
RT-11
System Reference Manual

Order No. DEC-11 -ORUGA-C-D, DNI, DN2

.

digital equipment corporation l maynard. massachusetts

First Printing, September 1973
Revised: October 1974

June 1975
July 1975

January 1976

The information in this document is subject to Change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The Software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

Digital Equipment Corporation assumes no responsibility for the use or
reliability of its Software on equipment that is not supplied by
DIGITAL.

Copyright C 1973,1974,1975,1976byDigital Equipment Corporation0

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre-
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL
DEC
PDP
DECUS
UNIBUS
COMPUTER
COMTEX
DDT
DECCOMM

LABS

DECsystem-10 MASSBUS
DECtape OMNIBUS
DIBOL OS/8
EDUSYSTEM PHA
FLIP CHIP RSTS
FOCAL RSX
INDAC TYPESET-
LAB-8 TYPESET-
DECsystem-20 TYPESET-

bl??-14

CONTENTS

PREFACE xxi
CHAPTER 1 RT-11 OVERVIEW l-l

1.1 PROGRAM DEVELOPMENT l-2
1.2 SYSTEM SOFTWARE COMPONENTS l-3
1.3 SYSTEM HARDWARE COMPONENTS l-5
1.4 USING THE RT-11 SYSTEM
1.4.1 RT-11 Single-Job Monitor
1.4.2 RT-11 Foreground/Background Monitor
1.4.3 Facilities Available Only in RT-11 F/B

l-7
l-7
:1;

CHAPTER 2 SYSTEM COMMUNICATION 2-l
2.1 START PROCEDURE 2-l
2.2 SYSTEM CONVENTIONS
2.2.1 Data Formats
2.2.2 Prompting Characters
2.2.3 Physical Device Names
2.2.4 File Names and Extensions
2.2.5 Device Structures

2-3
2-3
2-4
2-4
21'7

2.3 MONITOR SOFTWARE COMPONENTS 2-7.1
2.3.1 Resident Monitor (RMON) 2-7.1
2.3.2 Keyboard Monitor (KMON) 2-7.1
2.3.3 User Service Routine (USR) .2-7.1
2.3.4 Device Handlers L-8
2.4 GENERAL MEMORY LAYOUT 2-8
2.4.1 Component Sizes 2-9

2.5
2 . 6
2.6.1
2.6.2

ENTERING COMMAND INFORMATION 2-10
KEYBOARD COMMUNICATION (KMON) 2-11Foreground/Background Terminal I/O
Type-Ahead 2-13

2-14
2.7
2.7.1

KEYBOARD COMMANDS
Commands to Control Terminal I/O
(GT ON and GT OFF)
Commands to Allocate System Resources
DATE Command
TIME Command

2-14
2-15

2.7.2
2.7.2.1
2.7.2.2
2.7.2.3
2.7.2.4

INITIALIZE Command
ASSIGN Command

2-16
2-16
2-17
2-18
2-18

Page

iii January 1976

2.7.2.5
2.7.2.6
2.7.2.7
2.7.2.8
2.7.3
2.7.3.1
2.7.3.2
2.7.3.3
2.7.3.4
2.7.3.5
2.7.4
2.7.4.1
2.7.4.2
2.7.4.3
2.7.4.4
2.7.5

2.7.5.1
2.7.5.2
2.7.5.3

CLOSE Command
LOAD Command
UNLOAD Command
SET Command
Commands to Manipulate Memory Images
GET Command
Base Command
Examine Command
Deposit Command
SAVE Command
Commands to Start a Program
RUN Command
R Command
START Command
REENTER Command
Commands Used Only in a
Foreground/Background Environment
FRUN Command
SUSPEND Command
RSUME Command

2-36
2-37
2-38

2.8 MONITOR ERROR MESSAGES 2-38
2.8.1 Monitor HALTS 2-41

CHAPTER 3 TEXT EDITOR 3-l

3.1 CALLING AND USING EDIT 3-1

3.2 MODES OF OPERATION 3-2

3.3 SPECIAL KEY COMMANDS 3-2

3.4
3.4.1
3.4.2
3.4.3
3.4.4

COMMAND STRUCTURE
Arguments
Command Strings
The Current Location Pointer
Character- and Line-Oriented
Command Properties
Command Repetition

3-3
3-4

;I;
3-6

3.4.5 3-8

3.5 MEMORY USAGE 3-9

3.6 EDITING COMMANDS 3-10
3.6.1 Input/Output Commands 3-10
3.6.1.1 Edit Read 3-10
3.6.1.2 Edit Write 3-11
3.6.1.3 Edit Backup 3-11
3.6.1.4 Read 3-12
3.6.1.5 Write 3-13
3.6.1.6 Next 3-14
3.6.1.7 List 3-14
3.6.1.8 Verify 3-15
3.6.1.9 End File 3-15
3.6.1.10 Exit 3-15
3.6.2 Pointer Relocation Commands 3-16
3.6.2.1 Beginning 3-16
3.6.2.2 Jump 3-17
3.6.2.3 Advance 3-17
3.6.3 Search Commands 3-18
3.6.3.1 Get 3-18
3.6.3.2 Find 3-19

January 1976 iv

2-20
2-20
2-21
2-23
2-28
2-28
2-29
2-30
2-30
2-31
2-33
2-33
2-34
2-34
2-35
2-35

. . _. .._ _-c_--‘Ld.

3.6.3.3 Position 3-20
3.6.4 Text Modification Commands 3-20
3.6.4.1 Insert 3-20
3.6.4.2 Delete 3-21
3.6.4.3 Kill 3-22
3.6.4.4 Change 3-22
3.6.4.5 Exchange 3-23
3.6.5 Utility Commands 3-24
3.6.5.1 Save 3-24
3.6.5.2 Unsave 3-25
3.6.5.3 Macro 3-25
3.6.5.4 Execute Macro 3-26
3.6.5.5 Edit Version 3-27
3.6.5.6 Upper- and Lower-Case Commands 3-27

3.7 THE DISPLAY EDITOR 3-28
3.7.1 Using the Display Editor 3-29
3.7.2 Setting the Editor to Immediate Mode 3-30

3.8 EDIT EXAMPLE 3-32

3.9 EDIT ERROR MESSAGES 3-33

CHAPTER 4 PERIPHERAL INTERCHANGE PROGRAM (PIP) 4-1

4.1 CALLING AND USING PIP
4.1.1 Using the "Wild Card" Construction

4-l
4-l

4.2 PIP SWITCHES
4.2.1 Operations Involving Magtape or Cassette
4.2.2 Copy Operations
4.2.3
4.2.4

Multiple Copy Operations
The Extend and Delete Operations

4.2.5 The Rename Operation
4.2.6 Directory List Operations
4.2.7 The Directory Initialization Operation
4.2.8 The Compress Operation
4.2.9 The Bootstrap Copy Operation
4.2.10 The Boot Operation
4.2.11 The Version Switch
4.2.12 Bad Block Scan (/K)
4.2.12.1 Recovery from Bad Blocks

4-2
4-4
4-9
4-11
4-13
4-15
4-15
4-18
4-19
4-20
4-20
4-21
4-21
4-21

4.3 PIP ERROR MESSAGES 4-24
CHAPTER 5 MACRO ASSEMBLER 5-l

5.1 SOURCE PROGRAM FORMAT 5-2
5.1.1 Statement Format 52
5.1.1.1 Label Field 5-3
5.1.1.2 Operator Field 5-3
5.1.1.3 Operand Field 5-4
5.1.1.4 Comment Field 5-4
5.1.2 Format Control 5-5
5.2 SYMBOLS AND EXPRESSIONS 5-5
5.2.1 Character Set 5-5
5.2.1.1 Separating and Delimiting Characters 5-6
5.2.1.2 Illegal Characters 5-7
5.2.1.3 Operator Characters 5-8
5.2.2 Symbols 5-9

V January 1976

._.

5.2.2.1 Permanent Symbols 5-9
5.2.2.2 User-Defined and Macro Symbols 5-9
5.2.3 Direct Assignment 5-10
5.2.4 Register Symbols 5 11
5.2.5 Local Symbols 5-12
5.2.6 Assembly Location Counter 5-14
5.2.7 Numbers 5-17
5.2.8 Terms 5-17
5.2.9 Expressions 5-18

5.3

5.4 ADDRESSING MODES 5-20
5.4.1 Register Mode 5-21
5.4.2 Register Deferred Mode 5-21
5.4.3 Autoincrement Mode 5-21
5.4.4 Autoincrement Deferred Mode 5-22
5.4.5 Autodecrement Mode 5-23
5.4.6 Autodecrement Deferred Mode 5-23
5.4.7 Index Mode 5-23
5.4.8 Index Deferred Mode 5-23
5.4.9 Immediate Mode 5-24
5.4.10 Absolute Mode 5-24
5.4.11 Relative Mode 5-24
5.4.12 Relative Deferred Mode 5-25
5.4.13 Table of Mode Forms and Codes 5-25
5.4.14 Branch Instruction Addressing 5-26
5.4.15 EMT and TRAP Addressing 5-27

5.5
5.5.1
5.5.1.1
5.5.1.2
5.5.1.3
5.5.1.4
5.5.1.5
5.5.1.6
5.5.2
5.5.3
5.5.3.1
5.5.3.2
5.5.3.3
5.5.3.4
5.5.3.5
5.5.3.6
5.5.4
5.5.4.1
5.5.4.2
5.5.5
5.5.5.1
5.5.5.2
5.5.5.3
5.5.6
5.5.6.1
5.5.6.2
5.5.7
5.5.7.1
5.5.7.2
5.5.8
5.5.9
5.5.10

January 1976 vi

RELOCATION AND LINKING

ASSEMBLER DIRECTIVES
Listing Control Directives
.LIST and .NLIST
Page Headings
,TITLE
.SBTTL
. IDENT
Page Ejection
Functions: .ENABL and .DSABL Directives
Data Storage Directives
.BYTE
.WORD
ASCII Conversion of One or Two Characters
.ASCII
.ASCIZ
.RAD50
Radix Control
.RADIX
Temporary Radix Control: -D, -0, and -B
Location Counter Control
.EVEN
.ODD
.BLKB and .BLKW
Numeric Control
.FLTZ and .FLT4
Temporary Numeric Control: ^F and ̂ C
Terminating Directives
.END
.EOT
Program Boundaries Directive: .LIMIT
Program Section Directives
Symbol Control: .GLOBL

5-19

5-27
5-27
5-27
5-34
5-34
5-34
5-36
5-36
5-36
5-37
5-38
5-39
5-40
5-41
5-42
5-43
5-44
5-44
5-45
5-46
5-46
5-46
5-47
5-47
5-48
5-49
5-50
5-50
5-51
5-51
5-51
5-54

5.5.11
5.5.11.1
5.5.11.2
5.5.11.3

Conditional Assembly Directives
Subconditionals
Immediate Conditionals
PAL-11R and PAL-11s Conditional
Assembly Directives
MACRO DIRECTIVES
Macro Definition
.MACRO
.ENDM
.MEXIT
MACRO Definition Formatting
Macro Calls
Arguments to Macro Calls and Definitions
Macro Nesting
Special Characters
Numeric Arguments Passed as Symbols
Number of Arguments
Automatically Created Symbols Within
User-Defined Macros
Concatenation
.NARG, .NCHR, and .NTYPE
.ERROR and .PRINT
Indefinite Repeat Block: .IRP and .IRPC
Repeat Block: .REPT
Macro Libraries: .MCALL

5-55
5-57
5-58
5-59

5.6
5.6.1
5.6.1.1
5.6.1.2
5.6.1.3
5.6.1.4
5.6.2
5.6.3
5.6.3.1
5.6.3.2
5.6.3.3
5.6.3.4
5.6.3.5

5-60
5-60
5-60
5-60
5-61
5-61
5-62
5-62
5-63
5-64
5-64
5-66
5-66

5.6.3.6
5.6.4
5.6.5
5.6.6
5.6.7
5.6.8

5-67
5-68
5-70
5-71
5-73
5-74

5.7 CALLING AND USING MACRO 5-74
5.7.1 Switches 5-76
5.7.1.1 Listing Control Switches 5-76
5.7.1.2 Function Switches 5-77
5.7.1.3 Cross Reference Table Generation (CREF) 5-78
5.8 MACRO ERROR MESSAGES 5-84

CHAPTER 6 LINKER 6-l

6.1 INTRODUCTION 6-l

6.2 CALLING AND USING THE LINKER 6-2
6.2.1 Command String 6-2
6.2.2 Switches 6-3
6.3 ABSOLUTE AND RELOCATABLE PROGRAM SECTIONS 6-4
6.4 GLOBAL SYMBOLS 6-5
6.5 INPUT AND OUTPUT
6.5.1 Object Modules
6.5.2 Load Module
6.5.3 Load Map
6.5.4 Library Files

6-5
Sr:
6-7
6-8

USING OVERLAYS 6-106.6

6.7 USING LIBRARIES 6-15
6.7.1 User Library Searches 6-16

6.8 SWITCH DESCRIPTION
6.8.1 Alphabetize Switch
6.8.2 Bottom Address Switch

6-18
6-18
6-18

vii January 1976

6.8.3 Continue Switch 6-20
6.8.4 Default FORTRAN Library Switch 6-20
6.8.5 Include Switch 6 20
6.8.6 LDA Format Switch 6-21
6.8.7 Modify Stack Address 6-21
6.8.8 Overlay Switch 6-21
6.8.9 REL Format Switch 6-23
6.8.10 Symbol Table Switch 6-23
6.8.11 Transfer Address Switch 6-24

6.9 LINKER ERROR HANDLING AND MESSAGES 6-24

CHAPTER 7 LIBRARIAN 7-1

7.1 CALLING AND USING LIBR 7-1

7.2
7.2.1
7.2.2
7.2.2.1
7.2.2.2
7.2.2.3
7.2.2.4
7.2.2.5
7.2.2.6
7.2.2.7
7.2.2.8
7.2.2.9

USER SWITCH COMMANDS AND FUNCTIONS
Command Syntax
LIBR Switch Commands
Command Continuation Switch
Creating a Library File
Inserting Modules Into a Library
Replace Switch
Delete Switch
Delete Global Switch
Update Switch
Listing the Directory of a Library File
Merging Library Files

7-2
7-2
7-2
7-3
7-4
7-5
7-5
7-6
7-7
7-9
7-9
7-10

7.3 COMBINING LIBRARY SWITCH FUNCTIONS 7-11

Xl
7.4.2
7.4.3
7.4.4

FORMAT OF LIBRARY FILES 7-12
Library Header 7-12
Entry Point Table (Library Directory) 7-13
Object Modules 7-14
Library End Trailer 7-14

7.5 LIBR ERROR MESSAGES 7-14

CHAPTER 8 ON-LINE DEBUGGING TECHNIQUE 8-l

8.1 CALLING AND USING ODT 8-l
8.1.1 Return to Monitor, CTRL C 8-3
8.1.2 Terminate Search, CTRL U 8-4

8.2
8.2.1

RELOCATION
Relocatable Expressions

8-4
8-4

8.3
8.3.1
8.3.2
8.3.3
8.3.4
8.3.5
8.3.6
8.3.7
8.3.8
8.3.9
8.3.10
8.3.11
8.3,12

COMMANDS AND FUNCTIONS
Printout Formats
Opening, Changing and Closing Locations
Accessing General Registers G-7
Accessing Internal Registers
Radix 50 Mode, X
Breakpoints
Running the Program, r;G and r;P
Single Instruction Mode
Searches
The Constant Register, r;C
Memory Block Initialization, ;F and ;I
Calculating Offsets, r;O

8-5
8-5

;I;
8-10
8-10
8-11
8-12
8-14
8-14
8-16
8-16
8-17

January 1976 viii

/ <, ,. .: . .

8.3.13
8.3.14
8.3.15
8.3.16

8.4 PROGRAMMING CONSIDERATIONS 8-20
8.4.1 Functional Organization 8-20
8.4.2 Breakpoints 8-21
8.4.3 Searches 8-24
8.4.4 Terminal Interrupt 8-24

8.5 ODT ERROR DETECTION 8-25

CHAPTER 9 PROGRAMMED REQUESTS 9-1

9.1

9.2 SYSTEM CONCEPTS
9.2.1 Channel Number (chan)
9.2.2 Device Block (dblk)
9.2.3 EMT Argument Blocks
9.2.4 Important Memory Areas
9.2.4.1 Vector Addresses
9.2.4.2 Resident Monitor
9.2.4.3 System Communication Area
9.2.5 Swapping Algorithm
9.2.6 Offset Words
9.2.7 File Structure
9.2.8 Completion Routines
9.2.9 Using The System Macro Library

23.1
9.3.1.1
9.3.1.2
9.3.1.3
9.3.1.4
9.3.1.5
9.3.1.6

9.4 PROGRAMMED REQUEST USAGE 9-25
9.4.1 .CDFN 9-26
9.4.2 .CHAIN 9-27
9.4.3 .CHCOPY 9-28
9.4.4 .CLOSE 9-30
9.4.5 .CMKT 9-31
9.4.6 .CNTXSW 9-32
9.4.7 .CSIGEN 9-33
9.4.8 .CSISPC 9-36
9.4.8.1 Passing Switch Information 9-3E
9.4.9 .CSTAT 9-41
9.4.10 .DELETE 9-42
9.4.11 .DEVICE 9-44
9.4.12 .DSTATUS 9-45
9.4.13 .ENTER 9-47
9.4.14 .EXIT 9-49
9.4.15 .FETCH 9-50
9.4.16 .GTIM 9-51
9.4.17 .GTJB 9-52
9.4.18 .HERR/.SERR 9-53
9.4.19 .HRESET 9-55
9.4.20 .LOCK/.UNLOCK 9-56

Relocation Register Commands, r;nR, :nR, :R 8-17
The Relocation Calculators, nR
ODT Priority Level, $P
ASCII Input and Output, r;nA

and-ni 8-18
8-19
8-20

FORMAT OF A PROGRAMMED REQUEST 9-2

9-5
9-5
9-5

9:;
9-6
9-7
9-7
9-9
9-11
9-13
9-13
9-14

TYPES OF PROGRAMMED REQUESTS
System Macros
.DATE
INTEN

:MFPS/.MTPS
.REGDEF
.SYNCH
..Vl../..V2..

9-14
9-20
9-20
9-21
9-21.1
9-22
9-22
9-24

ix January 1976

9.4.21 .LOOKUP 9-58
9.4.22 .MRKT 9-60
9.4.23 .MWAIT 9-62
9.4.24 .PRINT 9-63
9.4.25 .PROTECT 9-64
9.4.26 .PURGE 9-65
9.4.27 .QSET 9-65
9.4.28 .RCTRLO 9-67
9.4.29 .RCVD/.RCVDC/.RCVDW 9-68
9.4.30 .READ/.READC/.READW 9-71
9.4.31 .RELEAS 9-74
9.4.32 .RENAME 9-75
9.4.33 .REOPEN 9-77
9.4.34 .SAVESTATUS 9-77
9.4.35 .SDAT/.SDATC/.SDATW 9-80
9.4.36 .SETTOP 9-82
9.4.37 .SFPA 9-84
9.4.38 .SPFUN 9-85
9.4.39 .SPND/.RSUM 9-87
9.4.40 .SRESET 9-90
9.4.41 .TLOCK 9-91
9.4.42 .TRPSET 9-92
9.4.43 .TTYIN/.TTINR 9-93
9.4.44 .TTYOUT/.TTOUTR 9-95
9.4.45 .TWAIT 9-98
9.4.46 .WAIT 9-99
9.4.47 .WRITE/.WRITC/.WRITW 9-100

9.5

9.5.1
9.5.2

CHAPTER 10

10.1

10.2

CONVERTING VERSION 1 MACRO CALLS
TO VERSION 2

9-108

Macro Calls Requiring No Conversion 9-108
Macro Calls Which May Be Converted 9-108

EXPAND UTILITY PROGRAM 10-1

LANGUAGE 10-1

RESTRICTIONS 10-1

10.3 CALLING AND USING EXPAND 10-2

10.4 EXPAND ERROR MESSAGES 10-6

CHAPTER 11

11.1

ASEMBL, THE 8K ASSEMBLER

CALLING AND USING ASEMBL

11-1

11-1

11-711.2 ASEMBL ERROR MESSAGES

CHAPTER 12 BATCH 12-1

12.1
12.1.1
12.1.2

12.2
12.2.1
12.2.1.1
12.2.1.2
12.2.2
12.2.2.1

INTRODUCTION TO RT-11 BATCH 12-1
Hardware Requirements to Run BATCH 12-1
Software Requirements to Run BATCH 12-2

BATCH CONTROL STATEMENT FORMAT
Command Fields

12-2
12-2

Command Names 12-2
Command Field Switches 12-3
Specification Fields 12-5
Physical Device Names 12-6

January 1976 X

.__. ,; .

12.2.2.2 File Specifications 12-6
12.2.2.3 Wild Card Construction 12-7
12.2.2.4 Specification Field Switches 12-7
12.2.3 Comment Fields 12-8
12.2.4 BATCH Character Set 12-8
12.2.5 Temporary Files 12-10

12.3 GENERAL RULES AND CONVENTIONS

12.4
12.4.1
12.4.2
12.4.3
12.4.4
12.4.5
12.4.6
12.4.7
12.4.8
12.4.9
12.4.10
12.4.11
12.4.12
12.4.13
12.4.14
12.4.15
12.4.16
12.4.17
12.4.18
12.4.19
12.4.20
12.4.21

E-t*E. .
12.5 RT-11 MODE 12-38
12.5.1 Running RT-11 System Programs 12-39
12.5.2 Creating RT-11 Mode BATCH Programs 12-39
12.5.2.1 Labels 12-39
12.5.2.2 Variables 12-40
12.5.2.3 Terminal I/O Control 12-42
12.5.2.4 Other Control Characters 12-42
12.5.2.5 Comments 12-43
12.5.3 RT-11 Mode Examples 12-43

12.6 CREATING BATCH PROGRAMS ON PUNCHED CARDS 12-44
12.6.1 Terminating BATCH Jobs on Cards 12-45

12.7 OPERATING PROCEDURES 12-45
12.7.1 Loading BATCH 12-45
12.7.2 Running BATCH 12-47
12.7.3 Communicating with BATCH Jobs 12-49
12.7.4 Terminating BATCH 12-52

12.8 DIFFERENCES BETWEEN RT-11 BATCH AND
RSX-11D BATCH

12-52

12.9 ERROR MESSAGES 12-53

APPENDIX A ASSEMBLY, LINK, AND BUILD INSTRJJCTIONS A-l

BATCH COMMANDS
$BASIC
$CALL
SCHAIN
SCOPY
$CREATE
SDATA
SDELETE
SDIRECTORY
SDISM~UNT
$EOD
$E~J
SFORTRAN
$JOB
SLIBRARY
SLINK
$MACRO
$MESSAGE
SM~UNT
SPRINT
SRTll
SRUN
SSEQUENCE
Example BATCH Stream

12-11

12-12
12-13
12-14
12-15
12-16
12-18
12-19
12-20
12-20
12-21
12-22
12-23
12-23
12-25
12-27
12-27
12-29
12-31
12-32
12-34
12-35
12-35

xi January 1976

APPENDIX 6

B.l
B.l.l
B.1.2

8.2
B.2.1
B.2.2
B.2.3
8.2.4
B.2.5
B.2.6
B.2.7
B.2.8

COMMAND AND SWITCH SUMMARIES B-l

KEYBOARD MONITOR
Command Summary
Special Function Keys
EDITOR
Command Arguments
Input and Output Commands
Pointer' Relocation Commands
Search Commands
Text Modification Commands
Utility Commands
Immediate Mode Commands
Key Commands

B-l
B-l
B-3

B-5
B-5
B-5
B-6
B-6
B-7
B-7
B-8
B-8

B.3
B.3.1

B.4
B.5
B.5.1

B.6
B.6.1

B.7
B.7.1

B.8

B.9
B.9.1
B.9.2

B.10
B.10.1
B.ll
B.ll.1

B.12
B.12.1

B.13
B.13.1
B.14
B.14.1

PIP
Switch Summary

MACRO/CREF
LINKER
Switch Summary

LIBRARIAN
Switch Summary

ODT
Command Summary

PROGRAMMED REQUESTS

B-9
B-9
B-l0
B-l1
B-l1

B-l2
B-12

B-12
8-12

B-14

BATCH
Switch Summary
Command Summary

DUMP
Switch Summary

FILEX
Switch Summary
SRCCOM
SWITCH SUMMARY

B-14
B-14
B-l7

B-l8
B-l8

B-l8
B-l8

B-l9
B-19

PATCH
Command Summary
PATCHO
Command Summary

B-20
B-20
B-21
B-21

APPENDIX C MACRO ASSEMBLER, INSTRUCTION, AND
CHARACTER CODE SUMMARIES

C-l

c.1

c.2

c.3

c.4

ASCII CHARACTER SET C-l

RADIX-50 CHARACTER SET c-3
MACRO SPECIAL CHARACTERS c-5
ADDRESS MODE SYNTAX c-5

January 1976 xii

. ._^..- .__.l.l ,._/.

c.5
c.5.1
C.5.2
c.5.3
c.5.4
c.5.5
C.5.6
c.5.7
C.5.8
c.5.9
c.5.10
c.5.11
C.5.12
c.5.13
C.5.14
C.5.15

c.6

c.7
c.7.1

t- c.7.2
c.7.3

C-8

APPENDIX D

APPENDIX E

E.1

) E.2

APPENDIX F

F.1

F.2

F.3

F.4

APPENDIX G

G.1

G.2

G.3

G.4

G.5

APPENDIX H

H.1
H.l.1
H.1.2
H.1.3
H.1.4

INSTRUCTIONS
Double Operand Instructions
Single Operand Instructions
Rotate/Shift
Operate Instructions
Trap Instructions
Branch Instructions
Register Destination
Register-Offset
Subroutine Return
Source-Register
Floating-Point Source Double Register
Source-Double Register
Double Register-Destination
Number
Priority

ASSEMBLER DIRECTIVES

MACRO/CREF SWITCHES
Listing Control Switches
Function Control Switches
CREF Switches

OCTAL/DECIMAL CONVERSIONS

SYSTEM MACRO FILE

PROGRAMMED REQUEST SUMMARY

PARAMETERS

REQUEST SUMMARY

BASIC/RT-11 LANGUAGE SUMMARY

BASIC/RT-11 STATEMENTS

BASIC/RT-11 COMMANDS

BASIC/RT-11 FUNCTIONS

BASIC/RT-11 ERROR MESSAGES

FORTRAN LANGUAGE SUMMARY

C-6
C-8

EI;
C-l1
C-l2
C-l3
C-l4
C-l4
C-l4
C-l5
C-l5
C-l7
C-l7
C-l8
c-l8

C-l9

C-23
c-23
c-23
c-24

c-25

D-l

E-l

E-l

E-l

F-l

F-l

F-3

F-5

F-6

G-l

RUNNING A FORTRAN PROGRAM IN THE FOREGROUND G-l

FORTRAN CHARACTER SET G-2

EXPRESSION OPERATORS G-3

SUMMARY OF FORTRAN STATEMENTS G-4

COMPILER ERROR DIAGNOSTICS G-l1

F/B PROGRAMMING AND DEVICE HANDLERS H-l

F/B PROGRAMMING IN RT-11, VERSION 2 H-l
Interrupt Priorities H - l
Interrupt Service Routine H-2
Return from Interrupt Service H-2
Issuing Programmed Requests at the Interrupt
Level H-2

xiii January 1976

H.1.5
H.1.6

H.1.7
H.1.8

Setting Up Interrupt Vectors
Using .ASECT Directives in Relocatable
Image Files
Using .SETTOP
Making Device Handlers Resident

H-3

H-3
H-3
H-3.1

H.2 DEVICE HANDLERS H-3.1
H.2.1 PR H-5
H.2.2 TT H-5
H.2.3 CR H-6
H.2.4 MT/CT H-6
H.2.4.1 General Characteristics H-6
H.2.4.2 Handler Functions H-8
H.2.4.3 Magtape and Cassette End-of-File Detection H-l3
H.2.5 DX H-13.2

H.3 EXAMPLE DEVICE HANDLERS H-l4

H.4 DEC 026/DEC 029 CARD CODE CONVERSION TABLE H-23

APPENDIX 1 DUMP I-l

1.1 CALLING AND USING DUMP I-l
1.1.1 DUMP Switches I-2
1.1.2 Examples I-2

1.2 DUMP ERROR MESSAGES I-5

APPENDIX J FILEX J-l

J.l FILEX OVERVIEW J-l
J.1.l File Formats J-l

J.2
5.2.1
5.2.2

5.2.3

5.2.4
5.2.5

CALLING AND USING FILEX
FILEX Switch Options
Transferring Files Between RT-11
and DOS/BATCH (or RSTS)
Transferring Files to RT-11 from
DECsystem-10
Listing Directories
Deleting Files from DOS/BATCH (RSTS)
DECtapes

J-l
J-2

J-3
J-5

J-6

J-7

J.3 FILEX ERROR MESSAGES J-8

APPENDIX K SOURCE COMPARE (SRCCOM) K-l

K.l CALLING AND USING SRCCOM K-l
K . l . l Extension9 K-2
K.1.2 Switches K-2

K.2 OUTPUT FORMAT K-2

K.3 SRCCOM ERROR MESSAGES K-5

APPENDIX L PATCH L-l

L.l CALLING AND USING PATCH L-l

L.2 PATCH COMMANDS L-2
L.2.1 Patch a New File L-2
L.2.2 Exit from PATCH L-3
L.2.3 Examine, Change Locations in the File L-3

January 1976 xiv

”

/
L.2.4

1'
L.2.5

L.3

L.4

APPENDIX M PATCHO

M.l

Fl.2
M.2.1
M.2.2
M.2.3
M.2.4
M.2.5
M.2.6
M.2.7
M.2.8
M . 2 . 9

M.3

M.4

M.5
M . 5 . 1

APPENDIX N

N.l
N.l.l
N.1.2

N.2
N.2.1
N.2.2
N.2.3
N.2.4
N.2.5
N.2.6
N.2.7
N.2.8
N.2.9
N.2.10
N.2.11
N.2.12
N.2.13
N.2.14
N.2.15

N.3
N.3.1
N.3.2
N.3.3
N.3.4
N.3.5

N.4
N.4.1
N.4.2

Set Bottom Address
Set Relocation Registers

EXAMPLES USING PATCH

PATCH ERROR IYESSAGES

CALLING AND USING PATCHO

PATCHO COMMANDS
OPEN Command
POINT Command
WORD Command
BYTE Command
DUMP Command
LIST Command
EXIT Command
DEC Command
HELP Command

PATCHO LIMITATIONS

EXAMPLES

PATCHO ERROR MESSAGES
Run-Time Error messages

DISPLAY FILE HANDLER

DESCRIPTION
Assembly Language Display Support
Monitor Display Support

DESCRIPTION OF GRAPHICS MACROS
.BLANK
.CLEAR
.INSRT
.LNKRT
.LPEN
.NAME
.REMOV
.RESTR
.SCROL
.START
.STAT
.STOP
.SYNC/.NOSYN
.TRACK
.UNLNK

EXTENDED DISPLAY INSTRUCTIONS
DJSR Subroutine Cal1 Instruction
DRET Subroutine Return Instruction
DSTAT Display Status Instruction
DHALT Display Halt Instruction
DNAME Load Name Register Instruction

USING THE DISPLAY FILE HANDLER
Assembling Graphits Programs
Linking Graphits Programs

L-4
L-4

L-4

L-7

M-l

M - l

M-l
M-l
M - 2
M-2
M-3
M-4
M-4
M-4
M-5
M-5

M-5

M-6

M-7
M-8

N-l

N-l
N-l
N-2

N-3

B-i
N-5
N-5
N-7
N-9
N-9
N-9
N-l0
N-l0
N-l0
N-l1
N-l1
N-l2
N-l3

N-l 3
N - 1 3
N-l4
N-l4
N-l4
N-15

N-l6
N-l6
N-l6

xv January 1976

_-

N.5 DISPLAY FILE STRUCTURE N-l7
N.5.1 Subroutine Calls N-l8
N.5.2 Main File/Subroutine Structure N-l9
N.5.3 BASIC/GT Subroutine Structure N-20

