(C):1984, Uwe Böker - Systementwicklungen -

02.12.1984

ಜನ್ನ ಚಿತ್ರಗಳಲ್ಲಿ

Technisches Handbuch: ULTRA/8 für GENIE IIIs

ir Elect

Vorwort:

======

Die Zusatzkarte ULTRA/8 zum GENIE IIIs ist eine in 1/60" Feinleitertechnik gefertigte Platine im Format 325x110 mm. Sie kann in SLOT 5 des GENIE III s eingesteckt werden (von vorn gesehen der erste Slot von RECHTS). Auf der Karte befinden sich neben einem Z-80-H Prozessor mit 64 kByte RAM-Speicher 9 programmierbare Timer (NEC 8253) wovon 8 über Open-Collector Treiber auf einen 20-pol. Pfostenstecker gelegt sind. Der neunte Timer kann als Interruptgeber für die ULTRA/8 CPU verwendet werden. 8 Eingangskanäle mit TTL-Pegel können über den Stecker mit der Karte verbunden werden, wobei eine HIGH -> LOW Flanke je einen 16-Bit LAP-Counter triggert, den Kanal bis zum Service sperrt und ein Service-Bit setzt. Die Kommunikation der beiden Prozessoren auf der ULTRA/8 und dem GENIE IIIs wird über zwei 8 Bit Kanäle mit je 4 Hand-Shake Leitungen abgewickelt (2xNEC 8255). Darüberhinaus werden über einen weiteren 8255 die Timer freigegeben, die Service-Bits gelesen und eine Taktauswahl für die Timer und den LAP-Counter ermöglicht.

Der Einsatzbereich der Karte reicht von einfachen Steuerungen bis zu komplexen Messaufgaben mit echtem <u>2 Prozessorbetrieb</u>.

Die technischen Daten und eine genaue Beschreibung der Hardware entnehmen Sie bitte den folgenden Seiten.

Lageplan: ULTRA/8

========

Passive Bauteile: ULTRA/8 für GENIE IIIs Wertordnung

Widerstände:	Anzahl:	Bauteilname:	
33 Ohm 330 Ohm 1 kOhm 10 kOhm	1 10 8	R 21 - 31 R 18 R 1, R 10 - 17, R 2 - R 9	
1.5 kOhm	1	R 19	
Kondensatoren:	Anzahl:	Bauteilname:	
470 pF 100 nF	1 50	C 1 C 2 - 51	
Quarze:	Anzahl:	Bauteilname:	
16.00 MHz	1	G 1	
Steckerleisten		Bauteilname:	
20 polig VG. 64 pol.a+c	1 1	S 1 VG 1	

Passsive Bauteile: ULTRA/8 für GENIE IIIs

Rangordnung

Bauteilname:	Widerstand:
R 1 R 2 - R 9 R 10 - R 17 R 18 R 19 R 20 R 21 - 31	1 kOhm 10 kOhm 1 kOhm 330 Ohm 1.5 kOhm 1 kOhm 33 Ohm
Bauteilname:	Kapazität:
C 1 C 2 - 51	470 pF 100 nF
Bauteilname:	Bezeichnung:
Q 1	Quarz, 16.00 MHz
Bauteilname:	Bezeichnung:
S 1 VG 1	Steckerleiste, 20 polig Steckerleiste, VG 64 pol., a+c

TTL Baustein:	Anzahl:	Bauteilname:	•
74 LS 00	2	บ 24, บ 31	
74 S 04	1	U 17	¥
74 07	2	U 12 - 13	8 - 01
74 LS 11	1	U 28	81 3
74 LS 27	1	U 25	RIP
74 LS 32	4	U 14, U 27, U 29 - 30	0 5 17
74 LS 74	4	U 6 - 9	FS 53
74 S 74	1	U 23	
74 LS 125	1	U 37	
74 LS 132	2	U 10 - 11	
74 LS 138	2	U 4 - 5	
74 LS 139	1	U 26	
74 LS 153	2	U 15 - 16	
74 S 157		U 38 - 39	
74 LS 244	4	Ս 1, Ս 22, Ս 33 - 34	
74 LS 245	3	U 19 - 20, U 32	
74 LS 273	1	U 21	
74 LS 367	2	U 35 - 36	•
74 LS 374		L 0 - 15	
74 LS 393	3	U 2 - 3, U 18	
Sonder IC'S:	Λο~ » b.1 »	Dautailaana	
	H112 A111:		
Z-80-H CPU	. 1	BIG 7	
8253-2 NEC		BIG 1 - 3	
8255-2 NEC	3	BIG 4 - 6	
NEC D 4164 C -			

