underflow is found, the addition will begin as soon
as the new coefficient data is ready. If, however, overflow or underflow are sensed, special flows that
attempt to recover from the over/underflow are accessed (Paragraph 2.2.6.4). ’

While the new coefficient data is checked for zero and/or reserved operands, the addition/subtraction
begins on the assumption that the coefficient data will be valid. The exponent difference hardware
selects the larger exponent for processing by the FCT and loads it into PR. It also shifts and loads the
fraction associated with the smaller exponent into the B-input of FALU. FALU then adds or subtracts
the fraction. When the coefficient data proves valid, the computed fraction result is transferred to NR
where it can be normalized.

The fraction normalization takes place in the FNM logic. A rounding byte is added and the result is
shifted until normalized. The exponent is adjusted based on both the rounding byte and the number of
shifts required to normalize the fraction. The normalized fraction is moved to MC and a multiply with
the stored argument (x) begins.

Once the first multiply is completed, the POLY calculation is in the general POLY flow. These flows
multiply by the result of the last add and normalize by the argument (x), receive a new coefficient from
the CPU, check it for exceptional condition, then add it to the result of the multiply operation, normal-
ize the result of the addition, and ready it for the next multiply. The general POLY flows check the
intermediate results for overflow, underflow, and zeros, and access special flows if an exception is
found.

The general POLY flow continues until the CPU sends a coefficient flagged with POLY DONE rather
than CP SYNC. This indicates that the coefficient just transmitted is the finai coefficient in the table.
The POLY DONE flow adds the final coefficient and then accesses the normalization lows in the FPA
addition flows. These flows round and normalize the fraction and adjust the exponent based on the-
rounding byte and normalization shift. Once the result is complete, it is placed on the FP bus A and
standard routines handle the transfer to the CPU.

2-22

2.2.64 POLY Exception Flows - The POLY flows have many special sections to check for and
handle exceptional conditions. Each coefficient is checked for zeros and reserved operands. The POLY
argument is checked for zero. The CPU checks the argument and degree for reserved operand. The
FPA also checks the intermediate results for underflow, zero, and overflow. If an underflow or over-
flow is detected, special flows attempt to recover from the condition without a loss of accuracy.

The exception flows (zero, reserved op_cranc_i, overflow, and underflow) can be divided into three cate-
gories to handle exceptions discovered during:

1. First coefficient and argument handling
2. General coefficient handling
3. POLY DONE (final coefficient) handling.

Within each category, different microcode handles float and double precision operation. However,
there is little difference between the exception procedures used in each category and only minor differ-
ences in the microcode. As a result, each individual exception flow is not discussed, rather the micro-
code procedure for each type of exception is explained.

Zeros

The argument and each coefficient are checked for zeros. The argument and first coefficient are
checked for zeros at the start of the POLY flow. If the argument (x) is zero, all the terms of the
polynomial will be zero except Ay, the last coefficient. With the argument equal to 0, the FPA will
remain in the first coefficient loop waiting for the last coefficient (flagged by POLY DONE). When it
is received, it will be tested for reserved operand and, if not reserved, will be returned to the CPU as the
result of the polynomial. If the first coefficient is zero, the accumulation registers will be set to zero and
the FPA will wait for the next coefficient.

If a zero is found as a subsequent coefficient (when the current accumulation is not zero).'the current
accumulation which is unnormalized will be rounded and normalized, and the FPA will wait for the
next coefficient.

Reserved Operand

Each coefficient is checked by FPA hardware for reserved operand. If a reserved operand is found, the
POLY operation is immediately aborted and the accelerator error bit is set. The argument is not
checked for reserved operand by the FPA because it is checked in the CPU and, if found to be re-
served, the POLY operation never starts in the FPA.

Overflow
The FPA checks for overflow by examining the exponent bits PR8 and PR9 in the PR register. If PR8
(the overflow bit) is high and PR9 is low, an overflow-has occurred.

The FPA checks each current accumulation two times per cycle for an overflow condition - once when
the unnormalized multiplication result is readied for adding the new coefficient and once after the
addition result has been rounded and normalized. If an overflow is detected in the second instance
(normalized addition result overflow) the FPA will abort. The FPA will set the PSL V (overflow) bit
and wait until the CPU traps it back to IRD.

If the unnormalized multiplication result overflows, the FPA accesses overflow routines in an attempt
to recover an accurate result from the overflow. The FPA microcode is written based on the assump-
tion that if the new coefficient exponent is subtracted from the current overflow, the result may be
small enough that the exponent will no longer overflow (PR8 will be low.) As stated before, PRS is
high. This means the exponent in PR is 10XXXXXXX (9 bits long.) Since the exponent difference
taker EALU is only 8 bits long, the overflowed exponent must be scaled down. The FPA subtracts 80,6
to scale it down.

223

The new coefficient is first checked for zero or reserved operands. A reserved operand causes an abort.
If the coefficient is zero, it will not change the overflow. The FPA will attempt to recover from the
overflow by first adding back the 80¢ to return the exponent to correct value, then normalizing and
rounding. If this fails the FPA will set the overflow bit and abort.

If the new coefficient is not zero or reserved, the operation continues. The FPA subtracts 806 from the
exponent of the coefficient to scale it down. The reduced exponent coefficient is checked for under-
flow. If an underflow is sensed, the coefficient is effectively zero when compared with the accumula-
tion. Since the coefficient is effectively zero, the FPA will attempt to recover from the overflow by first
adding back the 806 to return the exponent to correct value, then normalizing and rounding. If this
fails, the FPA will set the overflow bit and abort.

If the reduced coefficient did not underflow, it shows that the coefficient can effect the accumulation
and possibly recover it from the overflow condition. In the case of accumulation overflow flows, we
know the accumulation is the larger number. Therefore, no checks are performed on the exponent to
find the larger number. The exponent difference taker then subtracts the two scaled down exponents to
determine how many times the coefficient must be shifted to align the radix points. The POLY
add/subtract will take place. The accumulation fraction is moved through ADER MUX to FALU and
the restored (80;¢ added) accumulation exponent is moved to PR for processing.

The POLY add/subtract takes place. The fraction result is moved to NR where it is normalized and
rounded. The result exponent (formerly the accumulation exponent), is adjusted based on the fraction
normalization and rounding. The result is checked for overflow and underflow. As stated at the begin-
ning of this overflow section, an overflow after the normalization and rounding operation will cause
the FPA to assert the overflow V bit and abort.

Underflow

The FPA can handle numbers as small as .29 X 10-38. A number smaller than this causes an under-
flow. The FPA checks for underflow by examining the exponent register PR. PR9 will be high or
PR <8:0> will be low in an underflow.

Underflow is not as serious a fault as overflow. An underflow means the result just checked is so close
to zero that the FPA cannot accurately represent it. When encountered, the FPA sets the ACC
ZDATA bit and special flows attempt to recover the number. If the underflow result cannot be recov-
ered, the number is set to zero and FPA operation continues. After the POLY operation is completed,
the CPU will trap on underflow if bit 6 (floating underflow) of the PSL is set.

The FPA checks for accumulation underflow twice per POLY cycle, once as the unnormalized multi-
plication result is readied for the following addition and once after the result of the addition has been
normalized and rounded. If an underflow is detected in the normalized addition result, no result
recovery is possible. The FPA merely sets the accumulation to zero, informs the CPU of the under-
flow, and continues the operation. -

If an underflow is detected after the multiplication, special flows are accessed to save the result. In an
underflow the exponent of both the accumulation and the coefficient must be scaled up so the expo-
nent difference can be taken with an 8-bit exponent processor. The scale factor is 80y6.

The coefficient is first checked for zero or reserved operands. A reserved operand causes an abort. A

zero coefficient will not change the underflow so the FPA will try to recover by normalizing and
rounding. If this fails, the accumulation will be cleared (set to zero) and the FPA operation continues.

2-24

If the new coefficient is not zero or reserved, the operation continues. The FPA adds 80,¢ to both
exponents to scale them up. If the coefficient exponent overflows when it is scaled up, the coefficient is
so much larger than the accumulation that the accumulation will not effect the coefficient. The FPA
will disregard the accumulation and make the new coefficient the accumulation by subtracting the 80,6
just added to the coefficient exponent and moving the coefficient to the registers formerly holding the
underflow accumulation.

If the new coefTicient does not overflow, it shows that the coefficient can effect the accumulation and
the exponent difference taker determines the exponent difference. Since the coefficient is the larger
number, the coefficient fraction is moved through the ADER MUX to the FALU and the coefficient
exponent is stored in PR after the bias previously added is removed. The accumulation fraction is
shifted based on the exponent difference until the radix points align, and then added/subtracted. The
result is rounded and normalized in the normalize logic. The coefficient exponent (stored in PR) is
adjusted based on the fraction normalization and rounding, and becomes the accumulation exponent.
The rounded result is checked for underflow. If underflow is detected, the ACCZ bit is set and a zero is
stored. The FPA informs the CPU that an underflow has occurred by asserting both FP SYNC and
ERR SYNC. In any case, the polynomial operation continues.

23 BLOCK DIAGRAM AND UNIT DESCRIPTION

This section provides a functional description of each area of the FPA with relation to the control store
and instruction execution. Discussions of logic unit operations are included for areas that require
further clarification.

The FPA can be divided into three areas. The first area contains two interface sections: the CPU-FPA
interface and the FPA internal buses (which interface between the various sections of the data manipu-
lation area). The second area, data manipulation, contains five sections: Fraction Adder/Subtractor,
Fraction Normalizer/Divider, Fraction Multiplier, Exponent Processor, and Sign Processor. Each
section in this area operates as an independent unit, capable of processing data in parallel with oper-
ations being performed in other sections. The third area contains only the Control Store and Logic
which controls both interfacing and data manipulation. Refer to Figure 2-9, the FPA Block Diagram.

2-25

FAD me208 sicr 27

FCT me289 s.or 28
| FRACTION ADDER

FPA CONTROL. SIGN PROCESSOR,
EXPONENT PROCESSOR

EXPONENT

FMH/FML mM8286/M8287 SLOT 26/SLOT 26
FRACTION MULTIPLIER

DOUBLE
PRECISION

FNM wm8285 SLOT 24
FRACTION NORMALIZER

h 3

QUOTIENT

18 SIGN PROCESSOR _
zao:] mxﬂﬂ ADER
EALU o siGn | Mux
PROCESSOR
OPCODE <+ L0GIC
_ b,
“D 4 8 p 8 1 1 — : + 57
s8] AR aRx 8R _
) _ 1.0 1 0
BIE _
e L | _
ﬂm\, _8.‘&. A =l FALU
EALY SIGN | gus mux _
out our FPB - — —
e % |
| X I
— | [eusFPa<z300>
+2 _ A B
1 1 XFER
FPA CONTROL N I BusFPB <33:00>
p mwﬁ.ﬁo_. _ _ IMX wADRS U.O..t)_.oz _ - 22
SPECIFIERS | coAmeoL| | nom |feaLocic) »BRK | [RLA ALB
IRD STORE | of pATA ll.v_ £GS GRA GR8
512x48 BUF. _ 0 — -~
DRIVER
1_ _ _ XMTR ERS
NEXT ADDRESS - RCVR _ »
CS BUS <95:00> =1 | SYSTEM D BUS <31:00> o _ BUS DFMUX <31:00> (T.S.)
TK-0828

Figure 2-9 FPA Block Diagram

2-26

The CPU transmits both data and instructions to the FPA. The instructicns are decoded in the Con-
trol Store and Logic and access an FPA control store word. The FPA control store word controls the
transfer of the data on the FPA internal buses and the operation of the various data manipulation
sections. The various data manipulation sections perform the required operations. The resulting an-
swer is formatted and sent to the CPU-FPA interface. A signal from the FPA informs the CPU that
the answer is available at the interface.

Each of the eight sections mentioned in this introduction are discussed individually in the following
paragraphs. Each discussion includes an explanation of pertinent control store fields and a description
of the hardware operation as controlled by the control store, CPU instruction, data characteristics,
and both internal and external flags.

23.1 CPU-FPA Interface

The CPU and FPA have numerous interconnections. They exchange data, instruction information,
device control signals, and status information over buses and individual signal lines. There are three
types of information transferred via the CPU-FPA interface.

1. CPU-FPA control and status
2. Data
3. Trap and diagnostic information.

They will be discussed in this order in the following paragraphs. Refer to Figure 2-10 for a summary of
the CPU-FPA interface.

1D BUS REGISTER #16 MAINTENANCE
REGISTER #17 STATUS

y

CS BUS

v

OP CODE INFORMATION

MACHINE CLOCKS

FPSYNC

CcPU
ACC ERROR FPA

GENERAL REGISTER
ADDRESS LINES

DFMX BUS

C.V.Z, AND N BITS

EXECUTION POINT
COUNTER

TK-0820

Figure 2-10 CPU-FPA Interface

2-27

23.1.1 CPU-FPA Status and Control Interface - The FPA and CPU work interactively. This means
they are constantly exchanging status and control information, and that operations in one unit can and
do effect operations in the other unit. The status register (ID register 17) provides some CPU control
of the FPA. Bit 15 of the status register is used by the CPU to enable the FPA. The CPU can disable all
FPA outputs and effectively remove the FPA from the computing system by clearing bit 15. Refer to

Figure 2-11 and Table 2-7 for a complete description of this register.

STATUS REGISTER
ID REGISTER #17

313029 28 27 26 26 16 1514 4 3 0

0e»0| |0e— >0 0e— +»0/00 0 1

l | l
ACC MINUS ACC ACC
ERROR ZERO EN - TYPE
ERROR

TK-0814

Figure 2-11 Status Register

2-28

Table 2-7 The Status Register

Bit Bit
No. Name Access Function
31 Accelerator Error Write by FPA Set when FPA detects an
Also called ACC Read by CPU exception condition.
Also called Error
Sync
30-28 Not Used-Set to
zero
27 Minus Zero Error Write by FPA Set when FPA encounters a

Read by CPU reserved operand or
generates an overflow.
Setting this bit sets
Accelerator Error.

26-16 Not Used-Set to
zero
15 Accelerator Enable Write by CPU When clear all FPA outputs
Read by FPA are disabled. This removes
the FPA from the computing
system. Must be set for
normal FPA outputs. .
144 Not Used-Set to
zero
3-0 Accelerator Type Read by CPU A hardwired code identifies
Hardwired in the type of accelerator
FPA installed in the backplane
slots. The FPA code is
0001.

2-29

The FPA also receives control and statusinformation from the CS bus. The functions of these lines are
summarized in Table 2-8.

Table 2-8 CS Lines

CS BUS

n 70 Name Function

0 0 NOP

1 0 : ACC TRAP Initiates an Accelerator trap. Refer to Paragraph
23.1.3

0 1 CPSYNC Indicates CPU has received FPA data or CPU is
presenting valid data to FPA.