N.6 SUMMARY OF GRAPHICS MACRO CALLS

N.7 DISPLAY PROCESSOR MNEMONICS N-23

N.8 ASSEMBLY INSTRUCTIONS N-24
N.8.1 General Instructions N-24
N.8.2 VTBASE N-24
N.8.3 VTCALl - VTCAL4 N-25
N.8.4 VTHDLR N-25
N.8.5 Building VTLIB.OBJ N-25

N.9 VTMAC N-25

N.10 EXAMPLES USING GTON N-28

APPENDIX 0 SYSTEM SUBROUTINE LIBRARY

0.1
0.1.1
0.1.2
0.1.3
0.1.4
0.1.5

0.2
0.2.1
0.2.2
0.2.3
0.2.4
0.2.4.1
0.2.4.2
0.2.4.3

0.3 LIBRARY FUNCTIONS AND SUBROUTINES 0-21
0.3.1 AJFLT 0-21
0.3.2 CHAIN 0-22
0.3.3 CLOSEC 0-23
0.3.4 CONCAT 0-24
0.3.5 CVTTIM 0-25
0.3.6 DEVICE 0-26
0.3.7 DJFLT 0-27
0.3.8 GETSTR 0-28
0.3.9 GTIM 0-29
0.3.10 GTJB 0-29
0.3.11 IADDR 0-30
0.3.12 IAJFLT 0-31
0.3.13 IASIGN 0-32
0.3.14 ICDFN 0-34
0.3.15 ICHCPY 0-35
0.3.16 ICMKT
0.3.17

0-36
ICSI

0.3.18
0-37

ICSTAT 0-39
0.3.19 IDELET 0-40
0.3.20 IDJFLT
0.3.21

0-41
IDSTAT 0-42

0.3.22 IENTER 0-43
0.3.23 IFETCH
0.3.24

0-44
IFREEC 0-45

0.3.25 IGETC 0-46
January 1976 xvi

INTRODUCTION o-1
Conventions and Restrittions o-2
Calling SYSLIB Subprograms o-3
Using SYSLIB with MACRO o-3
Running a FORTRAN Program in the Foreground o-5
Linking with SYSLIB O-6

TYPES OF SYSLIB SERVICES o-7
Completion Routines 0-15
Channel-Oriented Operations 0-17
INTEGER*4 Support Functions 0-17
Character String Functions 0-18
Allocating Character String Variables
Passing Strings to Subprograms

0-19
0-20

Using Quoted-String Literals 0-21

N-21

o-1

0.3.26
0.3.27
0.3.28
0.3.29
0.3.30
0.3.31
0.3.32
0.3.33
0.3.34
0.3.35
0.3.36
0.3.37
0.3.38
0.3.39
0.3.40
0.3.41
0.3.42
0.3.43
0.3.44
0.3.45
0.3.46
0.3.47
0.3.48
0.3.49
0.3.50
0.3.51
0.3.52
0.3.53
0.3.54
0.3.55
0.3.56
0.3.57
0.3.58
0.3.59
0.3.60
0.3.61
0.3.62
0.3.63
0.3.64
0.3.65
0.3.66
0.3.67
0.3.68
0.3.69
0.3.70
0.3.71
0.3.72
0.3.73
0.3.74
0.3.75
0.3.76
0.3.77
0.3.78
0.3.79
0.3.80
0.3.81
0.3.82
0.3.83
0.3.84
0.3.85
0.3.86

~JCVT 0-47
ILUN 0-47
INDEX 0-48
INSERT 0 - 4 9
INTSET 0-50
IPEEK 0-52
IPOKE 0-52
IOSET 0-53
IRAD50 0-54
IRCVD/IRCVDC/IRCVDF/IRCVDW 0-55
IREAD/IREADC/IREADF/IREADW 0-58
IREMAN 0-63
IREOPN 0-64
ISAVES 0-65
ISCHED 0-66
ISDAT/ISDAC/ISDATF/ISDATW 0-68
ISLEEP 0-71
ISPFN/ISPFNC/ISPFNF/ISPFNW 0-72
ISPY 0-76
ITIMER 0-77
ITLOCK 0 - 7 9
ITTINR 0 - 7 9
ITTOUR 0-81
ITWAIT 0-82
IUNITL 0-83
IWAIT 0-84
IWRITC/IWRITE/IWRITF/IWRITW 0-84
JADD 0-88
JAFIX 0-88
JCMP 0 - 8 9
JDFIX 0 - 9 0
JDIV 0-91
JICVT 0-92
JJCVT 0-92
JMOV 0-93
JMUL 0-94
JSUB 0-95
JTIME 0-96
LEN 0-97
LOCK 0-97
LOOKUP 0-99
MRKT 0-100
MWAIT 0-101
PRINT 0-102
PURGE 0-103
PUTSTR 0-103
R50ASC 0-104
RAD50 0-105
RCHAIN 0-105
RCTRLO 0-106
REPEAT 0 - 1 0 7
RESUME 0-108
SCOMP 0-108
SCOPY 0-109
SECNDS 0-110
STRPAD 0-111
SUBSTR 0-112
SUSPND 0-113
TIMASC 0-114
TIME 0 - 1 1 5
TRANSL 0-116

xvii January 1976

0.3.87 TRIM 0-118
0.3.88 UNLOCK 0-118
0.3.89 VERIFY 0-119

APPENDIX P ERROR MESSAGE SUMMARY P-l
GLOSSARY GLOSSARY-1

INDEX INDEX-l

TABLES

Page
l-h

Number

l-l RT-11 Hardware Components

2-3
2-4
2-5

3-l
3-2
3-3

4-l

Prompting Characters
Permanent Device Names
File Name Extensions
Special Function Keys
SET Command Options

EDIT Key Commands
Command Arguments
Immediate Mode Commands

PIP Switches

2-4
2-5
2-6
2-12
2-23

3-2
3-5
3-31

4-3

5-1 Legal Separating Characters
6-l Linker Switches

5-6

6-3

7-1 LIBR Switches

8-1 Forms of Relocatable Expressions
8-2 Internal Registers
8-3 Radix 50 Terminators

7-3

8-5
8-10
8-11

9-1 Summary of Programmed Requests
9-2 Requests Requiring the USR

11-1 Directives not Available in ASEMBL

9-15
9-19

11-2

12-1 Command Field Switches
12-2 File Name Extensions
12-3 Specification Field Switches
12-4 Character Interpretation
12-5 BATCH Commands
12-6 Operator Directives to BATCH Run-Time Handler
12-7 Differentes Between RT-11 and RSX-11D BATCH
H-l Card Code Conversions

I-l DUMP Switches

12-3
12-7
12-8
12-9
12-12
12-50
12-53

H-23

I-2

J-1 FITEX Switch Options J-2
J

January 1976 xviii

K - l SRCCOM Switches K-2

i ‘) L-l PATCH Commands L-2

N - l Description of Display Status Words

o-1 Summary of SYSLIB Subprograms
o-2 Spec ial Func t ion Codes

FIGURES

Number Page

2-1
2-2

3 - l Display Editor Format 3-28

5 - l

5-2

5-3

5-4
5-5
5-6
5-7
5-8

6 - l
6-2
6-3

6-4
6-5
6-6

7 - l G e n e r a l L i b r a r y F i l e F o r m a t 7-12
7-2 L i b r a r y Header F o r m a t 7-13
7-3 Format of Entry Point Table 7-13
7-4 L i b r a r y E n d T r a i l e r 7-14

12-1 EOF Card 12-45

RT-11 System Memory Maps
RT-11 Memory Map (GT40)

Assembly Source Listing of MACRO
Code Showing Local Symbol Blocks
Example of MACRO Line Printer
L i s t i n g (132-column L i n e P r i n t e r)
Example of Page Heading From
MACRO 80-column Line Printer
Symbol Tabl e
Assembly Listing Table of Contents
. IRP and .IRPC Example
MACRO Source Code
CREF Listing Output

Linker Load Map for Background Job
Overlay Scheme
Memory Diagram Showing BASIC
Link with Overlay Regions
Run-Time Overlay Handler
Library Searches
Alphabetized Load Map for a Background Job

x i x January 1976

N-8

z:3

5-15

5-31

5-32

5-33
5-35
5-73
5-80
5-81

6-9
6-10
6-11

6-12
6-17
6-19

PREFACE

This manual describes the use of the RT-11 Operating S y s t e m . I t
assumes the reader is familiar with Computer Software fundamentals and
has had some exposure to assembly language programs. The section
"Additional and Reference Material" later in this Preface lists
documents that may prove helpful in reviewing those areas. The
Glossary provides definitions of technical terms used in the manual.

The user who is unfamiliar with RT-11 should first read those chapters
of interest (see "Chapter Summary" below) to become familiar with
System conventions. Having gained familiarity with RT-11, the user
tan then reread the manual for specific information.

Chapter Summary

Chapter 1 discusses System hardware and Software requirements. It
describes general System operations and lists specific components
available under RT-11.

Chapter 2 introduces the user to System conventions and monitor/memory
layout. It describes in detail the keyboard commands for controlling
jobs and implementing user programs.

Chapters 3 through 8 describe the System Utility programs EDIT, PIP,
MACRO, LINK, LIBR, and ODT, respectively. These programs (a text
editor, file transfer program, assembler, linker, librarian, and
debugging program) aid the user in creating text files and producing
assembly-language programs.

Chapter 9, which describes programmed requests, is of particular
interest to the experienced programmer. It describes cal1 sequences
that allow the user to access System monitor Services from within
assembly-language programs.

Chapters 10 and 11 describe the 8K Assembler and EXPAND programs,
respectively. These programs are useful in RT-11 installations with
minimum memory configurations.

Chapter 12 describes the BATCH command language for RT-11. In BATCH
mode, the RT-11 System tan be left to run unattended for long periods
of time.

The appendixes summarize the contents of the manual and describe
additional System Utility programs that tan be used for extended
System operations. These programs include SRCCOM (a Source file
comparison program); FILEX (a file translation program that allows

xxi January 1976

.

Preface

transfer of
PATCH and
and SYSLIB

ti+;;Obetween RT-11 and other DIGITAL operating Systems);
(patthing programs); DUMP (a file dump program);

(a library of programmed requests for FORTRAN users).

Version History

The current RT-11 System (monitor) is Version 2C (V2C). Esch System
component (monitors and Utilities) is assigned a Software
identification number in the form Vxx-xx. Current identification
numbers for V2C are listed in the RT-11 System Release Notes
(DEC-ll-ORNRA-A-D). To determine whether the correct Version of a
component is in use, examine its identification number and compare it
with the list. (The procedure for examining the Version number
varies. Most System programs provide a special command; others print
the version number when an output listing is requested. Consult the
approiate chapter or appendix of this manual for each component.).

NOTE

Throughout this manual, w references
to V2 or V2B of RT-11 will pertain also
to v2c. The RT-11 System Reiease Notes
contain a comprehensive list of
differentes between V2C and previous
Versions of RT-11 (V2B, V2, Vl).

Change bars and asterisks in the outermost margins of the manual are
used to denote changes made to the text since the Version 2 release
(DEC-ll-ORUGA-B-D). The date July 1975 in the lower outside corner of
a Page indicates that the page was changed as a result of a
release-independent update that occurred in July, 1975. The date
January 1976 in the lower outside corner of the page indicates that
the page was changed specifically as a result of the V2C update.

The user who is already familiar with the Version 2B RT-11 System
Reference Manual (DEC-ll-ORUGA-C-D,DNl) should first read the RT-11
System Release Notes document to note the major differentes between
V2B and V2C, and then read those pages of the RT-11 System Reference
Manual that have changed as a result of the V2C update (identified by
the date January 1976). The RT-11 System Generation Manual
(DEC-ll-ORGMA-A-D) should also be read if customization for special
devices and features is required.

The user who is familiar with only the Version 2 RT-11 System
Reference Manual (DEC-ll-ORUGA-B-D) should read the following in
addition to those items mentioned in the preceding Paragraph:

Chapter 2 (System Communication) -
Chapter 3 (Text Editor)
Chapter 9 (Programmed Requests) -
Chapter 12 (BATCH)
Appendix H (F/B Programming

And Device Handlers) -
Appendix 0 (SYSLIB)

Tables 2-2, 2-3, and 2-5
Section 3.6.5.6
Sections 9.1 and 9.1.3.6
Entire Chapter

Sections H.2.4 and H.2.5
Entire Appendix

Finally, the user familiar with only the Version 1 RT-11 System
Reference Manual (DEC-ll-ORUGA-A-D) should read this entire manual
with these exceptions:

)

-)
January 1976 xxii

Preface

Chapter 3 (Text Editor) - note Section 3.7
Chapter 5 (MACRO Assembler) - note Section 5.7
Chapter 8 (ODT) - note restrictions in Section

8.1
Chapter 10 (EXPAND)
Chapter 11 (ASEMBL)
Appendix L (PATCH)

While knowledge of Versions 2 and 2B is sufficient for use of v2c,
knowledge of Version 1 is not; the user with Version 1 knowledge only
should carefully read the manual.

Additional and Reference Material

The following manuals provide an introduction to the PDP-11 Computer
family and the basic PDP-11 instruction set:

PDP-11 Paper Tape Software Programming Handbook**
(DEC-ll-XPTSA-B-D)

PDP-11 Processor Handbook*
PDP-11 Peripherals Handbook*

The following manual provides an introduction to the use of RT-11 by
presenting a simple demonstration of basic operating procedures:

RT-11 System Generation Manual* (DEC-ll-ORGMA-A-D)

These manuals describe the capabilities of the optional high-level
language components:

BASIC/RT-11 Language Reference Manual** (DEC-ll-LBACA-D-D)
PDP-11 FORTRAN Lanquaqe Reference Manual** (DEC-ll-LFLRA-B-D)
RT-ll/RSTS/E FORTRAN IV User's Guide** (DEC-ll-LRRUA-A-D)

Summaries of the features provided by each language appear in this
manual in Appendixes F and G respectively.

Two PDP-11 System manuals are helpful when using FILEX (Appendix J) to
convert programs between DOS, RSTS, and RT-11 formats:

PDP-11 Resource Sharing Time-sharing System User's Guide**
(DEC-ll-ORSUA-D-D)

DOS/BATCH Handbook** (DEC-ll-ODBHA-A-D)

Users of display hardware may wish to refer to the appropriate
hardware manual:

GT40/42 User's Guide*** (398150)
GT44 User's Guide*** (398250)
VTll Graphi c Display Processor Manual*** (79H650)
DECscope User's Manual*** (EK-VT50-OP)

The experienced programmer will want to read the following manual:

RT-11 Software Support Manual* (DEC-ll-ORPGA-B-D)

*Included in the RT-11 Software Kit
**May be ordered from the DIGITAL Software Distribution Center
***May be ordered from DIGITAL Communication Services

xxiii January 1976

Preface

Consult the following for a list of all manuals available in the RT-11
Software documentation set:

RT-11 Documentation Directory* (DEC-ll-ORDDA-A-D)

Documentation Conventions

Conventions used throughout this manual include the following:

1. Actual Computer output is used in examples wherever possible.
When necessary, Computer output is underlined to

' differentiate from user responses.

2. A line feed (Character or key) is represented in the text as
<LF>; a carriage return (Character or key) is represented as
<CR>. Unless otherwise indicated, all commands and command
strings are terminated by a carriage return.

3. Terminal, console terminal, and teleprinter are general terms
used throuqhout all RT-11 documentation to represent any
terminal device, including DECwriters, displays, and
Teletypes****. RP02 is a generic term used to represent both
the RPllC/RPOZ and RPllE/RPR02 disks.

4. Several characters in System commands are produced by typing
a combination of keys concurrently; for example, the CTRL
key is held down while typing an 0 to produce a command which
Causes suppression of teleprinter output. Key combinations
such as this are documented as CTRL 0, CTRL C, SHIFT N, and
so forth.

*Included in the RT-11 Software Kit
****Teletype is a registered trademark of the Teletype Corporation.

January 1976 XXiV

CHAPTER 1

RT-11 OVERVIEW

RT-11 is a Single-User programming and operating System designed for
the PDP-11 series of axtpUterS. This System permits the use of a wide
range of peripherals and up to 28K of either solid state or core
memory (hereafter referred to as memory).

RT-11 provides two operating environments: Single-Job Operation, and
a powerful Foreground/Background (F/B) capabilitytl).

Single-Job Operation allows only one program to reside in memory at
any time; execution of the program continues until either it is
completed or it is physically interrupted by the User at the
console.

In a Foreground/Background environment, two independent programs may
reside in memory. The foreground program is given priority and
executes until it relinquishes control to the background program; the
background program is allowed to execute until control is again
required by the foreground program, and so on. This sharing of System
resources greatly increases the efficiency of processor usage.

To handle both operating environments, RT-11 offers two completely
compatible and versatile monitors (Single-job and F/B); either monitor
provides complete user control of the System from the console terminal
keyboard. Monitor commands which allow the User to direct Single-job,
foreground, and background operations are described in Chapter 2.

In addition to the monitor facilities, RT-11 offers a full complement
of System programs; these allow program development using high level
languages such as FORTRAN IV and BASIC or assembly language (MACRO or
EXPAND/ASEMBL). System programs are summarized in Section 1.2 and are
discussed in detail in individual chapters and appendixes of this
manual.

(1) The uses and advantages of each environment are outlined later in
this chapter.

l-l

, .
_ - , , _ . ^ .

- . _ . . L

RT-11 Overview

1.1 PROGRAM DEXELOPMENT

Computer Systems such as RT-11 are often used extensively for program
development. The programmer makea use of the programming "tools"
available on his System to develop programs which will perform
functions specific to his needs. The number and type of "tools"
available on any given System depend on a gcod many factors--the size
of the System, its application and its tost, to name a few. Most
DIGITAL Systems, however, provide several
aids:

basic program development
these generally fnclude an editor, assembler, linker, debugger,

and often a librarian; a high level language (such as FORTRAN IV or
BASIC) is also usually available.

an editor is used to create and modify textual material. Text may be
the lines of code which make up a Source program written in some
programming language, or it may be data; text may be reports, or
memos, or in fact may consist of any subject matter the user wishes.
In this respect using an editor is analogous
typewriter--the user sits at a keyboard and types tzxt.

using
But th:

advantages of an editor far exceed those of a typewriter because once
text has been created, it tan be modified, relocated, replaced,
merged, or deleted-all by means of simple editing commands. When the
User is satisfied with his text, he tan save it on a storage device
where it is available for later reference.

ff the editor is used for the purpose of writing a Source program,
development does not stop with the creation of this program. Since
the Computer cannot understand any language but machine language
(which is a set of binary coaunand Codes),
necessary which will convert Source code

an intermediary program is
into the instructions the

Computer tan execute. This is the function of an assembler.

The assembler accepts alphanumeric representations of PDP-11 coding
instructions (i.e., mnemonics), interprets the Code, and produces as
output the appropriate object Code. The user tan direct the assembler
to generate a lis'ting of both the Source code and binary output, as
well as more specific listings which are helpful during the program
debugging process. In addition, the assembler is capable of detecting
certain common coding errors and of issuing appropriate warnings.

The output produced by the assembler is called Object output because
it is composed of object (orbinary) Code. On PDP-11 Systems, the
Object output is called a module and contains the user's Source
program in the binary language which is acceptable to a PDP-11
Computer.

Source programs
hawever,

may be complete and functional by themselves;
some programs are written in such a way that they must be

used in conjunction with other programs (or modules) in Order to form
a complete and logical flow of instructions. For this reason the
Object code produced by the assembler must be
assignment

relocatable--that is,
of memory locations must be deferred until the code is

combined with all other necessary object modules.
of linker to perform this relocation.

It is the purpose

The linker combines and relocates separately assembled
programs. The output produced by the linker consists of ?!%
module, which ie the final linked program ready for execution. he
User tan, at his Option, request a load map which diaplay8 all
addresses assigned by the linker.

‘)
)

RT-11 Overview

Very rarely is a program created which does not contain at least one
unintentional error, either in the logic of the program or in its
coding. Errors may be discovered by the programmer while he is
editing his program, or the assembler may find errors during the
assembly process and inform the programmer by means of error codes.
The linker may also catch certain errors and issue appropriate
messages. Often, however, it is not until execution that the user
discovers his program is not working properly. Programming errorstm;x
be extremely difficult to find, and for this reason a debugging
is usually available to aid the programmer in determining the Cause of
his error.

(.

A debugging program allows the user to interactively control the
execution of his program. With it, he tan examine the contents of.
individual locations, search for specific bit Patterns, set designated
stopping Points during execution, Change the contents of locations,
continue execution, and test the results, all without the need of
re-editing and re-assembling.

When programs are successfully written and executed, they may be
useful to other programmers. Often routines which are common to many
programs (such as I/O routines) or sections of code which are used
over and over again, are more useful if they are placed in a library
where they tan be retrieved by any interested User. A librarian
provides such a Service by allowing creation of a library file. Once
created, the library tan be expanded, updated, or listed.

High level languages simplify the programmer's work by providing an
alternate means of writing a Source program other than assembly
language mnemonics. Generally, high level languages are easy to
learn--a Single command may Cause the Computer to perform many machine
language instructions. The User does not need to know about the
mechanics of the Computer to use a high level language. In addition,
some high level languages (like BASIC) offer a special immediate mode
which allows the User to solve equations and formulas as though he
were using a calculator. Assembling and linking are done
automatically so that the user tan concentrate on solving the Problem
rather than using the System.

These are a few of the programming tools offered by most Computer
Systems. The next section summarizes specific programming aids
available to the User of RT-11.

1.2 SYSTEM SOFTWARE COMPONENTS

, 1I\

The following is a brief summary of the RT-11 System programs:

1. The Text Editor (EDIT, described in Chapter 3) is used to
create or modify Source files for use as input to language
processing programs such as the assembler or FORTRAN. EDIT
contains powerful text manipulation commands for quick and
easy editing of a text file. EDIT also allows use of a Voll
display processor (such as the GT44), if one is part of the
hardware configuration (see Section 1.3).

2. The MACRO Assembler (Chapter 5) brings the capabilities of
macros to the RT-11 System with 12K (or more) memory.
(Macros are instructions in a Source or command language
which are equivalent to a specified sequence of machine

l-3

. . . ._ - . _ _..__“. _ ..- L ..-,. _ _-... .” ..I, _.,_ ” ._._. -_ ._. - “- _, ._ -._ _L

RT-11 Overview

3.

4 .

5.

6.

7.

8.

9.

10.

instructions or commands.) The assembler accepts Source files
written in the MACRO language and generates a relocatable
Object module to be processed by the Linker before loading
and execution. Cross reference listings of assembled
programs may be produced using CREF in conjunction with the
MACRO Assembler.

EXPAND (Chapter 10) is used in an 8K F/B job area or 8K
Systems (or in larger Systems with programs of great size) to
expand macros in an assembly language program into macro-free
Source Code, thus allowing the program to be assembled in 8K
using ASEMBL.

ASEMBL (Chapter 11) is an assembler designed for use in an 8K
RT-11 system, an 8K F/B job area, or larger Systems where
symbol table space is a factor. ASEMBL is a subset of
MACRO-11 with more limited features. (CREF is not available
under ASEMBL.)

The Linker (LINK, described in Chapter 6) fixes (i.e., makes
absolute) the values of relocatable symbols and converts the
relocatable Object modules of compiled or assembled programs
and subroutines into a load module which tan be loaded and
executed by RT-11. LINK tan automatically search library
files for specified modules and entry points; it tan produce
a load map (which lists the assigned absolute addresses) and
tan provide automatic overlay capabilities to very large
programs. The Linker tan also produce files suitable for
running in the foreground.

The Librarian (LIBR, see Chapter 7) allows the user to create
and maintain his own library of functions and routines.
These routines are stored on a random access device as
library files, where they tan be referenced by the Linker.

The Peripheral Interchange Program (PIP, see Chapter 4) is
the RT-11 file maintenance and Utility program. It is used
to transfer files between all devices which are part of the
RT-11 System, to rename or delete files, and to obtain
directory listings.

SRCCOM (Source Compare, described in Appendix K) allows the
user to perform a Character-by-Character comparison of two or
more text files. Differentes tan be listed in an output file
or directly on the line Printer or terminal, thus providing a
fast method of determining, for example, if all edits to a
file have been correctly made.

FILEX (Appendix J) allows file transfers to occur between
DECtapes used under the DECsystem-10 or PDP-11 RSTS System,
and DECtape and disk used under the DOS/BATCH System, and any
RT-11 device.

The PATCH Utility program (Appendix L) is used to make minor
modifications to memory image files (output files produced by
the Linker); it is used on files which do or do not have
overlays. PATCHO (Appendix M) is used to make minor
modifications to files in Object format (output files
produced by the FORTRAN Compiler and the Librarian, or MACRO
and ASEMBL assemblers).

l-4

. _ , _ _ - ~ _ - L _ - . . . _

RT-11 Overview

11. ODT (On-line Debugging Technique, described in Chapter 8)
aids in debugging assembled and linked Object programs. It
tan print the contents of specified locations, execute all or
part of the Object program, Single step through the Object
program, and search the Object program for bit Patterns.

12. DUMP (Appendix 1) is used to print for examination all or any
part of a file in octal words, octal bytes, ASCII and/or
RAD50 characters (see Chapter 5).

13. BATCH (Chapter 12) is a complete job control language that
allows RT-11 to operate unattended. The BATCH stream may be
composed of RT-11 monitor commands
BATCH jobs (jobs that will run on an;

system-independent
DIGITAL

supporting the BATCH Standard; currently RT-11 and
System

RSX-11D).
BATCH streams tan be executed under the Single-Job Monitor
01: in the background under the F/B Monitor.

14. The RT-11 FORTRAN System Subroutine Library (SYSLIB, Appendix
0) is a collection of FORTRAN callable routines that make the
programmed requests and various Utility functions available
to the FORTRAR programmer. SYSLIB also provides a complete
string manipulation package and two-word integer package for
RT-11 FORTRAN.

BASIC and FORTRAR IV are two high level lsnguages available under
RT-11. Summaries of their language features and commands are provided
in Appendixes F and G of this manual.

1.3 SYSTEM HARDWARE COMPONENTS

The minimum RT-11 System (that is, one that does not use the F/B
capability) requires a PDP-11 series Computer with at least 8K of
memory, a random-access device, and a console terminal. The F/B
capability requires at least 16K of memory and a line frequency clock.
For specific hardware/software interdependent requirements, refer to
the RT-11 System Release Notes.
Devices supported by RT-11 are listed in Table l-l. The third
(middle) column lists devices for which support is initially provided
in the System as distributed; these devices tan be used with no
modification (to either the monitor tables or the handlers) necessarv.
The cevices in the fourth column are supported after simple
modifications to the monitor tables or handlers. The system
customization section of the RT-11 System Generation Manual describes
how to make these modifications. The fifth column lists devices for
which no support is nrovided, 'but which may be intcrfaced by the User.
Currently, the RS64 disk is the only device in this category, and
instructions for its interface are provided in the RT-11 Software
Support Manual.

Consult the RT-11 System Generation Manual for modifications that may
be made to existing System devices (for example, varying the baud rate
of a terminal).

l-5 January 1976

RT-11 Overview

Table l-1
RT-11 Hardware Components

Category

DISK

Devices Re-
System-Installed quiring System User-Installee

Controller Devices Modification Devices

DECpack
Cartridge

Fixed-head

Removable
Pack

Diskette

RKll

RF11
RCll
RH11

RP11

RN11

RN05

PS11

Kr.503

RP02

RxOl

RJso4

RP03

RXOl (second
Controller)

RS64

DECTAPE TC11 TU56

MAGTAPE TMll/TMAll TUlO,TS03
RH11 TJU16

CASSETTE TA11 TU60

HIGH-SPEED PC11 PC11 (both)
PAPERTAPE PR11 PR11 (reader only)
PHADER/PUNCH

LINE PRINTER LSll LSll, LA180
LVll LVll (Printer only)
LP11 all LPll controiled

Printers

CAFUI READER

TERMINAL

CR11
CMll

DL11 LT33, LT35
LA3OP, LA36,
VT50, VT52,
VTo5

CR11
CMll

LA3os

DISPLAY
PRCCESSOR

VTll vRl.4-L,VRl7-L

CLOCK Kwll-L

1!

)

January 1976 l-6

RT-11 Overview

RT-11 operates in environments ranging from 8K to 28K words of memory.
Reconfiguration for different memory sizes is unnecessary--the same
System device operates on any PDP-11 processor with 8~ to 28~ 0f
memory and makes use of all memory available.

1.4 USING THE RT-11 SYSTEM

As mentioned earlier in the chapter, the RT-11 System offers two
complete operating environments. Esch is controlled by a Single user
from the console terminal keyboard by means of an appropriate
monitor--Single-Job or Foreground/Background. Both monitors are
completely compatible and allow full user interaction with all
features which are a part of the operating environment in use.

The choice of which environment to use, and, consequently, which
monitor to run, depends upon the needs of the User. The next two
sections provide information useful in determining which monitor is
more suitable for certain applications.

1.4.1 RT-11 Single-Job Monitor

The RT-11 Single-Job Monitor provides a Single-user, Single-program
System which tan operate in as little as 8~ of memory. Since the
Single-Job Monitor itself requires approximately one-half the memory
space needed by the Foreground/Background Monitor, this System is
ideal for extensive program development work; a much larger area of
memory is available for the user program and its buffers and tables.
Programs requiring extremely high data rates are best run in the
Single-Job environment, since interrupts tan be serviced at a much
higher rate.

All System programs' (listed in Section 1.2) tan be used under the
Single-Job Monitor, and many of the features of the
Foreground/Background Monitor (i.e., KMON commands and programmed
requests not used to control foreground jobs) are supported.

In effect, the Single-Job Monitor is much smaller and slightly faster
than the Foreground/Background Monitor; it tan best be used when
program size is the important factor.

1.4.2 RT-11 Foreground/Background Monitor

Quite often the central processor of a Computer System may spend a
large percentage of time waiting for some external event to occur, the
most common event being the completion of an I/O transfer (this is
particularly true of real time jobs). Many users would like to take
advantage of this unused capacity to accomplish other lawer-priority
tasks such as further program development or complex data analysis.
The Foreground/Background System provides this capability.

In a Foreground/Background System the foreground job is the
time-critical, on-line job, and is given top priority; whenever
possible the processor runs the foreground job. Bowever, when the
foreground job reaches a state in which no more processinq tan be done

l-7

RT-11 Overview

until some external event occurs, the monitor will try to run the
lower priority background job. The background job then runs until the
foreground job is again in a runnable state, at which point the
processor will interrupt the background job and resume the foreground
job.

In general, the RT-11 Foreground/Background System is designed to
allow a time-critical job to run in the foreground, while the
background does non-time-critical jobs, such as program development.
(All RT-11 System programs run as the background job in a F/B System.1
Thus, the user tan run FORTRAR, BASIC, MACRO, etc. in the background
while the foreground may be collecting data and storing and/or
analyzing it.

Most user programs written for an RT-11 System tan be linked (using
the Linker described in Chapter 6) to run as the foreground job.
There are a few coding restrictions, and these are explained in
Appendix H, F/B Programming and Device Handlers. A foreground program
has access to all of the features available to the background job
(opening and closing files, reading and writing data, etc.). In
addition, the F/B System gives the user the ability to set timer
routines, suspend and resume F/B jobs, and send data and messages
between the two jobs.

1.4.3 Facilities Available Only in RT-11 F/B

As mentioned previously, RT-11 F/B allows the user to write and
execute two independent programs. Some features which are available
only to the F/B user includer

1. Mark Time-- This facility allows user programs to set clock
timers to run for specified amounts of time. When the timer
runs out, a routine specified by the user is entered. There
may be as many mark time requests as desired, providing
System queue space is reserved (See .QSET, Chapter 9).

