
HONEYWELL

DPS 6 & LEVEL 6
GCOS 6 MOD 400
SYSTEM
PROGRAMMER'S
GUIDE — VOLUME I

SOFTWARE

DPS 6 & LEVEL 6
GCOS 6 MOD 400

SYSTEM PROGRAMMER'S
GUIDE - VOLUME I

SUBJECT

Description of System Software, Including Executive Routines, Drivers,
and Line Protocol Handlers, Accessible to Applications Written in Assembly
Language

SPECIAL INSTRUCTIONS

Sections of this manual dealing with communications supersede the
Communications Processing manual, CB03-03.

SOFTWARE SUPPORTED

See the MOD 400 Guide to Software Documentation for information about
Executive releases supported by this manual.

ORDER NUMBER

CZ05-00 ' - December 1982

Honeywell

PREFACE

This manual provides information useful to the Assembly
language programmer for designing/ executing/ and checking out
applications.

The manual describes system services available to the
programmer for:

• System control
• Input/output to peripheral devices L.W «••:% —^QI
• Input/output to communications devices.

The system services described include:

• Executive routines that can be invoked by monitor calls or
macro calls

• Drivers servicing peripheral devices

• Line protocol handlers servicing communications devices.

Macro calls mentioned in this volume are described more fully
in the System Programmer's Guide. Vol. II (CZ06-QO) «, Assembly
language is described in the Assembly Language Reference
(CZ38-00)„

This manual covers the following topics related to program
preparation, execution/ and checkout:

Gaining access to the system
Naming and manipulating files
Preparing a source program with the Line Editor
Linking
Debugging
Taking memory dumps.

Honeywell dtaclaimc the implied warranties of merchantability and fitnev* for a partic-
ular purpoee and make* no ezprcoe warranties except a* may be «tated in it* written
egreeBBest with and for it* customer.
In no event to Honeywell liable to anyone for any indirect, special or conoequential
dcfnagea. The information and (peciflcation* in thin document are <uhjert to change
without notice.

©Honeywell Information System* Inc., 1982 FUe No.. 1R13,1S13 CZ05-00

Notational Symbols
f

The following symbols are used in this manual to define the
format of command and directive lines:

Square brackets [] indicate an optional entry.

Braces < > enclose entries from which the user must make a
choice. * '

Lowercase letters (e.g., id) indicate a symbolic variable
whose exact value must be supplied by the user.

The character A indicates one blank space. -* * ^ v.*
' _ ,

User Typeins

Shading fHHHJH Indicates user input to the system.

Heading Hierarchy

Each section and appendix of this document is structured
acccording to the heading hierarchy shown below. Each heading
indicates the relative level of the text that follows it.

1 Level Heading Format

1 (Highest) " ALL CAPITAL LETTERS. UNDERLINED

2 initial Capital Letters. Underlined

' 3 ALL CAPITAL LETTERS, NOT UNDERLINED

L 4 (Lowest) Initial Capital Letters, Not Underlined

USER COMMENTS FORMS are included at the back of this manual.
These forms are to be used to record any corrections, changes, or
additions that will make this manual more useful.

iii CZ05-00

MANUAL DIRECTORY
* >

The following publications constitute the GCOS 6 MOD 400
manual set. Refer to the "Software/Manual Directory" of the
Guide to Software Documentation for the current revision number
and addenda (if any) of relevant release-specific publications.

Manuals are obtained by submitting a Honeywell Publications
Order Form to the following address:

T * .-v * -, _
•* , 4.̂ ., M. r,

Honeywell Information Systems Inc.
47 Harvard Street " v'
Westwood, MA 02090 ' • - • . ? - , .

* —* -, >

Attns Publications Services

Honeywell software reference manuals are periodically updated
to support enhancements and improvements to the software. Before
ordering any manualst you should refer to the Guide to Software
Documentation to obtain information concerning the specific
edition of the manual that supports the software currently in use
at your installation. If you use the four-character base
publication number to order a document? you will receive the
latest edition of the manual. The Publications Distribution
Center can provide specific editions of a publication only when
supplied with the seven- or eight-character order number listed
in the Guide to Software Documentation.

."--,' ^ ~. '

Honeywell applications software packages, such as INFO 6 f '"̂
TOTAL 6e and TPS 6, provide specialized services. Contact your
Honeywell representative for information concerning the
availability of applications software and supporting
documentation.

iv CZ05-00

Base
Publication
Number

CZ01

CZ02

CZ03
CZ04
CZ05

CZ06

CZ07
CZ09

CZ10

CZ15
CZ16
CZ17
CZ18
CZ19
CZ20

CZ21
CZ34
CZ35
CZ36
CZ37
CZ38
CZ39
CZ40
CZ41

: CZ47
CZ48

CZ52
CZ53
CZ54
CZ59

CZ60

CZ61

CZ62
CZ63
CZ64

Manual Title -I

GCOS 6 MOD 400 Guide to Software
Documentation

GCOS 6 MOD 400 System Building and
Administration

GCOS 6 MOD 400 System Concepts
GCOS 6 MOD 400 System User's Guide
GCOS 6 MOD 400 System Programmer's Guide -
Volume I

GCOS 6 MOD 400 System Programmer's Guide -
Volume II

GCOS 6 MOD 400 Programmer's Pocket Guide
GCOS 6 MOD 400 System Maintenance Facility
Administrator's Guide

GCOS 6 MOD 400 Menu Management/Maintenance
Guide

GCOS 6 MOD 400 Application Developer's Guide
GCOS 6 MOD 400 System Messages
GCOS 6 MOD 400 Commands
GCOS 6 Sort/Merge ^•*
GCOS 6 Data File Organizations and Formats
GCOS 6 MOD 400 Transaction Control Language

Facility
GCOS 6 MOD 400 Display Formatting and Control
GCOS 6 Advanced COBOL Reference
GCOS 6 Advanced COBOL Quick Reference Guide
GCOS 6 BASIC Reference
GCOS 6 BASIC Quick Reference Guide
GCOS 6 Assembly Language (MAP) Reference
GCOS 6 Advanced FORTRAN Reference
GCOS 6 Pascal User's Guide
GCOS 6 RPG-II Reference
Data Entry Facility-II User's Guide
Data Entry Facility-II Operator's Quick
Reference Guide

DM6 I-D-S/II Programmer's Guide
DM6 I-D-S/II Data Base Administrator's Guide
DM6 I-D-S/II Reference Card
Level 6 to Level 6 File Transmission Facility
User's Guide

Level 6 to Level 66 File Transmission
Facility User's Guide

Level 6 to Level 62 File Transmission
Facility User's Guide

BSC Transport Facility User's Guide
2780/3780 Workstation Facility User's Guide
HASP Workstation Facility User's Guide

CZ05-00

Base ,,::,;
Publication .^^ -
Number , Manual Title • lrf.

CZ65 Programmable Facility/3271 User's Guide
CZ66 Remote Batch Facility/66 User's Guide
CZ71 , DM6 TP Development Reference
CZ72 DM6 TP Application User's Guide
CZ73 DM6 TP Forms Processing >

In addition, the following publications provide supplementary
information:

. , • - , . - • . - , . - • -- . •:. ,ms.- ••• -. - ' • '. • •"• ?L t'.r •'-;: A ' " . ; , - - . f~- - . . , - ' '

AS22 Level.6 Models 6/34t 6/36, and 6/43
; ; Minicomputer Handbook •:/':

AT97 Level 6 Communications Handbook -
CC71 Level 6 Minicomputer Systems Handbook
CD18 ; ; r Level 6 MOD 400/600 Online Test and =

Verification Operator's Guide
FQ41 , Writable Control Store User's Guide a .-••

'" • »aa
Users should be aware that a Software Release Bulletin

accompanies each software product ordered from Honeywell. You
should consult the Software Release Bulletin before using the
softwaree Contact your Honeywell representative if a copy of the
Software Release Bulletin is not available.

vi CZ05-00

CONTENTS
Page

SECTION 1 INTRODUCTION 1-1

System Functions 1-1
System Service Macro Calls 1-1
Device Drivers and Line Protocol Handlers 1-2

Program Preparation and Checkout 1-2

SECTION 2 SYSTEM CONTROL FUNCTIONS 2-1

Batch Functions .<>.. 2-2
Clock Functions 2-2
Communications Functions . 2-3
Date/Time Functions 2-3
Message Reporting 2-3
External Switch Functions 2-4
Identification and Information Functions.... 2-4
Memory Allocation Functions 2-5
Message Facility Functions 2-5
Operator Interface Functions. 2-6
Overlay Handling ̂ Functions « 2-7
Physical I/O Functions 2-7
Request and Return Functions . 2-8
Terminal Control Functions..,.. « 2-9
Semaphore Functions. 2-9
Standard System File I/O Functions 2-10
Task Control Functions...... e 2-11
Task Group Control Functions » 2-11
Trap Handling Functions. . 2-13
User Registration Functions... 2-13
Software Reboot.<>...... 2-14

SECTION 3 FILE SYSTEM FUNCTIONS 3-1

File Management Functions.. 0. 3-1
Data Management Functions 3-3
Storage Management Functions* 3-6
File Information Block. 3-6

File Information Block (FIB) for Data Management 3-7
Program View Entry in FIB for Data Management 3-13
File Information Block (FIB) for Storage Management
Access <>.............. e 3-18

Program View Entry in FIB for Storage Management 3-19
Offsets Definitions 3-22

vii CZ05-00

CONTENTS
Page

SECTION 4 COMMUNICATIONS PROCESSING FUNCTIONS 4-1

Overview of Communications Processing 4-1
Communications Processing Through the File System.«...... 4-2
File System Functions. 4-2
File Management Functions 4-3
Data Management Functions 4-3

Synchronous Input/Output 4-3
Asynchronous Input/Output. 4-3
Using File System Functions 4-4
Get File ($GTFIL) Macro Call Guidelines 4-4
Open File ($OPFIL) Macro Call Guidelines 4-5
Test File ($TIFILf $TOFIL) Macro Call Guidelines..... 4-5
Wait File ($WIFIL, $WOFIL) Macro Call Guidelines..... 4-5

Macro Call Sequences. . 4-6
Macro Call Procedures for Data Entry Terminals 4-6
Macro Call Procedures for Output-Only Terminals...... 4-7

Macro Calls for a Single Interactive Terminal.......... 4-9
Macro Call Procedures for Multiple Interactive
Terminals 4-10

Changing a Terminal File's Characteristics............. 4-13
Specification by -MODES Argument 4-13
Specification by DSW Bit Settings 4-13

Communications Processing Through Physical I/O........... 4-15
Physical I/O...... e 4-15
Using Physical I/O. 4-17

Data Structures. 4-18
Input/Output Request Blocks. 4-18
IORB Software Status Word (I_ST) 4-19

Communications Function Codes.......................... 4-24
Write Function (Code 1) 4-25
Read Function (Code 2).......... ... 4-25
Define-Form Function (Code 5) <,...... 4-26
Read Break (Code 9) 0... 4-26
Connect Function (Code A) 4-26
Disconnect Function (Code B) 4-26

SECTION 5 DATA STRUCTURE GENERATION. 5-1

System Control Data Structures. 5-1
Request Blocks 5-1
Request Block Offsets Macro Calls 5-2

Parameter Block and Wait Lists......................... 5-3
File System Data Structures.............................. 5-4
File Information Block......<><,........ 5-4
File Information Block Macro Call 5-4
FIB Offset Macro Calls 5-5

viii CZ05-00

CONTENTS

Page

Macro Call Argument Structures 5-5
Size Tags 5-6

SECTION 6 DEVICE DRIVERS 6-1

Input/Output Drivers 6-1
Device Driver Data Structures <>. 6-2
Device Driver Conventions 6-2

Driver Functions and Function Codes 6-3
Connect Function (fc=A).e 6-3
Disconnect Function (fc=B) 6-3
Wait Online Function (fc=0) 6-4
Write Function (fc=l) 6-6
Read Function (fc=2) .» 6-7
Read Disabled Device Function (fc=E) * 6-7
Write Tape Mark Function (fc=3)..... 6-7
Position Block Function (fc=4).. 6-7
Format Write (fc=5) 6-7
Format Read (fc=6) 6-7
Position Tape Mark Function (fc=6) 6-7
Break Notification Function (fc=9) 6-8

Input/Output Request Block 6-8
Caller Interface with Device Driver 6-13
Device Drivers. 6-13

Card Reader/Card Reader-Punch Driver ...e 6-14
ASCII Mode. c 6-14
Verbatim Mode. . 6-15
Card Reader/Card Reader-Punch Device-Specific IORB
Fields.. 6-17

Card Reader/Card Reader-Punch Hardware Status Code
Mapping 6-18

Printer Driver. «, 6-19
Print Control Byte. 6-19
Printer Device-Specific IORB Fields.. 6-22
Printer Hardware/Software Status Code Mapping 6-22

Disk Driver. 6-23
Disk Driver Conventions for Diskette 6-23
Diskette IORB Fields. 6-24

Disk Driver Conventions for Cartridge Disk 6-26
Cartridge Disk IORB Fields.... 6-27

Disk Driver Conventions for Lark Disk 6-28
Lark Disk IORB Fields...., 6-29

Disk Driver Conventions for Mass Storage Unit 6-31
Mass Storage Unit IORB Fields 6-32

Disk Driver Conventions for Cartridge Module Disk.... 6-33
Cartridge Module Disk IORB Fields 6-34

ASR/KSR and CONSOLE Drivers 6-36

ix CZ05-00

CONTENTS

Page

Keyboard Input * 6-37
Printer Output. 6-37
ASR/KSR IORB Fields* 6-37

Magnetic Tape Driver ...«...« ... 6-41
• Magnetic Tape IORB Fields. 6-43

SECTION 7 LINE PROTOCOL HANDLERS 7-1

Line Protocol Handlers 7-1
Line Protocol Handler Functions 7-3
Main Memory-Resident LPH. 7-3
MLCP-Resident LPH (CCP) 7-4

MLCP Communications Handler.. 7-4
Communications Subsystem'Operation Example............... 7-4
Modem Support. «... 7-8
Auto Call Unit...........»...- o................. 7-8
Communications Subsystem Error and Correction Procedures. 7-9

Parity Error Check........0 7-9
Block Error Check. 7-9

Longitudinal Redundancy Check (LRC)..... 7-9
Cyclic Redundancy Check (CRC) 7-10
BSC Block Check Character (BCC)..... 7-10

Timeout Check. 7-10

SECTION 8 ATD LINE PROTOCOL HANDLER 8-1

Introduction. 8-1
ATD Modes. 8-2 .
TTY Mode..................o............................ 8-2
t 3L e«LO WOQe o e c e e o o e o.e.o.e.. O " J

ROP Mode e e . e . e e C B c « o e « « « « « . « . o . « « « . « « « « 8 —3

Stream Mode 8-4
I/O Functions Supported by ATD. 8-4
IORB Processing.............................. 8-4 .
IORB Size. 8-6
IORB Device-Specif ic Wo rd......... 8-6
Processing Order of lORBs. 8-6
Purging Queued lORBs 8-6
IORB Error Processing...... e 8-7
Return of Device ID......... 8-10

Supervisory Message Processing,, „ 8-10
Control Byte Processing0 o...oc«.......................... 8=12
Buffered Printer Adapter (BPA) Support.........«......... 8-13

Configuring the BPA.................0....«.....<....... 8-13
Connecting the BPAe 8-13
Writing to the BPA. c.. 0 0 8-13

x CZ05-00

CONTENTS

Page

Break Processing by ATD LPH 8-14
Break Processing with Read Break Request 8-14
Break Processing with No Read Break Request 8-15

TTY Mode. 8-16
Connect Function (TTY Mode) 8-16
Auto Call 8-16
Bell 8-16
Character/Buffered .. 8-16

Connect IORB (TTY Mode) 8-17
Bit Settings of I_DVS 8-17
Bit Setting in Word I_ST. 8-17

Disconnect Function (TTY Mode) 8-18
Abort Queued Orders 8-18
Hang Up. 8-18

Disconnect IORB (TTY Mode) 8-18
Bit Settings of I_DVS.... 8-18
Bit Setting in Word I_ST. 8-19

Read Function (TTY Mode) 8-19
Operator Functions . 8-19

Operator Function Keys 8-19
Character Delete and Line Cancel.. 8-20
Read Termination. 8-21
Break.. 8-22
Hide Function. 8-22

Read Order Functionality. 8-22
Echo. 8-23
Line Feed. 8-23
Carriage Return. 8-23

Read IORB (TTY Mode).... 8-23
Write Function (TTY Mode) 8-23
Off Line. .. 8-24
Control Byte Processing... 8-24
Quit On Break............ c.. 8-24
Carriage Return. «...«, 8-24
Line Feed.. e ' 8-24

Write IORB (TTY Mode) 8-24
Bit Settings in Word IJDVS 8-24
Bit Setting in Word I_ST..... 8-25

Device Configuration (TTY Mode) 8-25
Error Processing. 8-26
TTY Mode Timeout Processing... *. 8-26

Field Mode. 8-26
Forms, Fields, and Subfields.. 8-26

Input Validation. 8-27
Auto-Insert Characters...«. 8-27

Restrictions 8-28
Separate Sign Field 8-28

xi CZ05-00

CONTENTS

Page

Restrictions * * 8-28
Must Release Field 8-28
Decimal Point and Decimal Point Processing 8-29
Restrictions. 8-29

Field Descriptor and Define Form... 8-29
Using the Integrated Field Attribute Descriptor...... 8-30
Using Define Form. . 8-30
Format of the Field Attribute Descriptor 8-31

Supervisory Message Processing 8-32
IORB Values. 8-33
Location of Message Line. 8-33
Processing Order 8-33
Supervisory Message Conventions.. 8-33

Application Responsibilities in Processing Fields...... 8-34
Field Mode Functions 8-3 5
Connect Function.*...... 8-35
Auto Call 8-35
Bel l . « . « « . « . . . » « » « . • » . « « » • • • « • « • « • • « « . « « • « . • • • » « » « • 8—35
Validation Field Notification (VFN)................ 8-36
Selectable Field Validation Sets................... 8-36
Word Processing Mode (WPM) Indicator............... 8-36
Cursor Out of Field..................0.....„....... 8-36
Type Ahead 8-3 7
VIP7200, VIP7207 Supervisory Message Line.......... 8-37
Terminal Type (Device ID).......................... 8-38
Connect IORB (Field Mode) 8-38

Disconnect Function (Field Mode). 8-39
Abort Queued Orders................................ 8-40
Hang Up.. 8-40

Read Function (Field Node)............„c............. 8-40
PreHDrder Control.................................. 8-41
Termination of a Field Read........................ 8-41
ATD Handling of Termination Codes.................. 8-42
Entry of Invalid Characters. 8-43
Residual Range and Relative Residual Range... 8-43
Use of Cursor Keys. 8-43
Statistics. 8-44
Read with Offset. 8-44
Type-Ahead. 8-45
Cursor Out of Field................................ 8-45
Support of VIP7207 and VIP7307 Terminals 8-45
Read IORB (Field Mode)............................. 8-48
Values Returned by a Field Read Order.............. 8-52

Write Function (Field Mode).......................... 8-54
Purge All Subfunction.............................. 8-54
Quit on Break Option. 8-54
Pre-Order Control. 8-54

xii CZ05-00

CONTENTS
Page

Write IORB (Field Mode) 8-54
Field Mode Device Configuration .. 8-55
Field Mode Return Status Codes 8-55

Invalid Argument Status (0104) .. 8-55
Inconsistent Request Status (010C) ... 8-56

Field Mode Error Processing ... 8-56
Field Mode Timeout Processing ... 8-56

Block Mode ; c «. 8-57
Connect Function.. «,. 8-57
Auto Call .. 8-57
Control Word ... 8-58
Space Suppression, 8-58
No Roll. e.. 8-58

Connect IORB (Block Mode) 8-59
Bit Settings of I_DVS.. ... 8-59
Word I_RNG. . e... «. 8-59
Word I_ST. *„.. 8-59
Word I_QDP. 8-60

Disconnect Function (Block Mode) 8-60
Abort Queued Orders. 8-60
Hang Up. 8-60

Disconnect IORB (Block Mode) 8-60
Bit Settings of I_DVS 8-60
Bit Setting in Word I_ST 8-61

Read Function (Block Mode) 8-61
Operator Functions. 8-61
Application Functions.. « 8-62
Abort Read. «. 8-62
Supervisory Messages 8-62
Line Feed and Carriage Return 8-62

Read IORB (Block Mode) .. 8-62
Write Function (Block Mode) 8-63
Write Order Processing, .<>............... . „. 8-63
Keyboard Lock «,. 8-6 3
Write Order Options. 8-63

Abort Write. 8-63
Preemptive Data Write. 8-63
Control Byte Processing. „. 8-64 '
ETX/ETB Option. -.,.... 8-64
Quit On Break.... 8-64
Supervisory Messages. 8-64
Supervisory Message Acknowledgement..... 8-64
Line Feed and Carriage Return *. 8-64

Write IORB (Block Mode)..... 8-65
Bit Settings of IJDVS..... 8-65
Bit Setting in Word I_ST«. 8-66

Device Configuration (Block Mode) 8-66

- : xiii CZ05-00

CONTENTS
Page

«

Return Status Codes (Block Mode) . 8-66
Status Codes in I_CT1. 8-66
Status Codes in I_ST........0........................ 8-66

Error Processing (Block Mode).. * c *.. 8-67
Timeout Processing (Block Mode) . . 8-67

ROP Mode. 8-68
ETX/ACK Protocol 8-68
Basic ETX/ACK Protocol.. . 8-68
Advanced ETX/ACK Protocol. 8-69

Connect Function 8-6 9
Auto Call 8-69

Connect IORB (ROP Mode) 8-69
Disconnect Function 8-70
Abort Queued Orders.................................. 8-70
Hang Up.. 8-70

Disconnect IORB (ROP Mode) 8-70
Write Function (ROP Mode) 8-70

Control Sequences ..e......... 8-71
OLE EOT Control Sequence. 8-71
Other Sequences 8-71
Prohibited Sequences............................... 8-71

Write Options. 8-71
Control Byte....................................... 8-72
Line Feed and Carriage Return...................... 8-72

Write IORB (ROP Mode) 8-72
Read Function (ROP Mode) 8-72
Normal Status Read. 8-72
Attention Read....................................... 8-73

Read IORB (ROP Mode) 8-73
Status Codes Returned in I_CT1 (ROP Mode).............. 8-74
Successful Completion (0000) .«.. 8-74
Invalid Argument Status (0104).............«......... 8-74
Device Not Ready Status (0105)....................... 8-74
Hardware Error Status (0107).. 8-75

Status Information in I._ST. 8-75 /
Error Processing.<>..... 8-76
Timeout Processing.<>... 8-76

Stream Mode....................0.. 8-76
Connect Function....... „.. 0....... 8-76

Auto Call..... «. a 8-76
Configuration Mask................................... 8-77

Connect IORB (Stream Mode)............................. 8-77
Disconnect Function (Stream Mode)...................... 8-77

Abort Queued Orders................................... 8-77
Hang Up.............co...««..«..c..««..e............. 8—78

Disconnect IORB (Stream Mode) 8-78
Read and Write Functionality. 8-78

< xiv CZ05-00

CONTENTS
Page

Control Byte (Stream Mode) 8-78
Processing of Control Byte and Device Specific Word.. 8-79
Flow Control Protocol 8-80

Protocol Operation 8-80
Protocol Combinations 8-80

Control Characters 8-81
Edit Option ... 8-82
File Transfer 8-82

Read Function 8-85
Solicited Transfer 8-85
Suspendable Transfer 8-85
Control Byte .. 8-85
Echo. 8-86
Edit. 8-86

Read IORB (Stream Mode) 8-86
Write Function 8-87

Solicited Transfer. . 8-87
Suspendable Transfer 8-87
Line Feed and Carriage Return 8-87
Edit. o 8-87
End of File. 8-87
Control Byte 8-87
Write IORB (Stream Mode) 8-88

Stream Mode Configuration 8-89
Error Processing........... 8-89
Timeout Processing. 8-89

SECTION 9 STD LINE PROTOCOL HANDLER 9-1

Synchronous Terminal Driver (STD) Line Protocol Handler.. 9-1
General STD Line Protocol Handler Operation 9-2

Software Functional Support for the VIP 9-2
User-Supplied Software Functions for VIP Support 9-3
STD Request Response Time 9-3

Using the STD Line Protocol Handler 9-3
STD-Specif ic IORB Values. 9-3
STD Polling Options. 9-10
STD Poll List 9-10
STD Poll List Stall. 9-10
STD Poll Interval. 9-10
STD Poll Duration (Timeout) 9-11
STD Line Protocol Handler Poll Functions 9-11

Control and Characteristics of STD Input (Keyboard/
Screen) 9-11
STD Input Message Header 9-11
STD Hardware Function Codes 9-12
STD Input Data 9-12

' xv CZ05-00

CONTENTS

Page

Control and Characteristics of STD Output. . 9=12
STD Output Message Header... .. 9-12
Control Byte (Send) 9-13
STD Output Data 9-13
STD Keyboard/Screen Output Editing Control........... 9-13
STD Receive-Only Printer Editing Sequence............ 9-13
STD Receive-Only Printer Control Sequence.. 9-13
Printer Escape Sequence for VIP7804 9-16

Receive-Only Printer Support 9-16
VIP7804 Support. .. 9-17
TWU1901 Support 9-17
Master LRN Processing. 9-17
Sub-LRN Support c 9-18
Block Mode Processing. 9-18
Control Word. 9-18
Control Byte 9-19
Output Data and Invalid Characters 9-20
VIP7804 Message Range Requirements (Verify Before

Process Mode) 9-20
VIP7804 Terminal Transmission Modes and Cursor -
Positioning. .'.*»....". 9-20

VIP7804 Break Processing...... 9-21
Supervisory Messages. 9-21
Supervisory Message Reads.... «....'........... 9-21
Supervisory Message Writes 9-22

Diskette Handling for the CTS 7760 and VTS 7740........ 9-22
2/4 Wire Line Function. 9-22
Long Q Frame Line Function. 9-23

Error Processing by STD Line Protocol Handler.... 9-23

SECTION 10 PVE LINE PROTOCOL HANDLER 10-1

Polled VIP Emulator (PVE) Line Protocol Handler 10-1
General PVE Line Protocol Handler Operation... 10-1
Using the PVE Line Protocol Handler..... 10-3
PVE-Specif ic IORB Values. 10-3
VIP Protocol Message Structure for PVE.....e... 10-6
Control and Characteristics of PVE Input 10-7
PVE Input Message Header 10-7
PVE Hardware Function Codes 10-7
PVE Input Data. 10-8

Control and Characteristics of PVE Output.... 10-8
PVE Output Message Header 10-8
PVE Terminal Address (ADR) and Message Status (STA).. 10-8
PVE Output Data. 10-8

PVE Line Protocol Handler Timeout Intervals. 10-9
Error Reporting by PVE Line Protocol Handler 10-9

xvi CZ05-00

CONTENTS

Page

SECTION 11 2780/3780 BSC Line Protocol Handler 11-1

BSC2780/3780 Line Protocol Handler... 11-1
General BSC Line Protocol Handler Operation 11-1
BSC Transmit and Receive Operations 11-2
BSC Data Transmission Modes .. 11-2
BSC Basic Data Transmission Mode 11-2
BSC Advanced Data Transmission Mode 11-3

BSC2780 and BSC3780 Differences 11-3
BSC Record Types . 11-4
BSC2780/3780 Features... 0. 11-4
BSC Double-Block Feature. 11-4
BSC Multi-Block Feature. 11-6
BSC Temporary Text Delay (TTD) Feature.... 11-9
BSC Wait Before Acknowledge (WACK) Feature 11-10
BSC Reverse Interrupt (RVI) Feature 11-11
BSC End of Transmission (EOT) Feature 11-12
BSC Switched Line Disconnect (OLE EOT) Feature 11-13

BSC Line Protocol Handler Timeout Interval 11-15
BSC Features Specific to 3780 11-15
BSC3780 Conversational Reply Feature 11-15
BSC3780 Double-Block Feature 11-15
BSC3780 Transmission/Reception of BSC Control
Characters. 11-17

Using the BSC2780/3780 Line Protocol Handler 11-17
BSC-Specif ic IORB Values 11-17
Specifying Use of BSC2780 and/or BSC3780 to the System. 11-19
Formats and Characteristics of BSC Input Data 11-20
BSC Control Byte (Receive) 11-21
ASCII Input for BSC....... 11-22
EBCDIC Input for BSC. 11-22
Transparent EBCDIC Input for BSC 11-23

Formats and Characteristics of BSC Output Data 11-23
BSC Control Byte (Send) 11-24
BSC ASCII OUtpUt. e e c 11-25

BSC EBCDIC Output.. 11-25
BSC Transparent EBCDIC Output. 11-26

SECTION 12 TTY LINE PROTOCOL HANDLER 12-1

TTY Line Protocol Handler 12-1
General TTY Line Protocol Handler Operation 12-1
TTY Message Formats. 12-1
TTY Character Mode and Buffered Mode Transmission 12-2
TTY Character Mode 12-2
TTY Buffered Mode (VIP7200 and VIP7800) 12-2

xvii CZ05-00

\ , . CONTENTS
Page

VIP7200 and VIP7800 Hardware Switch Options with
Character or Buffered Mode . 12-3

VIP7200 and VIP7800 Function and Control Keys ... 12-4
TTY Line Protocol Handler Timeout Intervals............ 12-4

Using the TTY Line Protocol Handler 12-4
TTY-Specif ic IORB Values ... 12-4
Control and Characteristics of TTY Input Data.......... 12-7
TTY Control Byte (Input) 12-7
TTY Nontransparent Input. 12-8
TTY Transparent Input....» 12-8
TTY Line Feed (LF) and Carriage Return (CR) Input
Sequence. 12-8

Keyboard Input Character and Line Control............ 12-8
TTY Display of Input Characters...... 12-9
TTY Input in Buffered Mode (VIP7200 and VIP7800

Control and Characteristics of TTY Output Data......... 12-9
TTY Control Byte (Send) 12-9
End-of-Message (EOM) Sequence on TTY Output.......... 12-10
TTY Detection of BRK Characters... .. 12-10
TTY Output in Buffered Mode . 12-11

SECTION 13 SYSTEM ACCESS 13-1

User Access Procedures. 13-1
Connecting the Terminal to the Central Processor 13-1
Direct-Connect Terminal 13-2
Dialup Terminal. . .. 13-2

Connecting a User to the Executive. 13-2
Login Terminal. 13-2
Manual Login Terminal 13-3
Abbreviated Login Terminal. 13-3
Automatic Login Terminal 13-4

Non-Login Terminal .«, 13-4
Procedures and Conventions After Access 13-5
Sending Messages to the Operator 13-5
Interrupting (Breaking) a Task.. 13-5

SECTION 14 FILE CONVENTIONS 14-1

Overview..........«>*....«.«.«. 14-1
Disk File Conventions<><>.<,<,................... 14-2

Root Directory. ..<=.«. 14-3
System Root Directory. 14-3
System Boot Directory................................ 14-3
User Root Directories. 14-3

xviii CZ05-00

CONTENTS

Page

Intermediate Directories 14-3
Working Directory 14-4
Locations of Disk Directories and Files 14-5

Naming Conventions 14-5
Uniqueness of Names 14-5
Pathname. 14-6
Symbols Used in Pathnames 14-6
Absolute and Relative Pathnames 14-7

Magnetic Tape File Conventions 14-8
Tape File Organization. . 14-10
Magnetic Tape File and Volume Names „ 14-10
Magnetic Tape Device Pathname Construction 14-11
Automatic Tape Volume Recognition. 14-11

Unit-Record Device File Conventions 14-11
Working with Files, c 14-12
Command Processor .. . 14-12
Standard I/O Files. 14-12
Command Level 14-13

Controlling Your Operating Environment 14-13
Volume Control. 14-14

Creating Volumes. 14-14
Renaming Disk Volumes 14-15

Directory Control.... 14-15
Changing Your Working Directory 14-15
Creating Directories. 14-16
Renaming Directories 14-17
Deleting Directories 14-18

" File Control. 14-18-
Creating Files. 14-18
Renaming Files 14-20
Deleting Files. 14-20
Copying Files.. 14-20
Locating Files. 14-21
Listing Files and Directories 14-21

Interrupting Execution 14-22
Controlling Output. 14-22
Directing Output to a File. 14-23
Directing Output to a Printer 14-23
Redirecting Output to Your Terminal. 14-23

Printing Control. 14-23
Printing Files at Your Terminal 14-24
Deferred Printing. 14-24

Program Execution. 14-25
Reserving Files or Devices.... 14-26
Communicating with Other Users.. 14-26

Absentee Processing 14-27

xix CZ05-00

CONTENTS
Page

SECTION 15 LINE EDITOR . 15-1

Overview. . 15-1
Line Editor Suffix Conventions . 15-3
Line Editor Directive Format Conventions 15-3
Methods of Specifying Addresses . 15-5
Designating a Line Number as an Address 15-6
Designating the Position of a Line Relative to the

"Current" Line as an Address.... 15-6
Designating Contents of Line as an Address.. 15-7
Compound Addresses. .0.... . . 15-11

Referencing a Series oC Lines . . 15-12
Loading the Line Editor....<>..........<>. 15-14

Summary of Line Editor Directives and Escape Sequences... 15-16
Creating a Source Unit................................... 15-21
Changing an Existing Source Unit........ 15-22
Input Mode Description and Directives.. 0 15-22
Append (A) 15-24
Change (C)....................... 15-27
Insert (I).................« 15-30
Edit Mode Description and Directives.... 15-33
Delete (D)... 15-35

Read (R)<...............*........<>. 15-42
Substitute (S or IS) 15-45

Advanced Functions of the Line Editor.................... 15-52
General Advanced. Line Editor Directives....„............. 15-52

Line Feed (L or !L) 15-58
Lowercase (U) 15-59
New Current Line (N) 15-60
Print Line Number (-/IP) 15-61
Print with Line Number (IP)............ 15-63
Uppercase {IU) 15-65
Comment (")........................ 15-66
Auxiliary Buffer Directives and Escape Sequences 15-67
Accept Single Line From a Terminal (!R)...... 15-69
Buffer Status (X).......................««..«.... 15-70
Change Buffer (Bx)....D.................................. 15-72
Change Origin of Text During Edit Mode (IB) .<,.... 15-73
Change Origin of Text During Input Mode (!B)........ 15-=76

Copy-Append (IK)............................ 15-80

xx CZ05-00

CONTENTS
Page

Destroy (~B) 15-82
Move (M) 15-83
Move-Append (!M) 15-85
Line Editor Debugging Directives 15-87
Hexadecimal Dump (ZDUMP) .. 15-88
ZREGEXP 15-90
ZTRACE. . 15-91
Line Editor Programming Directives 15-93
Address Prefix (?) . . 15-94
Go To (» .. 15-96
If Data (f) 15-98 -
If Empty (*i) 15-99
If Line (adrf) 15-100
If Not Line (adrA#) 15-101
If Range (adrst) 15-102
If Not Range (adrs~#) 15-103
Search (*)........ 15-104
Search Not (**) 15-105
Label (:) 15-106
Type (T) 15-107
Programming Considerations. 15-108

SECTION 16 LINKER 16-1

Overview 16-1
Linker Functions .-. 16-1
Linker Directive Categories 16-3
T Specifying Object Unit(s) to be Linked 16-3 '

Specifying Location(s) of Object Unit(s) to be Linked.. 16-3
Creating a Root and Optional Overlay(s) 16-4
Producing Link Map(s) 16-5
Defining External Symbols 16-5
Protecting or Purging Symbol (s) .,. 16-5
Reloading After System Failure 16-6
Controlling the Directive File 16-6
Terminating the Linker* 16-6

Loading the Linker.......... e.« « 16-7
Entering Linker Directives. 16-9
Linker Directives Set. 16-10
BASE............................... c 16-11
CC (Call-Cancel) .. e.......... 16-18
COMMON.................. o 16-19
CPROT. .. c................... ... o 16-20
CPURGE 16-21
EDEF 16-22
FLOATB6 16-26
FLOVLY 16-27

xxi CZ05-00

CONTENTS
Page

GSHARE . 16-29
IN. 16-30
INCLUDE 16-32
1ST. 16-33
LDEF. c 16-34
LIB or LIB1.. c 16-38

(2)
L I B < 3 > . 16-40

U)
LINK. 16-41
LINKN 16-43
LINKnn 16-47
LINKO. 16-48
LSR. 16-49
MAP and MAPU 16-50
OVERLAYTABLE 16-62

PROTECT. c 16-65
PURGE. c 16-67

Rerun Relocatable (RR) 16-70
RETURN.o............̂ 16-71

STACK. 16-75
START. 16-76
O JL O • e « » e e c e * e e > € > « « « e > c e « * c e » c « e « « o <) « « « « » e » « » » e « » » « * * » » « e > c > * » A Q "* / /

VPURGE. .e.c.e..co.ee. 16-80

Linker Procedures.......c..........*...................... 16-81
Overview.. e..............o............ 16-81
Using Overlays. 16-81
Interrupting Linker Execution...... , 16-81

SECTION 17 SINGLE-USER DEBUGGER. 17-1

Overview. 17-1
$D Debug Capabilities. 17-1 -
Loading the $D Debug Task Group. 17-2 r

$D DEBUG Operation with MMU. 17-3 ,
$D DEBUG File Requirements c........................a..... 17-3 -,
Entering $D Debug Directives.«,«.... 17-3 -
Planning Considerations. 17-8 -

Setting True Breakpoints. 17-8 .
Controlling Output Using a Breakpoint.. 17-9

xxii CZ05-00

CONTENTS
Page

Determining/Setting the Active Level 17-9
Maintaining a Trace History 17-10

$D DEBUG Directives 17-10
All Registers 17-11
Assign. 17-12
Change Memory. ». 17-13
Clear All Bound Unit Breakpoints 17-14
Clear All True Breakpoints 17-15
Clear Bound Unit Breakpoint 17-16
Clear True Breakpoint. 17-17
Conditional Execution. 17-18
Define Directive 17-21
Define Trace 17-22
Display Memory. . 17-23
Dump Memory. 17-24
End Trace. 17-26
Execute* 17-27

. File Out....... 17-28
GO. 17-29
Line Length. 17-30
List All Bound Unit Breakpoints 17-31
List All True Breakpoints... 17-32
List Bound Unit Breakpoint.. 17-33
List True Breakpoint. 17-34
Print. 17-35
Print All. 17-36

.- Print Header Line. 17-37
Print Hexadecimal Value 17-38.
Print Trace. 17-39
Quit. 17-40
Reset File. 17-41
Set Bound Unit Breakpoint. 17-42
Set Level.... 17-44
Set Temporary Level. 17-45
Set True Breakpoint. 17-46
Specify File. 17-48
Start j-mode Trace. 17-49

Sample $D DEBUG Session. 17-50

SECTION 18 MULTI-USER DEBUGGER 18-1

Overview. 18-1
Multi-User Debugger Capabilities 18-1
Invoking the Multi-User Debugger 18-2
Multi-User Debugger File Requirements 18-2
Multi-User Debugger Memory Requirements 18-2
Multi-User Debugger Operation 18-3

•- xxiii CZ05-00

CONTENTS
Page

Entering Directives 18-3
Multi-User Debugger and Break Key Functionality 18-9
Planning Considerations. 18-10

Setting True Breakpoints and Bound Unit Breakpoints.... 18-10
Setting Quick Breakpoints,,, . 18-10
Preliminary Steps for Using Quick Breakpoints 18-10
Guidelines for Setting Breakpoints 18-11
Controlling Output..... 18-12
Determining/Setting the Active Level.. 18-12
Maintaining a Trace History. . 18-13

Multi-User Debugger Directives c... 18-13
All Registers 18-14
ASSiCfn. e . * . . c c . e « « « « . . « < > 18a15

Change Memory. 18-16
Clear Abnormal Trap Bit................................ 18-17
Clear All Bound Unit Breakpoints 18-18
Clear All Quick Breakpoints. 18-19
Clear All True Breakpoints,,.... 18-20
Clear Bound Unit Breakpoint... 18-21
Clear Quick Breakpoint.,....... 18-22
Clear True Breakpoint. 18-23
Conditional Execution................. 18-24
Define Directive Line.................................. 18-27
Define Trace. c... 18-28
Display Memory. 18=29
Dump Memory. 18-30
End Trace. 18-31
Escape 18-32
Execute..................e...oo........................ 18-33

Get Quick Memory. 18-35

List All Bound Unit Breakpoints. 18-38
List All Quick Breakpoints............................. 18-39
List All True Breakpoints. 18-40
List Bound Unit Breakpoint Directive 18-41
List Quick Breakpoint. 18-42
List T&ue Breakpoint. 18-43
Mode..................... c 18-44
Print. 18-45

Print Header Line. 18-47
Print Hexadecimal Value................................ 18-48
Print Quick Memory Pointer... ...„....................'.. 18-49
Print Trace«,««,.o«.c0<3.......e........ft..............*.. 18-50
Quit. 18=51
Reset File...... 18-52

xxiv CZ05-00

CONTENTS
Page

Return Quick Memory 18-53
Set Bound Unit Breakpoint.... 18-54
Set Level 18-56
Set Quick Breakpoint 18-57
Set Temporary Level 18-60
Set True Breakpoint 18-61
Sleep. 18-63
Specify Pile. .. 18-64
Start j-mode Trace.. 18-67
Turn On Abnormal Trap Bit 18-68
Terminate the Trapped Task ... 18-69

Sample Multi-User Debugger Sessions . 18-70
Sample Session 1 18-70
Sample Session 2........ * 18-80
Sample Session 3 c. 18-88

SECTION 19 REQUESTING AND USING MEMORY DUMPS 19-1

MDUMP Utility " 19-1
MDUMP Requirements. 19-1
Preparing to Execute MDUMP 19-2
Procedure for Using MDUMP 19-2
Procedure for Bootstrapping MDUMP 19-3
MDUMP Halts 19-3

Dump Edit Utility (DPEDIT) 19-4
Page Header. 19-5
Dump Edit Line Format. 19-5

~ Physical Dumps 19-6
Logical Dump Format. <, 19-6
Logical Dump Content. 19-6

System Summary. ...«,.... «, 19-6
Task Related Information 19-27
Memory Pool Structures 19-27
Task Group Structures.... 19-28

