
EHT — 10/EHT — 10/2

Development
Tool
User’s Guide

EPSON

Y24399100701
M017B

REMARKS
(1) All rights reserved.Reproduction of any part of this manual in any form

whatsoever without SEIKO EPSON'S expressed written permission is
forbidden.

(2) The contents of this manual are subject to change without notice.

(3) All efforts have been made to ensure the accuracy of the contents of
this manual. However, should any errors be detected, SEIKO EPSON would
greatly appreciate being informed of them.

(4) The above notwithstanding, SEIKO EPSON can assume no responsibility for
any errors in this manual or their consequences.

CP/M™ is a registered trademark of Digital Research, Inc.
MS-DOS™ is a registered trademark of Microsoft Corp.
IBM PC is a registered trademark of International Business Machines
corporation.

(C) Copyright 1986 by SEIKO EPSON CORPORATION Nagano, Japan

CONTENTS
Page

1. SYSTEM INTRODUCTION -- 1
1.1 Overview-- 1
1.2 Program to be Created-- 2
1.3 System Configuration --- 3

2. DEVELOPMENT CARTRIDGE -- 5
2.1 Setting the DIP Switches--------------------------------------- 5
2.2 RS-232C Interface -- 6
2.3 Attaching the Cartridge to EHT-10 ----------------------------- 7

3. DEVELOPMENT UTILITIES -- 10
3.1 Configuration of Development Utilities ------------------------ 10

3.1.1 Application software debugger ---------------------------- 10
3.1.2 PROM generation formatter--------------------------------- 10

3.2 BASIC Program Development Procedure --------------------------- 11
3.3 Machine-Language Program Development Procedure ---------------- 13
3.4 Development Utilities and RAM Configuration ------------------- 16

4. MACHINE-LANGUAGE DEBUGGER -- 18
4.1 Initiation and Termination ------------------------------------- 18
4.2 Commands-- 23
4.3 Explanation of each Command------------------------------------ 25
4.4 Notes on Creating Machine-Language Programs ------------------- 44

5. BASIC-LANGUAGE DEBUGGER -- 46
5.1 Initiation and Termination ------------------------------------- 46
5.2 Using the BASIC-Language Debugger ------------------------------ 47
5.3 Screen Editor for BASIC-Language Debugger ---------------------- 49
5.4 Notes on Creating BASIC-Language Programs ---------------------- 50

6. PROM FORMAT UTILITY-- 51
6.1 Overview-- 51
6.2 Operations-- 52

APPENDIX--- 56

1. ROM FORMAT--- 56
2. LIST OF COMPUTERS THAT CAN BE USED AS THE HOST COMPUTER ---------- 63
3. RAM MEMORY M A P --- 64

— Notes ---------------------------

Several marks used in this manua' are different from the actual
EHT-10/EHT—10/2's key marks.
The differences are as follows.

Marks in this manual Actual Key

ENTER Return key
< Left arrow
> Right arrow

Up arrow
V Down arrow

PREFACE
It is very difficult to create software by EHT-10 series computers because
of the hardware limitations such as screen size, and keyboard functions. As
a result, the EHT-10 software development tool is created to provide
development environment in real time by connecting the tool to a personal
computer (CP/M or MS-DOS computer) used as the host computer.

Further, a utility is provided to convert created programs into the format
required when the programs are stored in ROM.

This manual explains the EHT-10 software development tool and how to use the
tool. Refer to the following manuals for details on handling a EHT-10 main
frame and on BASIC language:

- EHT—10/EHT—10/2 Operation Manual
This manual explains the EHT-10 basic functions and how to handle the
EHT-10.

- EHT-10/EHT-10/2 BASIC Reference Manual
This manual explains the BASIC statements and their functions in detail.

- EHT-10/EHT—10/2 System Development Guide
This manual explains OS and the system in detail.

In this manual, EHT-10 series (EHT-10, EHT-10/2, and EHT-10/2B)
is simply called EHT-10.

Chapter 1 SYSTEM INTRODUCTION

1.1 Overview

It is very difficult to create programs by using EHT-10 because software
such as editor, assembler, and linker required for program development are
not provided in a EHT-10 computer and because of hardware limitations such
as the screen size and keyboard functions. The EHT-10 software development
tool is provided to create programs for EHT-10 by using a general personal
computer. The following items are required to create programs for EHT-10:

- EHT-10 main frame (See Note.)
- Development cartridge
- Host computer (CP/M or MS-DOS computer)
- Connection cable (RS-232C null model cable)
- Software development utility programs

Debugging using the development tool is operated in EHT-10. In other words,
EHT-10 specifications for CPU, memory, OS, I/O ports are used. During debug
operations, the host computer operates as a EHT-10 terminal. All I/O
devices of EHT-10 are freed to be used for the program to be created so that
debugging can be done by using all I/O devices that are in actual operation
status.
Further, the debugger for creating machine-language programs has the
commands compatible with CP/M-80 DDT.

(Note) Extended RAM may be required depending on the size and execution mode
of the program to be created. See "Section 3.4 Development Utilities and
RAM Configuration" for details.

Development Tool Page 1

1.2 Programs to be Created

This section explains programs that can be created by the EHT-10 software
development tool. Programs can be created in the following two languages:

i) BASIC language

The BASIC language is used if a program is to be operated by the BASIC
interpreter internally built in EHT-10 in the ROM base.

ii) Machine language

The machine language is used when program in Z-80 machine language are
created.

Further, these languages can be combined to create programs. BASIC provided
in a EHT-10 does not have command entry wait status. In other words,
inputting, editing, and listing a program cannot be executed. By using the
development tool, however, BASIC commands can be input from the host
computer and listing can be output by the host computer. Since the created
programs operate under CP/M environment, the programs can freely use BIOS
and BDOS belonging to CP/M and the extended BIOS provided exclusively to the
EHT-10.

The execution mode of a program to be created can be selected from the
following two:

i) Load and execute mode

A program is loaded in the CP/M TPA or the BASIC program area before
execution. Programs can be loaded from a media such as RAM disk,
application ROM, IC card, or floppy disk, or from a communication port by
using the DLL function.

ii) ROM-based mode

A program in an application ROM is directly executed in the ROM without
being loaded in TPA. However, a BASIC program cannot be executed in this
mode.

Table 1-2-1 shows the relationship between programs to be created and the
above modes.

Table 1-2-1 Modes and Programs to be Created

Load and execute mode ROM-based mode

BASIC language Allowed

Machine language Allowed Allowed

Development Tool Page 2

1.3 System Configuration

Figure 1-1 shows the system configuration used to create programs.

Option
Development Cartridge

Reader

Fig. 1-1 Development Tool System Configuration

i) EHT-10 main frame

EHT-10, EHT-10/2, or EHT-10/2B can be used as the EHT-10 main frame.
Programs, however, must be created according to the correct specifications
because the specifications of LCD screen and keyboard differs depending on
the main frame. All the EHT-10 functions are freed to be used for the
program to be created during debug operation . Note that the user BIOS
cannot be used and the size of usable RAM disk is limited, because the user
BIOS and a part of extended RAM disk are used by the development utility
programs. See "Section 3.4 Development Utilities and RAM Configuration" for
details.

ii) Development cartridge

The development cartridge is connected to the cartridge interface used for
an option cartridge such as a printer cartridge. However, the development
cartridge also has its option cartridge interface so that an option
cartridge can be used during debug operation. The development cartridge
also has the RS-232C interface for the communication with the host computer.

Development Tool Page 3

ill) Host computer

One of the computers listed below can be used as the host computer. These
are CP/M-80 or MS-DOS computers that have FDD.

- CP/M-80 computers
EPSON QX-10

PX-8
PX-4/HX-40

- MS-DOS computers
EPSON QX-11

QX-16
EPSON PC series (EQUITY series for U.S.A.)

IBM PC, PC/XT, PC/AT
IBM 5550

iv) Connection cable

The connection cable is used to connect the development unit to a host
computer through the RS-232C interface. The connection cable differs
depending on the host computer as shown in the table below.

Host computer Cable type number

EPSON QX-10
QX-11
QX-16

IBM 5550

#725

EPSON PX-8
PX-4.HX-40 #726

EPSON PCs.EQUITYs
IBM PC,PC/XT,PC/AT #762

v) Development utilities

Various utilities required for software development are provided.

1. Application software debugger
After initiation, the application software debugger sends, receives,
analyzes, or executes commands stored at the host computer and at
EHT-10. The debug commands are compatible with that of CP/M-80 DOT.
Further, the application software debugger can use the host computer as
the BASIC screen editor.