2. Timed Wait--This feature allows the user program to "sleep"
until the specified time increment elapses. Typically, a -.
program may need to Sample data every few seconds or even
minutes. While the program is idle, the other job tan run.
The timed wait accomplishes this; when the time has elapsed,
the issuing job is again runnable (sec .TWAIT, Chapter 9).

3.. Send Data/Receive Data-- It is possible, under RT-11 F/B, to
have the foreground and background programs communicate with
one another. This is accomplished with the send/receive data
functions. Using this facility, one program sends messages
(or data) in variable size blocks to the other job. This tan
be used, for example, to pass data from a foreground
collection program directly to a background analysis program
(See .SDAT/.RCVD, Chapter 9).

l-8

CRAPTRR2

SYSTEM COMMDNICATION

The monitor is the hub of RT-11 system coaraunicationst it provides
acc888 to System and User programs, perfonns input and output
functions, and enables control of background and foreground jobs.

The User communicates with the monitor through programmed requests and
keyboard ccmmands. The keyboard commands (described in Section 2.7)
arc used to load and run programs, Start or restart programs at
specific addresses, modify the contents of memory, and assign and
deassign alternate device names.

PrograrmPsd requests (described in detail in Chapter 9) are Source
program instructions
monitor Services.

which pass arguments to the monitor and request
These instructions allow User assembly language

programs to utilize the available monitor features.

2.1 START PRCCEDURE
After the System has been .built (sec the RT-11 System Generation
Manual), the monitor tan be loaded into memory from disk or DECtape as
rollows:

1. Press HALT.

2. Mount the System device on unit 0 (or the appropriate unit if
a unit other than 0 is to be used).

3. WRITE PROTECT the System unit.

If the hardware configuration includes a hardware bootstrap capable of
booting the System device,

1. Set the switch register to the appropriate address and press
LOAD ADRS.

2. If a second address is required, set the switch register to
that address.

3. Press START.

2-l January 1976

__ i--... ~” </ -- .-- .- _ . -

System Communication
If a hardware bootstrap is not available, Of if an RK disk unit
other than 0 is to be used as the System device, one of the following
bootstraps must be entered manually using the Switch Register. First
set the Switch Register to 1000 and press the LOAD ADES switch. Then
set the Switch Register to the first value shown for
bootstrap and raise the DEPosit switch.

the appropriate

values shown.
Continue depositing the

DECtape (RX Disk other
Disk

(RKll,RKOS)than Unit 0) Wll)

12700
177344
12710

177400
12740
4002
5710

100376
12710

10571~
100376
12710

105710

12700 12700
177406 177406
12710 12760

177400 xxxxxx
12740 4

10571:
12700

177406
100376 12710

5007 177400
12740

5
105710
100376

5007

12700
177466

5010
" 5040

12740
177400
12740

105710
100376

5007

1003765007 l xxxxxx = 20000 for unit 1
40000 for unit 2

(RJSO3/4)

12705
172044
12745

177400
12745

327::
100200

1775
100762

5007

(Rpll/RPO2) (Rxll/mw

12705 12702
176716 1002n7**
12715 12701

177400 177170
12745 130211

10571:
1776

112703
100376

5007 1010:
10220

402
12710

1
6203

103402
112711
111023
30211
1776

100756
103766
105711
100771

5000
22710

When all the values have been entered, set the switches to 1000 and
press the LOAD ADES and START switches.

The monitor loads into memory and prints one of the following
identification messages followed by a dot (.) on the terminal:

RT-11SJ V02C-xx
RT-11FB V02C-xx

The message printed indicates which monitor (Single-Job or F/B) has
been loaded; the User may determine which is to be loaded during the
System build Operation.

After the message has printed,
ENABLED.

the System device should be WETTE
The monitor is ready to accept keyboard commands.

“9t..-;-

t
I ‘

-.- ;v‘

January 1976 2 - 2

. .

System Communication

To bring up an alternate monitor while under control of the one
currently running (in this case, F/B), run PIP to perform the following
operations:

1. Preserve the running monitor by renaming it to yyyyyy.SYS
(the actual name yyyyyy is not significant, although it is
suggested that yyMNSJ for Single-Job and yyMNFB for Fore-
ground/Background be used to be consistent with System con-
ventions; yy in this case represents the disk type):
. R P I P
qRK0. RKKNFB. SYS=RKb: MONI TR. SYS/‘Rf’Y
?REEOOT?

i

2. Rename the desired monitor to MONITR.SYS:
“RKB :#ONiTR. SYS-RKD :RKMNSJ. SYS/R,‘Y
?REBOOT?

3. Write the new bootstrap from the new MONITR.SYS file
(using the PIP /U Option; A is a dummy filename, which
must be present in the command line):
xRKB:A=RKB : t4ON 1 TR. SYS/U

4 . Reboot the
?RKB :,‘O

System.

.1

RT-11SJ Y02C-02

.

Refer to the RT-11 System Generation Manual for an example of switching
monitors.

2-2.1 January 1976

. - . ._ .

This page intentionally blank.

System Conununication

2.2 SYSTEM CONVENTIONS

Special Character commands, file naming procedures and other
conventions that are Standard for the RT-11 System are described in
this section. The User should be familiar with these conventions
before running the System.

2.2.1 Data Formats

The RT-11 System makes use of five types of data formats: ASCII,
object, memory image, relocatable image, and load image.

File8 in ASCII format conform to the American National Standard Code
for Information Interchange, in which each Character is represented by
a I-bit Code. File8 in ASCII format include program Source files
created by the Editor, listing and map files created by various System
programs, and data files consisting of alphanumeric characters. A
chart containing ASCII Character Codes appears in Appendix C.

File8 in object format consist of data and PDP-11 machine language
Code. Object files are those output by the assembler or FORTRAN
Compiler and are used as input to the Linker.

The Linker tan output files in memory image format (.SAV), relocatable
Image format (.RRL), or load image format (.LDA).

A memory image file (.SAV) is a 'picture' of what memory will look
like when a program 1s loaded. The file itself requires the same
number of disk block8 as the corresponding number of 256-word memory
blocks.

A relocatable image file (.REL) is one which tan be run in the
f oreground. It differs frcxa a memory image file in that the file is
linked as though its bottom address were 0.
(using the monitor FRON command),

When the program is called
the file is relocated as it is

loaded into memory. (A memory image file requires no such
relocation.)

2-3 January 1976

System Communication

A load fmage (or .LDA) file may be produced for compatibility with the
PDP-11 Paper Tape System and is loaded by the absolute binary loader.
LDA files tan be loaded and executed in stand-alone environments
without relocation.

2.2.2 Prompting Character8

The following table summarizes the Character8 typed by ET-11 to
indicate to the user either that the System is awaiting User response
or to specify which job (foreground or background) is producing
output:

Table 2-l
Prompting Character8

Character Meaning

. The Keyboard Monitor is waiting for a command (See
Section 2.3.2).

* The Command String Interpreter is waiting for a
command string specification as explained in
Sections 2.3.3 and 2.5.

t When the console terminal is being used as an
Input file, the uparrow prompt8 the User to enter
information from the keyboard. If the input is
entered under EDIT or BASIC (or any program that
accepts input in special terminal mode
described in Chapter 91, the Character8 entered
are not echoed. Typing a CTEL 2 marks the
end-of-file.

> The > Character is used (under the F/B Monitor and
only if a foreground job is active) to identify
which job, foreground or background, is producing
the output currently appearing on the console
terminal. Esch time output from the background
job is to appear, B> is printed first, followed by
the output. If the foreground job ie to print
output, F> is typed first. B> and F> are also
printed as a result of the CTEL B and CTRL F
commands described in Table 2-4.

2.2.3 Physical Device Names

Devices are referenced by means of a Standard two-Character device
name. Table 2-2 lists each name and its related device. If no unit
number is specified for devices which have more than one unit, unit 0
is assumed.

2 - 4

. _

System Communication
Table 2-2

Permanent Device Names

Permanent Name I/O Device

CR:

CTn:

DK:

Card Reader (CRll/CMll).

mall cassette (n is the unit number, 0 or 1).
The default logical storage device for all files.
DK is initially the same as SY: (see below), but the
assignment (as a logical device name) tan be changed
with the ASSIGN Command (Section 2.7.2.4).

DKn: The specified unit of the Same device type aS DK.

DPn:
DSn:

DTn:

DXn:

LP:
NMIl:
MTn:

PP:

PR:

RF:

RKn :

SY:

SYn:

RP02 disk (n is an integer in the raWe O-7) l

R~S03/4 fixed-head disks (n is in the range O-7).
DECtape n, Where n iS a Udt number (an integer in
the range 0 to 7, inclusive).
RXOl Floppy disk (n is 0 or 1).
Line Printer.
TJD16 magtape (n is in the range O-7).
TM11 (industry compatible) magtape (n is an integer
beizween 0 and 7, incluslve).

High-Speed Paper tape Punch.

High-Speed Paper tape reader.

RF11 fixed-head disk drive.

RK disk cartridge drive n (n is in the range 0 to
7 inclusive).
System device; the device and unit from which the
System iS bootstrapped. (RT-11 allows
bootstrapping from any KK unit; reier to Section
2.1.) The assignment as a logical device name car.
be changed with the ASSIGN command (Section 2.7.2.4).

The specified unit of the Same device type as that
from which the System was bootstrapped.

TT: Te,rminal keyboard and Printer.
- --. . .- --In acldition to the fixed names shcwn in Table 2-2, devices tan be
assigned logical names. A logical
physical name

name takes precedence over a
and thus provides devfce independence. With this

feature a program that is coded to use a specific device does not need
to be rewritten if the device is unavailable. Refer to Section
2.7.2.4 for instructions on assigning logical names to devices.

2.2.4 File Trames and Extensions

Files are referenced symbolically by a name of one to six alphanumeric
characters followed, optionally, by a period and an extension of up to
three alphanumeric characters.
Cause an error message.) The

(Excess characters in a filename may
extension to a filename generally

indicates the fonnat of a file. It is a good practice to conform to
2-5 January 1976

I

. ._ ..,.._ d. _.- I.

I

I

I

System Communication
the Standard filename extensions for RT-11. ff an extension is not
specified for an input.or output file, most System programe assign
appropriate default extenaions. Table 2-3 liets the Standard
extensions used in RT-11.

Table 2-3
File Name Extension8

Extension

.BAD

Meaning

File6 with bad (unreadable) blocks; this
extension tan be assigned by the User
whenever bad areas occur on a device. The
.BAD extension makes the file permanent in
that area, preventing other files from using
it and consequently becoming unreadable.

.BAX Editor backup file.

.BAS BASIC Source file (BASIC input).

.BAT BATCH command file.

.CTL

. CTT

.DAT

.DIR

.DMP

.FOR

.LDA

BATCH control file generated by the
BATCH Compiler.
BATCH internal temporary file.

BASIC or FORTRAN data file,
Directoryliating file
DUMP output file.

FORTRAR IV Source file (FORTRAR input).

Absolute binary file (optional Linker
output).

.LLD

.LOG

.LST

.MAc

Library listing file.
BATCB log file.
Listing file (MACRO or FORTRAN output).

MACRO or EXPAND Source file (MACRO, EXPAND,
SRCCOM input).

.MAp

.OBJ

Map file (Linker output).

Relocatable binary file o-f=~, ASEMBL,
FORTRAR IV output, Linker input, LIBR input
and output).

.PAL Output file of EXPAND (the MACRO expander
program), input file of ASEMBL.

.REL

.SAV

. sou

.SYS

Foreground job relocatable image (Linker
output, default for monitor FRUN command).

Memory image or SAVE file; default for R,
RW, SAVE and GET Keyboard Monitor commands~
also default for output of Linker.
Temporary source file generated by BATCH.
System files and handlers.

2-6

System Conkmnication

If a filename with a blank extension is to be used in a comand line
In which a default extension is assumed (by either the monitor or a
aystern program), the User must insert a period after .the filename to
indicate that there ia no extension. For example, to run the file
TEST, type:

. RUN TES1’.

If the period after the filename is not glven, the monitor assumes the
.SAV extension and attempts to run a file named TEST.SAV.

2.2.5 Device Structures

RT-H devices are categorized by the physical structure of the device
and the way in which the device allows information to be processed.

All RT-11 devices are either random-access or sequential-access devices
Random-access devices allow blocks of data to be processed in a random
Order -- that is, independent of the data's physical location on the
device or its location relative to any other information. All disks
and DECtape fall into this category. Random-access devices are some-
times also called block-replaceable devices, because individual data
blocks tan be manipulated (rewritten) without affecting other data
blocks on the device. Sequential-access devices require that data be
processed sequentially; the Order of processing data must be the same
as the physical Order of the data. RT-11 devices that are considered
sequential devices are magtape, cassette, Paper tape, card reader,
line Printer, and terminal.

File-structured devices are those devices that allow the storage of
data under assigned filenames. RT-11 devices that are file-structured
include all disks, DECtape, magtape, and cassette. Nonfile-structured
devices, on the other hand, are those used to contain a Single logical
collection of data. These devices are used generally for reading and
listing information, and include line Printer, card reader, terminal,
and Paper tape devices.

Finally, file-structured devices are classified further as RT-11 direc-
tory-structured devices if they provide a Standard RT-11 directory at
the. beginning of the device (the Standard RT-11 directory is defined
in the RT-11 Software Support Manual). The directory contains informa-
tion about alestoredice and is updated each time a
file is moved, added, or deleted from the device. RT-11 directory-
structured devices include all disks and DECtapes. NonRT-11 directory-
structured devices are file-structured devices that do not have the
Standard RT-11 directory structure at their beginning. For example,
some devices, such as magtape and cassette, have directory-type infor-
mation stored at the beginning of each file; the device must be read
sequentially to obtain all information about all files.

It is possible to interface a device to the RT-11 System with a user-
defined directory structure; procedures are explained in the RT-11
Software Support Manual.

2-7 January 1976

System Communication

Y
2.3 MONITOR SOFTWARR COMPONRNTS

The main RT-11 monitor Software components arex

Resident Monitor (RMON)

Keyboard Monitor (KMON)

User Service Routine (USR) and Cwunand String Interpreter (CSI)

Device Handlers

The reader may find Figure 2-l helpful while reading the following
descriptions.

2.3.1 Resident Monitor (RMON)

The Resident Monitor is the only pennanently memory-resident part of
RT-11. The programmed requests for all Services of RT-11 are handled
by RMON. RMON also contains the console terminal Service, error
processor, System device handler, EMT processor, and System tables.

2.3.2 Keybonrd ,Monitor (KMON)

The Keyboard Monitor provides communication between the User at the
console and the RT-11 System. Monitor commands allow the user to
assign logical names to devices, run programs, load device handlers,
and control F/B operations. A dot at the left margin of the conaole
terminal page indicates that the Keyboard Monitor is in memory and ie
waiting for a user command.

2.3.3 User Service Routine (USR)

The User Service Routine provides support for the RT-11 file
structure. It loads device handlers, open8 files for read or write
operations, deletes and renames files, and creates new files. The
Command String Interpreter (the use of which is described in Section
2.5) is part of the USR and tan be accessed by any program to
interpret device and flle I/O information.

January 1976 2-7.1

.j

This page intentionally blank.

System Communication

2.3.4 Device Handlers

Device handlers for the RT-11 System perform the actual transfer of
data to and from peripheral devices. New handlers tan be added to the
System as files on the System device and tan be interfaced to the
System by modifying a few monitor tables (see the RT-11 Software
Support Manual, DEC-ll-ORPGA-B-D for instructions on how to interface
a new nandler to the RT-11 monitor).

3

2.4 GENERAL MEMORY LAYOUT

Nhen the RT-11 System is first bootstrapped from the System device,
memory is arranged as shown in the left diagram of Figure 2-l (this 1s
the case for either the Single-Job or Foreground/Background Monitor,
since no foreground job exists yet). The background job is the RT-11
module KMON.

When an RT-11 foreground job is initiated (via the monitor FRUN
command, Section 2.7.5.11, room is created for the foreground job to
be loaded by decreasing the amount of space available to the
background job. The memory maps in Figure 2-l illustrate the System
layout before and after a foreground job is loaded. (Refer also to
Chapter 6, Section 6.5.)

I RMON I RMON

HANDLERS

FJOB

USR AFTER
LOADING

KMON THE

F3ReEGROUND
I I

I

O/

Figure 2-l
RT-11 System Memory C4aps

As shown in the figures, the process of loading a foreground job
requires that the USR and KTION be physically moved. Once a foreground
job is running, it is possible to communicate with either the
background or foreground job via special commands (described in
Section 2.7). All of the terminal support functions described in
Section 2.6 are available under both the Single-job and F/B Monitors.

In addition to FRUN, other monitor commands tan alter the memory map;
these are LOAD, UNLOAD, GT ON, and GT OFF. LOAD Causes device
handlers to be made resident until an UNLOAD command is perforined,
UNLOAD deletes handlers which have been loaded. GT ON and GT OFF
Cause terminal Service to utilize the ~~-11 display hardware. Figure
2-2 illustrates the placement of display modules and device handlers
in memory following the GT ON, LOAD, and FRUN commandst

2-8

System Coxnmunication

r-- HANDLERS

r F JOB

USR

1 KMON 1

I III 8

i i.
Figure 2-2

RT-11 Memory Map (GT40)

RT-11 maintains a free memory list to manage memory. Thus, when a
handler is unloaded, the space the handler occupied As returned to the
free memory list and is reclaimed by the background.

2.4.1 Component Sizes

Following are the approximate sizes (in words) of
RT-11, Version 2C (SiZeEJ reflect RK).

RMON 3575 (10)
USR 2050 (10)
KMON 1800(10)

the components for
I

Single-job

1703 (10)
2050 (10) I

1540 (10)

In the F/B System, the background area must always be large enough to
hold KMON and USR (3.9K words). The following list indicates the total
space available for the loaded device handlers, the foreground job,
and the display handler. Note that the low memory area from 0-477 is
never used for executable programs. (These sizes also allow room for
the 3.5K RMON).

Machine size (words) Spate available (words)

16K 8.5K
24K 16.5K
28K 20.5K

With the Single-Job Monitor, RMON requires only 1.67K. The follcwing
list shcws the amount of space available to users with the Single-Job
Monitor8

2-9 January 1976

System Communication

Machine size (words)
8K
16K
24K
28K

Program space available (words)

1::
22K
26K

2.5 ENTERING COMMAND INFORMATION
Once either monitor has been loaded and a System program started, the
user must enter the appropriate command information before any opera-
tion tan be performed.

In most cases, the Command String Interpreter immediately prints an
asterisk at the left margin. The user must then type a command string
in the general format:

OUTPUT=INPUT/SWITCH

(A few System programs -- EDIT, PATCH, PATCHO -- require that this com-
mand information be entered in a slightly different format. Complete
instructions are provided in the appropriate chapter.)

In all cases, the format for OUTPUT is:

dev:filnam.ext(nl,...dev:filnam.ext[n]

INPUT is:

devrfilnam.ext,...dev:filnam.ext

and SWITCH is:

/s:oval or /sIdval

wheret

dev:

filnam.ext

bl

/s:oval or
/sldval

January 1976 2-10

in each case is an optional two to three-Character
name from Table 2-2 whose usage conforma to the
NOTE below.

in each case is the name of a file (consisting of
one to 8iX alphanumeric characters followed
optionally by a dot and a zero to three-Character
extension). As many aa three output and six input
files may be allowed.

is an optional declaration of the number of block8
(n) deeired for an output file. n is a decimal
number (<65,535) enclosed in Square brackets
immediately following the output filnam.ext to
which it applies.

is one or more optional switches whose functiono
vary according to the program in use (refer to the
switch Option table in the appropriate chapter).
oval is either an octal nunher 01: one to three
alphanumeric Character8 (the first of which must
be alphabetic) which will be converted to radix-50
(See Section 5.5.4 of the MACRO chapter). dval is
a decimal value preceded by an exclamation point.

_ ‘i

f)

.

System Communication

Throughout this manual, the /s:oval construction
is usedt however, the /sldval formst is always
valid. Generally, these switches and their
associated values, if MY, should follow the
device and filename to which they apply.

If the same switch is to be repeated several times
with different values (e.g., /L:MRB/L:TTM/L:CND to
MACRO)
/LIRRB~TTZND~

line may be abbreviated as
octal, RAD50, and decirnal values

may be mixed.
= if required, is a delimiter that separates the out-

put and input fields. The < sign may be used in
place of the = sign. The separator tan be omitted
entirely if there are no output files.

As illustrated in the general format of
a command line, the coxvnand line
consists of an output list, a separator
(= or <Ir and an input list.
Dmission of a device specification *
either the input or output list is hakt
dled as follows:

DK: is assumed if the first file in a
list has no explicit device. DK (or the
device associated with the first file)
iS default until another device is
indicated; that device then becomes
default until a new one is used, and so
on. If the follawing command ie
enterad, for exaxnple, to MACRO:
*DTl: FIRST. OEJ, LF :=THSK. 1, RKl : THSK. 2, TkSK. 1:

it is interpreted as though all devices
had been indicated as followsr
*DT1 : FIRST. OEJ, LF: =DK : THSK. 1, RKi : THSK. 2, R#l : TftS#. 3

2.6 KRYROARD COMMUNICATION (KMON)

Special function keys and keyboard commands allow the User to
communicate with the RT-11 monitor and allocate
resources, manipulate memory images, Start

System

foreground/background Services.
programs, and use

The special functions of certain terminal keys used for oonnunication
with Ma Keyboard Monitor are explained in Table 2-4. Note that in the
F/B system, the Keyboard Monitor always runs as a background job.

CTRL commands are entered by holding the CTRL key down while typing
the appropriate letter.

2-11 January 1976

System Communication

Table 2-4
Special Function Xeys

XeY Function

CTRL A Valid when the monitor GT ON command has been typed and
the display ie in use. The comman d does not echo on
the terminal. It ie used after a CTEL S has been typed
to effectively Page output. Console output is
permitted to resume until the Screen is completely
f illed; text previously displayed is scrolled upward
off the Screen. CTEL A has no special meaning if GT ON
is not in effect or if a SET TTY NOPAGE command has
been given (See Section 2.7.2.8).

CTFU B Undar the F/B Monitor echoes B> on the terminal (unless
output is already coming from the background job) and
Causes all keyboard input to be directed to the
background job. At least one line of output will be
taken from the background job (the foreground job has
priority, and control will revert to it if it has
output). All typed input will be directed to the
background job until control is redirected to the
foreground job (via CTEL F). CTEL B has no special
meaning when used under a Single-Job Monitor or when a
SET TTY NOFB conxnand has been fssued (see Section
2.7.2.8).

CTRL c CTRL c echoes as ^C on the terminal and is used to
interrupt program execution and return control to the
keyboard monitor. If the program to be interrupted is
waiting for terminal input, 01: is using the TT handler
for input, typing one CTRL C is sufficient to interrupt
execution; in all other cases, two CTRL Cs are neces-
sary. Note that under the F/B Monitor, the job which is
currently receiving input will be the jobthatisstopped
(determined by whether a CTRL F or CTRL B was mOSt re-
cently typed). To ensure that the command is directed
to the proper job, type CTRL B or CTRL F before Wpiw
CTRL C.

CTRL E Valid when the monitor GT ON command has been typed and
the display is in use. The command does not echo on
the terminal, but Causes all terminal output to appear
on both the diaplay Screen and the console terminal
simultaneously. A second CTRL E disables console
terminal output. CTEL E has no special meaning if
GT ON is not in effect.

CTRL F Under the F/B Monitor echoes F> on the terminal and
instructs that all keyboard input be directed to the
foreground job and all output be taken from the
foreground job. If no foreground job exfsts, F? is
printed and control is directed to the background job.
Otherwise, control remains with the foreground job
until redirected to the background job (via CTEI, 8) or
until the foreground job terminatea. CTRL F has no
special meaning when used under a Single-Job Monitor,
or when a SET TTY NOFB command has been used (See
Section 2.7.2.8).

9-19

. _._

System Communication
Table 2-4 (Cont.)

Special Function Keys
Key Function
CTRLO Echoes t0 on the terminal and Causes suppresaion of

teleprinter output while continuing program execution.
Teleprinter output is re-enabled when one of the
following occurs:

1. A second CTRL 0 is typed,

2. A retum to the monitor occursI or

3. The running program issues a .RCTRLO
directive (sec Chapter 9). (RT-11 System
programs reset CTRL 0 to the echoing state
each time a new command string is entered.)

CTRL Q Does not echo. Resumes printing characters on the
terminal from the point at which printing was
previously stopped (via CTRL S). CTRL Q has no special
meaning if a SET TTY NOPAGE connnand has been used (See
Section 2.7.2.8).

CTRL S Does not echo. Temporarily suspends output to the
terminal until a CTRL Q is typed. If GT ON is in
effect, each subsequent CTRL A Causes output to proceed
until the Screen has been refilled once. This feature
allows users with high-speed terminal8 to fill the
display Screen, stop output with CTRL S, read the
Screen, and then continue with CTRB Q or CTRL A.
(Typing CTRL C in this case also continues output.)
Under the F/B Monitor, CTRL S has no special meaning if
a SET TTY NOPAGE has been used.

CTRL U Deletes the current input line and echoes as tU
followed by a carriage retum at the terminal. (The
current line is defined to be all characters back to,
but not including, the most recent line feed, CTRL C or
CTRL 2.)

CTRL 2 Echoes tZ on the terminal and terminates input when
used with the terminal device handler (TT). The CTRL Z
itself does not appear in the input buffer. If TT is
not being used, CTRL Z has no special meaning.

RUBOUT Deletes the last character frcm the current line and
echoes a backslash plus the character deleted. Esch
succeeding RUBOUT deletes and echoes another Character.
An enclosing backslash is printed when a key other than
RUBOUT irr typed. This erasure is done right to left up
to the beginning of the current line.

‘1I

/
‘.,

)

(J

2.6.1 Foreground/Background Terminal I/O

It is important to note that console input and output under F/B are
independent functions) input tan be typed to one job while output ie
printed by another. The User may be in the process of typing input to
one job when the other job ie ready to print on the terminal. In
this case, the job which is ready to print interrupts the user
and prints the message on the terminal; input control is not re-
directed to this job, however , unlese a CTRL B or CTRL F is explicitly
typed . ff Input is typed to one job while the other has output

2-13

System Communication

control, echo of the input is suppressed until the job accepting input
gains output control; at thia Point all accumulated input is echoed.

If the foreground job and background job are both ready to print
output at the same time, the foreground job has priority. Output fran
the foreground job prints until a line feed ie encountered, at which
point output frcm the background job prints until a line feed is
encountered, and so forth.

When the foreground job terminates, control reverts automatically to
the background job.

2.6.2 Type-Ahead
The monitor has a type-ahead feature which allows terminal input to be
entered while a program is executing. For examplet

.R FIF
*:DTl : TAFE=FR:
DTi:/L
*13-FEB-74
TRFE 76 13-FEB-74

486 FKEE BLOCKS

While the first command line is executing, the second line (DTl:/L) is
entered by the User. This terminal input is stored in a buffer and
used when the first Operation has completed.
If a Single CTHL C ie typed while in this mcde, it is put into the
buffer. The program currently executing exits when a terminal input
request needs to be satisfied. A double CTRL C returns control to the
monitor immediately.

If type-ahead input exceeds 80 characters, the terminal bell rings and
no Character8 are accepted until part of the type-ahead buffer is used
by a program or Character8 arc deleted. No input is lost. Type-ahead
is particularly useful in specifying multiple command lines to System
programs, as shown in the preceding example. ff a job ie terminated
by typing two CTRL C's, any unprocessed type-ahead is discarded.

NOTE

ff type-ahead is used in conjunction
with EDIT or BASIC, there is no terminal
echo of the characters but they are
stored in the buffer until a new command
is needed. The Character6 are echoed
only when actually used by the program.

2.7 KEYBOARD COMMANDS

Keyboard commands allow the User to communicate with the monitor.
Keyboard commands tan be abbreviated; optional charactera in a
command are delimited (in this section only)

require at least one apace between the
by braces. Xeyboard

commands command and the firmt
argument. All c-and linea are terminated by a carriage return. ,.

2-14

i

f

_
)

System Communication

All canmands, with the exception of those described in.Section 2.7.5,
may be used under either the Single-Job or F/B Monitor. The ccamnands
described in Section 2.7.5 apply only to the F/B Monitor.

Any reference made to "the background
job" applies as well to the Single-Job
Monitor, since the background job in a
FD System 18 equivalent to the
Single-j& environment in it8 normal
state.

2.7.1 Coxsnands to Control Terminal I/O (GT ON and GT OFF)

I GT ON/GT OFF
I

The GT ON and GT OFF commands are used to enable &nd disable the
scroller (VP-11 display hardware). GT ON Causes the display Screen to
replace the console as the terminal output device. Switch Options
allow the user to control the number of lines to appear on the Screen
and to Position the first line vertically. output appears an the
display in the same format as it would on the console (i.e., output,
text, and commands are displayed in the Order in which they occur).
GT ON is not permitted in an 8K configuration.

The form of the GT ON command 18:

GT ON{/L:n){/T:n}

wherc:

/L:n represents an optional switch setting indicating the
number of lines of text to diaplay; the suggested
range is:

12' Screen l<-n<=37 octal (31 decimal)
(GT40, DEClab)

17" Screen
(GT44)

l<-n<-50 octal (40 decimal)

/T:n represents an optional switch setting indicating the
top position of the scroll diaplay; the suggested
range is:

12" Screen l<-n<=1350 octal (744 decimal)
(GT40, DEClab) I

2-15

System Comrnunication

17" Screen l<-n<-1750 octal (1000
(GT44) decimal)

ff no switches are specified, a test for the Screen size is performed
and default values are automatically assigned as followsx

12" Screen /Lt37 (31 decimal)
(GT40, DEClab) /Tr1350 (744 decimal)

17" Screen /Lt50 (40 decimal)
(GT441 /T:1750 (1000 decimal)

I Line length is always set to 72 for 12" Screen and 80 for 17" Screen.
Once the display has been activated with the GT ON command, CTRL A ,
CTRL S, CTRL E and CTRL Q tan be used to control Scrolling behavior.
These commands are described in Section 2.6.

NOTE

ODT is one exception to the use of GT
ON. This System program has it8 own
terminal handler and cannot make use of
the displayt output will appear only on
the console terminal whenever ODT is
running .

The GT OFF comman d clears the display and resumes output on the
teleprinter. The command format isr

GT OFF

If GT ON and GT OFF are used when no display hardware exists or when a
foreground job ie active, the ?ILL CMDP measage is printed.

2.7.2 Commands to Allocate System Resources

ElDATE

2.7.2.1 DATE Command - The DATE command enters the indicated date to
the System. This date is then assigned to newly created files, new
device directory entries (which may be listed with PIP), and listing
output until a new DATE command is issued.

The form of the command ist
DAT{E} (dd-mmm-yy}

where dd-mmm-yy is the day, month and year to be entered. dd is a
decimal number in the range 1-31) mmm is the first three characters of
the name of the month, and yy is a decimal number in the range 73-99.
If no argument is given, the current date is printed.
January 1976 2-16

i-

/ System Communication

Examplest
. D A T E Z l - F E E - 7 4 Enter the date 210FEB-74 as the current

System date.

, DAT
Zl-FEB-74

Print the current date.

ff the date is entered in an incorrect format, the PDAT? error
message is printed.

0TIME

2.7.2.2 TIME Command - The TIME command allows the user to find out
the current time of day kept by RT-11 or to enter a new time of day.
If no RWll-L clock is present on the System, the ?NO CLOCK? error
message is generated. If the time is entered in an incorrect format,
the PTIM? message is printed.

The fonn of the command isr

TIM E0 1hh:mm:ss f
where hh:mm:ss represents the hour, minute, tid second. Time is
represented as hours, minutes, and seconds past midnight in 24-hour
format (e.g,, lt25100 P.M. is entered as lit25rOO). ff any of the
arguments are omitted, 0 is assumed. If no argument is given, the
current time of day is output.

Examplest

. TIM 8:15:23 Sets the time of day to 8 hours, 15
minutes and 23 seconds.

.TIM Approximately 10 minutes later, the
81:25:27 TIME command Outputs this time.