Task Structures. 19-28
DPEDIT Command. 19-29
Operating Procedure for Dump Edit 19-32
DPEDIT Error Messages 19-33

Interpreting and Using Memory Dumps.. 19-35
Significant Locations on Memory Dumps 19-36
Locations Relative to the System Control Block or Group

Control Block.... c 19-39
Locations Relative to the Task Control Block (TCB)

Pointer of the Desired Priority level .̂.'. 19-40
Interpreting the Contents of a DPEDIT Logical Dump 19-42
Finding the Location in Memory of Your Code 19-42

xxv ' CZ05-00

CONTENTS
Page

Determining the State of Execution of Your Code at the
Time of the Dump...... 19-42
Halt at Level 2 19-42
User Level Active at the Time of Dump 19-43
No Level Active at the Time of Dump 19-43

Determining Where a Trap Processed by the System
Default Handler Occurred in Your Code.... 19-44

Finding the Location in Memory of Your Code. 19=44
Printing an Incomplete Memory Dump ...'.... 19-45
Requesting and Printing MLCP Dumps. 19-45
Memory Pool Configuration Requirement. 19-46
DCP Command. 19-46
Sample DCP Printout with Commentary. 19-47

SECTION 20 PATCH UTILITY. . '. 20-1

Using the Patch Utility 20-1
Batch Mode .« 20-1
Interactive Mode........ .. 20-2

Loading Patch. 20-3
Submitting Patch Directives. 20-5
Patch ing Techniques 20-6
Naming the Patch. 20-6
Applying the Patch* 20-6

Patch Directives. 20-6
Clear System Bit. 20-7
Comment.<........... 20-8
Data Patch c....................... 20-9
Eliminate Patch. 20-14

Hexadecimal Patch. 20-16
Interrogate Bound Unit.,.................................. 20-20
LDEF. 20-21
List Patches. 20-23
List Patches Now. 20-25
List Patch Names..........*... 20-26
List Specified Patch. 20-27
Quit. 20-28
Set Global Share Bit Of f 20-29
Set Global Share Bit On..... „ 20-30
Set Share Bit Off. 20-31
Set Share Bit On........s.0.c............................ 20-32
Set System Bit On.. 20-33
Symbolic Data Patch.........o............................ 20-34
Symbolic Patch. 20-37
VDEF 20-40
Verify/Set Patch Revision Number. 20-41

xxvi CZ05-00

1 CONTENTS
Page

APPENDIX A TRAP HANDLING A-l

Trap Save Areas A-l
Trap Handling During Task Execution A-7
Software Generated Traps A-7
Program Use of Traps . A-7

Contents of Trap-Related Memory Areas A-8
System Supplied Trap Handlers. .. A-10

Trap Handling by the Debug Program A-10
Trap Handling by Scientific Simulator . . A-ll
Floating-Point Simulator . A-ll
Scientific Branch Simulator A-12

Defective Memory Trap Handler . A-12
System Default Trap Handling A-l4

User-Written Trap Handlers... A-14
Task-Specific Trap Handlers A-14
System-Wide Trap Handlers... A-14

Passing Traps............ A-l 5
- Programming Considerations for User-Written Trap

Handlers. A-l5

APPENDIX B PROGRAMMING CONVENTIONS B-l

Module and File Name Conventions B-l
Calling Sequence for External Procedures B-3
Register Conventions. * B-4

APPENDIX C ASSEMBLING, LINKING, AND EXECUTING A PROGRAM. C-l

Introduction C-l
Invoking MAP. C-2
Invoking the Linker. C-6
Executing an Assembly Language Program C-6

APPENDIX D DATA STRUCTURE FORMATS D-l

Clock Request Block Format..... D-2
File Information Block (FIB) Format and Contents D-4
Input/Output Request Block (IORB) Format D-9
Semaphore Request Block Format D-l2
Task Request Block Format...... D-15
Parameter Block Format D-17
Wait List Format. D-18
Message Group Request Blocks D-18

xxvii CZ05-00

CONTENTS

Page

APPENDIX E BACKUP AND RECOVERY. E-l

Disk File Save and Restore « E-2
Power Resumption. E-2

Implementing the Power Resumption Facility . E-3
Power Resumption Procedures .. E-3

File Recovery. . E-4
Designating Recoverable Files E-4
Recovery File Creation . E-5
File Recovery Process., o E-5
Taking Cleanpoints E-5
Requesting Rollback E-6
Recovering After System Failure...................... E-6

Checkpoint Restart. E-7
Checkpoint E-7
Checkpoint File Assignment. E-7

Taking a Checkpoint,, E-8
Checkpoint Processing. E-8

Restart E-9
Requesting a Restart........ E-9
Restart Processing. E-10

APPENDIX F ASCII AND EBCDIC CHARACTER SETS F-l

Control Characters F-l
Special Graphic Characters . F-2

APPENDIX G DEVICE-SPECIFIC CONTROL CHARACTERS G-l -

APPENDIX H SUBSYSTEM MODULES H-l

e e «Subsystem Records.
Edit Profile (EP) Subsystem Modules. H-2

Edit. Profile (EP) Module Contents. H-2
Pointer Array. * H-2
MOD Function Message Number H-3
Modify Routine.. o H-4
Subsystem Default Values. H»6 t
Add Routine H-6
STAT-Names Message Number H-7
STATS Descriptor Table...c........................... H-7

List Profile (LP) Subsystem Modules. H-8 -
LP Module Contents. H-8 v

Pointer Array. .<>.«...0.............................o. H-8 .
Message Numberec............................... H-=8
Descriptor Table........<,<>.. H-9
Special-Field Routine. H-10

ASCII-Only Subsystem Records H-il

xxviii CZ05-00

ILLUSTRATIONS

Figure • Page

3-1 Life Cycle of a File 3-5

4-1 Simplified Program Logic for Multiple Interactive
Terminals 4-12

4-2 Communications Input/Output Request Block (LQRB)... 4-20

6-1 Format of I/O Request Block 6-8
6-2 ASCII Card-to-Memory Code Formatting 6-16
6-3 Verbatim Mode Formatting 6-16

7-1 Communications Overview 7-7

8-1 ATD IORB 8-5
8-2 Sample File Transfer Operation 8-84

9-1 Control Word 9-19
9-2 Control Byte 9-20

10-1 Typical PVE Configuration 10-2
10-2 Typical Controller Poll Configuration 10-3
10-3 VIP Protocol Message Structure for PVE 10-7

11-1 Example of BSC Communication 11-3
11-2 BSC Double-Block Feature in Record Transmission.... 11-5
11-3 Multi-Block Buffer Organization...... 11-7
11-4 BSC Multi-Block Transmission of Buffer Shown in

Figure 11-3* 11-8
_ll-5 BSC Temporary Text Delay (TTD) Sequence Example.... 11-10
"11-6 BSC Wait Before Acknowledge (WACK) Sequence

Example. .. 11-11
11-7 BSC Reverse Interrupt (RVI) Sequence Example 11-12
11-8 Example of Conversational Reply in BSC3780

Transmission Sequence 11-16
11-9 BSC Input Data Format and Contents 11-21
11-10 Control Byte (Receive) for BSC Line Protocol

Handler. 11-21
11-11 Format and Content of BSC Output. 11-24
11-12 Control Byte (Send) for BSC Line Protocol Handler.. 11-24

12-1 TTY Message Formats 12-2
12-2 Control Byte for TTY Line Protocol Handler 12-10

13-1 Directory Listing. 13-6

14-1 Example of Disk File Directory Structure 14-2
14-2 Sample Directory Structure 14-4
14-3 Sample Pathnames. 14-9

xxix CZ05-00

ILLUSTRATIONS
Figure Page

14-4 Location of Directories SHEPHERD and COOK.......... 14-17
14-5 Location of Subordinate File REPORTS 14-19
14-6 Location of Subordinate File WORDLIST ,. 14-19

16-1 Relative Location of Memory in Memory Pool AA...... 16-17
16-2 Overlays in Memory Pool AA. 16-17
16-3 Link Map Formats*. 16-52

17-1 Listing of TSTNOW. 0.......... 17=51
17-2 Sample Debugging Session c.............. 17=53

18-1 Sample Program TEST „ 18-72
18-2 Debugging Session of TEST...e..c 18-73
18-3 Bound Unit TSTNOW. 18-81
18-4 Debugging Session of TSTNOW....„„...<>«. 18-83
18-5 Contents of Quick Disk File TSTOOW.QK.............. 18-88
18-6 Dump of Quick Memocy«....«««0.«.....«..«... ...<>.... 18-89
18-7 Debugging Session (Example 3) c 18-91
18-8 Dump of Quick Disk File Sample .QK.. «......... <,«... 18-95

19-1 Memory Dump Example 19-8
19-2 Data Structure Map.......«......................... 19-37
19-3 Sample DCP Printout. 19-48

A-l Trap Handling Mechanism. A-8
f

B-l Argument List. ...<>.............. B-4

C-l Assembling and Linking a Program...... C-2
C-2 Source Unit ADD.Ac«. ... •. o...<,....«. C-4
C-3 NAP Listing o£ ADD.L............................... C-5

D-l First Four Items of Request Blocks................. D-2
D-2 Format of Clock Request Block D-2
D-3 Format of I/O Request Block „ D-9
D-4 Format of Semaphore Request Block.. „ D-13
D-5 Format of Task Request Block. D-15
D-6 Format and Parameter Block D-17
D-7 Format of Wait Listc D-l8

H-l MOD Function List Format o '...... H-4

xxx • CZ05-00

\ TABLES

Table Page

1-1 System Service Macro Calls 1-3

3-1 File Information Block (FIB) for Data Management... 3-8
3-2 Program View Entry in FIB for Data Management 3-14
3-3 File Information Block (FIB) for Storage

Management 3-18
3-4 Program View Entry in FIB for Storage Management... 3-20
3-5 Offsets Definition Macro Calls 3-22

4-1 Arguments for Get File ($GTFIL) Macro Call... 4-5
4-2 Macro Call Procedures for Data Entry Terminals 4-6
4-3 Macro Call Procedures for Output-Only Terminals..„. 4-8
4-4 Macro Call Procedures for Single Interactive

Terminal .. 4-9
4-5 Macro Call Procedures for Multiple Terminals....... 4-10
4-6 System Defaults for DSWl and DSW2 4-14
4-7 I/O Request Status Codes Returned in I_CT1 4-16
4-8 Communications Input/Output Request Block (IORB)... 4-21
4-9 Software (I_ST) Status Codes 4-24
4-10 Communications LPH Function Codes 4-25

5-1 Request Blocks 5-2
5-2 Argument Structures and Offsets Tags 5-6

6-1 Input/Output Function Code .• 6-5
6-2 Return Status Codes (Last Two Digits) 6-6
6-3 Contents of I/O Request Block 6-9
6-4 IORB Software Status Word (I_ST)..., 6-12
6-5 Hollerith-ASCII Code Table. 6-16
6-6 Card Reader/Card Reader-Punch IORB Fields. 6-17
6-7 Card Reader IORB Hardware/Software Status Code

Mapping . 6-18
6-8 Card Reader/Punch Hardware/Software Status Code

Mapping.....« 6-18
6-9 Print Control Byte...... 6-19
6-10 Print Control Byte Summary 6-20
6-11 Printer IORB Fields...... 6-22
6-12 Printer Hardware/Software Status Code Mapping 6-23
6-13 Diskette IORB Fields.......... 6-24
6-14 Diskette Hardware/Software Status Code Mapping 6-25
6-15 Cartridge Disk IORB Fields 6-27
6-16 Cartridge Disk Hardware/Software Status Code

Mapping<>..* 6-28
6-17 Lark Disk IORB Fields.... 6-29
6-18 Lark Disk Hardware/Software Status Code Mapping.... 6-30
6-19 Mass Storage Unit IORB Fields... 6-32
6-20 Ma-ss Storage Unit Status Code Mapping 6-33

xxxi CZ05-00

TABLES
4

Table Page

6-21 Cartridge Module Disk IORB Fields 6-34
6-22 Cartridge Module Disk Status Code Mapping ... 6-36
6-23 ASR/KSR IORB Fields. 6-38
6-24 ASR/KSR Hardware/Software Status Code Mapping.....«, 6-41
6-25 Characteristics of Supported Tape Drives......«... „ 6-41
6-26 Magnetic Tape IORB Fields 6-43
6-27 Magnetic Tape Hardware/Software Status Code

Mapping.. ... „ . 6-45

8-1 ATD Return Codes. . 8-7
8-2 Status Word of IORB (I_ST)..... .. 8-9
8-3 Device IDs Returned in IORB 8-10
8-4 I_DVS Word in Connect IORB (TTY Mode).. 8-17
8-5 I_DVS Word in Disconnect IORB (TTY Mode).... 8-18
8-6 Default Values of Special Characters by Device

Type. .« « e e « « act » . e . « . e « « . . . « . * . e «c e o . . e 8 — 20

8-7 ATD Word I_DVS in TTY Mode Read IORB....... 8-23
8-8 ATD Word I_DVS in TTY Mode Write IORB.«,» 8-25
8-9 ATD Word I_DVS in Connect IORB , c.. „ 0 8-3 8
8-10 ATD Word I_DV2 in Connect IORB 8-38
8-11 ATD Word I_DVS in Disconnect IORB.................. 8-40
8-12 Data Entry Keyboard Unshifted/Shifted Translations. 8-47
8-13 ATD Word I_DVS in Field Read IORB. 8-48
8=14 ATD Word I_DV2 in Field Read IORB 8-48
8-15 ATD Word I_CON in Field Read IORB. 8-50
8-16 ATD Word IJDVS in Field Write IORB 0.... 8-54
8-17 ATD Word I_DV2 in Field Write IORB........ 8-54
8-18 IJDVS Word in Connect IORB (Block Mode)... 8-59
8-19 I_DVS Word in Disconnect IORB (Block Mode)......... 8-61
8-20 ATD Word IJDVS in Block Mode Read IORB............. 8-62
8-21 ATD Word I_J)VS in Block Mode Write IORB............. 8-65
8-22 IORB Word I_ST (Block Mode) .* 8-67
8-23 I_DVS Word in Connect IORB (ROP Mode) 8-69
8-24 I_DVS Word in Disconnect IORB (ROP Mode)........... 8-70
8=25 ATD Word Î DVS in ROP Mode Write IORB..... 8-72
8-26 Device IDs for Serial Printers 8-73
8-27 ATD Word I__DVS in ROP Mode Read IORB.... «. 8-73
8-28 IORB Word I_ST (ROP Mode) 8-75
8-29 I_DVS Word in Connect IORB (Stream Mode) 8-77
8-30 I_DVS Word in Disconnect IORB (Stream Mode) 8-78
8-31 Stream Control Byte Return Codes.................. 8-79
8=32 Recommended Line Control Combinations.............. 8=81
8-33 Read Order Stream Control Byte..................... 8-85
8-34 IJDVS Word in Read IORB (Stream Mode) 8-86
8-35 Write Order Stream Control Byte... e. E. c o e 8-88
8=36 I_DVS Word in Write IORB (Stream Mode) 8-88

xxxii CZ05-00

1 . TABLES

Table " Page

9-1 STD Line Protocol Handler Response Time 9-4
9-2 Function Codes in I_CT2 of the IORB 9-5
9-3 STD Device-Specific Word I_DVS in the IORB.... 9-5
9-4 STD Software Status Word I_ST in the IORB 9-9
9-5 STD Receive-Only Printer Editing Sequence .. 9-14
9-6 STD Receive-Only Printer Control Sequence *. 9-14
9-7 Errors Reported by STD Line Protocol Handler....... 9-23

10-1 Function Codes in I_CT2 in the IORB 10-4
10-2 PVE Device-Specific Word I_DV5 in the IORB......... 10-4
10-3 PVE Software Status Word I_ST in the IORB.......... 10-6
10-4 PVE Timeout Intervals 10-9
10-5 Errors Reported by PVE Line Protocol Handler 10-10

11-1 Multi-Block Header Section Field Descriptions. 11-8
11-2 Transmission and Reception Conditions for EOT and

OLE EOT. 11-14
11-3 Function Codes in I_CT2 Field in the IORB 11-17
11-4 BSC Device-Specific Word I_DVS in the IORB......... 11-18
11-5 BSC Software Status Word I_ST in the IORB 11-20

12-1 TTY Line Protocol Handler Timeout Intervals .. 12-4
12-3 TTY Device-Specific Word I_DVS in the IORB. 12-5
12-4 TTY Software Status Word I_ST in the IORB 12-7

15-1 Summary of Line Editor Directives and Escape
Sequences. 15-16

17-1 Symbols Used in $D DEBUG Directive Lines 17-4
17-2 Summary of $D DEBUG Directives by Function 17-7

18-1 Summary of Multi-User Debugger Directives by
Function. 18-4

18-2 Symbols Used in Multi-User Debugger Directive
Lines. , 18-6

19-1 MDUMP Halts. . .. e . .. 19-4
19-2 Significant Locations on Memory Dump.... 19-36

A-l Contents of Selected Words of Trap Save Area When
Trap Occurs A-2

B-l System Module Name-Prefixes B-2
B-2 System Program File Name Suffixes B-3

D-l Contents of Clock Request Block D-3
D-2 Format of FIB for Data Management D-4

xxxiii CZ05-00

TABLES
Taole Page

D-3 Format of FIB for Storage Management „ „ D-S
D-4 Contents of FIB for Data Management D-6
D-5 Contents of FIB for Storage Management D-8
D-=6 Contents of I/O Request Block«, ,......<>.... D~9
D-7 Summary of IORB Fields for Operator Interface...... D-12
D-8 Contents of Semaphore Request Block................ D-13
D-9 Contents of Task Request Block.<>. D-15
D-10 Message Group Control Request Block (MGCRB)........ D-19
D-=ll Message Group Initialization Request Block (MGIRB) . D-21
D-12 Message Group Recovery Request Block (MGRRB)....... D-25

P-l ASCII/Hexadecimal Equivalents.... P-2
F-2 ASCII/Hexadecimal Equivalents P-3

G-l TTY Nonalphanumeric Control Characters............. G-l
G-2 VEP Nonalphanumeric Control Characters. G~2

H-l Edit Profile Statistic Field Types.....0 H-7
H-2 4 List Profile Field Types...e......0....c« H-9

xxxiv CZ05-00

o

Section 1
INTRODUCTION

Volume I of the System Programmer's Guide provides general
information useful to the Assembly language programmer for
designing, executing, and checking out applications. The
following subsections describe more specifically the content and
organization of the manual. ^ • *

SYSTEM FUNCTIONS
a

Sections 2 through 12 of the manual describe services
provided by the system that can be invoked or controlled by
Assembly language programs.

System Service Macro Calls

Sections 2 through 4 describe system services (functions)
that can be invoked by macro calls or monitor calls. These are
services for system control, file management, record management,
and input/output to peripheral and communications devices. Table
1-1 lists alphabetically the -macro calls by which system
functions can be invoked. Throughout this manual, functions are
referred to by their corresponding macro calls.

•f*

The user can also invoke a function by a monitor call (MCL)
instruction followed by the function's code. The function code
assigned to each function/macro call is shown in column 3 of
Table 1-1. • ->

1-1 CZ05-00

The manual provides an overview of functions belonging to the
same group. In Section 2, for example, all the functions related
to semaphores are listed together. Semaphores are there defined
as a mechanism for the sharing of a resource among members of the
same task group. The part played in this mechanism by each of
the listed functions is briefly indicated. Thus, the manual
informs the user of available macro calls and indicates their
functional relationship.

Volume II of, the System Programmer's Guide, by contrast,
describes each macro call individually. The individual
descriptions provide information (relating to macro call
arguments and register contents) that enables the user to
actually employ the call in the application.

Device Drivers and Line Protocol Handlers

Section 6 describes the system software used for transmitting
data between applications and peripheral (non-communications)
devices. The section deals mainly with the data structures and
codes by which the user instructs the device drivers and by which
the drivers report the status of requested operations. (Macro
calls related to input/output are discussed in earlier sections.)

Section 7 provides an overview of line protocol handlers,
which are used for transmitting data between applications and
communications devices. Sections 8 through 12 describe in detail
the ATD, STD, PVE, BSC, and TTY line protocol handlers.

PROGRAM PREPARATION AND CHECKOUT

The sections mentioned above describe system services that an
Assembly language application can utilize. The remaining
sections of the manual describe procedures for preparing,
executing, and checking out an application, once it is designed.

Section 13 tells the user how to gain access to the system
from a terminal. Section 14, "File System Conventions", explains
conventions for naming and procedures for manipulating both files
and directories. Section 15 explains how to create a source file
using the Line Editor.

Programming considerations, such as trap handling and calling
external procedures, are treated in appendices.

Information on assembling a program is provided in
Appendix C. Section 16 explains how to link object modules.
Debugging, Memory Dumps, and Patch facilities are described in
Sections 17 through 20. Thus, the sequence of the last eight
sections (Sections 13 through 20) roughly follows the sequence of
procedures involved in program preparation and checkout.

1-2 CZ05-00

Table 1-1. System Service Macro Calls

Macro
Call Name

(1)

$ABGRP

$ABGRQ

$ACTID

$ACTVG

$ALARM

$ASFIL

$BOAT

$BUDT

~ $BUID

$BULD

$BUXFR

$CANRQ

~ $CIN

$CKPFL

$CKPT

$CLFIL

$CLPNT

$CLRSW

Function Description
(2)

Abort group

Abort group request

Account
identification

Activate group

Alarm

Associate file

Bound unit, attach

Bound unit, detach

Bound unit
identification

Bound unit, load

Bound unit transfer

Cancel request

Command in

Checkpoint file

Checkpoint

Close file

Clean point

Clear external
switches

Function
Code
(3)

OD/OA

OD/07

14/02

OD/09

15/25

10/10

OC/09

OC/OB

14/06

OC/OA

OC/07

OC/01

08/02

OD/11

OD/OF

10/55-10/57

OC/13

OB/02

Function Group
(4)

Task group control

Task group control

Identification and
information

Task group control

Terminal operator
communications

File management

Task control

Task control

Identification and
information

Task control

Task control

Task control

Standard system
file I/O

Task group control

Task group control

File management

File management

External switch

1-3 CZ05-00

Table 1-1 (cont). System Service Macro Calls

Macro
Call Name

(1)
Function Description

(2)

Function
Code
(3)

Function Group
(4)

$CMDLN

$CMSOP

$CNCRQ

$CNSRQ

$CRB

$CRBD

$CRDIR

$CRFIL

$CRGRP

$CRKDB

$CROAT

$CRPSB

$CRRDB

$CRSEG

$CRTSK

$CWDIR

$DFCKP

Command line process

Console message
suppression

Cancel clock request

Cancel semaphore
request

Clock request block

Clock request block
offsets

Create directory

Create file

Create group

Create file key
descriptor block
offsets

Create overlay area
table

Create file parameter
structure block
offsets

Create file record
descriptor block
offsets

Create segment

Create task

Change working

OC/08

09/02,09/03

05/01

06/01

10/AO

10/30

OD/03

07/OA

Defer checkpoint

OC/OC

OC/02,OC/03

10/BO

OC/19

Task control

Operator interface

Clock

Semaphore handling

Data structure
generation

Data structure
generation

File management

File management

Task group control

Data structure
generation

Overlay handling

Data structure
generation

Data structure
generation

Task control

Task control

File management

Task control

1-4 CZ05-00

Table 1-1 (cont). System Service Macro Calls

Macro
Call Name

(1)
Function Description

(2)

Function
Code
(3)

Function Group
(4)

$DFRHD

$DFRTL

$DFSM

$DIPSB

$DLDIR

$DLFIL

$DLGRP

$DLOAT

$DLREC

$DLSEG

$DLSM

$DLTSK

$DQPST

$DSFIL

$DSTRP

$ELEND

$ELEX

$ELGT

$ELOG
> "

$ELST

Defer request on head

Defer request on tail

Define semaphore

Device information
parameter structure
block offsets

Delete directory

Delete file

Delete group

Delete overlay area
table

Delete record

Delete segment

Delete semaphore

Delete task

Dequeue and post

Dissociate file

Disable user trap

Error logging end

Error logging
information, exchange

Error logging
information, get

Error logging table

Error logging, start

01/OD

01/OC

06/04

10/A5

10/35

OD/04

07/OD

11/30,11/31

OC/OD

06/07

OC/04

01/OB

10/15

OA/02

02/09

02/07

02/08

02/05

Request and Return

Request and Return

Semaphore handling

Data structure
generation

File management

File management

Task group control

Overlay handling

Data management

Task control

Semaphore handling

Task control

Request and Return

File management

Trap handling

Physical I/O

Physical I/O

Physical I/O

Data structure
generation

Physical I/O

1-5 CZ05-00

Table 1-1 (cont). System Service Macro Calls

Macro
Call Name

(1)
Function Description

(2)

Function
Code
(3)

Function Group
(4)

$ENTID

$ENTRP

$EROOT

$EXTDT

$EXTIM

$FIB

$FIBDM

$FIBSM

i

$GAFIL

$GAPSB

$GDTM

$GIDEV

$GIFAB

$GIFIL

Entry point
identification

Enable user trap

Error out

External date/time,
convert to

External time,
convert to

File information
block

File information
block offsets (data
management access)

File information
block offsets
(storage management
access)

Get file access
rights

Get file access
rights parameter
structure block
offsets

Get date/time

Get device
information

Get file information,
file attribute block

14/07

OA/01

08/03

05/04

05/05

10/7C

05/06

10/66

Get file information 10/60

Identification and
information i--,c.

Trap handling

Standard system
file I/O

"•

Date/time

Date/time

Data structure
generation

Data structure
generation

Data structure
generation

File management

Data structure
generation

Date/time ;

File management

Data structure
generation

File management

1-6 CZ05-00

Table 1-1 (cont). System Service Macro Calls

Macro
Call Name

(1)
Function Description

(2)

Function
Code
(3)

Function Group
(4)

$GIKDB

$GIPSB

$GIRDB

$GMEM

$GNFIL

$GNPSB

$GRFIL

$GRPID

$GRPSB

$GTACT

$GTFIL

$GTPSB

$GWDIR

$HDIR

$INDTM

Get file information,
key descriptor block
offsets

Get file information,
parameter structure
block offsets

Get file record
descriptor block
offsets

Get memory/get
available memory

Get name

Get names parameter
structure block
offsets

Grow file

Group identification

Grow file parameter
structure block
offsets

Get file accounting
information

Get file

Get file parameter
structure block
offsets

Get working directory

Home directory

Internal date/time,
convert to

04/02,04/03

10/3C

10/38

14/08

10/42

10/20

10/CO

14/OB

05/07

Data structure
generation

Data structure
generation

Data structure ,
generation

Memory allocation

File management

Data structure
generation

File management

Identification and
information

Data structure
generation

File management

File management

Data structure
generation

V **

File management

Identification and
information

Date/time

1-7 CZ05-00

Table 1-1 (cont). System Service Macro Calls

Macro
Call Name

(1)
Function Description

(2)

Function
Code
(3)

Function Group
(4)

$IORB

$IORBD

$KILLT

$MACPT

$MCME

$MCMG

$MDFIL

$MDPSB

$MGCRB

$MGCRT

$MGIRB

$MGIRT

$MGRRB

$MGRRT

Input/output request
block

Input/output request
block offsets

Kill (abort) task

Message group, accept

Message group, cancel
enclosure

Message group, count

Modify file

Modify file parameter
structure block
offsets

Message group
control request block

Message group control
request block offsets

Message group
initialization
request block

Message group
initialization
request block offsets

Message group,
recovery request
block

Message group
recovery request
block offsets

OC/11

15/01

15/06

15/07

10/41

Data structure
generation

Data structure
generation

Task control

Intergroup message
facility

Intergroup message
facility

Intergroup message
facility

File management

Data structure
generation

Data structure
generation

Data structure
generation

Data structure
generation

Data structure
generation

Data structure
generation

Data structure
generation

1-8 CZ05-00

Table 1-1 (cont). System Service Macro Calls

Macro
Call Name

(1)
Function Description

(2)

Function
Code
(3)

Function Group
(4)

$MINIT

$MODID

$MRECV

$MSEND

$MTMG

$NCIN

$NMLF

, f

$NPROC

$NUIN

$NUOUT
t

$OPFIL

$OPMSG

$OPRSP

$OVEXC

$OVLD

$OVRCL

$OVRLS

Message group,
initiate

Mode identification

Message group,
receive

Message group, send

Message group,
terminate

New command in

New message
library

New process

New user input

New user output

Open file

Operator information
message

Operator response
message

Overlay, execute

Overlay, load

Overlay release,
wait, and recall

Overlay area, release

15/02

14/03

15/03

15/05

15/04

08/06

08/08

OD/OB

08/04

08/05

10/50,10/51

09/00

09/01

07/00

07/01

07/07

07/06

Intergroup message
facility

Identification and
information

Intergroup message
facility

K

Intergroup message
facility

Intergroup message
facility

Standard system
file I/O

Standard system
file I/O

Task group control

Standard system
file I/O

Standard system
file I/O

File management

Operator interface

Operator interface

Overlay handling

Overlay handling

Overlay handling

Overlay handling

1-9 CZ05-00

Table 1-1 (cont). System Service Macro Calls

Macro
Call Name

(1)
Function Description

(2)

Function
Code
(3)

Function Group
(4)

$OVRSV

$OVST

$OVUN

$PERID

$PPNTL

$PRBLK

$PRFAO

$PRFCR

$PRFDL

$PRFGT

$PRFIF

$PRFUP

$RBADD

$RBD

$RBOOT

$RBPRM

$RCLHD

$RDBLK

Overlay area reserve,
and execute overlay

Overlay status

Over1ayf unload

Person identification

Postpone request on
tail

Parameter block

Profile record,
accounting update

Profile record,
create

Profile record,
delete

Profile record, get

Profile record, get
user information

Profile record,
update

Return request block
address

Request block
displacements

Reboot

Modify reboot
parameters

Recall from head

Read block

07/05

07/03

07/OC

14/01

01/OE

24/42

24/20

24/30

24/10

24/12

24/40

01/07

20/06

20/05
>*

01/OF

12/00-12/04

Overlay handling

Overlay handling

Overlay handling

Identification and
information

Request and Return

Data structure
generation

User registration

User registration
• - i j» ~- ,, - - •,

User registration

User registration

User registration
' * ' i •*

User registration

Request and return
k "" -

Data structure
generation

Software reboot

Software reboot

Request and return

Storage management

1-10 CZ05-00

Table 1-1 (cont). System Service Macro Calls

Macro
Call Name

(1)
Function Description

(2)

Function
Code
(3)

Function Group
(4)

$RDREC

$RDSW

$RETRN

$RLDMP

$RLSM

$RLTML

$RMEM

$RMFIL

$RNFIL

$ROLBK

$RPDFC

$RPMSG

$RQBAT

$RQCL

$RQGRP

$RQIO

$RQSM

$RQSPT

$RQTML

Read record

Read external
switches

Return

Unlock dumpfile

Release semaphore

Release terminal

Return memory/return
partial block of
memory

Remove file

Rename file/rename
directory

Roll back (recover)
files

Report message, dis-
play formatting and
control

Report message

Request batch

Request clock

Request group

Request I/O

Request semaphore

Request specific
terminal

Request terminal

11/10-11/16,
11/19

OB/00

20/04

06/03

17/04

04/04,04/05

10/25

10/40

OC/14

OF/04

OF/03

OE/00

05/00

OD/00

02/00

06/00

17/02

17/03

Data management

External switch

Request and return

Software reboot

Semaphore handling

Terminal function

Memory allocation

File management

File management

' -'"
File management

Message reporter

Message reporter

Batch

Clock

Task group control

Physical I/O

Semaphore handling

Terminal function

Terminal function

1-11 CZ05-00

Table 1-1 (cent). System Service Macro Calls

Macro
Call Name

(1)
Function Description

(2)

Function
Code
(3)

Function Group
(4)

$RQTSK

$RS

$RSVSM

$RWREC

$RVFPW

$SDL

$SETSW

$SGRPA

$SGTRP

$SHFIL

$SHPSB

$SPGRP

$SPTSK

$SRB

$SRBD

$STMP

$STTY

•

$SUSPG

Request task

Restart

Reserve semaphore

Rewrite record

Reverify password

Set dial

Set external switches

Set group attributes

Signal trap

Shrink file

Shrink file parameter
structure block
offsets

Spawn group

Spawn task

Semaphore request
block

Semaphore request
block offsets

Status memory pool

Set terminal file
characteristics

Suspend group

OC/00

OD/10

06/02

11/40,11/41

24/01

IB/00

OB/01

OD/13

OA/03

10/37 f .

OD/05

OC/05,OC/06,
OC/15

04/06

10/45

OD/08

Task control
s

Task control

Semaphore handling

Data management

User registratior

Communications

External switch

Task group control

Trap handling

File management

Data structure
generation

Task group control

Task control

Data structure
generation

Data structure
generation

Memory allocation

File management

Task group control

1-12 CZ05-00

Table 1-1 (cont). System Service Macro Calls

Macro
Call Name

(1)
Function Description

(2)

Function
Code
(3)

Function Group
(4)

$SUSPN

$SWFIL

$SYSAT

$SYSID

$TEST

$TFIB

$TGIN

$TIFIL

$TOFIL

$TRB

$TRBD

$TRMRQ

$TRPHD

$USIN

$USOUT

Suspend for interval;
suspend until time

Swap file

System attribute
information, get

System identification

Test completion
status

File information
block offsets (data
and storage manage-
ment access)

Task group input

Test file for input

Test file for output

Task request block

Task request block
offsets

Terminate request

Trap handler connect

User input

User output

05/02,05/03
i

10/5A

14/11

14/04

01/02

14/OC

10/62

10/63

01/03,01/04

OA/00

08/00

08/01

Clock

File management

Identification and
information

Identification and
information

Request and return

Data structure
generation

Identification and
information

File management

File management

Data structure
generation

Data structure
generation

Request and return

Trap handling

Standard system
file I/O

Standard system
file I/O

1-13 CZ05-00

Table 1=1 (cont). System Service Macro Calls

Macro
Call Name

(1)
Function Description

C'2)

Function
Code
(3)

Function Group
(4)

$USRID

$VLCKP

$WAIT

$WAITA

$WAITL

$WAITM

$WIFIL

$WLIST

$WLSTM

$WOFIL

$WRBLK

$WRREC

$WTBLK

$XFERU

$XPATH

$XRETU

User identification

Validate checkpoint

Wait

Wait any

Wait on request list

Wait on multiple
requests

Wait file (input)

Wait list generate

Wait list, generate
multiple

Wait file (output)

Write block

Write record

Wait block

Transfer user

Expand pathname

Transfer and re-
turn user

14/00

OD/12

01/00

01/01

01/01

01/01

10/64

10/65

12/10,12/11

11/20-11/26

10/DO

17/07

Identification and
information

Task group control

Request and return

Request and return

Request and return

Request and return

File management

Data structure
generation

Data structure
generation

File management

Storage management

Data management

Storage management

Terminal function

File management

Terminal function

1-14 CZ05-00

fx*
vt

to

o?*•
5'

Section 2
SYSTEM CONTROL

FUNCTIONS

This section summarizes and briefly describes the system con-
trol macro calls that provide user access to system control
functions. The macro calls are presented according to their
functional groupings (see Table 1-1, column 4) as follows:

Batch
Clock
Communications
Date/time v

Error handling
Identification and information
Memory allocation
Message facility (intergroup)
Message Reporting
Operator interface

Overlay handling
Physical I/O
Request and return
Secondary user terminal
Semaphore handling
Pile system I/O
Task control
Task group control
Trap handling
User registration
Software reboot

See Volume II of this manual for a detailed description of
each macro routine/call.

2-1 CZ05-00

FUNCTIONS

The macro routine call for batch functions allows a mode of
program execution that requires no personal interaction with the
system. To use the batch functions, the user prepares a file
that is to act as the command input file and the user input
file. All commands and program input are read from this file by
the batch task group when your request executes.

The macro routine/call is:

Request Batch Execution $RQBAT

CLOCK FUNCTIONS

The macro calls for clock functions allow user control of
task execution according to an elapsed time period. These macro
calls use the clock manager. The clock manager is a system com-
ponent whose primary function is satisfying/completing task
requests at a specified time or after a specified interval.

The clock manager services interrupts from the real-time
clock. At each interrupt, the clock manager ascertains whether
the time interval associated with a request to initiate execution
of the task has been satisfied. Depending on information con-
tained in the clock request block (see Appendix D), the system
will do one of the followings

' r v • , - n

• Activate a task r >i." i -.
• Schedule an indicated request block ' " ''" '
• Release a semaphore*

r

The clock macro calls act to:
i • , T «•"'•,

• Connect a clock request block to the timer queue "̂

• Disconnect a clock request block from the timer queue

• Suspend the issuing task until an interval of time has
passed

• Suspend the issuing task until a given date/time.

The clock function macro calls are:

• Cancel Clock Request $CNCRQ
• Request Clock $RQCL
« Suspend for Interval $SUSPN
« Suspend Until Time $SUSPN

Volume II describes the Clock Request Block ($CRB) macro
call, which generates a clock request block.

2-2 , CZ05-00

COMMUNICATIONS FUNCTIONS

The macro call for communications functions allows the user
to set a telephone number to be used for automatic dialing. The
macro routine/call is:

Set Dial $SDL

Section 4 discusses macro calls, other than Set Dial,
applicable to communications processing.

DATE/TIME FUNCTIONS

The macro calls for date/time functions allow the user to:

• Obtain the current internal date/time value ' "

• Convert the internal date/time value to external date/time
format

• Convert, the internal date/time value to external time
format

• Convert an exterrial date/time value to internal format.

The date/time macro calls are:

• External Date/Time, Convert to $EXTDT
• External Time, Convert to $EXTIM
• Get Date/Time $GDTM
• Internal Date/Time, Convert to $INDTM

MESSAGE REPORTING

The macro calls for message reporting allow an application to
display error or help messages at the user's terminal.

The macro calls specify the code of a message that the
Message Reporter then retrieves from a message library.

The message reporting macro calls allow an application to:

• Display chained messages (i.e., after viewing the first
message in the chain, the user can request further
information)

• Substitute arguments for parameters in the message text
(e.g., specify a device name in a "device disabled
message")

• Return messages to an application buffer rather than to a
terminal

2-3 CZ05-00

• Display messages at terminals running in any of the
following modes:

- Command
- Menu -" • * :
- Display formatting and control. 4

The message reporting macro calls are:

• Report Message ($RPMSG)
• Report Message, Display Formatting and Control ($RPDFC).

EXTERNAL SWITCH FUNCTIONS

A task group can control its own execution by using external
switch function macro calls to modify its external switches. An
external switch operates much like a hardware switch on an oper-
ator's! control panel. External switches can be set and cleared
with the Modify Switches (MSW) command or with the $SETSW and
$CLRSW macro calls.

An external switch word is associated with each task group.
Each bit in the word corresponds to an external switch. Thus?
each task group can manipulate 16 switches,, A user program can
contain instructions or statements to determine the settings of
one or more of these switches. The program can then set or clear
these settings to control its execution logic*

The macro calls allow the issuing task to: '

• Set switches „ ,
• Clear switches
• Read the current values of the switches.

•v-3" *•«•

The macro calls are:

• Clear External Switches $CLRSW
• Read External Switches $RDSW
• Set External Switches $SETSW ^ . •

IDENTIFICATION AND INFORMATION FUNCTIONS

The macro calls for identification and information make
availeible to the user the following information concerning the
current task or task groups

Macro Call

Home directory pathname $HDIR
Bound unit identification $BUID
System identification $SYSXD
Task group account identification $ACTID
Task group input file name $TGIN
Task group mode identification $MODID

2-4 CZ05-00

Information Macro Call

Task group person identification $PERID
Task group user identification $USRID
Entry point identification $ENTID
Group identification $GRPID
System attribute information $SYSAT ^

MEMORY ALLOCATION FUNCTIONS - -?

The macro calls for memory allocation functions allow the
user to dynamically obtain memory from the task group's memory
pool, to return this memory when it is no longer needed, and to
ascertain the amount of memory available in a specified pool.

The macro call that allocates a memory block has two forms:
one form obtains a memory block of the specified size only; the
other obtains the largest existing contiguous memory block if a
block of the specified size cannot be found. The macro call that
returns a memory block also has two forms: one form returns an
entire memory block; the other returns a specified part of the
blocke

The macro calls are: , •

• Get Memory/Get Available Memory $GMEM
• Return Memory/Return Partial Block of Memory $RMEM
• Status Memory Pool $STMP

MESSAGE FACILITY FUNCTIONS

The message facility allows the task groups to exchange
messages through a message queue called a mailbox. Before
messages can be transmitted, the mailbox must have been created
by means of the Create Mailbox command. Mailboxes are described
in detail in the System User's Guide.

A message text consists of several nested units, or enclo-
sures. The smallest unit is a record; the next largest unit,
made up of records, is a quarantine unit; the largest, made up of
quarantine units, is a message. A quarantine unit is the
smallest amount of transmitted data that is available to the
receiver. Because a message can comprise a group of records, it
is called a "message groupc"

The transfer of messages is facilitated by three request
blocks: message group control request block (MGCRB), message
group initialization request block (MGIRB), and message group
recovery request block (MGRRB). These data structures are tabu-
lated in Appendix D and described in Volume II.

2-5 CZ05-00

Message facility macro calls perform the following;

• Initialize communications between groups by setting values
of the message group initialization request block (MGIRB)

• Validate the acceptor's access to an existing mailbox

• Ascertain the number of messages in a mailbox

• Identify the specific message to be accepted - - ~?~±".

• Request the receipt of a message, specifying values for
the message group control request block (MGCRB)

• Delete the last record in an incomplete quarantine unit or
delete the quarantine unit itself

• Send a message group

• Terminate a message groupr normally or abnormally.