2. PROM formatter
The PROM formatter converts the format of a program created for EHT-10
to the format required to store the program in an application ROM.
This operation is required before the program is stored in a ROM by a
PROM writer.

Development Tool Page 4

Chapter 2 DEVELOPMENT CARTRIDGE

The development cartridge provides two functions when connected to a EHT-10
main frame. The first function is that development cartridge becomes the
hardware interface for communication with the host computer. The second
function is that the development cartridge is used to connect an option
cartridge.

Option Cartridge

Fig. 2-1 Development Cartridge

2.1 Setting the DIP Switches

The development cartridge has DIP switches used to set
conditions for communication with the host computer.

Fig. 2-2 Development Cartridge DIP Switches

The DIP switches must be set as shown below when the EHT-10
development tool is used.

SW1 2 3 4

OFF ON OFF OFF

(Setting is the same as at shipping.)

Development Tool Page 5

2.2 RS-232C Interface

The RS-232C interface is used for transmitting data to or from the host
computer during debug operations. Therefore, the RS-232C interface cannot
be used as a communication port by an application program.
The following figure and table show the connector pin assignment of RS-232C
interface on the development cartridge.

Pin number Direction Signalname

1 - GND

2 OUT TXD

3 IN RXD

4 OUT RTS

5 IN CTS

6 IN DSR

7 OUT DTR

8 IN CD

E - CG

* The direction of a signal is indicated in
the view from the development cartridge.

Development Tool Page 6

2.3 Attaching the Cartridge to E H T- 10

Thin standard and Phillips screwdrivers are required.

Step 1: Turn off the EHT-10 power.

Step 2: Proceed to step 4 if an option cartridge is required. Other wise,
proceed to step 3.

Step 3: Insert the tip of a thin standard screwdriver to a gap at both
sides of the connector cover to remove the cover as shown below.

Step 4: Insert the tip of a thin standard screwdriver to a slit between a
screw lid and the option cartridge at the both sides of the option
cartridge to open the screw lids as shown below.

Development Tool Page 7

Step 5:

Step 6:

Using a Phillips screwdriver, remove the two screws used to
connect the option cartridge and the EHT-10 main frame.

Remove the option cartridge slowly from the EHT-10 main frame.

Development Tool Page 8

Step 7: Connect the development cartridge to the EHT-10 main frame in the
direction indicated by the arrow shown in the figure below.
Fasten the development cartridge to the main frame by two screws
attached to the cartridge.

Step 8: If an option cartridge is required, insert the option cartridge to
the head of the development cartridge, fasten the option cartridge
with two screws, and close the screw lids. If no option cartridge
is required, attach the connector cover removed from the EHT-10
main frame to the head of the development cartridge.

Development Tool Page 9

Chapter 3 DEVELOPMENT UTILITIES

3.1 Configuration o f Development Utilities

The application software debugger and the PROM generation formatter are
provided as the development utilities.

3.1.1 Application software debugger

The application software debugger functionally operates as machine-language
and BASIC-language debuggers. The application software debugger consists of
the following four program files (however, iv) WADINST.COM is used for
MS-DOS computers only):

i) WAD.COM

WAD.COM is used at the host computer side to control the host computer.
WAD.COM outputs debug commands from the host computer and outputs messages
to the CRT screen from EHT-10. WAD.COM also operates as the screen editor
for BASIC debug operations.
Further, WAD.COM automatically sets transmission speed: 9600 bps, data
length: 8 bits, none parity, and stop bit: 2 bits, as the conditions for
communication between the host computer and the EHT-10.

ii) WADL.COM

WADL.COM loads WADW.COM. WADL.COM is loaded to the EHT-10 TPA by the EHT-10
DLL function and is executed.

iii) WADW.COM

WADW.COM is loaded to a subbank (32 Kbytes) on the EHT-10 extended RAM if
RAM is extended by WADL.COM. Other wise, WADW.COM is loaded to the RAM in
the main frame. WADW.COM analyzes and executes the commands sent from the
host computer and outputs the results to the host computer.

iv) WADINST.COM

WADINST.COM is executed before WAD.COM is initiated if an MS-DOS computer is
used as the host computer. WADINST.COM installs WAD.COM for the host
computer. Once WAD.COM is installed, WADINST.COM is no longer required
unless the type of host computer is changed.

3.1.2 PROM generation formatter

The PROM generation formatter is required when a created program is stored
in a ROM. The PROM generations formatter is a utility used to convert a
program into the file format exclusively used for application ROM.

The PROM generation formatter is stored as a file called WPR0MFRM.EXE This
formatter can converts programs into either the load and execute mode format
or the ROM-based mode format.
Programs are sent to the PROM writer in the Intel HEX format.

Development Tool Page 10

3.2 BASIC Program Development Procedure

This section explains how to create a program in BASIC language by using the
EHT-10 development tool. The procedure to create a program is explained
according to the flowchart shown below.

(START)

Yes
----------------------------------- No

<Should the program be stored in R0M?>—

Yes

Convert the program format for PROM generation.

Generate ROM. 5.

v. —

(END)

1 Initiating the development tool

See "Section 2.3 Attaching the Cartridge to EHT-10" for connecting the
development tool. See "Section 5.1 Initiation and Termination" for
initiating the development tool.

2 Inputting a BASIC source program

Select "BASIC program" of the development tool, initiate the EHT-10 BASIC
interpreter, and then input a program. See "Chapter 5. BASIC-LANGUAGE
DEBUGGER" for details.

Development Tool Page 11

3 Checking the input BASIC program

Select "BASIC program" as operation 2 and execute debug operation. See
"Chapter 5. BASIC-LANGUAGE DEBUGGER" for details.

4 Converting the program format for PROM

Use development utility program WPROMFRM to convert the format. In this
case, format P cannot be selected for ROM-based mode. See "Chapter 6. PROM
FORMAT UTILITY" for details.

5 Generating ROM

Send the created program file from the host computer to the PROM writer
through a communication port and generate a ROM. Note that the Intel HEX
format is used as the file format for send operation.

Development Tool Page 12

This section explains how to create a program in the machine language by
using the EHT-10 development tool. The procedure to create a program is
explained in the flowchart shown below.

3.3 Machine - Language Program Development Procedure

(START)

Yes
---------------- ------------------ No

<Should the program be stored in R0M?>—

Yes

Convert the program format for PROM generation.

Generate ROM. 7.

<

(END)

Development Tool Page 13

1 Inputting a source program written in machine language

Input a source program in mnemonic representation by using the text editor
of the host computer.

<Example>
CP/M-80
- ED (built in a CP/M-80)
- WM (MicroPro)

MS/DOS
- EDLIN (built in a MS-DOS)
- WS (MicroPro)

2 Assembling the source file

Assemble the source file by using the Z-80 assembler or the cross assembler
of the host computer.

<Example>
CP/M-80
- MACR080 (Microsoft)

MS-DOS
- XMACR080 (Nikkei)

3 Linking the object file

Use the linker corresponding to the assembler to link the object file.

<Example>
CP/M-80
- L80 (Microsoft)

MS-DOS
- XLINK80 (Nikkei)

4 Initiating the development tool

See "Section 2.3 Attaching the Cartridge to EHT-10" for connecting the
development tool. See "Section 4.1 Initiation and Termination" for
initiating the debugger.

5 Checking the machine-language program

The operation slightly differs depending on the mode of the target program.
Further, if the target program is in ROM-based mode, note that the different
banks are used for debug operation and after the program is stored in a ROM.
See "Chapter 4. MACHINE-LANGUAGE DEBUGGER" for details.

6 Converting the program format for PROM

Convert the program format by the development utility PROM generation
formatter (WPROMFRM.EXE). Select the ROM-based mode or the load and execute
mode. See "Chapter 6. PROM FORMAT UTILITY" for details.

Development Tool Page 14

7 Generating a ROM

Send the program file from the host computer to the PROM writer through
communication port. Note that the Intel HEX format is used as the file
format.

Development Tool Page 15

During debug operations, development utility WADW.COM is. loaded and made
resident in EHT-10 RAM. The WADW.COM location in the RAM differs depending
on the program execution mode and whether an extended RAM is mounted.

In addition to WADW.COM, a part (256 x 5 bytes) of WAD.COM is loaded in the
EHT-10 RAM. This part of WAD.COM is stored in the user BIOS in the EHT-10
main RAM regardless of the execution mode and of whether an extended RAM is
mounted.