. T I M E 11:5 Sets the time of day to 18:05:00.
Under the F/B Monitor, after the time reaches 24:00, the time and date
will be reset when the User next issues a TIME command (or .GTIM pro-
grammed request). Time and date are not reset under the Single-Job
Monitor. Month and year are not updated under either monitor.

The clock rate is initially set to 60-cycle. Consult the RT-11 System
Generation Manual if conversion to a 50-cycle rate is necessary.

2-17 January 1976

System Ccmmnication

INITIALIZE

2.7.2.3 INITIALIZE Command - The INITIALIZE command ie used to reset
several background system tables and do a general "clean-up" of the
background area; it has no effect on the foreground job. In
particular, this command makes non-resident those handlers which were
not loaded (via LOAD), purges the background's I/O channels, disables
CTRL 0, performs a hard reset , clears locations 40-53, resets the KMON
Stack pointer, and under the F/B monitor performs an .UNLOCK.

Under the Single-Job Monitor a RESET instruction is done (See Chapter
9). Under the F/B Monitor, I/O is stopped by entering each busy
vice handler at a special abort entry Point.

de-

The ferm of,the comnand ist

IN ITIALIZEi 1
The INITIALIZE command tan be used Prior to running a user program, or
when the accumulated results of previously issued GET cormnands (See
Section 2.7.3.1) are to be discarded.

Exaxnpler

.IN
.R ?RCiCi

Initializes System background job

I ASSIGN

2.7.2.4 ASSIGN Command - The ASSIGN conmaud assigns a user-defined
(logical) name as au alternate nam for a physical device. This is
especially useful when a program refers to a device which is not
available on a certain System. Using the ASSIGN
redirected to a device which ie available.

coumand, I/O tan be

be assigned per ASSIGN conmmnd,
Only one logical name tan

but several ASSIGN comauds (14
maxiraunt) tan be used to assign different names to the same device.
This conmand is also used to assign FORTRAN logical units to device
names .

January 1976 2-18

I- .b ..-.. . -

‘) System Coavwnication

The form of the command isr

ASS(IGN} ((dev}:udev}

wheret

dev is any Standard RT-11 (physical) device name
(refer to Table 2-2) with the exception of DK and
SY.

udev is a 1-3 Character alphanumeric (logical) name to
be used in a program to represent dev (if more
than three characters are given, only the rirst
three are actually used). DK and SY may be used
as loqical device names. I

x is a delimiter Character (tan be a colon, equal
sign, and, if eeparating physical and logical
devices, epace).

The placement of the delimiter is very important in the ASSIGN
conmand; it must be placed exactly as shown in the following
examples:

MSIGN DTi INP Physical device DT1 ie assigned the
logical device name INP. Whenever a
reference to INP: is encountered,
device DTl: is used.

. HSSIGN DT3 :DK Physical device name DT3 is assigrsed the
default device name DK. Whenever DK ie
rererenced or defaulted to, DT3 is used.
(Note that the initial assignment of DK
is thus changed.) I

.HSSIGN LP=9 FORTRAR logical unit 9 becomes the
physical device name LP. All referencea
to unit 9 use the line Printer for
output.

Assignment of logical naznes to logical names is not allowed.

ff only a logical device name is indicated in the command line, that
particular assignment (only) is removed. Thus:

.FISSIGN :9 Deassigns the logical name 9 from it8
physical device (LP, in the case above).

. IISSIGN =DK Removes assignment of logical name DK
from it8 physical device (DT3, in the
case above) .

If neither a physical device name nor a logical device name is
indicated, all assignments to all devices are reuuoved.

J
',

.MSIGN All previous logical device assignments
are removed.

2-19 ;January 1976

System Communication

ElCLOSE

2 . 7 . 2 . 5 C L O S E Command - The CLOSE command Causes all currently open
output f ilea in the background job to become permanent files. ff a
tentative open file is not made permanent, it will eventually be
deleted. The CLOSE command is most often used after CTEL C has been
typed to abort a background job and to preserve any new files that job
had open Prior to the CTRL C; it has no effect on a foreground job.

The ferm of the command ist

CLO(SE}

The CLOSE command makes temporary directory entries permanent.

Exampler

R ERIT
*:EWTEXT%$
*IHBCRBJ
* .-' c

The Editor has a temporary
file open (TEXT), which is
preserved by .CLOSE.

ElLOAD

2 . 7 . 2 . 6 LOAD Command - The LOAD command is used to make a device
handler resident for use with background and foreground jobs.
Execution is faster when a handler is resident, although memory area
for the handler must be allocated.
foreground job must be loaded before

Any device handler to be used by a
it tan be used.

The form of the command ist

LOAfD> dev{,dev=B){,dev=F,...)
wheret

dev represents any legal RT-11 device name.
m represents a delimiter, denoting device ownership.

B represents the background job.

F represents the foreground job.

The dev=F (and dev=B) construction is valid only under the
Foreground/Background System. When used under the Single-Job Monitor,
the ?ILL EV? error message occurs.

f

2 - 2 0

1,
!

System Communication

A device may be ouned exclusively by either the foreground or
background job. This may be used, for example, to prevent ths I/O of
two different jobs from being intermixed on the same non-file
structured device. For example:

l 1,. (:)(qI:I F�F:�::~) F�R, l,,,F�::::F: The Papertape Punch belongs to the
background job while the Paper tape
reader is available for use by
either the background or foreground
jobt the line Printer is owned by
the foreground job. All three
handlers are made resident in
memory.

Different units of the same random-access device Controller may be owned
by different jobs. Thus, for example, DT1 may belong to the background l
while DT5 may belong to the foregrouna job. If no ownership 1s
indicated, the device ie available for public use.

To Change awnership of a device, another LOAD command may be used; it
is not necessary to first UNLOAD the device. For example, if RKl has
been assigned to the foreground job as in the example above, the
commandr

reassigns it to the background job.

The System unit of the System device cannot be assigned ownership, and
attempts to do so will be ignored. Other units of the same type as
the System device, however , tan be assigned ownership.

LOAD is valid for use with user-assigned names. For example:

l L..C)A XY =F

If the Single-Job, DECtape-based Monitor is being used, loading the
necessary device handlers into memory tan significantly improve the
throughput of the System, since no handlers need to be loaded
dynamically (in other words, they need not be loaded, as required,
from the DECtape).

ElUNLOAD

2.7.2.7 UNLOAD Command - The UNLOAD command is used to make handlers
) that were previously LOADed non-resident, freeing the memory they were_.

1 using.

January 1976

System Communicat ion

The form of the command ist

UNL{OAD} dev {,dev,...}

wheret

dev represents any legal RT-11 device name.

UNLOAD clears cwnership for all units of an indicated device type.
For example, typingr

U N L R K 2

cle*s all units of RX. (A request to unload the System device
handler clears ownership for any assigned units for that device, but
the handler remains resident.)

Any memory freed is returned to a free memory list and eventually
reclaimed for the background job after the UNLOAD command is given.
UNLOAD is not permitted if the foreground job is running. such an
action might Cause a handler which is needed by the foreground job to
become non-resident.

Example:

UNLORD LP, PP The lineprinter and Paper tape
Punch handlers are releaaed and the
area which they used is freed.

A special function of this command is to remove a terminated
foreground job and reclaim memory, since the space occupied by the
foreground job is not automatically returned to the free memory list
when it finishes. In this instance, the device name IG is used to
specify the foreground job. For examplet

UNL FCi

FG tan be mixe6 with other device names.

Iiowever, if, for example, DT2 has been assigned the name FG and loaded
into memory as followsr

the commandt

Causes the foreground job, not DT2, to be unloaded. To Unload DT2,
this command must be typed:

UNLOAD DT2

2 - 2 2

. .

System Connnunication

SETu
2.7.2.8 SET Command - The SET command is used to change device
handler characteristics and certain System configuration Parameters.

The ferm of the command isr

SET devt NO option=value , NO optiOn=ValUe,...
1 t (1 1where :

devr represents any legal RT-11 physical device
name (and in addition, TTY and USR).

i 1NO Option is the feature or characteristic to be
altered.

-value is a decimal nurober required in some cases.

A space may be used in place of or in.addition to the colon, equal
sign, 01: comnaa. Note that the device indicated (with the exception of
TTY and USR) must be a physical device name and is not affected by loqical
device name assignments which may be active. The name of the
characteristic or feature to be altered must be legal for the
indicated device (See Table 2-5) and may not be abbreviated.

The SET consnand locates the file SY:dev.sYS and permanently modifies
it. No modification is done if the command entered is not CORIpletely
valid. If a handler has already been loaded when a SET command is
issued for it, the modifications will not take effect until the
handler is unloaded and a fresh copy called in from the System device.

Table 2-5 lists the System characteristics and Parameters which may be
altered (those modes designated äs "normal" are the modes as set in the
distribution copies of the drivers):

Table 2-5
SET Command Options

Device Option Alteration

LP CR Allows carriage returns to be Sent to the
Printer. The CR Option should be set for any
FORTRAN program using formatted I/O, to allow
the overstriking capability for any line print-
er, and when using the LSll or LP05 line print-
ers (since the last line in the buffer mav
otherwise be lost). This is the normal m(36e.

LP

LP

NOCR

CTRL

Inhibits sending carriage returns to the line
Printer. The line Printer Controller Causes a
line feed to perform the functions OL a carriage
return, SO using this Option produces a signi-
fkant inCreaSe in printing Speed on LPll print-
ers.
Causes all characters,
trol characters,

including nonprinting con-
to be passed to the line Printer.

This mode may be used for LSll line Printers.
tother line Printers will print space for control
characters.1

(continued on next Page)
2-23 January 1976

I

System Conrnunication
Table 2-5 (Cont.)
SET Colm\and Options

Device Option Alteration

LP NOCTRL Ignores nonpfinting control characters. This is
the normal mode.

LP FORM0 Causes a form feed to be issued before a
request to print block Zero. This is the
normal mode.

LP N O F O R M O Turns off FORM0 mode.

LP HANG Causes the handler to wait for user
correction if the line Printer is not ready
or becomes not ready during printing. This
is the normal mode.

New users should note that when expecting
output from the line.printer and it appears
as though the System is not responding or is
in an idle state, the line Printer should be
checked to see if it is on and ready to
print.

LP NOHANG Generates an immediate error if the line
Printer is not ready.

LP LC Allows lower case characters to be sent to
the Printer. This Option should be used if
the Printer has a lower case character set.

LP NOLC Causes lower case characters to be translated
to upper case before printing. This is the
normal mode.

LP WIDTH=n Sets the line Printer width to n, where n ia
a number between 30 and 255. Any characters
printed past column n are ignored. The NO
modifier is not permitted.

CR CODE=n Modifies the card reader handler to use
either the DEC 026 or the DEC 029 card Codes
(refer to Appendix H). n must be either 26 or
29. The NO modifier is not permitted.

CR CRLF Causes a carriage return/line feed to be
appended to each card image. This is the
normal mode.

CR NOCRLF Transfers each card image without appending a
carriage return/line feed.

CR HANG Causes the handler to wait for User
correction if the reader is not ready at the
Start of a transfer. This is the normal
mode.

CR NOHANG Generates an immediate error if the device ie
not ready at the Start of a transfer. Note
that the handler will wait regardless of how
the Option ie set if the reader becomes 'not
ready' during a transfer (i.e., the input
hopper' is empty, but an end-of-file card has
not yet been read).

January 1976 2-24 (continued on next Page)

System Communication

mble 2-b (Cont.)
SET Connnand Options

Device
CR

CR

CR

CR NOTRIM

CT RAW

CT

1 rates. Normal mode is NORAW.
w Options, with the exception of HOLD/NOHOLD andThe folloa

COPY/NOCOPY, are available in the Foreground/Background SystemT;;:;;
HOLD/NOHOLD and COPY/NOCOPY are available in both Systems.
Options are not permanent, and must be reissued whenever the monitor
is re-bootstrapped. They tan be made permanent by modifying the moni-
tor as described in Chapter 2 of the RT-11 Software Support Manual.

Option
IMAGE

NOIMAGE

TRIM

NORAW

Alteration
Causes each card column to be stored as a
12-bit binar-y number, one column per word.
The CODE Option has no effect in IMAGE mode.
The format of the 12-bit binary number is:
PDP-11 WOF!D

15 14 1 3 IZ 11 1 0 9 8 7 6 5 4 3 Z 1 0

LMUSED (ALWAYS 01 ZCM ZOVE ZON ZONE ZONE ZONE ZONE ZONE ZCNE ZONE ZONE ZONE
1 2 11 0 1 2 3 1 5 6 7 8 9

This format allows binary card images to be
read and is especially useful if a special
encoding of Punch combinations is to be used.
Mark-sense cards may be read in IMAGE mode.

Allows the normal translation (as
by the CODE Option) to take Placet

sp~;~~i;~

packed one column per byte. Invalid Punch
combinations are translated into the error
Character, ASCII "\" (backslash), which is
octal code 134. This is the normal mode.

Causes trailing blank5 to be removed from
each card read. It is not recommended that
TRIM and NOCRLP be used together since card
boundaries will be difficult to find. This
is the normal mode.

Transfers a full 80 Character5 per card.

Causes the cassette handler to perform a
read-after-write check for every record
written, and retry if an output error
occurred. If three retries fail, an output
error is detected.

Causes the cassette handler to write every
record directly without reading it back for
verification. This significantly increases
transfer rates at the risk of increased error

(Note that
ler itself

the device specification is TTY, .not TT, because the hand-
s not chanc 2d.l
COPY

NOCOPY

Enables use of the auto-print mode of the
VTSO copier Option, if present. The com-
mand is a no-op for any terminal other than
the VTSO, but a "1" Character may be printed
an the terminal. Consult the VT50 Video Ter-
minal Programmer's Manual for more infor-
mation.

Disables use of the auto-print mode of the
VTSO copier Option, if present. The command
is a no-op for any terminal other than the
VTSO, but a '*" Character may be printed on
the terminal. This ie the normal mode.

2-25 (continued on next Page)
January 1976

1

System communication

Table 2-5 (Cont.)
SET command Options

DeViCe Option Alteration

CBLF Causes the monitor to issue a carriage
return/line feed on the console terminal
whenever it attempts to type past the right
margin (as set by the WIDTH Option). This is
the normal mode.

TTY NOCHLF Causes no special action to be taken at the
right margin.

TTY FB Causes the monitor to treat CTRL B and CTBL F
Character5 background and foreground
program contF% characters and does not
transmit them to the user program. This is
the normal mode.

TTY NOFB Causes CTEL B and CTBL F to have no special
meaning.

NOTE

TTY FORM

SET TTY NOFB is issued to EMAN,
(which runs as a background job)
and disables all communication with
the foreground job. To enable
communication with the foreground
job, issue the comman d SET TTY FB.

Indicates that the console terminal is
capable of executing hardware ferm feeds.

TTY NOFOHM Causes the monitor to simulate ferm feeds by
typing eight line feeds. This is the normal
mode.

TTY HOLD Enables use of the hold Screen mode of op-
eration for the VT50 terminal. The command
is a no-op for any terminal other than the
VTSO, but a "[. character may be printed on
on the terminal. The command ie valid for
F/B and SingleJob Monitors. Consult the
VTSO Video Terminal Programmer's Manual for
more inronnation.

TTY

TTY

NOHOLD

PAGE

Disables use of the hold Screen mode of op-
eration for the VT50 terminal. The conunand
ie a no-op for any terminal other than the
VTSO, but a "* Character may be printed on
the terminal. This is the normal mode.

Causes the monitor to treat CTBL S and CTBL Q
Character8 as terminal output hold and unhold
flags, and does not transmit them to the user
program. This is the normal mode.

(continued on next Page)

2-26

System Communication

Table 2-5 (Cont.)
.SF!T Pnmmana nnt i nne

Device Option

TTY NOPAGE

Alteration

Causes CTRL S and CTRL Q to have no special
meaning .

SCOPE Causes the monitor to echo RUBOUTs as
backspace-space-backspace. This mode should
be used when the console is a VTOS/VTSO or
when GT ON is in effect.

NOSCOPE Causes the monitor to echo RUBOUTs
backslash followed by the Character delete?
This is.the normal mode.

TTY TAB Indicates that the console terminal ie
capable of.executing hardware tabs.

TTY NOTAB Causes the monitor to simulate tab stop8
every eight positions. The normal mode is
NOTAB. VTO5/VT50 terminale generally have
hardware tabs.

WIDTIi:n Sets the width of the console terminal to n
positions, for the use of the CRLP Option. n
must be in the range 30-255 (decimal). The
width 1s initially set to 72.

The following variant of the SET cosssand is used to prevent the
background job fran ever placing the USR in a swapping state (note
that USR replaces a device specification in the command line):

SET USR NO SWAP{ 1
This is useful when running on a DECtape based System, or when running
a foreground job which requires the USR but has no memory allocated
into which to read it. When the monitor is bootstrapped, it ie in the
SWAP condition, i.e.,
state via a SETTOP.

the background may place the USR in a swapping

The Single-Job Monitor behaves as though the following Options are
sett NOTAB, NOFORM, PAGE, NOCRLP, NOSCOPE, NOHOLD.

2-27

System Communication

2.7.3 Conrmands to Manipulate Memory Images

2.7.3.1 GET Command - The GET command (valid for use with a
background job

I or Object) into
only) loads the specified memory image file (not ASCII
memory from the indicated device.

The fonn of the GET coavaandis:

GE T0
where:

devt

filnam.ext

The GET command is typically used to load a program into memory for

devrfilnam.ext

represents any legal RT-11 device name. If a
device is not specified, DK: ie assumed. Note
that devices MT and CT are not block-replaceable
devices and therefore cannot be used in a GET
command.
represents a valid RT-11 filename and extension.
If an extension ie not specified, the extension
.SAV is assumed.

modificatfon and/or debugging. The GET comand tan also be used in
conjunction with the Base, Examine, Deposit, and START commands to
test patches, and tan be used with SAVB to make patches permanent.
Multiple GET8 tan be used to combine programs. Thust

. G E T ODT. SAV
Load8 ODT into memory

G E T PROG

START (ODTs starting address)

Load8 PROG.SAV into
memory with ODT

Starts execution with ODT
(See Chapter 8).

The GET command cannot be used to load overlay Segments of programs;
it may only be used to load the root Segment (that part which will not
be overlaid; refer to Chapter 6, Linker).

Multiple GET8 tan be used to build a memory image of several programs.
ff identical locations are required by any of the programs, the latar
programs overlay the previous ones.

Examples:
GET DT3:FILEl.SAV Load8 the file FILBl.SAV into memory

from DECtape unit 3.

GET NAME1 Loads the file NAMEl.SAV from device DK.

January 1976 2-28

System Communication

L-lBASE

2.7.3.2 Base Comand - The B command sets a relocation base. This
relocation base is added to the address specified in subsequent
Examine or Deposit cormnands to obtain the addrees of the location to
be referenced. This command is useful when referencing linked modules
with the Examine and Deposit commands. The base address tan be set to
the address where the module of interest is loaded. The ferm of the
command ist

wherer
location represents an octal address used as a base address for

subsequent Examine and Deposit conraands.

NOTE

A space must follow the B command
even if an address is not specified
(the B<space> conrnand is equivalent
to B 0).

Any non-octal digit terminates an address. If location
ie odd, it is rounded down by one to an even address.

The base is cleared whenever User program execution ie initiated.

Examplest

.BA Sets hase to 0 (Arepresents space).

.B 200 Sets base to 200.

B 201 Sets base to 200.

2-29 January 1976

I

System Communication “)_,

2.7.3.3 Examine Command - The E command prints the contents of the
specified location(s) in octal On the console terminal. The ferm of
the Examine command ist

E location m -1ocation ni >
wherer

location represents an octal address which is added to the
relocation base value (the value set by the B Command)
to get the actual address examined. Any non-octal
digit terminates an address. An odd address is
truncated to become an even address.

If more than one location ie specified (location m-location n), the
contents of location m through location n inclusive are printed. The
second location specified (location n) must not be las8 than the first
location specified, otherwise an error message is printed. If no
location is apecified, the contents of location 0 are printed.
Examination of locations outside the background area ie illegal.
Examples:

E 1 0 0 0
127481

Prints contents of location 1000 (added
to the base value if other than 0).

E 1001-1012
i27401 007624 127488 000000 000000 000000

Prints the contents of locations 1000
(plus the base value if other than 0)
through 1013.

E

2.7.3.4 Deposit Command - The Deposit command deposits the specified
value(s) starting at the location given.

The form of the command isr

D location-value
Y value;l,...valuen >

January 1976

System Communication

wheret

location represents an octal address which is added to the
relocation base value to get the actual addrees where
the values are deposited. Any non-octal digit is
accepted as a terminator of an address.

value represents the new contents of the location. 0 iS
assumed if a value is not indicated.

ff multiple values are specified (valuel,...,valuen), they are
deposited beginning at the location specified. The DEPOSIT canmand
accepts word or byte addresses but executes the comnand as though a
word address was specified. An odd address ie truncated by one to an
even address. All values are stored as word guantities.

~ny Character that is not an octal digit may be uued to separate the
locations and values in a DEPOSIT comand. However, two (or more)
non-octal separators Cause 0's to be deposited at the location
specified (and those following). Per exampler'

! .D 56rrr Deposits 0's in locations 56, 60, and 62.

The User should be aware of Situation8 like the above, which Causes
System failure since the terminal vector (location 60) ia reroed.

An error results when the address specified references a location
outside the background jab's area.

Examplesr

D 1000=3705 Deposits 3705 into location 1000

. B 1000 Sets relocation base to 1000

.D 1500=2503 Pute 2503 into location 2500

.B 0 Pesets base to 0

nSAVE

2.7.3.5 SAVE Conmmnd - The SAVE cosmand writes specified User memory
areas to a named file and device in save irnage format. ~smory is
written from location 0 to the highest memory address specified by the
Parameter list or to the program high limit (location 50 in the System
communication area).

The SAVE conmaud does not write the overlay Segments of programs; it
saves only the root Segment (refer to Chapter 6, Linker).

The ferm of the crnanrnd isr

SAV{E} devrfilnam.ext (parameters}

wheret
I

devr represents one of the Standard PT-11 block-replaceable
device names.
assumed.

If no device is specified, DK ie

January 1976

. . . . _,” ..rA- -_.-.-im-,___.._, _- .I _-._ .

System Communication

file.ext represents the name to be assigned to the file being
saved. If the file name is omitted, an error message
ie output. If no extension is specified, the extension
.SAV Ia used.

Parameters represent memory locations to be saved. RT-11 transfers

I
memory in 256-word blocks beginning on boundaries that
are multiples of 256tdecimal). If the locations speci-
fied make a block of less than 256 words, enough addi-
tional locations are transferred to make a 256-word block.

Parameters tan be specified in the following formst:

areal,area2-arean

where:

areal
area2-arean

represent an octal number (or numbers
separated by dashes). It more than one n&er
is specified, the second number must be
greater than the first.

The Start address and the Job Status Word are given the default value
0 and the Stack is set to 1000. ff the user wants to change these or
any of the following addresses, he must first use the DEPOSIT connnand
to alter them and then SAVE the correct areasr

Area Location

Start address 4 0
Stack
JSW t:
USR address
High address Ei
Fill characters 5 6

If the values of the addresses are changed, it is the user's
responsibility to reset them to their default values. See Chapter 9
for more information concerning these addresses.

Examples:

. SFIVE FILE1 lßß00-llßßß,14000-14100
Saves locations lOOOO(8) through
11777(8) (11000 Starts the first word of
a new block, therefore the whole block,
up to 12000, ie stored) and 14000(8)
through 14777(8) on DK with the name
FILEl.SAV.

. SRVE DTl:NA#.NECI 100013
Saves locations 10000 through 10777 on
DTlt with the name NAM.NEW.

. D 44:20000

. SAV S Y : PRHH 1 0 0 0 - 5 7 7 7
Sets the reenter bit in the JSW and
saves locations 1000 through 5777.

January 1976 2-32

Sy~tera Cosmunication

2.7.4 Camnands to Start a Progras

l-lRUN

2.7.4.1 RUN Comand - The RUN camnand (valid for um with a
background job only) loads the specified msmory image file into msuory
and Starts execution at the Start address specified in location 40.
Under the F/B systeu~~, 10 words of User Stack area arc required to
Start a User prouram, and the Stack address (location 42) must be
initialised to 'SG part of msmory where these 10 words will not

The formof the
RU N0

where t

:):
devr

filnamext

ie Standard device nam
block%placeable device.

specifying
ff devx is not specified:

the device ie assuxed to be DK. Note that devices MT
and CT not block-replaceable devices and
therefore czot be used in a RUN comnand.
ie the file to be exacuted. ff an extension ie not
specified, the extension .SAV ie assumed.
is equivalent to a GET ccsmand followed by a START-- .-. -_The RUN command

command (with no address speciriea).

(.;:

camand ist
dev:filnam.ext

If a file containing overlays is to be RUN from
a device other than the system device, the handler
for that device must be loaded (See Section 2.7.2.6)
before the RUN caamsnd is issued.

EXSKipleS :

. RUN DTl:SRCH.SRV Load8 and executes the file SRCHSAV
fromDT1.

. RUN PROG Load8 PROG.SAV fran DK and executes the
progr-

. G E T PROGI

. RUN PROG2

Load8 PROGl.SAV fram device DK without
executing it. Then combines PROGl and
PROGZ.SAV in memory snd begins execution
at the starting address for PF#GZ.

2-33

System Conmunication

cR

2.7.4.2 R Camand - This commaud (valid for use with the backgrouud
job only) ie similar to the RUN ccnmand except that the file specified
muat be on the system device (SY:).

The form of the command ist

R filnam.ext

No device may be specified.
extenaion .SAV is aaaumed.

If an extension is not given, the

Examplesr

. R XYt. SAV Load8 and executes xYZ,SAV from SY.
. R SRC Load8 and executes SRC.SAV frora SY.

ElSTART

2.7.4.3 START Command - The START c onnnand begins execution of the
program currently in memory (i.e., loaded via the GET c oaxnand) at the
specified address. START doea not clear or reset memory areas.

The ferm of the coxanand is:

I ST{ART} {address}

wheret

address is an octal number representing 160bit
address. If the address is omitteda% if 0 is
given, the starting address in locatio: 40 will be
used.

ff the address given does not eyist or is not an even address, a trap
to location 4 occurs. In this case a monitor error message appears.
rf no address ia given, the program's atart address fran location 40
is used.

July 1975 2-34

/' System coanwnication

b Exaalpleat
. GET FILE. 1
.START 1OOG

,GET FILEA
. GET 1'1 LEB
, S'l

.v

(

;

.

Load61 FILE.1 into memory and Starts execution
at looation 1000.

Load8 FILEA.SAV, then combinea FILEA.SAV with
FILEB.SAV and Starts execution at FILEB's
8tart address.

REENTER

2.7.4.4 REENTER Commnd - The REEN!CER comnand starte the program at
it8 reentry addrees (the ßtart addrese minus two). REEWTER doea not
clear or reset any -2-y aream aud ia generally used to avoid
reloading the sanm program for repetitive execution. It tan be aued
to return to a program whose exeoution was etopped with a CTRL C.
The ferm of the comand ist

RE(ENTER}
If the reenter bit (bit 13) in the Job Status Word (location 44) is
not #et, the REEWTER command is illegal.
For most syetem program, the REENTER camand restart8 the program at
the cozmuan d level.
If desired, the reentry point in a uaer program tan branch to a
routine which initializes the tables and Stack, fetches device
handlers etc., and then continue normal operation.
Examplet

. R PIP CTRLC interrupts the PIP
*,‘F directory listing and transfers
IIONI TR. SYS control to the monitor level.
Idirectory printsl REENTER returns control to PIP.
l tc

: ttC typed)

REENTEH
*

2.7.5 C ommands Used Dnly in a Foreground/Background Enviromaent

It ia important to note that in Order to control execution of a
foreground job, the -ds in this nection must be typed to ICMON,
which is running as the background job. Thus, for example, to SUSPEND

2-35

System Cummunication

the foreground job, the uaer must be Sure he is directing input to
KMON as follows:

F>
OB typed)

B>
R P I F
*-c
, SUSFEND

Foreground job is running. Control
ie redirected to the background jab
and PIP is called (the foreground
ie still active). CTRL C stop8 PIP
and Starts KMGN. The foreground
;$ 51;)suspended. (See Section
. l . .

ElFRUN

2.7.5.1 FRUN Command - The FRUN ccrrnund ie used to initiate
foreground jobs. FRUN will only run relocatsble files produced with
the Linker /R switch (using the Linker supplied with RT-11, Version
2). Any handlers used by a foreground job must be in memory.

The form of the cammand ist

FRUb) dev:file.ext{/'N:n}{/Srn}{/P}

where:

dev:

file.ext

/Ntn or /Nln

/Stn or /Sin

represents a block replaceable RT-11 device. If
dev: is not specified, DK: ie assumed.

represents the job to be executed. The default
extension for a foreground job is .RKL.

represents an optional switch used to allocate n
words (not bytes) over and above the actual
program sfze. (If running a FORTRAN program, a
special formula is used to determins n. Refer to
Appendix G for this information.)

represents an optional switch used to allocate n
words (not bytes) for stach space, Normally,
stack space is set by default to 128 words and is
placed in memory below the program. To Change the
stach sise, use /Stn) the stach is still placed in
memory under theprogram. To relocate the Stack
area, use an .ASECT (sec Chapter 5) to define the
Start of the user stach in location 42. This
overrides the /S switch.

represents an optional switch (at the end of the
FRUN camwand) for debugging purposes. When the
carriage return is typed, FRUN prints the load
address of the program, but does not start the

2-36

System Camnunication

x:z= The foreground job must be explicitly
with the Rsum ccannand (sec Section

2.7.5.3). For example:

FRUN DATA/P
iOADED A T 1 2 5 4 4 4

If ODT is used with the foreground job, this
feature provides the means for determining where
the job actually was loaded.

The programis startedwhen the RSUME connnand is
d-n t allowing the programmer to examine or
mcdify the program before starting it.

ff another foreground job is active when the FRUN coxaand ie given, an
error message is printed. ff a tenninated foreground job ie occupying
memory, that region is first reclaimed. Then if the file indicated is
found and will fit in memory, the job is installed and started
immsdiately. FRUN destroys the background jcb's memory image.

Examples:
. FRUN Fl Runs program Fl.REL stored on device DK.

. F R U DT1:F2 Runs FZ.REL which is on DTl.

l I
l SUSPEND

l

2.7.5.2 SUSPEND Comnnand - The SUSPEND ccmmand is used to stop
execution of the foreground job.

The ferm of the ccmand ist

No arguments are required. Foreground I/O transfers in progress will
be allowed to complete; hcwever, no new I/O requests will be issued
and no ccmpletion routines will be entered
discussion of ccmpletion routines).

(See Chapter 9 for a
Execution of the job tan be

resumed only fraan the keyboard.

Rxample:

. SUSPEIJD Suspends execution of the foreground job currently
running.

2-37

.,

System comnunication

El
RSUME

2.7.5.3 RSUME Command - The RSUME cowd is used to resume execution
of the foreground job where it was suspended. Any completion routines
which were acheduled while the foreground was suapended are entered at
this time.

The form of the command ist

Rm MEi 1
No arguments are required.

Example:
. RSU ~esumes execution of the foreground job currently

suspended.

2.8 MONITOR ERRGH MESSAGES

The following error rmssages indicate fatal conditions that tan occur
during System boot:

Memsage wng

?B-I/O ERROR An I/O error occurred during System boot.

PB-NO BOOT ON VOLUME No bootstrap has been written on volume.

?B-NO MONITR.SYS No monitor exists on volume being booted.

?B-NOT ENOUGB CORE There is not enough memory for the System
being booted (e.g., attempting to boot
F/B into SK).

The following error msssages are output by the Keyboard Monitor.

Message Meaning
rdwDR? Address out of range in E or D command.

?DAT? The DATE command argument was illegal,
or no argument was given and the date
ha8 not yet been Set.

?ER RD OVLY?

I F?

?F ACTIVE?

PFIL NOT FND?