1 1 Redefine uSI Decodes CS lines 57, 56, and 55 for more informa-
tion.

CS BUS

57 56 55

1 1 0 Poly End Indicates last term of polynomial has been trans-
mitted from CPU.

1 1 1 FP TRAP Initiates an FPA trap. Refer to Paragraph 2.3.1.3.

Op code information (operation and precision) is transmitted to the FPA from the instruction buffer
via IRC OPC lines 7 to 0. These lines, from byte 0 of the instruction buffer, are used by the A-Fork/B-
Fork logic and BEN logic for FPA control store next address generation (refer to Figure 2-34). A few
other lines from the instruction buffer and decode logic provide specifier source information to the
FPA. The possible sources of data are as follows:

1. Memory
2. Register
3. Short literal
4. Long literal.

The CPU-FPA interface includes clock signals from the CPU to the FPA. The units operate synchrd-
nously on a 200 ns cycle. The TO of both units coinecide.

The FPA transmits two status signals to the CPU: FP SYNC and ACC ERROR. These signals are
input to the CPU for branch control. FP SYNC is normally asserted when an FPA result is available
to the CPU. ACC ERROR is set during an FPA error condition.

23.1.2 CPU-FPA Data Interface - The FPA receives operand data from the CPU and, after per-
forming the required operation, returns the answer to the CPU. The data is transmitted to the FPA via
the ID busand is returned to the CPU via the DF mux bus. As mentioned previously the FPA does not
do any memory accessing. The CPU must calculate the data memory address, access the address, and
place the data on the ID bus to the FPA.

2-30

The FPA is optimized to use CPU scratchpad register data. It stores two copies of the 16 CPU scratch-
pad registers. To ensure that the FPA copies are exact copies, the FPA copies are addressed and
written by the same lines that address and write the CPU general registers. The address lines are from
the DAP board and the data is transmitted via the DF mux bus. To ensure that a changing register is
never read, the CPU updates the general register and the FPA copies between T100 and T200 (T0) and
the FPA reads the copies between TO and T100. Note that the FPA general register copies are write-
only memory to the CPU and read-only memory to the FPA. This means that results of FPA oper-
ations that are destined for the general register set are transmitted back to the CPU via the DF mux
bus and then written into the general register set under CPU control rather than written directly into
the general register copies by the FPA.

The data stored in the FPA general register copies is read by the FPA using address lines from the
instruction buffer operand source logic. This scheme enables the FPA to access register data and begin
the operation as soon as the general register address/addresses is/are in the instruction buffer.

All operands other than register operands are transmitted to the FPA via the ID bus. This includes
memory data, and long and short literals. When memory data is specified in an instruction, the CPU
fetches it and places it in the CPU D-register. The contents of the D-register is placed on the ID bus
and, in the FPA, is transferred from the ID bus directly onto the FP buses. Since the D-register and ID
bus are only 32 bits wide each, it takes two transfers to transmit a double precision number. Single
precision (float) literal data, part of the instruction stream is transferred from the instruction buffer
onto the ID bus. In the FPA, single precision literal data is latched into the literal register (LR) and
then placed on the FP bus. The most significant part of double precision literal data is handled sim-
iliarly, i.e., IB - ID bus - LR — FP buses. The least significant part of a double precision literal is
transferred from the instruction buffer over the ID bus to the CPU D-register, then back on the ID bus
and onto the FP buses. Note that no ID bus addresses are required for data transfers over the ID bus.
The FPA simply accepts the current ID bus data. -

When the FPA operation result is ready to be transmitted to the CPU, FP SYNC is asserted and the
single precision result or the most significant part of a double precision result is on FP bus A. The CPU
responds to FP SYNC by enabling the FPA DF mux bus drivers which place the FP bus A contents on
the DF multiplexer bus. The FPA result is transferred to the CPU D-register via the DF mux bus.
When the CPU has the data, it asserts CP SYNC. This ends a single precision (float) transfer or
enables the second part of a double precision transfer. For a double precision transfer, the second part
is placed on FP bus A and remains there until the CPU responds to the newly asserted FP SYNC by
enabling the DF mux bus drivers, accepting the data, and asserting CP SYNC to indicate it has the
data.

While the FPA is transmitting the result back to the CPU, valid condition codes are also being trans-
mitted to CPU condition code latches. These latches are read during the next machine cycle. The N, V,
and Z bits are set based on the status of the result. The C-bit is always cleared by the FPA.

23.13 Trap and Diagnostic Information - The FPA contains several features to facilitate error diag-
nosis and troubleshooting. These include programmable traps, and microdiagnostics, special mainte-
nance features, and the visibility bus.

The CPU can initiate 2 types of traps: ACC TRAP and FP TRAP. CS 71 high and CS 70 low initiate
an ACC TRAP. This causes the FPA to access one of the FPA microcode addresses 0 through 7 as
selected by CS lines 57, 56, and 55. Currently only 2 of these traps are used: Accelerator Power-Up
Trap (address 0) and Accelerator Abort Trap (address 2). The FP TRAP (used for FP micro-
diagnostics), is selected by CS lines 71, 70, 57, 56, and 55 high. When FP TRAP is asserted, the
FPAmicrocode address is selected by bits 23 through 16 of the maintenance register. The trap address

(0 through 255 in the microcode) is selected by the data previously loaded into the maintenance regis-
ter.

2-31

The maintenance register is a CPU-FPA readable/writeable register located on the ID bus. The CPU
accesses this register as ID bus register 16. The register is designed to facilitate maintenance. As dis-
cussed previously it contains the FP trap diagnostic address. Using the trap address the CPU can
exercise various sections of FPA logic. Bit 14 of this register provides a synch pulse that can be used for
troubleshooting with an oscilloscope. This bit will go high each time the FPA accesses the microcode
address stored in bits 8 through 0. Refer to Figure 2-12 and Table 2-9 for summary of this address.

MAINTENANCE REGISTER
ID REGISTER #16

3130 24 23 16151413 9 8 0

MICRO /CURRENT
l¢——ZERQ ——»ie—TRAP ADDRESS —» C—ZERO“.‘“BREAK ADDRESS-.

WRITE MICRO MATCH
P
Zngaess WRITE MICRO BREAK

TK-0515
Figure 2-12 Maintenance Register

2-32

Table 2-9 The Maintenance Register

Bit
No.

Name

Bit
Access

Function

31

30-24

23-16

15

14

13-9

8-0

Write Trap Address

Not Used-Set to
zero

Trap Address

Write Microbreak

Micromatch

Not Used-Set to
Zero

Micro-
break/Current Ad-
dress

Write by CPU Read by
FPA

Write/Read by CPU
Read by FPA

Write by CPU Read by
FPA

Write by FPA Read by
CPU

CPU writes microbreak.
FPA reads microbreak.
FPA writes current FPA
microcode address. CPU
reads current FPA mi-
crocode address.

When set (by CPU) enables
CPU to write trap address
(bits <23:16>).

Selects FPA microcode ad-
dress for FPA micro-
diagnostics.

When set (by CPU) enables
CPU to write microbreak (bits
<8:0>).

Set by FPA when currently ac-
cessed by FPA microcode ad-
dress equals address stored in
microbreak (bits<8:0>).

These bits serve two functions:

1. The microbreak selects
the FPA microcode ad-
dress to be monitored for
micromatch (bit 14).

2. The current address pro-
vides CPU monitoring of
FPA microcode activity.

2-33

Forty-three FPA signals are accessed by the Visibility Bus (V bus). The V bus is a diagnostic tool,
designed to allow polling of stable internal CPU (in this case, FPA) signals. The console can issue
commands which load the V bus latches with the signals monitored and then shift the loaded latches
one bit at a time to a control word located in the console interface. At the console, the data shifted in
will be examined by diagnostic software. There are 8 data input channels on the V bus, channel 6 is
devoted to the FPA. Refer to Table 2-10 for listing of the FPA signals that are available to the V bus.

Table 2-10 Signals Monitored by Visibility Bus

FCTESHF COUNT SH FCTD EALUOL

'FCTESHF COUNT4H FCTECOMPLL
FCTESHF COUNT3H FADR SPC (0) H
FCTESHF COUNT 2H FNMSEALUCINL
FCTE SHF COUNT | H FCTC SELNORM H
FCTESHF COUNTOH FCTPRA ADRS3 L
FCTN FALUCARRY INH FCTP RA ADRS2 H
FCTN FAMX SELOH FCTPRAADRS | L
FCTN FAMXENOL FCTPRA ADRSO L
FCTAAGTBIJ FCTPRBADRS 3L
FCTNSHF MUXEN|IL FCTPRBADRS2L
FCTN SHF MUX ENOL FCTPRBADRSS 1 L
FCTN FALUFUNCSEL2H FCTP RBADRSOL
FCTN FALU FUNCSEL | H DAPL ACCCONTEXTOH
FCTN FALU FUNCSELOH DAPL ACCCONTEXT | H
FCTN FAMXSEL 1 H FCTCCLRRRL
FCTN LOAD ARIH FCTH CPSYNCH
FCTN LOAD AROH FNME BUS - EXPL
FCTN LOAD ARX H FCTIACCNDATA H
FCTN LOAD BRI H FCTC ACC ZDATA H
FCTN LOAD BROH FCTC ACCVDATA H
FADS BUS - FAD L

23.2 FPA Internal Buses

As discussed in Paragraph 2.3, the FPA internal buses transmit data between the various data manipu-
lation units. These units are arranged along two parallel 34-bit tristate buses called FP bus A and FP
bus B. These buses transmit data from the CPU-FPA interface to the various data manipulation units,
transfer intermediate results between units, and return the result to the FPA-CPU interface. The buses
can transfer a complete 64-bit double-precision word or two 32-bit float words simultaneously.

The BSC field of the microword controls a majority of the bus activity. The available sources include
all FPA data manipulation units and the CPU-FPA interface. Refer to Table 2-11 for a summary of
BSC bus control operations. Note that the BSC field controls only the data source. The destination is
enabled via other control fields and accepts the data available onthe FP buses.

2-34

Table 2-11 BSC Control Store Field
Microcode
Hex BSC Field Mnemonic Function
3 2 1 0
uCS uCS uCS uCS
15 14 13 12
0 0 0 0 0
] 0 0 0 1
2 0. 0] 0
3 0 0] | INTH Bus A ~SALU
4 0 1 0 0 NL Bus B* «~ Bus A*~ NSHFLO
5 0 1 0 1 NH Bus B* «~ Bus A* —« NSHF HI
EXP SGN (Packed result)
6 0]] 0 PQ Buses ~ SALU and LSH if MUL
TEMP and LSH if DIV
(LSH is accessed
differently if MUL or D1V)
7 0] 1 1 INTL Bus A « LSH
8 1 0 0 0 ID Bus B* «~ Bus A* ~ ID Bus
9 1 0 0 1 LR Bus B* « Bus A* LR
A 1 0 | 0 ID.RB Bus A « ID bus
Bus B~ RB
B 1 0 1 1 R Bus A « RA
Bus B~ RB
C 1 | 0 0 FAL.X Bus A~ FALUHI/LO
Bus B~ FALU LO/HI OR
D 1 1 0 1 FAL.LH Bus A-FALULO
Bus B~ FALU HI
E 1 1 1 0 FAL.HL Bus A ~-FALULO
Bus B~ FALU HI
F 1 | 1 1

*The same data is placed on both buses.

The buses handle both floating-point and integer numbers. The buses can handle intermediate, un-
packed, and unnormalized data as well as final packed and normalized results. Since the buses must
handle intermediate data each bus contains two extra lines to handle the overflow and hidden bits.
Refer to Figure 2-13 for summary of data formats used on FP buses.

2-35

SINGLE PRECISION (FLOAT) FLOATING POINT FORMAT

OVERFLOW F P BUS LINES (EITHER A OR B)
_ — HIDDEN
32 30 28 26 24 22 20 18 16 4 12 10 8 6 4 2 0
F 7Yy vVyyvy vy virgTgTorTe L AL A L A § LI I I B |
FRACTION EXPONENT FRACTION
LS8
SIGN
33326 5 4 3 2 10 31302928272625242322212019181716
L L A R rryyrT T ryvTrrvrirTTrTITrTY
MS8 FRACTION BIT SIGNIFICANCE LS8
DOUBLE PRECISION FLOATING POINT FORMAT
AR FORMAT FPBUSB OVERFLOW — [~ HIDDEN FPBUSA
3323 18 15 0333231 161514 76 0
L]
FRACTION FRACTION _mx_.ozmzq FRACTION
| - I
NOT
USED

—V ")
332 031 18 16 031 18
LS
]
mMs8 FRACTION BIT SIGNIFICANCE Ls8

Figure 2-13 FP Bus Formats

2-36

BR FORMAT
OVERFLOW HIDDEN
FP BUS A : ._ _.. FPOUS 8
333231 16 16 033321 16 1614 76 0
FRACTION FRACTION | |EXPONENT] FRACTION
— \ A\ J —
NOT SIGN

FRACTION BIT SIGNIFICANCE s

LONG WORD INTEGER (MULL) FORMAT

FPBUS (EITHERAORB)
32 30 28 26 24 22 20 18 14 12 10 8 6 4 2
Mr"vyrrrrrrryryrgrrrT I rrrrr I rITy

' T
— MSB LS8
NOT
USED
RESULT FPBUSA
333231 03332 0
! 2ND CYCLE MOST SIGNIFICANT 1ST CYCLE LEAST SIGNIFICANT HALF
HALF FROM SALU FROM LSH REGISTER
1
| NOT
NOT USED
USED

2.3.3 Fraction Adder (FAD)
The fraction adder aligns and adds or subtracts the fraction portions of two FPNs. The module con-
tains 2 registers that receive data from the FP buses, 2 multiplexers that manipulate the register data, a
shifter to align register contents before an add or subtract, an ALU to add or subtract the data, and
bus drivers to place the result on the FP buses (Figure 2-14). Certain FAD signals are interfaced to the
V-bus for maintenance and diagnostic purposes. Refer to Paragraph 2.3.1 for a discussion of the V-

bus.