The rest of this section explains the RAM configuration. See "Appendix III
RAM MEMORY MAP" for reference.

<For load and execute mode>

When the program to be debugged is in load and execute mode and an extended
RAM is not mounted, WADW.COM is loaded in the user BIOS area (lower address
of the part of WAD.COM 256 x 5 bytes) of the EHT-10 main RAM. In this case,
the disk size of internal RAM in the main frame must be made smaller. The
program to be debugged is stored in TPA of the main RAM.

When the program to be debugged is in load and execute mode and an extended
RAM is mounted, WADW.COM is stored in the extended RAM and the program to be
debugged is stored in TPA.

<For ROM-based mode>

An extended RAM must be mounted when the program to be debugged is in
ROM-based mode. WADW.COM is loaded in the last 32 Kbytes of the extended
RAM. The program to be debugged is loaded at the lower bank of WADW.COM in
the extended RAM. In this case, the size of extended RAM must be determined
according to the size of the program to be debugged.

If the size of a program to be debugged exceeds one bank size (32 Kbytes),
split the program in the units of 32 Kbytes and store the split program in
two or more banks. In this case, bank switch operation is required for
moving data between the banks or for addressing.

Different banks are used for debug operation in an extended RAM and for
expanding the created program in PROM. Because of this, the bank numbers
and required addresses of a program that require bank switch operations must
be modified before the program is stored in PROM so that the program can be
executed in PROM.

<For a BASIC program>

When a BASIC application program is created or debugged, loading WADW.COM is
not required because the EHT-10 BASIC interpreter is used. Therefore, the
RAM configuration remains unchanged regardless of whether an extended RAM is
mounted. The program to be debugged is stored in the EHT-10 BASIC program
area.

As explained above, development utilities and a program to be created are
loaded in an extended RAM, user BIOS, or TPA.

Table 3.1 shows the relationship between program mode, size, and EHT-10 RAM
size conditions.

3.4 Development Utilities and RAM Configuration

Development Tool Page 16

Table 3.1 RAM Size Conditions for Debug Initiation

Mode of a program
to be created

Program size Extended RAM RAM size conditions

ROM-based mode 32 KB Mounted Extended RAM 64 Kbytes or
more and internal RAM disk
38 Kbytes or less

64 KB Mounted Extended RAM 96 Kbytes or
more and internal RAM disk
38 Kbytes or less

128 KB Mounted Extended RAM 160 Kbytes or
more and internal RAM disk
38 Kbytes or less

Load and execute
mode Depends on

the TPA
size.

Mounted Extended RAM 32 Kbytes or
more and initial RAM disk
38 Kbytes or less

Not
mounted

Internal RAM disk 22 Kbytes
or less WAD and WADW are
loaded in a user BIOS area
of 69 x 256 bytes.

BASIC Depends on
the BASIC
program
area size.

Whether
an
extended
RAM is
mounted
does not
make any
differ­
ence.

Internal RAM disk 38 Kbytes
or less.

Development Tool Page 17

Chapter 4 MACHINE - LANGUAGE DEBUGGER

4.1 Initiation and Termination

Step 1 : Prepare the required devices and equipment

1 EHT-10
An EHT-10 or EHT-10/2/EHT-10/2B is required. Further, prepare other
options if required.

2 Development cartridge

3 Host computer
A CP/M or MS-DOS computer explained in "Section 1.3 System Configuration
is required.

4 Connection cable
The required connection cable differs depending on the host computer.
See "Section 1.3 System Configuration" for details.

5 Development utilities
Make a backup copy of the development utilities.

See "Section 1.3 System Configuration" and "Chapter3. DEVELOPMENT UTILITIES
for details.

Step 2 : Connecting each unit

Connect each unit as shown below. Keep the power of each unit off for
safety cause. Options are connected if required.

Printer Unit

FDD

Development Tool Page 18

Turn on the power of each terminal, EHT-10, and host computer in this order.

Step 4 : Installing WAD
(This operation is required only when a MS-DOS computer is used as the host
computer.)

Make the development utility disk enter writable status (free the write
protect status). Store device driver ANSI.SYS in file CONFIG.SYS by
specifying

Step 3 : Turning the power on

DEVICE=ANSI.SYS

when the host computer is one of the following computers:
QX-16
EPSON PC, PC+
IBM PC, PC/XT, PC/AT

Initiate MS-DOS, change the login drive to the drive containing the
development utility disk, and then initiate WADINST.COM.

A>WADINST

Select a number corresponding to the host computer in the screen below.

WAD Install program Ver. X.XX
Current Machine type = None

0 - EPSON QX-ll/QC-11
1 - EPSON QX-16
2 - IBM PC/EPSON PC
3 - IBM 5550
4 - NEC PC-9801 series

Step 5 : Initiating EHT-10 DLL

Initiate EHT-10 DLL and make EHT-10 enter receive wait status. Refer to
EHT-10/EHT-10/2 Operations Manual for these operations.

Step 6 : Initiating WAD and loading WADL

Initiate CP/M of the host computer (MS-DOS is already initiated in step 4 if
a MS-DOS computer is used as the host computer), change the login drive to
the drive containing the development utility disk, and then initiate
development utility WAD.COM.

A>WAD (when WAD.COM is in drive A)

Development Tool Page 19

When WAD is initiated, the message shown below is displayed and WADL.COM is
transferred.

EPSON Debbuger WAD Ver. X.X
WADL.COM Sending

When loading is ended, EHT-10 displays the DLL completion screen.

Step 7 : Development program mode selection screen

When the PRESS () key is pressed in the DLL completion screen, the host
computer displays the development program mode selection screen. At this
point, message "User Bios is too small" is output to EHT-10 if the required
user BIOS area cannot be reserved. See the section explaining error
handling if this message is output.

Select execution type
1 — ROM-based program
2 — Load and execute program
3 — BASIC program

Select (1/2/3) |

Select a number corresponding to the program mode.

Step 8 : For a ROM-based mode program

(Proceed to step 9 for a load and execute mode program.) The ROM-size
selection screen shown below is displayed when 1 corresponding to ROM-based
mode is selected in the program mode selection screen.

Select (1/2/3) 1

ROM-based program selected
Select ROM size

1 — 32 Kbytes
2 — 64 Kbytes
3 — 128 Kbytes

Select (1/2/3) |

Select a number corresponding to the ROM size to be specified.

Then, the message shown below is displayed and transferring
WADW.COM is started.

WADW.COM Sending

Development Tool Page 20

When the transfer operation is ended, a prompt is displayed and processing
enters debug command input wait status. If the RAM disk is not mounted as
much as required, "extend RAM not mounted" is displayed at EHT-10 and
operation must go back to step 8.

Use a R command to load the program to be created and to start debug
operation. The debugger is terminated by a Z command.

Step 9 : For a load and execute mode program

When 2 corresponding to load and execute mode is selected, the message shown
below is displayed and transferring WAOW.COM is started.

WADW.COM Sending

When the transfer operation is ended, a prompt is displayed and processing
enters debug command input wait status, "extend RAM not mounted" is
displayed at the EHT-10 if the RAM disk is not mounted as much as required.

Use a R command to load the target program and to start debug operation.
The debugger is terminated by a Z command.

* Effective function keys

CTRL + C

Processing branches out of WAO.COM when these keys are pressed during steps
6 to 9. However, these keys are not effective if a prompt is already being
displayed.

ESC

The development program mode selection screen of step 7 is displayed when
this key is pressed during steps 7 to 9. However, this key is not effective
when a program is being loaded or a prompt is being displayed.

Development Tool Page 21

* Error handling

If an error occurs during steps 4 to 9, an error message is output and
processing branches out of the debugger.

(1) Message: User Bios area is too small (displayed at the EHT-10.)

Cause: The user BIOS area could not be reserved as much as required.

Processing: The DLL initial screen is displayed at EHT-10 when the PRESS
(<— ’) key is pressed. At the host computer, processing
branches out of the debugger when the CTRL + C keys are
pressed.

Action: Set 38 Kbytes or less as the internal RAM disk size.

(2) Message: extend RAM not mounted (displayed at the EHT-10.)

Cause: An extended RAM was not mounted.

Processing: The DLL initial screen is displayed at EHT-10 when the PRESS
(<— 1) key is pressed. At the host computer, processing
branches out of the debugger when the CTRL + C keys
are pressed.

Action: Mount a RAM disk. If load and execute mode is selected, set
22 Kbytes or less as the internal RAM disk size.