?FILE? No file nsmsd where one ie expecteti.
January 1976 2 -38

An I/O error occurred while reading a
KMON overlay to process the current
command. This 18 a serious
indicating

error ,
that the SYSteSS file

MONITR.SYS is unreadable.
A CTRL F was typed under the F/B monitor
andno foreground job exists.

Neither FRUN nor UNLOAD may be used when
a foreground job already exists and ia
active.

File specified in R, RUN, GET, or FRUN
conmsnd not found.

8
)

) _I

. WC..-l.. ..-. - ---_ u-_.. .,.. . .

/
.)

(:- .

).

i:

System Coraaunication
Massage

?ILLCMD?

?ILL DEV?

?NO CLOCIZ?

?NO FG?

Meaning

Illegal Keyboard Wnitor coannand or
command line too long.

Illegal or nonexistent device, or an
attempt was made to make a device
handler resident for use with a
foreground job (dev=F) when the
Single-Job Monitor was running.

No ICWllL clock ie available for the TIME
command.

A SUSPEND, RSUME, or UNLGAD FG command
was given, but no foreground job was in
memory.

?OvR COR? Attempt to GET or RUN a file that is too
big.

OPARAMS? Bad Parameters were typed to the SAVE
command.

3REL FIL I/O ER? Either the program requested is not a
REL file or a hardware error was
encountered trying to read or write the
file.

?SV FIL I/O ER? I/O error on .SAV file in SAVE (output)
or R, RUN, or GET (input) command. POS-
sible errors include end-of-file, hard
error, and channel not open. I

?SY I/O ER?

?TIM?

I/O error on System device (usually
reading 01: writing swap area). I
The TIME convaand argument was illegal.

The following messages are output by the RT-11 Resident Monitor when
unrecoverable error has occurred.

gnitor.
Control passe8 to the Keyboard

The program in which the error occurred cannot be restarted
with the REcammand. To execute the program again, us8 the R or RUN
command.

The format for fatal monitor error messages ist

?x-textPC where PC ie the address+i of the
location where the error occurred.

Note that ?M errors tan be inhibited in certain cases by the use of
the ,SERR macro; see Chapter 9 for details.

Message
OB-BADFETCR

paning

Either an error occurred while reading
'in a device handler from SY, or the
address at which the handler was to be
loaded was illegal.

2-39 January 1976

System Conununication
?M-DIR IO ERR

?WDIR OVFLO

?M-DIR UNSAFE

?M-FP TRAP

?M-ILL ADDR

?M-ILL CRAN

?M-ILL EMT

?M-ILL USR

?M-NO DEV

?M-OVLYERR

?M-SWAPERR

I

‘!M-SYS ERR

An error occurred doing I/O in the
directory of a device (e.g., .ENTER on a
write-locked device)'.

No more directory Segment8 were
available for expansion (occurs during
file creation (.ENTER)).

In F/R only, this message may appear in
addition to any of the other diagnostics
liated in this section. It indicates
that the error occurred while the USR
was updating a device directory. On8 or
more files on that device may be lost.

A floating-point exception
occutred,

trap
and the user program had no

.SFPA exception routine active (See
Chapter 9).

Under the F/B Monitor, an addreea
specified in a monitor cal1 was odd or
was not within the job'a limits.

A channel number was epecified which was
too large.

An EMT was executed which did not exirtt
i.e., the function code was out of
bounds.

The USR was called from a completion
routine. Thia error does not have a
soft return (i.e., .SERR will not
inhibit thia messaget 868 Chapter 9).

A READ/WRITE Operation was tried but no
device handler was in memory for it.

A User program with overlays failed to
successfully read an overlay.

A hard I/O error occurred while tho
System was attempting to write a user
program to the System swap blocks.
This is usually caused by a write-
locked System device. Under the Single-
Job Monitor, this may Cause the System
to halt

An I/O error occurred while trying to
read KMON/USR into memory, indicating
that the monitor file is situated on the
System device in an area that has
developed one or more bad blocks. The
monitor prints the message and loops
trying to read KMON. The message is a
warning that the System device is bad.

i
1

1 - a I

..d,
January 1976 2-40

System Coanarunication
ff, after several seconds, it is
apparent that attempts to read KMON are
failing, halt the processor. It may be
impossible to boot the volume because of
the bad area in the monitor file. Use
another System device to verify the bad
blocks and follow therecoveryprocedures
described in section 4.2.12.1 of Chapter
4.

?M-TRAP TO 4
?M-TRAP TOlO

The job has referenced illegal memory
or device registers, an illegal instruc-
tion was used, Stack Overflow occurred,
a word instruction was executed with an
odd address, or a hardware Problem caused
bus time-out traps through location 4.

c

(

!
)

If CS1 errors occur and input was from the console terminal, an error
message is printed on the terminal.

Hessage Meaning

?DEV FUL? Output file will not fit.

?FIL NOT FND? Input file was not found.

?ILLcxD? Syntax error.

?ILL DRV? Device specified does not exist.

2.8.1 Monitor HALTS

There are two RALT instructions in the RT-11 VO2 monitors, one each in
F/B and Single-Job. The Single-Job Monitor will halt only if I/O
errors occur during swap Operation8 to the system device. If the S/J
Monitor halts, look for a write-locked System device.

The F/B Monitor will halt if a trap to location 4 occurs or if I/O
occurs while the system is perfonning critical Operation6 from which
it cannot recover. If the F/B Monitor halte, look for use of
non-existent devices, traps from interrupt Service routines, or
user-corrupted queue elements.

The monitor halts tan be detected by their address, which is high in
memory, above the resident base address (location 54).
When a mOnitOr halt occurs, do not attempt to restart the System by
pressing CONTinue on the processor; the System must be rebooted.

2-41 January 1976

CBAPTER 3

TEXT EDITOR

The Text Editor (EDIT) ie used to create and modifv ASCII Source files
so that these files tan be used as input to other System programs such
as the assembler or BASIC.
keyboard,

Controlled by user commands from the
EDIT reads ASCII files from a storage device, makes

specified changes and writes ASCII files to a storage device or lists
them on the line Printer or console terminal. EDIT allows efficient
use of VI-11 display hardware,
configuration.

if this is part of the System

The Editor considers a file to be divided into logical units called
pages. A page of text is generally 50-60 lines long (delimited by
form feed characters) and corresponds approximately to a physical page
of a program listing. The Editor reads one page of text at a time
from the input file into its internal buffers where the page becomes
available for editing. Editing commands are then used to:

Locate text to be changed,

Execute and verify the changes,

Output a page of text to the output file,

List an edited page on the line Printer or console terminal.

3.1 CALLING AND USING EDIT

To cal1 EDIT from the System device type:
R EDIT

and the RETURN key in response to the dot (.) printed by the monitor.
EDIT responds with an asterisk (*) indicating it is in command mode
and awaiting a User command string.

Type CTRL C to halt the Editor at any time and return control to the
monitor. To restart the Editor type .R EDIT or the .REBBTER command
in response to the monitor's dot. The contents of the buffers are
lost when the Editor is restarted.

3-l

Text Editor

3.2 MODES OF OPERATION

Dnder normal usage, the Editor operates in one of two different modea:
Command Mode or Text Mode. In Command Mode all input typed on the
keyboard is interpreted as cormnands instructing the Editor to perform
some Operation. In Text Mode all typed input is interpreted as text
to replace, be inserted into, or be appended to the contents of the
Text Buffer.

Immediately after being ioaded into memory and started, the Editor is
in Command Mode. An asterisk is printed at the left margin of the
console terminal page indicating that the Editor is waiting for the
user to type a command. All commands are terminated by pressing the
ALTMODE key twice in succession. Execution of commands proceeds from
left to right. Should an error be encountered during execution of a
command string, the Editor prints an error message followed by an
asterisk at the beginning of a new line indicating that it is still in
Coxnmand Mode and awaiting a legal command. The command in error (and
any succeeding commands) is not executed and must be corrected and
retyped.

Text mode is entered whenever the user types a comman d which must be
followed by a text string. These commands insert, replace, exchange,
or otherwise manipulate text; after such a command has been typed,
all succeeding characters are considered part of the text string until
an ALTMODE is typed. The ALTMODE terminates the text string and
Causes the Editor to reenter Command Mode, at which point all
Character8 are considered commands again.

A special editing mode, called Immediate Mode, tan be used whenever
the VT-11 display hardware is running. This mode is described in
Section 3.7.2.

3.3 SPECIAL KEY COMMANDS

The EDIT key commands are listed in Table 3-l. Control commands are
typed by holding down the CTBL key while typing the appropriate
Character.

Table 3-1
EDIT Key Commands

W Explanation

ALTMODE Echoes $. A Single ALTMODE terminates a text
string. A double ALTMODE executes the command
string. For example,

*GtlOV A, BS-ID%%

CTBL C Echoes at the terminal as tC and a carriage
return. Terminates execution of EDIT commands,
and returns to monitor Command Mode. A double
CTRL C is necessary when I/O fs in progress. The
EEENTER command may be used to restart the Editor,
but the contents of the text buffers are lost.

(continued on next Page)

3-2

:_^

‘, ‘--,

Text Editor

JW

C T R L O

CTRL u

RUBOUT

TAB

CTRL X

Table 3-l (cont.)
EDIT Key Commands

Explanation

EChOeS t0 and a carriage return. Inhibits
printing on the terminal untll completion of the
current ccmmand string. Typing a second CTRL 0
resumes output.

Echoes tU and a carriage return. Deletes all the
characters on the current terminal input line.
(Equivalent to typing RUBOUT back to the beginning
of the line.)
Deletes Character from the current line; echoes a
backslash followed by the character deleted. Esch
succeeding RUBOUT typed by the User deletes and
echoes another character. An enclosing backslash
is printed when a key other than RUBOUT is typed.
This erasure is done right to left up to the last
carriage return/line feed combination. RUBOUT may
be used -in both Command and Text Modes.

Spates to the next tab stop. Tab Stops are
positioned every eight spaces on the terminal;
typing the TAB key Causes the carriage to advance
to the next tab position.

Echoes tX and a carriage return. CTFU X Causes
the Editor to ignore the entire command string
currently being entered. The Editor prints a
<CR><LF> and an asterisk to indicate that the User
may enter another command. For example:

*IABCD
EFGH-X
*

A CTRL U would only Cause deletion of EFGH;
CTRL X erases the entire command.

-,)
‘\

3.4 COMMAND STRUCTURE

EDIT commands fall into six general categories:

Category

Input/Output

Connnands

Edit Backup
Edit Read
Edit Write
End File
Exit
List
Next
Read
Verify
Write

Section

3.6.1.3
3.6.1.1
3.6.1.2
3.6.1.9
3.6.1.10
3.6.1.7
3.6.1.6
3.6.1.4
3.6.1.8
3.6.1.5

Pointer location Advance 3.6.2.3
Beginning 3.6.2.1
Jump 3.6.2.2

3-3

Text Editor

Search

Text modification

Utility

Inunediate Mode

The general foruiat
nCtext$

0r
nCS

for the first five categories of EDIT commands is:

where n represents one of the legal arguments listed in Table 3-2, C
is a one- or two-letter command, and text is a string of successive
ASCII characters.

Find 3.6.3.2
Get 3.6.3.1
Position 3.6.3.3

Change 3.6.4.4
Delete 3.6.4.2
eXchange 3.6.4.5
Insert 3.6.4.1
Kill _ 3.6.4.3

Edit Console 3.7.1
Edit Display 3.7.1
Edit Lower 3.6.5.6
Edit Upper 3.6.5.6
Edit Version 3.6.5.5
Execute Macro 3.6.5.4
Macro 3.6.5.3
Save 3.6.5.1
Unsave 3.6.5.2

ALTMODE
CTRL D
CTRL G
CTRL N
CTRL V
RUBOUT

3.7.2
3.7.2
3.7.2
3.7.2
3.7.2
3.7.2

da a rule, conmands arc separated from one another by a Single
ALTMODE; hawever, if the command requires no text, the separating
ALTMODE is not necessary. Commands are terminated by a Single
ALTMODE; typing a second ALTMODE begins execution. (ALTMODE is u~ed
differently when Immediate Rode is in effect; Section 3.7.2 detail8
it8 use in this case.)

The formt of Display Editor conunands is somewhat different from the
normal editing commnd fonnat, and is described in Section 3.7.

3.4.1 Arguments

An argument is positioned before a comaan d letter and is used either
to specify the particular Portion
conmmnd or to indicate the number

of text to be affected by the
of tirnes the command should be

performe& with Soma c ommands, this specification is implicit and no
arguments are needed; other editing conmands require an argument.
Table 3-2 lists the formats of arguments which are used by commands of
this second type.

.
“j

3

\
I

3-4

Text Editor

Table 3-2
Command Arguments

Format Meaning

n n Stands for any integer in the range -16383 to
+16383 and may, except where noted, be preceded by
a + or -. ff no sign precedes n, it is assumed to
be a positive number. Whenever an argument is
acceptable in a comand, its absence implies an
argument of 1 (or -1 if only the - is present).

0‘ 0 refers to the beginning of the current line.

/ / refers to the end of text in the current Text
Buffer.

= = is used with the J, D and C coxmnands only and
represents -n, where n is equal to the length of
the last text argurnent used.

The roles of all arguments are explained more specif ically in
following sections.

3 . 4 . 2 Command Strings
All EDIT command strings are terminated by two successive ALTMODE
characters. Spates, carriage returns and line feeds witzhin a command
string may be used freely to increase command readability but are
ignored unless they appear in a taxt string. Commands used to insert
text tan contain text strings that are several lines long. Esch line
is terminated with a <CR><LF> and the entire command is terminated
with a double ALTMODE.

Several commands tan be strung together and executed in sequence. For
example,

text Object text Object

*BGMOV PC,RB%-ZCRISSKGCLR @R2%b

kz- kiTd”firu,

1
command command

i
conunand

first command fourth
command

Execution of a command string begins when the double ALTMODE ie typed
and proceeds from left to right. Except when they are part of A text
string, spaces, carriage return, line feed, and Single ALTMODES are
ignored. For example:

*BGMOV RBL=CCLR RlSFtVJS

3 -5

.-- -.-.

I’
, Text Editor

)
Table 3-2

Command Arguments

Format Eieaning

n n Stands for any integer in the range -16383 to
+16383 and may, except where noted, be preceded by
a + or -. If no sign precedes n, it is assumed to
be a positive number. Whenever an argument is
acceptable in a command, fts absence implies an
argument of 1 (01: -1 if only the - is present).

0‘

/

0 refers to the beginning of the current line.

/ refers to the end of taxt in the current Text
Buffer.

I = is used with the J, D and C command8 only and
represents -n, where n is equal to the length of
the last text argument used.

The roles of all arguments are explained more specifically in
following sections.

(

) 3.4.2 Command Strings

All EDIT command strings are terminated by two successive ALTMODE
characters. Spates, carriage returns and line feeds within a command
string may be used freely to increase command readability but are
ignored unless they appear in a text string. Conuaands used to insert
text tan contain text strings that are several Unas lang. Esch line
is terminated with a <CR><LF> and the entire command is terminated
with a double ALTMODE.

Several commands tan be strung together and executed in sequence. For
example,

taxt Object text Object

*BGMOV PC,RBL-2CRlJSKGCLR CR’2SS

hzie i2lzYxr

I
command command

1
command

first command fourth
command

Execution of a command 8tring begina when the double ALTMODE ie typed
and proceeds from left to right. Except when they are part of A text
string, spaces, carriage return, line feed, and Single ALTMODES are
ignored. For example:

*BGMOV RBJ=CCLR RILAVSS

3-5

Text Editor

may be typed as:

*B% GflOV ROS
= C C L R RIJ
AS VS%

with equivalent execution.

3.4.3 The Current Location Pointer

Most EDIT commands function with respect to a movable reference
pointer which is normally located between the most recent Character
operated upon and the next Character in the buffer. At any given time
during the editing procedure, this pointer tan be thought of as
representing the current Position of the Editor in the text. Most
commands use this pointer as
available for moving

an implied argument. Commands are
the pointer anywhere in the text, thereby

redefining the current location and allowing greater facility in the
use of other conunands.

3.4.4 Character- and Line-Oriented Command Properties

Edit commands are line-oriented or Character-oriented depending on the
arguments they accept.
of text.

Line-oriented commands operate on entire lines
Character-oriented commands operate on individual characters

independent of what or where they are.

When using Character-oriented commands, a numeric argument specifies
the number of characters that are involved in the Operation. Positive
arguments represent the number of characters in a forward direction
(in relation to the pointer), negative
characters in a backward direction.

arguments the number of
Carriage return and line feed

characters are treated the Same as any other Character. For example,
assume the pointer is positioned as indicated in the following text (t
represents the current position of the pointer):

MOV WECT,R2<CR><LF>+
CLR @RZ<CR><LF>

The EDIT command -25 backs the pointer by two characters.
MOV #VECT,RZ+CR><LF>
CLR @RZ<C!R><LF>

The command 1OJ advances the pointer forward by ten characters and
places it between the CR and LF Character8 at the end of the second
line.

MOV #VECT,RZ<CR><LF>
CLR @R2<CR>+<LF>

Finally, to place the pointer after the 'Ca in the first line, a -14J
command is used. The J (Jump) command is explained in Section 3.6.2.2.

MOV
CLR

#VR$P&<CR><LF>
@RZ<CR><LF>

3-6

(.

Text Editor

When using line-oriented commands, a numeric argument represenk the
number of lines involved in the Operation. The Editor recognizes a
line of text as a unit when it detects a <CR><LF> combination in the
text. When the User types a carriage return, the Editor automatically J
inserts a line feed. Positive arguments represent the number of lines
forward (in relation to the pointer); this is accomplished by counting
carriage return/line feed combinations beginning at the pointer. So,
if .the pointer is at the beginning of a line, a line-oriented conunand
argument of +l represents the entire line between the current pointer
and the terminating line feed. If the current pointer is in the
middle of the line, an argument of +l represents only the portion of
the line between the pointer and the terminating line feed.

For example, assume a buffer of:
MOV -PC,Rl<CR><LF>
ADD +#DRIV- .,Rl<CR><LF>
MOV #VECT,R2<CR><LF>
CLR @RZ<CR><LF>

The command to advance the pointer one line (IA) Causes the following
Change:

MOV PC,Rl<CR><LF>
tmD #DRIV-., Rl<CR><LF>
MOV #VECT,R2<CR><LF>
CLR @RZ<CR><LF>

The command 2A moves the pointer over 2 <CR><LF> COmbinatiOnS:

MOV PC,Rl<CR><LF>
ADD #DRIV-., Rl<CR><LF>
MOV #VECT,RZ<CR><LF>
t-R CRZ<CR><LF>

Negative line arguments reference lines in a backward direction (in
relation to the pointer). Consequently, if the pointer is at the
beginning of the line, a line argument of -1 means "the previous line"
(moving backward past the first <CR><LF> and up to but not including
the second <CR><LF>; if the Printer is in the middle of a line, an
argument of -1 means the preceding 1 1/2 lines. Assume the buffer
contains:

MOV PC,Rl<CR><LF>
ADD #DRIV-., Rl<CR><LF>
MOV
CLR

#VE",R2<CR><LF>
@U<CR><LF>

A command of -1A backs the pointer by 1 1/2 lines.

MOV PC,Rl<CR><LF>
tmD IDRIV-., Rl<CR><LF>
MDV #VECT,RZ<CR><LF>
CLR @R2<CR><LF>

3-7

Text Editor

NOW a command of -1A back8 it by only 1 line.

tM(JV PC,Rl<CR><LF>
ADD XDRIV-., Rl<CR><LF>
MDV #VRCT,RL<CR><LF>
CLR @RZ<CR><LF>

3.4.5 Command Repetition

Portion8 of a command string may be executed more than once by
enclosing the desired portion in angle brackets (<>) and preceding the
left angle bracket with the number of iterations desired. The
structure is:

where Cl, C2 ,...C5 represent commands and n represents an iteration
argument. Commands Cl and C2 are each executed once, then commands C3
and C4 are executed n times. Finally command CS is executed once and
the command line is finished. The iteration argument (n) must be a
positive number (1 to 16,383), and if not specified is assumed to be
1. If the number is negative or too large, an error message is
printed. Iteration brackets may be nested up to 20 levels. Command
lines are checked to make certain the brackets are correctly used and
match Prior to execution.

Essentially, enclosing a portion of a command string in iteration
brackets and preceding it with an iteration argument (n) is equivalent
to typing that portion of the string n times. For exampler

*~G~IAAI~<-DIBL-J>VSI

is equivalent to typing:

*BGARAS-DIBI-J-DIR%-J-DI6$-JvS$

and:

*B3<2CAD>V>SL

is equivalent to typingt

*BADADVADADVADADVSI

The following bracket structures are examples of legal usager

<<><<<><>>>>
<<<>>><><>

The foilowing bracket structures are examples of illegal combinations
which will Cause an error message since the brackets are not properly
matchedt

><><
<<<>>

During command repetition, execution proceeds from left to right until
a right bracket is encountered. EDIT then returns to the last left

3-8

I’' . Text Editor

bracket encountered, decrements the iteration counter and executes the
conunands within the brackets. When the counter is decremented to 0,
EDIT looks for the next iteration count to the left and repeats the
Same procedures. The Overall effect is that EDIT works its way to the
innennost brackets and then works its way back again. The most common
use for iteration brackets is found in commands such as Unsave, that
do not accept repeat counts. For examplet

Assume a file called SAMP (Stored on device DK) is to be read and the
first four occurrences of the instruction MOV 1200,RO on each of the
first five pages are to be changed to MOV #244,R4. The following
0-a line is entered:

\ C IV
BY

The command line contains three sets:f iteration loops (A,B,C) and is
executed as follaws:

b

Execution inftially prOCeed8 from left to right; the file SAMP is
opened for input, -a the first page is read into memory. The pointer
is moved to the beginning of the buffer and a search is initiated for
the Character string MOV t200,RO. When the string is foma, the
pointer is positioned at the end of the string, but the -J command
moves .the pointer back so that it is positioned immediately preceding
the string. At this point, execution has passed through each of the
first two Sets of iteration 100~s (A,B) once. The inrrmost loop (C)
is next executed three times, changing the OS to Control now
moves back to pick up the second iteration of loop B, La again moves
from left to right. When loop C has executed three times, control
again moves back to loop B. When locp B has executed a total of 4
times, control moves back to the second iteration of loop A, t3na S O
forth until all iterations have been satisfied.

3.5 MEMORY USAGE

The memory area used by the Editor is divided into four logical
buffers as follows:

I MACRO BUFFER I
l High Memory

I SAVE BUFFER I

I TEXT BUFFER I
Low Memory

3-9

Text Editor

The Text Buffer contains the curtent page of text being edited, and
the Command Input Buffer hold8 the command currently being typed at
the terminal. If a command currently being entered by the User is
within 10 characters of exceeding the space available in the Command
Buffer, the message:

* C B A L M O S T F U L L *

is printed. If the command tan be completed within 10 characters, the
user may finish entering the command; otherwise he should type the
ALTMODE key twice to execute that portion of the command line already
completed. The message is printed each time a Character 3.8 entered in
one of the last 10 spaces.

If the user attempts to enter more than 10 Character8 the message:

?CB F U L L ?

is printed and all conunands typed witzhin the last 10 characters are
ignored. The User again has 10 characters of available space in which
to correct the condition.

The Save Buffer contains text stored with the Save (S) command, and
the Macro Buffer contains the comman d string macro entered with the
Macro (M) command. (Both commands are explained in Section 3.6.5.)

The Macro and Save Buffers are not allocated space until an M or S
command is executed. Gnce an M or S command is executed, a OM or OU
(Unsave) command must be executed to return that space to the free
area.

The size of each buffer automatically expands and contracts to
accommodate the text being entered; if there is not enough space
available to accommodate reguired expansion of any of the buffers, a
"?*NO ROOM*?" error message is typed.

3.6 EDITING COMMANDS

3.6.1 Input/Output Commands

Input commands are used to create files and read them into tbe Text
Buffer where they become available for editing or listing. output
commands Cause text to be listed on the console terminal or line-
Printer or written out to a storage device. Some commands are
specifically designed for either input or output functions, while a
few commands serve both purposes.

Once editing is completed and the page currently in the Text Buffet is
i;l written to the output file, that page of text is unavailable for

. further editing until the file is closed and reopened.

3.6.1.1 Edit Read -

I

The Edit Read command open8 an existing file for
input and prepares it for editing. Only one file tan be open for input
at a time.

3-10
i

Text Editor

The form of the command is:

ERdev:filnam.ext$

The.string argument (dev:filnam.ext) is limited to 19 Character8 and
specifies the file to be opened. If no device is specified, DK: is
assumed. If a file is currently open for input, that file is closed;
any edits made to the file are preserved.

Edit Read does not input a page of text nor does it affect the
contents of the other User buffers (see Section 3.5.)

Edit Read tan be used on a file which is already open to 'close that
file for input and reposition EDIT at its beginning. The first Read
command following any Edit Read command inputs the first page of the
file.

- -

Examplest
eERDT1: SAMP. tlAC%I Open8

*ERSOURCEII Open8

SAMP.WAC on device DTl: for inpUte

SOURCE on device DK: for input.

3.6.1.2 Edit Write - The Edit Write command Sets up a file for
output of newly created or edited text. Bowever, no text is output v
and the contents of the user buffers are not affected. Only one file
tan be open for output at a time. Any current output files are closed

The form of the command is:

EWdevrfilnam.ext[nJ$

The string argument (devtfilnam.ext(n]) is limited to 19 characters
and is the name to be assigned to the output file being opened. If
devt is not specified, DK: is assumed. In] is optional and b
represents the length of the file to be opened. If not specified, one
half the largest available space is used; if this is not adeguate for
the output file size, the EF and EX commands will not close the output
file, and all edits will be lost. It is thus recommended that the [nl
construction be used whenever there is doubt as to whether enough space
is available on the device for the output file.

If a file with the Same name alreadv exists on the device, the old file
is deleted when an EXit, End File 0; another
executed.

Edit Write command is

EXampleS:

*EblDK : TEST. MACSI Open8 the file
for output.

TEST.MAC on device DK:

*EYFlLE. BBS1 11 I%$ Open8 the file FILE.BAS (allocating 11
blocks) on the device DK: for output.

3.6.1.3 Edit Backup - The Edit Backup command is used to open an
existing file for editing and at the Same time create a backup Version
of the file. ~ny currently open file will be closed. No text is read I
or written with this command.

3-11 January 1976

Text Editor

The form of the command ist

EBdevrfilnam.ext[nl$

The device designation, filename and extension are limited to 19
characters. If dev: is not specified, DK: is assumed. bl is
optional and represents the length of the file to be opened; if not
specified, one-half the largest available space is used.
The file indicated in the command line muat already exist on the
device deBignated since text will be read from this file as input. At
the Same time, an output file is opened under the Same filename and
extension. After an EB command has been successfully executed, the
original file (used as input) is renamed with the current filename and
a .BAX extension; any previous file with this filename and a .BAX
extension is deleted. The new output file is closed and assigned the
name as specified in the EB command. This renaming of files takes
place whenever an Exit. End File, Edit Read, Edit Write or Edit Backup
command is executed.

Examplesr
*EBS’f : BASI. M~ICSS Opens BABl.MAC on SY. When editing is

complete, the old BASl.MAC becomes
BASl.BAX and the new file becomes
BASl.MAC. A n y previous Version of
BASl.BAX is deleted.

*EBBASZ. BRSt 15 ISS Open8 BASZ.B& on DK (allocating 15
blocks). When editing is complete, the
old BASZ.BAS is labeled BASI.BAX and the
new file becomes BASZ.BAS. Any previous
Version of BAS2,BAX is deleted.

In EB, ER and EW commands, leading apacea between the command and the
filename are illegal (the filename is considered to be a text string).
All dev:file.ext specifications for EB, ER and EW commands conform to
the RT-11 conventions for file naming and are identical to filenames
entered in command strings used with other System programs. i

3.6.1.4 Read - The Read ccmmand (R) Causes a page of text to be read
from the input file (previously specified in an ER or EB command) and
appended to the current contents, if any, of the Text Buffer.

The form of the command isr

R

No arguments are used with the R command and the pointer is not moved.
Text is input until one of the following conditions is met:

1. A ferm feed Character, signifying the end of the Page, is
encountered. At this point, the form feed will be the last
Character in the buffer; or

3-12

Text Editor

2. The Text Buffer is within 500 characters of being full.
(When this condition occurs, Read inputs up to the next
<CR><LF> combination, then returns to Command Mode. An
asterisk ie printed as though the Read were complete, but
text will not have been fully input)t or

3. An end-of-file condition is detected, (the *EOF* message is
printed when all text in the file has been read into memory
and no more input is available).

The maximum number of characters which tan be brought into memory with
an R command is approximately 6,000 for an 8K System. Esch additional
4K of memory allows approximately 8,000 additional characters to be
input. An error message is prfnted if the Read exceeds the memory
available or if no input is available.

(
I_

3.6.1.5 Write - The Write convnand (W) moves lines of text from the
Text Buffer to the output file (as specified in the EW or EB command).
The format of the command is:

nW Write all characters beginning at the pointer and
endjng at the nth <CR><LF> to the output file.

-nW Write all Character8 beginning on the -nth line and
terminating at the pointer to the output file.

OW Write the text from the beginning of the current line
to the pointer.

/W Write the text from the pointer to the end of the
buffer,

The pointer is not moved and the contents of the buffer are not
affected. If the buffer is empty when the Write is executed, no
Character8 are output.

Examples:
*5WOJ Writes the next 5 lines of text starting

at the pointer, to the current output
file.

*-2tiss Writes the previous 2 lines of text,
ending at the pointer, to the current
output file.

*B/WII Writes the entire Text Buffer to the
current output file.

3-13

Text Editor

3.6.1.6 Next - The Next command acts as both an input and output
command since it performs both functions. First it writes the current
Text Buffer to the output file, then clears the buffer, and finally
reads in the next page of the input file. The Next command tan be
repeated n times by specifying an argument before the command. The
command format is:

nN

Next accepts only positive arguments (n) and leaves the p9inter at the
beginning of the buffer. If fewer than n pages are available in the
input file, all available pages are input to the buffer, output to the
current file, and deleted from the buffer; the pointer is left
positioned at the beginning of an empty buffer, and an error message
is printed. This command is equivalent to a combination of the
Beginning, Write, Delete and Read commands (B/W/DR). Next tan be used
to space forward, in page increments, through the input file.

Example:

*2NSJ Writes the contents of the current Text
Buffer to the output file. Read and
write the next page of text. Clear the
buffer and then read in another page.

3.6.1.7 List - The List command Printe the specified number of lines
on the console terminal. The format of the command ist

nL Print all chracters begin$g at the
pointer ending the nth
<CR><LF>.

-nL Print all characters beginning with the
first Character on the -nth line and
terminating at the pointer.

OL Print from the beginning of the current
line up to the pointer.

/L Print from the pointer to the end of the
buffer.

The pointer is not moved after the command is executed.

Examples:
*-2LII Prints all Character8 starting at the

second preceding line and ending at the
pointer,

*4LJ% Prints all characters beginning at the
pointer and terminating at the 4th
<CR><LF>.

Assuming the pointer location isr

MOVB 5 (Rl),@R2
-D+ Rl, (RZ)+

3-14

. ,

/)
Text Editor

The command:
*-lLL%

Prints the previous 1 1/2 lines up to the pointer:

MOVB 5(Rl),@R2
ADD

3.6.1.8 Verify - The Verify command prints the current text line
(the line containing the pointer) on the terminal. The position of
the pofnter within the line has no effect and the pointer does not
move . The command formst is:

V

No arguments are used. The V command is equivalent to a OLL (List)
command.

EXample:

*vss The command Causes the current line of
AD0 Kl, cli'2>+ text to be printed.

3.6.1.9 End File - The End File command closes the current output
file. This c ommand does no input/output operations and does not move
the pointer. The buffer contents are not affected. The output file
is closed, containing only the text previously output.

The form of the command is:

EF

No arguments are used. Note that an implied EF command is included in
EN and EB commands.