The message facility macro calls ares

• Message Group, Initiate $MINIT
• Message Group, Accept $MACPT
• Message Group, Count $MCMG
• Message Group, Receive • $MRECV
• Message Group, Cancel Enclosure $MCME
• Message Group, Send $MSEND
• Message Group, Terminate $MTMG

OPERATOR INTERFACE FUNCTIONS

The macro calls for operator interface functions enable tasks
to communicate with the operator terminal by;

• Displaying a message on the operator terminal

• Sending a message to the operator terminal and receiving a
response

" •«. \

• Activating or deactivating console suppression? i.e.,
suspending or restoring issuance of messages to th3
operator terminal for the issuing task group.

The macro calls are;

• Console Message Suppression $CMSUP /*'
• Operator Information Message $OPMSG : JtJ

• Operator Response Message $OPRSP

2-6 CZ05-00

The $OPMSG and $OPRSP macro calls require input/output
request blocks (lORBs), which can be generated by the $IORB macro
call. (Section 5 describes request blocks in general, Appendix D
describes the IORB in detail, and Volume II describes the $IORB
macro call.)

OVERLAY HANDLING FUNCTIONS

Overlay handling calls locate, load, execute, and unload
fixed and floatable overlays. Fixed overlays are loaded into
memory at a displacement from the base of the root segment fixed
at the time of linking. Floating overlays are loaded as
follows; If a bound unit can be shared between task groups
(i.e., is linked as globally sharable), its floating overlays are
loaded into system memory; otherwise, floating overlays are
loaded into any sufficient block of memory in the memory pool of
the issuing task's task group.

When bound units with fixed overlays are loaded, enough space
is reserved in memory so that the linked, fixed overlay with the
highest address can be loaded. Overlay handling calls similarly
reserve overlay areas for floating overlays. Overlay areas are
areas in memory of fixed size that accommodate the largest
floating overlay associated with a bound unit. Overlay areas are
managed by means of overlay area tables (OATs), which ensure that
space in overlay areas is occupied only by overlays that are
currently in use. Thus, overlay handling functions relieve the
user of writing an overlay manager.

The overlay handling macro calls are:

Overlay, Release, Wait, and Recall $OVRCL
Overlay Area, Release . $OVRLS
Overlay Area, Reserve, and Execute Overlay $OVRSV
Create Overlay Table $CROAT
Delete Overlay Table $DLOAT
Overlay, Execute $OVEXC
Overlay, Load $OVLD
Overlay, Status $OVST
Overlay, Unload $OVUN

PHYSICAL I/O FUNCTIONS

The Request I/O ($RQIO) macro call, used in conjunction with
the input/output request block (IORB), allows direct control by
the user of device drivers or communication line protocol
handlers. If direct access to devices is not a requirement, File
System macro calls provide a more convenient means of handling
input/output operations.

See Sections 6 and 7 for a complete description of physical •
I/O functions, including details on device drivers and line
protocol handlers.

2-7 CZ05-00

The macro routine/call for physical I/O is:

Request I/O Transfer $RQIO

REQUEST AND RETURN FUNCTIONS

The macro calls for request and return functions enable an
issuing task to perform the following:

• Ascertain the address of the first request block in the
queue of requests placed against it

• Ascertain the completion status of request blocks placed
against it

• Defer the processing of a request placed against it

« Terminate the request that it is processing, marking it as
completed

• Wait for the completion of its own request(s) before
resuming execution

• Issue a common return sequence for called subroutines.

When a task defers the processing of a request placed against
it, it dequeues the request and requeues it at a specified
priority level on its request queue* (This priority level is not
to be confused with the priority levelf or interrupt level, at
which the task is running.) The deferred request is requeued at
either the head or tail of any other requests deferred at the
specified priority level* The capability of deferring a request
is typically used by device drivers in order to give precedence
to one type of request over another type*

The macro calls for request and return functions are:

• Dequeue and Post $DQPST
• Defer Request on Tail $DFRTL

Defer Request on Head $DFRHD
Postpone Request on Tail $PPNTL
Recall from Head $RCLHD
Return Request Block Address $RBADD
Return $RETRN

• Terminate Request $TRMRQ
• Test Completion Status • $TEST
• Wait Any $WAITA
• Wait for Operation to Complete $WAIT
• Wait on Request List $WAITL
• Wait on Multiple Request List $WAITM

Section 5 and Volume II describe the macro calls for
generating request blocks«> Appendix D shows request block
formats*

2-8 CZ05-00

TERMINAL CONTROL FUNCTIONS

Terminal control functions allow secondary logins and the
transfer of primary or secondary users between task groups.

When someone logs into the system as a secondary userr the
Listener component attaches a secondary user's terminal to an
existing task group if the user/ when logging in, specifies the
task group and if that task group has requested a secondary
terminal.

The macro calls for terminal control functions permit:

• The task group to request any secondary terminal

• The task group to request a specific secondary terminal

• The task group to transfer a user to Listener, along with
a new login line that automatically associates the user
with another task group

• The task group to transfer a user, along with a new login
• line, to Listener, which later returns the user to the

task group

• The task group to release a secondary terminal.

The appropriate macro calls are:

Request Specific Terminal $RQSPT
Request Terminal $RQTML * - •••
Release Terminal $RLTML
Transfer and Return User $XRETU
Transfer User $XFERU

SEMAPHORE FUNCTIONS

A semaphore is a mechanism for coordinating the use of
resources within task groups. Once defined, semaphores control
access to multiple resources and control multiple requests for
the same resource,

A semaphore is defined for each resource to be controlled and
is given a 2-character ASCII semaphore name, which is a system
symbol recognized by the Monitor. Every requestor of a resource
whose use must be coordinated issues appropriate Monitor calls to
the named semaphore to request or release the resource. The task
that defines the semaphore assigns the semaphore's initial value.
The monitor increments or decrements this initial value when the
resource is released or requested/reserved, respectively. A
requestor obtains use of a resource if the semaphore value is
greater than zero at the time of the request. If the value is
zero or negative, the requestor either waits until the resource
becomes available or continues executing, depending upon the

2-9 ' CZ05-00

macro call issued to make the request. The initial value of the
semaphore determines the number of users who can utilize a
resource at a given time. An initial value of 2 allows two
simultaneous users, an initial value of 4 allows four users, etc.

Semaphore function macro calls are used to:

• Define a semaphore and set its initial value

• Increment the current-value counter

• Decrement the current-value counter

• Queue a semaphore request block if the requested resource
is not available

• Remove a semaphore request block from its queue

• Delete a. semaphore.

The macro calls for semaphore handling are:

Cancel Semaphore Request $CNSRQ
Define Semaphore $DFSM
Release Semaphore $RLSM
Request Semaphore $RQSM
Reserve Semaphore $RSVSM „, •
Delete Semaphore $DLSM

STANDARD SYSTEM PILE I/O FUNCTIONS

A task group can access standard system files (command-in,
user-in, user-out, error-out, and message library) through
standard system file I/O macro calls. Other macro calls shown
below allow the task to redefine certain standard system files.
Specifically, the macro routines enable a task to:

Read the next record from the command-in file _, 1
Write the next record to the error-out file ,,' *
Read the next record from the user-in file
Write the next record to the user-out file
Redefine the user-in file
Redefine the user-out file .' , ,,
Redefine the message library file. , v» ~'

The macro calls are: , *

Command In (read command-in file) $CIN s ,
Error Output File $EROUT
New Command In ' $NCIN
New Message Library File - $NMLF " :
New User Input File . $NUIN . . ,. ;
New User Output File ' $NUOUT / * '
User Input File $USIN
User Output File $USOUT

2-10 CZ05-00

TASK CONTROL FUNCTIONS

The macro calls for task control allow the user to:

• Cancel a previously issued request

• Create, request, spawn/ suspend/ activate/ delete/ and
abort a task

• Attach/ load/ transfer/ and detach a bound unit to/from a
task

• Create and delete a segment for a task's bound unit

• Process command lines

• Roll back (recover) updated records in all files updated
since the last execution of Clean Point

• Declare a "clean point" at which

- Updates made to records are complete ,
- Updated records are written to disk
- The updated file is considered to be in a consistent
state

- Records previously locked by the issuing task are
unlocked.

Macro calls for task control are:

• Cancel Request $CANRQ
• Clean Point $CLPNT

Command Line/ Process $CMDLN
Create Segment $CRSEG
Delete Segment $DLSEG
Create Task $CRTSK N

Delete Task $DLTSK
Request Task $RQTSK
Spawn Task $SFTSK
Bound Unit/ Attach $BUAT t
Bound Unit/ Load $BULD
Bound Unit/ Detach $BUDT
Bound Unit/ Transfer $BUXFR

• Kill Task $KILLT
• Roll Back • $ROLBK

TASK GROUP CONTROL FUNCTIONS

A task group is a named set of one or more tasks/ memory
space/ files/ peripheral devices/ and priority levels. Any
number of task groups may be defined. (Task groups and tasks are
explained in detail in the System Concepts manual.)

2-11 • CZ05-00

The macro calls for task control allow the user tos

• Create, spawn, request, or delete a task group

• Enable or disble certain functionalities (e.g., message
chaining, ready prompt) for a task group

• Terminate a current task group and restart a task group
request

• Abort a task group request

• Terminate a user session

• Declare a checkpoint from which processing can be
restarted after premature termination of a group request

• Assign or disassign checkpoint files to a task group

• Abort a task group

• Terminate a user session.

A task executing under one group can initiate another group.
First, a task group must be defined in order to create task group
control structures and load the bound-unit root segment as the
lead task. Then, a group request must be issued to activate the
lead task for execution* Tasks can be executed concurrently in
this task group with the use of control functions or commands.

The task group can be deleted? no more requests can be made
against this group after it has been marked for deletion* When
all tasks ;n the group terminate and become dormant, all memory
associated with the group is returned to its memory pool,
becoming available to other groups.

The several phases of task creation, activation, and deletion
occur in sequence when a Spawn Task Group macro call is issued.

A task can suspend a task group's execution and then activate
that task group.

A task can terminate the current group request and then
restart the processing of the original task group request.

A task can abort the current request for the activation of a
specified group. In this case, the next request (if any) against
that group will be processed.

Aborting a task group deletes the group immediately, before
all its tasks terminate and become dormant.

A task can terminate a user session, then either restart the
group request, begin a new login sequence, or disconnect the'user
terminal. '

2-12 CZ05-00

Some macro calls listed below use a parameter block, which
extends the argument list of the task request block. The macro
call that generates parameter blocks ($PRBLK) is described in
Volume II; block format is shown in Appendix D.

The macro calls for task group control are:

Abort Group $ABGRP
Abort Group Request $ABGRQ
Activate Group $ACTVG
Checkpoint $CKPT :

Checkpoint File - $CKPFL
Create Group $CRGRP '
Delete Group $DLGRP > *:
New Process $NPROC • - < -
Request Group $RQGRP
Set Group Attributes $SGRPA
Spawn Group $SPGRP
Suspend Group $SUSPG

TRAP HANDLING FUNCTIONS " * ' " '

The macro calls for trap functions allow an application to
designate the traps to be handled during its execution.
Specifically, the macro calls allow the user to:

• Connect a user-written, generalized trap handling routine
to a task

• Enable a specific trap or all traps
\ *

• Disable a specific trap or all traps.

Additionally, the user can transmit a software-generated trap
condition to a specific task.

Appendix A describes traps and trap handling in detail.

The macro calls for trap handling are: ' r

• Disable User Trap $DSTRP
• Enable User Trap $ENTRP . - -/i ,
• Trap Handler Connect $TRPHD
• Signal Trap $SGTRP

USER REGISTRATION FUNCTIONS

User registration functions enable a user to be registered in
one or more subsystems, such as forms processing or networking.
These functions create, retrieve, modify, and delete a subsystem
record that establishes the user's access to a subsystem and
contains various statistics.

2-13 CZ05-00

Before a user's subsystem record can be created, the user
must be registered in the system (as distinct from the subsystem)
by the system administrator. To register a user in the system,
the administrator creates a registration record by means of the
Edit Profile utility. One user registration function, Profile
Record, Get User Information ($PRFIF), retrieves limited informa-
tion from the registration record. The subsystem and registra-
tion records belong to the profiles file, which is the system's
user registration data base.

Using the Edit and List Profile utilities, the system
administrator can maintain a user's subsystem record(s) as well
as registration record. First, however, the system programmer
must build a subsystem module as an interface between the
utilities and subsystem records. Specifications for subsystem
modules are given in Appendix H.

User registration macro calls allow the user to:

• Create a skeletal subsystem record that contains user id,
time of creation, and subsystem id

• Read a subsystem record

• Read limited information from a registration record

• Update a subsystem record

• Request and verify a password from the user of a terminal
that has experienced a phsyical disconnection.

Useir registration macro calls ares

• Profile Record, Accounting Update $PRFAU t
• Profile Record, Create $PRFCR - -
• Profile Record, Delete $PRFDL
• Profile Record, Get $PRFGT
• Profile Record, Get User Information $PRFIF
« Profile Record, Update $PRFUP
• Reverify Password $RVFPW

SOFTWARE REBOOT

The Software Reboot Facility reinitializes the system without
operator intervention. It is activated dynamically by exhaustion
of trap save areas or indirect request blocks, and by Watchdog
Timer timeouts. The user can direct that a dump be taken before
reinitialization of the system.

The Software Reboot routines/calls are: ,

» Modify Reboot Parameters $RBPRM r
• Reboot $RBOOT
• Unlock Dumpfile $RLDMP

2-14 CZ05-00

Section 3
FILE SYSTEM

FUNCTIONS

File system macro calls enable applications to access data
files, including device files. These functions fall into the
following categories:

• File management
• Data management . '
• Storage management.

This section describes each category and its use of the File
Information Block (FIB). All of the functions mentioned below
are described in detail in Volume II of this manual.

FILE MANAGEMENT FUNCTIONS

The macro calls for file management consist of the following
functions;

Associate File $ASFIL
Change Working Directory $CWDIR
Close File $CLFIL
Create Directory $CRDIR
Create File $CRFIL
Delete File $DLFIL
Delete Directory $DLDIR
Dissociate File $DSFIL
Expand Pathname $XPATH
Get Device Information $GIDEV

3-1 CZ05-00

Get File $GTPIL
Get File Access Rights $GAFIL
Get File Accounting Information $GTACT
Get File Information $GIFIL
Get Working Directory $GWDIR
Grow File $GRFIL
Open File $OPFIL
Remove File $RMFIL
Rename File/Directory $RNFIL
Modify File $MDFIL
Set Terminal File Characteristics $STTY
Test File For Input $TIFIL
Test File For Output $TOFIL
Shrink File $SHFIL
Swap File $SWFIL
Wait For File Input $WIFIL
Wait For File Output $WOFIL
Cleanpoint $CLPNT
Rollback $ROLBK.

The macro calls listed above are preparatory to processing a
file. Specifically, file management macro calls allow the user
to perform the following:

• Create a file

• Delete a file

• Get a file (reserve a file for processing)

• Open a file

• Close a file

• Remove a file from processing

• Rename a file

• Modify a file's attributes

• Associate a logical file number with a pathname

• Dissociate a logical file number from a pathname

• Create a directory
t<

• Delete a directory

• Rename a directory

« Change the working directory

• Get the name of the current working directory - ,,

3-2 CZ05-00

• Expand disk space allocated to a file

• Contract disk space allocated to a file

• Expand pathname (develop a full pathname from a relative
pathname)

• Get information about a file

• Test the status of an I/O activity (terminal)

• Wait for the completion of an asynchronous I/O activity
(terminal)

• Set the file characteristics of a terminal

• Return (recover) a file to its last consistent state after
a system or software failure

• Swap to the next section of a multivolume tape file or
disk serial multivolume file.

Although the following functions are available through macro
callsr they are typically performed outside of program execution
by means of execution control (ECL) commands:

Get Pile
Remove File
Create File
Delete File
Grow File
Shrink File
Rename File

• Modify File
• Create Directory

Delete Directory
Change Working Directory
Get Working Directory
Set Terminal File Characteristics
Associate File
Dissociate File.

DATA MANAGEMENT FUNCTIONS

The following macro calls are considered data management
functions:

Delete Record $DLREC
Read Record $RDREC
Rewrite Record $RWREC
Write Record $WRREC.

3-3 CZ05-00

The above macro calls provide for the transfer of logical
records between the user's record storage area and external
files. Before any data management calls can be executed, the
file to be accessed must have been reserved (by means of the Get
File or Create File functions) and opened (by means of the Open
File function). Moreover, before a file can be opened, it must
have been associated with a logical file number (LFN) by means of
an Associate File, Get File, or Create File function. Thus, data
management and file management macro calls are interdependent.
Figure 3-1 partially illustrates this interdependence.

3-4 CZ05-00

RESERVE THE
PILE FOR
PROCESSING

PROCESS IT USIWG
DATA AND STORAGE
MANAGEMENT
FUNCTIONS

JCLFIL

CUOS6 IT

REPEATED
N TIMES

SAMFIL

NO

REMOVE THE
FILI FROM
PROCESSING

DELETE THE
FILE

Figure 3-1. Life Cycle of a File

3-5 CZ05-00

STORAGE MANAGEMENT FUNCTIONS

The following macro calls perform storage management
functions:

Read block $RDBLK
Wait block $WTBLK
Write block $WRBLK.

These calls transfer physical blocks of data between the
user's buffer and an external file« Storage management itself is
used transparently by data management to perform input/output.
An initial Read Record ($RDREC) call, for example, causes storage
management to transfer a block of data from external storage to a
buffer In memory. Data management then unblocks a record and
transfe.es it to a second buffer within the application.

By means of storage management read and write functions, the
user can transfer blocks of data directly to or from an
application buffer, bypassing an intermediate buffer and the
blocking/deblocking operations performed by data management.
Although highly efficient, storage management places on the user
responsibility for observing various file organizations and
formats while blocking/deblocking. The user of storage
management must also provide any necessary control information,
:such as control interval headers and logical record headers.

By creating two application buffers and by using the Wait
Block macro call (described in Volume II) the user can perform
asynchronous I/O (i.e., process one block of data while another
is being transferred from device to memory).

Like data management macro calls, storage management macro
calls cannot be executed until the file to be accessed has been
-reserved, opened, and associated with an LFNC

'PILE INFORMATION BLOCK

Data management, storage management, and several file
management functions must: pass arguments to the file system by
means of a data structure called the File Information Block
(FIB). The arguments passed include the LFN. of the file to be
accessed, the address of the user's record area, the size of
input and output records,- and the type of key by which records
are to be located.'

The following macro calls must use an FIBs

Open File $03?PIL
Close Pile $CLFIL ;

Swap File $SWFIL
Test File $TIFIL, $TOFIL
Read Record $RDREC
Write Record $WRREC

3-6 CZ05-00

Rewrite Record $RWREC
Delete Record $DLREC
Read Block $RDBLK
Write Block $WRBLK
Wait Block $WTBLK

Some of the arguments required for one type of macro call
(e.g., storage management) are not applicable to the other
types. Thus, a FIB generated for data/file management functions
differs in format from a FIB generated for storage management
functions.

The user can generate a FIB and and values for its entries by
means of the $FIB macro call. Depending on the argument(s)
supplied with it, $FIB does one of the following:

• Generates an FIB, with default values, for data/file
management

• Generates an FIB for data/file or storage management, with
values defined by the user

• Modifies values of an existing FIB.

Using $FIB, the user can set values for a new or existing FIB
by means of keywords that specify a field and expressions that
specify a value. The $FIB argument "IRL=90", for example, refers
to the input record length field of a data/file managment FIB and
sets a maximum input record length of 90 bytes. Other keywords
are specific to storage management functions.

To modify the fields of an existing FIB, the user can employ
offset tags rather than $FIB keywords. (Offset tags are
discussed later in this section and in Section 5). $FIBDM
generates tags specific to data/file management functions; $FIBSM
generates tags specific to storage/management functions. $TFIB
generates two sets of tags applicable to both kinds of file
system functions.

File Information Block (FIB1 for Data Management

Table 3-1 describes the entries of a FIB used with data/file
management macro calls. The offset tags for these entries,
generated by $FIBDM, are shown in Appendix D.

3-7 CZ05-00

Table 3-1. File Information Block (FIB) for Data Management

Entry

Logical file number
(LFN)

Program view

~

User record pointer

In record length

Size
(bytes)

2

2

4

2

Description

Specifies the logical file number
(LFN) by which the file is
referenced. The LFN is the common
element linking the FIB and the
external file? this connection is
made via the $ASFIL, $CRFIL, or
$GTFIL macro call (or equivalent
command) .

Describes user visibility to the
file, and the file's functional
capabilities. Bit 0 set to 0
indicates that this FIB is to be
used for data management (record
level) access. Table 3-2 describes
this entry in detail and its bit
settings for data management macro
calls*

Identifies the start of the user-
record area as follows:

$RDREC - Identifies the storage
area into which records are
delivered by the system.

$RWREC, $WRREC - Identifies the
storage area from which records are
taken by the system.

* *w

The storage area must be large
enough to contain the longest
record, excluding headers, to be
written to or received from the
file*

Specifies the maximum size (in
bytes) of the user-record area for
$RDREC operations.

3-8 CZ05-00

Table 3-1 (cont). File Information Block (FIB)
for Data Management

Entry
Size
(bytes) Description

Out record length Specifies the actual size (in
bytes) of the record to be written
or read, as follows:

$RDREC - The system updates this
entry to reflect the actual length
(in bytes) of the last record
delivered into the user-record
area.

$RWREC, $WRREC - Specifies the
actual length (in bytes) of the
record, excluding the headers, to
be written in the file.

In record status On write operations, indicates the
type of terminal control
information in each record as
follows:

0000 = unknown terminal control
information

0001 = no terminal control
information

0010 = standard GCOS 6 printer
control characters

Out record status On read-record operations bit 0 = 1
indicates that the record just read
is a duplicate of a previous record
(i.e., it contains the same key
value as the previous record). On
write-record or rewrite-record
operations bit 0 = 1 indicates that
the record just written is a
duplicate (i.e., it contains the
same key value as a record already
in the file).

On read-record operations bit 1 = 1
indicates that there are more
duplicates for this record still
remaining in the file.

3-9 CZ05-00

Table 3-1 (cont) File Information Block (FIB)
for Data Management

Entry
Size
(bytes) Description

Out record status
(cont)

For example, if three records exist
with the same key valuef then
reading the first one will return
in this entrys

bit ff = 0
bit 1 = 1 ?

reading the second record will
return:

, bit 0 = 1
:, bit 1-1;

reading the last record will
returns

bit 0
bit 1

1
0

In record type $RDREC - Specifies the record type
of the record to be read. 'FFFF'
indicates that any record type is
acceptable.

Out record type $WRRECf $RWRECr $DLREC - Specifies
the record type of the record to be
updated.

$RDREC - Specifies the record type
of the record delivered to the
user.

In key pointer Identifies the start of the user-
key area in which the key value is
stored for the following $RDREC
macro call functions:

Read with key
Read position equal !

Read position greater than
Read position greater than or equal
Read position forward
Read position backward

3-10 CZ05-00

Table 3-1 (cont). File Information Block (FIB)
for Data Management

Entry
Size
(bytes> Description

In key pointer
(cont)

For the following $WRREC macro call
functions:

Write with key
Write position equal
Write position greater than
Write position greater than or

equal
Write position forward
Write position backward

For the following $RWREC macro call
function:

Rewrite with key

And for the following $DLREC macro
call function:

Delete with key

For CALC, Primary/ and Alternate
keys, the keys to be used must be
initialized within the user's
record area and the field must
point to that key.

The type of key is specified in the
"in key format" entry below.

3-11 CZ05-00

Table 3-1 (contj. File Information Block (FIB)
for Data Management

Entry
Size
(bytes) Description

In key format Identifies the type of key pointed
to by the "in key pointer" entry
above, as follows:

0 - None specified; the type of key
is determined by the format of
the file.

1 - Primary, elative, or CALC
(Random), as determined by the
file format:

o Primary key for indexed
files

o Relative key for relative
files

o CALC key for random files

2 - Simple key

3 - Alternate key

-1 - Current key of reference

The entry is meaningful only for
the macro calls specified in the
"in key pointer" entry defined
above.

In key length Specifies the length (in bytes) of
the user-key area identified in the
"in key pointer" entry described
above. Only meaningful for
primary, alternate, and CALC keys;
simple and relative keys are always
assumed to be four bytes.

Out record address This field is available for the
system to place the media address
of the last record transferred by
the last data management macro
call.

3-12 CZ05-00

Table 3-1 (cont). File Information Block (FIB)
for Data Management

Entry
Size
(bytes) Description

Out record address
(cont)

Normally, this address is a 32-bit
simple key (i.e., it specifies the
control interval and logical record
number within the control
interval). However, if the file is
accessed via a relative key as
specified in the "in key format"
field, then this address is a
32-bit relative key (i.e., relative
logical record number in the file).

This field is undefined if the
operation is not performed as
expected.

For card readers, printers, and
terminal devices, this field
contains a count of the records
transferred; i.e., this field is
incremented by 1 for each access to
the device.

Reserved This entry is Reserved for future
use; must be set to zeros.

program View Entry in FIB for Data Management

Table 3-2 shows the contents of the 2-byte program view entry
for data management (record level) access. The program view
entry describes to the file system how the file is to be
accessed, and, to some extent, what it looks like to the
programmer. The file system uses the FIB's contents to ensure
that the file is accessed only as intended. Keywords of the $FIB
macro call and offset tags generated by $FIBDM both provide a
means of refering to fields within the program view entry.

Bits 0 through 9 of the program view entry are processed only
when the file is opened, and cannot be changed while the file is
open.

3-13 CZ05-00

Table 3-2. Program View Entry in FIB for Data Management

Entry

Access level
(Bit 0)

Process rules
(Bits 1-4)

(

Size
(bits)

1

4

Description

Specifies that file is accessed
via data management macro calls/
as follows;

0 - Access via data management
macro calls.

Specifies how the file can be
processed; that isr it specifies
which types of data management
macro calls are allowed as
follows:

Permitted
Binary Macro Calls

1000 $RDREC
0100 $WRREC
0010 $RWREC
0001 $DLREC

nnnn Any combination of the
settings to allow the
desired data management
macro calls listed
above.

A macro call that is not per-
mitted (as specified in this
field) causes an access viola-
tion error.

Related
Macro
Calls

$OPFIL

i

3=14 C205-00

Table 3-2 (cont). Program View Entry in FIB for Data Management

Entry
Size
(bits) Description

Related
Macro
Calls

Key type
(Bits 5-9)

Specifies the type of keys that
can be used to access the file
as follows: ;

Permitted
Binary Key Type

10000 Primary

01000 CALC (Random)

00100 Alternate

00010 Relative

00001 Simple

00101 Alternate and
Simple

10101 Alternate and
Simple plus Primary

01101 Alternate and
Simple plus CALC

00111 Alternate and
Simple plus Relative

If the key type specified in
this field is not permitted by
the type of file being pro-
cessed , a bad program view error
results. The following types of
keys are allowed by the speci-
fied types of files:

$OPFIL

3-15 CZ05-00

Table 3-2 (cont). Program View Entry in FIB for Data Management

Entry
Size
(Bits) Description

Related
Macro
Calls

Key type
(bits 5-9)
(cont)

Fjle Organization

UFAS Indexed,
Alternate

UPAS Random

UFAS Disk Resident
Files

UFAS Relative,
Fixed Relative

UFAS Disk Resident
Files

Tvoe

Primary

CALC

Alternate

Relative

Simple

Record class
(bit 10)

Specifies type of logical
records that can be present in
the file as follows:

0 - Any type (i.e., fixed- or
variable-length records
allowed).

1 - Only fixed-length records
allowede

$RDREC
$WRREC
$RWREC

Record
visibility
(Bit 11]

Specifies whether or not deleted
records are skipped during read
next record ($RDREC) operations
as follows?

0 - Deleted records not visible
(i.e., skip them)

1 - Deleted records are visible
(i.e., the system issues the
record not found return code
when a deleted record is
accessed).

$RDREC

3-16 CZ05-00

Table 3-2 (cont). Program View Entry in FIB for Data Management

Entry
Size
(Bits) Description

Related
Macro
Calls

Key storage
area alignment
(Bit 12)

Specifies the boundary alignment
of the user-key area (see "in
key pointer" entry in Table 3-1)
as follows:

0 - Key storage area begins at
even-byte boundary (word-
aligned) .

1 - Key storage area begins at
odd-byte boundary.

$RDREC
$WRREC
$RWREC
$DLREC

Record storage
area alignment
(Bit 13)

Specifies the boundary alignment
of the user-record area (see
"User Record Pointer" entry in
Table 3-1) as follows:

0 - Record storage area begins
at even-byte boundary (word-
aligned) «

1 - Record storage area begins
at odd-byte boundary.

Transcription
mode
(Bit 14)

1 Specifies how data is to be
transferred as follows:

0 - Data is transferred in
device-specific native
(ASCII) mode.

1 - Data is transferred in
binary transcription mode.
(See Note 2.)'

$RDREC
$WRREC

Reserved
(Bit 15)

Reserved; must be zero. None

NOTES N

1. Bits 10 through 15 may be set after an $OPFIL
macro call and before any data management
macro call.

3-17 CZ05-00

Table 3-2 (cont). Program View Entry in FIB for Data Management

2. Binary transcription mode is meaningful only
for card devices, seven-track tapes, and
EBCDIC tapes. For card devices, this mode is
equivalent to verbatim mode (see Section 6)„

File Information Block (FIB) for Storage Management Access

Table 3-3 describes the entries of a FIB used with storage
management macro calls. The offset tags for these entries,
generated by $FIBSM, are shown in appendix D.

Table 3-3. File Information Block (FIB) for Storage Management

Entry
Size
(bytes) Description

Logical file
number (LFN)

Specifies the logical file number with
which the file is referenced. The LFN
is the common element linking the FIB
with the external file? this connection
is made with the $ASFIL, $CRFIL, or
$GTFIL macro call, or equivalent
commando

Program view Describes the user visibility to the
file and the file's functional
capabilities. Bit 0 set to 1 indicates
that this FIB is to be used for storage
management (block level) access. Table
3-4 describes this entry in detail, and
its bit settings for storage management
macro calls.

Buffer pointer Identifies the start of the buffer area
as follows:

$RDBLK - Identifies the buffer area into
which blocks of data are delivered.

$WRBLK - Identifies the buffer area from
which blocks of data are taken.

Transfer-size Specifies the size (in bytes) of the
data transfer (i.e., the size of the
buffer).

3-18 CZ05-00

Table 3-3, File Information Block (FIB) for Storage Management

Entry
Size
(bytes) Description

Block size Specifies the size of the block (in
bytes). For disk files the size must be
a multiple of physical sector size.

Block number Specifies the starting block number for
the I/O transfers; is relative to the
start of the file and to the block size
(described above). This entry is
incremented by 1 after each I/O
transfer; therefore? user's dynamic
changes to the block size also require
changes to the contents of this entry.
The first block in a file is block 0.

Reserved 16 Reserved for later use; must be set to
zeros.

Program View Entry in FIB for Storage Management

Table 3-4 shows the contents of the 2-byte program view entry
for storage management (block level) access. The program view
entry describes to the file system how the file is to be
accessed, and to some extentt what it looks like to the
programmer. The file system uses the FIB's contents to ensure
that the file is accessed only as intended. Keywords of the $FIB
"macro call and offset tags generated by $FIBSM both provide a
means of referring to fields within a program view entry.

Bits 0 through 9 of the program view entry are processed only
when the file is opened, and cannot be changed while the file is
open.

3-19 ' CZ05-00

Table 3-4. Program View Entry in FIB for Storage Management

Entry

Access level
(Bit 0)

i

Process rules
(Bits 1-4)

I

Reserved
(Bits !>-12)

Buffer
Alignment
(Bit 13)

Size
(bits)

1

4

8

1

Description

Specifies that file is accessed
via storage management macro
calls , as follows:

1 - Access via storage management
macro calls.

Specifies how the file can be
processed? that is, it specifies
which types of storage management
macro calls are allowed as
follows:

Permitted
Binary Macro Calls

1000 $RDBLK
0100 $WRBLK
1100 $RDBLK, $WRBLK

A macro call that is not per-
mitted in this field causes an
access violation error.

Reserved; must be set to zeros.

Specifies the boundary alignment
of the user buffer (see "Buffer
Pointer" in Table 3-3) as
follows:

0 - Buffer begins at even-byte
boundary (word aligned) .

Related
Macro
Calls

$OPFIL

..
$RDBLK
$WRBLK

' •*

3-20 CZ05-00

Table 3-5 (cont). Offsets Definition Macro Calls

Macro Call Affected Structure

$TFIB File information block for the following macro calls:

Open File
Close File
Test File
Read Record
Write Record
Rewrite Record
Delete Record
Read Block
Write Block
Wait Block

$OPFIL
$CLFIL
$TIFIL, $TOFIL
$RDREC
$WRREC
$RWREC
$DLREC
$RDBLK
5WRBLK
$WTBLK

$FIBDM File information block specific to data management
(record level) access; used for the following macro
calls?

Open File
Close File
Test File
Read Record
Write Record
Rewrite Record
Delete Record

$OPFIL
$CLFIL
STIPIL, $TOFIL
$RDREC
$WRREC
$RWREC
$DLREC

$FIBSM File information block specific to storage management
(block level) access; used fo-r the following macro
calls?

Open File
Close File
Read Block
Write Block
Wait Block

$OPFIL
$CLFIL
$RDBLK
$WRBLK
$WTBLK

$MDPSB Argument structure for Modify File macro call
($MDFIL)

3-23 CZ05-00

Offsets definition macro calls can be specified only once per
assembly procedure. They provide tags that are equated to
specific offsets in argument structures and FIBs. For example,
assuming that the address of an argument structure labeled FILE_A
has been loaded into a base register as follows:

LAB $B4,FILE_A

and assuming that $CRPSB has been specified, the following
address: syllable can be used to refer to the argument structure
entry that identifies the control interval sizes

t

$B4,R_CISZ

This entry effectively points to the displacement FILE_A+5 in the
parameter structure.,

Volume II of this manual describes each displacement
definition macro routine/call and its tagsf displacements, and
entry names in detail.

3-24 CZ05-00

Table 3-4 (cont) Program View Entry in FIB for
Storage Management

Entry

Buffer
Alignment
(Bit 13)
(cont)

Transcription
mode
(Bit 14)

Synchronous/
asynchronous
indicator
(Bit 15)

-

Size
(Bits)

1

1

Description

1 - Buffer begins at odd-byte
boundary.

Specifies how data is transferred
as follows:

0 - Data is transferred in
device-specific native
(ASCII) mode.

1 - Data is transferred in binary
transcription mode. (See
Note 2.)

Specifies whether or not $RDBLK
or $WRBLK macro calls are exe-
cuted synchronously or asynchro-
nously as follows:

0 - $RDBLK or $WRBLK macro calls
are to be executed synchro-
nously. When synchronous
$RDBLK or $WRBLK macro calls
are issued, a $WTBLK macro
call is not required to syn-
chronize buffer use.

1 - $RDBLK or $WRBLK macro calls
are to be executed asynchro-
nously (i.e., a $WTBLK macro
call is required to
synchronize.)

Related
Macro
Calls

$RDBLK
$WRBLK

$RDBLK
$WRBLK

NOTES

1. Bits 10 through 15 may be set after an $OPFIL
macro call and before any Storage Management
macro call.

2. Binary transcription mode is meaningful only
for card devices , seven-track tapes, and
EBCDIC tapes. For card devices, this mode is
equivalent to verbatim mode (see Section 6) .

3-21 CZ05-00

Offsets. Definitions

You can refer to specific locations in the file information
block and other argument structures by using offsets definition
macro callSe These calls, summarized in Section 5 and described
in detail in Volume II o£ this manual, define offsets tagSe

Table 3-5 shows the offsets definition macro calls and the
structures for which they define tags.

Table 3-5e Offsets Definition Macro Calls

Macro Call Affected Structure

$CRP£5B

$CRKI)B

$DIPSB

$GTPSB

$GAPSB

SGIPSB

$GRPSB

$GIFAB

$GIKDB

$SHPSB

Argument structure for Create File macro call
($CRFIL)

Key descriptor block pointed to by the $CRPSB
argument structure

Argument structure for Get Device Information macro
call

Argument structure-for Get File macro call ($GTFIL)

Argument structure for Get File Access Rights macro
call ($GAFIL)

Argument structure for Get File Information macro
call (SGIPIL).

Argument structure for Grow File macro call ($GRFIL)

File attribute block pointed to by the $GIPSB
argument structure •

Key descriptor block pointed to by the $GIPSB
argument structure

Argument structure for Shrink File macro call
($SHFIL) ,.

3-22 CZ05-00

Section 4
COMMUNICATIONS

PROCESSING FUNCTIONS

Communications processing refers, in this section, to the
transfer of data between an application program and a remote
device (i.e., terminal or printer). A remote device is one con-
nected to a Multiline Communications Processor (MLCP)? a local
device is attached instead to a Multiple Device Controller
(MDC). The control of local devices by means of device drivers
is discussed in Section 6.

OVERVIEW OF COMMUNICATIONS PROCESSING

The user can control the transfer of data between an applica-
tion program and a remote device either by means of the file
system orf more directly, by physical input/output.

Using the file system, the programmer employs many of the
file system functions described in Section 3 (e.g., Open File,
Read Record, Write Record). The parameters for these operations
are passed between the application program and the file system by
means of the file information block (FIB), which is also
described in Section 3. The system translates the values of FIB
entries into values for the entries of the input/output request
block (IORB). Thus marked, the IORB provides instructions to a
line protocol handler (LPH), which carries out the desired
input/output operation.

4-1 CZ05-00

Using physical I/Of the programmer directly constructs and
issue.1? the IORB instead of doing so indirectly by means of file
system functions and the FIB. To write output to a terminal, for
example, the programmer performs the following:

1. Generates an IORB by means of the $IORB macro call

2. Generates IORB offsets tags (by means of the $IORBD macro
call)t which enable the programmer to refer to and fill
fields in the IORB

3. Sets, in the appropriate IORB fields, a write function
code and parameters specializing the write operation

4. Issues a Request Input/Output ($RQIO) macro call, which
causes the appropriate LPH to perform the operation
indicated by the IORB.

The above example assumes that the device being written to
has already been connected by means of previously issued $IORB
and $.RQIO macro calls (as explained in the final subsection) .

COMMUNICATIONS PROCESSING THROUGH THE FILg SYSTEM,

The following subjects are discussed below:

• Pile system functions applicable to the communications
t processing

• Synchronous and asynchronous I/O
j*. "'• Use of specific file system functions •

• Sequences of file system functions useful for communica-
tions processing

• Use of the Set Terminal Characteristics (STTY)
function/command for changing terminal characteristics.

* >• ' -
File System FunctiQn.3,

The file system functions applicable to communications
processing fall under the headings of File Management and Data
Management. i

4-2 CZ05-00

FILE MANAGEMENT FUNCTIONS

By means of these functions, a terminal can be reserved for
processing, opened, closed, and associated or dissociated with a
logical file number (LFN) that identifies the file to the
system. The macro calls that perform these and other related
functions are:

•\

Get File $GTFIL
Open File $OPFIL
Close File $CLFIL
Associate File $ASFIL
Dissociate File $DSFIL
Test File $TIFIL/$TOFIL
Wait File $WIFIL/$WOFIL ' ""

DATA MANAGEMENT FUNCTIONS

Data management functions enable an application to read and
write logical records either synchronously or asynchronously.
(Synchronous and asynchronous I/O operations are explained later
in this section.) Data management functions are:

Read Record $RDREC
Write Record $WRREC

Synchronous Input/Output

A terminal can be configured for either synchronous or
asynchronous I/O operations. In synchronous operations, the
processing of data and the transfer of data (between application
and terminal) occur sequentially rather than simultaneously.
Thus, the application' must wait until the transfer of data is
complete before processing can resume. Synchronous I/O is best
suited to situations in which data is transferred between an
application and a single terminal and to such activity as
connecting and disconnecting a terminal.

Asynchronous Input/Output

If a terminal is configured for asynchronous I/O, data is
transferred between the terminal and the application by way of a
system buffer. Thus, asynchronous I/O allows the application to
process records while the file system reads or writes records to
or from the buffer.

4-3 CZ05-00

Asynchronous I/O and the data/file management functions
listed above allow an application to access multiple interactive
terminals efficiently. For terminals operating asynehronously,
the system automatically schedules an anticpatory read, which
transfers input entered at the terminal to a buffer in system
memory. If an application immediately issues a Read Record
($RDREC) call, the task must wait until the system buffer has
received input from the terminal. While the task is waiting,
data may be available from another terminal reserved by the
application. Instead, the application can issue the Test Input
File ($TIFIL) macro call to determine whether a read has
completed at a specific terminal. Alternatively, Wait File for
Input ($WIFIL) can be used to wait until a read has completed at
any of the reserved terminals. A subsequent Read Record to the
terminal would then return the data for processing by the ,
application. The Test File function also enables an application
to test the completion of a physical connection to a terminal
before issuing an order to that terminal.

Using File System Functions

This subsection provides specific information on the use of
the following data and file management functions?

Get File $GTFIL - " '
Open File $OPFIL
Test File $TIFIL/$TOFIL . . '
Wait File $WIFIL/$WOPIL '" J "~~

GET FILE ($GTFIL) MACRO CALL GUIDELINES , ' t .• .

The Get File function reserves a file for processing and
connects a file to a logical file number (LFN). The LFN is used
in other file system calls (e.g., $OPFIL, $RDREC, $WRREC) to
refer to the file in question. Normally, the Get File function
is invoked by a Get File command outside program execution.

The arguments for the Get File ($GTFIL) macro call in an
Assembly language communications program must have the values
shown in Table 4-1.

4-4 CZ05-C

Table 4-1. Arguments for Get File ($GTFIL) Macro Call

Argument Argument Value

Logical file number (LFN)

Pathname pointer

Concurrency control

Remaining arguments

A value from 0 through 255

Must point to a pathname of a communi-
cations device (e.g., 1TTY01)

According to how the application uses
the device (normally zero for exclu-
sive use)

Zero

OPEN FILE ($OPFIL) MACRO CALL GUIDELINES

The Open File function allocates buffer space (if required)
and physically connects the device or terminal.

The Open File macro call $OPFIL, when used in communications,
must include the location of the file information block (FIB),
which in turn must contain a valid program view item.