Development Tool Page 22

4.2 Commands

The machine-language debugger provides powerful 10 commands that can specify
subbanks.

Table 4-2-1 Machine-Language Debugger Commands

Command name Function

A: Assemble Translates the input mnemonic codes to the machine
language.

C: Control
print

Specifies to output the screen contents to a printer or
clears the specification.

D: Dump Displays the memory contents of the specified address
range in hexadecimal or in ASCII code representation.

E: Search Searches the specified address range for the specified
data and displays all the addresses storing data equal
to the specified data.

F: Fill Fills the specified address range with the specified
data.

G: Go Executes the contents in the specified addresses.

K: Arithmetic
operations
and
numeric
conversion

Executes arithmetic operations (add and subtract) of the
specified numerics and numeric conversion (from
hexadecimal representation to decimal representation or
vice versa).

L: List Unassembles the machine language in the specified
address range and displays the results in mnemonic codes.

M: Move Moves the data blocks in the specified address range to a
different specified address.

0: Port Displays data from or outputs data to the specified I/O
port.

P: Pass count
set

Sets a break address and a pass count.

R: File read Reads the specified file and sets the results in the
debug bank from the specified address.

S: Memory set Displays or modifies the contents of the specified
address.

T: Trace Executes the instructions starting from the address
indicated by the program counter as much as the specified
steps and displays the register contents every time
a step is executed.

Development Tool Page 23

Command name Function

U: Untrace Executes the instructions starting from the address
indicated by the program counter as much as the specified
steps and displays the register contents before and after
execution.

W: Write Saves the memory contents of the specified address range
with the specified file name.

X: Examine Displays and modifies the contents of each register.

Z: End Ends the debugger.

Development Tool Page 24

(1) Control keys

The following control keys can be used during command input operation:

BS (Back space key)
This key deletes a character preceding the cursor.

CTRL + X
These keys delete all the entered commands.

RETURN (Return key)
This key indicates the end of command input operation.

(2) Specifying a drive for file input operation

The drive specification for file input operation differs depending on the
host computer or EHT-10.

(i) Drive specification at the host computer
Specify the drive name.

<Example> B:TEST.COM

(ii) Drive specification at the EHT-10
Specify W before the drive name.

<Example> WB:TEST.COM

(3) Specifying an address

An address specified is an address in the specified subbank of bank 0.

(4) Symbols

(i) [] : Contains a parameter that can be omitted.
(ii) <CR> : Press the RETURN key.
(iii) addr: Address (hexadecimal representation) in RAM
(iv) DATA : ASCII data or HEX data (Enclose ASCII data in a pair of

double-quotation marks (").)

(5) Notes on command input operation

(i) Do not enter any blank between a command and its parameters.

(ii) "???" is displayed if an error is detected.

4.3 Explanation of each Command

Development Tool Page 25

A: Assemble

Format
A[addr[,n]]

addr: Assemble start address (hexadecimal representation)
n: Subbank number

Function
The A command assembles the input Z-80 mnemonic codes in the
units of lines and stores the results in the specified memory.

Explanation

The corresponding address is displayed when a command is input.
Enter Z-80 mnemonic codes after the address.

(i) Specify an absolute address or * (own address) + n for a relative
instruction.

(ii) If an address is omitted, the address following an A, L, G, T, or U
command is used as the default. However, the program start address
is used immediately after a program is loaded by an R command.

(iii) An A command is ended under one of the following conditions:
- The return key is pressed without entering mnemonic codes.
- The return key is pressed after a period (.).

(iv) The same address is displayed again if there is an error in the
entered mnemonic codes.

(v) If the subbank number is omitted, the subbank specified during R
command execution is used.

(vi) Mnemonic code input conditions
- One or more blank codes must be placed between an operation code

and parameters.
- Operands must not include any blank codes.

Development Tool Page 26

C: Control print

Format
C

Function
The C command outputs debug information displayed in the screen to the
printer until the subsequent C command is input.

Explanation

The C command operates as a toggle switch for the printer output
specification and the specification clearance. Processing enters wait
status if the printer is busy when printer output is specified. When the
CTRL + C keys are pressed in wait status, the printer output
specification is cleared.

Development Tool Page 27

D: Dump

Format
D[addrl][,[addr2][,n]]

addrl: Dump start address (hexadecimal representation)
addr2: Dump end address (hexadecimal representation)

n: Subbank number

Function
The D command displays the contents of the specified address range in
hexadecimal or ASCII code representation.

Explanation

(i) If the end address is omitted, the fixed number of bytes is used as
data length starting from the start address. This number of bytes
differs depending on the host computer as follows:

(1) PX-4/HX-40 or PX-8: 48 bytes
(2) Other host computer: 96 bytes

(ii) If the start address is omitted, the previous continuation address
(the address next to the one displayed by the previous D command) is
used as the start address.

(iii) If the subbank number is omitted, the subbank specified during R
command execution is used.

(iv) Data 00 to IF and A0 to FF are all indicated as periods(.) in the
ASCII code representation.

(v) Dump operation can be temporarily interrupted by the CTRL + S keys
or by the space key. Press the CTRL + S keys or the space key
again to restart dump operation.

(vi) Dump operation can be ended by the RETURN key.

Development Tool Page 28

E: Search

Format
E[addrl],[addr2],data[,n]

addrl: Search start address (hexadecimal representation)
addr2: Search end address (hexadecimal representation)
data: Search data
Numerics...Up to 8 digits (hexadecimal representation)
Characters...Up to 4 characters (ASCII code)

n: Subbank number

Function
The E command searches the specified address range for the specified data
and displays all the address containing data equal to the specified data.

Explanation

(i) An error occurs if addrl is greater than addr2.

(ii) If the start address is omitted, search operation is done starting
from the beginning of the specified bank.

(iii) If the end address is omitted, search operation is done until the end
of the specified bank.

(iv) If the subbank number is omitted, the subbank specified during R
command execution is used.

(v) Display operation can be temporarily interrupted by the CTRL + S
keys or the space key. Press the CTRL + S keys or the space key
again to restart display operation.

Example : Search with numerics

-E4000.4FFF.789ABC
401F
4960
I

-> Top address of the data equal to the specified
data

Development Tool Page 29

F: Fill

Format
Faddrl,addr2,data[,n]

addrl: Set start address (hexadecimal representation)
addr2: Set end address (hexadecimal representation)
data: Set data (1 byte, hexadecimal representation or ASCII 1

character)
n: Subbank number

Function
The F command fills the specified address range with the specified data.

Explanation

(i) An error occurs if addrl is greater than addr2.

(ii) If the subbank number is omitted, the subbank specified during R
command execution is used.

Development Tool Page 30

G: Go

Format
G[[addrl][,[addr2][,[nl][,n2]]]][/p]

addrl: Execution start address (hexadecimal representation)
nl: Execution start subbank number

addr2: Break address (hexadecimal representation)
n2: Break subbank number
/P: P=l. The break address is effective for a P command.

P=0. The break address is not effective for a P command.

Function
The G command executes the program from the specified address to the
break address.

Explanation

The instruction at the break address is not executed and processing
returns to the debugger.

(i) If the start address is omitted, the current PC value is used.

(ii) If the start subbank number is omitted, current subbank is used.

(iii) If the break subbank number is omitted, the subbank specified during
R command execution is used.

(iv) If option P is omitted, /1 (effective) is used as the default value,

(v) A break address can be set by a P command also.

(vl) If a pass count is specified by a P command, the register information
is displayed and the specified count is decreased by 1, every time
processing passes through the break address. When the pass count
becomes zero, program execution is terminated and the pass count is
modified back to the specified value. However, if /0 is specified
as option P, the above operation is not performed.

(vii) The address of the instruction placed next to the break address is
displayed when processing returns to the debugger.

(viii) If a break address specified by a P command is reached before the
break address specified by the G command, the break address specified
by the G command is made ineffective.

(ix) Operation can be forcibly terminated. However, the PC and SP
register contents are not guaranteed in this case. Because of this,
load the program again by a R command and restart debug operation.

Development Tool Page 31

K: Arithmetic operations and numeric conversion

Format
Km[,n]

m and n: Arithmetic operations and numeric conversion
(hexadecimal and decimal representation)

Function
The K command performs the arithmetic operations (add and subtract) of
the specified numerics or converts numerics from hexadecimal
representation to decimal representation or vice versa.