3.6.1.10 EXit - The EXit command is used to terminate editing, coPY
the text buffer and the remainder of the input file to the output file,
close input and output files , and return control to the monitor. It I
performs consecutive Next cormnands until the end of the input file is
reached, then closes both the input and output files.

The command fonnat is:

EX

No arguments are used. Essentially, Exit is used to copy the
remainder of the input file into the output file and return to the
monitor. Exit is legal only when there is an output file open. If an
output file is not open and it is desired to terminate the editing
Session, return to the monitor with CTEL C.

3-15

Text Editor

NOTE

An EF or EX command is necessary in
Order to make an output file permanent.
If CTRL C is used to return to the
monitor without a Prior execution of an
EF command, the current output file ie
not saved. (It tan however, be made
permanent using the monitor CLOSE
command; see Section 2.7.2.5.)

An example of the contrasting uses of the EF and EX commands follows.
Assume an input file, SAMPLE, contains several pages of text. The
User wishes to make the first and second pages of the file into
separate files called SAMl and SAM2, respectively;
pages of text will then make up the file SAMPLE.

the remaining
This tan be done

using these commands:
*ELJSAH1SS
*ERSA#PLESS
*RNEFSS
*EWSAMZSS
*NEFSS
*EWSAMPLESEXSS

The User might note that the EF commands
example since the EW command closes
before opening another.

are not necessary in this
a currently open output file

3.6.2 Pointer Relocation Commands

Pointer relocation commands allow the current location pointer to be
moved within the Text Buffer.

3.6.2.1 Beginning - The Beginning command moves the current location
pointer to the beginning of the Text Buffer.

The comman d‘ format is:

B

There are no arguments.

For example, assume the buffer contains:
MOVB 5(Rl),@R2
ADD R1, (R2)+
CLR @2
MOVB 6(Rl),@R2

i

3-16

#’ Text Editor

The B command:
*BJJ

moves the pointer to the beginning of the Text Buffer:
+ MOVB 5(Rl),@R2
ADD Rl,W)+
CLR
MOVB %l, , @R2

3.6.2.2 Jump - The Jump command moves the pointer over the specified
number of characters in the Text Buffer.

I. . The form of the command is:

(+ or -) nJ Move the pointer (backward or forward) n
characters.

OJ Move the pointer to the beginning of the current
line (equivalent to OA).

/J Move the pointer to the end of the Text Buffer
(eqUiValent t0 /A).

=J Move the pointer backward n characters, where n
equals the length of the last text argument used.

Negative arguments move the pointer toward the beginning of the
buffer, positive arguments toward the end. Jump treats carriage
return, line feed, and form feed Character8 the same as any other
character, counting one buffer position for each.
B x a m p l e s :

*35%9 Moves the
characters.

pointer ahead three

*-4544

*BOGRBCL=JJS

Moves the pointer back four characters.

Move the pointer so that it immediately
precedes the first occurrence of 'ABC'
in the buffer.

3.6.2.3 Advance - The Advance command is similar to the Jump command
except that it moves the pointer a specified number of lines (rather
than Single characters) and leaves it positioned at the beginning of
the line.

The form of the command is:

nA Advance the pointer forward n lines and
position it at the beginning of the nth
line.

3-17

Text Editor

OA

/A

Examples:

*3R$O

Assuming the buffer contains:

CLR @R$
The command:

*ßAOI

Moves the pointer to:

+C!LR @R2

3.6.3 Search Commands

Move the pointer backward past n
<CR><Ll?> combinations and position it at
the beginning of the -nth.line.

Advance the pointer to the beginning of
the current line (equivalent to OJ).

Advance the pointer to the end of the
Text Buffer (equivalent to /J).

Moves the pointer ahead three lines.

Search commands are used to locate specific characters or strings of
characters within the Text Buffer.

3.6.3.1 Get - The Get command Starts at the pointer and searches the
current Text Buffer for the nth occurrence of a specified text string.
If the search is successful, the pointer is left immediately following
the nth occurrence of the text string. If the search fails, an error
message is printed and the pointer is left at the end of the Text
Buffer. The format of the command is:

nGtext$

The argument (n) must be positive and is assumed to be 1 if not
otherwise specified. The text string may be any length and
immediately follows the G command. The search is made on the portion
of the text between the pointer and the end of the buffer.

Example:
Assuming the buffer containsr

+MOV PC,Rl
ADD #DRIV-.,~l
MOV #VECT,R2
CLR @RZ
MOVB 5(Rl),@R2
ADD Rl, (RZ) +
CLR
MOVB ::l) ,@R2

3-18

I

j7 ’

,
) Text Editor

The connnand:

*GFIDD%s

positions the pointer at:

ADD* tDRIV-.,Rl

The commandt

.

*3G@R2$$

positions the pointer at:

ADD Ri, tR21+
CLR @R2+

After search commands, the pointer is left immediately following the
text object. Using a search connnan d in combination with =J will place
the pointer before the text Object, as follows:

This conuaand combination places the pointer before 'TEST'.

3.6.3.2 Find - The Find command Starts at the current pointer and
searches the entire input file for the nth occurrence of the text
string. If the nth occurrence of the text string is not found in the
current buffer, a Next command is automatically performed and the
search is continued on the new text in the buffer. When the search is
successful, the pointer is left imaaediately following the nth
occurrence of the text string. ff the search fails (i.e., the
end-of-file is detected for the input file and the nth occurrence of
the text string has not been found), an error message is printed and
the pointer is left at the beginning of an empty Text Buffer.

The form of the command is:

nFtext$

The argument (n) muet be positive and is assumed to be 1 if not
otherwise specified.

By deliberately specifying a nonexistent search string, the user tan
close out his file; that is, he tan copy all remaining text from the
input file to the output file.

Find is a combination of the Get and Next commands.

Examplet

Searches the entire input file for
the second occurrence of the text
string M O V B 6(Rl),@R2. Esch
unsuccessfully searched buffer is
written to the output file.

3-19

Text Editor

3.6.3.3 Position - The Position connnand searches the input file for
the nth occurrence of the text string. If the desired text string is
not found in the current buffer, the buffer is cleared and a new page
is read from the input file. The fonnat of the command is:

nPtextS

The argument (n) must be positive, and is assumed to be 1 if not
otherwise specified. When a P command is executed the current
contents of the buffer are searched from the location of the pointer
to the end of the buffer. If the search is unsuccessful, the buffer
is cleared and a new page of text is read and the cycle is continued.

If the search is successful, the pointer is positioned after the nth
occurrence of the text. If it is not, the pointer is left at the
beginning of an empty Text Buffer.

The Position conunand is a combination of the Get, Delete and Bead
connnands; it is most useful as a means of placing the location
pointer in the input file. For example, if the aim of the editing
Session is to create a new file from the second half of the input
file, a Position search will save time.

The differente between the Find and Position commands is that Find
writes the contents of the searched buffer to the output file while
Position deletes the contents of the buffer after it is searched.

Examplet
*pADD Rl>CRZ)*ss Searches the entire input file for the

specified string ignoring the
unsuccessfully searched buffers.

3.6.4 Text Modification Commands

The following commands are used to insert, relocate, and delete text
in the Text Buffer.

3.6.4.1 Insert - The Insert command Causes the Editor to enter Text
Mode and allows text to be inserted immediately following the pointer.
Text is inserted until an ALTMODE is typed and the pointer is
positioned immediately after the last Character of the insert. The
cormutnd format ist

Itext$

No arguments are used with the Insert conxnand, and the text string is
limited only by the size of the Text Buffer and the space available.
All characters except ALTMODE are legal in the text string. ALTMODE
terminates the text string.

NOTE

Forgetting to type the 1 command will
Cause the text entered to be executed as
connnands.

),

‘i

3-20

.,s_ . .,. , . _..

Text Editor

EDIT automatically protects against overflawing the Text Buffer .during
an Insert. ff the 1 command is the first coaxnand in a multiple
command line, EDIT ensures that there will be enough space for the
Insert to be executed at least once. If repetition of the connnand
exceeds the available memory, an error message is printed.

Example:

*IMD’/ WBUFF, R2 Insert8 the specified text at
MO’/ WL INE, Rl the current location of the,
MOVB -1CR2), R8SS pointer and leaves the pointer
* positioned after RO.

3.6.4.2 Delete - The Delete conxnand removes a specified number of
Character8 from the Text Buffer. Character8 are deleted starting at
the pointert upon completion, the pointer is positioned at the first
Character following the deleted taxt.

The ferm of the command is:

(+ or -) nD Delete n characters (forward or backward
from the pointer).

OD Delete from beginning of current line to
the pointer (equivalent to OK).

/D Delete from pointer to end of Text
Buffer (equivalent to /Kl.

=D Delete -n characters, where n equals the
length of the last text argument used.

Examples:
*-2DSS Deletes the two characters immediately

preceding the pointer.

*BSFNOV RlL=DS Deletes the text string 'MOV Rl'. (-D
used in combination with a search
command will delete the indicated taxt
string).

Assuming a buffer of:

ADD Rl,(R2)+
CLR P

the coxmnand:

leaves the buffer witht

” Rl, W) +

3-21

Text Editor

3.6.4.3 Kill - The Kill command removes n lines from the' Text
Buffer. Lines are deleted starting at the location pointerr upon
completion of the command, the pointer is positioned atthe beginning
of the line following the deleted text. The comraand formst ist

nK Delete linea beginning at the pointer
and ending at the nth <CR><LF>.

-nK Delete lines beginning with the first
Character in the -nth line and ending at
the pointer.

OK Delete from the beginning of the current
line to the pointer (equivalent to OD).

/K Delete from the pointer to the end of
the Text Buffer (equivalent to /D). 11

Example:

*2K$J Delete lines starting at the current
location pointer and ending at the 2nd
<CR><LF>:

tisuming a buffer oft

ADD Rl,(R2)+ .
CLR1MOVB %l,,@R2

the command:
* i’ K I J

alters the contents of the buffer to:

ADD Rl, (=) +
CLR+

Kill and Delete commands perform the Same function, except that Kill i-, .*
is line-oriented and Delete is Character-oriented.

3.6.4.4 Change - The Change connnand replaces n characters, starting
at the pointer, with the specified text string and leaves the pointer
positioned immediately follcnving the changed taxt.

The ferm of the command is:

(+ 01: -) nCtext$ Replace n characters (forward or backward from the
pointer) with the specified text.

OCtext$ Replace the characters from the beginning of the
line up to the pointer with the specified text
(equivalent to Ox).

/Ctext$ Replace the characters from the pointer to the end
of the buffer with the specified text (equivalent .,,F \
to /XI.

t

3-22

- 1.
9

Text Editor

=Ctext$ Replace -n Character6 with the indicated text
string, where n represents the length of the last
text argument used.

The size of the text is limited only by the size of the Text Buffer
and the space available. All characters are legal except ALTMODE
which terminates the text string.

If the C command is to be executed more than once (i.e., it is
enclosed in angle brackets) and if there is enough space available so
that the command tan be entered, it will be executed at least once
(provided it appears first in the command string). If repetition of
the command exceeds the available memory, an error message is printed.
The Change connnand is identical to executing a Delete command followed
by an Insert (nDItext$).

I . Examples:

Replaces the five characters to the
right of the pointer with IVECT.

Assuming a buffer oft

CLR
MOV+

The command:

@R2
5(Rll,@R2

*ICADDBSS

leaves the buffer with:

CLR @R2
ADDB+ 5(Rl),@R2

=C tan be used in conjunction with a search command to replace a
specific text string as follows:

*GFIFTY:S=CFIt’E:% Find the occurrence of the text string
FIFTY: and replace it with the text
string FIVE:.

3.6.4.5 Exchange - The Exchange command exchanges n lines, beginning
at the pointer, with the indicated text string and leaves the pointer
positioned after the changed text.

The form of the command is:

nXtext$ Exchange all characters beginning at the pointer
and ending at the nth <CR><LF> with the indicated
text.

-nXtext$ Exchange all characters beginning with the first
Character on the -nth line and ending at the
pointer with the indicated text.

OXtextS Exchange the current line from the beginning to
the pointer with the specified text (equivalent to
OC) .

3-23

Text Editor

/Xtext$ Exchange the lines from the pointer to the end of‘
the buffer with the specffed text (equivalent to
/Cl.

~11 Character8 are legal in the text string except ALTMODE which
terminates the text.

The Exchange connuand is identical to a Kill command followed by an
Insert (nKItext$), and accepts all legal line-oriented arguments.
If the X command is enclosed within angle brackets so that it will be
executed more than once, and if there is enough memory space available
so that the X command tan be entered, it will be executed at least
once (provided it is first in the command string). If repetition of
the command exceeds the available memory, an error message is printed.

EXample : \!
*ZXADD Rl, (R2)+ Exchange8 the two lines to
CLR @R2 the right of the pointer location
SS with the text string.
*

3.6.5 Utility Commands

3.6.5.1 Save - The Save comand Starts at the pointer and copies the
specified number of lines into the Save Buffer (described previously
in Section 3.5).

The form of the command isr

nS
The argument (n) must be positive. The pointer position does not
Change and the contents of the Text Buffer are not altered. Esch time
a Save is executed, the previous contents of the Save Buffer, if any,
are destroyed. rf the Save command Causes an Overflow of the Save
Buffer, an error message is printed.

., !

Examplet

Assume the Text Buffer contains the following assembly language
subroutiner

3-24

I’
I

) ;SUBROUTINE MSGTYP
;WREN CALLED, EXPECTS RO TO POINT TO AN
;ASCII MESSAGE TRAT ENDS IN A ZERO BYTE,
;TYPES TRAT MESSAGE ON THE USER TERMINAL

MSGTYP:

MLOOP:

MDONE:

.ASECT

.=lOOO
TSTB (80) ;DONE?
BEQ MDONE ;YES-RETURN
TSTB @#177564 ;NO-IS TERMINAL RBADY?
BPL MLOOP ;NO-WAIT
MOVB (%0)+,@#177566 ;YES PRINT CHARACTER
BR MSGTYP ;LOOP
RTS 87 ;RETURW

The command:

stores the entire subroutine in the Save Buffer; it may then be
inserted in a program wherever needed by using the U command.

3.6.5.2 Unsave - The Unsave command inserts the entire contents of
the Save Buffer into the Text Buffer at the pointer location and
leaves the pointer positioned following the inserted text.

The form of the command ist

U Insert in the Text Buffer the contents of the Save
Buffer.

ou Clear the Save Buffer and reclaim the area for text.

Zero is the only legal argument to the U connnand.

The contents of the Save Buffer are not destroyed by the Unsave
command (only by the OU command) and may be Unsaved as many times as
desired.

If there is no text in the Save Buffer and the U command is given, the
?*NO TEXT*? error message is printed. If the Unsave command Causes
an Overflow of the Text Buffer, the ?*NO ROOM*? error aussage is
displayed.

3.6.5.3 Macro - The Macro command inserts a command string into the
EDIT Macro Buffer. The Macro command is of the form:

M/command string/ Store the command string in the Macro
Buffer.

OM Clear tbe Macro Buffer and reclaim the
or area for text.

W/

)'\ -.

/ represents the delimiter Character. The delimiter is always the
first Character following the M command, and may be any Character
which does not appear in the Macro command string itself.

3-25

Text Editor

Starting with the Character following the delimiter, EDIT places the
Macro command string Character8 into it8 internal Macro Buffer until
the delimiter is encountered again. At this point, EDIT returns to
Command Mode. The Macro command does not execute the Macro string;
it merely stores the command string so that it tan be executed later
by the Execute Macro (EM) command. Macro does not affect the contents
of the Text or Save Buffers.

All Character8 except the delimiter are legal Macro command string
characters, including Single ALTMODE8 to terminate text commands.
All commands, except the M and EM commands, are legal in a command
string macro.

In addition to the OM command, typing the M command immediately
followed by two identical Character8 (assumed to be delimiters) and
two ALTMODE characters also clears the Macro Buffer.

Examples:

* fl i' i' 0 d Clears the Macro Buffer

Stores a Macro to Change RO to Rl.

NOTE

Be careful to choose infrequently used
characters as macro delimiters; US8 of
frequently used Character8 tan lead to
inadvertent errors. For example,

*# GMOV ROJ=CADD RIS SO
?*NO F I L E * ?

In this case, it was intended that the
macro be GMOV RO$=CADD Rl$ but since the
delimiter Character (the Character
following the M) is a space, the space
following MOV is used as the second
delimiter, terminating the macro. EDIT
then returns an error when the RO$=
becomes an illegal command structure.

3.6.5.4 Execute Macro - The Execute Macro command executes the
command string specified in the last Macro command.

The form of the command is:

nEM

The argument (n) must be positive. The macro is executed n times and
returns control to the next command in the original command string.

3-26

Text Editor

Examples:
*Il/BGRBS-ClS/LJ
*B1000EMS%
?*SRCH FAIL I N IIRCRO*?
*

Executes the MACRO stored in
the previous example. An error
message is returned when the
end of buffer is reached.
(Thi.8 macro effectivelychanges
all occurrences oj? RO in the
Text Buffer to Rl.)

*]MOV PC,RIJZEMIC’LR CR2f.S In a new wogr~o inserts
* MOV PC,Rl then executes the

command in the Macro Buffer
twice before inserting CLR

L @RZ.
!

3.6.5.5 Edit Version - The Edit Version connnand displays the Version
number of the Editor in use on the console terminal.

The form of the command ie:

')

Example:

*EVIS
ve2-81
*

3.6.5.6 Upper- and Lower-Case Commands - User8 who have any ww/
lower-case terminal as part of their hardware configuration may take
advantage of the upper- and lower-case capability of this terminal.
Two editing commands, EL and EU, permit this.

When the Editor is first called (R EDIT), upper-case mode is assumed;
all characters typed are automatically translated to upper case. TO
allow processing of both upper- and lower-case characters, the Edit
Lower command is entered:

*i Text, a n d commands tan b e entered in UPPER and 1owe-r ca~e+$$
1:

The Editor now accepts and echoes upper- and lower-case characters
received from the keyboard, and Outputs text on the teleprinter i n
upper- and lower-case.

To return to upper-case mode, the Edit Upper command is used:
*EUSS

),

Control also reverts to upper-case mode upon exit from the Editor (via
EF, EX, or CRTL C).

3-27

Text Editor

Note that when an EL command has been issued, Edit commands tan be en-
tered in either upper- or lower-case. Thus, the following twocommands
are equivalent:

The Editor automatically translates (internally) all commands to upper-
case independent of EL or EU.

3.7 THE DISPLAY EDITOR

In addition to all functions and commands mentioned thus far, the
Editor has additional capabilities to allow efficient use of VP-11
display hardware which may be part of the System configuration (GT40,
GT44, DECLAB 11/40).

The most apparent feature is the ability to use the display Screen
rather than the console terminal as a window into the Text Buffer for

I
printout of all textual input and output. When all the features of
the display Editor are in use, a 12" Screen displays text as shown in
Figure 3-l:

10 PRKEDING
LINES OF TEXT

CURSOR L
(CURRENT LINE) r

AND 9 FOLLOWING
LINES OF TEXT

SEPARATION LINE\

3 PRECEDING
COMMAND LINES

CURRENT COM”N~,

Figure 3-l
Display Editor Format

WINDOW
,INTO THE
TEXT BUFFER

January 1976 3-28

Text Editor

The major advantage is that the User tan nOw see immediately where the
pointer is. The pointer appears between Character8 on the Screen as a
bright blinking L-shaped cursor and tan be detected easily and
quickly. Note that if the pointer is placed between a carriage return
and line feed, it appears in an inverted position at the beginning of
the next line.

In addition to displaying the current line (the
cursor),

line containing the
the 10 lines of text preceding the current line and the 9

lines following it are also in view. Esch time a command string is
executed (via a double ALTMODE) this portion of the Screen is
refreshed so that it reflects the results of the convaands just
performed.
The lower eection of the Screen contains 4 lines of editing commands.
The command line currently being
three most recent command lines.

entered is last, preceded by the

text portion
This section is separated from the

of the Screen by a horizontal line of dashes. As new
command lines are entered, previous command lines are scrolled upward
off the command section so that only four command lines are ever in
view.

A 17" Screen displays 30 lines of text and 8 command lines.

3.7.1 Using the Display Editor

The display features of the Editor are automatically invoked whenever
the System scroller is in use and the user types:

R ED11

Hcwever, if the System does not contain VP-11 display hardware, the
display features are not enabled.

Providing that the System does contain VP-11 display hardware and that
the user wishes to employ the Screen during the editing Session, he
may activate it in one of two ways (all editing commands and functions
previously discussed in this chapter are valid for use):

1. ff the scroller is in use (i.e., the GT ON monitor command
has been typed Prior to calling the Editor), EDIT recognizes
this and automatically continues using the Screen for display
of text and commands. However ,
that a "window" into the Text

it rearranges the scroller so

two/thirds of the Screen,
Buffer appears in the top

while the bottom third is used to
display command lines.
3-l.

This arrangement is shown in Figure

The Edit Console command tan be used to return the scroller
to it8 normal mode so that text and comrnands appear as
described in Chapter 2, Section 2.7.1 (i.e., using the full
Screen
wind&.

for display of command lines,
The ferm of the command is:

and eliminating the

EC

3 - 2 9 January 1976

Text Editor

For example:

*BAEC2LIJ The second and third lines of the
current buffer are listed on the Screen;
there is no window into the Text Buffer
at this point.

Subsequent EC commands are ignored if the window into the
Text Buffer is not being displayed.

To recall the window, the Edit Display command is used:

ED

The Screen is again arranged as shown in Figure 3-l.

2. Assume the* scroller is not in use (i.e., the GT ON command
has not been typed, or the monitor GT OFF command has been
typed Prior to calling the Editor). When the user calls EDIT,
an asterisk appears on the console terminal as described in
Section 3.1. Using the ED command at this time provides the
window into the Text Buffer; however, commands continue to
be echoed to the console terminal.

When ED is used in this case, it must be the first command
issued; otherwise, it becomes an illegal command (since the
memory used by the display buffer and Code, amounting to over
600 words, is reclaimed as working space). The dfsplay cannot
be used again until a fresh copy of EDIT is loaded.

While the display of the text window is active, ED commands
are ignored.

Typing the EC cormnand clears the Screen and returns all
output to the console terminal.

NOTE

Under the Single-Job Monitor only, after
the editing Session is over, it is
recommended that the Screen be cleared
by either typing the EC command, or
returning to the monitor and using the
monitor INITIALIZE command. Failure to
do this may Cause unpredictable results.

3.7.2 Setting the Editor to Immediate Mode

An additional mode is available in EDIT to provide an easier and
faster degree of interaction during the editing Session. This mode ia
called Immediate Mode and combines the most-used functions of the Text
and Command Modes--namely, to reposition the pointer and to delete and
insert characters.

Immediate Mode may be used only when the WC-11 display hardware is
active and the Editor is running; it is entered by typing two
ALTMODES (only) in response to the Command Mode asteriskr

*s

3-30

%.
k

., !

1I

Text Editor

The Editor responds by echoing an exclamation point on the Screen.
The exclasation character remains on the Screen as long as control
remains in Ismnediate Mode.

Onca Imnediate Mode has been entered, only the commands in Table 3-3
are Wo. None of these connnands echoes,but the text appearing on the
Screen 18 constantly refreshed and updated during the editing process.
Note that no EDIT commands other than those in Table 3-3 may be used
while control remains in Immediate Mode.

To return control to the display Editor'8 normal Command Mode at any
time while in Ismediate Mode, type a Single ALTMODE. The Editor
responds with an asterisk and the User may proceed using all normal
Editing camuands. (Isunediate Mode comnmnds typed at this time will be
accepted as Comnand Mode input characters.) To return control to the
monitor while in Imnediate Mode, type CTRL C.

Table 3-3
Immediate Mode Conmands

Conmand

CTRLN

Meaning

Advance the pointer (cursor) to the
beginning of the next line (equivalent
to A).

CTRL G Move the pointer (cursor) to the
beginning
(equivalent tEf-A).

the previous line

CTRL D

CTRLV

Move the pointer (cursor) forward by one
Character (equivalent to J1,
Move the pointer (cursor) back by one
character (equivalent to -J).

RUBOUT Delete the Character immediately
preceding the pointer (cursor)
(equivalent to -D).

CTRLC Return control to the monitor.

ALTMODE (one only) Return control to Comnand Mode.
(two) Direct control to Imnediate Mode.

Any other character
than those above

Insert the Character as text positioned
immediately before the pointer (cursor)
(equivalent to 1).

3-31

Text Editor

3.8 EDIT EXAMPLE

I

The following example illustrates the ~803 of
to Change a program stored on tha device DK.
output arc coded by letter and corresponding
example.

A

{

R E D I T
*ERDK: TESTE. MRCSC
*EWDK : TEST2. MRCIZ
*RS%

c

*/L$s
i T E S T PROGRRM

some of the EDIT commands
Sectiona of the terminal

explanations follow the

START :

M S G :

Mov W1880, %6 i INITIHLIZE STHCK
H O V #RSGs %B ;POINT R0 T O IIESSHGE
J S R X7vMSGTYP iPRINT I T
HOLT i STOP
.RSCII/IT WORKS/
B Y T E 15
B Y T E 1 2
B Y T E B

c (*B 1J SDJI

{

*GFROGRAMLI
Q *BLIJ

c

; PROGRRH*I T O T E S T SUEROUTINE M S G T Y F . T Y F E S
; “THE TEST FROGRAM UORKS”
,,JN Tt+t TEMX\IM\~MINALOS
*F. HSCI Ii’SC

FC*BC~~E TEST FROGRRM i4oRKsm

(

*P. B Y T E - X
G *F. B Y T E BIVSS

. B Y T E 0

i

*I
. END

SB/LSS
i PROGRAtl T O T E S T SUBROUTINE M S G T Y F . T Y F E S
i “ T H E T E S T PROGRRtl LIORKS”
i O N T H E TERIIINRL

STRRT: M O V tlB0B, %6 ;INITIALIZE S T H C K
H

I

MSG :

I
* E X % S

{..

n o v YRSG, 20 ;POINT RO TO MESSAGE
J S R X7,MSGTYF iPRINT I T
HALT i STOP
.RSCII/‘THE T E S T PROGRAR WORKS/
B Y T E 1 5
. BYTE 12
BYTE B
E N D

. /J

3-32

Text Editor

A

B

C

D

E

F

G

H

1

3.9

The

The EDIT program is called and prints an *. The input file is
TESTl.MAC; the output file is TESTL.MAC and the first page of
input is read.

The buffer contents are listed.

Be Sure the pointer is at the beginning of the buffer. Advance
pointer one character (past the ;) and delete the "TEST ".

Position pointer after PROGRAM and verify the position by listipg
up to the pointer.

Insert taxt. RUBOUT used to correct typing error.

Search for .ASCII/ and Change "IT WORXS” to "THE TEST PROGRAM
WORRS'.

CTRL x typed to cancel P conunand. Search for '.BYTE 0" and
verify location of pointer with V comand.

Insert text. Return pointer to beginning of buffer and lkst
entire contents of buffer.

Close input and output files after copying the current taxt
buffer as well as the rest of input file into output file. EDIT
returns control to the monitor.

EDIT &ROR MESSAGES

Editor prints an error message whenever one of the error-_ _ - _conditions listed next occurs. Prior to executing any commands, the
Editor first SCMS the entire comnand string for errors in comnmnd
formst (illegal arguments, illegal combinations of conmands, etc.). ff
an error of this type is found, an error message of the ferm:

?ERROR MSG?

is printed and no commands are executed. The user must retype the
conmand.

If the command string is syntactically correct, execution is started.
Execution errors are still possible, however (buffer Overflow, I/O
errors, etc.), and if such an error occurs, a message of the ferm:

?*ERROR MSG*?

is printed. In this case, all coramands preceding the one in error are
executed, while the command
executed.

in error and those following are not
Most errors will generally be of the Syntax type and CM be

corrected before execution.

3-33

Text Editor

When an error occurs during execution of a Macro, the message format
is:

Omessage IN MAO?

01:

?*message IN MACRO*?

depending on when it is detected.

Message Explanation

CB ALMOST FULL The command currently being entered fs within
1 0 characters of exceeding the space
available in the Command Buffer.

?CB FULL?

?*DIR FULL*?

?*EOF*?

?*FILE FULL*?

?*FILE NOT FND*?

?*HDW ERR*?

?ILL ARG?

?ILLCMD?

?*ILL DEV*?

?ILL MAC?

Conunand exceeds the space allowed for a
command string in the Command Buffer.
No room in device directory for output file.

Attempted a Read, Next or file searching
command and no data was available.

Available space for an output file is full.
Type a CTRL C and'the CLOSE monitor command
to save the data already written.

Attempted to open a nonexisting file fOr
editing.

A hardware error occurred during I/O. May be
caused by WRITE LOCKed device. Try again.

zmEdume;;e;pecified is illegal for the
A negative argument was

specified wheri a positive one was expec+d
or argument exceeds the range + or - 16,383.

EDIT does not recognize the command
specified; ED was not the first command
issued when used to activate the display
hardware.

Atittted to open a file on an 'illegal
or attempted to use display hardware

when n&e was available (it may be in use by
the other job).

Delimiters were improperly used, or an
attempt was made to enter an M command during
execution of a Macro or an EM command while
an EM was in progress.

3-34

Text Editor
Meseage

?*ILL NAME*?
Explanation

File name specified in EB, EW, or ER is
illegal.

?*NO FILE*? Attempted to read or write when no file is
open.

?*NO ROOM*? Attempted to Insert, Save, Unsave, Read,
Next, Change or Exchange when there was not
enough room in the appropriate buffer.
Delete unwanted buffers to create more room
or write text to the output file.

?*NO TEXT*? Attempted to cal1 in text from the Save
Buffer when there was no taxt available.

?*SRCIi FAIL*? The text string specified in a Get, Find or
Position command was not found in the
available data.

?"<>"ERR? Iteration brackets are nested too deeply or
used illegally or brackets are not matched.

3-35

i

CHAPTER 4

PERIPHERAL INTERCHANGE PRGGRAM (PIP)

The Peripheral Interchange Program (PIP) is the file transfer and
maintenance Utility for RT-11. PIP 1s used to transfer files between
any of the RT-11 devices (listed in Table 2-21, merge and delete files
from these devices, and list, Zero, and comprese device directories.

,. . _
(

4.1 CALLING AND USING PIP

To cal1 PIP from the System device typer

R PIP

in response to the dot printed by the Keyboard Monitor. The Command
String Interpreter prints an asterisk at the left margin of the
terminal and waits to receive a line of filenames and command
switches. PIP accepts up to six input filenames and three output
filenames; connnand switches are generally placed at the end of the
conrmand string but may follow any filename in the string. There is no
limit to the number of switches which may be indicated in a command
line, as long as only one Operation (insertion, deletion, etc.) 1s
represented.

Since PIP performs file transfers for all RT-11 data formats (ASCII,
Object, and image) there are no assumed extensions for either input or
output files; all extensions, where present, must be explicitly
specified.

Following completion of a PIP Operation, the Command String
Interpreter prints an asterisk at the left margin of the teleprinter
and waits for another PIP command line. Typing CTRL C at any time
returns control to the Keyboard Monitor. To restart PIP, type R PIP
or the REENTER command in response to the monitor's dot.

4.1.1 Using the "Wild Card" Construction

PIP follows the Standard file specification Syntax explained in
Section 2.5 (Chapter 2) with one exceptiont the asterisk character
tan he used in a command string to represent filenames or extensions.
?;l.asterisk (called the "wild card") in a file specification means

. For instance, '*.MAC" means all files with the extension .MAc.

4 - 1

Peripheral Interchange Program

regardless of filename. "FORTN.*" means all files with the filename
FORTN regardless of extension. "*.*" means all files, regardless of
name or extension.