TEST FILE ($TIFIL, $TOFIL) MACRO CALL GUIDELINES

Before the application issues a $RDREC macro call, it can
issue the Test Input File ($TIFIL) macro call to check whether
input is available.

Before the application issues a $WRREC macro call, it can
rissue the Test Output File ($TOFIL) macro call to check whether
the preceding output operation was completed,

WAIT FILE ($WIFILf $WOFIL) MACRO CALL GUIDELINES

The use of the Wait File macro call permits an application to
wait for the completion of an outstanding read or write order.
The Wait File macro call can be used with a set of terminals or
devices. Test and Wait File macro calls differ in terms of when
control is returned to the calling routine. A Test File call
will return immediately with a busy or not busy status. An
application would block the execution of lower level tasks with
repeated test file calls to a busy file. This problem can be
avoided by issuing a Wait File macro call in lieu of successive
Test File macro calls.

$WIFIL is used to wait for input from any device/terminal;
$WOFIL to wait for completion of output to any device/terminal.

4-5 CZ05-00

Macro Call Sequences

This subsection describes sequences of file system macro
calls commonly used by applications that access communications
devices. Each sequence of macro calls applies to a different
type of communications processing. - ~

The types of communications processing illustrated below ares

• Input only (TTY or STD data entry applications)

• Output only (receive-only printer (ROP) application)

• Bidirectional (the device is opened either for input or
output, but not both (BSC 2780))

• Interactive (TTY, STD, or BSC 3780 applications).

MACRO CALL PROCEDURES FOR DATA ENTRY TERMINALS

Table 4-2 shows the procedure for using file system macro
calls in a communications application involving data entry
terminals.

Table 4-2. Macro Call Procedures for Data Entry Terminals

Procedure
Step Action by Application Program System Actions

1

2

Issue $GTFIL macro call.

Issue $OPFIL macro call with
FIB program view bit 1 set
to 1, bit 2 set to 0.

Issue $WIFIL macro call to
wait until connect is complete
and input is available.
(With multiple devices, the
IWIFIL macro call can be
issued with a list of LFNs,
effectively giving up control
until input is available from
one or more devices in the

Issues asynchronous
connect; returns a
normal status to the
program.

Returns when a read
has been satisfied.

4-6 CZ05-00

Table 4-2 (cont). Macro Call Procedures for Data Entry
Terminals

Procedure
Step Action by Application Program System Actions

3
(cont)

Otherwise, if application is
to do other processing (not
giving up control), issue
$TIFIL macro call.

If not-busy status is
returned, issue $RDREC
macro call.

If an error status is
returned, exit from the
procedure.

When read is successful,
return to step 3 to request
more data from the device.

When application processing is
completed, issues $CLFIL macro
call.

Issue a $RMFIL macro call.

If connect is not com-
plete, returns a busy
status. If connect is
complete, issues an
asynchronous read and
returns a busy status
until read is
complete.

With read operation
complete, moves data
from system buffer to
application's buffer,
issues another asyn-
chronous read, and
returns a normal
status to the program.

Issues a disconnect.

MACRO CALL PROCEDURES FOR OUTPUT-ONLY TERMINALS

Table 4-3 shows the procedure for using macro calls in
communications applications involving output-only terminals,

4-7 CZ05-00

Table 4-3. Macro Call Procedures for Output-Only Terminals

Procedure
Step Action by Application Program System Actions

1

2

5

6

Issue $GTFIL macro call.

Issue $OPFIL macro call with
FIB program view bit 1 set to
0, bit 2 set to 1.

Issue $WOFIL macro call to
wait until connect is complete
and output can be transmitted.
(With multiple devices, the
$WOFIL macro call can be
issued with a list of LFNs,
effectively giving up control
until output can be sent to
one or more of the devices in
the listc)

Otherwise, if the application
is to do other processing (not
give up control), issue a
$TOFIL macro call.

If not-busy status is
returned, issue $WRREC macro
call.

Issues an asynchronous
connectf returns a
normal status to the
program.

Will return when
output can be
transmitted.

If connect is not com-
plete, returns a busy
status. If connect is
complete, returns a
not busy status if
output can be
transmitted.

Moves data from appli-
cation buffer to sys-
tem buffer. Issues
asynchronous write and
returns a normal
status to the
application.

If error status is returned,
exit from the procedure.

When write is successful,
return to step 3 to transmit
more data to the device.

When application pro-
cessing is complete,
issue $CLFIL macro call.

Issue $RMFIL macro call.

Issues disconnect
according to device
type.

4-8 CZ05-00

Macro Calls for a Single Interactive Terminal

Table 4-4 describes the procedures for using macro calls in
communications applications involving only one interactive
terminal that has been configured for non-buffered synchronous
input/output operation.

Table 4-4. Macro Call Procedures for Single
Interactive Terminal

Procedure
Step Action by Application Program System Actions

-1

2

Issue $GTFIL macro call.

Issue $OPFIL macro call with
FIB program view bit 1 set to
1, program view bit 2 set to 1

To read from the terminal and then write to the terminal:

4

5

6

7

8

Issue $RDREC macro call.
(This effectively gives up
control until the read is
satisfied.)

If error status returned, exit
from the procedure.

Process the data just read.

Issue $WRREC. (This effec-
tively gives up control until
the write is complete*) If an
error status is returned, exit
from the procedure.

If additional input is
expected, refer to step 3.

When application processing
is complete, issue $CLFIL
macro call.

Issue $RMFIL macro call.

Data is read directly
into the application
buffer.

Data is written
directly from the
application buffer.

Issues a disconnect.

4-9. CZ05-00

MACRO CALL PROCEDURES FOR MULTIPLE INTERACTIVE TERMINALS

Table 4-5 describes the procedures for using macro calls in
communications applications involving multiple terminals config-
ured for buffered, asynchronous operation.

Figure 4-1 illustrates the procedure's flow.

Table 4-5. Macro Call Procedures for Multiple Terminals

Procedure
Step Action by Application Program System Actions

Issue $GTFIL macro call to
each terminal,,

Issue $OPFIL macro call to
each terminal with FIB pro-
gram view bit 1 set to 1,
bit 2 set to 1.

Issues asynchronous
connect; returns nor-
mal status to the
program.

To read from a terminal and then write to a terminal:

6

Issue $WIFIL macro call with
a list of LFNs. (This will
effectively give up control
until input is available from
one or more terminals in the
list.)

Issue $RDREC macro call.

If an error status is
returned, exit from the •
procedure.

Process the data just read,

Returns when a
read is complete and
data is available.
Returns the LFN of
the first terminal in
the list for which
data is available.

Moves data from system
buffer to applica-
tion's buffer, issues
another asynchronous
read, and returns a
normal status to the
program.

4-10 CZ05-00

Table 4-5 (cont). Macro Call Procedures for Multiple Terminals

Procedure
Step Action by Application Program System Actions

8

10

Issue $WRREC macro call.
(This will give up control
until output can be sent
to terminal.)

If additional input is
expected from any terminal,
see step 3e

When application processing
is complete, issue $CLFIL
call.

Issue $RMFIL macro call.

Waits until output can
be sent, moves data
from the application's
buffer to system buf-
fer, and issues an
asynchronous write.

Issues disconnect.

4-11 CZ05-00

SGTFIL&SOPFIL (I=ILE1)

$GTFIL&$OPFIL (FILE 2) <

SGTFIL&SOPFIL (FILE 3)

FOR SOPFIL. PROGRAM VIEW
SITS 1 AND 2 ARE SET TO 11

SWIFIL (ON FILES 1,2, 3»

NOT BUSY-FILE n)

(FILEnl

YES

YES

SCLFIL & SRMFIL (FILE t)

SCLFIL & SRMFIL (FILE 2)

SCLFIL &$RMFIU(FILE3)

c EXIT

< EXIT

Figure 4-1. Simplified Program Logic for Multiple
Interactive Terminals

4-12 CZ05-00

Changing A Terminal File's Characteristics

The file characteristics (e.g./ line length or record size,
detabbing, device type, operational mode) of a terminal are
established at the time of system configuration. These charac-
teristics can be changed by the file system user at execution
time, before the file associated with the device is opened,
through use of the Set Terminal Characteristics command (STTY) or
macro call ($STTY).

Of particular interest to the communications user are the
STTY arguments that control the operational modes of a device.
Examples of operational modes include echoplex, use of control
bytes, and optional end-of-message processing. The user can
specify operational modes by specifying a -MODES argument or by
setting bits of a device specific word.

SPECIFICATION BY -MODES ARGUMENT

The file system user can most conveniently specify opera-
tional modes by means of the -MODES arguments of the STTY
command. For example, to specify the terminal's echoplex
feature, the user enters -MODES ECHO. Conversely, the user
enters -MODES "ECHO to suppress the echoplex feature. To reset
all operational modes to those designated at the time of configu-
ration, the user invokes the control argument -RESET.

SPECIFICATION BY DSW BIT SETTINGS

In some instances, the file system user may be required to
specify the operational modes of a device by setting bits in the
device-specific word (DSW)- I_DVS in the IORB. This requirement
occurs when the user wishes to alter an operational mode for
which a -MODES argument has not been defined.

Specification by DSW bit settings is accomplished through the
DSW1 and DSW2 arguments of the STTY command or $STTY macro call.
The DSW1 argument is used to change the I_DVS field in connect
and disconnect lORBs that the file manager issues against a
communications device? DSW2 is used to change the I_DVS field in
the read and write lORBs that the file manager issues against the
same communications device. A user, for example, can specify BSC
2780/3780 control byte processing by setting bit 4 in DSW1 to
zero.

To change a terminal's operating characteristics through the
bit settings of the DSW, proceed as follows.

4-13 CZ05-00

Ic Determine which line protocol handler is servicing the
terminal to be modified. One source for this information
is the system's Configuration Load Manager (CLM) file
(usually >SID>CLM_USER). In this file, a DEVICE
directive names each device supported by the file system;
each DEVICE directive in the file is paired with a
station-defining directive that specifies the LPH serving
the device.

2. Ascertain the operational characteristics established for
the device at the time of configuration. The operational
characteristics of a device are determined by the
device~specific words of an IORBe The bit values of the
device-specific words are set by the system; these
default values are shown in Table 4-6 below. The user
should consult the appropriate sections in this manual
for the significance of particular bits in
device-specific words. The sections that should be
referenced are as follows:

Device_Unit (LPH) - Section

- f Asynchronous Terminal Driver (ATD) 8
Synchronous Terminal Driver (STD) 9
Polled VIP Emulator (PVE) 10
BSC Line Protocol Handler (BSC) 11
TTY Line Protocol Handler (TTY) 12

The system-defined default values for device-specific
words can be changed at the time of configuration by
means of the STTY directive.

3. To change temporarily a DSW value that is in effect,
enter a new value by means of the STTY command or $STTY
function. The new value will remain in effect only
during the current session. To permanently change the
operating characteristics of a device, use the STTY
directive (described in the System Building and
Administration manual).

Table 4-6. System Defaults for DSW1 and DSW2

Device_.Unit

TTY
BSC
PVE
XBSC
ATD
STD

DSW1

0000
0000
0000
0040
0000
0103

DSW2

0030
0000
0000
0000
0030
0010

4-14 CZ05-00

COMMUNICATIONS PROCESSING THROUGH PHYSICAL I/O

The physical input/output (I/O) interface permits direct
control by the user over communications processing. Used only
with Assembly language programs, the physical I/O interface
enables communications applications to:

• Call appropriate line protocol handlers (LPHs) directly
through the communications subsystem rather than through
the file system. v I

• Control the data structure, specifically the input/output
request block (IORB), that directly affects device opera-
tions and/or characteristics.

Physical I/O „ j

The following conventions apply to use of physical I/O:

• The I/O request block (IORB) is the standard control
structure used by an LPH.

• An application program requests an I/O transfer by issuing
a Request I/O ($RQIO) macro call.

• When configured, all LPHs and associated devices are
identified by a set of unique LRNs at the time of system
building. A line protocol handler is invoked when its LRN
is included in the IORB for a subsequent $RQIO macro call.

• At the time of the $RQIO macro call, the B4 register
contains the address of the IORB supplied by the
application program. ,

• Bit F of IORB field I_CT1 must be set to 1; this is
required for any I/O request.

• Before giving up control, the LPH maps the hardware return
status into the status word I_ST of the application's
IORB.

Table 4-7 lists the status codes that are returned (in the
left byte of I__CT1) to indicate the result of an I/O request.

4-15 CZ05-00

Table 4-=7. I/O Request Status Codes Returned in I_CT1

Code Number
(Hexadecimal) Meaning

0

1

2

3

4

5

6

7

8

9

A

B

C

F

10

i

No error,, operation complete

Request block already busy (T=l)

Invalid LRN

Illegal wait • *

Invalid field values in the IORB •

Device not ready

Device timeout on other than connect

Hardware error

Device disabled
' t, - '

File mark encountered

Controller unavailable

Device unavailable ' ,'

Inconsistent request

EOT received (for BSC3780 and ATD stream mode)

Device timeout on connect

NOTES

The 08 (device disabled) status is returned on
an I/O request when the application has
disabled the logical resource. It is also
returned if a connect or disconnect has been
issued against a line or device that is
currently being connected (by a prior connect
order) or disconnected (by a prior disconnect
order).

The OB (device unavailable) status is returned
with every read or write IORB that has been
aborted by a disconnect request with queue
abort* This status can also indicate the loss
(drop) of a communication line.

4-16 CZ05-00

Table 4-7 (cont). I/O Request Status Codes Returned in I_CT1

3. When the 07 (hardware error) status is found
in I_CT1 or in $R1 on a resume after wait/
look at the IORB field I_ST to identify the
specific error.

4. The OC (inconsistent request) status indicates
illogical I/O requests: read or write before
connect, duplicate connect or disconnect
requests, write after disconnect.

Using Physical I/O

Two fields within the IORB specify the operation to be per-
formed.

1. The function code (Table 4-10), indicated by bits C
through F of I_CT2 in the IORB (Table 4-8), specifies the
particular operation.

2. The I_DVS item in the IORB, used with the function code,
specializes the input/output order.

To request execution of an I/O operation, the application,
with the $RQIO macro call, must transfer control to the physical
I/O interface. At the time of the request, the B4 register must
contain the address of the IORB being requested. The $RQIO macro
routine initiates the I/O operation, and returns control to the
requesting application.

The IORB may specify either synchronous or asynchronous
execution.

When the IORB specifies synchronous I/O (bit 9 of I_CT1=0),
return to the calling application is delayed by the Executive
until the I/O operation is complete. On return of control to the
application, both the return status field in I_CT1 of the IORB
and the Rl register will contain one of the status codes shown in
Table 4-7.

When the IORB specifies asynchronous I/O (bit 9 of I__CT1=1) ,
control returns immediately without waiting for I/O completion,
and the instruction at the return point is executed as soon as
the system initiates the requested I/O operation.

To obtain the completion status (in Rl register) when using
asynchronous I/O, the application should issue a $WAIT or $TEST
macro call. The $WAIT macro call blocks execution of the
application until the requested I/O operation is marked as
complete. At completion of the I/O operation, the application
should first check the Rl register to see that the I/O request
was successful. Any error will be defined there. Hardware
errors will be indicated in the IORB software status word I_ST

4-17 CZ05-00

(see Table 4-9). The $TEST macro call returns the completion
status of the IORB if the I/O transfer has completede or returns
status 0801 if I/O has not completed. The $TEST macro call
allows the application to continue processing pending completion
of an I/O transfer, whereas $WAIT does not.

Residual range, indicated in the IORB, shows how much of the
requested data was transferred. The residual range value in
I_RSR of the IORB is meaningful only when the A-bit in the I_ST
item (Table 4-8) of the IORB has been set on,

3

DATA STRUCTURES - -

Data structures control the interactions among an application
program, its line protocol handlers, and the devices it uses.
The input/output request block (IORB) is the interface between
the application and line protocol handler. The IORB and its use
are described below in general terms. Later sections describe
the contents of specialized lORBs for each of the line protocol
handlers.

i

Input/Output Request Blocks
T

The IORB is the standard means for requesting a physical I/O
service. As described in this section, the IORB is used with
physical I/O communications interfaces. The physical I/O part
(through 13+2*$AF in Figure 4=2) is directly usable at the
physical I/O interface. The logical part (beginning with
14+2*$AF) is used by forms processing software, by the local mail
facility (interprocess communication), and by the message group
request blocks MGIRB, MGCRB, and MGRRB.

Generated by the Input/Output Request Bldck macro call
($IORB), the IORB contains all the information that an applica-
tion requesting an I/O service must specify to define the opera-
tion to be performed. Specifically, the IORB includes the
following?

• Logical resource number (LRN) that identifies the I/O
device being addressed

• Location and size of the buffer to be used for physical
I/O transfers

• Type of operation as specified by the function code and
optional device-specific word

• Information, concerning results of the I/O request,
returned by the line protocol handler to the application
after I/O completion,,

4-18 CZ05-00

When the IORB is used with a $RQIO macro call, the device
named in the IORB should have been previously reserved by a Get
File ($GTFIL) macro call. The logical resource number (LRN)
required by the IORB can be obtained by issuing a Get File
Information ($GIFIL) macro call. For further details, see the
description of the Request I/O ($RQIO) macro call in Volume II.

Figure 4-2 shows the format of the IORB. Table 4-8 defines
the separate entries in the IORB. Later sections in the manual
describe the significance of the device-specific word (I_DVS),
software status word I_ST, and other IORB words for the various
line protocol handlers.

NOTES

1. The labels used in the figure to«identify IORB
fields (e.g., I_CTlr I_ADR) can be generated
by the $IORBD macro call, described in Volume
II.

2. The offset symbol $AF signifies the number of
words required to specify a memory address.
In this system, $AF is equivalent to two

.' words.

— 3. The asterisk (*) in the formulas in the "Word"
~ column of Figure 4-2 and Table 4-8 is a

multiplication sign.

4. The shaded fields in figure 4-2 are for system
use only. Fields not shaded must be initial-
ized by the application requesting the I/O
operation.

1 IORB SOFTWARE STATUS WORD (I_ST)

The line protocol handler maps into the IORB software status
word I_ST (Table 4-9) the return status of the hardware or line
protocol handler.

The bit settings in the software status word I__ST indicate to
the application the status of the hardware, as shown in Table
4-9.

The meanings of bit settings in the software status word I_ST
for specific devices are shown in tables in later sections that
describe the line protocol handlers for those devices.

4-19 C205-00

WORD

-$AF
-1

0

SAP

1+SAF

2+SAF

2+2*$AF

3+2*$AF

4+2*$AF

5+2*$AF

6+2«$AF

7+2'SAF

8+2*5 A F

9-t-2*$AF

10+2*$AF

11+2*$AF

12+2*$AF

13+2*$AF

14+2*$AF

LABEL

I_RRB

I-SEM

I-LNK

I-CT1

I_CT2

I_ADR

I_RNG

I-DVS

I_RSR

I_ST

I_EXT

I_DV2

I_FCS

t_HOR

I_ST2

I_,QDP

I_TAB

I_CON

I_LOG

0 1 2 3 4 5 6 7 3 9 A B C O E F

REQUEST BLOCK POINTER,
OR SEMAPHORE NAME

fMMffi|>yjnfVffi(*p№ -gs

% , • % , v< , , '-.,.-.?. v *% '

LRN

BUFFER ADDRESS •

" ' ^ s ,<;< > r̂. &" ' ' '**
CST68* iiSK JSS Wtt*fffiHfer?|*̂ 5 r, < ,̂ r , - ̂ s ;- ; , %;-

f ^ T W U S P R O J 1

O B O E FUNCTION

-2tWORD POINTER

RANGE - NUMBER OF BYTES TO BE TRANSFERRED

DEVICE - SPECIFIC WORD

^^^^^^mm^-w^^-H'^mK^^rjm^^^i^m^KKm-'- " :;̂ '̂ "" "'./j. £••'*$: -. . •y -^ | - - , - " 1 M|k IM nr"il -- •* • V--- "^ ••• " • • • • • ' " " '•-'>- * '•'

[̂

' '-"*"-\Yf- nKtttt£tt«>

'".'.I,

TOTAL IORB EXTENSION
LENGTH (IN WORDS)

* v ^ •••.'*• .;> ^ ,s*s. >i>\^-- ̂ \ № -.̂ - •> ^s ̂ t"- ' ,̂ %

SHTT?K:vv^>''* e^-..
I PHYSICAL I/O EXTENSION
| LENGTH (IN WORDS)

DEVICE - SPECIFIC WORD 2

DEVICE PHYSICAL CONTROL WORD 1

FUNCTION CODE 1 | FUNCTION CODE 2

DEVICE PHYSICAL CONTROL WORD 2

(VALID IF B-BIT(E) IS 1)

DEVICE PHYSIC>

SECOND STATUS WORD

%L CONTROL WORD 3

| TIME-OUTVALUE

DEVICE PHYSICAL CONTROL WORD 4

DEVICE DEPENDENT; ATTRIBUTE OR DESCRIPTOR

PREORDER CONTROL

FIRST WORD OF LOGICAL PART OF IORB

Figure? 4-2. Communications Input/Output Request Block (IORB)

4-20 CZ05-00

Table 4-8. Communications Input/Output Request Block (IORB)

Word Label Bits Description

-$AF

0

$AF

I_RRB/
I_SEM

I_LNK

I_CT1

0-31

0-31

0-7

8 (T)

9 (W)

A (U)

B (S)

C(P)

D (R)

Depending on the S- or R-bits of I_CT1,
this word contains a task request block
pointer (R-bit on) or a semaphore name
(S-bit on). Set by user; used by system
at termination of request.

Reserved for system use; two-
word pointer.

Return status. (See Table 4-7).

This bit is set (on) while the request
using this IORB is executing; it is reset
when the request terminates. The system
controls this bit; user should not change
it.

Wait bit. Set by user when the
requesting task is not to be suspended
pending the completion of the request,
that uses this IORB. If W » 0, then the
D, R, and S bits may not be set.

User bit. User may or may not use this
bit; system does not change it.

Release semaphore indicator. Values:
0 =* No semaphore in I_SEM. 1 = Release,
on completion, semaphore item named in
I_SEM.

Must be set by user if IORB is to be
referenced by a Wait Any ($WAITA) macro
calle If set, IORB can be referenced
only by $WAIT or $WAITA issued by the
requesting task.

Return IORB indicator. Values: 0 = No
request pointer in I_RRB. 1 = Dispatch
task request block named in I_RRB; after
completion of this request, the system
executes $RQTSK, using I_RRB.

4-21 CZ05-00

Table 4-8 (cont). Communications Input/Output
Request Block (IORB)

Word Label Bits Description

$AF
(cont)

I_CT1
(cont)

1+$AF I_CT2

2+$AF

2+2*$AF

3+2*$AF

4+2*$AF

5+2*$AF

I_ADR

I_RNG

I_DVS

I_RSR

I_ST

E (D)

F

0-7

8

9 (B)

A (P)

B (E)

C-F

0-31

0-15

0-15

0-15

0-15

Delete IORB indicatorf used usually
with B (S) and D (R) bits. 0 = No
delete. 1 = When task terminates, return
memory to the pool where IORB is the
first entry of its memory block.

I/O bit. Must be set to 1.

Logical resource number (LRN)? identifies
device to be used.

Must be 0.

Byte index. 0 = buffer begins in
leftmost byte of word; 1 = buffer begins
in rightmost byte.

Reserved for system use.

Extended IORB indicator. 0 = Standard
(nonextended) IORB. 1 = IORB extended as
specified by I_EXT. Set by user« (See
I_EXT below.)

Function code. See Table 4-10.

Buffer address; 2-word pointer.

Range. Indicates number of bytes to be
transferred.

Device-specific information. Set by
user*

Residual range. Indicates the number of
bytes not transferred. Filled in by the
system on completion of the order.

Status word. Reflects the mapping of the
hardware status into software status
formate Set by system after I/O
completes. Used also by the ATD and STD
LPHs as a peripheral address fieldo

4-22 CZ05-00

Table 4-8 (cont). Communications Input/Output
Request Block (IORB)

Word

6+2*$AF

7+2*$AF

8+2*$AF

9+2*$AF

10+2*$AF

11+2*$AF

12+2*$AF

13+2*$AF

14+2*$AF

Label

I_EXT

I_DV2

II.FCS

I_HDR

I_ST2

I_QDP

I_TAB

I_CON

I_LOG

Bits

0-7

v 8-F

0-F

0-F

0-F

0-F

0-F

0-F

0-F

0-F

Description

Left byte: Number of words in the IORB
extension, not including this I_EXT word.

Right byte: Number of words in physical
part of IORB extension, not including
this I_EXT word? must be less than or
equal to total extension length shown in
the left byte.

This word applies only when the B (E) bit
in I_CT2 is 1.

Device-specific word 2. Contains
device-specific information.

Device physical control word 1.

Device physical control word 2.

Device physical control word 3.

Device physical control word 4.

Device physical control word 5.

Device physical control word 6.

First word of logical part of IORB. Used
by forms processing software, in message
control, and by local mail message group
request blocks.

4-23 CZ05-00

Table 4-9. Software (I_ST) Status Codes

Bit in
IORB's

Meaning When Bit Set On

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

Read error (PVE)

Data service rate error
>

Lost line bid or RVI received (BSC)

Communication control block service error

No stop bit on character input (TTY); conversational
reply received (BSC3780); IORB purged because of BREAK
signal (ATD, TTY)

Long record (BSC, ATD)

ITB/ETB or ETX received (BSC)? poll failure (PVE)

Framing error (ATD); NAK limit reached (PVE)

Checksum or parity error limit reached (PVE); parity
error (ATD)

j '
Nonzero residual range

Phone disconnect

End-of-transmission received (BSC)

Transparent message received (BSC) '
/

NAK limit reached (BSC)

Nonexistent resource? bus parity error; fatal
uncorrectable memory error

Function Codes

All line protocol handlers perform similar functions for the
devices and applications that they service. These functions are
perform€sd by the line protocol handler's request and interrupt
processing codes.

4-24 CZ05-00

An application can request specific functions by providing a
function code in the IORB supplied when it requests I/O service.
The application uses the last four bits of its lORB's I_CT2 entry
(see Figure 4-2) to enter the function code for the functions
summarized in Table 4-10.

• The connect and disconnect functions may be used with
non-communications devices, in which case they are processed as
"no-ops". Thus, no matter how connected to the system, all TTY
devices and noninteractive (e.g., card reader and printer)
devices can be controlled by the same application program. This
provision is useful for program development and test purposes.

1

Table 4-10. Communications LPH Function Codes

Function
Code in

IORB

1

2

5

9

A

B

Communications Function

Write

Read

Define-form (used only
by the ATD LPH)

Read break . -,? -
•a

Connect - \

Disconnect

WRITE FUNCTION (CODE 1)

This function allows data to be written to a specific
device. When a line protocol handler (LPH) receives a write
request, it transfers the indicated data from the application's
buffer to the device, according to the information supplied in
the device-specific word of the application's IORB.

READ FUNCTION (CODE 2) : . _

This function allows data to be read from a specific device.
When the LPH receives a read request, it tranfers data from the
device to the application's buffer, according to the information
supplied in the device-specific word of the application's IORB.

4-25 CZ05-00

DEFINE-FORM FUNCTION (CODE 5)

This function is used by the ATD LPH for forms processing to
define fields, their subfields, and their attributes. A
define-form order does not itself result in actual physical I/O.
(Refer to Section 8 for more details.)

READ BREAK (CODE 9)
i** »i

This function allows an application to be notified of an
operator-generated break condition on synchronous or asynchronous
terminals. The function also allows for the selective
cancellation of outstanding read break orders. (Refer to Section
8 for more details.)

;

CONNECT FUNCTION (CODE A)

The connect function provides a logical and physical conne-- -
tion between an application program and a communications device.

As a logical function, the connect function is a request to
use the specified communications device. If that resource is
being used, an error return results. In that case, the applica-
tion must determine whether that resource is sharable (as
established by the installation's procedures) and proceed
accordingly.

As a physical function, the connect function establishes a
physical path to the communications device associated with the
specified logical resource number (LRN). This implies, when the
device is to be connected over a switched line, that the system
software should complete call establishment on the line associ-
ated with that device. The request times out after five minutes.

If the connect function is not completed, the system will not
process any requests for the communications device, and will
return an error status *

The connect function must be requested before any other
function, since communications devices are configured into the
system in a disconnected state.

DISCONNECT FUNCTION (CODE B)

The disconnect function provides both the logical (normal and
abnormal) and physical disconnection between the application and
a communications device.

As a logical function, the disconnect function indicates that
the use of the designated device is to be terminated.

4-26 CZ05-00

For a logical disconnect, issue a disconnect request
(function code B) with the E-bit in I_DVS set off (dequeue
remaining lORBs for device) and the F-bit in I_DVS set on (do not
hang up phone). At this point/ any pending read or write
requests are returned to the application program with a B status
(device unavailable). Continued use of the device requires that
the application program issue a connect.

As a physical function, the disconnect function must specify,
by setting the F-bit in I_DVS to 0, the physical disconnection of
a line.

4-27 CZ05-00

Section 5
DATA STRUCTURE

GENERATION

This section summarizes the macro routines that generate and
define system data structures. There are two kinds of data
structures: those that apply to system control functions and
those that apply to file system functions. The macro calls that
generate both kinds of data structures are described in detail in
Volume II of this manual. The formats of the generated data
structures are tabulated in Appendix D.

SYSTEM CONTROL DATA STRUCTURES

System control data structures that are visible to the user
consist of the following:

• Request blocks
• Parameter block and wait lists»

Request B

When requesting certain operations, tasks generate request
blocks in order to specify the parameters of the requested opera-
tion. The first five words of all request blocks are identical
in format? these words pass parameters to the system. The W-bit,
for example, in the third word of request blocks, specifies
whether or not the requesting task is to be suspended until the
requested operation is completed. Additional words convey to the
system information specific to the request block type.

5-1 CZ05-00

One type of request block, the task request block, passes
parameters to the requested task as well as to the system. These
additional parameters are arguments that control the execution of
the task being requested. They are entered into a
variable-length field of the task request block called an
argument list.

Table 5-1 lists the request blocks and the macro calls that
generate them.

Table 5-1. Request Blocks

Request Block Macro Call

Clock request block (CRB)

Input/output request block (IORB)

Message group request blocks

Message group control (MGCRB)
Message group initialization (MGIRB)
Message group recovery (MGRRB)

Semaphore request block (SRB)

Task Request block (TRB)

$CRB

$IORB

$MGCRB
$MGIRB
$MGRRB

$SRB

$TRB

Th€» arguments supplied with each of the above macro calls
sets values for fields of the corresponding request block. For
example, the first argument of the Input/Output Request Block
($IORB) macro call specifies the logical resource number (LRN) of
the device to perform the input/output operation. The number
specified by this argument is placed in the fifth word of the
request block generated by the $IORB macro call-

REQUEST BLOCK OFFSETS MACRO CALLS

Each request block macro call is paired with a request block
offsets macro call. Request block offsets macro calls generate
tags for every entry in a corresponding request block, allowing
symbolic references to request block fields by application code.
These tags are not generated by request block macro calls. An
application may use a request block macro call to construct a
request block, and then issue a request block offsets call to
facilitate modification of the existing block by executing code.

5-2 CZ05-00

are

Unlike the arguments of request block macro calls, the tags
generated by offset macro calls refer to all fields of the cor-
responding request block. Offset tags refer to fields in which
values are returned by the system, whereas macro call arguments
refer only to fields in which values are entered by the user.

As mentioned above, the first five words of all request
blocks are identical. Each offset macro call, however, refers to
these words by different tags. The fourth word of the semaphore
request block, for example is S_CT1, whereas the fourth word of
the task request block is labeled T_CT1. The programmer, there-
fore, can include several types of offset macro calls in an
application without multiply defining symbols.

No arguments are specified with offsets macro calls. Only
one offsets macro call of a particular type is allowed in an
application.

Macro calls that generate offsets tags for request blocks
listed below;

Clock Request Block Offsets $CRBD
Input/Output Request Block Offsets $IORBD
Message Group Control Request Block Offsets $MGCRT
Message Group Initialization Request Block Offsets $MGIRT
Message Group Recovery Request Block Offsets $MGRRT
Semaphore Request Block Offsets $SRBD
Task Request Block Offsets $TRBD

Parameter Block and Wait Lists

The parameter block and wait lists are system control data
structures that differ in format from request blocks.

- A parameter block is equivalent to the task request block's
-argument list, mentioned above; it is generated by the Parameter
Block ($PRBLK) macro call. Parameter blocks are a standard means
of passing arguments between tasks. By specifying the number and
length of arguments, as well as the arguments themselves, a
parameter block allows the receiving task to locate each argument
in the list (or block).

A wait list is a list of request blocks to be serviced before
the task issuing the wait list macro call completes its own exe-
cution. A wait list consists of a count of the number of request
blocks to be waited on, followed by the request blocks' addres-
sesc The list is generated by the Wait List ($WLIST) macro
call. Another macro call, Wait on Request List ($WAITL) causes
the task manager to scan the wait list and activate the waiting
task when any of the listed requests are marked as completed.

5-3 CZ05-00

A multiple wait list contains the same information as does
the wait list; in addition, it specifies the number of request
blocks that must be completed before a waiting task is to be
activated. A multiple wait list is generated by the Generate
Multiple Wait List ($WLSTM) macro call.

FILE SYSTEM DATA STRUCTURES

A file information block (FIB) is used by running applica-
tions to request input/output operations. Other data structures
are used outside of program execution by functions that create
and modify files, or return information about files already , >
created. Both types of data structures are discussed below* s

File Information Block• ••« •!•!• •> m-miTTfit , r ,

The file information block is the means by which an applica-
tion passes to the file system the parameters of a requested
input/output operation. The fields of the FIB specify such items
as a f:ile!s logical resource number (LFN) , by which the system
identifies the file; the record or block size; and the address of
the user's buffer.

The following macro calls use an FIB; ' /.

' Open File $OPFIL .:„ ^ ' *
Close File $CLFIL
Test File $TIFIL, $TOFIL " "r . '̂,
Read Record $RDREC J" ""'*
Write Record $WRREC , , ,
Rewrite Record $RWREC *' • - • - - - - -
Delete Record $DLREC
Read Block $RDBLK
Write Block $WRBLK
Wait Block $WTBLK

FILE INFORMATION BLOCK MACRO CALL ,

Tho file information block is generated by the File Informa-
tion Block ($FIB) macro calls An $FIB macro call can do one of
the following:

• Build a new FIB with default values determined by the
system

• Build a new FIB, specifying its contents by means of argu-
ments supplied with the call

• Generate instructions to alter the contents of an existing
FIB.

5-4 CZ05-00

As explained in Section 3, the file system performs three
functions: data management, file management, and storage manage-
ment. An FIB pertinent to one type of function may not be per-
tinent to another type. Data management involves the transfer of
logical records; storage management, the transfer of blocks of
records. The fields of an FIB applicable to data"managementf
therefore, would specify the size and location of logical
records; the fields of an FIB applicable to storage management,
the size and location of record blocks. For this reason, the FIB
macro call has two sets of arguments, pertaining to data/file
management and storage management.

FIB OFFSET MACRO CALLS

For the same reason that the $FIB has more than one set of
arguments, there are several macro calls that generate FIB offset
tags. (The use of offset tags is explained earlier in this sec-
tion.) The FIB offsets macro calls are:

$FIBDM
$FIBSM
$TFIB

The $FIBDM and $FIBSM macro calls generate sets of tags that
are specific to data/file management and storage management,
respectively. A third offsets macro call, $TFIB, generates two '
sets of tags, applicable both to data/file and to storage manage-
ment. The $TFIB macro call would be issued by an application
requesting both data/file management and storage management
services.

Macro Call Argument Structures

Macro calls that create and modify files, or return informa-
tion about existing files must specify many parameters, as a file
can take many different formse Typically, these macro calls have
a single argument that points to a list of arguments, or an
argument structure. Offsets macro calls are available to facili-
tate modifying or referring to the fields of an argument struc-
ture. Table 5-2 lists the file system macro calls that require
argument structures and the offsets macro calls that supply tags
for these structures.

5-5 CZ05-00

Table 5-2. Argument Structures and Offsets Tags

Calls Requiring
Argument Structures

Calls Generating
Offset Tags

Create File ($CRFIL)

Get Device Information
($GID!SV)

Get file Access Rights
($GAFEL)

Get File Information
($GIFIL)

Grow File ($GRFIL)

Modify File ($MDFIL)

Shrink File ($SHFIL)

Create File Parameter Block Structure
Offsets ($CRPSB)

Create File Key Descriptor Block
Offsets ($CRKDB)

Get Device Information Parameter
Structure Block Offsets ($DIPSB)

Get File Access Rights Parameter
Structure Block Offsets ($GAPSB)

Get File Information Key Descriptor
Block Offsets ($GIKDB)

Get File Information Parameter
Structure Block Offsets ($GIPSB)

Get File Information File Attribute
Block Offsets ($GIFAB)

Grow File Parameter Structure Block
Offsets ($GRPSB)

Modify File Parameter Structure Block
($MDPSB)

Shrink File Parameter Structure Block
Offsets ($SHFIL)

Size Tags
" i ir T

Data structures for file system macro calls can either be
declared statically or built dynamically. In the latter case,
memory for the structure is dynamically obtained by means of the
Get M€>mory ($GMEM) macro call at the time of execution. The
memory thus obtained should be cleared to zeros to ensure that
fields of the structure reserved for future are zero-filled. Each
offset macro call generates a size tag for specifying the size of
the corresponding data structure. The size tag can be used to
specify the amount of memory requested (when issuing the Get
Memory macro call), or used to clear the structure to zeros.

5-6 CZ05-00

Example:

$B4 points to a file information block (FIB). The structure
is cleared with the instructions:

LDV $R1,F_SZ-1 R1=SIZE OF FIB MINUS 1
$A CL $B4.$R1 CLEAR ONE WORD

BDEC $R1,>-$A LOOP UNTIL ALL WORDS CLEARED

5-7 CZ05-00

o
ce

m
a
•̂

Section 6
DEVICE DRIVERS

This section describes the internal system software known as
device drivers and some related data structures, principally the
input/output request block (IORB), by which the device driver is
controlled. A device driver performs all data transfers between
a peripheral device and an application program requesting
input/output. (A peripheral device is one attached to a multiple
device controller (MDC)). Line protocol handlers analogously
perform input/output between applications and communications
devices, which are attached to a multi-line communications
processor (MLCP). The remainder of this section describes
peripheral device drivers. Line protocol handlers are described
in later sections.

INPUT/OUTPUT DRIVERS

Applications can request and instruct drivers directly by
means of the Request Input/Output ($RQIO) and Input/output
Request Block ($IORB) macro calls. Applications invoke drivers
indirectly when issuing file system macro calls such as Read
Record ($RDREC) and Write Record ($WRREC). When executing these
calls, the file system generates lORBs to instruct the drivers.

6-1 CZ05-00

Drivers are reentrant programs capable of supporting the
concurrent operation of several devices at the same time» The
priority level at which they run is selected by the user when the
system :LS configured. Requests by applications for I/O activate
the driversr which in turn initiate data transfer that is
simultaneous with the operation of the central processor.
Drivers generate an interrupt to the central processor when the
transfei: of data is terminated.

DEVICE DRIVER DATA STRUCTURES

Two data structures control the interaction between an
application program? its device drivers, and the devices the
program uses. These structures are the input/output request
block (IORB) and the resource control table (RCT).

The IORB is the interface between the application and its
device drivere Through the IORB, the application defines the I/O
service that it wishes to be performed. Also, the IORB contains
information returned by the driver to the requesting task
concerning the outcome of the I/O request.

The resource control table (RCT) is the interface between the
driver and its device(s), and is not normally accessible to users
of Honeywell-supplied drivers described in this section. The RCT
is used by those who write their own device drivers? it is
described in the System Building and Administration manual.

DEVICE DRIVER CONVENTIONS ' H

The following conventions apply to all input/output device
drivers.

• The I/O request block (IORB) is the standard control
_ structure used by a driver. It is described later in this
... section.

• The $RQIO macro call is used to request a driver.

• The B4 register contains the address of the IORB supplied
by the caller? the IORB contains the LRN of the device to
be used.

• The I/0-specific words of the IORB (I_CT2 through I__DVS)
are not modified by the driver.

• If a device becomes inoperable, it can be disabled with an
operator command and another device can be substituted.

• Drivers are reentrant and interrupt driven? one driver
supports many devices of the same type.

• Synchronous and asynchronous I/O are supported.

6-2 CZ05-00

• The hardware status is always mapped into the software
status word in the task's IORB (I_ST) before the driver
relinquishes control.

Driver Functions and Function Codes

All drivers perform similar functions on behalf of the
devices and application tasks they service. These functions are -
carried out by the driver's request processing and interrupt
processing code.

The application task requests specific functions by providing
a function code in the IORB that it supplies when it requests I/O
service. These specific function codes are summarized in Table
6-1 and discussed under the specific function heading in the
following pages*

The application task uses the last four bits of the IORB
entry I_CT2 to enter the function code for the functions
summarized in Table 6-1.

CONNECT FUNCTION (fc=A)

This function provides the logical and physical connection
between an application program and an interactive peripheral
device (i.e.? a KSR/ASR device connected to a multiple device
controller). The function may also be used with noninteractive
devices for program compatibility. The driver of a
noninteractive device treats this function as a NOP and
immediately posts the IORB back to the requester with successful
status (operation complete).

DISCONNECT FUNCTION (fc=B)

This function code provides the logical (normal and abnormal)
and physical disconnect between an application program and an
interactive device.

The disconnect function as a logical function indicates that
use of the indicated device is terminated. Termination may be
either normal or an abort of all queued read or write requests
issued by this user program.

6-3 CZ05-00

WAIT ONLINE FUNCTION (fc=0)

The "wait online" function allows a caller to wait until a
device becomes ready for use, or until a specific time interval
has passed.

All noncommunications devices (except KSR-like devices)
generate interrupts when their availability changes. For
example,, when a printer runs out of paper, an interrupt is
generated and the device is not ready for use; when the paper is -
installed and the device is again ready, another interrupt is
generated.