Explanation

(i) If m and n are both specified as the parameters, arithmetic
operations m + n and m - n are executed and the results are displayed
in hexadecimal representation in the order of addition and
subtraction.

(ii) If only m is specified, numeric conversion is executed and the result
is displayed.

(iii) A percent mark (%) is placed before the integer to input or display
an integer.

Example

—K10
%16
-K10.20
0030 FFFO
-K%32
20

- K10,%10
001A.0006

(A hexadecimal number is converted to an integer.)

(Arithmetic operations of two hexadecimal numbers)
(Result of addition and result of subtraction)
(An integer is converted to a hexadecimal number.)

(Arithmetic operations of a hexadecimal number and an
integer)

Development Tool Page 32

L: List

Format
L[[addrl][,[addr2][,n]]]

addrl: Display start address (hexadecimal representation)
addr2: Display end address (hexadecimal representation)

n: Subbank number

Function
The L command unassembles data stored in the specified address range and
displays the results in mnemonic codes.

Explanation

(i) If the start address is omitted, the continuation address of A, G, L,
T, or U command is used.

(ii) If the end address is omitted, the fixed number of steps is used as
the length starting from the start address. This number of steps
differs depending on the host computer as follows:

(1) PX-4/HX-40 and PX-8: 6 steps
(2) Other host computer: 12 steps

(iii) If the subbank number is omitted, the subbank specified during R
command execution is used.

(iv) Display operation can be temporarily interrupted by the CTRL + S
keys or the space key. Press the CTRL + S keys or the space key
again to restart display operation.

(v) Display operation can be terminated by the RETURN key.

Development Tool Page 33

M: Move

Format
Maddrl,addr2,addr3[,[Bl][, B2]]

addrl: Send start address (hexadecimal representation)
addr2
addr3

Bl
B2

Send end address (hexadecimal representation)
Receive start address (hexadecimal representation)
Send subbank number
Receive subbank number

Function
The M command sends data blocks in the specified address range to the
specified address.

Explanation

(i) An error occurs if addrl is greater than addr2.

(ii) If send or receive subbank number is omitted, the subbank number
specified during R command execution is used.

Development Tool Page 34

0: Port

Format
01/0 addr[,data]

I/O addr: I/O port address (hexadecimal representation)
data: 1-byte output data (hexadecimal representation)

Function
The 0 command reads data from the specified input port and displays the
results, or outputs specified data to the specified output port.

Explanation

(i) Data is output to the output port if output data is specified.

(ii) If output data is omitted, data is read from the specified port and
the result is displayed.

Development Tool Page 35

P: Pass count set

Format
P[addrl[,[n][,nl]]]

addrl: Break address (hexadecimal representation)
nl: Subbank number
n: Pass count (hexadecimal representation)

Function
The P command sets a break address and a pass count.

Explanation

(i) Up to 8 break addresses can be set (up to 8 P commands must be used).

(ii) The maximum number that can be set as the pass count is 255. The
pass count is decreased by 1 every time processing passes through the
break address during G command execution. When the pass count
becomes zero, program execution is terminated and the pass count is
modified back to the specified value.

(iii) Specify 0 as n to clear a break address.

(iv) If addrl, nl, or n is omitted, the break address and pass count
already set are displayed.

(v) If only n is omitted, 1 is set as the pass count.

(vi) If the subbank number is omitted, the subbank specified during R
command execution is used.

Example

-P
IF 4273 01
05 4621 01
-P542F.3

(Breakpoint display)
(Count, address, and subbank number)

(Breakpoint setting)

Development Tool Page 36

R: File read

Format
RFilename[,addr[,n]]

Filename: Read file name
addr: Write address (hexadecimal representation)

n: Subbank number

Function
The R command reads the specified file (including the specified drive)
and writes the read data in the specified address in the debug bank.

Explanation

This command loads the target program for debug operations.

(i) If the file type is HEX, the file assumed as in Intel HEX format
file.

(ii) If one of the following files is specified, the write address can be
omitted or is ignored even if specified:

1 Intel HEX-format file
2 Load and execute mode program

(iii) If the subbank number is omitted, the first subbank (with smaller
number) in the area to which the target program has been loaded is
used. See "Appendix III RAM MEMORY MAP" for details.

Example

-RA:TEST.COM
HEAD END
XXXX XXXX XX
I

(Start address, end address, and subbank number)

Development Tool Page 37

S: Memory set

Format
Saddr[,n]

addr: Modification address
n: Subbank number

Function
The S command displays or modifies the contents of the specified address.

Explanation

The specified address and the 1-byte contents are displayed after the
command is input. Enter the new data for modification and press the
RETURN key. The modification data must be 1-byte data in hexadecimal or
ASCII code representation. If the modification data is in ASCII codes,
enclose the data with a pair of single-quotation marks (').

(i) If only the RETURN key is pressed without inputting the
modification data, the memory contents are not modified and the next
address and its contents are displayed.

(ii) If numerics or codes other than ASCII codes are input, the same
address and its contents are displayed again.

(iii) The S command is terminated when a period (.) is entered and the
RETURN key is pressed.

(iv) If the subbank number is omitted, the subbank specified during R
command execution is used.

Example

-S100
0100 31 2A (Address, data, and modification data)
0101 FE <->
0102 4A . <->
I

Development Tool Page 38

T: Trace

Format
T[n[,S]]C/P]

n: Number of execution steps (hexadecimal representation)
S: Subroutine trace skip indication (character S)
/P: P=l. Break address set by P command is effective.

P=0. Break address set by P command is not effective.

Function
The T command executes the instructions as much as the specified steps
starting from the address indicated by the current PC and displays the
register contents for each step.

Explanation

(i) If the number of execution steps is omitted, 1 is used as the default
value. The maximum number of execution steps is FFFF(H).

(ii) If S is specified, tracing in the subroutine is skipped.

(iii) Display operation can be temporarily interrupted by the CTRL + S
keys or by the space key. Press the CTRL + S keys or the space
key again to restart display operation.

(iv) The T command is terminated when the RETURN key is pressed during
display operation.

(v) At the end of execution, the address of the next instruction is
displayed.

(vi) The T command is terminated when processing passes through the break
point set by a P command as many times as the specified count.
However, this operation is not performed if /0 is specified as option
P.

(vii) If option P is omitted, /1 (effective) is used as the default value.

* An X command sets PC. A T command can be executed only in a target
program. Operation is not guaranteed if a T cotranand is executed outside
a target program.

Development Tool Page 39

U: Untrace

Format
U[n[,s]][/P]

n: Number of execution steps (hexadecimal representation)
s: Subroutine trace skip indication (character S)

/P: P=l. Break address set by P command is effective.
P=0. Break address set by P command is not effective.

Function
The U command executes the instructions as much as the specified number
of steps starting from the address indicated by the current PC and
displays the register contents before and after execution.

Explanation

The U command can be used as a T command but the U command cannot display
register contents for each step.

(i) If the number os execution steps is omitted, 1 is used as the default
value.

(ii) If S is specified, tracing in the subroutine is skipped.

(iii) The U command is terminated when the RETURN key is pressed during
display operation.

(iv) At the end of execution, the address of the next instruction is
displayed.

(v) The U command is terminated when processing passes through the break
point set by a P command as many times as the specified count.
However, this operation is not performed if /0 is specified as option
P.

(vii) If option P is omitted, /1 (effective) is used as the default value.

* An X command sets PC. A U command can be executed only in a target
program. Operation is not guaranteed if a U command is executed outside
a target program.

Development Tool Page 40

W: Write

Format
Wfilename,addrl,addr2[,n]

filename: File name for saving data in disk
addrl: Save start address
addr2: Save end address

n: Subbank number

Function
The W command saves the contents of the specified address range from
memory to a disk with the specified file name.

Explanation

(i) If a file name is specified and the file type is HEX, data is saved
in the Intel HEX format.

(ii) In any other cases, data is saved in binary format.

(iii) An error occurs if addrl is greater than addr2.

(iv) If the subbank number is omitted, the subbank specified during R
command execution is used.

Development Tool Page 41

X: Examine

Format
X[n]

n: Register or flag type

Function
The X command displays or modifies the contents of registers and flags.

Explanation

A register or a flag is specified as follows:

n A B D H S p X Y A' B' D H'

Register A BC DE HL SP PC IX IY A' BC DE' HL'

n C E I Z M

Register Carry Even parity Half carry Zero Sign

(i) If n is omitted, the contents of all registers and flags are
displayed.