The wild card Character is legal in the following ca888 only (switches
are explained in the next section):

1. Input file specification for the copy and multiple copy
operations (i.e., no switch, /I, /B, and /Al.

2. File specification for the delete Operation (/DJ.

3. Input and output file specifications for the renaxne Operation
(/R).

4. Input and output file specifications for the multiple coPY
Operation (/XI.

5. Input file specifications for the directory list Operation8
VL, /E, /Fl .

Operations on files implied by the wild card asterisk are perfonned in
the Order in which the files appear in the directory. System files
with the extension .SYS and files with bad blocks and the extension
.ßAD are ignored when the wild card Character is used unless the /Y
switch is specified.

Examplest

**, BAKi'D Causes all files with the extension .BAX
(regardless of their filenames) to be
deleted from the device DK.

**. TST=*. BAK/R Renames all files with a .BAE extension
(regardless of filenames) so that these
files nw have extension
(maintaining the samt fiiZme8).

*RK:I. : * l ä/X/Y=I l * Transfers all files, including System
files, (regardless of filename or
extension) from device DK to device RW.

XI + MAC 9 * . UE%.J/l... Lists all files with .MAC and .OBJ
extensions.

4.2 PIP SWITCHES

i
-, ’

The various operations which tan be performad by PIP are summarized in
Table 4-l. If no switch is specified, PIP assumes the Operation is a
file transfer in image (/I) mode. Detailed explanations of the
switches follw the table.

)
i

4-2

Peripheral Interchange Program

Table 4-1
PIP Switches

Switch Section Explanation

/A 4 . 2 . 2 Co ies
Ei

file(s) in ASCII modet ignores null8 and
ru outs; converts to 7-bit ASCII; CTRL 2 (32 octal)
treatedas logical end-of-file on input.

/B 4 . 2 . 2 Copies files in formatted binary mode.

/C 4 . 2 . 2 May be used in conjunction with another switch to
Cause only files with current date (as designated
using the monitor DATE command) to be included in
the specified Operation.

/D

/E

4 . 2 . 4 Deletes file(a) from specified device.

4 . 2 . 6 Lists the device directory including unused spaces
and their sizes. An empty space on a cassette 01:
magtape directory represents a deleted file.
Sequence numbers are listed for cassettes.

/F 4 . 2 . 6 Prints a short directory (filenames only) of the
specified device.

/G 4 . 2 . 2 Ignores any input errors which occur during a file
transfer and continues copying.

/I or no 4.2.2
switch

Copies file(s) in image mode (byte by byte). This
is the default switch.

/K 4.2.12 Scans tha specified device and types the absolute
block numbers (in octal) of any bad block8 on the
device.

/L 4 . 2 . 6 Lists the directory of the specified device,
including the number of files, their dates, and
the number of block8 used by each file. Sequence
numbers are listed for cassettes.

/M:n 4.2.1 Used when I/O transfers involve either cassette or
magtape. n reprosents the numeric position of the
file to be accessed in relatfon to the physical
position of the cassette or magtape on the drive.
1f.n is positive, the tape spaces forward from its
current position until either the filename or tha
nth file is found; if n is negative, the tape is
rewound first, and then it spacßs forward until
either the filename or the nth file is found. If
n is 0 (or not indicated) the tape is rewound and
searched for the filename. F o r wild card
operations, specification of /M with a positive
argument will prevent the tape from rewinding
between each fiie involved in the Operation.

/N:n 4 . 2 . 7 Used with /Z to specify the number of directory
Segments (n) to allocate to the directory.

/O 4 . 2 . 1 0 Bootstraps the specified device (DTO, RKn, RF, DPn,
DSn, DXn only).

4 - 3
(continued on next Page)

Peripheral Interchange Program
Table 4-1 (Cont.)

PIP Switches
swi tdl-..- ---_ I Sectianl--- ----- Exolanatione

/Cl 4.2.2 When used in conjunction W i t h a n o t h e r PIP
Operation, cau5es PIP to type each filename which
is eligible for a wild card Operation and to ask
for a confirmation of it8 inclusion in the
Operation. Typing a rYr Causes the named file to
be included in the Operation; typing anything
else excludes the file. The command line is not
processed until the User has confirmed each file
in the Operation.

/R

/S

4.2.5 Renames the specified file.

4.2.8 Compresses the files on the specified directory
device 50 thnt free block8 are combined into one
area.

/T

DJ

4.2.4 Extends number of blocks allocated for a file.

4.2.9 Copiee the bootstrap from the apecified file into
absolute block8 0 and 2 of the specified device.

4.2.11 Types the version number of the PIP program being
used.

4.2.6 Includes the absolute starting block and any extra
directory words in the directory listing for each
file on the device (numbers in octal). Used with
/F, /L, 01: /E.

/X

/y

4.2.3 Copies files individually (without concatenation).

4.2.2 Causes System files and .BAD files to be operated
on W the command specified. Attempted
modifications or deletions of .SYS or .BAD files
without /Y are not done and Cause the message ?NO
SYS ACTION7 to be printed.

/Z:n 4.2.7 Zeroes (initializee) the directory of the
specified device; n is used to allocate extra
words per directory entry. When used with /N, the
number of directory Segments for entriet may be
specified. When used with cassette, /Z writes a
sentinel file at the beginning of the tape; With
magtape, /Z writee a volume label followed by a
dummy file followed by double tape marks
indicating logical end-of-tape.

4.2.1 Operation8 Involving Magtape or Casaette

PIP Operation8 involving cassette and magtape devices are handled
somewhat differently than other RT-11 devices, because of the
sequential nature of these devices. The last file on a cassette or
magtape (the logical end-of-tape) is specially formatted ao that it
marks the end of current data and indicates where new data may begin
(double end-of-file for magtape , sentinel file or physical end-of-tape
for cassette). Therefore, Operation8 which designate specific block
lengths (such as /T and /N) are meaningleas, and unused spaces on the
tape (resulting from file deletiona) cannot be filled.

-1
)> \

-’ 1

4-4

Peripheral Interchange Program

PIP operations which are legal using cassette and magtape (including
the bootable magtape on which the System may have been distributed)
include the following:
/w, /X, /Y, a n d /Z.

/At /Bt /Dt /Et /Ft /G, /It /Lt /Mn /Q, PJ,
Usually the device (CT or MT) is rewound each

time an Operation is performed. Since there is no inclusive directory
at the beginning of the tape the only way to access a file is to
search'the tape from the beginning until it is found. However, the
/M:n switch is available for situations where it is not necessary or
desirable to rewind the tape before each Operation.
(n) is positive,

If the argument
the Operation indicated will not rewind the tape

first, but will space forward until it finds either the nth file, the
filename indicated in the command line,
whichever occurs first.

or the logical end-of-tape,
If the argument is negative, the cassette or

magtape will be rewound first and then spaced forward until the file-
name (or nth file, or logical end-of-tape) is found. Thus:

/M:l means suppress rewind, begin Operation at
current Position.

, '-
(,

/MP1 means rewind tape and access the first file
on it.

Remember that when /Mrn is used , n is interpreted as an octal number.
/Min must be used if it is intended that n represent a decimal number.

For example, assume the directory of a cassette on unit 1 ist
17-JUL-74
FILE .I 0 S-MAY-74
F I L E .2 0 5-MAY-74
FILE .3 1 13-MAY-74
FILE .4 1 28-JUN-74
FILE .5 0 17-JUL-74
5 FILES, 2 BLOCKS
*

and the last PIP Operation involved FILE.4,
positioned

leaving the cassette
at the and of FILE.4. To access FILE.2, the next Operation

(for example, deleting FILE.21 could use the /M construction:

*CTl:DUM/tl:-2/'D
In this case, the cassette rewinds first, then epaces forward from its
currunt position to the second file in sequence and deletes it. (In a
delete Operation, the dummy filenCme is necessary; otherwise, a
non- f.!le structured delete is performed and the tape is zeroed. See
Gection 4.2.4).

Another useful application of the /M switch involves a case where a
nuraber of files are to be created on a magtape or caasette.
construction:

Using the

MT:.*/X=FILE.l,FILE.2.../M:1888

prevents a rewind from occurring before each new file is created on
the tape. Normal Operation (when creating a new file on magtape or
cnssette) is to rewind, then search the tape for the logical end.
a file with the eame name as the one being created is encountered, ::
is deleted and the new file is opened at the logical end of the tape.
The /M:lOOO command first Causes the tape to space forward until it
reaches the logical end-of-tape,
files on the tape),

(aasuming less than 1000 (octal)
at which point the next file is entered, and so

on. If the tape were already positioned at the end of the tape, an

I

4-5 January 1976

. ._ . .:. __ ,-.. > a

Peripheral Xnterchange Program

/M:l would suffice to Cause the new file to be written there. Note
that creation of a new file with the /M switch tan result in several
files with the same name on the sams taps; those files occurring
before the tape position are not searched for duplication Prior to the
creation of the new file.

RT-11 magtapes sometimes contain a dummy file at the beginning of the
tape * which is written when the tape ie initialized with the /Z
switch. This flle Shows up in extended directories (/E) as an
<UNUSED> entry in the first file position. Deleted files an magtape
or cassette do not show up in /l? or /L directory listings, but must
always be considered when the /M:n switch is used. Care must always
be taken to use a /E directory when counting file position prior to
using that Position as an /M:n argument; <UNUSED> files must be
counted as files on the tape.

For examplet
R PIP
*MTB:/E
l l - S E P - 7 4
< UNUSED > 0
H . MRC 4 0 l l - S E P - 7 4
E , MAC. 1 5 l l - S E P - 7 4
< UNUSED :> 2
D MAC 2 l l - S E P - 7 4
3 FILE&, 5 7 BLOCKS

Extended directoryt Shows
absolute file positions.

*MTB:/L
l l - S E P - 7 4
A . . MAC 4 0 il-SEP-74
6’ MAC 1 5 l l - S E P - 7 4
D MHC 2 l l - S E P - 7 4
3 FILE& 5 7 BLOCKS

Normal directory; does
not accurately display
file positions.

If the User wished to access file A.MAC on the magtape in the example
above , /Mt-2 must be used (/Mt-1 would access the first empty file).
Likewise, B.MAC is accessed with /M:-3. Rewind tan also be suppressed
for cassette and magtape as input devices by specifying a very large
number in conjunction with wild card transfers front magtape or
cassette.

I
**, *=MTQ : *, *,'Pl : 20QCt/'X

This transfers all files from MTOt to DK: without rewinding between
each file. The argument 2000 is an arbitrarily large numbert any

actual number

I

number larger than the of files on the tape will
suffice.

The most common method for spacing to the end of the tape ist

*DUMMY=MT0:DUMMY/M:2000
?FIL NOT FND?

where DUMMY is a file name which does not exist on the.tape. Note
that an error message is printed when the end of the tape is reached.

July 1975 4-6

Peripheral Interchange Program

/
‘1

Directoq listings of magtapes include the length of each file in
256(decimal) word blocke. In cassette directories, however, sequence
numbers rather than block numbers are printed. Sequence numbers
indicate the sequential ordering of a file in cases where it has been
continued on more than one cassette. In the example cassette
directory listing (at the beginning of this section), the numbers in
the middle column represent sequence numberst both FILE.3 and FILE.4
are the second Segments of continued files. All files on cassette are
initially assigned a sequence number of 0 (meaning this is the first
Segment of the cassette file, not that the file has no length). The
sequence number is automatically updated whenever the file must be con-
tinued as a result of a full cassette.

During'I/O transfer Operation8 involving cassette, if the cassette ie
full before the transfer has finished, Ma messaget

CTnt PUSH FEWIND OR MOUNT NEW VOLUME

(
.L

I

is printed; n represents the number of the drive (0 or 1) on which
the current cassette is mounted. If the cassette rewind button is
subsequently pushed, an error meesage is typed (IN or OUT ERR) and the
tape is rewound.

To continue an output Operation, mount a new cassette (which has been
properly formatted as described in Section 4.2.7) on the Same drive.
The new cassette is rewound automatically and a file is opened on it
under the Same name and extension; the sequence number in it8
directory is updated to reflect the continuation, and the transfer
continues.

If the message occurs during an input Operation, mount the cassette
containing the continued portion of the file on the drive; the
cassette is rewound first. PIP then looks for a file with the same
name and extension and the proper sequence number and continues the
i;~;; Operation. The message is repeated if the next Segment is not

.

For example:

*CTB:FILE. ABFI=DTI:ASC. MFIC,DK:GALOR. MHCi’H
CT0: P U S H REWIND OR MOUNT N E U VOLUME

i
This copies in ASCII mode the file ASC.MAC from DECtape 1 and
BALOR.MAC from device DK and combines them under the name FILE.AGA on
CTO. The cassette runs out of room and requeats that a new one be
mounted. The Operation continues automatically when the second
cassette has been mounted.

A directory of the second cassette in the above Operation is next
requestedr note that the sequence number of FILE.AGA is 1, signifying
it ie the aecond part of a continued file.

*Crßr/L
23-MAY-74
TRA .BIN 0 160FOB-74
FILE . AGA 1 230MAY-74
2 FILES, 1 BLOCKS
*

(The number of block8 in a cassette directory simply represents the
total of sequence numbers in the directory.)

Any cassette mounted in response to a continuation message MUST have
been previously initialized at some time as described in Section
4.2.7.

4-7 January 1976

Peripheral Interchange Program

If c full cassette is mounted or an attempt is made to access some
file on it that does not exist, the continuation message recurs.
The Operation may be continued by mounting another cassette.

Note that if an attempt is made to access a file which has a non-Zero
sequence number (during some Operation which is not a continuation of
an Operation), the file will not be found.

To copy multiple files to a cassette using a wild card command, use
the following:

CTn:.*=DEV:*.*/X/M:l (rewind is inhibited)

Continue to mount new cassettes in response to the PUSI-! REWIND OR
MOUNT NEW VOLUME message. DO not ahort the process at any time (USing
two CTRL CS) since continuation files may not be completed and no sen-
tinel file will be written on the cassette.

To read multiple files from a cassette, use the following:

DEV:.*=CTn:*.*/X/M:lOOO (rewind is inhibited)

Whenever a continued volume is detected, the PUSH REWIND OR MOUNT NEW
VOLUME message will appear, until the entire file has been copied (as-
suming that each sequential cassette is mounted in response to each OC-
currence of the message).
of a continued file,

Whenever PIP has copied the final section
it will return to command level.

remaining files on that cassette, reissue the command:
To copy the

DEV:.*=CTn:*.*/X/M:lOOO

Repeat the process as often as necessary to copy all files. Do not
abort the process at any time (using two CTRL Cs) since continuation
files may not be completed.

If the end of a tape is reached during a magtape I/O Operation, an IN
or OUT ERR message is printed. In the case of an output Operation,
the magtape backspaces and deletes the partial file by writing logical
end of tape over the file's header label. The Operation must then be
repeated using another magtape.
If CTRL C ie typed during any output Oparation to cassette or magtape,

end-of-tape or sentinel file im not written on the tape first.
Ensequently, no future enters may occur to the tape unless one of two
recovery procedures is followedr

1. Transfer all good files from the bad taps to another tape and
zero the bad tape in the following mannerr

devl:.*/X=devO:filel,file2,...filen/M:lOOO
*devot/2
devOt/Z ARB YW SURE 3

Thia Causes a logical end-of-tape to be written onto the bad
tape and makes it again available for use.

January 1976 4-8

Peripheral Interchange Program

2. Determine the sequential ntmber of the file which was
interrupted and use the /M construction to enter a
replacement file (either a new file or a dummy file).
Assuming the bad file 1s the 4th file on the tape, use a
conmand line of this construction:

*devOtfile.new-file.dum/M:-4

A logical end-of-tape now exists on the tape, making it
available for use.

Since magtapes and cassettes are not random access devices, each unit
tan have only one file accessed at a time. Avoid PIP conunand strings
which specify the same unit nmber for both input and output, since a
lose of information CM occur. For examplet

, -
('

*CT0:FILEI.MAC=CT0:FILEI.MAC
?FIL NOT FND?
*

The result of this Operation is to delete FILEl.MAC before the error
message is printed, and the tape label structure may be destroyed. I
Recovery procedures for errors caused by bad tapes are described in
RT-11 Software Support Manual.

4-8.1 January 1976

.- :

This page intentionally blank.

Peripheral Interchange Program
4.2.2 Copy Operation8

A command line without a switch Causes files to be copied onto the
destination device in image mode (byte by byte). This Operation is
used to transfer memory image (save format) files and any files other
Man ABC11 or formatted binar-y. For example:

*RBC<XYZ Makes a copy of he file named KYZ on
device DK and 5assigns the name ABC.
(Both files exist on device DK following
the operation). 1

*S’f:BACK.BIN=FR:/I Copies a tape from the Papertape reader
to the syateq device in image mode and
assigns it tie name BACK.BIN.

The /A switch 1s used to copy flle(s) in ABCII mode as followsr

*DTl:Fl<FZ./A Copies F2 frcan device DK onto device DT.1
in ABC11 mcde and assigns the name Fl.

~~11s and rubouts are ignored in an ASCII mode file transfer.
(32 octal) is treated as logical end-of-file if eacountered CTRL Z

input file.
in the

The /ß switch is used to transfer formatted binar-y files. The
formatted binary copy switch should be used for .OBJ files produced by
the asaembler or FORTRAR and for .LDA files produced by the Linker.
For example:

) -
*Dt<:FILE.OBJ<FR:/S Transfers a formatted binary file from

the Papertape 'reader to device DK and
assigns the name FILE.OBJ.

When performing formatted binary transfers, PXP verifies checksums and
prints the message ?CIIK SUM? if a checksum errbr occurs.

If neither /A nor /B is used in a copy Operation that involves a Paper
tape device, the size of the output file in the Operation depends upon
the memory size of the System. The transfer mode defaults to image
mode and PIP attempts to do a Single read to fill its input buffer.
When a read from the Paper tape reader encounters end-of-tape, no count
of words transferred tan be returned; .PIP assumes its input buffer is
full and copies it to the output device. The output file size thus
depends upon the input buffer size, which is determined by the memory
size of the System. The output file will have several blocks of zeroes
after the end of the Paper tape image. If copying to the Punch, large
amounts of blank tape will be punched after the input tape image is
output. The extra length is harmless, but tan be avoided by use of /A
01: /B. Image mode files (for example, .SAV files) cannot reliably be
transferred to or from Paper tape.

To combine more than one file into a Single file, use the following
formst:

*DK:RA<DTl:BB,CC, DD,'1
Transfers files BE, CC and DD to device
DK as one file and assigns this file the
name AA.

4 - 9 January 1976

_.

Peripheral Interchange Program

*DT3: MERGE-QT2: FILE2, FILE3/H
Merges ASCII files FILE2 and FILE3 on
DT2 into one ASCII file named MERGE On
device DT3.

Errors which occur during the copy Operation (such as a parity error)
Cause PIP to output an error message and return for another comrnand
string.
The /G switch is used to copy files but ignore all input errors. For
example:

*ABCCDTl : TUPi’G Copies file TOP in image mode from
device DT1 to device DK and assigns the
name ABC. Any errors during the copy
Operation are ignored.

January 1976 4 - 9 . 1

This page intentionally blank.

;j)
i, - -’

Peripheral Interchange Program

*DTZ: LOMB<DTi : Fl, FL/‘H/G
Copies files Fl and F2 in ABC11 mode
from device DT1 to device DT2 as one
file with the name COMB. Ignores input
errors.

The wild card construction may be used for input file specifications
during copy operations. Be Sure to use the /Y switch if System files
(.SYS) are to be copied. For examplet

I:I'T':L :PRcIGi~:::. MAC Copies, in image mode, all files with 8
.MAC extension from device DK to device
DT1 and combines them under the name
PROGl.

**,*-nT3:*t*/c~/Y/x Copies to device DK, in image mode, all
files (including .SYS files) from device
DT31 ignores any input errors.

If only files with the current date are to be copied (using the wild
card construction), the /C switch must also be used in the command
line. For examplet

*GT2 : NN3= ITEMI. */C:, ITEM2iR
Copies, in ABC11 mode, all files having
the filename ITEMl and the current date,
(the date entered using the monitor DATE
command) and copies ITEML (regardless of
its date) from device DK to device DT2
and combines them under the name NN3.

*CiTI: *. *=*. *i'C/X Copies all files with the current date
from DK to DT3. Note that commands of
this nature are an efficient way to
backup all new files after a session at
the computer.

The /Q switch is used in conjunction with another PIP Operation and
the wild card construction to list all files and allow the User the
opportunity to tonfirm individually which of these files should be
processed during the wild card expansion. Typing a "Y" causes the
named file to be processed; typing anything else excludes the file.
For exampler

lb t C)B.J~:::L’~T:l : I + OB\J/O/X
tv[fw .OBJ’?Y Copies the files FIR!ST.OBJ and
GETR . CJB J’? CARJ.OBJ to the disk in
HORII .OBJ’? image mode f rom DECtape 1
WR J ,UBJ?Y and ignores the others.

The file allocation scheme for RT-11 normally all-8 half the eitire
largest available space or the second largest space, or a maximum sise
(a constant which may be patched in the RT-11 monitor; See the RT-11
System Generation Manual), whichever is largest, for a new file. The
user tan, using the In] construction explained in Chapter 2, forte
RT-11 to'allow the entire largest possible space by setting n=177777.
If n is set egual to any other value (other than 0 which is default
and gives the normal allocation described first above), that size will
be allocated for the file.

-, 1

I
January 1976 4-10

Peripheral Interchange Program

Therefore, assume that the directory for a given device Shows a free
area of 200 block6 and that PIP returns an ?OUT ER? message when a
transfer is attempted to that device with a file which 1s longer than
100 block8 but lese than 200 blocks. Transfers in this situation tan
be accomplished in either of two waysr

1. Use the [n] construction on the output file to specify the
desired length (refer to Chapter 2, Section 2.5 for an
explanation of the [nl construction).

2. Use the /X switch during the transfer to forte PIP to
allocate the correct numher of block8 for the output file.
This procedure will operate correctly if the input device is
DECtape or disk.

F o r example, assume that file A is 150 block8 long and that a
directory listing Shows that there is a 200 block <unused> space on
DTlr

.R FIF
*DTl:A=H
?OUT ER? File longer than 100 blocks.

o r
*DTl:At150l=H

*DTl:A=A/X
Either command Causes a correct
transfer.

4.2.3 Multiple Copy Operation8

The /X switch allows the transfer of several files at a time onto the
destination device as individual files. The /A, /G, /C, /Q, /B and fl
switches tan be used with /X. ff /X is not indicated, all output files
but the first will be ignored.

Examplesr

#FILE1 ~FILE:~~F’~L..E~~:::I:I’I’:I.:F‘II-EA,F:’II.E~:~~F~IL~E~L,~X
Copies, in image mode, FILEA, FILEB and
FILEC from device DT1 to device DK as
separate files called FILEl, FILE2 and
FILEi, respectively.

DT2:Fl.=F2.*/X Copies, in image mode, all files named
?NO SYS ACTION? F2 (except files With . SYS or .BAD
* extensions) from device DK to device

DT2. Esch file is assigned the filename
Fl but retains its original extension.

DT1:,*=Di2:*,*/X Copies, in image mode, all files on
wo SYS ACTIUN'? device DT2 to device DT1 (except files

with .SYS or ,BAD extensions); the files
are copied separately and retain the
Same names and extensions.

This ccaunand line assumes there arc two
files with the filename FILEA (and any
extension excluding . SYS .BAD
extensions) and copies theseOfiles in

4-11

Peripheral Interchange Program

ASCII mode to device DTl. The files arc
tranaferred in the Order they are found
in the directory; the first file found
is copied and assigned the name FILKl,
and the second is assigned FILEZ. ff
there is a third, it is ignored and a
fourth Causes an ?OUT FIL? error.

*DTB : *. SY s=*. SYS/X/Y
Copiea all system files from devfce DK
to device DTO.

File transfers performed via normal Operation8 place the new file in
the largest available area on the disk. The /X switch, however,
places the copied files in the first free place large enough to
accommdate it. Therefore, the /X ewitch should be used whenever
possible (i.e., when no concatenation is desired) aa an aid to
reducing disk fragmentation.

*A=B
and

*A=ß/X
perform the Same Operation8 however, using the second construction
whenever possible increases the System disk-usage efficiency.

For example, assume the directory of DT1 ie:

9-MAY-74
M O N I T R . S Y S 3 2 J-HRY-74
< U N U S E D > 2
P R SYS
< UNUSiD >

2 s-HRY-74
528

2 FILE58 34 BLOCKS
5 3 0 F R E E B L O C K S

Ta copy the file PP.SYS (2 blocks lang) from DK to DTl, the commandx

*DT1 : PP. SYS=PP. SYS/Y

tan be entered, and the new directory ie:
9-HRY-74

MONI TR. SYS 3 2 5-HRY-74
i U N U S E D > 2
PR . SYS 2 J-HRY-74
P P SYS 2 9-HRY-74
< UNUSED > 5 2 6
3 FILES, 3 6 B L O C K S
528 F R E E B L O C K S

If the commandt
*DTl: P P . SYS=PP. SYSt’Y/x

had been entered, the new directory would appear,

4-12

Peripheral Interchange Program
9-MAY-74

HONITR. S Y S 3 2 5-MRY-74
PP svs 2 9-t!RY-74
P R SYS 2 5-nAY-74
C UNUSiD > 5 2 8
3 FILES, 3 6 B L O C K S

5 2 8 F R E E E L O C K S

4.2.4 The Extend and Delete Operation8

The /T switch is used to increase the number of blocke allocated for
the specified file. The file associated with the /T switch must be
followed by a numeric argument of the form [n] where n ia a decimal
number indicating the number of blocke to be allocated to the file at
the completion of the extend Operation.

The format of the /T ewitch ist

devtfilnam.ext[n]-/T

A file tan be extended in this manner only if it is followed by an
unused area of sufficient size (on whichever device it ie located) to
acconvnodate the additional length of the extended file. It may be
necessary to create this space by moving other files on the device
using the /X switch.

Specifying the /T switch in conjunction with a file that does not
currently exist creates a file of the designated length.

Error messages are printed if the /T command makes the specified file
smaller (?EXT NEG?) or if there is insufficient space following the
file (?RCKM?).

Examples:
*ABCC 200 l=/T Assigns 200 block8 to file ABC on device

DK.
*DTl:XYZtlßß l(/T. Assigns 100 blocks to the file named XTZ

on device DTl.

The /D switch is used to delete one or more files from the epecified
device. The wild card Character (*) tan be used in conjunction with
this command.

Only six files tan be specified in a delete Operation if each file to
be deleted is individually named (i.e., if the wild card character ie
not used).

A cassette or magtape may be initialized by indicating the /D switch
and omitting any filenames. For examplet

*MT : /D
*CT : /D

Both devices are zeroed. This is not the case with the other RT-11
devices, where omission of a filename Causes no action to occur.

4-13

Peripheral Interchange Program

When a file is deleted on block-replaceable devices, the information
is not destroyed. The file name is merely removed from the directory.
If a file has been deleted but not overwritten, it tan be recovered
with the /T switch by specifying a command of the formt

filena.ext[n)=/T
where filena.ext is the name desired
deleted file.

and n is the length of the
For examplet

*DT1 : /E
4 - J U N - 7 4

R ,MAC 18 3 - J U N - 7 4
B .HAC l? 3 - J U N - 7 4
c IIAC
C UNUSbD > 5fi

3-JUN-74

3 FILES, 54 BLOCKS
5 1 0 F R E E 8LOCKS

*DT1 : B. MRCr’D

*DT1 : /E
4-JUN-74

A MAC 18 3-JUN-74
C UNUSiD > 17
C HAC 19 3-JUN-74
C UNUSiD > 510
2 FJLES, 3 7 SLOCKS

5 2 7 F R E E BLOCKS

File B.MAC could ncnv be recovered by:

*DT1 : B. MFICC 17 l=t’T

The /T switch looks for the first unused area large enough to
accommodate the requested file length. If the file to be recovered is
in the first area large enough to accommodate the size specified, the
preceding command is sufficient. If not, all larger unused spaces
preceding the desired file must be given
recovery tan be made.

dummy names before the

For instance, assume the previous example
A.MAC has a

with the exception that
looks liket

33 block unused file before it, so that the directory

*DTl:/E
4 - J U N - 7 4

< UNUSED > 33
R HRC 18 3-JUN-74
: UNUSED > 17

C MAC 19 3-JUN-74
< UNUSiD > 4 7 7
2 FILES, 3 7 B L O C K S

5 2 7 F R E E B L O C K S

A recovery of B.MAC would requirer
*DT1 : DUMMYC 33 l=/T
*DT1 : B. MRCC 17 l=/T

:

4-14

/’ Peripheral Interchange Program

If the 33 block unused area was not named Prior to B.MAC, the first 17
blocke of the 33 block area would Becomes B.MhC. Note that magtape and
cassette files cannot be recovered once deleted.

Examplest

*F 1 LE1. SAVi’D Deletes FILEl.SAV from device DK.

*DT1 : *. */D Deletes all files frcnn device DT1 except
those with a .SYS or .BAD extension. If
there is a file with a .SYS or .BAD
extension, the message ?NO SYS ACTION?
is printed to remind the User that these
files have not been deleted.

**. MAC/0 Deletes all files with a .MAC extension
from device DK.

*DTl:Bl> DT2:Ri) DT3:AA/D
Deletes the files specified from the
associated devices.

Deletes all files from device RU.

4.2.5 The Rename Operation

The /R switch is used (in a manner similar to the multiple
command described in Section 4.2.3) to rename a file given as in:::
with the associated name given in the output specification. There
must be an equal number of input and output files and they must reside
on the same device, or an error message will be printed. ne fl
switch must be used in conjunction with /R if .SYS files are to be
renamed.

The Rename command is particularly useful when a file on disk or
DECtape contains bad blocks. By renaming the file with a .BAD
extension, the file pennanently resides in that area of the device so

(
that no other attempts to use the bad area will occur. Once a file is
given a .BAD extension it cannot be moved during a compress Operation.
.BAD files arc not renamed in wild card Operation8 unless /Y ie used.

Examplest

*OTl:Fl, Xl<OTl:FB, X0/R Renames FO to Fl and XO to Xl on
device DTl.

*FILEl. *<FILE2. */R Renames all files on device DK with
the name FILE2 (except files with
.SYS or ,BAD extension) to FILEl,
retaining the original extensions.

/R cannot be used with magtape or cassette.

4.2.6 Directory List Operation8

The /L switch lists the directory of the specified device. The
listing contains the current date, all files with their associated
creation dates, total free block8 on the device if disk or DECtape,
the number of files listed, and number of block8 used by the files

I

4-15 July 1975

Peripheral Interchange Program

(sequence number for cassette). File lengths, number of block8 and
number of files are indicated as decimal values. If no output device
is specified, the directory is output to the terminal (TT:).

Examples:
*DTl:/L Outputs complete directory of
i-RUG-74 device DT1 to the terminal.

MONITR. SV5 3 2 5-tlAY-74
PP . SYS 2 9-HRY-74
PR . SYS 2 5-MFIY-74
F 2
MERGE .

REL 15
2

COIIB 2
6 FILES, 55 BLOCKS

5 0 9 F R E E B L O C K S

*D:[KE:C’T’:-D’T’j: /L. Outputs complete directory of
device DT3 to a file, DIREXT,
on the device DK.

* * . MAC/L Lists
directo;

the terminal a
l-RUG-74 of files on device

V T M A C M R C 7 2 2 - J U L - 7 4 DX with the extension .MAC.
FILE2 .HRC i
2 FILE58 6 B L O C K S
3 7 2 8 F R E E B L O C K S
*

*CTi’: /L Lists all files on cassette
10-SEP-74 drive 1. For cassette only,
PRTI F O R 0 l0-SEP-74 the third column represents
PAT2 . F O R 0 10-SEP-74 the sequence number. In
I H U L . O B J 0 1 0 - S E P - 7 4 this example, the first seg-
SQRT F T N 0 10-SEP-74
4 F I L E ; , 0 B L O C K S

ment of each file is on this
cassette. (See Section
4.2.1.)

The @ switch lists the entire directory including the unused areas
and their sizes in block8 (decimaljt an empty space appears in
cassette and magtape directories to designate a deleted file.