When a driver receives a service request from a task using
the "waj^t online" function code in the IORB that it supplies
(0000 in the last four bits of I_CT2), anc -he device is not
ready, the driver sets a timer for 5 minui 3 and suspends. When
the driver is reactivated, either by a ree .y interrupt from the
device or by a timeout, it deactivates the timer, checks the
device-ready bit in the hardware status word, and places a 0 or 6
value in the return status field of the IORB depending on the
condition of that bit. See Table 6-2 and the return status codes
for the $RQIO macro call (which is described in Volume II). The
rightmost 2 digits of the 4-digit hexadecimal status code are
placed in the return status field.

The wait online function should not be issued to a device
that is currently ready for use unless you expect it to become
unavailable for a limited time (e.g., the operator has been
instructed to change a volume mounted on a disk device currently
in use) .

6-4 CZ05-00

0)
T3
O

C
o
•H
-U
u
c
3

3
O

4J
3
&
C

0)
(H
jQ
flS

o
•rt

JJ 01

01 Ol

C «S
a* £1
ID
X

J£
03

°*4
a

41o
•r*

>

91a
u
0!
JJ
C

•<-<
Ue
04

£
u
C
3
en
\,u
01

'D'D
u its
ca <u
U OS

Ul
a*

•o-c
u (6
its at
UBS

-a
OS, u u
W ITS 4)
X OJJ
\.Q C
OS >«"*
W <U u
< «a«

e
o

ca — i as
OS -WO
Q U O
W CU

3
Eu

H> *
J* «
0 <U T3
O r-l (I)

01 iH -r« ,H
e at 03 hi jj .a

••*• <— 1 O <0
•-(-ft G C (U 03
C IM O O 4J C —1
O •-* M-I o c Q «

0) (U -U -U OJ O O
jj jj T3 ^j j*: ---i --H c u *o ••-)
•>H ->4 a -H u a M c w nj >
IQ u ai u<a o < o < o "̂ <u a)
3 s os 2 ae a. z o< z u a KQ

T3
(U 01

at -u 'o i-i
C -in rtj -U J3

•M u (U O (8
r^ . S OS 0) 0)
C -U C ••->
o 4J jj o c a 4»

a» , (0 to ai o o
4 J 4 J 1 3 S S C U T S - ^
• H - ^ K J u u C M (I S >
I Q U O I < < O O < O —i 01 0)
3 2 a z Z E E . U . Z u a os a

0)
C 4J
•rt O
r-t 0>
c - w e
O 0 C

at oi o
-W 4J C U
•-« •!-(C W

< a u < < < < < < o -^ <
2 2 Z Z Z Z Z Z U Q Z

-,
£ .— .

01 U £
c c at u 4J

•-< 3 rt C O
i-l CU -^ 3 01
C — fc SM J-i C
o — u c

oi at at o
4J JJ "O 4J J£ C U
•H •-< (C ••* W C M
(Q U O I U | Q < < < < O •-) <
s ^ o s s s z z z z u a z

(U
e *J
••< u
-̂1 41
c jj e
O 0 -C

01 O
JJ T3 C U
•-« ns c w
(Q < 4 I < < < < < O - H <
S Z Q S Z Z Z Z Z . U Q Z

e
a» o
C -H JJ
•rt - «J U
i-i RS a>
C U JJ C
O "« U C

at ^e IM at o
JJ JJ T3 <0 -4 C O
•<-» -^ «J 01 JJ C CO
i t S M O I < <£ «£ < M O O — i <
S ^ a s z Z Z Z Q Q Z U Q Z

O r - l C S r O T T i n v e C T * < C Q U

I

f

f

•
.*
y
o

• 1— t
j« ua
0
o w
rt 3
jO O

•*4 ^
JJ > b
X 0) (Q
Ol bi g
C Oi

O)
U-l H-J Qj
O O (0 >

JJ "D
jj 01 <o
Id C JJ • O

(C •-> X .* -H
JJ C Ol u C
W C G 10 3

~« £
O O> O T3 •
jj oi JJ oi e a,

JQ cu its <a
at 41 its • ai
O O O JJ E-" E-i
<o JJ us O O Cu
Cu Cu to ca ffl O
co at w 3 w

0 0 0 O
'O US T3 •-« JJ JJ JJ
u a, 1-5 > AS
US W us 41 T3 T3
S J4 2 u C C 41
u O u CU •*-* -H jj
O its O S S— >
tw 12 u-j O Ot CD w

JJ b" u S
to en ca
.rt -in --i o) w os ca

CJ -r4 -rt -H
rtl rtl rtl fQ

C C C Qar-i oro
o o o u! i i i

.*
VU 4J U-i U *4-J M-l *4-i

Of O O O r t S O O O
rH ^2
^ 41 Ol 01 Ol 41 01
CQ tj»CTi o ^ c Q c n c y c n
u cc c — = c c c
•̂ *C 1C 10 <Q (0 *0
r— t UU U O J U U U

a CTI
Oi 4101 C U C 4 I 4 I O I
•< >> > n s > > >

•^4 *i-4 >r4 u •<•< •*-! *H
JJ JJ JJ JJ JJ JJ JJ
O ft «3 "< O 10 (0 (0
Z (0 CT> CO u o> CT>CT>

O 41 O 41 Ol Oi 41
II CUZ ^ e o Z Z Z

< * *Z *

6-5 CZ05-00

Table 6-2. Return Status Codes (Last Two Digits)

Code Number
(Hexadecimal)

1

2

00
01
02
03
04
05
06
07
08
09
OA
OB
OC
10
11
17

Meaning

No error, operation complete
Request block already busy (T=l)
Invalid LRN
Invalid wait
Invalid parameters
Device not ready
Device timeout on other than connect
Hardware error
Device disabled
File mark encountered
Controller unavailable
Device unavailable
Inconsistent request
Device timeout on connect ^
Write protect error
Memory access violation

NOTES

When status 07 is returned, look in I_ST to
identify the specific hardware error.

Status OB is returned with every read or write
IORB that has been aborted by a disconnect
request with queue abort. The disks and tapes
are disabled until the system's automatic
volume recognition routine calls the enable
device function.

Status OC indicates illogical peripheral
driver requests (e.g., read or write before
connect? duplicate connect or disconnect

write after disconnect).

WRITE FUNCTION
\

The write function is available for all devices except the
card reader. This function allows the writing of data to a
particular device. When a driver receives a write request, it
transfers the indicated data from a user buffer to the device
according to the specifications supplied in the task's IORB.

6-6 CZ05-00

READ FUNCTION (fc=2)

The read function is available for all devices except local
and remote printers. This function allows reading data from a
particular device. When a driver receives a read request, it
transfers the data from the specified device to a user buffer
according to the specifications supplied in the requesting task's
IORB.

READ DISABLED DEVICE FUNCTION (fc=E)

This function, available only to disk or magnetic tape
devices, allows the driver to bypass the device-disabled test
during validity checking.

This function is used by the system's automatic volume
recognition (AVR) module, which recognizes the volume label of
the volume on the disabled device, then enables the device so
that attempts to read data from it can continue.

WRITE TAPE MARK FUNCTION (fc=3)

The write tape mark function, which is available to magnetic
tape devices, allows you to put a mark block on a referenced
magnetic tape.

POSITION BLOCK FUNCTION (fc=4)

The position block function, which is available to magnetic
tape devices, allows you to position a referenced magnetic tape
forward or backward one block.

FORMAT WRITE (fc=5)

The format write function, available only to disk devices,
allows you to format a disk device. The number of sectors per
track depends upon the device type.

FORMAT READ (fc=6)

The format read function, available only to disk devices,
allows you to read all identifier and data fields on a track.
The read begins at the first sector following the index mark and
proceeds in the order in which the identifiers are recorded.

POSITION TAPE MARK FUNCTION (fc=6)

The position tape mark function, which is available to
magnetic tape devices, allows the user to:

• Position forward a referenced magnetic tape beyond the
next tape mark

• Position backward a referenced magnetic tape before the
current tape mark

6-7 CZ05-00

• Rewind to EOT

• Rewind to EOT and unload

BREAK NOTIFICATION FUNCTION (fc=9)

This function, available for any terminal device, is a
request to notify the issuing task when a break occurs on a
specific device* When a break does occure the driver posts the
break notification request and declares the device to be in break
mode for the issuing task.

In break mode, all I/O requests issued from the "broken" task
are rejected (i.e., posted without any data transfers being
started). Execution of a subsequent break notification request
will cause the driver to return to normal mode.

TNPUT/QUTPUT REQUEST BLOCK*tl* v mi ww *t< v M—i Hit**, *r«wwib» ^ ^

The input/output request block (IORB) contains all "
information that a task requesting an I/O service can specify to
define the operation to be performed. In addition, it contains
information returned by the driver to the requesting task
concerning the outcome of its I/O request.

Figure 6-1 shows the format of a nonextended IORB. Unshaded
fields must be initialized by the task requesting the I/O
operation. The shaded fields are set by the driver to return
information about the I/O request to the caller, or are
controlled by the Executive.

4 * i :v#
5 + 8 • $*»

1_CT1

1_CT2

1_AOR

IJM4G

IJ3VS

IJB*

IJT

I.6XT

8 M I 2 I 3 I « i » (« I ? I « I » I * I « o I «
MtOUfST ILOCK KJIWTtR/SeMAJWOJU NAMB

I STATUS

^JSiy.tfJL'̂ SSSw -̂iSSS^y:
u

C I f M FUNCTION

D

KJPrai AGORfSS

RANG€

SPKIRC WORD

ISMCTH f PIC EXTENSiQN LENGTH

Figure 6-1. Format of I/O Request Block

6-8 CZ05-00

Table 6-3 defines the specific IORB entries in a nonextended
IORB, (See the "Communications Processing Functions" section for
descriptions of IORB extensions.) Table 6-4 defines the software
status word (I_ST) in the IORB. Device-specific IORB information
is provided in the separate device driver descriptions later in
this section.

NOTE

The offset labels used to refer to IORB fields
(e.g., I_CT1, I_ADR) can be generated by the $IORBD
macro call, which is described in Volume II.

Table 6-3. Contents of I/O Request Block

Word Label Bits Contents

-$AF

-1

I_RRB/

I..SEM

0-31

0-15

Depending on the S- or R-bits of
I_CT1, this word contains a task
request block pointer (R-bit on),
or a semaphore name (S-bit on);
set by user, used by system at
termination of request.

I_LNK 0-31 Reserved for system use* 2-word
pointer to indirect request
block.

$AF I_CT1 0-7

8 (T)

9 (W)

A (0)

B (S)

Return status.

This bit is set (on) while the
request using this block is
executing; it is reset when the
request terminates. System
controls this bit; do not change
it.

Wait bit. Set if the requesting
task is not to be suspended
pending completion of the request
that uses this IORB. If W = 0,
then the D-, R-, and S- bits may
not be set.

User bit. User may or may not
use this bit; system does not
change it.

Release semaphore indicator.

6-9 CZ05-00

Table 6-3 (cont). Contents of I/O Request Block

Word Label Bits Contents

$AF
(cont)

:C_CTI
(cont)

D (R)

E (D)

0 = No semaphore in I_SEM, 1 =
Release, on completion, semaphore
item named in I_J3EM.

Must be set by user if IORB is to
be referenced by a Wait Any
($WAITA) macro call. If set,
IORB can be referenced only by a
$WAIT or $WAITA issued by the
requesting task.

Return IORB indicator. 0 = No
request pointer in I_RRBc 1 =
Dispatch task request block named
in I_RRB after request timeout.
If 1, system executes $RQTSKf
using I_RRB, when the task
terminates.

Delete IORB indicator, used
usually with the B(S) and D(R)
bits. 0 = No delete. 1 * Delete
and, when task terminates, return
memory to pool where IORB is
first entry of its memory block.

Implicit task start address.
Must always be 1 for IORB.

1+$AF I CT2 0-7

8 (IBM)

9 (B)

A (P)

B (E)

Logical resource number (LRN);
identifies device to be used.

IBM-type request. Changes
interpretation of I_DVS to task
word, and I_RSR and I__ST to
configuration words A and B,
respectively.

Byte index? 0 = buffer begins in
leftmost byte of word. 1 =
buffer begins in rightmost byte.

Reserved for system use»

Extended IORB indicator., 0 -
Standard (nonextended) IORB. 1 =
IORB extended to at least 6+2*$AF
items. Set by user. (See I_EXT
below.)

6-10 CZ05-00

Table 6-3 (cont). Contents of I/O Request Block

Word Label Bits Contents

1+$AF
(cont)

I_CT2
(cont)

B (E) Function code,
see Table 6-1.

Driver function;

2+$AF I_ADR 0-31 This field contains a 2-word
buffer address or, for break
notification requests, the ID of
the requesting task.

2+2*$AF I_RNG 0-15 Range. Number of bytes to be
transferred.

3+2*$AF I_DVS 0-15 Device-specific information.

4+2*$AF I_RSR 0-15 Residual range. Indicates the
number of bytes not transferred.
Filled in by the system on
completion of the order. Used by
cartridge disk, Lark disk, and
mass storage unit driver as a
data offset value on input.

5+2*$AF I_ST 0-15 Modified device status; shows
mapping of hardware status into
software status format. See
Table 6-4. Set by user as input
field high order bits of sector
number mass storage unit. Set by
system after I/O completion.

6+2*$AF I__EXT 0-7

8-15

Left byte? Number of words in
the IORB extension, not including
this I_EXT word.

Right byte: Number of words in
physical I/O part of IORB
extension, not including this I
EXT word. This count must be
less than or equal to the total
extension length specified in the
left byte (0-7).

This word is present only when
the B (E) bit in I_CT2 is 1.
(See the "Communications
Processing Functions" section for
descriptions of IORB extensions.)

6-11 CZ05-00

Table 6-4. IORB Software Status Word (I_ST)

Bit
Position

0

1

2

3

4

5

6

7

8

9

A

B

C

0

E

P

KSH

0

0

Over/
under run

Evttn
parity
error

0

No
stop
bit

Long
record

Checksum
error

CC2 term-
ination

CC3 term-
ination

0

0

0

0

0

Fatail
error

Card
Reader

0

0

Over/
underrun

Mark
sense
mode

40 -column
mode

51-column
mode

External
clock
track

Read
check

ASCII
code
error

0

0

0

0

0

0

Fatal
error

Card
Reader/
Punch

0

0

Data ser-
vice rate

error

Invalid
ASCII
code

Punch
echo or
read reg-
istration

Light/
dark
check

Card
jam

0

0

0

0

0

0

0

0

Fatal
error

Printer

0

0

0

End
of
form

0

0

0

0

0

0

0

0

0

0

0

Fatal
error

Diskette

0

0

Over/
underrun

Deleted
field

Read
error

Device
fault

Missed data
synchron-
ization

Unsuccessful
search

Two-sided

0

Seek error

0

0

0

0

Fatal
error

Lark Disk
Cartridge

Disk

0

Over/
underrun

Write
protect
error

Read
error

Invalid
seek

Missed data
synchron-
ization

Unsuccessful
search

Missed
clock
pulse

Missed
sector pulse

Seek error

0

0

0

0

Fatal
error

Cartridge
Module Disk
and Disk

Storage Unit

0

Over/
underrun

Write
protect
error

Read
error

Invalid
seek

Missed data
synchron-
ization

Unsuccessful
search

Missed
clock
pulse

Successful
retry

0

0

0

0

Fatal
error

Magnetic
Tape

0

Retryable
error

Write
protect
error

Corrected
media
error

Tape
mark

BOT

EOT

Long
record

Nonretryable
error

0

Operation
check

High density

0

0

Fatal
error

NOTES

1. Nonexistent resource, bus parity, and uncorrected memory errors are combined into bit 15
of Ii_ST, but each occurrence is noted separatrely in the RCT.

2. The online drivers will flag corrected memory errors and driver or hardware corrected
errors in the RCT*

3. This table applies to MDC connected devices only.

6-12 CZ05-00

CALLER INTERFACE WITH DEVICE DRIVER

To request execution of an I/O operation, the caller must
issue a $RQIO macro call with $B4 pointing to the IORB to be
serviced. If the IORB specifies synchronous I/O (W-bit reset),
the issuing task is suspended until the I/O operation is
complete.

If the IORB specifies asynchronous I/O, the instruction at
the return point is executed as soon as the system queues the
IORB on the driver's level. The application may issue a $WAIT or
$TEST macro call when appropriate for the asynchronous request.

Upon return from a synchronous request, the caller must check
the Rl register to see if the request was successful. Upon return
from an asynchronous request, the caller must check Rl to see if
the request was accepted and successfully initiated. For either
type of request, any invalid user argument is indicated in Rl.
Hardware errors are defined in IORB entry I_ST (see Table 6-4).

Residual range denotes how much of the requested data
transfer was actually performed. If I_RSR equals zero, all data
was transferred. For an asynchronous request, register Rl would
be checked on return from the Request I/O macro call; Rl, I_ST,
and I_RSR should be checked after return from a $WAIT macro call.

Those fields not shaded in Figure 6-1 must be initialized by
the task requesting the I/O operation. The remaining fields are
set by the driver to return information about the I/O request to
the caller or are controlled by the Executive. Table 6-3
describes the -purpose of each field.

Other information needed to perform the I/O request is found
in the IORB. The caller-supplied standard function code in I_CT2
is mapped by each driver into one or more device functions
required to perform the actual request.

The LRN supplied by the caller in the IORB serves as a device
identifier.

DEVICE DRIVERS , ,

The remainder of this section discusses the device drivers in
the following orders

• Card reader/Card reader-punch driver
• Printer driver
• Disk driver
• ASR/KSR and console drivers
• Magnetic tape driver.

6-13 CZ05-00

Card Reader/Card Reader—Punch Driver

The card reader and card reader-punch devices are serviced by
a single driver. The driver uses six function codes; i.e., read,
write, write file mark (reader/punch only), connect, disconnect,
and wait online. In addition, its IORB word I_DVS can be coded
to define the character code of the input? namely, ASCII or
verbatim. These values are specified in the IORB as defined in
Table 6-5.

The translation/mapping of these codes from punched card ,
format into memory on reading is described below.

In addition to the standard driver functionality discussed
earlier, this driver also:

• Detects and discards unsolicited interrupts

• Detects an end-of-file condition and sets the appropriate
return status (ASCII GS character in column 1 of any
card=EOF)

• Detects "device not ready" condition and sets appropriate
error condition.

ASCII MODE

In this mode, punched cards are processed as shown in
Figure 6-2. Each card column consisting of a 12-bit ASCII card
code is converted into an 8-bit ASCII byte and stored in the main
memory.

The ASCII card code table as specified in American National
Standard X3.26 is given in Table 6-5. Note that no multiple
punches in rows 1 through 7 are allowed and, thus, the 12-bit
•card code allows a maximum of 256 unique codes to be defined.

Translation is done by the card reader attachment that also
provides a software-visible IORB status indicator that is set
whenever an invalid ASCII card code is detected*, This error
condition is signaled by a 0107 in the Rl register if any card
column read had a hole pattern that was not one of the legal hole
patterns given in Table 6-5„ The invalid card code causes an
ASCII-EO (all Is) code to be loaded in the main memory.

6-14 CZ05-00

COLUMN COLUMN
N N»t

r n//
12

11

0

1

2
3
4

:
y

9
u-~u 1 1 U-.J

-

•YTfS
«CAO

NOTES: I Thit triralMor will promd* • Macui i
wilt be m nh«rni«i' in ilhgil HolMritti cod* >* rud.

i Tto gmtUtof sfwwn ibon t« MI *• ord rtcdw
Mtactwwm.

Figure 6-2. ASCII Card-to-Memory Code Formatting

VERBATIM MODE

In this mode, punched cards are processed as shown in Figure
6-3. The card column pattern is stored in bits 4 through 15 of
the main memory word with bits 0 through 3 set to zero. All
two-hole patterns are valid during a verbatim mode operation.
The device-specific fields in the IORB are given below.

MCA.

K*1

/ 12
11

1
1
2

S
8
7
j
9

3 S «

1 I 1
1 1 I
1 1 /
1 1 ' /

! i /i ' ii /i /
i ! 1
L J ~ \

t...
a r u fr

WOHOM

7 < 9

mono N*I

Figure 6-3. Verbatim Mode Formatting

6-15 CZ05-00

0)

<u
73
0
U

M
M
U
CO

I
£
4J
•ft
U
0)

o
DC

in
i

0)

..

^0

•̂

«"

«*

«"*

e

.••"

.-•"
<s

«.•
• "°

• •™
•

..•
•

.-•"
«)

•••

•••"

.-••
2S22

^
M

•V

*S

«

40

«

«>

«

PO

«

t»

*>

«

<«3

-

•

hX

£

«

•

^
1
4

*•

M
I-
M

II

r*
2

3

?
A

I

IM
I-
fr
M

-l
ll

4

f*>

Z

*> —

T
<« V

e«

2
ai
*
ii

-iis

•

i

M
I-
M

-i
.

1

|

A

i1 1
 t-«

H
 I-S

<»

«J

2

1

2

«««

*&~
<5

J

is

??*s

i

1

;

M
l«

4
-i
ll

i

3
U

-0
9

4
J

B

«

4

*•»

^

M

5
*»

4
*"0

«p
as —

M

fe>
1 «G

"5

*e

X*« r>c
«l —

«

8"°

i-t
i-M

-i
 I

i-
i
1
4
4
-1

 1

A

*

i
«
?'

i

1=3

«

PO

M

f*3
w4

«
^

«S

«5

ii
xA
B ̂*,«=

«)

i

^

i
(*»

T

i

1
4

i

:

I
«

*
2

«

a5

e=»

2

•»f

^S

S*

*

s

«•)

a
il
-M

il
l

i
#•)

•M

4

I

(.

w
•>

(»

<F>

;

<^

32
«9

^2

T

t s

««
< W
X*.

"?

W)

s

T
«f

I

•»

T

i
4

I

•*«>

g

1

i

»s
2

4 =

5~we*

, •»
*•?
«

••

«

i

lliH
M

U

i

M

^

4
4

*
#>0

<»

*«^

;

$

4;

*3
e*

»ss

. S

i!

ai

^

.I
4
-M

4

I

1
*»

4
J

 1

i

•»

*

4«

2

!
4

$

«S

*sS

4

ll

€̂fe

Si

ta

1

5

«i

i
A

^>

?

j
I

4

j

S

;

,5

_S

<n

2

4
«tee>

^•«

*
§

sIt-t-W
-ll-t

•f
«r

•«

f
«f

4

f*

^»
4

&

<•*
«P

4

§

«

M

»s
2

n

T2

II
Mfe$

£
«

^

i
•«

4

?

i
r*

5
A

4

••i

•¥

*«•

S
<•«
J

«
MM

f

t
#^

» «

^
(̂

>2

—

s

«

It-H
-frll-l

I
f-t-t-0

-t

5

«
4

**7*

«

;
A

s

•T

I

•»

M

£

«
^3

«•»

^ s
f
1»
fC

.i
T
«?
•»

«» —

^
«

-S

A3

8

M

I

I1
-0

4
4
-I

 1

;
A
T

^

M

*C

•9

*
n

T

*

4
«w

*
T

4

T
s~

•«• «

_

•M

-I

«|

*»

5

4

3

1
1
-1

1
4
4
)1

;

•»̂

?
A
i
A

f

4
<*
M

4

M

^

4
< —

2-

^3

<^

_s

J
2

&*

v
•

M

li-M
-e-u-ti
"

O

3

?
3

5
A

•»

5
A

r*
4Pk

A

i
••»
2

î
H4

f

r«

.!
e ~

f*
c. o

^.4

f*

§5
r*
•»

ai

0»

=

6-16 CZ05-00

CARD READER/CARD READER-PUNCH DEVICE-SPECIFIC IORB FIELDS

Table 6-6 defines the device-specific fields in the IORB not
previously defined. Refer to "Driver Functions and Function
Codes" earlier in this section.

Table 6-6. Card Reader/Card Reader-Punch IORB Fields

IORB
Word Field Definition Use

I_CT2 Function code 0 = Wait online

1 = Write

2 = Read

3 = Write file
mark

A = Connect

B = Disconnect

See "Wait Online
Function" earlier in
this section.

Driver "writes" card
for "range" number of
bytes.

Driver "reads" card
for "range" number of
bytes.

Driver "writes" end-
of-file card.

See "Connect Function"
and "Disconnect
Function" earlier in
this section.

I_RNG Range Olrange^S2K-1 If range is greater
than card size,
residual range
reflects the
difference.

IJDVS Device-specific 0 12 13 14 15

0 0 mode

mode: 0=ASCII
2=verbatim

Defines character set
of data being read.

Residual range 01 initial range Detects device
malfunction.

6-17 CZ05-00

CARD READER/CARD READER-PUNCH HARDWARE STATUS CODE MAPPING

The card reader/card reader-punch controller returns to the
driver various codes, which are made visible to the application
by way of the IORB as shown in Tables 6-7 and 6-8.

Table 6-7. Card Reader IORB Hardware/Software
Status Code Mapping

Hardware
Status

0
1
2
3
4
5
6
7
8

12
13
14
15

IORB Word
I_ST

— ,

-2
3
4
5
6
7
8

-
15
15
15

Meaning If Bit Set .. _

Device ready
Attention
Data ^rvice rate error
Mark . anse mode
40-column card mode
51™column card mode
External clock track
Read check error
ASCII code error

Corrected memory error
Nonexistent resource/fatal error
Bus parity error/fatal error
Uncorrectable memory error/fatal error

Table 6-8. Card Reader/Punch Hardware/Software
Status Code Mapping

Hardware
Status

IORB Word
I_ST Meaning If Bit Set

1
2
3
4
5
6
7

2
3
4
5
6

Device ready
Attention
Data service rate error
Invalid ASCII code
Punch echo or read registration
Light/dark check
Card jam

12
13
14
15

15
15
15

Corrected memory error
Nonexistent resource/fatal error
Bus parity error/fatal error
Uncorrectable memory error/fatal error

6-18 CZ05-00

Printer Driver

The printer driver performs all data transfers to all line
and serial printers as well as terminal print devices. Format
control of printing can be achieved by supplying a control byte
as the first entry in a data buffer. The control byte is
included in the range count of the IORB for the request. The
presence of a control byte is indicated by bit 4 of the lORB's
I_DVS word.

PRINT CONTROL BYTE

The format of the control byte is:

Bit:

Field:

0

Y

1

PP

2 3

V

4 7

COUNT

The control byte, if supplied, is interpreted differently by
line printer and terminal printer devices. The significance of
the control byte for both device types is shown in Table 6-9
under "Action Caused".

Table 6-9. Print Control Byte

Field Action Caused

Line Printer
(Space Before Print)

Not used.

Terminal Printer
(Space After Print)

Use carriage
return and/or
line feed in
IJDVS.

Ignore carriage
return and/or
line feed in
I_DVS.

6-19 CZ05-00

Table 6-9 (cont). Print Control Byte

Field Action Caused

Line Printer
(Space Before Print)

Terminal Printer
(Space After Print)

PP 00 Print? ignore V and count/fields;
single space to end-of-form;
then skip to head-of-form.

01 Do not print; perform actions
defined in V and count fields.

10 Print; perform actions defined in
V and count fields.

11 Reserved for system use.

Not used.

V 0 Prespace according to count field.

1 If count - 0, skip to head-of-
form« If count is between 1 and
11f and the VFU option is present,
skip to the VFU channel defined by
the count field.

If count is greater than 11, or
there is no VFU option, do one
prespace.

0 = No prespace.

1 = Prespace three
lines; count
field must be
0.

Table 6-10 summarizes control byte settings as hexadecimal
and ASCII values.

Table 6-10. Print Control Byte Summary

Code

Hexadecimal ASCII Resulting Action

Line/Serial Printers

00-1F

20-2F

NUL-US Single spacer then print; skip to head-of-
form at end-of-form.

Space count lines; do not print.,

6-20 CZ05-00

Table 6-10 (cont). Print Control Byte Summary

Code

Hexadecimal

30-3F

40-4F

50-5F

60-6F

70-7F

ASCII

0 - ?

6 - 0

P - -

\ - o

p - DEL

00-OF

" 20-2F

4Q-4F

10-1P)
30-3F)
50-5F)

60-6F

70-7F

A - /

6 - 0

\
0 - ?
P - _)
1 - o

p - DEL

Resulting Action

Line/Serial Printers (cont)

Skip to VFU channel number in count, do not
print.

Space count number of lines, print.

Skip to VFU channel number in count, print;
50 = skip to head-of-form.

Reserved for future use.

Reserved for future use*

Terminal Printers

No prespace, print.

Prespace three lines; print.

Reserved for future use.

Reserved for future use.

These conventions permit a control byte (e.g., 41) to be used
with a printer driver (whose default I_DVS word is all zeros) ,
and with an ASR/KSR driver (whose default I_DVS word is
hexadecimal 30), without extra spacing or overprinting. Both
drivers support a terminal format convention that does not
require a control byte* This convention treats the first byte of
the range as data, with spacing as follows:

ASR/KSR - Print, followed by carriage return and line feed
(if specified by I_DVS).

Printer - Space one line or skip to head-of-form if at end-
of-form, then print.

Bit 4 (F-bit) in I_DVS controls format selection (see Table
6-23).

6-21 CZ05-00

PRINTER DEVICE-SPECIFIC IORB FIELDS

Table 6-11 defines the IORB fields whose contents are
specific to the printer driver.

PRINTER HARDWARE/SOFTWARE STATUS CODE MAPPING

Table 6-12 indicates the hardware/software status code
mapping for printers.

Table 6-11. Printer IORB Fields

IORB
Word

I_CT2

Field

Function code

Definition

wait online
write

Use

See "Driver Function and
Function Codes". Driver
will "write" from I_ADR
"range" number of bytes.

I_RNG Range If range is greater than
line size, residual
range reflects the
difference.

I_DVS Device-specific 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
O O O O F O O O O O O 0 0 0 0 0

F: 0 = Assumes line printer format
control (control byte)

1 = Assumes terminal format control
(no control byte)

All other bits must be zero.

I_RSR Residual range See Note

I_ST Software status
word

Shown below Mapped from RCT hardware
status.

NOTE

For cases where original range is less than or
equal to line length, the value in the residual
range has the following meanings;

0 - Completed space/print operation.

other - Residual spacing value is contained in the
value I_ST value field.

6-22 CZ05-00

Table 6-12. Printer Hardware/Software Status Code Mapping

Hardware
Status

0
1
2
3
4
5
6
7

12
13
14
15

IORB
I_ST

_

-
2
3
4
5
6
7

-

15
15
15

Meaning If

Device ready
Attention
Lost data
End-of-f orm
Lines per inch
Protocol error
Power up
Eight bit mode

Bit Set

: 0 - 6; 1 = 8

Corrected memory error
Nonexistent resource/fatal error
Bus parity error/fatal error
Uncorrectable
error

memory error/fatal

Disk Driver * . .

A single disk driver supports the following disk devices:
diskette, cartridge disk, Lark disk, cartridge module disk, and
mass storage unit.

DISK DRIVER CONVENTIONS FOR DISKETTE

The following driver conventions apply to diskette:

• The disk driver supports both 8 inch and 5 1/4 inch
diskette devices. For the 8 inch diskette, both single-
and double-sided diskettes may be used. Support of the
5 1/4 inch diskette consists of double-sided and
double-density.

• The driver does not explicitly reference the volume ID of
the diskette? therefore, the user must ensure that volumes
addressed are on the proper drives.

• All sector addresses used in the IORB are relative to
track 0/sector 0.

• The driver converts the volume relative sector number,
defined in the IORB, into physical track and sector
numbers, and to a "side" value for two-sided diskette,
which it then sends to the device to define the operation.

6-23 CZ05-00

• The driver can support more than one diskette device, as
long as each device is configured at a different level.

• A diskette sector is 128 bytes long (8 inch) or 256 bytes
long (5 1/4 inch). If range is less than sector length, a
write command will zero fill the rest of the sector. If
range is greater than sector length on either a read or a
write, the driver will read/write multiple sectors
including switching to the next adjacent track, if *
necessary.

• There are 16 sectors per track for 5 1/4 diskette; 26
sectors per track for 8 inch diskette.

• There are three models; .

1 track per cylinder;
77 cylinders

2 tracks per cylinder;
77 cylinders . -
80 cylinders ,„

• If hardware errors occur, the operation (seek or read/
write) will be retried up to eight times (five retries and
three retries with recalibrate).

•- If the device is not ready, a return status of "device not
ready" (5) will be returnede

" --c;'(•-.- - i
Diskette IORB Fields ' - " . I- „ ,-:arr zn;-;-;cr, . <; . -

e

Tables 6-13 and 6-14 define IORB fields specific to
diskette. Other IORB fields are described in Table 6-3.

Table 6-13. Diskette IORB Fields

IORB
Word

I_CT2

Field

Function code

Definition

0 = wait-online
1 » write data
2 - read data
5 = format write
6 = format read
E - read disabled

device

.
Use

Specifies I/O oper-
ation.

t ' ' f

" J i

„! ^ ,

6-24 CZ05-00

Table 6-13 (cont). Diskette IORB Fields

IORB
Word Field Definition Use

I_DVS Device-specific Relative sector
number

Driver converts this
to physical track
number and physical
sector number on the
track, and to a "side1
value for two-sided
diskette.

I_ST Software status Shown below Hardware status word
from diskette
(following I/O).

I_RSR Residual range 0 ̂ original
range

Residual range will
always be equal to
zero (i.e., transfer
completed) unless
there is a hardware
malfunction, or an
invalid track number
is supplied during a
read or write
operation.

NOTE

To ensure compatibility of an application with
other devices, clear to zero the IORB words I_RSR
and I_ST before making an I/O request.

Table 6-14. Diskette Hardware/Software Status Code Mapping

Hardware
Status

IORB
Meaning if Bit Set

0
1
2
3
4

2
3
4

Device ready
Attention
Data service rate error
Deleted field
Read error

6-25 CZ05-00

Table 6-14 (cont). Diskette Hardware/Software Status Code
Mapping^

Hardware
Status

5
6
7
8

10
12
13 ,
14
15

IORB
I_ST

5
6
7

-
10
-15
15
15

Meaning if Bit Set

,v
Device fault
Missed data synchronization
Unsuccessful search
Two-sided diskette

Seek error
Corrected memory error
Nonexistent resource/fatal error
Bus parity error/fatal error
Uncorrectable memory error/fatal
error

DISK DRIVER CONVENTIONS FOR CARTRIDGE DISK

The following driver conventions apply to cartridge diski

• Sector size is 256 bytes? there are 24 sectors per track.

• The driver does not explicitly refer to the volume ID of
the disk; the user must ensure that the volumes addressed
are on the proper drives.

• All sector addresses-used in the IORB are relative to
cylinder Qf track Qf sector 0.

• The driver converts the volume relative sector number,
defined in the IORBr into physical cylinder/ track, and
sector numbers, which it then sends to the device to
define the operation

• There are two modelss '

2 tracks Per cylinders ' '
204 cylinders
408 cylinders • , " >

• Cartridge disk requires two LRNs, one for the fixed and
one for the removable platter.

• Cartridge disk driver logic combines seek and data
transfer functions. When errors occur, eight attempts are
made to correct an errort four seek/data transfers and
four seek/data transfers with recalibrate.

6-26 CZ05-00

• Offset read capability is provided by specifying the
desired displacement in the I_RSR field of the IORB.

• Offset write capabilities are not provided.

• When the driver notes a change in the ready state, it
disables the device (by a software switch) and notifies
the file manager, which executes the automatic volume
recognition procedures.

Cartridge Disk IORB Fields

Tables 6-15 and 6-16 show IORB fields specific to the
cartridge disk. Other IORB fields are described in Table 6-3.

Table 6-15. Cartridge Disk IORB Fields

IORB
Word Field Definition Use

I_CT2 Function Code

I DVS Device specific

I_ST

I RSR

Software status
word

Residual range

0 = Wait online
1 - Write
2 = Read
5 = Format write
6 = Format read
E = Read disabled

device

Relative sector
number

See Table 6-16

0 i original
range

Specifies I/O
operation.

Driver converts this
to physical cylinder,
track, and sector
number to locate the
data needed.

Hardware status from
disk (following I/O).

Prior to a read, an
offset value may be
specified here so that
reading can begin at a
location other than
the physical sector
boundary; after I/O
operation, the field
contains the number of
bytes not transferred
in the operation.

6-27 CZ05-00

NOTE

To ensure compatibility of an application with
other disk devices, clear to zero the IORB word
I_ST before requesting I/O.

Table 6-16. Cartridge Disk Hardware/Software
Status Code Mapping

Hardware
Status

fr
1
2
3
4
5
6
?
8
9
10
XI
12
13
14

: - 1*

IORB
I_ST

.

-=
2
3
4
5
6
7
8
9
10
-
_

-•=
15

Meaning If Bit Set

Over or underrun
Write protect error
Read error
Invalid seek
Missed data synchronization
Unsuccessful search
Missed clock pulse
Successful recovery
Seek error

j

,

Fatal error . *.-> * J

DISK DRIVER CONVENTIONS FOR LARK DISK

The Lark device is a random access, rotating 8-inch disk with
both removable and fixed platters.

The following conventions apply to Lark devices?

• Sector size is 256 bytes? there are 64 sectors per track.

• The driver does not explicitly refer to the volume ID of
the disk; the user must ensure that the volumes addressed
are on the proper drives.

• All sector addresses used in the IORB are relative to
cylinder 0, track Qf sector 0.

6-28 CZ05-00

• There are two models:

2 tracks per cylinder*:
204 cylinders
622 cylinders

• The driver converts the volume relative sector number,
defined in the IORB, into physical cylinder, track, and
sector numbers, which it then sends to the device to
define the operation.

• The Lark disk requires two LRNs, one for the fixed and one
for the removable platter.

• Offset read capability is provided by specifying the
desired displacement in the I_RSR field of the IORB.

• Offset write capabilities are not provided.

Lark Disk IORB Fields

Tables 6-17 and 6-18 show IORB fields specific to the Lark
device. Other IORB fields are described in Table 6-3.

Table 6-17. Lark Disk IORB Fields

IORB
Word

I__CT2

-*»•

I_DVS

I_ST

Field

Function Code

Device specific

Software status
word

Definition

0 = Wait online
1 - Write
2 = Read
5 = Format write
6 - Format read
E = Read disabled

device

Relative sector
number

•r

j

See Table 6-18

Use

Specifies I/O
operation.

Driver converts this
to physical cylinder,
track, and sector
number to locate the
data needed.

Hardware status from
disk (following I/O) .

6-29 CZ05-00

Table 6-11 (cont). Lark Disk IORB Fields

IORB
Word

I_RSR

Field

Residual range

Definition

0 <L original
range

Use '

Prior to a read, an
offset value may be
specified here so that
reading can begin at a

:-• location other than
the physical sector
boundary; after I/O
operation, the field
contains the number of
bytes not transferred

- in the operation.

NOTE

To ensure compatibility of an application with
other disk devices, clear to zero the IORB word
I_ST before requesting I/O.

Table 6-18. Lark Disk Hardware/Software
Status Code Mapping

Hardware
Status

0
1
2
3
4
5

: •.":"* ,
.•:,7.'"-.

-/- t

:•:'- 9w11
*2

•.,;.: IS,:,

14
IS

IORB
Î ST

-2
3
4
5
6
7
8
9
10
~*

«3

15

Meaning If Bit Set

•• ;• ; •; ;'.' - • • •.

•.

Over or underrun
Write protect error
Read error
Invalid seek
Missed data synchronization
Unsuccessful search
Missed clock pulse
Successful recovery
Seek error

;; ... -- . • .. ; •.'..•-,"?• -3-.;-. '•; •:•:.•' ' ;v-" '••. ̂ i.-* I:;-;

Fatal error

6-30 CZ05-00

DISK DRIVER CONVENTIONS FOR MASS STORAGE UNIT

The following driver conventions apply to mass storage units:

• Sector size is 256 bytes; there are 64 sectors per track.

• The driver does not explicitly refer to the volume ID of
the disk pack, so the user must ensure that the volumes
addressed are on the correct drives.

• All sector addresses in the IORB are relative to cylinder
0, track 0, sector 0. There are four models:

5 tracks per cylinder;
411 cylinders
823 cylinders

19 tracks per cylinder:
411 cylinders
823 cylinders

/
• The driver converts the volume relative sector number,

defined in the IORB, into physical cylinder, track, and
sector numbers, which it then sends to the device to
define the disk address.

• The volume relative sector numbers exceed the maximum
number that may be stored in one I_DVS word. Place high
order bits in I_ST; low order bits in I_DVS.

• The mass storage unit requires only one LRN.

• The driver combines seek and data transfer functions.
When errors occur, eight attempts are made to correct the
errors five seek/data transfers, and three seek/data
transfers with recalibrate.

• Offset read capability is provided by specifying the
required displacement in the I_RSR field of the IORB.

• Offset write capability is not provided.

• When the driver notes a change in the ready state, it
disables the device (by a software switch) and notifies
the file manager to execute the automatic volume
recognition procedures.

6-31 CZ05-00

Mass Storage Unit IORB Fields

Tables 6-19 and 6-20 show IORB fields specific to the mass
storage unit. Other IORB fields are described by Table 6-3.

Table 6-19. Mass Storage Unit IORB Fields

IORB
Word Field Definition Use

I_CT2 Function Code

I_DVS Device-specific

0 = Wait online
1 = Write
2 = Read
5 = Format write
6 = Format read
E = Read disabled

device

Relative sector
number

I_RSR Residual range 0 1 original
range

I_ST Software status
word

See Table 6-20

Specifies I/O
operation.

Driver converts this
to the physical cylin-
der , track, and sector
number to locate the
data needed.

Prior to a read, an
offset value may be
specified here so that
reading can begin at a
location other than
the physical sector
boundary; after I/O
operation the field
contains the number of
bytes not transferred
in the operation.

After an I/O opera~
tion, the field con-
tains the number of
bytes not transferred.

Prior to an orderf
this field contains
the high-order bits of
the relative sector
number. After the
operation, it contains
the hardware status
from device.