(ii) If n is specified, the contents of register or flag corresponding to
n is displayed. Input the modification data in hexadecimal
representation to modify the contents. A flag is specified by 0
(reset) or 1 (set).

Example

CEIZN
00010 A =xx B =xxxx D =xxxx H =xxxx S =xxxx
00000 A'=xx B'=xxxx D'=xxxx H'=xxxx P =xxxx

x=xxxx y=xxxx
LD SP.xxxx (Mnemonic code in the current PC)

-XA <->
A =xx xx (register contents and set value)

-XZ <->
Z=x | (Flag value) Input 1 or 0 to modify the value.

Development Tool Page 42

Z: End

Format
Z

Function
The Z command ends debug operations. When debug operations are ended,
both the host computer and EHT-10 go out of the debugger.

Development Tool Page 43

4.4 Notes on Creating Machine - Language Programs

(1) A target program cannot use the user BIOS area because WAD allocates
the interrupt processing and communication buffers to the user BIOS
area.

(2) Since WAD uses 5 x 256 bytes of the user BIOS area, the TPA and RAM
disk sizes are decreased by 5 x 256 bytes (38 Kbytes or less must be
set as the main-RAM disk size).

(3) A target program cannot use the OVF interrupt processing hook because
WAD uses it.

(4) A target command cannot use RST 7 because G commands use it.

(5) A program in ROM-base mode is actually executed in a bank different
from the one in ROM because the program is emulated in an extended RAM.
Therefore, when a program in ROM-base mode exceeding 32 Kbytes is
debugged, the program actually stored in ROM differs from the program
used for debug operations.

(6) The following four modes are provided as the cartridge interface modes:

1 Handshake (HS) mode
This mode has a CPU-to-CPU interface used for a device that has CPU
at the option side.

2 Input output port (10) mode
This mode has an interface in the form of 4-bit input port and 4-bit
output port.

3 Data bus (DB) mode
In this mode, an option operates as if it were a general I/O device
in the view of the main frame. For the cartridge interface, the data
bus of the main frame is simply connected to the data bus of the
cartridge.

4 Out port (OT) mode
This mode has an interface in the form of 8-bit output port.

(Note) Refer to EHT-10/EHT-10/2 System Description for details on
these modes.

The interface mode of the development cartridge must also be switched
when a target program switches the current cartridge interface mode.
For this operation, a routine that switches the cartridge interface
mode is provided in the jump table stored in the resident area.

<Rcutine name>
JRDBGIOX (0FFB4H)

<Function>
If the development cartridge of which the cartridge interface mode
is to be switched is mounted, this routine switches the mode of
the development cartridge.

Development Tool Page 44

<Parameters>
B=09H
A=OOH: HS mode
A=01H: 10 mode
A=02H: DB mode
A=03H: OT mode

(Notes)
At initiation, the debugger checks the option cartridge and sets
the appropriate mode for both the cartridge interface and the
development cartridge interface.

However, since a target program does not operates under the
debugger after it is created, the target program must set a mode
appropriate to the option cartridge status to use an option
cartridge.

005C to OOFF in the main RAM cannot be modified. If they are modified,
the debugger operations are not guaranteed.

If a ROM-based program to be created exceeds one bank (32 Kbytes), the
program must be split in the units of 32 Kbytes and stored in two or
more banks. If a program is split into two or more banks, addressing
and bank switching at PROM expansion are made easier.

ASCII data must be enclosed in a pair of single-quotation marks (') in
a program.

Development Tool Page 45

C hapte r5 BASIC - LANGUAGE DEBUGGER

5.1 Initiation and Termination

See "Section 4.1 Initiation and Termination" for steps 1 to 7 that are
exactly same as steps 1 to 7 of the BASIC-language debugger.

Step 8
Select 3 corresponding to BASIC program in the program mode selection screen
of step 7. When 3 is selected, the screen editor screen is displayed.

OK
I

* The screen size of the screen editor differs depending on the host
computer as follows:
PX-4 and HX-40: 40 columns x 25 lines (virtual screen)
Other than above: 80 columns x 25 lines (virtual screen for PX-8)

The debugger is terminated by the SYSTEM command. EHT-10 returns back to
the DLL screen and the host computer ends the debugger.

Development Tool Page 46

5.2 Using the BASIC - Language Debugger

The BASIC-language screen editor screen is displayed at step 8 explained in
"Section 5.1 Initiation and Termination". This editor enables debugging and
creating a BASIC-language program. The editor can accept any instructions
such as EHT-10 BASIC commands, statements, and functions. The EHT-10 drives
are specified as the file input/output drives in the editor and in the
BASIC-language program. To input or output a BASIC-language program from or
to one of the host computer drive, press the ESC key and take the action
indicated in the screen.

The following figure shows the relationship between the screen editor and
the operations performed after the ESC key is pressed:

(1) Screen editor

Refer to the following for using the screen editor:
- BASIC commands, statements, and functions

EHT—10/EHT—10/2 BASIC Reference Manual
- Function keys of the screen editor

"Section 5.3 Screen Editor for BASIC-Language Debugger"

(2) I/O function to the host computer drives

a) Press the ESC key When the screen editor is in command input wait
status.

b) In the following screen, select 1 to save the program being edited to a
host computer drive or select 2 to load a program from a host computer
drive.

Select command
<Press ESC to return to Screen editor>

1 — SAVE BASIC PROGRAM TO HOST
2 — LOAD BASIC PROGRAM FROM HOST

The screen changes to the one shown in c) when 1 is selected or the
screen changes to the one shown in d) when 2 is selected.

Development Tool Page 47

c) Specify the file format in the following screen for save operation:

Select BASIC program Save-type
1 -- ASCII Save
2 -- BINARY Save

Select (1/2) |

d) Input the name of the file to be saved or loaded in the screen shown
below. Save or load operation is executed after a file name is input.

Enter file name |

* Up to eight characters can be specified as a file name when CP/M
computer is used as the host computer and up to 62 characters including
path name can be specified as a file name when an MS-DOS computer is
used as the host computer. A qualifier must not be included in a file
name (it will be assumed as BAS even if it is input).

e) Processing automatically returns back to the screen editor (in the
status held before the ESC key is pressed) when load or save
operation ends.

- Processing returns back to the screen editor when the ESC key is
pressed during operations a) to d). However, this key cannot be
used during file save or load operation.

- Processing returns back to a) when the CTRL + C keys are
pressed during operations a) to d). However, these keys cannot be
used druign file save or load operation.

Development Tool Page 48

The host computer supports the screen editor so that a BASIC-language
program can be created or modified efficiently. As a general BASIC
interpreter, the screen editor is supported in command input wait status.
The screen editor provides the following functions:

CTRL + K This function moves the cursor to the top of screen.

CTRL + L This function deletes all the text in the screen and moves the
cursor to the top of screen.

CTRL + R This function makes processing enter insert mode so that a
character can be inserted at the cursor position. To make
processing come out of this mode, press the CTRL + R keys
again, cursor move key, or the return key.

DEL This function deletes the character at the cursor position and
shifts the characters placed after the cursor position.

|, | T h e s e keys move the cursor in the direction of the arrows,
v

5.3 Screen Editor for BASIC - Language Debugger

CTRL + H or BS
These keys delete the character placed before the cursor position.

CTRL + I or TAB
These keys move the cursor to a tab position and fill the original
cursor position to the tab position with blank codes.

CTRL + A This function moves to the beginning of the current line.

CTRL + B This function returns the cursor back to the beginning of the
previous word. A word means a character string delimited by
blanks.

CTRL + E This function deletes character strings placed from the cursor
position to the end of the line.

CTRL + F This function moves the cursor to the beginning of the next word.

CTRL + X This function moves the cursor to the end of the line.

CTRL + Z This function deletes data beginning from the cursor position to
the end of the text in the screen.

CTRL + C This function makes modifications in the line ineffective and
moves the cursor to the beginning of the next line.

Press the CTRL + C keys to terminate BASIC program execution.

Press the CTRL + S
execution. Press the

keys to temporarily interrupt BASIC program
CTRL + S keys again to restart processing.

Development Tool Page 49

(1) Processing does not enter command input wait status when an EHT-10
BASIC operates independently without the development tool.

(2) The following commands are effective only for the screen editor at the
host computer:

AUTO, CONT, DELETE, EDIT, END, FILES, LIST, LLIST,MERGE, NEW,
RENUM, SYSTEM, TROFF, TRON

(3) If an error occurs, an error message is displayed and control returns
to the system.