63:00

FALU
e
FarLiuS N rormar SELECT)
SEL <2:0 BSC<3:0>
ASHFR
RIGHT)
SIGN EXTENSION
63:00 63:00 FALU
MUX
(OUTPUT
A UTPUT ENABLE) ENABLE)
© SHF MUX EN (OUTPUT ENABLE) N4-BUS<—+AD
FAMX EN
SHFMX FAMX
(SMALLER (LARGER
(INPUT SELECT)
NUMBER) FAMX SEL NUMBER)
(INPUT SELECT)
SHF MUX SEL
BITS 06:00
63.00
T} BR 106:00
CLK AR i CLK BR——= 63:07I(N0T
— 1 P X 1 ILOADED)
\/
BUS FP A <33:00>
\/

BUS FP B <33:00>

Figure 2-14 Fraction Adder Block Diagram

2-37

TK-0268

The fraction parts of the FPNss are loaded into the AR and BR registers. The data entry is controlled
by the FADC (Fraction Processor Controls) control store field as shown in Table 2-12. Both registers
are loaded with the MSB in bit 63. The execution of the POLY instruction causes an additional 7 LSBs
to be transmitted via FP bus A lines <14:08> (where the FPE is normally) and placedin AR <6:0> by
loading ARX.

Table 2-12 Fraction Data Entry

FADC Fields Operation
Hex uCS uCS uCS uCS
11 10 9 8 ARl ARO ARX BRI BRO

0 0 0 0 0 1 1 1 0 0
1 0 0 0 1 0 0 0 1 0
2 0 0 1 0 1 0 0 0 0
3 0 0 1 1 1 0 0 1 0
4 0 1 0 0 0 0 0 1 1
5 0 1 0 1 0 0 0 0 1
6 0 1 1 0 0 1 0 0 0
7 0 1 1 1 0 1 0 0 1
8 1 0 0 0 1 1 1 1 1

Select lines controlled by both microcode and hardware normally load the FPF associated with the
smaller exponent into the SHFMX and the other fractional part into FAMX.

2-38

The contents of SHFMX is then right-shifted up to 63 bits to ensure that the radix points align. The
magnitude of the exponent difference determines the amount of the shift. The shifted number is pad-
ded on the left with its sign. In most cases, the fraction is positive (Figure 2-15),

SHF COUNT
(MAGNITUDE OF Lslal a2l ild ALIGNED DATA TO
SHIFT) FALU INPUT B

64

[suem

7 SHIFTS0.1.2.0R 3

_—

e

/ SHFC

SHIFTS 0.4,8.0R 12

i

B

L

muy

64

_/ SHFB

] SHIFTS 0. 16.32, OR 48
L

=

SHFR i i
64
SIGN |
EXTENSION UNALIGNED DATA
1'S FOR NEG FROM SHFMX
0'S FOR POS

TK-0278

Figure 2-15 SHFR Operation

2-39

When the two FPFs are aligned, the FALU operates on the two fractions. The FALU operation is
determined by the op code and the sign of the two numbers. Refer to Table 2-13.

Table 2-13 FALU Operation

Instruction Sign of Numbers FALU Operation
Add Like (Both + or -) Add
Add Unlike Subtract
Subtract Like Subtract
- Subtract Unlike Add
FALU Operations Selected
$; S So Function Comment
0 0 0 Clear
0 0 1 B-A B = 0. Used for complementing number when
Shift/Subtract D.P. would lose bits off end. Used
when SUBD and exponent difference is greater
than 7 or POLYD.
0 1 0 A-B Normal Subtract
0 1 1 A+B Normal Add
1 0 0 Not Used .
1 0 | AorB Used to get A out or B out. Other side is zero.
l 1 0 Not Used
L l l Not Used

2440

The output of the FALU is loaded onto the FP buses under control of hardware and the BSC micro-
control field. Refer to Table 2-14. The result is in unnormalized form. When a double precision ALU
subtraction is done (either as the result of an ADDD, SUBD, or a POLY instruction), the exponent
difference is examined. If it is less than or equal to 7, operation continues as usual. However, if the
difference is 8 or more, error will be introduced into the LSB if a shift, then subtract is done. To
prevent this error, special control hardware is enabled. It disables the output of SHFMX, forcing zeros
into the shifter. The smaller operand is routed through FAMX to the A side of the ALU. A B-A (B =
all zeros) is done, complementing the operand. The larger operand remains stored in its original regis-
ter. The result of the ALU operation is output to the FP buses and reloaded into the AR or BR
depending upon where it was before complementing. During the next machine state the complemented
operand is aligned, sign-extended and added to the other operand. The result is loaded onto the FP
buses and is normalized.

Table 2-14 FALU MUX Control

BSC Field FALU
3 2 1 0 Function
uCS uCS uCS uCS
HEX 11 10 9 8
0-B Not used for FALU MUX Control
C 1 1 0 0 Hardware determined.
NOTE

During double precision add/subtract and poly;
If EXP A<EXP B, AR format is used. -
If EXP B<EXP A, BR format is used.

D 1 1 0 1 FPAFALUL (BR Format)
FPFALUH

E 1 1 1 0 FP A FALU H (AR Format)
FPBFALUL

234 Fraction Normalize/Divide (FNM)

The normalize /divide logic located on FNM performs the two functions indicated by its title. Refer to
Figure 2-16. The hardware can either normalize the fractional result of an add, subtract, multiply or
divide, generate the quotient given a divisor and dividend. The quotient is generated bit by bit and
stored elsewhere. When the quotient is complete, it is returned to the same hardware to be normalized
as any other fraction result. Both functions receive data based on microcontrol words, but once
started, operate relatively free of microcode control until they are ready to transmit the answer.

241

QUOTIENT
BIT STREAM NALU

‘\ 60
60 i
1%l
12

RND

BIT

GEN

RR
NR

60 SHIFT
DATA

7
} ——SHF VAL
30 34
)) e
35

NSHF
32

<L BUS FPB 33:00
< BUS FPA 33:00

Figure 2-16 Fraction Normalizer/Divide Block Diagram

U

TK-0274

2-42

23.4.1 Normalize Operation - Before a normalize operation can take place, the Remainder Register
must be cleared. A 3 in the 3-bit MSC field of the microstore word clears it during IRD. Since the
divide operations use the RR, itis also cleared during the end of the divide flows before the normaliza-
tion of the quotient.

The add, subtract, multiply, and divide operations produce results with varying characteristics. The
add/subtract operation has the widest variability in result. Operand size (both fraction and exponent),
operand sign, and desired operation, all contribute to this variation. The subtraction of two very
nearly equal operands can result in a very small number, i.e., a number that must be shifted left many
times before it is in final normalized form. Addition of two operands with equal exponents will pro-
duce a result between 1 and 2, necessitating a right-shift. Since the add/subtract operations do produce
a wide variability of results, special firmware in the control store is accessed and the normalizations
proceed under firmware and hardware control.

A divide operation produces results between 1/2 and 2. A multiply produces results between 1/4 and 1.
Both divide and multiply normalizations proceed under hardware-only control.

All normalizations begin with NRC equal to 0, parallel-loading the result to be normalized into the
NR. If the operation was an A/S, BEN § selects special firmware based on exponent differences. If the
special firmware is enabled, an NRC equal to 2 enables the NR to shift left in 4-bit steps, 3 steps per
machine cycle.

Once the NR shift left is enabled, hardware looks at the top 12 bits of the NR for the first significant
bit as the leading bits are left shifted away. In a positive number, leading zeros are disregarded and the
first significant bit is a 1. In negative numbers (2’s complement notation), leading 1s are disregarded
and the first significant bit is a O (refer to Figure 2-17). MSN NE SIGN becomes true as the data is
parallel-loaded into NR. If the first significant bit is in NR <63:60>. This stops any left shifts. STOP
SHF goes high whenever NR <59:56> contain the first significant bit and will cause the NR to stop
shifting after one more 4-bit shift (i.e., when first significant bit is in NR <63:60>). If NR <63;52>
does not contain the first significant bit, SWR will remain low, shifting all 12 bits out and enabling a
new microstore control word via BEN 2. It continues monitoring for the first significant bit. If the NR
is left-shifted 60 bits (counted by the control store), and the first significant bit is not found, firmware
returns a result of zero by forcing the output of the NMX to zero via FORCE ZERO.

’ 'y » SWR
NR <63:52> . +MSN NE SIGN
* STOP SHF

RES NEG
IF NUMBER IS NEGATIVE DISREGARD LEADING 1S,
IF POSITIVE DISREGARD LEADING 0S. TK-0272

Figure 2-17 Normalize Shift Enable Control Hardware

243

When the first significant bit is in NR <63:60>, the number can be rounded and normalized by the
remaining FNM logic.

The round byte contents, NALU operation, and final normalization shift is controlled by the round bit
generator. The round bit generator controls these functions based on NR 63, NR 62, NR 61 and RES
NEG. The round byte is combined with NR lines 39 through 36 (float or single precision) or lines 7
through 4 (double precision). This is selected via the FLOAT line. Since the final normalization shift
takes place after the round byte is added and the first significant bit can be in NR 63, NR 62, NR 61, or
NR 60 (it must be in one of these four positions), the position of the round bit (1) in the round byte
varies (refer to Table 2-15). As summarized in the table, decode logic divides the 16 possible input cases

number, disregard of leading Os (Ls), and FSB will be a 1 (H). The contents of the rounding byte is
based on the location of the FSB. The rounding byte is designed to place a one 24 bits (56 bits for
double precision) behind the FSB.

Table 2-15 Round Byte and Normalize Control

1. The logic decodes the four signals and locates the FSB.

RES NR63 NR62 NRé61 First Significant
NEGL* Bit (FSB)
L L L L 63

L L L H 63

L L H L 63

L L H H 63

L H L L 62

L H L H 62

L H H L 61

L H H H 60

H L L L 60

H L L H 61

H L H L 62

H L H H 62

H H L L 63

H H L H 63

H H H L 63

H H H H 63

*RES NEG L high indicates a positive number. This means a | (H) is the FSB. RES NEG L low indicates a
negative number. This means a 0 (L) is the FSB. RES NEG L asserted also causes a NALU subtract thereby
rounding and complementing the number in a single step.

244

Table 2-15 Round Byte and Normalize Control (Cont)

2. Based on location of FSB, an appropriate rounding byte is generated.

Rounding Byte Selected
FSB Bit 3 Bit2 Bit 1 Bit0

63 1 0 0 0
62 0 1 0 0
61 0 0 1 0
60 0 0 0 1

3. Also based on location of FSB, the final shift required to normalize and ready the result for the
CPU is selected.

FSB Shift Selected SHF VAL 1 | SHF VAL 0
63 Right 1 place L L
62 No shift L H
61 Left 1 place H L
60 Left 2 places H H

If the FSB is not in NR <63:60>, the NR is left-shifted and a binary counter counts each 4-bit shift.
This count, RES NEG line, and NR bits 63, 62, and 61 (magnitude of final shift) determine the
NORM ROM location to be addressed. The content of this location is added to the exponent of the
result in the FALU and corrects it for all shifts that take place in the FNM. If however, the number to
be rounded is all Is, the addition of the rounding byte will ripple through all bits and cause a fraction
overflow. This is sensed by comparing the round byte location (indicating where the logic decoded the
current MSB of the number to be rounded) and location of the MSB of the rounded result. If this
comparison asserts NORM ERR and thus EALU CIN (indicating there was a ripple and subsequent
overflow), a one will be added to the EALU (the exponent adder on FCT) to correct the exponent for
the overflow. NR <63:04> goes to the NALU B side and round byte (4-bit) goes to the A side.
Normally the NR is added to the rounding byte. However, if RES NEG L is asserted, indicating a
negative (2's complement) number, the content of the NR is subtracted from the rounding byte. This
operation rounds and complements (return to positive notation) in one step.

The 60-bit result <63:04> of the NALU operation (rounded and ready to be normalized) is trans-
mitted to the NMX. The high part (and only part, if float or single precision) is transmitted through to
the NSHF for final normalization shift. The NSHF shift control bits select a 0 to 3-bit shift for final
normalization.

Final normalization moves the MSB to the equivalent of the NR 62 position. When the data is placed
on the FP buses, NR 62 (always a one since the fraction is now normalized) is the hidden bit and is
placed on the FP bus A bit 32. When the data is transferred to the CPU, the hidden bit is not trans-
ferred and the data in NR 61 (bus A bit 6) is the MSB to be transferred.

2.342 Divide Operation — This logic also performs the fraction part of the divide operation for the
FPA. Once the dividend and divisor are loaded into the FNM logic and the quotient storage on the
multiplier boards is enabled for either a float (single) or double precision result, the divide operation
runs under hardware control until the answer has been computed to the required precision. Once the
answer has been computed, microcontrol takes over and transmits the unnormalized quotient back to
the FNM logic where it is normalized and rounded like any other fraction.

245

The hardware uses the restoring, repeated subtraction technique to divide. The dividend is initially
loaded into the RR and the divisor is stored in the NR. The divisor (contents of NR) is subtracted
from the dividend (contents of RR). If the result is negative, a 0 is left-shifted into the answer
(quotient) register and the contents of the RR is left-shifted by one. If the result is positive or 0, a 1 is
left-shifted into the answer (quotient) register; and the result is loaded into the remainder register left
shifted by one. The divisor (contents of NR) is continually subtracted from the contents of the RR
until 26 bits (58 bits for double precision) of quotient are generated. The quotient is then rounded and

normalized.

The division operands are loaded under microstore control. The first microstore state loads the divi-
dend into the NR. The second state causes the NALU to OR the contents of the NR with the contents
of the RR (currently clear) and load the result of the operation into the RR. In the same state the
divisor is loaded into the NR. At the end of the second state the division operands are in their correct
register and the divide sequencer hardware takes over.

The divide sequencer hardware generates the RR control signals (refer to Figures 2-18 and 2-19). The
RR CTL signals either load the NALU result into the RR or left-shift the RR contents based on the
result being negative or positive. The input of the RR is hardwired to automatically produce a left shift
when loading NALU result. This means that during the initial loading of the RR, the dividend is left-
shifted by 1. The 11 state in Table 2-16 right shifts the dividend by one to adjust for this before
beginning the divide operation.

246

INIT

DIV DONE H

}

CLK

NEXT

100 ns

RR
CTL1
RES
POSH
RR
CTLO

LOAD

RR

NEXT
B

REFER TO TABLE 2-16 DIVIDE SEQUENCE STATES

Figure 2-18 Divide Sequence Hardware

247

TK-0270

CPU AND FPA

CLOCK (200 ns) 0 o . 0 0 0

0 200 200 200 200 200

| R L1 T 1] L]
150 50 100150 50 100150 50 100 150 50 100 150 50 100 150

DIVIDE SEQUENCE RRe—NAL DIVIDE
CLOCK (100 ns)
OUTPUT OF FF'S | 00 I 00) I 01 I 11 l 10 l 10 I 10 10 10 10
UWORD = LDRR RR RIGHT SHIFT TK-0516
Figure 2-19 Divide Sequence Timing
Table 2-16 Divide Sequence States
State Next FNM RR CTL RR
A B Input A B Function 1 0 Function
0 0 LD RR 0 0 NOP L L NOP
0 0 LDRR 0 1 NOP L L
0 1 X 1 1 LDNALU | H H Parallel LD**
TORR
1 1 X 0 Shift R* L H Shift R*
1 0 DIV DONE1 0 Divide H Ht Parallel LD Result**
H Lt Shift L RR Contents
1 0 DIV DONHO0 0 Divide Refer to
PREVIOUS STATE

*Used only once at the beginning of each divide.
t Control bit 0 is controlled by RES POS H.
**Since the RR is hardwired for a left shift, a parallel load shifts the data one place left.