6-32 CZ05-00

Table 6-20. Mass Storage Unit Status Code Mapping

Hardware
Status

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

IORBV
I_ST

_

-
2
3
4
5
6
7
8
9
10
-

—
-
—15

Meaning If Bit Set

Over/under run
Device fault
Read error
Invalid seek
Missed data synchronization
Unsuccessful search
Missed clock pulse
Successful recovery
Reserved J

Fatal error

DISK DRIVER CONVENTIONS FOR CARTRIDGE MODULE DISK

The following driver conventions apply to the cartridge
module disk?

• Sector size is 256 bytes; there are 64 sectors per track.

• The driver does not explicitly refer to the volume ID of
the disk? the user must ensure that the volumes addressed
are on the correct drives.

• All sector addresses in the IORB are relative to cylinder
O r track 0, sector 0. The models are:

1 track per cylinder;

411 cylinders (removable, 8-megabyte)
411 cylinders (fixedf 8-megabyte)
823 cylinders (removable, 16-megabyte)
823 cylinders (fixed, 16-megabyte)

3 tracks per cylinders i

823 cylinders (removable, 16-megabyte)
823 cylinders (fixed, 48-megabyte)

6-33 CZ05-00

5 tracks per cylinder;

823 cylinders
823 cylinders

!removable, 16-megabyte)
I fixed, 80-megabyte)

The driver converts the volume relative sector number,
defined in the IORB, into physical cylinder, track, and
sector numbers, which it then sends to the device to
define the disk address.

• The volume relative sector numbers exceed the maximum
number that may be stored in I_DVS word; place high order
sector bits in I_ST, low order sector bits in I_DVS.

• The fixed and removable portions of the cartridge module
disk each require a separate LRN.

• The driver combines seek and data transfer functions.
When errors occur, eight retries are made (five seek/data
transfers, three seek/data transfers with recalibrate).

• Offset reading (not: writing) is provided by specifying the
required displacement in the I_RSR field of the IORB*

• When the driver detects a change in the ready state, it
disables the device, both fixed and removable (with a
software switch), and notifies file management to execute
the system's automatic volume recognition procedures.

Cartridge Module Disk IORB Fields

Tables 6-21 and 6-22 show the IORB fields specific to the
cartridge module disk. Other IORB fields are described by Table
6-3. . -•

Table 6-21. Cartridge Module Disk IORB Fields

IORB
Word

I_CT2

Field

Function Code

Definition

0 = Wait online
1 - Write
2 * Read
5 - Format write
6 = Format read
E = Read disabled

device

Use

Specifies I/O
operation.
* / r **

-i .r -f *

6-34 CZ05-00

Table 6-21 (cont). Cartridge Module Disk IORB Fields

IORB
Word Field Definition Use

I_DVS Device-specific

I_RSR Residual range

Relative sector
number

0 i original
range

Software status
word

See Table 6-22

Driver converts this
to the physical cylin-
der f track, and sector
number to locate the
data needed.

Prior to a read, an
offset value may be
specified here so that
reading can begin at a
location other than
the physical sector
boundary; after I/O
operation the field
contains the number of
bytes not transferred
in the operation.

Prior to an order,
this field contains
the high-order
relative sector bits.
After the I/O
operation, the field
contains the hardware
status, from the
device.

6-35 CZ05-00

Table 6-22. Cartridge Module Disk Status Code Mapping

Hardware
Status

0
1
2
3
4
5
6
7
8
9
10
11 '
12
13
14
15

IORB
I_ST

{

—2
3
4
5
6
7
8
9
10
--

—
-15

Meaning If Bit Set

__
Over/underrun
Device fault
Read error
Invalid seek
Missed data synchronization
Unsuccessful search
Missed clock pulse
Successful recovery
Reserved

Fatal error

ASR/KSR and CONSOLE Drivers

The CONSOLE driver includes all the functionality described
below for the ASR/KSR driver. In addition, the CONSOLE driver
must be used to perform forms processing from an MDC-connected
VIP7200 or VIP7205 terminal.

The keyboard/printer functions of an ASR are supported? the
paper tape reader/punch functions are not. Thus, the K-bit :
within I_J)VS word (Table 6=23) must be zero.

To examine the first character of a message sent in single
character mode (from a local KSR terminal) before the rest of the
message is transmitted, proceed as follows?

1. Issue a single character asynchronous read with no echo
to the terminalc

2. When the read is complete, examine the character; then if
the rest of the message is wanted, write the character to
the terminal (with no carriage return or line feed).

3. Issue a read for the rest of the message (with echo).

Note that the operator terminal (keyboard/printer), when used,
must be configured at LRN=0« For information about dialogue with
the operator's terminal9 see the System User's Guide.

6-36 CZ05-00

Character codes, function codes, and device control available
for the keyboard/printer are described in the following
paragraphs.

KEYBOARD INPUT

• Keyboard input is accepted until end-of-range, or carriage
return, whichever occurs first. The carriage return
character is not included as part of the input data.

• Keyboard control (line feed, carriage return, etc.) is
definable in the IORB.

• Editing characters can control input:

- @ Deletes the previous character entered.

- CTL X Deletes all the previous characters entered on
the same input line.

- \ Character immediately following is treated as
input.

NOTES

1. When CTL X is struck, the characters *DEL* are
displayed on a separate line. Further input
may begin after completion of the *DEL*
output.

2. The back slash character (\) causes the
character immediately following to -be treated
as data and not an editing character; the
backslash itself is not placed in memory.

PRINTER OUTPUT

• Printer output is accepted until end-of-range.

• Timeout period for keyboard/printer operation is 5
minutes.

ASR/KSR IORB FIELDS

Tables 6-23 and 6-24 show IORB fields specific to ASR/KSR
devices. Other IORB fields are described by Table 6-3.

6-37 CZ05-00

Table 6-23. ASR/KSR IORB Fields'*

IORB
Word Field

Definition
Keyboard/
Printer Use

Function code 1 » write
2 •• read
9 * break

notifica-
tion

A » Connect
B = Disconnect

Used by driver to com-
plete the description of.
the requested I/O
function.

I_DVS Device-Specific 0 1
B 0

fiit

B

2 3 4 5 6 7 8 9 10 11 12 13 14 15
O S F T O Q D K E L C M A H

F

(When function code is 9? i.e.,
break control request)

0 * Request break notification.

1 = Abort previous break
notification requests.

0 = Function code 2 implies normal
terminal read.

1 = Function code 2 implies single-
character mode read.

0 - Assumes line printer format
control.

1 = Assumes terminal format
control.

0 = Use control characters in
control functions.

1 » Treat all characters as data;
bypass control character checks
on input.

6-38 CZ05-00

Table 6-23 (cont). ASR/KSR IORB Fields

IORB
Word Field

Definition
Keyboard/
Printer Use

I_DVS
(cont)

Elt

Q 0

K

E

M

1

0

1

0

0

1
0

Stop output immediately on
detecting "attention" when the
detected character has No Stop
bit status (e.g., a "break"
key).

Post "attention" and allow
completion of output transfer.

Read attention character with
input (if present).

Discard attention character on
input.

Transfer to keyboard/printer.
(Must be 0.)

Do not echo keyboard input.

Echo keyboard input.

No line feed at end of
transfer.

1 = Issue line feed after transfer.

0 = Issue carriage return after
transfer.

1 = No carriage return after
transfer.

0 = Transfer mode is 7-bit, with
parity.

1 = Transfer mode is 8-bit direct
transcription mode.

6-39 CZ05-00

Table 6-23 (cont). ASR/KSR IORB Fields

IORB
Word Field

Definition
Keyboard/
Printer Use

I_DVS
(cont)

Bit - Value

A In single-character mode;

0 = Do not abort previously
buffered single-character mode
characters in queues

1 - Abort previously buffered
single-mode characters in
queue.

A On disconnect;

0 » Abort I/O requests on
disconnect.

1 = Do not abort I/O requests on
disconnect.

H 0 = Disconnect with phone hang up.

1 = Disconnect without phone hang
up.

NOTE

The MDC-connected ASR/KSR driver does
riot check bit Hc

I_ST Software status
word

Shown below Mapped by driver from
the hardware status to
tell requesting task the
hardware status of the
I/O operation.

6-40 CZ05-00

Table 6-24. ASR/KSR Hardware/Software Status Code Mapping

Hardware
Status

0
1
2
3

5

-
—8
9

12
13
14
15

IORB
I_ST

.

-2
3

5
6
7
8
9

15
15
15

Meaning If Bit Set

Device ready
Attention
Data service rate error
Parity error (even)

No stop bit
Long record
Checksum error
Control character number 2
Control character number 3

Corrected memory error
Nonexistent resource/fatal

termination
termination

error
Bus parity error/fatal error
Uncorrectable memory error/fatal error

Magnetic Tape Driver

The magnetic tape driver manages all standard data transfer
requests to and from 9-track phase encoded (PE), and 9-track
nonreturn to zero inverted (NRZI) tape drives on one or more
magnetic tape controllers. The tape drive characteristics
supported by this tape driver are shown in Table 6-25.

Table 6-25. Characteristics of Supported Tape Drives

Tape Drive
Type

9-track
NRZI

9-traek
PE

9-track
GCR
GCR mode

Speed
(ips)

45 75 125

X X -

X X -

X X

Density
(bpi)

6250 1600 800 556 200

X X

X X

X

Parity

Odd Even

X

X

X

6-41 CZ05-00

Table 6-25 (cont). Characteristics of Supported Tape Drives

Tape Drive
Type

9-track
GCR
PE mode

Speed
(ips)

45 75 125

X X

Density
(bpi)

6250 1600 800 556 200

X - - -

Parity

Odd Even

X

The driver provides the following callable functions:

• Wait online

• Write
i

• Read (forward)

• Position block (forward and backward)

• Position forward or backward by tape mark, rewind to
beginning of tape (EOT), rewind to EOT and unload.

The driver operates in the following modess

• Odd parity

• Minimum data block, MDB (American National Standard
specifies 18 or more characters per block in write, 12 or
more in read)

• MDB-inhibited (if fewer than the specified number of
characters must be read or written? this mode is
required)„

If MDB mode is specified for a write and the range is less
than 18 charactersr a parameter error is reported. If MDB mode
is specified for a read and the range is less than 12 characters,
you receive the first portion (requested range) of the first
valid block and an unequal length check. If a "short record" is
detected, a corrected media error is reported in status word,
I_ST« If a record of less than 18 characters is written or less
than 12 characters is read,? the inhibit block size check bit (bit
12 of the device specific word, I_DVS) must be set,,

6-42 CZ05-00

Beginning of tape (EOT), end of tape (EOT), and end of file
(EOF) conditions are reported for appropriate user action. If an
error occurs in a case when the operation can be retried, the
driver backspaces and reissues the order up to 32 times before
reporting a hardware error. If an error occurs and no retry is
possible, the driver rewinds and forward spaces to the problem
block and reissues the order once before reporting a hardware
error. The driver does not check the tape volume identifier.

The EOT return status is not returned for read operations;
only the EOT status word bit is set. It is assumed that
appropriate application software conventions will prevent reads
that would force the tape off the end of the reel.

The resident magnetic tape driver is interrupt driven and
must execute with a resident Executive and with the central
processor in the privileged state. It can support, on an
adapter, one data transfer simultaneously with one or more
rewind/rewind-unload orders.

MAGNETIC TAPE IORB FIELDS

Tables 6-26 and 6-27 show IORB fields specific to magnetic
tape devices. Other IORB fields are described by Table 6-3.

Table 6-26. Magnetic Tape IORB Fields

Word

I_CT2

I_DVS

Field

Function code

Device-specific

Definition

0 = Wait online
1 - Write
2 = Read
3 - Write filemark
4 - Position by block (see range)
6 = Position file (see range)

0 12 13-15

0 0 0 0 0 0 0 0 0 0 0 0 1 mode

I: 0 = Normal American National
Standard block sizes

1 = Inhibit sensing for American
National Standard block size

mode: Must be zero.

6-43 CZ05-00

Table 6-26 (cont). Magnetic Tape IORB Fields

Word

I_RNG

I_RSR

Field

Range

Residual range

Definition

Write: 1 through 7FFF

Read: 0=Backspace one block; 1 through
7FFF is valid for data transfer

Position by block: Negative is back-
space? 0 is invalid

Positive is forward
space

Position by file: -2 = Rewind and unload

-1 = Rewind to EOT

0 = Backspace to pre~
^ vious tapemark

1 = Forward space to
tapemaek

Nonzero when physical block exceeds
range*,

6-44 CZ05-00

Table 6-27. Magnetic Tape Hardware/Software
Status Code Mapping

RCT
R_STTS

0
1

-
2
3
-
4
5
6
7
8
9
10
11
12
»
13
14
15

IORB
I_ST

_

-
1
2

-3
4
5
6
7
8
9
10
11

-12
15
15
15

Meaning If Bit Set

Device ready
Attention
Rewinding
Error - Operation can be retried
Must be zero
Write protected /
Corrected media error
Tape mark
EOT
EOT
Unequal record length
Error - Operation cannot be retried
Must be zero
Operation check
Corrected memory error

/ High density
Nonexistent resource/fatal error
Bus parity error/fatal error
Memory error - correction impossible/fatal
error

6-45 CZ05-00

•3
(f

Section 7
LINE PROTOCOL

HANDLERS

This section provides an overview of line protocol handlers.
Subsequent sections describe specific line protocol handlers in
detail.

LINE PROTOCOL HANDLERS

A communications protocol is a set of conventions or rules
for the transmission of data. Communications protocols are used
in the transfer of information between a local CPU and remote
terminal or host CPU.

A line protocol handler (LPH) is the implementation of a par-
ticular communications protocol. Accordingly/ each LPH supports
a specific class of communications device, such as synchronous
VIP terminalsf or a communications protocol, such as the
2780/3780 binary synchronous communications protocol.

The following LPHs can be configured at system building:

7-1 CZ05-00

ATD

The asynchronous terminal driver (ATD)supports
asynchronous terminals, serial printers, and certain
asynchronous data streams. The ATD LPH has five
operational modes; Teletype compatible (TTY), fieldf
block, receive-only printer (ROP), and stream.

STD

The synchronous terminal driver (STD) LPH supports
specific synchronous terminal devices. These devices are
the polled visual information projection (VIP) terminals
and associated ROPs.

PVE

This synchronous LPH supports communications between com-
puters. It emulates the polled VIP protocol for use in
communications with remote Honeywell hosts that support
polled VIP terminalSc

2780/3780 BSC

This synchronous LPH supports communications between com-
puters. It supports a station (device or computer) that
utilizes the 2780 or 3780 binary synchronous communication
(BSC) protocol in communications, with a remote host.

> ,

TTY

This asynchronous LPH supports specific asynchronous ter-
minal devices. These devices are classified as
teleprinter-compatible, and include certain automatic
send/receive (ASR), keyboard send/receive (KSR), and VIP
terminals.

The user may write a line protocol handler if it conforms to
the same internal interface requirements used by the
Honeywell-supplied line protocol handlers.

7-2 CZ05-00

LINE PROTOCOL HANDLER FUNCTIONS

Line protocol handlers transfer data between a communica-
tions device and the application that uses it. These handlers
consist of two parts — one resident in main memory and the other
(called the channel control program (CCP)) resident in the MLCP.

The main memory-resident portion of the LPH is concerned with
the processing of transmitted/received data at the block,
message, or field level. The MLCP-resident component is
concerned with the transmission/reception of the individual data
characters that make up the block, message, or field level data
aggregate.

Main Memory-Resident LPH

The portion of the line protocol handlers resident in main
memory performs the following:

• When the system is bootstrapped:

- Validates communication device types by reading the
device's identification number.

Initializes the communication device and sets it to the
priority level at which it is to operate.

• Validates the application's input/output request block
(IORB) fields.

• Converts user-supplied functions into device-specific MLCP
orders.

• Sets a timer and a monitor for data set status changes.

• Initiates the MLCP I/O operation.

• Detects and processes MLCP I/O interrupts.

• Reads return status from the communication device to
ascertain result of an I/O operation.

• Processes error recovery, when possible.

• Processes unsolicited timeouts and data set status
changes.

• Forms composite status in the IORB, including residual
range, from all of the processed MLCP orders.

• Posts back the application's IORB with the appropriate
hardware and software status information.

7-3 CZ05-00

MLCP-Resident LPH (CCP)

A channel control program (CCP) is the MLCP-resident portion
of an LPH.

Through the appropriate hardware device-pac attached to the
MLCP, the channel control program controls transmission of data
over communication lines* It serves to:

• Store or fetch individual characters in or from the buffer
supplied with the IORB

• Perform translation, substitution, and deletion operations
on individual characters

• Insert/delete protocol or device-specific header or
trailer-information.

MLCP COMMUNICATIONS HANDLER

The MLCP communications handler receives processor orders
from the main memory-resident portion of the line protocol
handler and activates the appropriate channel control program
(see above and Figure 7-1) to process the orders. The handler
alsoi

• Processes a line protocol handler's requests for control
functions or for data transfer operations

• Services interrupts from the MLCP and passes them to the
appropriate line protocol handler.

COMMUNICATIONS SUBSYSTEM OPERATION EXAMPLE

Thes following example and Figure 7-1 indicate the interac-
tion of the communications subsystem's components in the process-
ing of a connect? write? and disconnect request. The opera-
tions described apply to the physical I/O interface, without
reference t© a specific device or line protocol.

This example refers to the communications supervisor. The
communications supervisor resides in main memory and provides the
interface to communications applications programs at the physical
I/O level. It queues application programs' requests for serv-
ices, cictivates the appropriate line protocol handler, interacts
with an application through system software when an I/O order is
complete, and provides a set of common line protocol handler
services (e.g., establishing/disestablishing data set
communications, monitoring for time-outs and data set status
changes).

7-4 . CZ05-00

Examples

1. The communications supervisor receives the application's
connect request through the physical I/O interface, and
passes it to the DIAL channel control program (CCP)
within the multiline communications processor (MLCP).

2. The DIAL CCP establishes a physical communication connec-
tion to the device.

3. The main memory-resident portion of the appropriate line
protocol handler (LPH) processes the logical connection.

4. The communications supervisor passes the application's
subsequent write request to the main memory-resident LPH,
which translates the request into one or more MLCP
communications handler requests.

5. Each MLCP communications handler request results in one
or more orders to the MLCP. (These orders not only
describe the data to be transferred, but also cause the

' invocation and execution of the appropriate CCP.)

6. The appropriate CCP processes each of the write orders,
which transmits the data to the device. During this
time, the main memory-resident LPH terminates itself.

7. When the MLCP senses completion of the data transfer, the
CCP issues an interrupt, which is processed first by the
communications supervisor and then by the MLCP communica-
tions handler*

8. The MLCP communications handler reactivates the main
memory-resident portion of the LPH at the interrupt
levelr to minimally process the interrupt.

9. When processing is complete, control passes to the MLCP
communications handler, which causes processing at the
interrupt level to be suspended.

10. If additional processing is necessary, the main
memory-resident portion of the LPH can schedule itself to
perform post-interrupt processing on a non-interrupt
level.

11. The application's disconnect request is processed in the
same manner as the connect request, but in the opposite
ordero

a. The main memory-resident portion of the LPH performs
the necessary logical disconnect processing.

b. The physical connection is appropriately
disconnected by the DIAL CCP.

7-5 CZ05-00

The logic of the write operation in this example would apply
to a read operation.

7-6 CZ05-00

M
3

64

7-7 CZ05-00

MODEM SUPPORT

For asynchronous devices, the communications subsystem pro-
vides the following modem supports

• Bell System Data Sets: Types 103A, 113F, 202, 212A
• Honeywell modem bypass
• Any modem type defined by the user at system building
• Honeywell-supplied direct-connect cables.

For medium speed synchronous communications, the communica-
tions subsystem provides the following modem supports

• Bell System Data Sets: Types 201A, 201B, 201C, 203, or
208A . „

• Honeywell modem bypass -' - , . , '\- ,

• Honeywell-supplied direct connect cables

• Any modem type defined by the user at system building
time.

For high-speed synchronous communications, the communications
subsystem provides the following modem support:

• Bell System Data Sets: Types 301B or 303. '-^

AUTO CALL UNIT -

When congfigured into the system, the Auto Call Facility uses
an Auto Call Unit (ACU) to initiate a line connection with a
remote auto answer data set. The facility operates in the
following manner:

1, The user associates the Auto Call Unit with a particular
communications channel at system building time by using
the ACU CLM directive.

2, The user enables the Auto Call Facility by setting bit 2
of the I_DVS word to one on a connect request. The
facility is supported by all LPHs.

3, When the connect request is processed, the system
attempts to dial a line, using a list of telephone
numbers supplied at system building, the first entry of
which is null* The first number to be dialed can then be
specified with a Set Dial ($SDL) macro call or with the
Set Autodial Telephone Number (SDL) commando If the
first number on the list is not specified (by the macro
call or command), the system skips to the next number on
the list*

7-8 C205-00

4. The facility dials each number on the list three times at
40-second intervals until the list is exhausted or a con-
nection made/ whichever occurs first.

5. The facility checks that a connection to the modem has
been made.

6. When the connection has been made, control is passed to
the LPHr which processes the logical portion of the
connect request.

The Auto Call Unit supports Data Auxiliary Set Automatic
Calling Units 801A and 801C. The ACU adapter and the adapter for
its associated data line must be on the same controller.

Two data set options are required to use the Auto Call Unit:

• The option that terminates the call, through the data set,
after the DSS (data set status change) goes on

• The option that stops the ACR timer when the DSS goes on.

COMMUNICATIONS SUBSYSTEM ERROR AND CORRECTION PROCEDURES

The communications subsystem detects errors that may occur
over communications lines by means of parity checking, block
checking, and timeout checking.

Parity Error Check

The system sends a parity (check) bit with each transmitted
character. The parity bit, plus the number of character bits set
to 1, will always be an odd or even-numbered total for every
character, according to whether transmission is odd parity (total
is an odd number) or even parity (total is an even number).

The ATD and TTY line protocol handlers support parity error
checking.

Block Error Check

The communications subsystem uses two kinds of block error
checkings the longitudinal redundancy check (LRC) and the cyclic
redundancy check (CRC)c The computed check characters are known
as block check characters (BCC).

LONGITUDINAL REDUNDANCY CHECK (LRC)

The LRC is a simple check that is applied to the entire
message. The system appends an LRC character, which is an
exclusive OR of all the characters in the message, to the end of
every message.

The STD and PVE line protocol handlers use the LRC method.

7-9 CZ05-00

CYCLIC REDUNDANCY CHECK (CRC)

The CRC method is also block-oriented. The system computes
the CRC block check character(s), using special algorithms
applied to the data to be checked. The system then appends the
BCC to the message.

Only the BSC line protocol handler uses the CRC method of
checking errors.

< /" _ »

BSC BLOCK CHECK CHARACTER (BCC)

In ASCII transmission, the 8-bit BCC is the result of an
exclusive OR operation on all bits transmitted, beginning with
the first character following the STX and ending with the ITB ,
ETB, or ETX control character. It is based on the polynomial:

In EBCDIC transmission the BCC is 16 bits, and is calculated
by the system with the checking polynomial:

1 + X2 + X15 + X16 . - - ,«u * <
Timeout Check

After sending a message, the LPH waits for an acknowledgment
from the receiving device. When there is no acknowledgment after
a specific intervalf the LPH retransmits the message.

When there is no acknowledgment after a specified number of
transmissionsf the LPH takes whatever action is specified by the
protocol.

7-10 CZ05-00

Section 8
ATDLINE

PROTOCOL HANDLER

INTRODUCTION

The Asynchronous Terminal Driver (ATD) line protocol handler
supports certain asynchronous terminals, serial printers, and
certain types of asynchronous data streams.

The ATD LPH operates in five modes:

• TTY mode, which supports line-at-a-time transfer of data
to or from any teletype compatible (TTY) terminal.

• Field mode, which supports field and forms processing on
VIP7200, VIP7800, and VIP7300 class terminals.

• Block mode, which supports transfer of blocks of data to
or from any VIP7800 class terminal.

• ROP mode, which supports output to certain receive-only -
printers (ROPs).

• Stream mode, which supports transfer of data on any
asynchronous line that utilizes an X-ON/X-OFF flow-control
protocol. Typically, such a line is associated with paper
tape readers and punches.

8-1 CZ05-00

The ATD LPH can be accessed at the Physical I/O or File
System level. At the Physical I/O level, the LPH is accessed
through the Request I/O ($RQIO) macro call and an associated
input/output request block (IORB). This interface can be used
with any mode of the LPH and provides for complete control of the
selected mode.

The LPH is accessed indirectly through the File System. For
example, to read input from a terminalf an application issues a
Read Record macro call, supplying parameters for the call in an
associated file information block (FIB) «, The File System
translates the macro call and FIB parameters into a $RQIO macro
call and associated read IORB. The File System interface is most
useful in providing a sequential file interface to terminals
(operating in TTY and block mode), serial printers (operating in
ROP mode), and paper tape devices (operating in stream mode).
The File System interface does not support field mode.

The remainder of this section provides:

• A summary of ATD operational modes
• A description of common functions
• A detailed description of each mode.

ATD MODES

A particular mode is selected by means of a connect IORB and
remains in effect until a disconnect IORB is received. The
following subsections indicate the uses of each mode.

TTY Mode f , , ,/' ..'

TTif mode is the default ATD operating mode. The user need
not specify this mode in the connect IORB device specific word
:(DSW). This mode is used primarily by the File Systemf which
treats a terminal (configured by means of the DEVICE directive)
as a sequential fileo In this mode? a terminal can be used as
the input and output file of a task group (i.e., user-in,
user-outr command-=in, error-out) .

TTY mode provides for line-at-a-time input and output.
Character-cancel, line-delete, input-terminator, and escape key
functionality is provided to aid the operator in data entry
operations at the terminal. Support is also provided for a break
key. (The terminal keys that represent these functionalities can
be redefined by the terminal operator through the Set Terminal
File Characteristic (STTY) command.)

TTY mode supports a great variety of asynchronous terminals
including VIF7100, 7200, 7207, 7801, 7803, 7808, 7301, 7303,
7307i TWU1001, 1003, 1005? TN0300, 1200, and other teletype (KSR,
ASR) terminals.

8-2 CZ05-00

Field Mode

Field mode allows forms-oriented processing to be performed
(on certain terminals) by applications such as Display Formatting
and Control (DFC), menu subsystem, and Data Entry Facility
(DEF). A form consists of a series of fields. A field is a
series of contiguous locations on the terminal screen into which
only selected types of data can be entered. For examplef a
terminal operator can enter only "0" through "9" into a numeric
field. The validation of data entered into a field is
accomplished by ATD under application control.

Field mode allows the operator to modify entered fields
easily. The break key is configurable by means of the STTY
command. Break or supervisory messages are displayed in a
communications region (line) on the terminal screen.

Field mode processing is limited to the following terminals:
VIP7200, 7207, 7801, 7808, 7301, 7303, and 7307.

Block Mode

Block mode is supported by the VIP7800 series of terminals.
In block mode, the operator can locally edit terminal input
without ATD involvement. Depression of the transmit key causes
the LPH to receive data from the terminal in blocks of
fully-edited input. Block mode can be used at either the
Physical I/O or File System level.

Terminal input is locally edited by means of cursor control,
character insertion/deletion, and line insertion/deletion keys.
Termination of input is accomplished by depression of the
transmit key. The break key is configurable by means of the STTY
commando When the terminal is operating in no-roll mode,
supervisory messages can be displayed in a communications region

:(line) on the terminal screen.

Block mode processing is limited to the following terminals:
VIP7801, 7803, and 7808.

POP Mpde

HOP mode supports selected serial and letter-quality
receive-only printers (ROPs). This mode provides full
control-byte processing; it also detects and analyzes, in some
cases? printer off-line conditions. ROP mode is supported at the
Physical I/O or File System level.

ROP mode is limited to the following serial printers:
PRU1004, 7007, 7070, and 7075.

8-3 • CZ05-00

Stream Mode

Stream mode allows an application to use a paper-tape reader
or punch that utilizes an X-ON (DOD/X-OFF (DC-3) flow control
protocol. The mode can also be used by two co-operating
applications for the high-speed transmission (up to 9600
characters per second) o£ data over an asynchronous communication
line.

\ -•
Control byte processing enables File System applications to

directly control the operation of stream mode.

. Stream mode requires at least a half-duplex or/ in some
cases/ a full-duplex comiinunieations line.

Stream mode is supported at the Physical I/O or File System
level.

I/O FUNCTIONS SUPPORTED BY ATP

The ATD line protocol handler supports five logical
functions. Each is listed below with its associated function
code (fc).

• Connect (fc = A)
• Disconnect (fc = B)
• Read (fc ̂ 2) -
• Write (fc - 1)
• Define form, field mode only (fc » 5)
« Break (fc » 9).

These functions are requested through the input/output
request block (IORB). An application places in the right byte of
IORB word I_CT2 the code of the desired function. A connect
request establishes the mode in which subsequent functions (e.g.,
read, write) are performed.

IQRB PKQCESSING

The ATD LPH is activated by an application-generated $RQIO
macro «alle Associated with this macro call is an input/output
request: block (IORB) that specifies the operation to be
initiated. The IORB contains a function code/ a buffer address,
and range (in most cases), and parameters that specialize
execution of the requested operation.

Figure 8-1 shows a representative IORB, as required for field
mode processing.

8-4 CZ05-00

WORD

0

$AF

1 + $AF

2 + $AF

2+2*$AF

3+2*$AF

4+2*$AF

5+2*$AF

6+2*$AF

7+2*$AF

8+2*$AF

9+2*$AF

10+2*$AF

11+2*$AF

12-s-2*$AF

13+2*$AF

14+2*$AF

LABEL

1_LNK

1_CT1

1_CT2

1_ADR

1_RNG

1_DVS

1_RSR

1_ST

1_EXT

1_DV2

1_FCS

1_HDR

1_ST2

1_QDP

1_TAB

1_CON

1_LOG

0 1 2 3 4 5 6 7 8 9 A B C D I

' RESERVED FOR SYSTEM USE AS POINTER

RETURN STATUS T W U S 0 R (

S F

) 1

L H N O B O E FUNCTION

BUFFER ADDRESS SAF 1-WORD POINTER
LAP 2-WORD POINTER

RANGE - NUMBER OF BYTES TO BE TRANSFERRED
1

DEVICE-SPECIFIC WORD i

RESIDUAL RANGE - NUMBER OF BYTES MOT TRANSFERRED

, DEVICE STATUS WORD

TOTAL IORB EXTENSION PHYSICAL EXTENSION
LENGTH (IN WORDS) LENGTH { IN WORDS)

DEVICE-SPECIFIC WORD 2

TOTAL KEYSTROKES

READ OFFSET

FIELD MODIFICATION INDICATOR

• DEVICE__ID; RELATIVE RESIDUAL RANGE

EDIT OFFSET (INPUT); TERMINATION CHARACTER (INPUT)
ii

ABSOLUTE ADDRESS INDICATOR; PRE-CRDER READ AND
WRITE CODE; TERMINATION CHARACTERS; VFN VALUE

START OF FIELD ATTRIBUTE TABLE

Figure 8-1. ATD IORB

8-5 CZ05-00

IORB Size

The required size of an IORB depends upon the mode selected
by the application. Field mode requires that an extended-length
IORB be used for all orders (including connect). If a standard
length read or write IORB is received when the terminal is
connected in field mode, that IORB is treated as a supervisory
message.

The other ATD modes require standard-length lORBs. Extended
lORBs can optionally be used when connecting a terminal in block
mode to ascertain the terminal's type (which is returned in the
extended portion of the IORB).

IQRB Device-Specific Word

The device-specific word I=DVS is used in conjunction with
each of the I/O functions. This word serves to modify the
activity of a particular function. For example, the setting of
bit 15 in I_DVS determines whether the communication line is
disconnected on completion of a disconnect function.

Processing Order of IQRBss

An application can issue one I/O order against a terminal (or
line) and wait for its completion, or issue several lORBs. Out-
standing read and write orders and non~abortive disconnects are
queued sequentially. In TTY, field, and block mode, write orders
are processed before read orders if the read order is not in
progress. Define form orders, read and write orders with- the
option to purge outstanding I/O requests, and abortive discon-
nects are executed immediately after being received by the LPH.

Purging Queued IQRBs

In the following cases, the LPH purges queued lORBs and posts
the incomplete orders back to the requesting application:

1. The application issues a disconnect order with an abort
request (purge IORB indicator in I_DVS word of IORB is set
to 0). All read and write orders that are active or queued
at the time of the disconnect order are purged and posted
to the issuing task with a "device unavailable" (010B)
return status.

2. A line disconnect (data set status change) occurs. All
active or queued tread and write orders are purged and
posted with a "device unavailable" return status. Both
the line and station are disconnected.

3. The application issues a purge-all order in field mode.
All active or queued read and write orders are purged and
posted to the issuing task with a "device unavailable"
return status. Both the line and station remain
connected.

8-6 • CZ05-00

4. A break signal is detected (BREAK key pressed) and the
user has previously issued a read-break IORB (i.e.,
function code 9 in I_CT2, and bit 0 in I_DVS set to 0).
See "Break Processing by ATD LPH" below.

5. The application issues a block write order with the purge
option. Active or queued write orders are purged or
posted with "device unavailable" return status. Both the
line and station remain connected.

6. The application issues a block read order with the purge
option. Active or queued read orders are purged or posted
with "device unavailable" return status. Both the line
and station remain connected.

IQRB Error Processing

All ATD modes report errors in the same manner. A 2-byte
error code is placed in register Rl. The left byte indicates the
component detecting the error? the right byte indicates the error
itself. The right byte is also placed in IORB field I__CT1.
Table 8-1 lists the return codes as they appear in the left byte
of X_CT1.

Table 8-1. ATD Return Codes

Status
Byte Meaning

0

1

2

3

4

No error; operation complete

Request block is already busy

Invalid LFN

Illegal wait

Invalid argument(s):

• Improper set-up of IORB
• Improper buffer size
• Improper set-up of data in certain buffers

Device not ready. Reported when the following devices are
in an off-line states TWU1001, 1003, 1005; PRU7070, 7075;
and serial printer attached to VIP7800 terminal

Timeout on order other than connect

8-7 CZ05-00

Table 8-1 (cont)„ ATD Return Codes

Status
Byte Meaning

8

A

B

F

10

Hardware error:

<» Parity error (block mode)
•i Framing error
» Data service error (receive overrun)
• Communications control block service error
« Fatal MLCP error

Device disabled
""*•<*. -. f

• Connect or disconnect pending
• Device logically disabled by system

Controller unavailable " ' '

Device unavailable*

• Read/write lORBs purged by purge option
• Read/write lORBs purged by disconnect
• Read/write IORBS purged by disconnect with queue abort
• Attempt made to connect to a 7800 class terminal that

is in local mode

Inconsistent or illogical request

• Connect order issued against a device that is currently
connected

• Disconnect order issued against a device that is
currently disconnected

• Read/write IOR13 issued? line not connected

• Connect order issued to VIP7800 attached printer when
terminal has already been connected in field mode

• Connect order issued to VIP7800 terminal when attached
printer has already been connected

• Field mode read issued before define form request

• Read request outstanding when new define form request
issued

• Block missed on block mode read

End of file detected (stream mode)

Timeout on connect

8-8 CZ05-00

The status word (I_ST) of the IORB contains additional
information that qualifies the major status code returned in
I_CT1. The significance of certain bits of the status word is
the same for all ATD modes. Table 8-2 shows the meaning of these
bits.

Table 8-2. Status Word of IORB (I_ST)

I_ST
bit

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

Meaning When Bit Set to 1

Mode specific

Mode specific

Data service rate error (receive overrun)

Mode specific

Communication control block service error

IORB purged because of break signal

Mode specific

Mode specific

Framing error

Parity error

Nonzero residual range (read only)

Phone hang-up on disconnect

Mode specific

Mode specific

Mode specific
$

Fatal error '•

• Unrecoverable memory error
• Bus parity error
• Non-existent resource error

For the significance of mode specific bit settrngs, refer to
the descriptions of the individual ATD modes found later in this
section.

8-9 CZ05-00

Return of Device ID

Table 8-3 shows the values returned in the right byte of IORB
field I_QDP when a field or block mode, extended length, connect
IORB completes and is posted back to the application.

Table 8-3. Device IDs Returned in IORB

Value in
I_QDP

45
46
47
49
4A
4B
4C
4D
4E
51
52
57
5F
65
66

Marketing Identifer

VIP7100
VIP7200
VIP7207
VIP7801
VIP7808
VIP7803
TTY
TN 0300

t TN 1200 . , ,
- TWU1003
TWU1005 ,;
TWU1001
PRU7075 -<
VIP7307
VIP7303

SUPERVISORY MESSAGE PROCESSING

When a terminal is processing forms, the supervisory message
•line provides a communication region (typically the bottom line
of the terminal) through which the operator can interact with the
system independently of the forms processing application. ATD
provides support for supervisory messages on the following VIP
terminals when they are connected in either field or block mode:
VIP7200, 7207, 7801, 7803, 7808, 7301, 7303, and 7307.

Supervisory message processing is specified by means of a
non-extended read or write IORB with bit 9 in I_DVS set' to 1.
The use of this bit is optional in ATD field mode, because
supervisory message orders are already distinguished from normal
field mode orders by being non-extended.

The location of the supervisory message line depends on the
ATD modcip and the type and operational mode of the terminal.
When, for example, a terminal is connected in field mode, it
operates; in no-roll mode,, If the terminal is a VIP7200, then the
supervisory message line is (typically) the 24th line* If,
however, the terminal is a VIP7801, then the supervisory message
line is always the 25th line of the terminal.

8-10 CZ05-00

The following diagram shows supervisory message line location
for supported VIP terminal classes and ATD LPH modes.

TTY mode

Field mode

Block mode

VIP Terminal Class

7100

1

N/A

N/A

7200

1

2

N/A

7300

1

3

N/A

7800

1

3

4

where %

1 = When supervisory messages are written to the terminal,
output is at current cursor position. There is no way to
acknowledge the write; all reads are treated as normal
device reads.

2 = Read/write activity is directed to the designated
supervisory message line, which is normally line 24.

3 = Read/write activity is directed to the line 25.

4 = Read/write operation is predicated on the roll bit (bit 9)
of the connect I_DVS. If the terminal is in roll mode
(bit 9=0), writes begin at the current cursor position
and reads are treated as normal device reads. If the
terminal is not in roll mode (bit 9=1), reads and writes
are directed to the 25th line.

All writes to the supervisory message line are truncated to 80
characters.

If supervisory message writes are specified, bit 8 of the
read/write I_DVS becomes significant. If bit 8 = 0 , supervisory
messages must be acknowledged before the write is posted back to
the application. If bit 8 = 1 , supervisory messages need not be
acknowledged by the operatore

In TTY mode, supervisory writes (which are treated as standard
data writes) are not acknowledged. In other modes, the operator
acknowledges a supervisory message by pressing one of the
following keys:

Field mode:
Block mode:

function key 10, CLEAR key, or transmit key.
function key 10.

8-11 CZ05-00

CONTROL BYTE PROCESSING

Control byte processing is a TTY, block, and ROP mode option
that is specified by a bit setting in the I_DVS word of the write
order. When selected, this option indicates that the first byte
of the output buffer is to be used as a control byte. This byte
must be included in the range (I..RNG) value of the write lORBc

An application uses the control byte to cause either a
head-of-j:orm sequence or from one to fifteen line feeds to
precede the display of data. If an application specifies both
head=>of-j:orm sequence and line feeds, only head-of-form sequence
occurs.

If the terminal supports form feed, as do most serial
printers? the head-of-form sequence is a form feed. Otherwise,
as with most video terminals, the head-of-form sequence is a
carriage return followed by three line feeds*

The first bit of the control byte indicates whether any post
order carriage return and/or line feed(s) specified in I_DVS are
to be carried out or ignored (i.e., overridden by the control
byte) . , ,_

Bits In the control byte have the following meaning:

Bit 0:

0 = Perform post-order LF/CR specified in I_DVS
1 = Ignore post-order LF/CR specified in I_DVS

Bits l-2s

00 = Ignore bits 3-7
XX = Process bits 3-7

Bit 3:

0 = Do not generate head-of-form sequence
1 = Generate head-of-form sequence

Bits 4-7 s

Number of lines feeds to be generated; a value from 1
through fifteen; value ignored if bit 3 = 1

The head-of-form sequence, specified by bit 3, is a form feed
for the following devices? TWU1001, 1003, 1005; PRU 7070, 7075,
1004, 7037 c These are stand-alone devices not; attached to a
VAF7821 buffered printer adapter. For other devices,
head-of-form consists of s, carriage return and three line feeds.

8-12 CZ05-00

BUFFERED PRINTER ADAPTER (BPA) SUPPORT

ATD supports the buffered printer adpater (BPA). The BPA
(also called the VAF7821) allows the attachment of a serial
printer (PRU1003, 1005, or 7075) to a 7801, 7803, or 7808 VIP
terminal. An application can use the serial printer when the
attached terminal is connected and operating in either TTY or
block mode. Use of the printer with a terminal connected in
field mode is not allowed.

Configuring the BPA
^

The BPA can be accessed at the physical I/O or File System
level. It must be configured with the ASP directive. If
accessed through the File System, the ASP directive must be
paired with a DEVICE directive specifying a ROP device_unit.

Connecting the BPA

Before issuing write orders to the BPA, the application must
first establish a connection to it. Upon completion, the
application's connect order will be posted with one of the
following status codes in the left byte of I_CT1:

0 - Connect complete

C - Attempt to connect BPA when terminal is connected in
field mode

5 - Attached serial printer is powered off or in an off-line
state

Writing to the BPA

To use the BPA at the physical I/O level, the application
issues I/O orders to the work station with a single LRN that
refers to the terminal display/keyboard and the BPA. A sub-LRN
specified in I__ST differentiates between orders directed to the
terminal display/keyboard and to the BPA. A sub-LRN of 0 refers
to the display /keyboard? a sub-LRN of 1 refers to the BPA.

When the attached printer is servicing a write order, the
terminal keyboard is locked. If the write order specifies a
control byte, only a head-of-form sequence (a carriage return
followed by three line feeds) is supported.

A write order is posted with one of the following status
codes:

0 - Write complete

5 - Attached serial printer is powered off or is in an
off-line state.