Bauteilname:	Bezeichnung:
	,
U 1	TTL, 74 LS 244
U 2 - 3 '	TTL, 74 LS 393
U 4 - 5	TTL, 74 LS 138
U 6 - 9	TTL, 74 LS 74
U 10 - 11	TTL, 74 LS 132
U 12 - 13	TTL, 74 07
U 14	TTL, 74 LS 32
U 15 - 16	TTL, 74 LS 153
U 17	TTL, 74 S 04
U 18	TTL, 74 LS 393
U 19 - 20	TTL, 74 LS 245
U 21	TTL, 74 LS 273
U 22	TTL, 74 LS 244
U 23	TTL, 74 S 74
U 24	TTL, 74 LS 00
U 25	TTL, 74 LS 27
U 26	TTL, 74 LS 139
U 27	TTL, 74 LS 32
U 28	TTL, 74 LS 11
U 29 - 30	TTL, 74 LS 32
U 31 ,	TTL, 74 LS 00
U 32	TTL, 74 LS 245
U 33 - 34	TTL, 74 LS 244
U 35 - 36	TTL, 74 LS 367
U 37	TTL, 74 LS 125
U 38 – 39	TTL, 74 S 157
L 00 - 15	TTL, 74 LS 374
Dankailaana	Para i abanca i
Bauteilname:	Bezeichnung:
DIE 1 7	NEC ODET C
BIG 1 - 3	NEC, 8253-2
BIG 4 - 6	NEC, 8255-2
BIG 7	Z-80-H CPU
M 1 - 8	NEC D 4164 C - 3

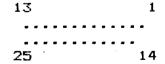
Pinbelegung der Steckverbinder: ULTRA/8

Stecker: S 1

Dieser Stecker dient zum Anschluß von bis zu 8 Open-Collector Ein- und Ausgängen mit 5 Volt TTL-Pegel.

20)								11
•	-	-	•	-	•	•	•	•	-
4	-	-	-	•	•	•	•	•	-
1									10

Die Positon des Steckers entnehmen Sie bitte dem Lageplan.


Pin:	Belegung:	Pin: 	Belegung:
1	Ausgang O, PU1	20	+ 5 Volt , 50 mA
2	Ausgang 1, PU1	19	+ 5 Volt , 50 mA
3	Ausgang 2, PU1	18	Eingang 7, PU2
उ 4	Ausgang 3, PU1	17	Eingang 6, PU2
5	Ausgang 4, PU1	16	Eingang 5, PU2
6	Ausgang 5, PU1	15	Eingang 4, PU2
7	Ausgang 6, PU1	14	Eingang 3, PU2
8	Ausgang 7, PU1	13	Eingang 2, PU2
9	Masse	12	Eingang 1, PU2
10	Masse	11	Eingang O, PU2

Erklärungen zu den einzelnen Signalen entnehmen Sie bitte den folgenden Seiten.

Es gilt: PU1 => Die Ausgänge (Open-Collector) sind mit 10 kOhm nach +5 Volt gezogen.

PU2 => Die Eingänge (TTL-Pegel) sind mit 1 kOhm nach +5 Volt gezogen.

Für den unteren DB 25 Stecker an der GENIE IIIs Rückwand ergibt sich folgende Pinbelegung:

Die Pins 11 - 13 und 23 - 25 sind nicht belegt.

Pin:	Belegung:	Pin:	Belegung:
1	Ausgang 0	14	+ 5 Volt , 50 mA
2	Ausgang 1	15	+ 5 Volt , 50 mA
3	Ausgang 2	16	Eingang 7
4	Ausgang उ	17	Eingang 6
5	Ausgang 4	18	Eingang 5
6	Ausgang 5	19	Eingang 4
7	Ausgang 6	20	Eingang 3
8	Ausgang 7	21	Eingang 2
9	Masse	22	Eingang 1
10	Masse	23	Eingang O

Belegung der 1/0-Porter ULTRA/A

Innerhalb der Karte werden 36 volletändig dekodierte 2-80 Porte (1/0) benötigt, wobei darüberhinaus nuch 5 Porte für das GENIE IIIs bereitgestellt werden. Eine genaue Bestimmung der Adressen und eine Beschreibung der Funktionen finden Sie auf den folgenden Seiten.

L.Nr.	Adre.: Hex,Dez	Kurzbeschrei bung								
1 2 3 4 5 6	OC-OF, 012-015 10-13, 016-019 14-17, 020-023 18-18, 024-027 1C-1F, 028-031 20-2F, 032-047	U/8 Kommunikation => IIIs U/8 Service, Gate, Clock U/8 Timer, Ausgang 0 - 2 U/8 Timer, Ausgang 3 - 5 U/8 Timer, Ausgang 6 - 7, Interrupt U/8 LAP-Counter Latches								
7 8	DC-DF, 220-223 F5 , 245	IIIs Kommunikation => ULTRA/8 IIIs Steuerport								

Die Beschreibung der Ports im Einzelnen:

 Über die Ports OC-OF, 012-015 wird die I/O-Kommunikation mit dem GENIE IIIs abgewickelt und gegebenenfalls ein NMI auf das GENIE IIIs abgegeben. Bitte beachten Sie auch Punkt 7. An den Ports ist ein Baustein NEC 8255-2 angeschlossen, für den folgende Belegung gilt:

```
Port OC, 012 => 8255-2, Kanal A, auf OUTPUT einstellen. Port OD, 013 => 8255-2, Kanal B, auf INPUT einstellen. Port OE, 014 => 8255-2, Kanal C, Lower Half auf INPUT, Upper Half auf OUTPUT Port OF, 015 => 8255-2, Command-Register
```