(4) Character W is not required before the specified drive name as in the
case of machine-language program debug operations, when the editor or a
program accesses a drive.

* Refer to EHT-10/EHT-10/2 BASIC Reference Manual for details on each
BASIC command.

5.4 Notes on Creating BASIC - Language Programs

Development Tool Page 50

C h a p te r 6 PR O M FO R M AT UTILITY

6.1 Overview

The PROM format utility converts files for EHT-10 application ROM.

This utility reads files from the host computer, converts the file image to
the ROM format, and create a directory of each file. The results can be
written in a disk in Intel HEX format or output from the RS-232C interface.

A file that has qualifier HEX after the file name is assumed as a file
written in Intel HEX format. When the program is executed, this file is
converted to a COM file and the qualifier is modified to COM and stored in
the directory. Any other file name qualifiers are not modified.

PROM is in one of the following sizes:
(i) 256 Kbits

(ii 512 Kbits
(iii) 1024 Kbits

The ROM format is format P or format M depending on the program execution
mode. See "Appendix I ROM FORMAT" for details.

Development Tool Page 51

6.2 Operations

The PROM format utility is stored as WPROMFRM.EXE in the development
utilities. If you use CP/M machine, the file name of the utility is
WPROMFRM.COM.

To execute this utility, set the development utilities in a host computer
drive, switch the login drive to the host computer drive, and then execute
the following:

A > WPROMFRM <->
(when the development utilities are set in drive A)

(1) The initial screen shown below is displayed. Select 1 for format M or
select 2 for format P.

PROM format and write program version x.x (c) by EPSON
This program converts program and data files into a hex file with the ROM
Capsule format which may be written into PROM.

Press ESC to restart WPROMFRM, ST0P(or BREAK) to exit from WPROMFRM.

Formats of PROM

1 = M format
2 = P format

Select a format |

(2) In the screen shown below, select 1 to store the file converted in
format M or P into a floppy disk or select 2 to send the converted file
directly from the RS-232C interface to the PROM writer. To select 2,
the parameters specifying the transfer rate, character length, parity
bit, etc., must be set in advance by CONFIG so that the transfer
conditions correspond to that of the PROM writer.

Output devices

1 = FDD
2 = RS-232C

Select a device |

Development Tool Page 52

(3) Set the size of ROM.

PROM types

1 = 256K bit
2 = 512K bit
3 = 1 M bit

Select PROM type |

(4) Input the system name, ROM name, version number, and date structuring
the ROM header. Up to three characters can be input as a system name,
up to 14 characters can be input as a ROM name, a version number is a
2-digit number, and date is a 6-digit number indicating month, day, and
year.

Enter system name (3 characters max.) xxx

Enter ROM name (14 characters max.) xxxxxxxxxxxxxx

Enter version number (nn) xx

Enter date (mmddyy) xxxxxx

(5) Input the file names of files to be converted.

Enter file names (31 directories max.), RETURN to end.

1 TEST1.COM
2 TEST2.COM
3

200 records
40 records

25 K bytes
5 K bytes

total 25 K bytes
total 30 K bytes

When only the return key is pressed, file name input operation is ended
and the ROM header and file directory are displayed. Confirm these
information. Press the return key if the information is correct.
Other wise, press the ESC key to input file names again.

(i) The following error message is displayed if a file with an input
file name does not exist:

*** File not found ***

(ii) The following error message is displayed if an input HEX file is
not in Intel HEX format:

*** File not INTEL HEX FORMAT ***

Development Tool Page 53

(iii) The following error message is displayed if the input HEX files
are not stored consecutively in the address order:

* * * Address data not sequential * * ***

(iv) The following error message is displayed if the PROM size is
insufficient:

Enter file names (31 directories max.), RETURN to end.

1 TEST1.COM 200 records 25 K bytes total 25 K bytes
2 TEST2.COM 40 records 5 K bytes total 30 K bytes
3 TEST3.COM *** Out of memory ***

A : Abort WPR0MFRM D : Delete last file I : Ignore

File information is displayed when file name input operation normally
ends.

Header information is below.

System name
ROM name
Version No.
Date

: xxx
: xxxxxxxxxxxxxx
: xx
: xx/xx/xx

Directory information is below.

TEST1.COM TEST2.COM

Directory size : 3 entries and 128 bytes
Files size : 2 files and 30 K bytes

Press RETURN to proceed

(6) (i) If FDD is selected in operation (2), input the file names of files
to be saved in a disk as follows:

Enter output name xxxxxxxx.xxx

The following error message is displayed if one of the input file
names already exist:

*** File already exist *** Overwrite (Y/N)?

(ii) If RS-232C is selected in operation (2), the message shown below
is displayed. Press the return key to start send operation.

Ready to output ROM data on RS-232C ?

During execution, the file name of the current source file being
converted is displayed.

Development Tool Page 54

The following message is displayed if the disk becomes full:

*** Disk Full ***

(7) When saving files in a disk or sending files to the RS-232C ends, the
message shown below is displayed. Press the ESC key to return back to
the beginning of program execution and then press the STOP key to end
program execution.

Done
Press ESC to restart WPROMFRM, ST0P(or BREAK) to exit from WPROMFRM.

(Execution time varies depending on the file sizes.)

Development Tool Page 55

APPENDIX

1. ROM FORMAT

(1) The following two formats are provided for ROMs mounted to EHT-10 ROM
plug :

1 M Format
A program created in format M is loaded to CP/M TPA for execution.
Therefore, the program is allocated starting from address 100H (program
in load and execute mode).

2 P Format
A program created in P format is directly executed in an application
ROM (program in ROM-based mode). Because of this, the program start
address must be determined by taking into account of the area required
for the header and directory area.
To execute a program stored in 512-Kbit or 1-Mbit ROM, addresses must
be sufficiently managed and bank switching must be taken into account
within the program.
Because of this, note that a program actually executed in ROM differs
from a program emulated by the development tool for debug operations.

(2) M Format

Logical address
8000H

ROM address Logical address

C000H

DFFFH

6000H

7FFFH

0000H 8000H

Data bottom Data
i
bottom

Header 4000H C000H Data top

Directory

Data top
1
V 5FFFH DFFFH !

/

6000H

7FFFH

6000H

7FFFH
/

ROM address
8000H
(10000H,18000H)

C000H
(14000H,1C000H)

Application ROM
subbank #1 (#2, #3)

FFFFH
(17FFFH,1FFFFH)

Application ROM subbank #0

Appendix Fig.-l Relationship between ROM and Data Addresses

Development Tool Page 56

(Note 1) A 256-Kbit ROM has only subbank #0, a 512-Kbit ROM has subbanks #0
and #1 consecutively, and a 1-Mbit ROM has subbanks #0, #1, #2,
and #3 consecutively.

1 Header area (32 bytes)

A 32-byte header contains information of ROM format, size, number of
directories, etc. Appendix Figure-2 shows the header structure.

00H E5H *

01H 37H *

02H ROM capacity *

03H Check sum

04H

05H System name

06H

07H

08H ROM name (14 bytes)

09H
!==

15H

16H Number of directories + 1 *

17H 'V

18H Version No.

19H

1AH Date (6 bytes)

1BH
i
1

i__ __

-> Value 37H indicates M format.
(This value becomes 50H for P format.)

-> 256Kbits ROM : 20H
512Kbits ROM : 40H
1 Mbits ROM : 80H

The result of (the number of
directories + 1) is stored.
However, the result must be rounded up
to a multiple of 4. (The result becomes
4 when the number of directories is 2.)

Note: All values for the P format are
the same as those for the M format
except the following: Value 37H in
byte 2 becomes 50H for the P format.

1FH

The items with an asterisk (*) must be set.

Appendix Fig. -2 Header Structure

Development Tool Page 57

2 Directory area

The length of a directory is 32 bytes. Up to 31 directories can be
registered. Refer to CP/M Manual for directory structure.

3 Data area

The start address of data area differs depending on the number of
directories. The start address is determined as follows:
Where the number of directories is n,

- n is increased by 1,
- the result of addition is rounded up to a multiple (m) of 4,
- and the header start address is increased by 20H x m.

However, regardless of value m, data is started from track 0 sector 8
for BIOS.