8-13 CZ05-00

BREAK PROCESSING BY ATP LPE

In TT5T, fieldr and block mode, break processing is initiated
when the terminal's BREAK (BRK) key is pressed. Results differ,
depending on whether the task issued a read-break I/O order
request for that terminal*

Break Processing with Read Break Request

A task issues a read bzeak request when the IORB specifies a
function code value of 9 in I_CT2 and a value of 1 in bit 0 of
I_DVS. I_ADR of the IORB must have a null address.

The communications supervisor queues read break requests on a
last-in, first-out basiSc

When the terminal's brssak key is pressed, and a read break
request has been issued, the terminal is now in "break mode" for
subsequent I/O requests. Break processing proceeds as follows?

/
1. When a write order is active, and:

a. Bit 7 in IJDVS of the write IORB is 1, the order
completes normally? break processing then begins with
step 2 below

b. Bit 7 in I_DVS of the write IORB is 0, or when a read
order is active, either order is terminated and
posted to the Issuing task with IORB settings shown
in step 2.

2. All other sugnejj read and/or write lORBs are posted back
to their respective tasks with:

a. I«J?SR containing the range value specified in I_RNG

be Bits 5 and 10 of I_ST set to 1

Cc Left byte (status) in I_CT1 has value of 0.

3. The last (last-in, first-out) read break request is
posted to the issuing task with:

a. Bit 5 of I_ST set to 1

b. Left byte (status) of I_CT1 has value of 0.

4. Read and write orders issued by the "broken task" (i.e«,
task in break mode) are posted back (without execution)
with IORB values described in step 2 above.

8-14 CZ05-00

5. Read and write orders from tasks not in break mode (i.e.,
that did not issue receive-break requests) are accepted
and executed.

Break mode remains in effect until a task issues another read
break request or a cancel break request (i.e., until provision
has been made for processing the next break signal). A task
issuing another read break request to a device which is in break
mode is indicating that it wishes to be the task notified of the
next breako A task issuing a cancel break request to a device
which is in break mode is indicating that it does not wish to be
the task notified of the next break; the task to be notified of
the next break is the one that issued the most recent read break
order.

A cancel break request is specified with an IORB having a
function code of 9 in I_CT2 and bit 0 of I_DVS set to 1. A cancel
break request causes one or all queued read break lORBs to be
posted back to their issuing tasks. If bit 1 of I_DVS is 0, the
request specifies the cancellation of only the most recently
issued read break request. If bit 1 of I_DVS is 1, the request
specifies the cancellation of all active and queued read break
requests* The cancel break IORB and purged read break IORB(s)
are posted back to their issuing tasks with:

Bit 5 in I_ST1 set to 0
Left byte (status) in I_CT1 set to 0*

Break Processing with No Read Break Request

When a brea'k signal is recieved and no read break request has
been issued, only the current active order is affected. The
break signal is processed as follows:

1. If there is no active order, the break signal is ignored.

2. When a read order is active/ the order is terminated and
posted to the issuing task with:

a. I_RSR containing the range value specified in I_RNG
b. Bits 5 and 10 of I_ST set to 1
c. Left byte of I_CT1 set to 0.

3. When a write order is active and bit 7 in I_DVS is 1, the
break signal is ignored and the write order completes
normally.

4. When a write order is active and bit 7 in I_DVS is 0, the
order is posted to the issuing task with:

a. I_RSR containing the range value specified in I_RNG
b. Bits 5 and 10 of I_ST set to 1
c. Left byte of I_CT1 set to 0.

8-15 CZ05-00

TTY MODE

The TTY mode of ATD provides for line-at-a-time transfer of
data to or from teletype-compatible asynchronous terminals.

•* _, rr •

TTY mode supports five functions:

Connect
Disconnect D
Read
Write
Break.

These functions are requested through standard-length
lORBs. An application can optionally use an extended IORB for a
connect operation.

A connect order establishes the mode in which the connected
terminal operates. Because TTY is the default mode of the ATD
LPHr an application need not explicity specify the mode in the _,.
device-specific word (I_DVS) of the connect IORB.

Connect Function (TTY Mode)

The following paragraphs describe the options that an
application can specify with a connect order.

AUTO CALL

The Auto Call option, which is supported by all
system-supplied LPHs, is described in Section 7. This option
enables an application to establish a connection with an 801-A or
801-C ACU data set.

-BELL

The default IORB setting for this option allows the output of
bells to a terminal* If the option is not specified, the output
of bells to a terminal is suppressed, even under error conditons.

CHARACTER/BUFFERED

When the terminal being connected is a VIP7801, 7803, or
7808, specification of character mode (which is the default)
causes the terminal to be physically configured in character mode
with the echoplex and roll options set.

8-16 CZ05-00

When the buffered option is selected, a VIP7800 class
terminal is configured in text mode with the no-echoplex and
no-roll options set. This means that data entered at the
terminal is not transmitted (to the LPH) until the transmit key
is depressed. Prior to pressing the transmit key, the operator
can edit information displayed on the terminal by means of the
cursor control and erase keys. When ATD receives and processes
the transmitted data, the LPH acts on any line cancel or
character delete sequence encountered in the data stream. That
is, the LPH does not accept as data the @, \, or CTL-X
characters., This point bears emphasis; the operator of a
buffered terminal who uses the cursor-back key to erase a
character might well forget that pressing the @ key has the same
effect. If the operator mistakenly enters the @ character as
data, the LPH deletes the next character when data is ultimately
transmitted from the terminal. Care must be exercised when
entering teletype control sequences from a buffered terminal.

Connect IQRB (TTY

This subsection summarizes the bit settings that govern the
connect options already described.

BIT SETTINGS OF I_DVS . -]

Table 8-4 shows bits of the connect I_DVS word that are
applicable to TTY mode.

Table 8-4. I_DVS Word in Connect IORB (TTY Mode)

Bit
Number

2

3

13

Bit
Value

0
1

0
1

0
1

Meaning for

Do not use auto dial
Use auto dial

Allow output of bells

Connect Function

to the terminal
Supress output of bells to the terminal

Character mode
Buffered mode

BIT SETTING IN WORD I_ST

This field is signficant when a serial printer is attached to
the terminal by means of a VIP7800 buffered printer adapter
(VAF7821). On connect orders, the field specifies whether the
terminal or attached printer is being addressed. The permitted
values are:

8-17 CZ05-00

0 = Terminal .
1 = Attached serial printer.

Disconnect Function (TTY Mode) • *.''.''

An application uses the disconnect IORB to terminate TTY mode
processing.

The following paragraphs describe the options that an
application can specify with a disconnect order. ,

~ 1. 1 .1* <
ABORT QUEUED ORDERS - - - -.: - .

If the abort option is specified, outstanding lORBs (active
and queued) are terminated with a "device unavailable58 status
(010B). The disconnect order is immediately serviced. If the
abort order is not specified? all outstanding lORBs are allowed
to complete before the disconnect order is serviced.

HANG UP

If the hang-up option is selected, the terminal is physically
disconnected when the disconnect order is serviced. If the
hang-up option is not specified, the communications connection
-remains ctctive after servicing of the disconnect order (i«ec, the
terminal is logically disconnected, but remains physically
connected).

Disconnect IORB (TTY Mode)

This subsection summarizes the IORB bit settings that govern
the disconnect options just described.

i
BIT SETTINGS OF I_DVS !

Table 8-5 shows bits of the disconnect IORB that are
applicable to the TTY mode of ATD.

Table 8-5. IJDVS Word in Disconnect IORB (TTY Mode)

Bit
Number

Bit
Value Meaning for Disconnect Function

14 0

1

Abort outstanding requests

Wait until outstanding requests complete
before disconnecting terminal

15 0

1

Hang up the phone

Do not hang up the phone

8-18 CZ05-00

BIT SETTING IN WORD I_ST

This field is signficiant when a serial printer is attached
to the terminal by means of a VIP7800 buffered printer adapter
(VAF7821). On disconnect orders, the field specifies whether the
terminal or printer is being addressed. The permitted values
are:

0 = Terminal - *
1 = Attached serial printer.

Read Function fTTY Mode)

The following TTY mode read functions support the entry of
data by the terminal operator. They are activated by pressing
terminal keys. In some cases, an application can designate the
key that activates a particular function by means of the Set
Terminal File Characteristics (STTY) command. These functions
are not controllable through the IORB. The read IORB is used to
pass data to the application once it has been entered and edited
by the operator»

OPERATOR FUNCTIONS

TTY mode functions that support data entry operations are the
following: ;

Function

Character delete

Line cancel

Hide

Terminate read

Break

Operator Function Keys

Action

Delete a previously entered
character

Cancel the current line of input

Accept the next character as data
(i.e., do not interpret it as a
control character)

Signal completion of the current
read order

Generate break signal to
application controlling the
terminal

The LPH performs one of the functions just listed when the
operator keys the appropriate code sequence. Typically, the
depression of a single terminal key will generate the proper code
sequence. For example, on a VIP7301 terminal, depression of the
cursor-left key causes the generation of the code sequence 1B44,
which causes the LPH to delete the prior character.

8-19 CZ05-00

The code sequence that initiates a function is determined by
the device-type parameter of the ATD directive. That code
sequence can later be altered by the STTY command.

Table 8-6 shows the initial (default) codes associated with
device-types that can be specified with the ATD directive.

Table 8-6. Default Values of Special Characters by Device Type

Device
Type

VIP7200
VIP7207
VIP7301
VIP7303
VIP7307
VIP7801
VIP7803
--VIP7808
VIP7100
TWU1001
TWU1003
TWU1005
TN 0300
TN 1200
TTY

Character
Delete

Hex

1344
1B44
1B44
1B44
1B44
1B44
1B44
1B44
40
40
40
40
40
40
40

Key-Cap

<-
<-
<-
<-
<-
<-
<-
<-
@
8
@
@
@
@
@

Line
Cancel

Hex

1B4B
I860
1B4B
1B4B
1B60
1B4B
1B4B
1B4B
18
18
18
18
18
18
18

Key-Cap

ERASE
CLEAR
ERASE
ERASE
CLEAR
ERASE
ERASE
ERASE
CTL-X
CTL-X
CTL-X
CTL-X
CTL-X
CTL-X
CTL-X

Line
Break

Hex

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

Key-Cap

BREAK
BREAK
BREAK
BREAK
BREAK
BREAK
BREAK
BREAK
BREAK
BREAK
BREAK
BREAK
BREAK
BREAK
BREAK

Read
Terminator

Hex

OD
OD
OD
OD
OD
OD
OD
OD
OD
OD
OD
OD
OD
OD
OD

Key-Cap

RETURN
RETURN
RETURN
RETURN
ENTER
RETURN
RETURN
RETURN
RETURN
RETURN
RETURN
RETURN
RETURN
RETURN
RETURN

'-Character Delete and Line Cancel

As the preceding table indicates, the operator can delete
characters and cancel linos in two different ways, depending upon
the device type. On some devices, referred to in this context as
hard copy terminals, deleting a character requires depressing the
@ key. On other devices, the cursor back «-) key is used; these
devices are called video terminals.

On hard copy terminals, cancelling a line is accomplished by
depressing and holding the CTL key and pressing X. On video
terminals, the operator uises the ERASE or CLEAR key.

On hard copy and video terminals, editing is performed by ,
different actions, and different information is displayed at the
terminal during the editing operation. However, the modification
of buffer contents and the information returned in the IORB is
the same. The following paragraphs explain in detail the
procedure and process of editing on each type of terminal.

8-20 CZ05-00

Character Deletion on Hard Copy Terminals. Character
deletion is performed on the current line (i.e., before the
carriage return key is pressed). Pressing the @ key deletes the
character immediately preceding the @ character, and, if echo was
requested, displays the @ character. Each succeeding @ entry
deletes another character, from right to left, up to the
beginning of the line.

The I_RSR value in the issuing program's IORB indirectly
reflects the number of characters accepted at the time the order
was terminated. For example, if the operator enters AXC@@B
followed by a carriage return, the I_RSR value shows that only
two characters (A and B) were entered. Note that pressing the @
key does not actually delete a character, but moves back by one
character position a pointer in the read buffer. In the example
just given, X is overwritten by B, but C (though rejected by the
operator and not reflected in the I_RSR value) is present in the
buffer, following B.

Line Cancellation on Hard Copy Terminals. To cancel the
current line (before carriage return is entered), the operator
depresses and holds the CTL (control) key and presses X. This
action deletes the current line, displays the *DEL* message on
the next line. The LPH reissues the read order, using the
original buffer and range. Line cancellation does not clear the
buffer of characters entered into the buffer before the line
cancellation action.

Character Deletion on Video Terminals. Pressing the
cursor-left (<-) key erases from the screen the character last
entered, and removes it from the associated read buffer. When
the completed read IORB is posted to the issuing application,
I_RSR indirectly reflects the number of characters accepted when
the order was terminated. For example, if the operator enters
ABC<-, I_RSR shows only that two characters (A and B) were
entered. Again, as with character deletion on hard copy
terminals, extraneous information may appear in the rest of the
buffer.

Line Cancellation on Video Terminals. The key used is either
ERASE or CLEAR, depending on the device type (see Table 8-6). The
effect is to erase all characters on the current line and to
reposition the cursor to the beginning of the erased line. The
LPH reissues the read order, using the original buffer and
range. Line cancellation does not clear the buffer of characters
entered into the buffer before the line cancellation action.

Read Termination

The operator can terminate a read order in one of three ways.

1. Press the transmit key. *

8-21 CZ05-00

2. Press the user-selectable read-termination key. The
carriage return key is the default termination key on both
hard-copy and video terminals. The operator can designate
another key by means of the STTY command. The terminating
character (generated by carriage return or a
user-designated key) is not stored in the buffer; the LPH
optionally echoes a carriage return and/or line feed to
the terminal.

3. Generate a two- or three-character escape sequence. Any
terminal function key or cursor control key generates a
two- or three-character escape sequence. This sequence
can be used to terminate a read operation, provided that
it has not previously been designated for line cancel,
character delete, or break operations. ATD stores the
terminating sequence in the read buffer and optionally
echoes a carriage return and/or line feed, as
appropriate. The read IORB is posted back to the :
application.

. I
Break

The break key provides an interruption or attention signal to
the system software« After detecting a break, the LPH may
terminate write orders and read orders. For a detailed
description of break functionality, see "Break Processing with
Read Break Request" earlier in this section.

The break key can be changed by means of the STTY command.

Hide Function

The hide function allows the operator to enter as data a
character (such as @, carriage return, and cursor-left) that the
LPH would otherwise interpret as a control character. The hide
function key is a backslash (\). The operator keys a backslash
immediately before the character to be entered as data. The LPH
interprets the backslash as an escape character (i.e., does not ,
place the backslash in the buffer) and echoes the backslash, if
echo was requested. The LPH then stores the next character in
the buffer without interpretation, echoing it if echo was , s /
requested. If the hidden character (immediately following the
backslash) is not printable, it is still stored in the buffer,
but a period (.) is echoed to the terminal.

The backslash key is used for the hide function on hard-copy
and video terminals. The hide function key cannot be changed by
the STTY commando

READ ORDER FUNCTIONALITY

The following options, unlike those just described, are not
under direct control of the operator. Instead, they are
specified by the application in an IORB.

8-22 CZ05-00

Echo

If the echo option is selected, any keyed input is echoed, or
"reflected" back to the terminal. If echo is not selected, keyed
input will not be echoed and the cursor will not move as the
operator enters data at the terminal.

f

Line Feed

If this post order option is selected by the application, a
line feed is sent to the terminal upon completion of a read
order. A line feed is not echoed if the read IORB specified the
no echo or the no line feed option.

/

Carriage Return

If this post order option is selected by the application, a
carriage return is sent to the terminal upon completion of a read
order° A carriage return is not echoed if the read IORB specifies
the no echo or the no carriage return option.

READ IORB (TTY MODE)

An application specifies the options just described by
setting bits in the IORB word I_DVS. Table 8-7 gives the
-individual significance of these bits.

Table 8-7. ATD Word I_DVS in TTY Mode Read IORB

Bit
Number

Bit
Value Meaning for Field Read Function

11

12

0
1

0
1

0
1

Do not echo input or move the cursor
Echo input; move cursor

Do not send post-order line feed
Send post-order line feed

Send post-order carriage return
Do not send post-order carriage return

Write Function (TTY Mode)

The following options are specified by an application in the
write IORB.

8-23 CZ05-00

OFF LINE

If the off-line option is specified/ the LPH detects and
reports a device-not-ready condition (0105) when a TWU1003 or
1005 is disconnected or non-operational. If this option is not
specified/ ATD does not detect or report off-line conditions*

CONTROL BYTE PROCESSING '

If specified/ the control byte option indicates that the
first byte in the output buffer is to be used for pre-order
control. A control byte must be included in the range (I_RNG) of
data to be transmitted. For a detailed description of this
option, including control byte format/ see "Control Byte
Processing" earlier in this section.

QUIT ON BREAK

If this option is specified/ a break signal can interrupt the
execution of the write order. Otherwise/ a break signal cannot
be used to prematurely terminate an active write order,,

CARRIAGE RETURN

If the carriage return option is specified/ a carriage return
is sent to the terminal after the completion of the write order.

LINE FEED

If this option is specified/ a line feed is sent to the
terminal after the completion of the write order.

Write IORB (TTY Mode)

This subsection summarizes the bit settings that govern TTY
mode write options.

BIT SETTINGS IN WORD IJDVS

Table 8-8 gives the significance of the bits in the IORB word
I_DVS that are applicable to TTY mode ATD.

8-24 CZ05-00

Table 8-8. ATD Word I_DVS in TTY Mode Write IORB

Bit
Number

2

4

7

11

12

Bit
Value

0
1

0
1

0
1
0
1

0
1

Meaning for TTY Write Function

Do not check for TWU1003, 1005 off-line conditions
Check for TWU1003, 1005 off-line conditions

Include control byte
Do not include control byte

Stop output on detection of a break
Do not stop output on detection of a break

4

Do not send post-order line feed
Send post-order line feed ^

Send post-order carriage return
Do not send post-order carriage return

BIT SETTING IN WORD I_ST

This field is signficant when a serial printer is attached to
the terminal by means of a VIP7800 buffered printer adapter
(VAF7821). On write orders, the field specifies whether the
terminal or printer is being addressed. The permitted values
are:

;

0 = Terminal
1 = Attached serial printer

Device Configuration (TTY Mode)

Hardware switches on a device connected in TTY mode should be
set in the following positions. (The device may not support all
of the switches mentioned below).

TTY (character) mode:

CHARACTER/BUFFER switch in CHARACTER position

DUPLEX HALF/FULL SWITCH in FULL positon

LOCAL COPY/ECHO switch set as required by user (normally
set to echo)

Speed configured between 110 and 9600 bits per second

ROLL/NO ROLL switch set to ROLL

8-25 CZ05-00

Error Processing

When a parity error is detected in keystroke input, an
audible alarm sounds and the typed character is ignored. When „>.<-.
the read order is posted, the return status in I_ST indicates
detection of parity error(s) (bit 9 = 1). r _ ~

If a framing error or receive overrun conditon is detected,
the read order terminates and a hardware error (0107) is
returned; I.JST indicates the specific reason for abnormal
termination. - -. j ,

TTY Mode Timeout Processing

Timeouts may occur during the processing of read orders. A
timeout occurs when the operator does not terminate the input
operation within 5 minutes after entering the first character.
There is no timeout if the operator does not enter any
characters.

•* *".. -

Write orders do not incur timeouts. :

FIELD MODE

The field mode of ATD allows an application to process a set
"of fields, commonly called a form. In this mode, each field that
an operator keys into the form is validated by the ATD LPH and is
passed to the application,? one field at a time. This mode should
not be used if the terminal itself is performing (local) field
validation and forms processing.

The following subsections define the concepts of forms,
fields, subfields? and field validation.

, - < £~ °
Forms. Fields, and Subfie'Lds

A field is a series of. contiguous locations into which
meaningful data can be entered. A subfield is a portion of a
field (less than or equal to the field size) that accepts data
only in accordance with the definition of the subfield •>•

There are no limits on the number of fields that a form may
contain. Each field may contain one to nine subfields. A field
may not be longer than 80 characters and may not extend over one
line (row) of the terminal display area.

An example of the relationship between field and subfield is
an 8-character alphanumberic employee ID consisting of a
5-character employee number and a 3-character department
designator. The first subfield would be defined as 5 digit
characters and the second subfield as 3 alphabetic characters.

8-26 CZ05-00

INPUT VALIDATION

The input to a subfield is validated by reference to a field
attribute descriptor. A subfield descriptor must specify one of
the following validation/edit attributes:

• Digit (0-9)

• Numeric (0-9, decimal point, minus sign, plus sign, comma)

• Alphabetic (A-Z, a-z, period, space, comma, hyphen,
apostrophe)

• Alphanumeric (all numeric and alphabetic)

• No validation (95-character code set equivalent to the
last 6 columns of the ASCII table, excepting DEL, note
that the hyphen and minus sign are the same ASCII
character, as are the period and decimal point).

When an invalid character is entered into a subfield
requiring validation, an audible alarm is sounded, the cursor
remains in its current position, and the character is not
accepted or echoed. The LPH continues to process the current
order without notifying the application of the input error. When
the field is completed and accepted by the LPH, further
validation may be performed by the application.

For reasons of security, an application may specify (in
I__DVS) no echo for a field. When an invalid character is entered
into such a field, no audible alarm is sounded.

AUTO-INSERT CHARACTERS

An auto insert character is a predetermined character in a
predetermined location within a field. It is defined as a
subfield by the field attribute descriptor.

Consider, as an example, the standard Social Security account
number :

123-45-6789
i

This field occupies 11 positions. It can be defined as an
11-character numeric field, in which case the operator must key
in the hyphen. It can also be defined as follows:

A digit subfield of 3 positions
An auto-insert character
A digit subfield of 2 positions
An auto-insert character
A digit subfield of 4 positions

8-27 CZ05-00

In this case, the operator may not key in anything but digit
characters. The hyphens are inserted automatically by the LPH.

Restrictions

Contiguous auto-insert subfields are not allowed; at least
one other type of subfield must be defined between auto-insert
subfields within a field. An auto-insert must not be the first
or last subfield of a field.

SEPARATE SIGN FIELD

The separate sign subfield allows the operator to enter a
minus 01: plus sign as the first character of a field. If a
character other than a minus or plus sign is entered, a plus is
assumed ,and placed in the buffer associated with the field read
order. The keyed character is then stored in the buffer. If
echo is requested, the assumed plus sign, followed by the keyed
character, is displayed on the screen.

If the operator moves the cursor to the left into a separate
sign subfield, a new value (+• or -) may be entered. However, if
the operator enters another character or moves the cursor right
into the separate sign subfield, the default sign (+) is stored
in the buffer and displayed on the screen (assuming specification
of echo) . • .-r - ^

Restrictions

The separate sign subfield must be the first subfield of the
fielde It may only be used in conjunction with a decimal-point
and digit subfields.

MUST RELEASE FIELD

Must release fields are the same as normal fields with one
exception: the field is not considered complete at end-of range?
the operator must key in a terminator character. Take, for
example, a form containing two fields. One field is a zip code,
defined as digit, length five? the other field is the customer
name, defined as alphabetic, length twenty. In a data entry
environment, the zip code would probabably not be defined as a
must release field? after the operator keys in the five digits,
the cursor automatically moves to the next field. The customer
name field, however, would probably be defined as a must release
field, forcing the operator to key in a terminator character
regardless of the length of the customer name. (Valid
termination characters are defined later in this section under
"Termination of Field™.)

If the operator fails to enter an appropriate termination
character after filling a field (i.e., after entering twenty
alphabetic characters, in the preceding example), an audible
alarm sounds until a valid terminator character is entered.

8-28 CZ05-00

DECIMAL POINT AND DECIMAL POINT PROCESSING

If the decimal point subfield is used, the separate sign roust
also be specified. The separate sign subfield must be the first
subfield of the field. The decimal point subfield must occur
somewhere later in the field description and is used by the LPH
as an aligment position. The decimal point subfield must not
occupy the last position of the field and only one such subfield
can be used within a field.

If the operator keys in a plus or minus sign as the first
character of a field, the sign is stored in the read buffer and
transmitted to the terminal (assuming that echo is specified in
the IORB). If the operator keys in any other character except
the decimal point as the first character, that character is
stored as the second character of the field (following successful
validation). It too is echoed to the terminal if echo is
specified. If the operator keys in the decimal point character,
or if the cursor occupies the position in the field designated
for the decimal point, the decimal point character is stored in
the buffer at the next available position. It is also
transmitted to the screen, assuming specification of echo. The
next character entered is treated as part of the next digit
subfield following the decimal point subfield, and is validated
according to the attributes of that subfield. The operator is
not allowed to move the cursor left into an designated decimal
point position. An audible alarm is sounded if this is
attempted.

Restrictions

This attribute must be used in conjunction with the separate
sign and digit subfields. Also, there can be only one occurrence
of this subfield and it cannot occupy the last position of the
field.

? _^

FIELD DESCRIPTOR AND DEFINE FORM

Before a read order in field mode can be processed, the
application must either issue a define form request or
incorporate a field descriptor in the IORB itself. Bit 2 of
I_DV2 indicates whether the IORB is carrying the integrated field
descriptor along with the read request. If the bit is on, the
field descriptor starts at offset I_LOG in the IORB.
Alternatively, with bit 2 of I_DV2 set off, the application must
issue a define form order that points to a set or table of field
attribute descriptors that define the form.

Integrating a field descriptor in the IORB is the preferred
approach, because an application can more efficiently alter an
integrated descriptor than one that is part of a external table.
After altering the attributes defined by a integrated descriptor,
the application issues a single read order? after altering the
attributes defined by a descriptor in a table, the application

8-29 CZ05-00

must issue a new define form order and a field read order. Two
I/O orders are required rather than one.

USING THE INTEGRATED FIELD ATTRIBUTE DESCRIPTOR * -"'
* -• *v -

When using the integrated field attribute descriptor, the
application must specify in words the total extension length of
the IORB. The integrated descriptor begins at offset I_LOG,
which is the first word of the logical part of the IORB. The
value for the total size of the IORB extension must include both
the si::e of the physical IORB extension (seven words) and the
size of the integrated field attribute descriptor.

USING DEFINE FORM - ; - i * • - • . - .

The following conventions apply to the use of the define form
order and the associated table of field attribute descriptors.

1. The IORB that requests a define form order is physically
extended. '

2. The define form order must be issued before any read
order that refers to the field attribute table pointed to
by the define form order. . *>

3. After a define order is issued referencing a field
attribute table, subsequent define form orders may not be
issued while read orders that reference the initial field
attribute table are outstanding. The define form order
remains active and the associated attribute table is used
for all subsequent field reads until another define form
or a disconnect order is issued/ or a line disconnect is
detected.

4. The table address is passed in I_BAD of the define form
IORB. The range (I_RNG) must specify the length of the
table in bytes. The logical portion of the IORB (I_FCN
through I_CON) must be zero.

5. The attribute table must begin on a word boundary;
consequently, the buffer bit (bit 8) of I_CT2 must be „ —̂'
zero, >

6. Once the field attribute descriptor table and its address
have been established, any subsequent field read order
must specify in I_TAB the word offset to the desired field
attribute descriptor. Accordingly, all field attribute
descriptors must start on a word boundary.

7. The application may organize the attribute table in any
manner that is convenient (as long as the descriptors
start on word boundaries). The descriptors may be -^
interspersed with other information, if conservation of
memory is not a prime consideration. " L

8-30 CZ05-00

8. Conservation of memory can be acheived by the following
measures:

a. If the attributes of two or more fields are exactly
alike, only one descriptor is needed. All read orders
referring to the identical fields would reference the
same descriptor.

b. In some cases, it might be advantageous to apportion
the descriptors describing a form into a set of
attribute tables rather than into a single table. Only
one table of the set would be in memory at a time; when
another attribute table was needed, the application
would issue another define form order.

FORMAT OF THE FIELD ATTRIBUTE DESCRIPTOR

Field attribute descriptors have a single format, whether
integrated into a field read IORB or belonging to an field
attribute descriptor table.

A field may contain one to nine subfields. The field
attribute descriptor consists of the following:

• A one-byte entry defining the length of the field
descriptor

• A one-byte entry defining the must-release attribute

• A two-byte entry defining the type and range of the
subfield (there can be up to nine such subfield
definitions)

• A two-byte field descriptor terminator.

The format of these field descriptor components is shown in
the following diagranu

L M Rl Al R2 A2 e e • Rn* An*

where?

L = Length of field descriptor (in bytes), not including this
byte; a hexadecimal value in the range 5 to 15.

M = Must release field. Bit 4, when set to 1, signifies that
the entire field is designated a must release field* The
other bits are reserved for future use and must be zero.

Entries L and M constitute a 2-byte descriptor header.

8-31 CZ05-00

R = Range of a subfield, in decimal, or zero

A = Attribute of the subfield; a hexadecimal value

Rn* = The value of the last two R and A entries must be zero,
An* to indicate the end of the descriptor. These two entries

constitute the terminator.

If the value of a range byte (R) is greater than zero and
less than or equal to eighty, the value of the attribute byte (A)
has the following significance: j

Value Meaning ,

00 No validation

10 Digit (0-9)

30 Numeric (0-9, decimal point, minus sign, plus sign,
comma) . •*

40 Alphabetic (A-Z, a-z, period, space, comma, hyphen,
apostrophe) - : ; .

70 Alphanumeric (all numeric and alphabetic)

If the value of a range byte (R) is zero, the value of the
attribute byte (A) has the following significance:

Value Meaning ^ ~ -
f ^

00 End of field .\
20-7E Auto-insert character
80 Separate sign * -
81 Decimal position

The range of the total field, specified in I_RNG of the field
read IORB, may not exceed 80 characters. The range value can
normally be computed with the following formulas

range = sum of Rl.c.Rn subranges + number of auto-insert
characters + 1 (if separate sign specified) + 1 (if
decimal point specified) .

fttiper visory Message Processing •- j

When a terminal is in field mode, the application may
"escape™ to a supervisory message line by issuing read/write
orders with standard, non-extended lORBs. Escaping to the
supervisory message line allows two-way communication between
operator and application that does not disrupt the processing of
a form displayed on the terminal. For example: An operator (who
is using a terminal both for forms processing and as an operator
console) receives a device unavailable message on the bottom line

8-32 CZ05-00

of the terminal. The form being processed is not altered by the
supervisory message. The operator acknowledges the supervisory
message and continues processing the form.

IORB VALUES
/

Supervisory messages are designated by a common bit (bit 9)
in the read/write device specific word. The use of this bit is
optional in field mode, because supervisory message orders are
already distinguished from field mode orders by being
non-extended.

if-

Bit 8 of I_DVS becomes significant when supervisory message
writes are specified,, If bit 8 =* 0, supervisory messages must be
acknowledged. If bit 8 = 1, acknowledgement by the operator is
not required.

•

LOCATION OF MESSAGE LINE

If the terminal is defined at system building time as a
VIP7800 or 7300 class terminal, the supervisory message line is
the 25th line of the CRT. If the terminal is defined as a
VIP7200 or 7207, the application may designate (in I_FCS) any
line from 1 through 24 as the supervisory line.

PROCESSING ORDER ' '

Supervisory message orders are processed by ATD in the order
received, with write orders having priority over read orders.
Assume for example, that four supervisory messages are issued and
queued in the order listed: write, read, write, read. The two •>
writes will be completed before the reads are processed.

If supervisory message orders are intermixed with extended
IORB field mode orders, the messages are processed in the order
received, with write orders again having priority over read
orders. Assume, for example, that three orders are issued and
queued in the order listed: field mode read, supervisory write,
supervisory read. The orders will be processed in this order:
supervisory write, field read, supervisory read.

SUPERVISORY MESSAGE CONVENTIONS ,

The following conventions apply to the processing of
supervisory messages:

1. The receipt of a supervisory message by the LPH does not
cause the premature termination of the current order,
whether the current order is a supervisory message or
normal field order.

2. Control byte and post-order control processing does not
apply to supervisory messages.

8-33 CZ05-00

3. If the type-ahead option was selected at connect time, a
supervisory message results in a purge of the type-ahead
character queue.

4. When writing a supervisory message, the application must
not imbed in the message text control sequences that move
the cursor (e.g., carriage return, line feed).

5. The range of a supervisory write order cannot exceed 80
characters. Data in excess of 80 characters is not sent
to the terminal. • ;

6. The operator must acknowledge the receipt of each
supervisory message by depressing function key 10, the
transmit key, or the CLEAR key.

7. The operator can edit a response to a supervisory message
read through the use of TTY edit control characters.

8. The break function is not operational when a supervisory
message read is being processed.

9. An operator keying in a response to a supervisory message
read initiates transmission of the response by one of the
following actionsj

a. Depressing the carriage return key ,

b. Depressing the transmit key '.

c. Entering the number of characters specified in I_RNG
' . i of the IORB issued by the application to read the

operator's response.
*-• f \

10. The range of a supervisory message read order cannot
exceed 80 bytes,. If a longer range is specified, a range
of 80 will be used.

11. ATD field mode applications that specify supervisory
message processing and use the VIP7808, 7803, or 7303 in
word processing mode must set to 1 bit 7 of I_DV2 in the
connect IORB. This action ensures that the LPH keeps the
terminal in word processing mode when servicing , ,
supervisory message requests.

Application Responsibilities in Processing Fields

The application is responsible for:

1. Initializing the read buffer with blanks, underscores, or
semiconstant values.

2. Initializing the terminal display, through a field write
order, with the same initialization sequence set in the
read buffer.

8-34 CZ05-00

3. Justification (left, right) after the field read is
complete.

4. Decimal point alignment after the field read is complete.

5. Space suppression.

6. Logical validation of field content (beyond what is
provided by ATD).

F_isld_

Field mode supports six I/O request blocks?

Connect
Disconnect
Define Form
Read
Write
Break.

All but the break function require an extended-length IORB.
When using an extended length IORB, bit 11 in I_CT1 must be set
on, the right byte of I_EXT must specify a physical extension of
seven words, and the left byte of I_EXT must specify a minimum
total size of at least seven words.

CONNECT FUNCTION

An application selects field mode by using an extended-length
connect IORB and setting bits 8, 9, 10, and 11 of I_DV2 to the
field processing subfunction code of 2. (Bit 10 is set to one;
the other three bits are zero.)

In field mode, the connect IORB can specify the following
optionsc

Auto Call

Specification of auto call in I_DVS enables an application to
establish a connection with either a 801-A or 801-C ACU data
set. The auto call feature is described in Section 7.

Bell

The default setting of I_DVS allows the output of bells to a
terminal. If the option is specified, the LPH suppresses the
output of bells to a terminal even under error conditions. This
meansf for example? that the operator receives no indication when
the LPH rejects entry into a field, or when entry of a terminator
is required (when processing a must release field).

8-35 CZ05-00

Validation Field Notification (VFN)

Specifying the VFN option (in I_DV2) causes the ATD, instead
of issuing a bell, to post back the current read order with a
return status of zero whenever the operator attempts to enter an
invalid character into an active field.

Having specified the VFN option, the application determines
the reason for the termination of the read order. If the order
was terminated by the attempt to enter an invalid character
(e.g., keying an "A" into a numeric subfield), ATD places an
error code in I_CON. Having found this code, the application
issues a supervisory message write to inform the operator of the
error. Once the operator acknowledges the message and the
supervisory message is posted back to the application, the
application can reissue the interrupted field read and cor-.inue
processing from the last valid keystroke (by means of a re.d with
offset, which is described later in this section).

Selectable Field Validation Sets

This option (specified in I_DV2) allows the application to
select the set: of ASCII characters constituting a field type.

There are three validation sets that can be selected:

5>tandard ATD set
7700 set ;

7800 set

User applications must select the default ATD set. The other
validation sets are used by system-supplied software that
supports emulation of VIP7700 and 7804 terminals.

Word Processing Mode (WPM) Indicator

This option is specified (in I_DV2) by system-supplied
software when the word processing graphics mode (WPM) of a
VIP7803,, 7808, or 7303 is to be used. This option is necessary
to provide proper processing of supervisory messages when the
terminal is in WPM mode. %

Cursor Out of Field

If specified (in I_DV2), this option allows the operator to
"cursor out" of a field and thus terminate the read of that
field. The reason for termination is reported by ATD in the
extended portion of the read IORB (I_TAB). If the option is not
selected, the operator cannot use the cursor left key (at the
beginning of a field) or cursor right key (at the end of a field)
to terminate an active field read.

8-36 CZ05-00

Type Ahead

This option, when specified (in I_DV2) helps to prevent the
loss of input characters when a read order is not active (ice.,
when a write order is active and/or a read order has not been
issued by the application.)

If this option is chosen, ATD queues in a 32-character
key-ahead buffer input characters that are keyed when a read
order is not active. Later, when the read order becomes active,
these characters are validated against the field attribute
descriptor and echoed (if echo was requested). Detection of an
invalid character causes an audible alarm to sound and the
type-ahead character queue to be purged. Cursor right and left
and end-of-field conditions are acted on by ATD when the read
order becomes active.

If this option is not selected, characters are accepted only
when a read order is currently active. The keying of characters
when a read order is not active causes an audible alarm to sound.

The type-ahead queue is purged by any of the following
events:

1. An input character in the queue is found to be invalid.

2. The application issues a supervisory message read or write
order.

3. The operator presses the break key.

4. The terminal is disconnected. ', ^ .

5. The application issues a purge-all I/O order.

6. The application issues a read IORB with the the purge
type-ahead queue bit set on.

7. The request issues a read order with terminal enquiry
(ENQ) or with terminal read cursor address (RCA) specified
as pre-order function in the IORB.

VIP7200, VIP7207 Supervisory Message Line

When issuing a connect to a VIP7200 or 7207, the application
can specify (in the right byte of I_FCS) the line (row) to be
used for supervisory messages* Possible values are hexadecimal 0
through 18. If zero is entered, line 24 is used. This field is
ignored if the device is a VIP7800 or VIP7300 class terminal; in
this case, line 25 is always used for supervisory messages.

8-37 CZ05-00

Terminal Type (Device ID)

The application can check the device ID of the connected
terminal by interrogating the right byte of I_QDP in the
completed connect IORB. - -

Connect IORB (Field Mode)

This subsection summarizes the bit settings that govern the
connect IORB options just described.

Bit Settings of I DVS. Table 8-9 gives the signficance of
bits in the connect IORB IJDVS word that are applicable to field
mode ATD.

Table 8-9. ATD Word IJDVS in Connect IORB

Bit
Number

Bit
Value Meaning for Connect Function

0
1

0
1

Do not use auto dial
Use auto dial

Allow output of bells to the terminal
Suppress output of bells to the terminal

Bij;s Setting of I DV2. Table 8-10 gives the significance of
bits oi: the connect IORB word I_DV2 that are applicable to field
mode ATD.

Table 8-10. ATD Word I_DV2 in Connect IORB

Bit
Number

Bit
Value Meaning for Connect Function

5,6

1

00

01

10

No Validation Field Notification (VFN) support

VFN support
s

Use standard ATD field validation set (required
setting)

Use 7700 field validation set (reserved for
system use)

Use 7804 field validation set (reserved for
system use)

8-38 CZ05-00

Table 8-10 (cont). ATD Word I_DV2 in Connect IORB

Bit
Number

7

8

9

10

11

12

13

Bit
Value

0

1

0

1

0

1

Meaning for Connect Function

Terminal is VIP7200, 7207, 7801, 7301, 7307; or
7803, 7808, 7303 and is not operating in word
processing graphics mode (required setting)

Terminal is VIP7803, 7808, 7303 and is operating in
word processing graphics mode (reserved for system
use)

Must be 0*

Must be 0*

Must be 1*

Must be 0*

Operator not allowed to cursor out of field

Operator allowed to cursor out of field
(terminating field read)

No type ahead queue

Type ahead queue is supported

*Bits 8 through 11 must be set as indicated to indicate a field
mode connect*

Bit Settings of ? fCS and I QDP. The right byte of I_FCS
specifies the line (or row) number of VIP7200 or 7207 that is
used as the supervisory message line. Possible values are 0
through 18, hexadecimal. Zero indicates use of the 24th line
(VIP7200 class terminals) or the 25th line (VIP7300 or 7800 class
terminals).

Values Returned °P Completion of a Connect Order. On
completion of the connect order, the right byte of I_QDP contains
the device ID of the terminal (refer to Table 8-3). ^

DISCONNECT FUNCTION (FIELD MODE)

The disconnect IORB is used to terminate field mode
processing. A disconnect IORB can specify the following two
options.

8-39 CZ05-00

Abort Queued Orders

If this option is selected, all outstanding lORBs, even if
active, are terminated with a device unavailable (010B) status.
The diisconnect order is then immediately serviced. If this
option is not selected, all outstanding lORBs are allowed to
complete (in the order of their issuance) before the disconnect
order Ls serviced.

Hang Up 1

If this option is selected, the communications line is
physically disconnected when the disconnect order is serviced.
If this option is not selected, the terminal/line remains
physically connected after processing of the disconnect order
(i.e., the terminal is logically disconnected, but remains
physically connected).

pi,3connect IORB Word I DVS. Table 8-11 gives the
significance of bits of the disconnect IORB I_DVS word that are
applicable to the disconnect options just described.

Table 8-11. ATD Word I_DVS in Disconnect IORB

Bit
Number

Bit
Value Meaning for Disconnect Function

14 0

1

Abort outstanding requests

Wait until outstanding requests complete before
disconnecting the terminal

15 0

1

Hang up the phone

Do not hang up phone

READ FUNCTION (FIELD MODE)

An extended-length field read IORB is used to obtain '%
validated input that has been keyed into a field displayed at a
terminal. The input to a field is validated by means of a field
descriptor, which must be associated with the field read order.
The descriptor may either be integrated into the read IORB or
belong to a table of descriptors pointed to by a define form
IORB. (For further detail, see "Field Descriptor and Define
Form" earlier in this section).

8-40 CZ05-00

Pre-order Control <•

Pre-order control arguments are specified in I_DV2 and I__CON
of the read order IORB. t Pre-order control is used to perform the
following actions prior 'to a field read:

• Positon cursor l

• Issue bell • -

• Erase line (i.e., clear screen from cursor position to end
of line)

• Issue enquiry command (ENQ) to VIP7801, 7803, 7808, 7301,
7307 and read terminal's response

• Issue a read cursor request command (RCA) to terminal and
read current position of the cursor.