The answer is generated at the rate of one bit per 100 ns. If the result of the NALU subtract is positive
or zero, a 1 is left-shifted into the quotient register. A negative NALU result causes a 0 to be shifted
into the quotient register. The quotient register is made of two multiplier registers (TEMP and LSH).
In single (float) precision the quotient bit stream is shifted into TEMP (use only TEMP <29:4>.
Indouble precision the bit stream shifts into LSH <31:4> then to TEMP <29:00>. When a | is left-
shifted into TEMP 29 or 28 on the proper time phase in the multiplier logic, DIV DONE is asserted.
This stops the division and accesses a new microstore word that normalizes and rounds the quotient.

2.3.5 Fraction Multiplier (FML and FMH)

The fraction multiplier hardware in the FPA is located on two modules, FMH (Fraction Multiplier
High) and FML (Fraction Multiplier Low). They handle all fraction multiply functions, part of the
EMOD function, and also store the division quotient as it is generated. It accepts data from the FP

buses, performs the required unsigned multiplication, and gates the results back on the FP buses. Refer
to Figure 2-20.

248

6t

wesdeiq yo0ig NN uondR QZ-7 undig

4L N

dN3L HS1

" a10H
\ (M AHYYD

= e N a10H
@ @ e’ ABYYD
mn -
° o
@ > Z nvs .‘
._/ w v %€, T€,
h T
ze Le
HoLVY V&, 39VHOLS . .
WV nNvy nvd 23s .
Qoudd [' NOY v woul . . e g
o | L 2. | oo 3 3
" L
zE, 4 3 3
! sne
anvan|
e
; anve [
i — 1o
t wou
”

The FPA microcontrol controls the loading of both the multiplicand and multiplier into the appropri-
ate FM (fraction multiplier) registers. In both float and double the complete multiplier is stored on the
FMH. During the single precision (float) function, the FMH handles the upper 16 bits of the multi-
plicand, FML the lower 8 bits and the answer is completed after one pass through the logic. For
double precision (56 bits) the upper half of multiplicand fraction is handled in the FMH and the lower
half is handled in the FML. Two passes are required to compute the final answer.

The FM multiplies under its own control logic. After the operands are loaded, the MCTL field in the
FPA microcontrol is asserted; this starts the multiplication. A float multiply is stopped by the micro-
code two states (400 ns) after it starts. For a double multiply, control goes to a wait state and remains
at that location until MUL/DIV DONE is enabled, indicating that the FM logic has finished the
operation. At this point microstore control takes over and the answer is transmitted to the normalize
logic or, in the case of EMOD or MULL, transmitted to the CPU as an unnormalized number.

In order to obtain fast multiplication, a pipeline technique is used (Figure 2-21). The multiplier is
divided into 4-bit nibbles. The nibbles are then accessed consecutively by a counter-multiplexer com-
bination (least significant nibble first) and each nibble operates on up to 32 bits of multiplicand. The
MCAND bus and MPLIER nibbles are used to address the ROMs. The banks of ROMs provide a4 X
4 primitive with 2-way interleaving. The data is latched (ROM STORE) and applied to the inputs of 4-
bit adders (PALU). These adders combine the ROM data to form a partial product, storing the carry-
out of each 4-bit section, to be added in on the next cycle. The partial product is latched in PPROD
and passed to another row of adders (AALU) which accumulate the final product, again, saving the
carries. Thus, when the pipeline is operating, there are four processes cycling at the same time:

1. Select ROM addresses

2. Latch ROM data

3. Form partial product

4. Accumulate final product.

After the final product is calculated, the stored carriers from both stages are combined with the ac-
cumulated product using full carry look-ahead to produce the final answer in a single precision (float)
operation. In double precision, this result is stored and used during the generation of the final answer
during the second pass.

Each of the pipeline processes, with the exception of accessing ROM data (which occurs in each bank
of ROMs on 100 ns) occurs at 50 ns intervals.

The operation of the FM hardware is discussed in three sections. The first section explains the oper-
ation of the pipeline, concentrating on operand loading and manipulation of partial products, partial

results, and carries to produce the final answer. The second section concentrates on the control logic
~ and how the signals that control the pipeline are generated. The third, and shortest section, explains -
how the FM registers are used to accumulate the quotient during a divide operation.

2.3.5.1 The Pipeline

Loading the Operands

The multiplication process begins with the loading of the operands. As discussed in Paragraphs 2.1 and
2.3.2, data is transferred along the FPA buses in several formats. The multiplicand loading logic sorts
out these formats and loads the multiplicand register (MCO, MCI, and MC I) so that when the
MCAND bus does a parallel access of the MCAND, the MSB of the multiplicand is always in
MCAND bus bit 31, and each following bit is progressively less significant (Figures 2-22 and 2-23).

2-50

Is-¢

auippdid YL 17-7 034

6250 ¥4

$3SS3¥AAV WOH 31VH3INID

01 SI188IN GNVIIHILINK 1TV HLIM

Q3SN 34V NV (1SUI3 3188IN LNVIIFINDIS

1SV31) ATIVNAIAIGNI 0355320V

UV S31680IN ¥31HILINW 3HL SI1EBIN LI8

¥ OLN! G30IAIQ 34V GNVIITILINW ONV

YINJILINW HL08 ONISSIVAAY (ONVIW)
GNVINGLLININ GNY (dN) ¥3NUINK .« nsa

SAHHVYI SN1d WIIV "
SIVND3 11NS38 1YNI4 & @ ° o — —— — AVNIS 3LNIN0D
1INS34 VN3 WHO04 NOLLVY3IdO MYS
WOV W2V NI
WIOOV M3N WIOVMIN =QNVI Z + (0) WOIV 0 = WOV 0= WOV 0 = WOJV NOLLYINWNIIY
e o o & _QgNVIX+WIIV =ONVIA+ WOOV WJJV WHO04 dON dON dON 19N00ud
IVILNVd WEO
(GNVI M) (GNVI X) (GNVI A) (GNVI 2) .
e o ° ° 12Na0ud Tviluvd 19NQ0ud TviLdvd 12NA0uHd TVILHVd 12NQa0ud TviLHvd HOLV Q0Ydd
GNVIN X M WHO3 . ONVIW X X WHO3 GNVIW X A WHO4 ONVOW X Z WHOd dON dON 1 NI 12NQ0Hd
N ™~ N ™~ VIV WHOS
4NN00T GNVIW X A dNXOOTANVIW X M dNNO0TONVIW X X dNX00T ONVIN X A JNN001 ONVIW X 2 5 39VHOLS WOU NI
¢ o o o 1INS3Y JHOLS 1INS3B30Ls 40 1INSIY IWOLS 40 1NS3Y 3WOLS 30 1INS3Y 3W0LS dON |5 | va Wou KV
3188IN QYE 3768IN GYE 3188IN ONZ v 40 3188IN ONZ 94013188INISI 3180IN ASI m
e o o o (N) <0:E> dii (A) <p:L> dW (M) <OE> dN X) <¥:L> dN (A) <O:E> dN @<y L>dn s3ss3uaav
@.ss3vaav v SS3¥0QV @ ssayaav VNV SS3¥aaV @)NVESSIWAAY v IINVE SS3uaaVY « WOW 49313S
L 1 1 —
{— o o o o “ } 1 | ! —3n !
ON3L 0sZ1 00Z1 oStk 0011 08l

01 3NIN3did 3HL

BUS FP A

NV

BUS FP B

Qseesed

w
—

NN
eeccccl) Provoene

-
[}

MCO

[+]
—
o

N0 e

M

) P ressesca Oecooen

NN

NN

-
QeeceveyMWeoosocaUt Mecoseeld P eoscee

MC
8 31:24
2.F |)
MC
£ .8 23:16 MCAND
2. 7 BUS
MmC }
_8 15:8 TO
2.F |~ ROM
BANKS
A&B
MC
8 7:0
2 - o
8
1 7
ACCESS CODES
1 .2
” F — EMODF OR MULF _
I = MULL (INTEGER MULTIPLY)
.8
1 7"
| .8
8
! 7
8
| r g
1.F.| .8

7

°THIS 8 BIT REGISTER IS ALSO CALLED EMOD EXTENSION AND MCX

Figure 2-22 Loading and Accessing the Multiplicand

2-52

1 — FIRST HALF OF EMODD OR MULD
2 — SECOND HALF OF EMODD OR MULD

TK.07¢c

L9204

v dd sng

mFo-omFoN-o.anNoooNNmNoccpm °ooo.cﬂ¢ooo.och Qo.onOPFNFooomP

8ddsne
(s118 Z€) (s118 ¥2)
0dW v ldW g

91++6L0Z++ETYT>++LT BT +LEQ === P29 'TE

[4 £ 14 S 9 L 8 6 v 8 o) a 3 4
8 | LLet | GLOL| 6L0Z | €Cvz | L28Z | LECE | SE9E | 6EJOV | EVYVY | LvBY | 1GTS | 9995 | 6509 | €9
80:€9
SN HINd W
(vs)
431NNOD (as)
37848IN H3LNNOD 3188IN

0'€ dWN | woyol

WOHOL | v:L dN

~

0:LSN8 HINA W

Figure 2-23 Loading and Accessing The Multiplier

2-53

The multiplier up to 56 bits (14 nibbles) long, is loaded into MPI and MPO on FMH. MPI1 is 24 bits (6
nibbles) long and MPO is 32 bits (8 nibbles) long. Unlike the multiplicand., the multiplier is loaded in

format is possible because, as stated bf:fore, the multiplier is used consecutively, the various formats
are sorted out by the counter as the nibbles are used during the multiplication.

Selecting the Multiplicand

The operands, multiplicand and multiplier, are enabled onto their respective buses, MCAND BUS
and MPLIER BUS, under control of operand bus source logic. Refer to Figures 2-22 and 2-23 and
Table 2-17. All 32 lines of the MCAND bus are enabled every time. Duringa MULF and EMOD and
for the first pass of a MULD and EMODD, the MCAND bus accesses MCX. Both MULF and
MULD (first pass) use only the top 24 bits, as the lower 8 are discarded later in the pipeline.

The MPLIER BUS multiplexer begins by selecting the least significant byte of the multiplier. Inter-
leaving hardware later selects the high or low nibble of the bus. The mux then selects a new, progres-
sively more significant byte each 100 ns.

Selecting ROM Address - The Interleave Hardware

Both the MCAND and MPLIER buses are divided into 4-bit nibbles for ROM addressing. Each
MCAND nibble (8 nibbles) is combined with a MPLIER nibble to provide address bits for 16 4Xx4
look-up ROMs. Rather than compute }hc product of the two 4-bit nibbles, the fraction multiply

hardware uses look-up ROMs. The multiply results are stored in the ROMs, The data is stored within

Latch the ROM Data

The second part of the pipe selects the outputs from either of the ROM banks, using the ROM SEL
MUX, and latches the data (64 bits) in ROM STRG. It alternately selects data from the low and high
ROM banks on a 50 ns cycle.

While the ROM data selected is being latched, the first part of the pipe is selecting a new address for
the ROM bank just selected. The output of the other ROM bank will be selected during the next cycle
(50 ns in the future). The address lines of this ROM bank were changed 50 ns ago and the outputs are
settling.

Form Partial Product

The outputs of ROM STRG and any carrys from the previous PALU add are added to form the
partial product. The PALU is eight 4-bit adders. The outputs of the ROM STRG are wired to the
PALU adder inputs such that bits of equal significance are combined. The outputs of the PALU
without carrys are stored in the PPROD LATCH. The carrys are stored in CARRY-HOLD registers
to be added in on the next PALU add. The latching of the partial products in the PPROD LATCH
ends the thitd part of the pipeline.

As indicated previously each multiply cycle selects 4 new bits from the multiplier register and each 4
new bits are 4 positions more significant. This means that the input of the PALU add becomes 4 bits
more significant each multiply cycle. Because of the increase in significance the stored carry-out of
each PALU adder is input, on the next cycle, to the carry-in of the same PALU adder rather than the
carry-in of the next PALU adder.

2-54

P[qeu? Mo] a1e sauj] sng ANVOWe

0-L 8—I€ | 8-I¢ 0-L |8-IE P3j saulf sng ANVOW
1 0p ‘T 1e uelg 1 1 1 1 H ssed pug
v10p‘Z 18 uElg 1 g 1 H H ssed 15|
a0 1o AQONd
b Op ‘T 1® J1Els udy) ‘
‘v op ‘9 je uelg 1 1 H X X (INW ¥I93LND TINW
1
saqqquu g ||
op ‘Y je uelg 1 1 1 X 1 410N Jo JAONA
19PSAQQIN || XOW | INIDW | O0OW TIOW | 1IDW || tDdO HLL 419004 uoyesadp
sSng YAr1dw »3Iq8Ug peo] sng ANVOW sjeudig yndu]

221nog sng puesddQ £]-Z dqeL

2-55

Note that while the third part of the pipeline is operating, new ROM data is being placed in ROM
STRG to be presented to the PALU inputs on the next cycle, and new ROM addresses are being
generated to access new data.

Accumulate Result

The fourth and final section, the AALU and associated accumulator (ACCM) adds the partial prod-
ucts computed in the previous pipeline section to the result stored in the ACCM including stored
carries from the previous AALU cycle and latches the result into the ACCM and LSH register.

The AALU, ACCM, and ALU carry-hold interconnections automatically shift the ACCM content
and ALU carry-hold content to adjust for the 4-bit increase of each new partial product. Because each
partial product input to the AALU is 4 bits more significant than the previously stored ACCM con-
tent, the outputs of the ACCM are wired to shift the ACCM content 4 bits right (a decrease in
significance) before being added to the PPROD LATCH content. The lower 4 bits of the AALU
output are always right-shifted into the LSH register. In double precision operations, the content of
this register is the least significant half of the result.

As with the PALU carrys, the carry-out of each AALU is stored and added in on the next cycle. Also
similar to the PALU logic, the stored carrys are added to the AALU adder that generated them
because the content of the AALU is now 4 bits more significant than when the stored carrys were
generated.

The latching of the accumulating final result in the ACCM ends the fourth pipeline section.

The 4 sections of the pipeline continue to operate until stopped by the FM control logic. The stopping
point is selected based on both function and precision.