(3) P Format

Logical address
8000H

DFFFH

6000H

7FFFH

Data bottom

Header

Di rectory

Data top

v

ROM address
0000H

5FFFH

5FFFH

7FFFH

Application ROM subbank #0

Logical address
8000H

DFFFH

DFFFH

7FFFH

Data bottom

Data top

ROM address
8000H
(10000H,18000H)

E000H
(16000H,1E000H)

FFFFH
(17FFFH,1FFFFH)

Application ROM
subbank #1 (#2, #3)

Appendix Fig. -3 Relationship between ROM and Data Addresses

(Note 1) A 256-Kbit ROM has only subbank #0, a 512-Kbit ROM has subbanks #0
and #1 consecutively, and a 1-Mbit ROM has subbanks #0, #1, #2,
and #3 consecutively.

Development Tool Page 58

1 Header area (32 bytes)

Instead of 37H, 50H is placed in byte 2 to indicate P format . Any
other items are same as the header used for M format.

2 Directory area

Same as the directory area used for M format .

3 Data area

The start address of data area is determined in the same way as M
format.

For a program in ROM-based mode, the following 5-byte data must be
added at the beginning of the application program:

DDH, DEH, 00H, 00H, 00H
(DDH and DEH are the ID indicating that the program is in
ROM-based mode.)

* ID : ROM-based program identifier (DDH and DEH)

An application program is initiated from immediately after the above 5
bytes.

(Note 1) The above 5-byte data must not be added for a program other
than programs in ROM-based mode.

(Note 2) Programs in format P are in load and execute mode (without
ID) or in ROM-based mode (with ID). One ROM can store
programs in both modes.

«Calculating the sizes of header and directory area>

Suppose that there are the following three programs:

File name Number of records File size Required number of
directory entries

FILE1.COM 30 4 Kbytes 1

FILE2.COM 150 19 Kbytes 2

FILE3.COM 50 7 Kbytes 1

Number of records: 1 record = 128 bytes
((Program size - 1) / 128) + 1

File size: The size of a file to be stored in the ROM.
((Number of records - 1) / 8) + 1

Required number of directory entries:
Number of directory entries required by the file.
((File size - 1) / 1 6) + 1

Development Tool Page 59

One directory is used to manage a file of which the size is up to 16-Kbyte.
Any file of which the size is lager than 16 Kbytes is managed using
directory entries. The size of one directory is 32 bytes and the directory
areas are created in the units of 128 bytes (a header is assumed as one
directory).

In other words, the total size of the header and directory area for the
three programs is 256 bytes.

0000H

Directory
area

0100H

Header 32 bytes

Directory entry 1 -----> Used by FILE1.COM

Directory entry 2
---> Used by FILE2.COM

Directory entry 3

Directory entry 4 -----> Used by FILE3.COM

Directory entry 5
---> Three dummy directory entries

are created to make the size of
the directory area 128 bytes.

Directory entry 6

Directory entry 7

File area

Development Tool Page 60

Detailed directory area

0 1 2 3 4 5 6 7 8 9 A B C D E F

E5H 37H 20H ? ? ? 7 ?
•

li ^ li "A" "M" "pH II £ II II £ 1 1 "R"

"0 " "M" _ _ _ _ 08H "V" M j ii "0 " "0 " ii 2 " ii 2 " ii y ii "8 " i i y i i

00H F I L E 1 c 0 M OOH OOH OOH 1EH

Block 1 to bloc k 4 of the f le area in total of 4 Kbytes
are used.
01H 02H 03H 04H 00H 00H OOH OOH OOH OOH OOH OOH OOH OOH OOH OOH

0 0H F I L E 2 C 0 M OOH OOH OOH 80H

Block 5H to block 14H of the fi le area in total of 16
Kbytes are used
05H 06H 07H 08H 09H OAH OBH OCH ODH OEH OFH 10H 1 1 H 12H 13H 14H

0 0H F I L E 2 C 0 M 01H OOH OOH 16H

Block 15H to block 17H Df the f le area in tota of 3
Kbytes are used
15H 16H 17H 00H 00H 00H OOH OOH OOH OOH OOH OOH OOH OOH OOH OOH

00H F I L E 3 C 0 M OOH OOH OOH 32H

Block 18H to block 1EH af the f le area in tota of 7
Kbytes are used
18H 19H 1 AH 1BH ICH 1DH 1EH OOH OOH OOH OOH OOH OOH OOH OOH OOH

E5H 00H 00H 00H 00H 00H OOH OOH OOH OOH OOH OOH OOH OOH OOH OOH

00H 00 H 00H 00H 00H 00H OOH OOH OOH OOH OOH OOH OOH OOH OOH OOH

E5H 00H 00H 00H 00H 00H OOH OOH OOH OOH OOH OOH OOH OOH OOH OOH

00 H 00H 00H 00H 00H 00H OOH OOH OOH OOH OOH OOH OOH OOH OOH OOH

E5H 00H 00H 0 0H 00H 00H OOH OOH OOH OOH OOH OOH OOH OOH OOH OOH

00 H 00H 00H 00H 00H 00H OOH OOH OOH OOH OOH OOH OOH OOH OOH OOH

indicates a blank.

In a ROM, files are placed after the directory area and are managed in the
units of 1 Kbytes. Because of this, the program start address of the second
or later program is not the address next to the end address of the previous
program. The program start address of the second or later program is the
logical start address increased by n determined as follows:

n = (Total file size of the first to the previous files) x 400H
+ (directory area size)

(Note) The directory area size is 100H in this example.

The next page shows the detailed file area.

Development Tool Page 61

The start addresses (logical addresses) of the three programs in this
example are as follows when 256-Kbit PROM is used:

FILE1.COM 6100H
FILE2.COM 7100H
FILE3.COM BD00H

Detailed file area

0100H
Directory area

Block 01H to 04H

Block 05H to 17H

Block 18H to 1EH

Block 1FH to 20H

4-Kbyte area to be used by FILE1.COM

19-Kbyte area to be used by FILE2.COM

7-Kbyte area to be used by FILE3.COM

— > Empty area

These block numbers are set in the disk allocation map in the directory
entries of each file.

Development Tool Page 62

2. LIST OF COMPUTERS THAT CAN BE USED AS THE HOST COMPUTER

Machine name OS

QX-10 CP/M

PX-4/HX—40 CP/M

PX- 8 CP/M

EPSON QX-11 MS-DOS

QX-16 CP/M
MS-DOS

EPSON PC
series

MS-DOS

PC/PC-XT PC-DOS
(MS-DOS)

IBM PC AT PC-DOS
(MS-DOS)

5550 MS-DOS

Development Tool Page 63

3. RAM MEMORY MAP

This section shows mapping of the main and extended RAMs used during debug
operations. An address enclosed in a pair of parentheses () is an
EHT-10/2 or EHT-10/2B address.

<Load and execute mode>

<Extended RAM not mounted> <Extended RAM mounted>

Extended RAM

FFFFH

DCOOH
(DEOO)

9800H
(9A00)

4000H
(4200)

3800H
(4000)

0100H

0000H

<System area> <System area>

<User BIOS area>
- Part of WAD: 256 x 5B
- WADW: 256 x 64B

<User BIOS area>
- Part of WAD:
256 x 5B

<RAM disk>
0 - 38 KB

<RAM disk>
0 - 22 KB

RBI0S, RBD0S RBIOS.RBDOS

<TPA>

-Target program

<TPA>

- Target program

<-D700H
(D900)

Development Tool Page 64

	Cover
	CONTENTS
	PREFACE
	1. SYSTEM INTRODUCTION
	1.1 Overview
	1.2 Programs to be Created
	1.3 System Configuration

	2. DEVELOPMENT CARTRIDGE
	2.1 Setting the DIP Switches
	2.2 RS-232C Interface
	2.3 Attaching the Cartridge to EHT-10

	3. DEVELOPMENT UTILITIES
	3.1 Configuration of Development Utilities
	3.2 BASIC Program Development Procedure
	3.3 Machine - Language Program Development Procedure
	3.4 Development Utilities and RAM Configuration

	4. MACHINE-LANGUAGE DEBUGGER
	4.1 Initiation and Termination
	4.2 Commands
	4.4 Notes on Creating Machine - Language Programs

	5. BASIC-LANGUAGE DEBUGGER
	5.1 Initiation and Termination
	5.2 Using the BASIC - Language Debugger
	5.3 Screen Editor for BASIC - Language Debugger
	5.4 Notes on Creating BASIC - Language Programs

	6. PROM FORMAT UTILITY
	6.1 Overview
	6.2 Operations

	APPENDIX
	1. ROM FORMAT
	2. LIST OF COMPUTERS THAT CAN BE USED AS THE HOST COMPUTER
	3. RAM MEMORY MAP