Examplesr

O/E Outputs to the terminal a
~....tggL"~~ complete directory of the

BATCH .HLP 2 2J-Al-IG-74 device DK including the size
CHESS ,SAV a.20 ‘:!J+,,G-‘~4 of unused areas.
PA7 1 l FOK 10 33-AUG-741 -

IRAD50 l MAC
(j <~☺..v~,,(tj....-~~

.

t

January 1976 4-16

i Peripheral Interchange Program

J 4: l.JN(.JSErl >* 2
TRIG .UBJ 2 ($-cJYF'-y4

*LP:=CTl:/E Outputs to the line Printer
¶ 1.SEP-74 a complete directory of

:
,MAC 0 llrSEP~74 cassette drive 1. 0's
,MAC B 11.MPi74 represent Segment numbers.

8 ,MAC 0 lldEpr74
3 CILEb, 0 fJi.tJcK~

The /F switch liste only filenames, omitting the file lengths and
associated dates.

Examplesr

*DTB:/F
TRACE . HAC
CARGO . REL
BHAP OBJ
AAR

Outputs a filename directory
of the device DTO to the
terminal.

rLP:=CTl:/F Outputs a filename directory
of the device CTl to the line
Printer.

:
,MAC
,MAC

B ,MAC
The /L, /E and /F commands have no effect on the files of the speci-
fied device. If the /W switch is used in conjunction with the /L or
/E switches, the absolute starting block of the file and extra words
(in octal) will be included in the listing (for all but cassette and
magtape). For example:

XRKI : /L/W
10-SEP-74
DSQRT . OB J 1 10-SEP-74 Ih 0
MAIN *UHJ 1 10-c33.-74 1. 7 0
BASICFi-,OBJ 1% .J0-SE3.-74 L'o 0
OTSU2 .0BJ 3 IO-SEP-74 33 0

The first three columns indicate the filename and extension, block
length, and date. The fourth column Shows the absolute starting block
(in octal), and the fifth column Shows the contents of each extra word
per directory entry (in octal). (This is allocated using the /Z:n
switch; see Section 4.2.7.)

I

i
)\: .-’. ,

4-17 January 1976

Peripheral Interchange Program

Uaing the /L, /E, or /F switch in conjunction with a device and
filename Causes the filename , and optionally the date and file length,
to be output rather than a directory of the entire device. For
example:

*Fl. SRV/L

Causes L

4-JUN-74
F l SAV 18 4-JUN-74
3 7 1 8 FiEE B L O C K S
*

to be output, providing tho file exists on device DK.

Directories are made up of Segments which are two block8 lang . Full
directory listings with multiple Segments contain blank lines as
Segment boundaries.

4.2.7 The Directory Initialization Operation

The /Z switch clears and initializes the directory of an RT-11 direc-
tory-structured device and writes logical end-of-file to a cassette
or magtape device. The /Z Operation must always be the first opera-
tion performed on a new (that is, previously unused) device. The
form of the switch is:

/Z:n

where n is an optional octal number to increase the size of each direc-
tory entry on a directory-structured device. If n is not specified,
each entry is 7 words long (for filename and file length information)
and 70 entries tan be made in a directory Segment. When extra words
are allocated, 'the number of entries per directory Segment decreases. The
formula for determining the number of entries per directory Segment is:

i

507/((# of extra words)+7)

For example, if the switch /Z:l is used, 63 entries tan be made per
Segment.

More information concerning the format of directory entries is supplied
in Chapter 3 of the RT-11 Software Support Manual. i- .'
When /Z is used, PIP responds as followsr

device/Z ARE YOU SURE 3

For example:

*DT 1: i’2
DTl:/Z RRE YOU SURE ?

Answer Y and a carriage return to perform the initfalization. An
answer beginning with a Character other than Y is considered to be no.

Examplet
*DT1 : /Z
DTl:/Z A R E Y O U S U R E ?Y<CR>
* Zeroes the directory on device DT1 and

allocates no extra words for the
directory.

January 1976 4-18

1’
1 ‘)

Peripheral Interchange Program

The /N switch is used with /Z to specify the number of directory seg-
ments for entries in the directory. The form of the switch is:

/N:n

where n is an octal number less than or equal to 37. Initially RT-11
allocates four directory Segments, each two blocks (512 words) long.
Refer to Chapter 3 of the RT-11 Software Support Manual for more in-
formation.

Example:

*l?l\%:/z.:2/N:6 Zeroes the directory on device RKl, al-
locates two extra words per directory
entry and allocates six directory seg-
ments. l

4.2.8 The Compress Operation

The /S switch is used to compress the directory and files on the speci-
fied device, condensing all the free (unused) blocks into one area.
Input errors are reported on the console terminal unless the /G switch
is used; output errors are always reported. In either case, the com-
press continues. /S tan also be used to copy DECtapes and disks.
When DT, DP, or RK devices are copied, /S serves to both initialize
the volume and to copy directory and files. When DX disks are copied,
however, the output diskette must first be initialized using /Z to
write the appropriate volume identification. (It is important to
note that the /S switch destroys any previous directory on the output
device. The new directory on the output device has the Same number
of Segments as the directory on the input device.) /Ei does not copy
the bootstrap onto the volume.

To increase the nunher of directory block8 in a two-volume compress
(that ie, from one volume to another rather than from one volume to
itself), use the /Nm switch in conjunction with the /S switch (aY
attempts to decrease the directory size are ignored).

/S does not move files with the .BAD extension. This feature provides
protection against reusing bad blocks which may occur on a disk.

i File8 containing bad block8 tan be renamed with the .BAD extension and
are then left in place when a /S is executed.

If a compress Operation is perfonned on the System device, the
message :

?REl3ooT?

is printed to indicate that it may be necessary to reboot the System.
If .SYS files were not moved during the canpress operation, it is not
necessary to reboot the System.

NOTE

i')

Rebooting the System in response to the
?REBOOT? warning message should ONLY be
done AFTER the Operation which generated
the message is complete. ?REBOOT? does
not sfgnify that the System should be

‘,-’
4-19 January 1976

Peripheral Intorchange Program

rebooted immediately; the User should
wait for the "*" signifying that PIP is
ready for another command before
rebooting.

If the command attempts to compress a large device to a smaller one,
an error results and the directory of the smaller device is zeroed.
If a device is being compressed in place, input and output errors are
reported on the terminal and the Operation continues to completion.

Examplest

* 5 Y : t.’ s Compreases the files on the System
‘?REl3DOT? device SY:

*DT1 : ACDT2 : t)S Transfers and compresses the files from
device DT2 to device DTl. Device DT2 is
not changed. The filename A is a dummy
specification required by the Command
String Interpreter.

/S cannot be used when a foreground job is presentt a ?FG PRESENT?
error message results if this is attempted.

4.2.9 The Bootstrap Copy Operation

The bootstrap copy switch (/U) copies the bootstrap portion of the
specified file into absolute block8 0 and 2 of the specified device.

Examples:
*DK:A<DK:MONITR.SYS/U

Writes the bootstrap file MONITR.SYS in
block8 0 and 2 of the device DK. A is a
dummy f ilename.

p1j.1’: (-jf~~]:‘rF: ,SYS/X/Y=RK: DTMi’4S.J .SYS
d1:1’1’ : ,+,::::RK : I:I’T’MNS,J + SY S/U

Writes the Single-Job DECtape Monitor
to device.DTO and then writes the boot-
strap into blocks 0 and 2 (the bootstrap
is written from disk rather than DECtape
because disk is faster).

4.2.10 The Boot Operation

The boot switch reboot8 the System, reinitializing monitor tebles and
returning the System to the monitor level. The boot switch performs
the Same Operation as a hardware bootstrap.

Example:
IIM : /Cl Reboot8 the device DK.

4-20

Peripheral Interchange Program I

ff a boot switch is specified on an illegal device, the message:

?BAD BOOT?
I

is printed. Legal devices are DTO, PKO-P.K7, RP, SY, DK, DPO-DP7, 0
DXO-DXl, and DSO-DS7. Note that /O is illegal if a foreground job
is present; the ?FG PRESENT? error message results. The user must
abort the foreground job and Unload it before using /O. I

4.2.11 The Version Switch

The Version switch (/V) Outputs 8 version number message (representing
the Version of PIP in use) to the terminal using the ferm:

PIP voz-xx

The rest of the conxnand line, if any, is ignored.

4.2.12 Bad ßlock Scan (/K)

The bad block switch (/K) scans the specified device and types the
absolute block numbers of those blocks on the device which return
hardware errors. The block numbers typed are octal; the first block
on a device is O(8). Note that if no errors occur, nothing will be
output. A complete scan of a disk pack takes several minutes.

Bxample:
*fi'K;,j : /I(Scan disk drive 2 for bad blocke.
B 1.. i:) C: It :1. 4 0 1: Si HAI1

Scan drive 0. No blocks are bad.

4.2.12.1 Recovery from Bad Blocks

As a disk ages, the recording surface wears. Eventually unrecoverable
I/O errors occur during attempts to read or write a bad disk block.
PIP protects against usage of bad disk areas by ignoring files with a
.BAD extension (unless the /y switch is used). Once a bad block is
uncovered in an I/O Operation, it tan be located using the /K switch
and a .BAD file tan be created which encompasses the bad block.

When a hardware I/O error is detected, the recovery procedure is as
follows:

1. Use the PIP /K switch to scan the device and print on the
terminal the absolute block numbers (in octal) of the bad
blocks. For exampler

R PIP
*Fx1:/I(
BLOCK 7723 15 BAD
*

4-21 January 1976

” <.

Peripheral Interchange Program

2 . Obtain an extended directory with the /W switch, showing the
starting block numbers of all the files on the disk.

3 . ff a bad block occurs in a file with valuable information,
copy the file to another file using the /G switch. In most
cases, only 1 bit (Character) of the file is affected.

4. If the file is small, it tan then be renamed with a .BAD
extension to prevent further use of that disk area.

5. If the file is large or the bad block occurs in an empty
area, a l-block .BAD file tan be created using the /T switch
as follows:

a. Delete the bad file (if any).

b . If the bad block is at block n of the freo area, create a
file of length n-l with the /T switch. Remember that
there must be no spaces larger than n-l blocks before the
desired one (refer to Section 4.2.4). Also note that the
block numbers printed in the /K and /W operations are
octal, while the argument to the /T Operation is decimal.

C. Create a l-block .BAD file with the /T switch to cover
the bad block.

d . Delete any temporary files created during the Operation.

For example, assume the extended directory isr
.
.

NE&K,Wl 8 ll-SEP-7u
RTTEHP.BAf 2 7 119SLP-TU
P I P ,MAC 150 129SEP-741
l UNUSEO l 154
VERIpV.8Av 5
l UNUIEO l ☺(d0

PIP .OBJ 15 12.SEP-7u
YKPIP ,CTL 1 12=8EP*TU
MKV2RK,CTL U 129Stil7U
VTLIB rOBJ 10 121SEP-74
l UNUSED l 1!58
A 0 1129SEPr70
P I P ,LSf Sld0 39SEP-70

.

.

6203
6213
6246

6726

7Uß5
IUEU
7425
7u51

7671
7675 Block 7723 (octal) of

PIP.LST is bad.

and a bad block is detected at block 7723 (octal) of the file PIP.LST.
To recover, make a copy, ignoring the error , and delete the bad file:

*RKl: PIPS. LST=RKl: PIP. LST,JG
*RKl: PIf’. LSTt’D

The directory now readst
.

I

NEWSRc,BAT 8 ll-SEP-74 6203
RTTEHP,BAT 27 ll-SEP-74 6 2 1 3
PIP ,MAC 150 12.SEP-74 0246

‘)

)- . ’

1i
4 - 2 2

Peripheral Interchange Program
--.

t l UNUBCD ti 15U
VERIPY,SAV 6726
PIPA ,LST 308 189SEP-7U 6751
PIP . OB3 1 5 IZrSEP-74 7405
HKPIP ,CtL 1 121SEP-74 702s
MKV2RK,CTL 4 121SEP-74 7 4 2 5
VtLIB ,OBJ 10 12~SEP=lU 7u31
(UNUBED l 150
4 4 121BEP-74 7671

.

.

An unused area following A contains block 7723 (octal), which
is bad. Continuing In PIP:

*RKi: TEMP. 002C 154 l=iT
*kKl : TEHP. 063t 158 l=/T
*RKi : TEMP. 084122 l=,JT

This fills the unused areas with temporary files. Specifying
!MMP.D04 with a length of 22 blocks makes the file just long
enough to precede the bad block (i.e., 7675 (octal) and 22
(decimal) equal 7723, which would be the starting block
nuraber of the next file created). The directory now contains:

.

N;WSRc B A T
RTTEnP:BAT
PIP ,MAC
TEMP , 0 0 2
VERIFV.BAV
PIPI ,LBT
PIP , OBJ
M K P I P .CTL
MKVZRK.CTL
VTLIB .DBJ
TEMP , 0 0 3

:EMP .00e
.
.

B 119SEP-74 6203
2 7 ll-SEP-7U 6 2 1 3

150 129SEP-74 62Ub
154 189SEP-7U 6474

3 6726
3 0 0 181BEP-7u 6731
15 129BEP-7U 7405

1 12+SEP-7U 742U
0 120BEP-74 7425

10 lZ=SEP-7U 7u31
156 189SEP-78 7 4 4 3

4 12.SEP-7U 7671
2 2 189BEP-74 7675

Continuing with PIP:

*RKI : F 1 LE. BHDC 1 l=i'YiT

The directory ncw containst.
.

h(EWSRC.BAT
RTTEMP.BAT
PIP ,HIC
TEHP , 0 0 2
VERIFy,SAV
PIPI ,LBT
PIP .OBJ
M K P I P .CTL
MKV2RK,CTL
V T L I B .ORJ
TEMP .003
A

8 119SEP-7U
27 ll-SEP-74

150 121SEP-74

l’3 18-SEP-7u
3 0 0 189BEP-70

15 121SEPr74
1 121SEP-74
(1 12.SEPctU

10 129SEP-70
150 189SEP-7U

4 121SEP-74

4 - 2 3

Create a bad file.

6203
6213
6246
6474
6726
6731
7 4 0 5
7024
7 4 2 5
7031
7 4 4 3
7071

.
Poripheral Interchnnge Progfam

TEMP , 0 0 4 22 10’SEP-14 7 6 7 5
F I L E .BAD 1 lB-BEP-74 7723

. Bad block is here..
Next delete all temporary filos and rename PIPA.LST t0
PIP.LST. The final directory now COntainSs

.

NLSRC BAT
RTTEHP:BAT

8 119SEP-7U 6 2 0 3
2 7 119SEP-7U 6 2 1 3

PIP ,MAC 1 5 0 121SEP-70 62Ub
4 UNUSED b 1 5 4
VERIFY.SAV 3 6 7 2 6
P I P 6731
P I P

: t..J 3 0 0 lB-SEP-7U
1 5 121SEP-7U 7405

MKPIP .CTL 1 121SEP-74 742u
MKVZRK,CTL 11 121SEP-74 7425
V T L I B .OBJ 10 121SEP-74 7431
4 UNUSED > 150
A 4 121SEP-74 7671
4 UWSED * 22
F I L E ,BAD 1 lB-SEP-74 7723

.

.

Disks with many bad block8 tan often be reused by
reformatting them. First copy all desired files, since
reformatting destroys all information contained an a volume.

..i
1

!

4.3 PIP ERROR MESSAGES

The following error mesaages are output on the terminal when PIP is
used incorrectlyr

Errors Meaninu

I
?BAD BOOT? A boot switch was specified on an illegal

device.

?BOOT COPY? An error occurred during an attempt to write
bootstrap with /U switch.

?CHK SUM?

?COR OVR?

?DEV FUL?

?ER RD DIR?

?ER WR DIR?

?EXT NEG?

?FG PRESENT?

?FIL NOT FND?

I
January 1976

A checksum error occurred in a formatted
binary transfer.

Memory Overflow--tco many devices and/or file
specifications (usually *.* operations) and
no room for buffers.

No room on device for file.

Unrecoverable error reading directory. Check
volume for off-line or write-locked condition
and try the Operation again.

Unrecoverable error writing directory. Try
again.

A /T command attempted to make file smaller.

An attempt was made to use /O or /S while a
foreground job was still in memory. Unload
it if it 1s no longer desired.

File not found during a delete, copy, or re-
name Operation, or no input files with the
expected name or extension were found during
a *.* expansion.

4-24

JI

Peripheral Interchange Program

?ILL CMD? The command specified was not syntactically
correct; a device name is missing which
should be specified, a switch argument is too
large, a filename is specified where one is
inappropriate, or a nonfile-structured device
is specified for a file-structured Operation.

?ILL DEV?
?ILL DIR?

?ILL REN?

Illegal or nonexistent device.
The device did not contain a properly ini-
tialized directory structure (EOT file on
magtape and cassette; empty file directory
on other devices). Use /Z.
Illegal rename Operation. Usually caused by
different device names on the input and out-
put sides of the command string.

PILL SWT?
?IN ER?

Illegal switch or switch combination.
Unrecoverable error reading file. Try again
(this error is ignored during /G Operation).

?OUT ER? Unrecoverable error writing file. Perhaps a
hardware or checksum error; try recopying
file. Also may be caused by an attempt to
compress a larger device to a smaller one or
by not enough room when creating a file. The
System takes the largest space available and
divides it in half before attempting to in-
sert the file. Try the [n] construction or
/X switch.

?OUT FIL?

?ROOM?

Illegal output file specification or missing
output file.
Insufficient space following file specified
with a /T switch.

The following warning messages are output by PIP:
CTn: PUSH REWIND OR MOUNT NEW VOLUME

?NO .SYS/.BAD
ACTION?

?REBOOT?

A new cassette must be mounted on drive n to
allow continuation of an I/O Operation. The
Operation is continued automatically as soon
as the new cassette is mounted.
The /Y switch was not included vith a command
specified on a .SYS or .BAD file. The com-
mand is executed for all but the .SYS and I
.BAD files. A *.* transfer is most likely
to Cause this message.
.SYS files have been transferred, renamed,
compressed or deleted from the System device.
It may be necessary to reboot the System.

NOTE
The message is typed immediately
after execution of the relevant
command has begun, but the actual
reboot Operation must not be per-
formed until PIP returns with the
prompting asterisk for the next
command. If the System is halted
and rebooted before the prompting
asterisk returns, disk information
may be lost.

4-25 January 1976

--.

Peripheral Interchange Program

-_,.

If any of the .SYS files in us8 by the
current System (MONITR.SYS and handler files)
have been physically moved on the System
device, it is necessary to reboot the System
immediately. ff not, this message tan be
ignored. If the Cause of the message was a
/S Operation, the System need be rebooted
only if there was an empty space before any
of the .SYS files or if thc /N:n switch wae
used to increase
Segments.

tbe number of directory
The need to reboot be

permanently avoided by placing all .&?fil.es
at the beginning of the System device, then
avoiding their involvements in PIP operations
by not using the /Y switch.

dev:/Z ARE YOU SURE?
Confirmation must be given by the user before
a device tan be zeroed.

January 1976 4-26

CHAPTER 5

MACRO ASSEMBLER

MACRO is a 2-pass macro assembler requiring an RT-11 System
configuration (or background partitior.) of 12K or more. Macros are
instructions in a Source or command language which are equivalent to a
spccified sequonce of machine instructions or commands. Users with
minimum memory configurations must use ASEME3L and EXPAND and should
read this chapter and Chapters 10 and 11 before assembling any
programs. (The macro features not supported by ASEMBL are indicated
in this chapter; many of the features not available in ASEMRL are
supported by EXPAND.)

Some notable features of hACR0 are:

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

Program control of assembly functions

Device and file name specifications for input and output
files

Error listing on command output device

Alphabetized, formatted symbol table listing

Relocatable Object modules

Global symbols declaration for linking among Object modules

Conditional assembly directives

Program sectioning dirsctives

User defined macros

Comprehensive set of System macros

Extensive listing control, including Cross reference listing

Operating instructions for the MACRO assemblor appear in Section 5.7.

5-1

MACRO Assembler
.

5.1 SOURCE PROG& FORMAT

A Source program is composed of a sequence of Source lines; each
Source line contains a Single assembly language Statement followed by
a Statement terminator. A terminator may be either a line feed
Character (which increments the line count by 1) or a form feed

I
Character (which resets the line count and increments the Page
count by 1).

. NOTE

EDIT automatically appends a line feed
to every carriage return encountered in
a source program. For listing format,
MACRO automatically inserts a carriage
return before any line feed or form feed
not already prcceded by one.

An assembly language line tan contain up to 132(decimal) characters
(exclusive of the Statement terminator). Beyond this limit, excess
characters are ignored and generate an error flag.

S.l.1 Statement Format

A Statement tan contain up to fOUr fields which are identified by
Order of appearance and by specified terminating characters. The
general format of a tlACR0 assembly language Statement is:

label: Operator Operand(s) ;comments

The label and comment fields are optional. The Operator and Operand
fields are interdependent; either may be omitted depending upon the
contents of the other.

The assembler interprets and processes these Statements one by one,
generating one or more binary instructions or data words or performing
an assembly process. A Statement contains one of these fields and may
contain all four types. Blank lines are legal.
Some Statements have one Operand, for example:

CLR RB

while others have Wo:

MOY Il344 ,RZ

An assembly lanyuage Statement must be complete on one Source lin :.
No continuation lines are allowed. (If a continuation is attemptl>d
with a line feed, the assembler interprets this as the Statement
terminator.)

MACRO Source Statements may be fonnatted with EDIT so that us6 of the
TAB Character Causes the Statement fields to be aligned. For example:

5 -2

MACRO'Assembler

)i Label Operator
Field Field

Operand
Field

Comment
Field

CHECK: BIT #l,RO ;IS NUMBER ODD?
BEQ EVEN ;NO, IT'S EVEN
NOV #-1,ODDFLG ;ELSE SET FLAG

EVEN: RTS PC #RETURN

5.1.1.1 Label Field - A label is a user-defined symbol that is
unique within the first six characters and is assigned the value of
the current location counter and entered into the user-defined symbol
table. The value of the label may be either absolute (fixed in memory
indopendcntly of the Position of the program) or relocatable (not
fixed in memory), depending on whether the location counter value (see
Section 5.2.6) is currently absolute or relocatable.

A label is a symbolic means of referring to a specific location within
a program. If present, a label always occurs first in a Statement and
must be terminated by a colon. For example, if the current location
is absolute lOO(octal), the Statement:

1
ABCD: HOV ArB

assigns tho value lOO(octa1) to the label ABCD. Subsequont 'reference
to ABCD references location lOO(octa1). In this example if the
location counter was declared relocatable within the section, the
final value of ABCD would be lOO(octa1) plus a value assigned by LINK
when it relocates the Code, called the relocation constant. (The
final value of ABCD would therefore not be known until link-time.
This is discussed later in this chapter and in Chapter 6.)

Marc than one label may appear within a single label field, in which
case each label within the field is assigned the Same value. For
example, if the current location counter 1s lOO(octal), the multiple
labels in thc Statement:

A8C I ERREX1 MAsK I MOV AI8
Cause each of the three labels--ABC, ERRBX;. and MASK--to be equated to
the value lOO(octa1).

A symbol uned as a label may not he redefined within the ueer program.
An attempt to redefine a label results in an error flag in the
aesembly listing.

J

5.1.1.2 Operator Field - An Operator field follows the label field
in a Statement and may contain a macro call, an instruction mnemonic,
or an assembler directive. The Operator may be preceded by Zero, one
or m o r e labels and may be followed by one or more operands and/or a
comment. Leading and trailing spaces and tabs arc ignored.
When the Operator is a macro call, the assembler inserts the
appropriate CWk to expand the macro. When the Operator is an
instruction mnemonic, it specifies thc instruction to be generated and
the action to be performed on any Operand(s) which follow. When the
Operator is an asscmbler directive , it specifies,a.certa.Q function 01:
action to be performed during assembly.

5-3

MACRC Assembler

An Operator is legally terminated by a space, tab, or any
non-alphanumeric Character (symbol component).

Consider the foilowing examples:

MOV A,B (space terminates the Operator MOV)
HOV~A, 0 (CJ terminatee the Operator MOV)

When the Statement line does not contain an Operand or comment, the
operatot is terminated by a carriage return followed by a line feed or
form feed Character.

A blank Operator field is interpreted as a .WORD assembler directive
(See Section 5.5.3.2).

5.1.1.3 Operand Field - An Operand is that part of a Statement which
is manipulated by the Operator. Operands may be axptessions, numbers,
or symbolic or macro arguments (within the context of the Operation).
When multiple operands appear within a Statement, each is separated
from the next by one of the following characters: comma, tab, space,
or paired angle brackets around one or more operands (see Section
5.2.1.1). Multiple delimiters separating operands are not legal (with '
the exception of spaces and tabs-- any combination of spaces and/or
tabs represents a Single dalimiter). An Operand may be preceded by an
Operator, a iabel or another Operand and followed by a comment.

The Operand field is terminated by a semicolon when followed by a
conunent, or by a Statement terminator when the Operand completes the
Statement. For exampler

5-4

LABEL; MOV ~~0 jCOHMENT

The space betdeen MOV and A tenninates the Operator field and begins
the Operand field; separates the operands A' and B; a
semicolon terminates the oG"and field and begins the comment field.

5.1.1.4 Comment Field - The comment field is optional and may
contain any ASCII characters except null, rubout, carriage return,
line feed, vertical tab or form feed. All other characters, even
special characters with defined usage, are ignored by the assembler
when appearing in the comment field.

The comment field may be preceded by one, any, none or all of the
other three field types. Comments must begin with the semicolon
Character and end with a Statement terminator.

MACRO' Assembler

Comments do not affect assembly processing or program execution, but
are useful in Source listings for later analysis, debugging, or
documentation purposes.

S.l.2 Format Control

Horizontal or line formatting of the Source program is controlled by
the space and tab characters. These characters have no effect on the
assembly process unless they are embedded within a symbol, number, or
ASCII text: or unless they are used as the Operator field terminator.
Thus, these characters tan be used to provide an orderly Source
program. A Statement tan be written:

LA~~L:MOV(sP)*,TAG~POP VALUE Ofv $TACK

or, using formatting characters, it tan be writtent

LAl3kLI MLIV (SPI +,tAG fPOP VALUE OFF S T A C K

which is easier to read in the context of a Source program listing.

Vertical formatting, i.e., page size, is controlled by the form feed
Character. A page of n lines is created by inserting a form feed
(CTRL FORM) after the nth line. (See also Section 5.5.1.6 for a
description of page formatting with respect to macros and Section
5.5.1.2 for a description of assembly listing output.)

5.2 SYMBOLS AND EXPRFSSIONS

This section describes the various componcnts of legal MACRO
expressions: the assembler Character Set, Symbol construction,
numbers, Operators, terms and expressions.

5.2.1 Character Set

The following characters are legal in MACRO Source programs:

1. The letters A through 2. Both upper- and lower-case letters
are acceptable, although, upon input, lower-caae letters are
converted to upper-case letters. Lower-case letters tan only
be output by sending their ASCII values to the output device.
This conversion is not true for .ASCII, .ASCIZ, ' (Single
quote) or " (douhle, quote) statements if .RNABL LC is in
effect.

2. The digits 0 through 9.

3. The characters . (period or dot) and $ (dollar sign) which
are reserved for use in System program symbols (with the
exception of local Symbols; see Söction 5.2;s).

4. The following special characters:

5-5

MACRO Assembler

Character Designation

carriage return
line feed
form feed
vertical tab

:
3
%
tab
space

@

:

:
<

colon
equal sign
percant sign

number sign
at sign
left parenthesis
right parenthesis
comma
semicolon
left angle bracket

>
+

*

/
&
1.
m
t

\

right angle bracket

plus sign

minus sign

asterisk

slash
ampersand
exclamation
double quote
Single quote
uparrow

backslash

Function

formatting Character

Source Statement terminators

label terminator

terminal argument or exprcssion

direct assignment indicator

indicator

register term indicator

arithmetic addition

item or field terminator

Operator or

item or field terminator

auto incrament indicator

immediate expression indicator

arithmetic subtraction

deferred addressing indicator

Operator

initial register indicator

or auto decrement indicator

terminal register indicator

arithmetic

Operand field separator

multiplication

comment field indicator

Operator

initial argument or expression

arithmetic division Operator

indicator

logical ARD Operator
logical inclusive OR Operator
double ASCII Character indicator
Single ASCII Character indicator
universal unary Operator,
argument indicator
macro numeric argument indicator
(not available in ASEMBL)

5.2.1.1 Separating and Delimiting Characters - Reference is made in
the remainder of the chapter to legal separating characters and macro
argument delimiters. These terms are defined in Table 5-l and
following.

Table 5-l
Legal Soparating Characters

Character Definition . Usage

apace one 01: more spaces A space fs a legal separators, . . -.-e.-_-L -_- - Am
--A ui-

z.

CBAPTER 6

LINKER

6.1 IETRODUCTION

The RT-11 Linker converts Object modules produced by either one of the
RT-11 assemblers or FORTRAN IV into a formst suitable for loading and
execution. This allows the User to separately assemble a main program
and each of its subroutines without assigning an absolute load address
at assembly time. The Object modules of the main program and
subroutines are proceesed by the Linker tot

1. Relocate each Object module and assign absolute addresses

2. Link the modules by correlating global symbols defined in one
module and referenced in another module

3. Create the initial control block for the linked program

4. Create an overlay structure if specified and include the
necessary run-time overlay handlers and tables

5. Search user specified libraries to locate unresolved global8

6. Optionally produce a load map showing the layout of the load
module

The RT-11 Linker requires two or three Passes over the input modules.
During the first pass it Constructs the global symbol table, including
all control section names and global synbols in the Input modules. ff
library files are to be linked with input modules, an intermediate
pass is needed to forte the modules resolved from the library file
into the root Segment (that part of the program which is never
overlaid). During the final pass, the Linker reads the Object modules,
performs most of the functions listed above, and produces a load
module (.LDA for use with the Absolute Loader, save image (.SAV) for a
Single-job System or for the background job of an F/B System, and
relocatable (.REL) format for the foreground iob of an F/B System).
The Linker runs in a minimal RT-11 System of BK; any additional memory
is used to facilitate efficient linking and to extend the Symbol table.
Input is accepted from any random-access device on the System; there
must be at least one random-access device (disk or DECtape) for save
image or relocatable format output.

6-l January 1976

Linker

6.2 CALLING AND USING THB LINKRR

To cal1 the Linker, type the comnand:

R LINK

and the RRTUFW key in response to the Keyboard monitor's dot. The
Linker Printe sn asterisk and awaits a comnand string.

Type CTRL C to halt the Linker at auy time and return control to the
monitor. To restart the Linker, typs R LINK or the REENTER comand in
response to the monitor's dot. The Linker Outputs sn extra line feed
Character when it ie restarted with REENTER or after an error in the
first coman d line. When the Linker is finished linking, control
returns to the CS1 automatically. An extra line feed Character
precedes the asterisk printed by the CSI.

6.2.1 Conmand String

The first command string entered in response to the Linker'8 asterisk
has the following formt:

*dev:binout,dev:mapoutdevtobjl,devtobj1,dev:obj2,.../81/82/83

where :

devr is a random-access device for all files except
dev:mapout, which tan be any legal output de-
vice. If dev: is not specified, DK is assumed.
If the output is to be LDA format (that is,
the /L switch was used), the output file need
not be on a random-access device.

binout is the name to be assigned to tbe Linker'8
save image, LDA formt, or REL forma;foutput
file. This file is optionalt not
specified, no binary output is produced.
(Save image is -the assumed output formt
unless the /L or /R switches are used.)

raapout is the optional load map file.

objl,... are files of one or more objeot modulss to be
in& to the Linker (these may be librsxy

.

/sl/s2/83 arc switches M explainedin Table 6-1 and
Section 6.8.

If the /C switch is given, subseguent c omandlines maybe entered ast

*objm,objn,.../sl/s2
The /C switch im necessary only if the cosmmnd str&g will not fit on
one line or if the overlay structuxe is used. Ifanerroro-ins
continued c ommand line (e.g., ?FILE NOT FND?), only the line in error
need be retyped.

January 1976 6-2