SALU OPERATION

When stop is initiated, the whole pipeline stops and new logic, the SALU, is accessed which adds the
two sets of stored carrys still in the pipeline to the total product on the output of AALU. When a
pipeline stop is initiated, the AALU output (SALU input) is the contents of ACCM plus the current
PPROD. Both the ACCM plus PPROD addition (the AALU operation) and the PPROD forming
addition (the PALU operation) form stored carrys.

The hard-wired 2-bit shift in the PPROD LATCH input is not part of the several 4-bit shifts that take
place throughout the FM logic, but rather format the stored carrys so they may be easily combined for
a final answer in the SALU. Both the PALU and AALU are composed of 4-bit adders with carry-outs.
This means that the carry-outs are generated every 4 bits and that the PALU and AAL U stored carry-
outs can be treated as numbers of the following format:

X000X000X X is a stored carry (data bit)
0 is a zero (non-significant bit)

Conventional wiring (output of a 4-bit PALU adder to input of a 4-bit PPROD LATCH to a 4-bit
AALU adder) would cause the data bits of the PALU stored-carry to line up (be of equal significance)
with the AALU stored-carry. This would prevent PALU stored-carrys, the AALU stored-carrys, and
the ACCM result from being combined in one operation in one adder (the SALU). However, wiring
the PPROD LATCH input and outputs with a 2-place shift, generates a PALU stored-carry number
with data bits of significance between the AALU stored-carry data bits. This shift allows both AALU
and PALU stored-carry numbers to be input to one side of the SALU, since the data bit of the PALU
;tg;cd-carry is always a non-significant bit of the AALU stored-carry and vice versa. Refer to Figure

2-56

SALU OUT

32 BITS
r " \
l l | l I looooooocoool l | I l l
SALU

MSB / Msa
Aikiiiiiiiasii TRFTTTTT. -1

ZEROS L

PALU —
CARRY

HOLD

(8BITS) | o

CARRIES ([|
FROM :
AALU .
(8BITS) |

Figure 2-24 SALU Operation - Adding the Stored Carrys

AALU (32 BITS)

TK-0276

The use of the SALU result is determined by operation and the operation precision. If the SALU result
is the final answer, the result is transferred to the FP buses under both op code control and FPA
microcontrol. If however, the operation is double precision, the result is stored, and then, shifted to
format it for later operations under FM logic control. Before the shift, the most significant half of the
operation is in TEMP, the least significant half in LSH. The shift transfers the contents of LSH (the
least significant half) to the ACCM register which is designated ACCM 14 at this time, and transfers
the most significant half from TEMP to (just vacated) LSH.

For the second pass, the second half (the more significant half) of the multiplicand is accessed from
register MC1 and MCIL, and logic enabled only during the second pass, combines the data transferred
to LSH from TEMP with the new result being accumulated. Otherwise, the operation of the pipeline
during the second pass is the same as during the first pass.

23.5.2 FM Control - The fraction multiplier logic is hardware rather than firmware controlled. Four
state bits select one of 13 function states that control the FM logic. Within each state, the state bits,
various internal flags, and various flags from other FPA logic are combined to provide the control
signals needed to implement the selected state’s functions (Figure 2-25 and Table 2-18).

2-57

Z* DBL® FLAG

—

TO STATE

D1 D8

XFER
0110)
(ooon PIPE LOAD PPROD
CLEAR FLAG 0
MULTIPLIER CONT s LOAD PPROD SHF RIGHT ACCM
NIT LD COUNTER [STATE A0 (1101) PPROD, ACCM ACCM
LAG

CLEAR

CARRYS LSH

2 \(INT + DOUBLE) FLAG * DOUBLE

INT
e

IRD

MuLL
(1110 COUNT = 3
LOAD PPROD
ACCM
LSH

FLAG * INT

oIv

Or———

COUNT = 3

DIV * CONT IF 0DD. NOP —_—
ELSE SHF DIV DONE
LEFT TEMP
LSH
TR-9278

Figure 2-25 FM Control States

2-58

68T

SCLONL 44YD LNOQ »
ov1a . . . INIYO “LINS4Y ‘IVNI4 14300V OL D3
ON) 0 vl 0 418000 | 01004513 |19 ANV ¥a] G NI WO UN MOTTV OL ONIDNVHD ui anoal 1+ 11
dON'| dON | dON | d Adud 411 | iNtdiono A NOY SHALSIDAY TIV S4OLS
. ovid) . 11103513
- a a |l @ 0 0 by 0 0 0100 0 S.SW ¥ S.NJOV OL S30¥4Z SAav loonani-1ad |zaav | 1 0 1 o
i 0 0 anoa | mu | 000 o “WAISNVUL OL 00103513
us us s | a1 0 411 | A3ud LHOIY HS1 ANV ‘dW3L ‘WIOV SLAIHS OlIONaHL'gg 4 Jwadx | o 1 1 o
OV14 aNY) "dN3L Savol 111 as1a
a Nina| qon [aon | 24 [o | FMad 0 0 0100 a5 'NOLLYINWNIOV TVNI4 OL SAUSY) | 0110 N3HL 'OV14 41 3574
a1 411 G3¥O04S TVNI4 AV OL 3did S401S tioNanLyadi Joava | 1 1 1 0
719n0a . ‘ATILINK T80 HONOWHL ANIL 00103513
|l a1 |aa|aa| o | o | o Al 1t | o0 | anvod | anodasaiseswysmiovorsesi| ciionaus'ia diasia
dON A3Md | ovra41i| A3 a1 | vSHST SNOLLYN340 ATdLLINNK LNIOd 1010 N3HL OV1d GNV
o ONILVOT4 404 3did ¥4NdILINWSNNY | 118G aNV's30MazZaHs 41 | 344 | 0 0 1 o
. o HLL THE 1
sl @ a1 | o 0)) 0 ey | ¢ 0100 0 1w ¥4 34 vartawanwsny | oo U w0 1 0
ovii 1 any |40 %001 WO 15114 404 SLIVA TINN ol113s1a
e o || o |"E) |pavazsul o sut | g0 | PVIUEY | anvacows ‘10w dod suaisiond | ‘o010 NaKL 180 41 3573
JON N3AZ 4l | ANV GNV HLVd V1V ¥V31D COlINaHL'OVIZd [Liva | 0 o 1 1
ITED)
IN4a3] N3A3 . . 0 0 ovid o |aaud mm_‘_kw_ 0101 3573 | 1gq nz« cal 301A10 NI S118 1NLLOND L4320V OL 1113as1
411s| 4115 | dON | ON aud 8 411] W01 11| 118380 141 awaL aNv HST S1dis | ‘1101 NaHL'INOG MGl | AKG | 1 1 0
. ovid . . ‘NIVN 3HL NI a3N¥O0d 1101 3513
dON| dON | dON | dON| O 0 | A3ud 0 0 otol ! 26 0L 118 INILLONO 1514 ¥Od SLIVA ‘0001 NGHLNIAZ A | dON | 0 0 0 1
ov1d . . 00103573 3001 1
« |anvNaaal ¢ | o OvV1d . HLL . v :ﬂ._a ._...ﬂu._:.ﬁu “INI 40 180 413513
@ a1a1| doN [don | O ! AT¥d 0 A3¥d oi01 o zow_u_huwnmuwﬂ._uﬂ_wu uaaﬂromph—mw.— “0001 NIHL ‘Ald 41 3573
N3A3 4171S 0000NZHL“INOO 41 | 4saL| 1t o0 o o
03513 INI 4O "GAOW3 YO ‘A 1NN
on| aon |a|a| o | Toud o |;enca | Q%3] a1anca “INW 41 ¥3INNOD LI3T3S F164IN 1000 wo| 1 o 1
T 411 |u3rdw avon :4aon 4O 41NN 41 dON
T W01 400 SIA0O0UIIN
. o | o 18 . ANV %071 'Su0S SHINILINN
as | us s a1 | o I 0 anv| © olol 0 N21M138 NOLLVZINONONAS 3QIAOY¥d toil MAs| 0 1 0 0
ovid 4l | OL 051 LV 0000 3LVLS WOU4 AUING
. 1enod . ‘AININO3AS
dON| dON dON | dON 0 1 ovid aNY 0 olol 1 41NN 404 ¥IINNOD 1)313S A168IN
AYd | OVIddNI WIIIdN S3UVdadd ‘JA0008DIN 01003513
ol T | ovia oav o WOU4 TVNOIS LININ 40 L'InS3d ‘0000NAHL'QLYI | LNI | © 0 0 o
v jaouad ¥ v ASNOD | o
dndiL| HS1 | WD mannM| 8 | axan oan | axan WIND 0X IX IX €X
0MINGD 1N4LNO NOLLINIA3a 31Vis 1XAN ANVN | STTGVINVA 3LVIS

R)uS jouo) WA 8I-T AL

The states can be roughly divided into four groups:

IRD

Integer Multiply
Fraction Multiply
Divide.

PLON =

This section will discuss the states by groups and in the previously shown order. Within each dis-
cussion, the states will be discussed in the order they are accessed within the group. This is important
because the function of some states is partially dependent on the previous state.

The state of the logic is defined by the output of the PRESENT STATE register which is clocked on a
50 ns cycle. The inputs to this register (the next state) are based on the current state and internal and
external flags. A majority of the internal flags provide sequence information and are generated in the
logic shown in Figure 2-26.

IRD Group (Instruction Register Decode)

When the FM logic is not performing a multiply or divide operation, it is in IRD. While waiting, the
logic is continually cycling through the 4 states in this group preparing the FM logic for a multiply. In
this IRD group the op codes in the instruction buffer are monitored. Initially, (in INIT), the FM logic
is set up fora MULF, but if the op codes indicate eithera MULL, MULD, or EMODD, new informa-
tion is loaded into the FM logic in the CONT state. The FPA microcontrol will be loading the
MPLIER and MCAND register during IRD if the op codes indicate a multiply operation.

The control logic enters INIT whenever the Multiplier Operand Control (OPLD) field in the FPA
microcontrol store is F. This normally happens during the FPA IRD or when a multiply operation is
finished. The SYNC state is entered at CPU T50 and synchronizes the FM clock with the CPU clock.
It also clears FLAG. CONT is entered at T100 and loads new information if the op codes indicate a
MULL, MULD or EMODD. TEST is entered at TI50. In TEST, if the MCNT bit in the FPA micro-
code is not asserted, indicating that the FPA does not want the multiply pipeline to begin, the FM
returns to the INIT state and continues waiting. If however, MCNT is asserted, indicating that the
multiplier operands are loaded and the FPA wants a multiply to start, the correct execution state is
selected based on the op code. Refer to Table 2-18 for summary of IRD group functions.

Multiply Float Path .

If the op code indicates a MULF, the PIPE state is selected and the multiplier pipe can continue. Note
that during INIT the nibble counter was loaded with MULF control data for ROM look-up to begin
based on that data. Since a MULF is being done, the data in the beginning of the pipe is correct.

The logic remains this state (PIPE), running the pipe and accumulating the answer, until D1, a timing
signal, is asserted. When D1 is asserted the current content of the PPROD plus ACCM plus the stored-
carrys is the final correct answer.

Asserting D1 selects the CADD state. This state NOPS most of the FM registers and enables the
SALU add of stored-carrys to the AALU content. CADD also latches the SALU result into TEMP.
The FM logic remains in CADD 150 ns (until D4 is asserted.)

Since FLAG was cleared during the IRD group and never set, it is clear and asserting D4 initiates the
DONE state. This state asserts MUL/DIV DN and NOPs all other FM logic. MUL/DIV DN, mon-
itored by the FPA control logic, returns control to the FPA microcontrol. It is the FPA control store
that selects the MULF result, via a multiplexer, directly from the SALU outputs rather than from
TEMP. The FM logic will remain in DONE until returned to INIT by the multiplier INIT code in the
multiplier operand control field of the FPA microcontrol store. Refer to Figure 2-27 for a summary of
MULF control.

2-60

MULTIPLIER

NIBBLE WIRED AS
COUNTER —, SHIFT REGISTER
LOAD 4BIT 6 BIT 8 BIT D1
COUNTER amiis] UP DECODE - b THRU
DATA COUNTER LATCH REGISTER D8
4BIT
REG
50 ns f
cLOCK (COUNTER
LS8
IGNORED) NOTE .
MPLIER MPLIER THIS FIGURE SHOWS ONLY GENERAL SIGNAL
SELECT SELECT FLOW. ALL ITEMS SHOWN HAVE NUMEROUS.
LINES LINES OTHER OUTPUTS AND INTERCONNECTIONS
ROM BANK ROM BANK
A B

50 ns
DELAY

'.__

TK-0281

Figure 2-26 FM Control Logic

2-61

MULF OPERANDS

MULF TIMING

MUL STATE

(FMHM) “D” TIMING
MUL NIBBL CNTR

SA <2:0>

S8 <2,0>

ODD H

BANKA MP <3:0>
BANKB MP <7:4>
CONTENTS OF ROM STRG
CLR

CONTENTS OF PPROD
PPC CTL

CONTENTS OF ACCM

ACCY CTL

LSH

MUL DIV DONE
LD NR

MULF RESULT
ACCUMULATION

63.60

47.44

655.62

MP1 24 BIT MPLIER

| Mc1 24 81T McanD

10 T0 : T0 T0 T0
A IRD ore MCONT >
o sans fo- 1
Wit | syNc | cont | Test | pmee | mpe | Ppe | e | PiPE | Pipe | PIPE | cAbD | cADD | caop | DONE | DONE
X 0 0 o 0 0 0 0 0 [0 [0 0 0 [
00 D1 D2 03 D4 06 e
wo) A 8 c [3 F 0 1 2 3 4 5 ° 7 s
X 5 5 6 6 7 ? o 0 1 1 2 2 3 3 4
x x 5 5 6 8 7 7 0 o 1 1 2 2 3 3
o S ey I ey I sy SN oy S o B o N o
o WP 4340 —ata— WP B1:48 —pre— WP 69:56 oy
he— MP 47:44 —olo— MP 55.52 —ple— MP 63:60 |
| zmar | vemar | x-ma | wemer | vemer | uemer
PP PP2 PP3 PP4 PP6 PP6 —o 1]
X st sL St sL) Lo 1)) LD T Lo m»E w "rlcu:.cn
PPl + | pP2 + | PP3 + | PPa + | PPE + ccM
ACCMO| ACCM 1| ACCM 2 | AccM 3 [AccMm 4 |} ACCM B STORED CARRYS
FROM PPS &
X X sL st st sL L0 Lo L0 o 0 Lo ACCM 6
L0 L0 Lo L0
el T MUL
DONE | DONE DONE
ADD LD NR
LAST
CARRYS
.
ACCM 1 = | PP1 + ACCM O sh
ACCM 2 = _1_.3 + ACCM 1 LSH
ACCM 3 = | PP3 + ACCM 2 I TSh]
Accm 4 = | Pra + accm 3 | o on]
AccM 6 = | PP5 + AcCM 4 —f s]

* AFTER EACH ADDITION OF THE PARTIAL PRODUCT AND ACCUMULATOR CONTENTS. THE 4 LEAST SIGNIFICANT

BITS OF THE RESULT ARE LOADED INTO THE LSH REGISTER.