ACHTUNG:

```
Der Kanal A ist 1:1 mit Kanal B von Port DD, 221 verbunden. Der Kanal B ist 1:1 mit Kanal A von Port DC, 220 verbunden. Der Kanal C ist 1:1 mit Kanal C von Port DE, 222 Verbunden.
```

Damit es nicht zu Kurzschlüssen kommt, ist die angegebene Initialisierung der Ports OC-OF, O12-O15 beziehungsweise der Ports DC-DF, 220-223 (Punkt 7) wie angegeben durchzuführen.

```
I82551 LD A,83H ;Kanal A=OUT, B=IN, C/LO=IN, C/UP=OUT
OUT (OFH),A ;Wert zum Command-Register
RET ;Zurück zum Hauptprogramm
```

Mit BIT 7 von Port OE, O14 kann auf die IIIs CPU ein Interrupt (NMI) gelegt werden, wenn im Steuerport F5, 245 das BIT 5 auf HIGH gelegt ist (siehe Punkt 8). Dabei gilt:

BIT 7, OE: BIT 5, F5: NMI am IIIs

LOW: LOW: HIGH
HIGH: LOW: HIGH
LOW: HIGH: HIGH
HIGH: LOW

OW : HIGH

HIGH

HIGH

Aus dieser Tabelle folgt, daß mit BIT 5 von Port F5, 245 ein NMI von der ULTRA/8 auf den IIIs unterbunden werden kann.

2. über die Ports 10-13, 016-019 können alle internen Status und Steuersignale über einen weiteren NEC 8255-2 gelesen und geschrieben werden. Es ist darauf zu achten, daß die angegebene Initialisierung durchgeführt wird. Für die Belegung gilt:

Port 10, 016 => 8255-2, Kanal A, auf OUTPUT einstellen.

Port 11, 017 => 8255-2, Kanal B, auf INPUT einstellen.

Port 12, 018 => 8255-2, Kanal C. auf OUTPUT einstellen.

Port 13, 019 => 8255-2, Command-Register

I82550 LD A,82H ;Kanal A=OUT, B=IN, C=OUT
OUT (13H),A ;Wert zum Command-Register
RET ;Zurück zum Hauptprogramm

Für die Funktion der Ports ergibt sich folgendes :

Port 10, 016:

Die BITs 0 - 7 sind direkt an die GATE-Eingänge der Timer 8253 angeschlossen (siehe auch Punkt 3 - 5).

Port 11, 017:

Die BITs 0 - 7 sind über Zwischenspeicher indirekt mit den Eingängen des Steckers S1 verbunden. Das heißt, wenn an einem Eingang von S1 eine HIGH=>LOW Flanke auftritt, wird diese in einem Flip - Flop zwischengespeichert und am Port 11, 017 durch einen HIGH-Pegel angezeigt. Gleichzeitig wird der Wert des LAP-Counters in 2 zum Eingang gehörige LAP-Latches übernommen (16 Bit). Bis zum Service (lesen der zugehörigen LAP-Latches) wird der Eingang gesperrt. Das Lesen der LAP-Latches (siehe Punkt 6) setzt den HIGH-Pegel zurück und gibt den Eingang wieder frei.

Port 12, 018:

Mit den BITs 0-2 und 4-6 werden die Grundfrequenzen des LAP Counters und der Timer eingestellt (siehe Tabelle).

Für die Frequenzen ergibt sich folgende BIT-Zuweisung:

	T ===	ime	r/E	BIT		=======		:		LAP	-Co	unt	er/	BI	T 		
						Freque											
О	:	Ο.	:	0	:	8.0	ЧНz	;	0	;	0	:	0	;	8.0	MHz	14
0	:	0	:	1	:	4.0 N	4Hz	:	Ö	:	0	:	1	:	4.0	MHz	1/2
						2.0 N											
						1.0 1											
1	:	0	:	0	:	500 k	(Hz	:	1	:	0	:	0	:	500	KHz	1/16
1	:	0	:	1	:	250 k	(Hz	:	1	:	0	:	1	:	250	KHz	1/2
1	:	1	:	0	:	125 k	(Hz	:	1	:	1	:	0	:	125	KHz	1/4
1	:	1	:	1	:	62.5 k	(Hz	:	1	:	1	:	1	:	62.5	KHz	1/128

Für BIT 3 qilt:

BIT 3 = LOW => Der LAP-Counter ist freigegeben und zählt.

BIT 3 = HIGH => Der LAP-Counter ist gesperrt und NULL gesetzt.

<u>Für BIT 7 gilt:</u> (siehe auch Memory Abschnitt)

BIT 7 = LOW => Der IIIs kann die unteren 32 kByte des ULTRA/8 Speichers lesen (0000 - 7FFF, 00000 - 32767).

BIT 7 = HIGH => Der IIIs kann die oberen 32 kByte des ULTRA/8 Speichers lesen (8000 - FFFF, 32768 - 65535).