Figure 2-27 MULF Control

2-62

K082

MULD Path

If, when the FM control logicisin TEST, the op codes indicate a double precision multiply (DOUBLE
set), the WAIT state will be entered. Initially (in INIT) the nibble counter was loaded for MULF and
ROM lookup began, then in CONT (100 ns later) when a MULD was decoded, new data was loaded
into the nibble counter. The WAIT state waits for the data loaded in CONT to settle and access new
ROM locations before beginning the pipe. After 100 ns in this state FLAG is set. In this context,
FLAG set indicates the first pass in a double precision multiply. After 150 ns, since both DOUBLE
and FLAG are set, PIPE is entered.

The logic remains in the PIPE state, running the pipe and accumulating the answer until D1, a timing
signal, is asserted. When Dl is asserted the current content of ACCM plus the two sets of stored-carrys
are the first half of the MULD partial product.

Asserting D1 selects the CADD state. This state NOPs most of the FM registers and enables the
SALU add of stored-carrys and the ACCM content. CADD latches the upper 32 bits of the first half of
the MULD partial product in TEMP. The lower 32 bits have been accumulating in LSH during the
pipeline operation. The FM logic remains in CADD 150 ns (until D4 is asserted).

Since FLAG is asserted, indicating first pass, asserting D4 selects the XFER state. Four cycles in the
XFER state transfer the content of TEMP and LSH to LSH and ACCM (refer to Figure 2-28), clear
FLAG, and clear the stored-carry registers.

The assertion of D8 returns the FM logic to PIPE. The FLAG bit now cleared and DOUBLE set
asserts ALU ADD. This signal causes the data stored in LSH during the XFER state to be added in 4
bits per cycle) to the final product being developed. Six cycles transfer all 24 bits stored during XFER.
While these bits are being right-shifted from the right end of LSH into the MSBs of the developing
final product, the LSB of the developing final product are being right-shifted into the left end of the
LSH.

When 20 bits have been transferred in from LSH, SHF ZERO is enabled. This causes the logic to enter
the ADDZ state. The final 4-bit transfer of LSH data takes place during the first ADDZ state. After
that the ALU that added LSH to the ACCM is disabled. During this state, the pipe continues function-
ing and the LSBs of the accumulating final product are still shifted into the left end of LSH. The only
difference between PIPE and ADDZ during this second pass is, in PIPE, LSH data bits are added into
the MSB of the ACCM, and, in ADDZ, zeros are added. Note this state even has the same ending
criterion as PIPE, namely D1 asserted.

DI asserted transfers control to the CADD state. As discussed in MULF path, CADD is entered when
the ACCM plus the two sets of stored-carrys is the final answer. In CADD the stored-carrys are added
to the AALU content by SALU and the result is latched into TEMP. Since FLAG is now clear the
assertion of D4 causes a transfer to DONE.

In DONE, MUL /DIV DONE is asserted. This causes the FPA microcode to select and transfer, via
multiplexers, the upper 32 bits of the double precision result from the SALU onto FP bus A and the
lower 32 bits from the LSH register onto FP bus B. Refer to Figure 2-29 for a summary of MULD
control.

MULL Path

If the op code being monitored during CONT decodes as MULL, new data is loaded into the nibble
counter. The logic proceeds to TEST and, in TEST, selects the WAIT as the first execution state
because INT (meaning integer) is set.

2-63

€LZO-NL

XQ
14IHS
1HOWIH

Xy
1dIHS
1HOIY

Xv
1dIHS
1HOIY

_oN _vN
WJJV
«m&
e

[
ﬂ lr/ Lﬂ Jﬁ % LA HS
N\ N\
| N\ / / / / /
T T T _ T _ _ _ T _ T
0 v 8 8z
dW3l
¥34X 3HL
. @asn | y3dx
#1 WOV 0 HS1 €2} 1oN |wu3Ldv
aIsn o= —+ 1 Qe TS
1ON
Oe—etliB HS1 Oe—szi8 dwWal ¥34X 340438
0o Y Pa— -1

Figure 2-28 The XFER State

2-64

$9-

(£ JO | 133yS) [01U0) QTN 67-T 3ndi4

[13 TN
_ _ INOG AIG 1NN

aav v

D | . I HLL

a a1 dN3L
NnjdiONjarV | a1 ||y |l |jay |OY | Q1 o.._ a|a HSY
dON|jdON| OV |V | V| |y oy &y |@ar jar jal a1 | 0 Al || WIS 8| X X W AV
EL | T] ol 6 8 3 9 S 14 € 14 WV 40 SINIINGD

3
JWOJV|NOJV NIV | NIV IO V[WIIV[WII V] INDIDV [INDD V| WJDV WIIV [WJDV |waov)
LR DR B 1 R I B 1 I 1 K R L R L O LU U O U LT L U T - 2 I X W Jdd

¥idd|€idd | Zidd | 1 idd |Oldd | 6dd | Bdd | Ldd | Odd | Sdd | ¥dd | €dd | Zdd | Idd QOWdd 40 SINIINOD
_ z “ ¥
OW|ON|]OO|Od|OD|OH|OS|O-L]ONJOA|OM|O-X]O-A]O2Z DYHLS WOY 30 SINILNOD
OWN | oW | oW | ON | OW | ON | OW | OWN | ON | OWN | DN | DN | DN | DN
09:€9 1599 "wiy 9€:6€ 8zt 0Z:€T (4% 13 <¥:L> dN 8 NVE
dan dN dN dn dnN dn dN
99:69 8ris or-ey TE'se reee 0161 8011 <0'€> dN V¥ ANVE
dn dN dN dN dN dn dN

[4 S 14 € 14 i 0 4 3 a b}] v 6 8 L L 9 14 € 4 8 v X WAND 3T06IN 1NN
va | €a | Za | ta | oqQ ’ ONINULL .0.. (WHIW4)
' 3) 3 |] '] ' ' i U ' 3 ! i i 3 0 o o o] X V4 (NHNI)

aavd |aavd|aavd| 3did | 3did | 3did | 3did | 3did | 3did | 3did | 3did | 3did | 3did | 3did | 3did | 3dId | Idid |LIVM | LIVM | LIVM | 1831 | ANOD [ONAS| LINI | 34ViS NN

Dléegdgdédgdlt [0w

SN OSje—

ANOOW ault

=
g

oL oL oL _ oL oL

ONIWLL QTN

99-7 K

(€ J0 7 133yS) joNuo) QTN 6Z-C 2nBy

1neo-ns

3N0Q .5:_ _ _ _ INOG A1 TN
| ﬁI_AD aav mv
m £ _ HLL
4s Jus | us | us | o dW3lL
njlnjanjlan|jaa|av|jan|av]|ar|ar]|ar | ar]or]|us |us | us | us | don HS1
ON|jdoON | | |av || |Jarv ey || |av|ar]ar]s]s]| is] s |don 19 A22V
etz | oz |9z | vz |ct|zz]|tiz]|]oz |6t |er]et]ot)]s WOV 40 SINIINOD
[waov|woov waov| wooviwoov|woov [woov| woov [woov|woov|waoviwaov |woov 4
ONjJdON| V| v |arv ooy |av|ov|av|av|ov|ar|ar]s)|s]s]| 18 119 3dd
0Zdd | LTdd |92Zdd | 92dd| ¥Tdd | €Tdd | ZZdd | 1Zdd | 0Zdd | 61dd | 81dd | L1dd | 91dd]| S1dd Qa0OYdd 30 SINIINOD
m 4 _ ¥
twjiNnjrofrdjrtofrd]is|iafin]ealemjex|iajiez DY1S WOM 40 SINIINOD
ON oW | ow |ow | ow oW [ow [ow | ow | ow | ow | ow | ow | ow
09:c9 79:99 wiy 9€'6€ 8z'it oz:ez {E 1! <¥:L> dN 8 NNVE
aw an dWN an dnN an dn
09'69 8y'1g orey ZE'SE vZiLz 9161 80'11 . <0'€> JW V ANVE
an dn dn dn dw dn dW
9|9 v | ¢ z 9 v | ¢ z t o 4 3 al|l o] s v] s 8 L [] v 3 , YIND 3188IN 1NN
ga |va | ca| za| 1a | oo 80 | ¢ | sa | sa ONINIL ..0.. INHWH)
ojJ]ojJo}]J]ojo|lo|Jo]J]o}]Jo]o]o|]o]o]o]|]o]|]o]|]o]o|]o]olololol OV (NHNA)
3IN0a|3NOa |anoa uzoaTo& 35_._3 zaavjzaav|zaav |zaav|zaav|zaav|zaav |zaav| 3did | 3did | 3dId | 3did | 3did ¥34x [¥3dx | Y3dx 3LVIS NN
: w12 NN
LdEFSSHEEEHIEEJLEJLEEéJIAD

o1 oL oL oL : oL oL o1
ONINWIL NN

ZESO-ANL

LTWIJV ANV 8Zdd WOHd4 SAHHYD SN1d LZNIJY SNTd 8Tdd = NTVS = 10NA0Hd TVNId4

GINW 40 1ONA0Yd TVILHVd JTVH LSHId

fe—— 26—+ e——2c—]

9Z WOOV + LZdd = LIWDDV |——— HS1 Je czwoov | HS1 anal
STWOJV + 92dd = 9ZWIIV —— HS1 Je-{ ozwoov | 4
ELWOOV ONV P1dd WOH4 SAHHVD SNd
PIWIIV + §Zdd = SZWIIV |—-{ HS1 e szwoov] 8 WOV SNd ¥idd = NVS
———] Je-| = €1 WOV
€ZWODV + ¥Zdd =¥ZWIIV |— HS1 [+ vzwoov | K1 ZINJOV + Eldd |
— 1 Je{ 1
ZZWODV + E£2dd = £ZWoav | HS Je{ ezwoov] HS LUNDDV + Zidd = z4 Wodv
— H31 OLWDOV + Lidd
LZNDOV + Z2dd = ZzWoov [Ws1 Je{ zawoov | . 5 J= 11 woov
] HS Je—{ 6woov + 01dd
OZWOOV + 1Zdd = 1zwoov [Hs1 Je{ tzwoov] S 2 | = o1 waov
HS 8WDDV + 6dd ov
6LWODV + 0Zdd = 0zwoov [HS1 Je{ ozwoov | H 1 J=6wo
HS LWDJV + 8dd
8LWODV + 6ldd = 61W2OV| HS1 Je{ 6iWdov | |Hs1 L g J= 8 woov
HS1 Jo—{ owoov + 2dd
L1W0IV + 8idd = 8iwdov [Hs1 Je{ siwoov [nsT| _ | = ¢ woov
HS1 Je{ swoov + 8dd
91WOV + Lidd = Liwoov [ms1 Je-{ ziwoov [ws1] _ | = 9 woov
HS
SIWDOV + 91dd = 91wV [usije-{ ewwoov [ws1 | [#Hs? Je{ #Woov+sdd =5 woov
HST o]
PINOOV + Sidd = siwdov [Je{_siwoov | ws1 | s EWDDV + ¥dd _ |= v Woov
HS1 | ST jed ZWOOV + €4d | = € woov
- .
H3ISNVHL 40 1INSIH| PIWODV . HS1] [HS Je{ W00V +2dd | =z woov
ao 1E40 nu_ﬁl [Hs1je-{ owoov + 1dd | =1 woov
T
19NG0Hd WVILHVY 4IVH 1sul[| HSY | awal
0 «———— |f| 0 —-—» | NOLLYINWNIJYV 11NS3H a1N
4IVH LSHI4 4VH ANOD3S
—g—ste vz > ze
anvow| so 0OW TIOW' 1OW
: T —

H3INdW 1LIB 96| 2 A X M A

SANVH3dO aINW

Figure 2-29 MULD Control (Sheet 3 of 3)

2-67

In WAIT, the new ROM data selected by the new ROM address accessed as a result of the new data
loaded into the nibble counter during CONT is given time to settle before entering the pipeline. When
FLAG is set, the data has settled and the integer multiply pipeline state (MULL) is entered.

The FM logic remains in the MULL state as the pipeline accumulates the final product (the least
significant half accumulates in LSH). When COUNT = 3 is set, the AALU plus the two sets of stored-
carrys is the final product. COUNT = 3 asserted selects DONE.

In DONE, MUL/DIV DONE is asserted and the final product is available. The FPA microcode loads
the upper half from the SALU onto FP bus A during one machine cycle. On the following cycle the
lower half is loaded from LSH onto FP bus A. Refer to Figure 2-30 for a summary of MULL control.

23.5.3 Division - The TEMP and LSH register in the fraction multiplier logic are used to store the
quotient generated during floating-point division. The registers are concatenated with the MSB of
LSH shifting into the LSB of TEMP.

During a divide operation the FPA asserts DIV and loads the divisor and dividend into the FNM. In
the FM logic, the nibble counter is loaded for a MULF and clocks through until TEST. To initiate
quotient storage the multiply control field (MCNT) of the FPA microcode must be asserted. The
combination of MCNT and DIV asserted selects the NOP state in the division path.

The FM logic enters NOP with the nibble counter odd and exits when the nibble counteris even. The 2
cycles (100 ns) allows the first quotient bit to be formed.

From NOP, the FM logic enters DIV. In DIV, the logic left-shifts LSH and TEMP one bit every even
cycle. When doing a single precision division the single quotient bit is input to both LSH bit 4 and
TEMP bit 4. The data input to LSH is never accessed in single precision. In double ‘precision the
TEMP bit 4 quotient input is blocked and the TEMP bit 3 is input to TEMP bit 4 on the left shifts.

DIV DONE is asserted when quotient bits are left-shifted in TEMP bits 28 and 29. This condition is
tested at T100 of each state and transfers control to DONE if true.

In DONE, MUL/DIV DONE is asserted, stopping the division process in the FNM and causing the
FPA microcode to access TEMP for a single precision quotient and TEMP and LSH for a double
precision quotient.

23.6 Exponent Processor

The exponent processor, part of the FCT, processes the FP exponent during FP operations. During FP
multiply /divide, the processor adds/subtracts the exponents as needed. During add/subtracts, the
processor stores the larger exponent and determines the final exponent by taking into account the
operation, fraction right-shifts, and left-shifts during normalization. By comparing the exponent mag-’
nitudes the exponent processor also controls the FPF addition and subtraction in the FAD. Refer to
Figure 2-31.

2-68

697

108u0D TINW 06 314

890 %4

£ WIJV B 8dd WOU 3 SAHYVD Q3HOLS SN1d L WIIV SN'1d Bdd = NVS

HSY BWIIV + Ldd| = L WOOV
H$Y SOV + 0dd| = 9 WOOV
HS1 YOOV + Sdd| = 9 WOOV
HSY EWOOV ¢+ bdd| = ¥ WIOV
HS1 T NIV + €dd| = £ WOV
HST L WOOV + Zdd | = Z WOOV
HSY 0 WODV + 1dd| = | WOOV
NOUVINWNIDY 11NS3H 1IN
3 0 3 0 3 0 3 0 3 0 3 (] 3
3INOG 1NN 3NOG AIQ 1N
a1 a1 al al a a a H$1
twoov =| 9wdov |swoov | ¥ woov | €WoOv | Zwoav | 1 woov | owoov
+ + + + + + + N0V 40 SINILNGD
Ldd 8dd Sdd vdd Edd Tdd ldd

+«——— 84d Ldd 94 | Sdd ved | €ad | zad 1dd QOudd 40 SINILNGD
_ _ ¥

ANIOW WILNIDOW ’th_g O] LNION s—.—.z_uz O1ANIOW x_hz.oi S| ANIOW h_ OULS WOY 30 SINIINOD

je— 0Z:€Z dN Ti:6l dn ILIISGQAS 8Z:1E dN — <L:p> N 8 NNVE

fo—o1:61 oW —ofo—80:11 an —wfe— ze:5EaN —ofe— 2:12 o —) <OE> an Y WNve

.ln _Ill_ _ll_ €= INNGO
u»_h_o_m_._a_ﬂ_a_-h o_-_c_x WAND 3188IN 1IN

ovi4

aNoa _ Nnw _ :a_z_ 1w _ 1w _ 1w _ W _ 1w _ 10w _ VM _ 1IVM _ 1ivm _ 1S3 _ 1NOD _ INAS _ 1IN 31viS W

o1 oL oL o1 o1
ONINL NN
oNvoN LIBZEINOW | L [s|u |O | da o] N]| w |uarnewsieze o
iz | ooise q wii | oner a
8IE oceC M9 OZEL

SANVHY3J0 1NN

,8 (FAD) SHF COUNT IS ALWAYS
4 POSITIVE OR ZERO

L— . SHF COUNT
[~

u CALU /8 SELECTS INPUT

AGTSB

10 10

\\ PR \N

le—— (LOAD ENABLE)
(INPUT SEL) 42 2 EAC1

AMX 7

OPERATION SEL ,2

(INPUT
BMX Seu EAUL 7 [4
8
\o 7 s
A ‘a A [
. NORMALIZATION
(LOAD ENABLE) | LA (LOAD ENABLE) | LB CONSTANT
EAC3 o] <07:00> EAC2 : 4 - XA
7

jo——(LOAD ENABLE)
,8 EAC 0

(OUTPUT
SELECT) BSC <3:0>

BUS FP A <33:00>

A BUS FP B8 <33:00>

x-0277

Figure 2-31 Exponent Processor Block Diagram

2-70

The FPEs are loaded from FP buses A plus B into LA and LB under control of the EAC field in the
microcontrol (Table 2-19). The contents of LA and LB are loaded into CALU and DALU. CALU
computes LA - LB and DALU computes LB - LA. The carry-out signal from DALU selects either
CALU or DALU as the positive exponent difference (SHF COUNT) to provide FPF control in the
FAD.

Table 2-19 EAC Control Store Field

EAC Fields
3 2 1 0
uCs uCs uCs uCs
27 26 25 24
Operation | Controls Controls Controls Controls
LA-BusA LB- BusB PR- EALU XR- EALU
Transfers Transfers Transfers Transfers
Hex
0 0 0 0 0 NOP
1 0 0 0 1
2 0 0 1 0
3 0 0 1 1
4 0 1 0 0
5 0 1 0 1
6 0 1 1 0
7 0 1 1 1
8 1 0 0 0
9 1 0 0 1
A 1 0 1 0
B 1 0 1 1
C 1 1 0 0
D 1 1 0 1
E 1 1 1 0
F 1 1 1 1
NOTE

Although the control field appears to be a 4-bit field,
each bit of the 4 bits actually controls a single, inde-
pendent function.

2-71

The contents of LA and LB, as well as XR (poly register), PR (product register), a normalization
constant, and 80,6 are possible inputs to EALU. Input selection is controlled by both microcontrol
and hardware. Refer to Table 2-20 for input selection summary.

Table 2-20 EALU Input Control

AMXC Fields

1

uCs uCs

35 34 . Operation

0 0 LA to EALU Ainput

0 1 LBto EALU A input

1 0 PRto EALU A input

1 1 Hardware select: For FP Add/Subtract, la rger exponent (LA or LB)to EALU A
BMXC Fields

1 0

uCs uCs

33 32 Operation

0 0 Normalization constant to EALU B input
0 1 XR to EALU Binput

1 0 80j6to EALU B input

1

LBto EALU Binput

2-72

The EALU operation is controlled by the microcontrol field EALUC. Refer to Table 2-21. The output
of the EALU can be loaded into XR or PR for further processing, or loaded onto the FPA bus as a
final answer. The XR and/or PR are loaded under control of the EAC microcontrol field. Refer to
Table 2-19 (bits 0 and 1). The EALU output to FP bus A <14:07> is controlled by BSC microcontrol
field (Bus A EXP). Refer to the discussion of BSC field in Paragraph 2.3.2. The partial answers in XR
and PR are reloaded into the EALU via AMUX and BMUX, and are combined with either a normali-
zation constant or £80;¢ before they are loaded onto FPA <14:7>. Refer to Table 2-20. The normali-
zation constant, a variable quantity, adjusts the exponent for shifts required to normalize the FPF in
the FAD. (The actual normalization constant is read from a ROM rather than computed. The ROM is
on the FNM.) The 806 corrects for the offset that results in FPE add/subtract during exponent
processing in MUL/DIV. Refer to Paragraphs 1.4 and 1.5.

Table 2-21 EALU Control Store Field

EALU Fields

1 0 Control Signals Generated EALU Operation

uCs uCs Required | Req Mode

31 30 Carry Control S3 S, S S

0 0 X H (logic) H H H H Pass A INPUT

0 1 0 L (arith) L H H L A-B

1 0 1 L (arith) H L L H A+B

1 1 X H (logic) H H L L Force 1's out
(interpreted as
underflow. This
function is used
to generate
zeros on the
buses.

X = Don’t care

2-73

2.3.7 Sign Processor

The sign processor, a section of the FCT, determines the sig
hardware and the microcontrol field SGNC (sign latch contro
and 2-23. This section receives information indicatin
desired operation (add, subtract, multiply,

sign is placed on FP bus A 15.

SB

SA

FP BUS A <15>5—»
FP BUS B <15>5 .

NOTES
1.
2.
3.

SGN'-»

—

INSTRUCTION
DECODER

SIGN

SIGN

l

TO

FP BUS As
<15>
(OUTPUT)

n of the FP operation result using both
Is). Refer to Figure 2-32 and Tables 2-22
g the sign and magnitude of each operand, the
divide, poly) and the magnitude of the result. The resulting

IRC? —p-S

EALU? 410,

COMBINATORIAL
LOGIC

RESULT*

]

SX4

FROM nCS SGN FIELD
FROM IB DETERMINES INSTRUCTION TYPE

DETERMINES IF RESULT IS ZERO OR NEGATIVE

4. INTERMEDIATE RESULTS

5. SIGN OF OPERANDS

Figure 2-32 Sign Processor Block Diagram

2-74

TK-0280

Table 2-22 SGNC Control Store Field

SGNC Field

SGN SGN SGN

C2 C1 (01} Operation

uCs uCs uCs Load into Load into

07 06 05 SA SB

0 0 0 SA (NOP) SB (NOP)

0 0 1 FPbusA IS SB (NOP)

0 1 0 SA + Op Code SB (NOP)
= SUB

0 1 1 Result* SB (NOP)

1 0 0 SA (NOP) FPbusB 15

1 0 1 FPbus A 15 FPbus B 15

1 1 0 SB SB (NOP)

1 1 1 SA + SX SB (NOP)

* This is the resultant sign, determined by the op code, signs of the operands, the relative magnitude of the
exponents, and the signs of the FALU. It can also be forced if a floating underflow or overflow occur.

Table 2-23 Sign Processor Operation

Sign of
Relative Size Result

Op Code of Exponents (FALU sign) Result*
MULX X X SA®SB
DIVX X X SA®SB
ADDX LA>LB X SA
SUBX LA>LB X SA
ADDX LA<LB X SB
SUBX LA<LB X SB
ADDX LA=LB Positive SB
ADDX LA=LB Negative SB
SUBX LA=LB Positive SB
SUBX LA =LB Negative SB

X = Don’t Care

*Except for error - in case of overflow, the sign is forced to a 1 while underflow forces a 0.

2-75

2.3.8 Control Store and Logic

As indicated in previous sections, the control store and logic, located on the FCT, provides the control
signals for all FPA operations. These include both FPA internal operations: the transfer and manipu-
lation of FP data, and external operations (interface between the FPA and CPU). Refer to Figure 2-33.

TO CPU
[————
t : FPA
FPA STATUS TO —
CPU INTERFACE CONTROL LINES
LOGIC SELECTED
]‘ I MICRO WORD |
CONTROL MSC
NEXT ADR STORE 2:0
<8:0> —— NEXT
ADR
CLK 8:0
BEN
STALL 2:0
IROPC | OPCODE & LOGIC
7:0 ' SPECIFIER
SPECIFIER | DECODE .8
LINES LOGIC ! NEXT ADDRESS
LerLoAT FLOAT— LOCIC

TRAP ADDRESS LINES

TRAP
LOGIC [e——CS LINES

TK-0271

Figure 2-33 Control Store and Logic Block Diagram

The FPA has two normal operating functions: instruction register decode (IRD), and performing an
FPA instruction. The FPA normally alternates between these two functions. A third function, excep-

tional conditions, handles error conditions, traps, and interrupts. The FPA executes the third function
whenever an exceptional condition is sensed.

The FPA and the CPU run synchronously, i.e., both have 200 ns microcycles divided into 4 time states
(CPTO, CPUTS50, CPT100, CPT150) and TO CPU is simultaneous with TO FPA. Both load a new
microword only at TO.

The FPA always keeps two updated copies of the 16 CPU general (scratchpad) registers. These copies
are used by the FPA to optimize register-mode instructions. These register copies are accessed and
updated by the same lines that access and update the CPU registers themselves. To ensure that the
FPA never reads a changing register the CPU updates the general register set (and FPA copies) be-
tween T100 and T200 (TO) and the FPA reads the copies only between TO and T100.

2-76

The FPA as a whole is directly controlled by the CPU. The CPU can enable and disable the FPA via
bit 15 of the FPA status register (ID bus register 17). The FPA is normally enabled by the CPU.

The FPA is a microcontrolled unit containing a 512 words by 48 bits of control store in ROM. Each
word is divided into various length control fields, each field providing independent control of a par-
ticular section of the FPA. In general, these fields: control the operation of the FPA data manipulation
components; coordinate the operation of the FPA with the operation of the CPU; and initiate the
operation of parts of the FPA control logic. Control of FPA operations is handled by accessing spe-
cific ROM words causing a particular set of FPA actions.

2.3.8.1 IRD -The IRD stateis controlled by location IRD.1 in the control ROM. In this state a new
microword is not read until STALL is disabled. ACC INSTR H and IB CALL from the CPU micro-
word disables the STALL condition. When the FPA leaves IRD, the ACC ERROR bit in the status
register is cleared if it was set during a previous cycle. The op code and specifier decode logic is
monitoring the IRC OPC 7:0 and specifier lines. The OPC lines enable ACC INSTR H when a FPA
instruction is in the IB and are decoded to determine instruction type. The specifier decode lines
determine specifier type. The output of this decode logic is transmitted to the next address logic.

Location IRD.1 controls all FPA operations in the IRD state. The operation assumed is a register to
register operation. The FPA continually begins this operation without any indication that the next
operation will be an R to R because it has both operands in its register set and, if the next FPA
operation is an R to R, both operands will already be loaded. Location IRD.1 has MSC = 6 and the
next address = 180. This information is transmitted to the next address logic and along with the
outputs of the op code and specifier decode logic determines the correct next microaddress.

In the next address logic (refer to Figure 2-34 and Table 2-24), the MSC = 6, and op code and specifier
decode logic lines select the address offset to be ORed with next address (= 180) to select the next
microaddress. MSC = 6 selects the A-fork inputs from op code and specifier decode logic lines and
transmits them through the A-B fork mux. This selects the correct offset based on instruction type,
float or double, and specifiers 1 and 2. _

2-77

TRAP

CONTROL
CS SIGNALS
DECODE NEXT ADDRESS
(FROM CURRENT
MICRO WORD) |
I(Q) >
CSBUS ACC TRAP ADDRESS | (8) >
e
ID BUS MAINTENANCE
REGISTER <16.23> FP TRAP ADDRESS (3)
NEXT
NEXT
A OR B FORK DATA CONTROL ADDRESS ADDRESS
P
SELECT
A-B
A — FORK : > FORK —
B — FORK MUX A — B DATA (4)
DECODE
MSC=60R 7 7-———T FLOAT? (1)
i?&r;iz %"; BEN DATA (3)
DATA
TK-0534
Figure 2-34 Next Address Logic
Table 2-24 Next Address Lines
Address Description
Next Address Control Lines
FCTK BEN 2.0 H From FPA control store selects lines to be monitored during
execution flows.
CS 71,70 CPU accelerator control field
00 - NOP
01 - CPSYNC

10 - ACCTRAP-To 3-bit address Speciﬁed by CPU USI field
11 - REDEFINE USI

2-78

Table 2-24 Next Address Lines (Cont)

Address

Description

Next Address Control Lines (Cont)

CS 57, 56, 55

FCTH ACC TRAPH

FCTH FP TRAP L

FCTH TRAP DIS L

Next Address Selector Controls
DEC uSI

A-FORK B-FORK SELECT
MUX

NEXT ADDRESS MUX

BEN MUX
Address Lines

FCTR CRADR 08:00 H
FCTK NEXT ADR 08:00

FCTH TRAP A 07:00 L to
FCTF

FMHR TRAP A 7:00H
FCTH BRC20L

A-B FORK ADR

FCTF FLOAT H

CS 57, 56, 55

If CS71 and CS70 are high enabling DEC USI, a 6 on these liries
enables POLY DONE, a 7 FP TRAP.

High during accelerator trap, low otherwise.
Low during FP trap, high otherwise.

Low during either FP trap or accelerator trap, high otherwise.

FCTH DEC uSI L enabled and CS 57, 56, and 55 high enable
FCTH FP TRAP, otherwise it is high.

Enable H causes all highs out and doesn't affect next address.
Enable L enables select input to select A-B data.

Enable H causes all highs out. If enable is low, S low selects A
input.

Enable high causes all highs out.

To control store selects address. Also can be transmitted to
CPU via Reg 16 as current ADR.

From control store next address from microword.

Contains either trap address or next address.
FP trap address from MAINT REG ID BUS.

From branch enable MUX (BEN) monitors various FPA con-
ditions and modifies the next address during execution flows
based on BEN field in FPA microcode.

(Not a signal name on prints) From A-FORK B-FORK select
Mux. Monitors op code and specifier type from 1B and modifies
address in A-B forks.

Based on op code. Used during A-B forks and by branch enable
logic (BEN).

Select trap address during ACC trap. Also refer to CS 57, 56, 55
in control lines.

2-79

The offset is ORed with 180 and since STALL is no longer enabled (ACC INSR H is high) the next
CPT 0 will select the correct microword to control the next FPA cycle. If the data is already in the
FPA, an optimized routine will be selected.

23.82 Performing an FPA Instruction - Once an FPA instruction is sensed, the microcontrol words
and the order they are selected is based on the operation desired, float or double, location of the
operands, and relative size of the operands and/or result.

The FPA first ensures that it has all the required data. If both operands are in registers, or one is in a
register and the other is a short literal, all the data is in the FPA after the A-fork test and the FPA
transfers directly to the execution flows. If not, the first operand is fetched during A-fork and then
MSC = 7 and next address = 100 is transmitted to the next address logic.

In the next address logic, MSC = 7 selects the B-fork inputs from the op code and specifier decode,
and transmits them through the A-B fork mux to be ORed with next address = 100. The offset selected
depends on instruction type, double or float, and type of specifier 2. As before, if the data is already in
the FPA, an optimized routine is selected; otherwise, the FPA waits for the CPU to fetch data.

In some data transfers (A-fork or B-fork) the FPA must wait for data to be transmitted from the CPU
via the ID bus. The microcode has a special WAIT bit to enable STALL for this purpose. The CPU
indicates that the required data is on the ID bus by asserting CP SYNC. CP SYNC causes the data to
be stored in the FPA and clears STALL; thereby enabling a new microword to be read and FPA
operations to continue.

Once the FPA has all required data ACC OVERIDE is asserted. This signal, transmitted to CPU
microaddress bit 12, causes the CPU to select microcode from FPA specialized microcode in the
writeable control store (WCS) rather than PCS. This prevents the CPU from beginning microcode
floating-point routines (used when no FPA is present) to do FP instructions. The enabling of ACC
OVERIDE is based on instruction type (IRC lines) and the execution point counter, (IRC EP 2:0).
Note that since the FPA cannot fetch data itself, the data-fetch routines (CPU AFORK and BFORK)
are allowed to continue until the FPA has all required data.

Once the FPA has all the data the FPA execution flows are entered. These flows perform the manipu-
lation required to A, S, M, and D. This includes unpacking and individually manipulating the FPF
and FPE parts of the number, as well as checking the operands and/or results for unusual conditions
(zeros, underflow, overflow, etc.). During execution flows the BEN field selects lines to be monitored
and used to modify the next address. The 3-bit BEN field of each microword can select 3 of 24 possible
lines to be ORed with the next address field of the microword to select the address.

The BEN multiplexer monitors signals from both the CPU and FPA. POLY DONE and CP SYNC
are transmitted from the CPU using CS lines 71, 70, 57, 56, and 55. FLOAT, IRBRO L, and IRBR1 L
are generated in the FPA but are summaries of op code information transmitted from the instruction
buffer. All other BEN lines monitor FPA internal conditions. Refer to Table 2-25 for a summary of
BEN fields. Finally the flows manipulate the result to ensure it is in correct form and inform the CPU
via FP SYNC asserted that the answer is available.

2-80

Table 2-25 BEN Control Store Field

BEN Lines Monitored - Operation

Field RC2L BRCIL BROOL Summary

0 NOP

1 FLOATH* |RBRIL* IRBROL* Op code decode

2 SWR SWR SWR Shift within range

3 RSVH BH A=0H Operand(s) equal zero
Reserved operand

4 POLY DN L* CPSYNCH* FLOAT*

5 (AorB=0)H SUB*ED<2H ED.GE8H | Operand(s) equal zero
Check exponent difference

6 MUL/DIV | Multiply done

DNH Division done
7 UNDFL PR 8 H Error Condition

*From the CPU.

The CPU accepts the answer via DFMX bus drivers on the FNM using DAP ENA ACC D (1) and
also reads the ACC Z, V, C, and N data lines to determine the condition codes of the answer. Once the
CPU has the answer it transmits a CPSYNC and the FPA returns to its IRD state.

23.83 Exception Conditions - At any time during either IRD or instruction states the CPU can
direct the FPA to enter a trap routine for error recovery or microdiagnostics. The trap routines are
located in the FPA’s own microcode. There are two separate sets of trap routines: ACC traps for CPU
and FPA errors and FP traps for microdiagnostics. Both trap routines are initiated via CS lines 71 and
70.

IfCSbus 71is H and CS bus 70 is L, an ACC TRAP is initiated. An ACC TRAP addresses the FPA
microcode location selected by CS bus lines 57, 56, and 55 (location 0-7). These traps are normally
initiated for.power-up and abort sequences.

If CS bus 71, 70, 57, and 56 are high and 55 is low, an FP trap is initiated. The FP trap selects an 8-bit
address previously stored in ID register 16, the Status register to access one of 256 addresses in the
FPA microcode (location 0-255). These trap locations normally handle FPA microdiagnostics. Refer
to Figure 2-34.

2-81

2.4 FPA Microcontrol Fields

This section summarizes all the fields in the FPA microcontrol word. F igure 2-
microcontrol word, all the fields, and the microcode mnemonics. Table 2-

field.

47 46 45 44 43 42 41

35 shows the complete
26 lists the function of each

40 39 38 37 36 35 34 33 32

L v J\ v I\)
NEXT ADDRESS BRANCH EALUA EALUB
ENABLE INPUT INPUT
31 30 20 28 27 26 26 24 23 22 21 20 19 18 17 16
— \ v J —, N AN —
EALU MCTL EXPONENT MISCELLANEOUS SCRATCH
CONTROL PROCESSOR CONTROLS PAD
FP SYNC CONTROL waT NORM. CONTROL
REGISTER
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
~ .) —)
v \d A 4 v
BUSA-BUSB FRACTION SIGN LATCH MULTIPLIER
DATA SOURCE PROCESSOR CONTROL OPERAND
CONTROL CONTROL
REMAINDER
REGISTER
CONTROL
TK-0513

Figure 2-35 FPA Control Word Fields

2-82

Table 2-26 FPA Control Word Field Definitions

Microcode Bits

Field

Function

47:39 (9 bits)
38:36 (3 bits)

35:34 (2 bits)
33:32 (2 bits)
31:30 (2 bits)

29 (1 bit)
28 (1 bit)
27:24 (4 bits)
23 (1 bit)
22:20 (3 i)its)
19:18 (2 bits)

17:16 (2 bits)

15:12 (4 bits)
11:8 (4 bits)
7:5 (3 bits)

4 (1 bit)

3:0 (4 bits)

NAD — Next Address

BEN — Branch Enable

‘AMXC — A Mux Control

BMXC — B Mux Control
EALUC — EALU Control

FPSYNC — Floating-Point
Synchronize

MCTL — Multiply Control

EAC — Exponent Processor
Control

WAIT — Wait

MSC — Miscellaneous
Control

NRC — Normalization
Register Control

SCR — Scratchpad Control

BSC — Bus A — Bus B
Data Source

FADC — Fraction
Processor Controls

SGNC - Sign Latch
Controls

LRR — Load Remainder
Register

OPLD — Operand Load
(Multiplier Control)

Contains the address of the next control word
to be accessed.

Selects signals to be used for next address
calculations.

Selects A input to FCT exponent ALU.
Selects B input to FCT exponent ALU.
Controls FCT exponent ALU operation.

Transmits FPSYNC to CPU.

Starts FMIL. and FMH fraction multiply
operation.

Controls FCT (exponent processing).
Controls FPA wait loop operation. Stalls until
CPSYNC.

Controls Miscellaneous FPA operations.

Controls fraction normalize operation in FNM.

Handles FPA General Register copies on FNM.

Controls data transmission along FPA buses.
Controls FAD fraction processing.

Controls sign calculation on FCT.

Controls remainder register (RR) on FNM.

Loads fractions for multiplication on FML
and FMH.

2-83

2.5 FPA MICROCODE STRUCTURE

The FPA contains a 512 word by 48 bits (per word) memory. This memory provides microcontrol of
the FPA during normal operation and diagnostic programs for maintenance and troubleshooting.
About 225 locations are for normal microcontrol, and 200 locations contain diagnostic programs. The
other locations are available for future use.

The microcontrol code has an IRD state (instruction register decode) and three fork points (A, B, and
C). The FPA remains in the IRD state until an FPA instruction is decoded. The FPA then enters A-
fork, to receive the operands. If both operands are registers or short literals, optimized routines are
entered and computation begins. Otherwise, B-fork is entered. If the second operand is not register
data, C-fork is entered. Otherwise a B-fork optimization is taken. Figure 2-36 shows the basic micro-
code structure and indicates the microcode starting addresses of the various routines.

2.6 FPA INTERFACE FIRMWARE
The CPU-FPA interaction is handled by specialized firmware located in the CPU’s writeable control
store (WCS).

This firmware handles numerous interface tasks. For ADD, SUBT, MUL, and DIV operations it
accepts and stores the FPA results and condition codes, and handles any exceptions flagged by the
FPA. In 3-operand op codes it calls specifier decoding microcode in the base machine to decode the
third operand. It also handles the special requirements of the EMOD, MULL and POLY commands.
It is accessed when the FPA overrides the CPU Address by forcing the uPC <12> to 1. This happens
when the FPA detects an execution or optimization exit at a CPU A-fork, B-fork, or C-fork for an
FPA implemented instruction.

2.6.1 Major Interface Functions

This firmware coordinates the interface between the CP microcode and the FP microcode including
the normal transfers of CPU data to the FPA, FPA results back to the proper register in the CPU, and
various control signals for both normal and exception control.

Table 2-27 lists important macros and microorders that are used by the FPA interface firmware to
generate and/or monitor the signals which are transferred between the CPU and FPA.

2-84

$8-7

NPNING IPOOIW Vdd 9¢-T nBiy

LI0-NL

asns [10ns
aA04 1A104 aaow3 400W3 i anw _ ona Tow bl el | BEL)
T T W] wo | evo] o | o | Vo | o | Ve
W04 9
|] | | | 1] | — 1]
wx ux ux ux ux WINX ~x #.5% WINX
onig anw ann | lienssaav] | vinw 118n00 1voY 1vou 104
| 3T | | T o1 | 0 Vel T i
»oi 8
MONX LNOG x
AUONIN wan
(3LVIGINWI TvH3LN ’
IVH3ILN LHOHS /s xIvs
43181934 '] 3718N00
A3 30UN0S VIva e i
T we T
am_o QW 1005400V
281 i 361
L _ { woiv

Table 2-27 Interface Microcode

Name of Macro

Signal Monitored
or Generated

Data Transfer

Function

ID-D. SYNC

D-ACCEL &
SYNC

Q-ACCEL &
SYNC

ACCEL?”™

(BEN/ACC<UB2,

UBI, UB0>)t

POLY.DONE

TRAP.ACC[1)

MSC/LOAD.
ACC.CCT

CP SYNC generated

CP SYNC generated

CP SYNC generated

FP SYNC monitored

ERR SYNC monitored

Not Mull** generated

POLY.DONE generated

Accelerator Trap

CPU - FPA

FPA - CPU

FPA - CPU

FPA - CPU

NO

NO

CPU - FPA

NO

NO

Gates the CPU D-Regis-
ter’s contents onto the ID
bus. Generates CP SYNC.
CP SYNC indicates that
valid data is on bus.

Gates data placed on
DFMX Bus by FPA into D-
Register. CP SYNC in-
dicates that the FPA's data
has been accepted.

Gates data placed on
DFMX Bus by FPA into Q-
Register. CP SYNC in-
dicates that the FPA's data
has been accepted.

ACC<UBO> = 1: Result
data, on DFMX bus, and
condition codes are being
transmitted by FPA. If
double precision condition
codes are passed with first
half.

ACC<UBI> = [; An ex-
ception has been detected
by the FPA. This initiates
specialized routines that
handle the exception.

ACC<UB2> = l; Sepa-
rates MULL and MULF

Indicates the last coefficient
in the POLY operation, it
being presented. In
POLYD, used while both °
halves of the last coefficient
are transmitted.

Returns FPA microcode to
IRD state

Loads PSW<N,z,v.C>
with FPA generated condi-
tion codes from CPU
latches loaded in previous
cycle.

* This macro, in combination with the target constraint block, enables the

conditions.

t This is a microorder rather than a macro.
** This is a condition rather than a specific signal.

2-86

CP microcode to test for various

2.6.2 Major Instruction Groups
The FPA firmware can be broken into 4 groups of routines: Generalized instructions handler, POLY
handler, MULL handler, and EMOD handler.

Group 1 handles all ADD, SUB, MUL, and DIV instructions as well as FPA exceptions. This group
provides optimized flows for operands located in the general register set and literal operands.

The POLY group transmits the polynomial coefficients to the FPA as they are needed and transmits
POLY DONE when the last coefficient has been transmitted. It also responds to the FPA detection of
overflow, underflow, and coefficient reserved operand. Overflow and reserved operand detections
causes a branch to exception conditions routines in the base machine. If an underflow is noted, the
firmware notes it and continues execution of the POLY flows.

The MULL routine accepts the result of the longword integer multiplication from the FPA. Since the
FPA creates an unsigned 64-bit product using 32-bit signed operands, the firmware must correct the
result by subtracting out the effects of the negative signs on the magnitude result. To do this the
firmware stores the operands in a form that can later be used as subtrahend operands to correct the
product and, based on this stored information, determines the correction sequence to select when the
result is transmitted from the FPA. The firmware also creates the proper signed result, sets the condi-
tion codes, and tests for overflow.

The FPA handles only the fraction multiply of the EMOD instructions. As a result the EMOD firm-
ware is relatively short. While the FPA is doing the fraction multiply this routine adds the exponents
and checks for reserved operands, accepts the fraction multiply result from the FPA, checks for a zero
result, and formats the FPA result so control can return to the EMOD routines in the base machine.

2-87