ENO and RCA Commands. If the pre-order control request is an
ENQ or RCA command, the read is not treated as a field read.
After sending an ENQ or RCA control sequence to the terminal, the
LPH places the terminal's response in the buffer associated with
the read request.

Before issuing an ENQ or RCA read order, the application must
specify in the read IORB no echo of incoming characters and no
post-order control.

(For more information about the ENQ and RCA commands, see the
hardware documentation-of the terminal in question.)

Termination of a Field Read

An operator intentionally terminates a field read by one of
two actions;

1. The operator types a valid data character into the last
position of a field that is not a must release field.
This action sets I_RNG to and I_TAB to zero.

2. The operator types a control sequence that terminates the
read order. The character(s) making up the control
sequence must fall in certain ranges (defined below) of
the ASCII character set? the significance of the sequence,
however, is determined by the application. Keying a
control sequence sets a non-zero residual range in I_RSR.
The terminator sequence is stored in the I_TAB and I_CON
fields of the IORB, and not the buffer; it is not included
in the residual range calculation or echoed to the
terminal.

Terminating Sequences. The terminating sequence may be a
one-character control character or an escape sequence from one to
four characters long.

8-41 CZ05-00

1. One-Character Terminating Codes. A One-character
terminator must be one of the following ASCII codes:
00-1A, 1C-1F, 7F. Note that codes 10 and 11 are not
treated as terminators by ATD if the terminal is a
VIP7207 or 7307. The use of codes 10 and 11 is not
recommended if compatibility with all terminal types is
desired.

2. Multi-character Terminating Codes. Multi-character
terminators are two-, three-, or four-character sequences
beginning with the escape code IB. The second character
of the sequence must be in the range 20-7E.

A two-character sequence must consist of the escape
character (IB) followed by 20 to 57; 59 to 5A; 5C to 72;
or 74 to 7E.

The VIP7800 and 7300 terminal classes support three- and
four-character escape sequences. The first two characters
must be IB followed by one of the following: 58, 5B, or
73.

Escape sequences longer than four characters are not
supported; the fifth and any successive character(s) are treated
as data.

For further information on escape sequences, refer to
documentation describing a specific terminal.

ATD Handling of Termination Codes

Th€' terminating sequence keyed by an operator is placed by
ATD in extended IORB fields I_TAB and I_CON. The following rules
apply.

1. One-Character qodes. One-character codes are placed in
the right byte of I_TAB and are in the range of 00 - 1A,
1C - IF or 7F.

2. Two~character escape sequences. The escape character (IB)
is not stored. The second character is stored in the
right byte of I_TAB and is in the range of 20 - 7E
(excluding SB, 58, and 73).

3. Three- and four-character escape sequences. The escape
character (IB) is not stored. The second character is
stored in the right byte of I_TAB and is 5B, 58, or 73.
The left byte of I_CON contains the third character; the
right byte of I_CON contains the fourth character. The
value X'OO1 in the right byte of I_CON signifies that the
terminating code is a three-character escape sequence.

8-42 CZ05-00

Entry of Invalid Characters

The effect of entering an invalid character into a field
requiring validation depends on whether the validation failure
notification (VFN) option was selected at connect time.

1. VFN Option Not Selected. An audible alarm sounds (if
output of bells is supported), the cursor remains in its
current position, and the invalid character is not
echoed. The LPH continues to process the current order
without notifying the application of the input error0

2. VFN Option Selected. Field read order is returned to
application with a 0 status in I_CT1. Right byte of I_TAB
contains X'FF1, ̂ indicating that I_CON contains one of the
following error codes?

1 = Illegal entry into a digit subfield
2 = Illegal entry into a numeric subfield - •
3 = Illegal entry into an alphabetic subfield
4 « Illegal entry into an alphanumeric subfield

Residual Range and Relative Residual Range

When a field read order is terminated, the residual range/
returned in I_RSR of the IORB, reflects the maximum cursor
position reached while the read order was active. The relative
residual range, returned in I_QDP of the IORB, reflects the
position of the cursor when the order was terminated. The values
of residual and relative residual range may differ if the cursor
back (<-) key was entered during a read order. Suppose/ for
example/ that the operator keys

AXC<-<-B<-

followed by a carriage return. The residual range shows that
three characters (ABC) were entered; the relative residual range
indicates that the cursor was in the second position when the
order was terminated by a carriage return.

The residual and relative residual range are set equal to the
original range if a read order is prematurely terminated by
depression of the break key? a communication line loss/ a
purge-all/ or an abortive disconnect.

Use of Cursor Keys '

When the operator moves the cursor left (<-) or right (-»
within a field, the LPH"s buffer pointer is adjusted and the
buffer contents remain unchanged. For example/ after the
operator keys

* "•

ABC->-> ;

8-43 CZ05-00

followed by a carriage return, the buffer contains ABCxx, with xx
being the previous contents of the buffer. (The residual range
indicates that five characters were entered.)

Statistics

The botal keystroke count for a field read is returned in
I_FCS of the f:ield read IORB when the order terminates. When the
read order is active/ the count is incremented once for each of
the following;

• Data character (valid or invalid)
• Carsor right (->)
• Carsor Left «-) ;
• Tie terminating character sequence.

Statistics are not returned in the IORB if the read order is
prematurely terminated (e.g., by a communication line loss).

Read With Offset

An application can specify an offset when issuing a field
read order so that the operator can start entering data in the
middle of a field.

When issuing a read with offset, an application does the
following:

/
• Specifies in I_BAD the starting address of a buffer that

contains the data from the field previously read.

• Specifies in I_RNG the size of the buffer pointed to by
I_BAD.

i

• Specifies in I_HDR the offset from the start of a field to
a position within the field where the cursor is to be
placed and where the read with offset is to begin.
Permissible values are in the range 1 through 4F,
hexadecimal.

• Optionally, specifies in I_CON the cursor position to the
start of the field,.

The following example shows the procedure and purpose of
issuing a read with offset*

Examples
/

A 20-character alphabetic field begins in row 2 column 1.
The application previously issued a field read with no
offset, but the field entered by the operator contained an
invalid character in the tenth position of the field. The
application recognizes the error and reissues the read with:

8-44 CZ05-00

• A pre-order bell

• A pre-order positioning of the cursor at row 2, column 1

• An offset of 9 specified in I_HDR

• The address and range of the buffer containing the
previously read data, specified in I_BAD and I_RNG,
respectively.,

During a read with offset, the operator is allowed to cursor
left or right within the entire field. Cursoring out of a field
follows the normal termination rules.

The LPH calculates the residual range and the relative
residual range for a read with offset order as if the operator
had entered the characters preceding the specified offset.

Read with offset may be used with or without the type-ahead
option.

Type-Ahead

If the type-ahead option was selected at connect time, the
application may select the "purge type-ahead queue" option in the
field read IORB. This option causes the LPH to purge the
type-ahead queue before processing the read order. The option is
useful if the application detects an error in field read and
wants to re-issue the read after purging the queue.

Cursor Out of Field

When issuing a field read order/ an application can override
the selection of the cursor-out-of-field option made at connect
time. That is, by setting a bit in I_DV2 of the read IORB, the
application can specify that the operator cannot cursor out of
the field.

Support of VIP7207 and 7307 Terminals

Through support of the ALPHA key and implied numeric shift,
ATD supports data entry operations on the VIP7207 and 7307
terminals^

Alpha Key Functionality. The purpose of this functionality
is to allow the operator to enter alpha (i.e., lower case)
characters from a data entry terminal while the terminal is
shifted to uppercase as a result of numeric lock or implied
numeric shifts It is perceived by the operator as a terminal
function related to character entry, and is not tied into the
field validation operation,, Field validation checks are done
after the character is translated? if the resultant character is
invalid it is rejected at that time.

8-45 CZ05-00

The data entry terminal transmits a code 10 when the ALPHA
key is depressed and a code 11 when the key is released. The LPH
interprets code 10 as a shift to the "alpha" set of characters,
translating the data characters following the code 10 into
equivalent alpha codes until a code 11 is received. ATD so
interprets codes 10 and 11 whether or not type-ahead is in
effect.

When the operator is responding to a supervisory message
read, ATD treats codes 10 and 11 as data, placing them in the
application's buffer; no translation is performed. After the
supervisory message read is complete, the LPH reverts to the mode
(ALPHA or implied numeric shift) that was in effect immediately
before the supervisory read.

Numeric Shift functionality. The purpose of this option
(specified in I_,DV2) is to reduce the number of keystrokes
required of the operator during the entry of numeric data by
enabling the application to shift the state of the terminal
instead of requiring the operator to depress the numeric shift
key. The use of this option is not restricted to numeric type
validation fields, and it can be used wherever it will save the
operator keystrokes. Thus, for alphanumeric fields that
typically consist mostly of digits, this implied shift would
cause the terminal to echo digits and the ALPHA key could be used
to enter the occasional letter.

When a field read with implied numeric shift is requested,
the characters entered are translated before the field validation
operation is performed.

The following is an example of the use of the implied numeric
shift option:

The operator normally enters alpha data. The terminal is set
for alpha; the numeric lock is not set and the ALPHA key is
not used. The application issues an order to read a
three-character alphabetic subfield and a three-character
digit subfield with the implied numeric shift option. The
operator, using the central keyboard (not the numeric
keypad), enters ABCUIO. ABC123 is placed in the application
buffer.

Table 8-12 lists the data codes produced by a key in its
unshifted (alpha) state and shifted (numeric) state. The two
characters shown in each line of the table are produced by a
single key. The first character is produced when the keyboard is
unshifted or when the alpha key functionality is in effect. The
second character is generated when the key board is shifted or
when the implied numeric shift option is in effect.

8-46 CZ05-00

Table 8-12. Data Entry Keyboard Unshifted/Shifted Translations

Unshifted
(alpha)

S (53)
X (58)
T (54)
R (52)
H (48)
G (47)
T (54)
R (52)
W (57)
{ (7B)
{ (7B)
} (7D)
* (5E)
G (47)
B (42)
C (43)
§ (40)
* (2 A)
P (50)
N (4E)
E (45)
Q (51)
% (25)
< (3C)
none
H (48)
/ (2F)
U (55)
I (49)
0 (4F)
J (4A)
K (4B)
L (4C)
M (4D)
, (2C)
. (2E)
D (44)
F (46)
V (56)

Shifted
(numeric)

> (3E)
? (3F)
[(5B)
[(5B)
\ (5C)
1 (5D)
] (5D)
* (5E)
_ (5F)
1 (7C)
} (7D)
" (7E)
- (7E)
none
I (21)
" (22)
f (23)
$ (24)
& (26)
((28)
) (29)
+ (2B)
, (2C)
. (2E)
/ (2F)
/ (2F)
0 (30)
1 (31)
2 (32)
3 (33)
4 (34)
5 (35)
6 (36)
7 (37)
8 (38)
9 (39)
: (3A)
; OB)
- (3D)

Terminal

VIP7207
VIP7307
VIP7207
VIP7207
VIP7307
VIP7207

VIP7207
VIP7307
VIP7207
VIP7307
VIP7303

•i

,

*

VIP7207
VIP7307

•"

NOTES

lc "None" means that no code is generated.

2. Unless specif ied, the code translations apply to
both VIP7207 and 7307 terminals.

3. Keys not represented in the table generate the
same code in unshifted or shifted state.

8-47 CZ05-00

Read IORB (Field Mode)

This subsection summarizes the bit settings that govern the
field read IORB options just described.

Bit Settings of
bits of the field read
field mode ATD.

I DVS. Table 8-13 gives the significance of
ad IORB I_DVS word that are applicablevto

Table 8-13. ATD Word I_DVS in Field Read IORB

Bit
Number

10

Bit
Value

0
1

Meaning for Field Read Function

Do not echo input
Echo input

Bit Settings of I DV2. Table 8-14 shows bits in the field
read IORB word I_DV2 that are significant to ATD.

Bit Settings in I CON. This field can be used to specify
pre-order control. If so used, bit 14 of I_DV2 must be set.
I_CON can be used to specify two kinds of pre-order control

1. Pre-order cursor positioning. The application must
indicate this use of I_CON by setting bit 15 of I_DV2 to
one.

2. Pre—order control other than cursor positioning. The
application must indicate this use of I_CON by setting bit
15 of IJDV2 to zero.

8-48 CZ05-00

Table 8-14. ATD Word I_DV2 in Field Read IORB

Bit
Number

Bit
Value Meaning for Field Read Function

0

1

Do not purge type-ahead queue

Purge type-ahead queue

0

1

No implied numeric shift

Implied numeric shift

0

1

No integrated field descriptor (define-form order
required)

Integrated field descriptor (starting at I_LOG)

0

1

Do not override cursor-out-of field capability

Override cursor-out-of field capability specified
in connect I_DV2 (field read terminates when
attempt is made to cursor-out of a field)

Do not send pre-order bell

Send pre-order bell

12 0

1

13 Do not send pre-order erase-line escape sequence

Send pre-order erase-line escape sequence

14 0

1

I_CON is not meaningful (no pre-order control)

I_CON contains pre-order control information

15 Right byte of I_CON contains pre-order control (see
Table 8-15); left byte must be zero

I_CON contains pre-order cursor positioning
information (see Table 8-15)

8-49 CZ05-00

Table 8-15 shows the values of I_CON when used for either
kind of pre-order control.

Table 3-15. ATD Word I_CON in Field Read IORB.*

Bit
Number

0-7

8-15

0-7

8-15

Hex
Value Meaning for Field Read Function

Pre-Order Control Cursor Positioning Information

01-50

01-18

Defines column coordinate (hexadecimal)

Defines row coordinate (hexadecimal)

Other ;?re-0rder Control Information

00

01

02

03

04

05

06

07

08

09

OA

OB

OC

OD

Must be zero

Line feed and carriage return

Line feed

Carriage return ^_

Bell '
i

Reserved for future use

Reserved for future use

Restore device's default attributes (VIP7800, 7300
class terminals); high intensity (VIP7200 class
terminals)

Low intensity attribute (VIP7800, 7300, 7200 class
terminals)

r ^
Cursor up

Cursor down * (*"

Cursor forward

Cursor back

Cursor home

Erase end of line

8-50 CZ05-00

Table 8-15 (cont). ATD Word I_CON in Field Read IORB,

Bit
Number

Hex
Value Meaning for Field Read Function

Other Pre-Order Control Information (cont.)

OE

OF

10

11

12

13

14

15

16

Erase end of display

Clear (VIP7800, 7300 class terminals);
reset (VIP7200 class terminals)

Read cursor request binary (VIP7800, 7300 class
terminals); read cursor address (VIP7200 class
terminals)

Blink (VIP7800r 7300 class terminals)

Hide (VIP7800f 7300 class terminals)

Inverse video (VIP7800, 7300 class terminals)

Underline (VIP7800, 7300 class terminals)

Secondary character set (VIP7800 class terminals)

Enquiry (VIP7800r 7300 class terminals)

NOTES

1. If codes 11 through 16 are used for terminal
classes other than VIP7800 and 7300, an invalid
parameter error (0104) will be returned.

2. When specifying codes 10 or 16, the application
must supply, in IORB fields I_ADR and I__RNG
respectively, the address and size of a buffer
to receive the terminal's response. A buffer
size of 4 bytes is required if code 10 is
specified? a buffer size of 9 is required if
code 16 is specified.

8-51 CZ05-00

Bit jSettings in I HDR and I TAB. If an application issues a
read with offset, the right byte of I_HDR must contain the byte
offsetr expressed as a hexadecimal value in the range 1 through
4F. If no offset is required, the right byte of I_HDR must be
zero.

When an a field read order is issued in conjunction with a
define form order, I_TAB contains a word offset to the proper
field attribute descriptor.

Values Returned by a Field Read Order *

The following paragraphs summarize the information returned
by ATD In fields of a terminated field read IORB.

I_RSR shows the maximum cursor position (offset) upon
termination of the field read order.

I_FCS shows the total number keystrokes entered by the
operator during the field read.

I_ST2 indicates, by a value of one in bit 15, that validated
data was entered into the field.

I_QDP shows the current cursor position (offset) upon
termination of the field read order.

I_TkB indicates termination condition as shown below:

0 = End of range. Valid data has been entered into the
entire field.

* *

-1 = Invalid character entered into field. If the VFN
option was selected at connect time, I_CON provides
additional information (see "Entry of Invalid

:- Characters into a Field" earlier in this section.)

>0 = ASCII code for one of the following:

Single character terminator entered by operator

Second character of a two-character escape sequence

Second character of a three- or four-character escape
sequence; I_CON contains remaining character(s) of the
sequence

For the permissible values of terminator characters and
sequences see "Termination of Field Read" earlier in this
section.

8-52 CZ05-00

WRITE FUNCTION (FIELD MODE)

An extended-length IORB is used for all write orders directed
against a terminal connected in field mode.

Write orders are typically used to:

• Display on the terminal screen a set of field "templates"
associated with a form

• Purge all outstanding field read and write orders.

Purge All Subfunction

The purge all option is a special form of the field write
order. It is exercised by specifying a subfunction code of three
in I_JDV2, bits 8 through 11. Bits 10 and 11 are one; the other
bits are zeroo When this subfunction is specified, all other bit
settings in I_DV2 and I_DVS are ignored. The write order causes
outstanding read and/or write orders (active and queued) to be
posted with a device unavailable (010B) status. Further, if the
type-ahead option was specified at connect time? the type-ahead
queue is purged.

.Quit on Break Option

If this option is specified (in I_DVS), a break signal can
prematurely terminate an active write order.

Pre-order Control "*

Four bits in I_DV2 control pre-order activity. By setting
the range I_RNG to zero, the application can issue a write order
that requests only pre-order activity. Alternatively, the write
order can request both pre-order activity and the output of data
to the terminal. In either case, the subfunction code (bits 8
through 11) of I_DV2 must be zero.

By manipulating bits in I_DV2, an application can:

• Send a bell
• Erase end-of line
• Use I_CON for cursor positioning operations
• Use I_CON for pre-order control operations.

These options are also available with field read orders and
have been described in earlier parts of this section that concern
the field read function.

8-53 CZ05-00

Write IORB (Field Mode)

This subsection describes bit settings in the field write
IORB that govern the options just described.

Bit Settings in I DVS.. Table 8-16 gives the significance of
bits of the IORB word I_DVS that are applicable to field mode
write.

Table 8-16. ATD Word I_DVS in Field Write IORB.

Bit
Number

Bit
Value

0
1

Meaning for Field Write Function

Stop output on dete<. .ng break
Do not stop output or. detecting break

Bit Settings in I DV2. Table 8-17 gives the significance of
bits in IORB word I_DV2 that are applicable to field mode write.

Table 8-17. ATD Word I_DV2 in Field Write IORB.

Bit
Number

Bit
Value Meaning for Field Write Function

8

9

10-11

12

13

14

0

0

00

11

0

1

0

1

0

1

Must be zero

Must be zero

Normal write

Purge all outstanding read and/or write orders

Do not send pre-order bell

Send pre-order bell

Do not send pre-order erase-line
^

Send pre-order erase-line

I_CON is not meaningful (no pre-order control)

I_CON contains pre-order control information

8-54 CZ05-00

Table 8-17 (cont). ATD Word I_DV2 in Field Write IORB.

Bit
Number

Bit
Value Meaning for Field Write Function

15 Right byte of I_CON contains pre-order control (see
Table 8-15); left byte must be zero

I_CON contains pre-order cursor positioning (see
Table 8 -15)

Bi,t Settings in I CON. The bit settings in this field is the
same as those previously described for the field read function,
with this exception? In a field write IORB, I_CON does not
support codes 10 (read cursor address) and 16 (Enquiry).

FIELD MODE DEVICE CONFIGURATION

Hardware switches on a device connected in field mode should
be set in the following positions. (The device may not support
all of the switches mentioned below).

CHARACTER/BUFFER switch in CHARACTER position
DUPLEX HALF/FULL switch in FULL position
LOCAL COPY/ECHO switch in ECHO position
ROLL/NO ROLL switch in NO ROLL position
Speed set between 1200 and 9600 bits per second

FIELD MODE RETURN STATUS CODES

The following return status codes are returned in the Rl
register. The status code returned in I_CT1 is the right byte of
the status code returned in the Rl register when the I/O order is
completee

(
Invalid Argument Status (0104)

This status is returned for the following reasons:

• In a field read IORB

- I_RNG (buffer size) is zero

- Invalid pre-order control option or cursor position
coordinate in I_CON

- The format or values of a field descriptor are invalid.

8-55 CZ05-00

• In a field write IORB

- Invalid pre-order control option or cursor position
coordinates in I_.CON

- Improper bit settings in I_DV2 (bits 8 through 12 must
be all zero; else bits 8 and 9 set to zero and bits 11
and 12 set to one).

Inconsistent Request Status (010C)

This status is returned for the following reasons:

• In a field connect IORB

- The IORB specifies a field mode connect to a terminal
that is supporting (a connected) serial printer that is
attached to the terminal by a buffered printer adapter.

• In a define form IORB

- A read order is presently'using an outstanding and
active define form order? definition of a new define
form is not allowed.

• In a field read IORB

- A field attribute descriptor has not been specified.

FIELD MODE ERROR PROCESSING

When a parity error is detected in keystroke input, an
audible alarm sounds and the typed character is ignored. When
the read order is posted, the return status in I_ST indicates
detection of parity error(s) (bit 9=1).

If ai framing error or receive overrun condition is detected,
the read order terminates and a hardware error (0107) is
returned; I_ST indicates the specific reason for abnormal
termination.

FIELD MODE TIMEOUT PROCESSING

Timeouts may occur during the processing of read orders. A
timeout occurs when the operator does not terminate the input
within 5 minutes after entering the first character. There is no
timeout if the operator does not enter any characters.

Write orders do not incur timeouts.

8-56 CZ05-00

BLOCK MODE

Block mode is applicable only to the VIP7800 class of
terminals (VIP7801, 7803, and 7808) and is intended to support
the terminal in its native text or forms mode.

Block mode supports five functions:

• Connect
• Disconnect
• Read
• Write
• Break.

These functions are requested through standard-length
lORBs. An application can optionally use an extended IORB for a
connect operation.

Connect Function

A connect order establishes the mode in which the connected
terminal operates. Block mode is selected by setting bit 0 of
I_DVS to one.

If an extended-length connect IORB is used, the terminal's
device ID is returned in the IORB extension (right byte of field
I_QDP).

An application specifies in I_RNG of the connect IORB the
size of data blocks to be transmitted from the terminal.
Permissible block sizes range from 22 to 270F bytes,
hexadecimal. If an application fails to specify a valid block
size? the connect order is rejected with an 0104 (invalid
argument) error code.

Transmitted blocks terminate with either an end-of-block
(ETB) or an end-of-text (ETX)„ When a block is transmitted from
the terminal, the type of terminator (ETB or ETX) is passed to
the application through the IORB and through an optional control
word, which is described below.

The following options can be specified when connecting in
block mode.

AUTO CALL

The Auto Call option, which is supported by all
system-supplied LPHs, is described in Section 7. This option
allows an application to establish a connection using an 801-A or
an 801-C ACU data set.

8-57 CZ05-00

CONTROL WORD

At connect time, an application can specify control word
processing for subsequent read and write orders. If this option
is specified, ATD treats the first two bytes of the user's buffer
as a control word. If control byte processing is also specified,
the third byte of the user's buffer is considered the control
byte.

ATD uses the control word primarily to pass information to an
application on completion of read orders. ATD places similar
information in the IORB word I_ST when a read order completes.

The first byte of the control word contains information that
is passed to the application upon completion of a read order. It
has the following formats

«•

Bit 3 . .

0 = ETX terminated block
1 = ETB terminated block

» _, ' ' --*

Bit 5 ' '

o - - ' „ " - " "" ,:
1 = Long block; data lost

Bit 6 ,

0 - - . , - -- ^
1 = Block missed; data lost , l"

The second byte of the control word specifies the logical
resource number of the referenced terminal.

If specified, the control word must be included in the range
(I_RNG) of the associated data buffer.

SPACE SUPPRESSION \" , '£*

If this option is specified, ATD configures the terminal to
suppress spaces, in certain instances, when transmitting data.
One example of space suppression is the replacement of spaces
between fields by a horizontal tab character; another example is
the elimination of spaces at the end of lines that are terminated
by a carriage return and line feed. For additional details,
consult the documentation for the terminal in question.

NO ROLL ' ' '• " "

Selecting this option keeps the terminal from scrolling line
1 "off the screen" when text (including a carriage return) is
entered into line 24. This option is especially useful to
applications that process forms.

8-58 CZ05-00

If this option is not specified, the screen scrolls as new
text is entered in line 24. Roll mode is the customary operating
mode chosen by an application that processes line-at=a~time input
from the terminal.

Connect IORB (Block Mode) •

This subsection summarizes the bit settings that govern the
connect options already described.

BIT SETTINGS OF I_DVS

Table 8-18 gives the significance of bits of the connect
I_DVS word that are applicable to block mode.

?

WORD I_RNG

A block size must be specified in this field if block mode is
selected (bit 0 of I_DVS is one).

Table 8-18. I_DVS Word in Connect IORB (Block Mode)

Bit
Number

0

2

4

8

9

Bit
Value

0
1

0
1

0
1

0
1

0
1

Meaning for Connect Function

Do not use block mode
Use block mode

Do not use auto dial
Use auto dial

Include control word
Do not include control word

Do not use space suppression
Use space suppression

Use roll
Use no roll

WORD I_ST

This field is significant when a serial printer is attached
to the terminal by means of, a VIP7800 buffered printer adapter
(VAF7821). On connect orders, the field specifies whether the
terminal or attached printer is being addressed. The permitted
values ares

0 = Terminal
1 = Attached serial printer

8-59 CZ05-00

WORD I_QDP I

Upon completion of a connect order, ATD returns in the right
byte of I_QDP the device ID of the terminal (refer to Table 8-3).

Disconnect Function (Block Mode) " --" — —

An application uses the disconnect IORB to terminate block
mode processing.

The following paragraphs describe the options that an
application can specify with a disconnect order.

ABORT QUEUED ORDERS '*

If the abort option is specified, outstanding lORBs (active
and queued) are terminated with a "device unavailable" status
(010B). The disconnect order is immediately serviced. If the
abort option is not specified, all outstanding lORBs are allowed
to complete before the disconnect order is serviced.

HANG UP f

If the hang-up option is selected, the terminal is physically
disconnected when the disconnect order is serviced. If the
hang-up option is not specified, the communications connection
remains active after servicing of the disconnect order (i.e., the
terminal is logically disconnected but remains physically
connected).

Disconnect IQRB (Block Mode)

This subsection summarizes the IORB bit settings that govern
the disconnect options just described.

BIT SETTINGS OF I_DVS

Table 8-19 shows bits of the disconnect IORB that are
applicable to the block mode of ATD.

8-60 CZ05-00

Table 8-19. I_DVS Word in Disconnect IORB (Block Mode)

Bit
Number

Bit
Value Meaning for Disconnect Function

14 0

1

Abort outstanding requests

Wait until outstanding requests complete before
disconnecting the terminal

15 0

1

Hang up the phone

Do not hang up the phone

BIT SETTING IN WORD I_ST

This field is significant when a serial printer is attached
to the terminal by means of a VIP7800 buffered printer adapter
(VAF7821). On disconnect orders, the field specifies whether the
terminal or attached printer is being addressed. The permitted
values are:

0 = Terminal
1 = Attached serial printer

Read Function (Block Mode)

The read order is used to obtain blocks of data transmitted
from the terminal. It is the application's responsibility to
specify a buffer size large enough to hold a complete block of
data. If a block of data exceeds the buffer capacity of the
order/ the IORB is posted with a "long record" status (bit 6 of
I_ST is 1).

OPERATOR FUNCTIONS

The operator edits information at the terminal by using the
following keys:

• Cursor control
• Character insertion/deletion
• Line insertion/deletion
• Line/screen erase.

The operator signals termination of input by pressing the
TRANSMIT key. A break key enables the operator to interrupt a
read order or to (possibly) terminate a write order.

8-61 CZ05-00

APPLICATION FUNCTIONS

An application selects the following options by setting bits
in the device-specific word (I_DVS) of the IORB.

Abort .Read

If this option is specified, ATD posts to the application any
active and queued read lORBs. The posted lORBs show a device
unavailable status (010B) in I_CT1 and the abort indicator (bit
0) in I_ST set to one. The read order issued with this option
causes no I/O activity; it is posted back to the application with
a zero status.

Supervisory Messages

Specification of this option indicates that the read order is
directed to the supevisory message line. This option is
meaningful only if the terminal is operating in no-roll mode. In
no-roll mode, the supervisory message line is line 25. In roll
mode, supervisory message reads are treated as normal reads.

Line Feed and Carriage Return

Specifying the line feed and/or carriage return option
causes, respectively, a line feed and/or carriage return to be
sent to the terminal when the read order is completed.

READ IORB (BLOCK MODE)

An application specifies the options just described by
setting bits in the IORB word I_DVS. Table 8-20 gives the
significance of these bits. <

Table 8-20. ATD Word I_DVS in Block Mode Read IORB

Bit
Number

0

9

11

12

Bit
Value

0
1

0
1

0
1

0
1

Meaning for Block Read Function

Normal read
Abort read

Normal read
Supervisory message read

Do not send post-order line feed
Send post-order line feed

Send post-order carriage return
Do not send post-order carriage return

8-62 CZ05-00

Write Function (Block Mode)

The write order is used to transmit data blocks to the
terminal.

WRITE ORDER PROCESSING

Write orders have priority over read orders. If a read order
has been issued but is not in progress, any issued write order
executes immediately. Once all outstanding write orders have
completed, the outstanding read order is reestablished. If a
read order is in progress (i.e., entry of data from the terminal
has begun), the write order waits for the read to complete.

KEYBOARD LOCK

Before the write order is executed by ATD, the LPH locks the
terminal's keyboard. This action prevents processing conflict
between the LPH and terminal. After, the write order is
processed, the keyboard is unlocked if the completed write order
specified an ETX terminator (indicating the end of the message
transmission to the terminal). If, however, the contents of the
write order contains an escape sequence that elicits a response
from the terminal, the device will ignore the keyboard unlock
command; the application must issue another write order to unlock
the keyboard*

WRITE ORDER OPTIONS

An application can specify the following options in I_DVS of
the write IORB.

Abort Write

If this option is specified, ATD posts to the application any
active and queued write lORBs. The posted lORBs show a device
unavailable status (010B) in I_CT1 and the abort indicator (bit
0) in I_ST set to one. A write order issued with this option
causes no I/O activity; it is posted back to the application with
a zero status.

Preemptive Data Write ;

This option is meaningful only when the terminal is actively
transmitting data. The option allows a write order to be
processed between the transmission (by the terminal) of two ETB
blocks or one ETB block followed by an ETX block. Normally, once
a read operation is started by the application (to receive
terminal transmissions), it is allowed to proceed (often
requiring the issuance of several read lORBs) until the last text
block (terminated by ETX) is received.

8-63 CZ05-00

Control Byte Processing - - -

Specification of control byte processing indicates that the
first byte in the application's output buffer is to be used for
pre-order control. A control byte must be included in the range
(I_RNG) of data to be written to the terminal. For a detailed
description of this option, including control byte format, refer
to "Control Byte Processing" earlier in this section.

ETX/ETB Option ' , ,,

As mentioned earlier, ATD locks the keyboard during
processing of a block mode write order. If the write order
specifies ETB, indicating that a another block of the message is
to follow, the keyboard remains locked after completion of the
write order. Alternatively, if the write order specifies ETX,
indicating the end of the message, the keyboard unlocks after
completion of the order. ''e f ft '-
Quit On Break . ;

If this option is specified in I_DVS, a break signal can
interrupt the execution of an active write order. Otherwise, a
break signal cannot be used to terminate an active write order
prematurely.

Supervisory Messages

Specification of this option indicates that the write order
is directed to the supervisory message line. This option is
meaningful only if the terminal is operating in no-roll mode. In
no-rolL mode,, the supervisory message line is line 25. In roll
mode, isupervisory message writes are treated as normal writes.

Supervisory Message Acknowledgement

If this option is specified, it indicates that a supervisory
message written to a terminal is to be acknowledged by the
terminal operator. Again, supervisory messages are meaningful
only i£ the terminal has been connected in no roll mode. In roll
mode, supervisory messages are treated as normal writes and the
acknowledgement option does not apply. For a full discussion of
this topic, refer to "Supervisory Message Processing" earlier in
this section.

Line Feed and Carriage Return " f *

Specifying the line feed and/or carriage return option
causes, respectively, a line feed and/or carriage return to be
sent to the terminal when the write order is completed.

8-64 CZ05-00

Write IQRB (Block Mode)

This subsection summarizes the bit settings that govern the
write order options already described.

BIT SETTINGS OF I_DVS

Table 8-21 gives the significance of bits of the write I_DVS
word that are applicable to block mode.

Table 8-21. ATD Word I_DVS in Block Mode Write IORB

Bit
Number

Bit
Value Meaning for Block Write Function

0

1

Normal write

Abort write

0

1

Normal write •

Preemptive write

0

1

Include control byte

Do not include control byte

0

1

ETX (unlock keyboard after write order completes]

ETB (keep keyboard locked after write order
completes)

0

1

Stop output on detection of a break

Do not stop output on detection of a break

Operator must acknowledge supervisory message

Operator need not acknowledge supervisory message

Normal write

Supervisory message write

0

1

Do not send post-order line feed

Send post-order line feed

12

1

Send post-order carriage return

Do not send post-order carriage return

8-65 CZ05-00

BIT SETTING IN WORD I_ST

This field is significant when a serial printer is attached
to the terminal by means of a VIP7800 buffered printer adapter
(VAF7821). On write orders, the field specifies whether the
terminal or printer is being addressed. The permitted values
are:

0 = Terminal
1 = Attached serial printer

Device Configuration (BJ.ock Mode)

In block mode, the speed of a terminal must be configured
between 110 and 9600 bits per second.

Return Status Codes (B^ock Mode)

AID returns status codes in I_CT1 and I_ST. The status code
returned in I_CT1 is the right byte of the status returned in the
Rl register (when the I/O order is completed).

STATUS CODES IN I_CT1

The invalid argument status (0104) is returned when an
invalid block size is specified in I_RNG of a connect IORB.

The device unavailable status (010B) is returned when a read
or write order is purged as a result of a purge-all read request
or purge-all write request, respectively.

The inconsistent request status (010C) is returned for a read
order that is issued subsequent to a data loss. This status
indicates that one or more data blocks were missed prior to the
issuance of the current read order.

STATUS CODES IN I_ST

Table 8-22 shows status information returned in I_ST upon
completion of a block mode order.

8-66 CZ05-00

Table 8-22. IORB Word I__ST (Block Mode)

Bit

0

1

3

6

Meaning when Bit Set to One

Read or write order aborted

ETB received; (ETX received if bit off)

Block missed; was received from terminal
order having been issued

Long record received; buffer insufficient
received data

without a read
f.

to contain

Error Processing (Block Model

When a parity error is detected on a data transmission from
the terminal, an ASCII SUB character (1A) is placed in the
application's buffer in lieu of the erroneous character. The
read order is posted with a hardware error status (0107) , and bit
9 of I_ST is set to one to indicate that one or more parity
errors were detected during the read.

Detection of a framing error or receive overrun condition
prematurely terminates the read order. The order is posted with
a hardware error status (0107); I_ST indicates the reason for
abnormal termination*

Processing (Block Mode)

In block mode, there are no timeouts for read or write
orders.

8-67 CZ05-00

RQP MODE

The ROP (receive-only printer) mode of ATD services selected
serial printers that use an ETX/ACK protocol. It supports four
functions, usj.ng standard-length lORBs:

Connect
Disconnect
Write '
Read

ETX/ACK Protocol
ĉ

Use of tlus protocol avoids a buffer overflow condition, in
which an application transmits data to a device faster than the
device can pr:.nt the data. Buffer overflow is most likely to
occur while the device is executing commands, such as carriage
return or forn feed, that move the print head or carriage.
Without an ETX/ACK protocol, the application or device driver
must pad data transmissions with fill characters, which the •
device does not print. While the fill characters are being
edited out, the device has time to perform carriage returns or
line feeds.

The ETX/ACK protocol renders padding unnecessary. Using this
protocol, the LPH sends data to the printer a block or frame at a
time. (The s.ize of the block or frame depends on the buffering
capacity of the device.) The LPH terminates the block with the
ETX character, The serial printer responds with an ACK control
character when (if the unit is double-buffered) it can accept
another block or when it has sucessfully printed the last block
of data. Having received the ACK control character, the LPH
starts transmitting the next data block.

The ROP LPH supports a basic and advanced type of ETX/ACK
protocol.

BASIC ETX/ACK PROTOCOL

The basic ETX/ACK is used by letter-quality serial printers
(the PRU1004 and 7007). It supports:

• \ basic transmission procedure

• Detection of off-line serial printer conditions by means
of an attention read order

• Report of the printer's marketing identifier by means of a
status read order.

8-68 CZ05-00

ADVANCED ETX/ACK PROTOCOL

The advanced ETX/ACK is used by the PRU7070 and 7075 serial
printers. It supports?

• An advanced ETX/ACK transmission procedure called the
asynchronous serial printer interface (ASPI)

• Detection and report of all off-line serial printer
conditions

• Report of the printer's marketing identifier and device
status by means of a status read order.

Connect Function

An application selects the ROP mode of ATD by setting bit 10
of I_DVS to one when issuing the connect order.

When the device connected is a PRU7070 or 7075, the LPH
issues an enquiry to the device for status. The serial printer's
response to the request for status allows ATD to specialize its
processing to the characteristics of the device* If the device
fails to respond to the request for status, ATD posts back the
connect order with a device unavailable (010B) status.

AUTO CALL

When connecting in ROP mode, the application can specify the
auto call option. Specifying auto call in I__DVS enables an
application to establish a connection using either an 801-A or an
801-C ACU data set*

Connect IQRB (RQP Mode)

Table 8-23 gives the significance of the I_DVS bits that
govern the connect option already described.

Table 8-23. I_DVS Word in Connect IORB (ROP Mode)

Bit
Number

2

10

Bit
Value

0
1

0
1

Meaning for Connect Function

Do not use auto dial
Use auto dial

Do not select ROP mode
Select ROP mode

8-69 CZ05-00

Disconnect Function

An application uses the disconnect IORB to terminate ROP mode
processing.

4_ ..f* t

The following paragraphs describe the options that an
application can specify with a disconnect order.

ABORT QUEUED ORDERS] . .

If. the abort option is specified, outstanding lORBs (active
and queued) are terminated with a device unavailable status
(010B). The disconnect order is immediately serviced. If the
abort option is not specified, all outstanding lORBs are allowed ,
to complete before the disconnect order is serviced.

HANG UP •

If the hang-up option is selected, the terminal is physically
disconnected when the disconnect order is serviced. If the
hang-up option is not specified, the communications connection
remains active after servicing of the disconnect order (i.e., the
terminal is logically disconnected, but remains physically -
connected). n

Disconnect IORB fRQP Mode)

Table 8-24 gives the significance of the I_DVS bits that
govern the disconnect options already described.

Table 8-24. I_DVS Word in Disconnect IORB (ROP Mode)

Bit
"Number

14

15

Bit
Value

0

1

0

1

Meaning for Disconnect Function

Abort outstanding requests

Wait until outstanding requests complete before
disconnecting terminal

Hang up the phone

Do not hang up the phone

Write Function (RQP Modeli

The write order is used to transmit data to the serial
printer.

8-70 CZ05-00

Once the LPH has verified the buffer range and address in the
IORB, it performs control byte processing (if specified in
I_DVS). ATD then services the write request. The data written
can be of any length; using the ETX/ACK protocol, ATD sends the
data a block-at-a-time to the printer.

CONTROL SEQUENCES

An application can control the write operation by means of
control sequences imbedded in transmitted data.

DLE EOT Control Sequence

Write orders to a PRU7070 or 7075 support a feature that is
useful to the application designer. If DEL (10) EOT (04) are the
last two characters in the output data buffer, the write order
that refers to this buffer is posted back to the application only
when the device has printed the entire contents of the buffer.
If DEL EOT are not supplied at the end of the buffer, the write
order is posted back when the printer (by means of an ACK
response) declares itself ready to receive the last block of
buffer data. Conceivably, the device could fail to print the
last block after receiving it. Thus, the DEL EOT sequence
provides assurance that the entire buffer is actually printed.

Other Sequences

An application can place in the data buffer the customary
serial printer control characters (e.g., carriage return, line
feed, horizontal tab).

Other serial printer command and control sequences are
available to the applicationc These can be used to change such
printing characteristics as type pitch (number of characters per
inch) and number of lines per inch. The user should consult the
appropriate device manual for a more detailed discussion of
printer control sequencesc

Prohibited Sequences

An application cannot place in the data buffer the ETX
(X'031) or ENQ (X'05») control characters, which are used by the
ETX/ACK protocol. Nor, when transmitting data to a PRU7070 or
7075 printer, can the application send the following escape
sequences: RIS (1B63), KBL (1B5B58), or KBU (1B5B57). In either
case, the LPH suppresses transmission of these sequences in order
to maintain the integrity of the ETX/ACK transmission procedure.

WRITE OPTIONS

An application selects the following options by setting bits
in the device-specific word (I.JDVS) of the write order.

8-71 CZ05-00

Control Byte

Through the use of a control byte, an application can specify
the customary pre-order control operations. If present, the
control byte i.s the first byte in the output buffer. The
application indicates its presence by setting a bit in I_DVS.
The application must also include the byte in the range (I_RNG)
of the data to be transmitted. For a detailed description of the
control byte option, including control byte format, see "Control
Byte Processing" earlier in this section.

Line Feed and Carriage Return

Specifying in I_DVS the line feed and/or carriage return
option causes, respectively, a line feed and/or carriage return
to be sent to the printer when the write order completes.

Write I3RB (RQP Mode)

Table 8-25 gives the significance of bits of the write I_DVS
word that are applicable to a HOP mode write order.

Table 8-25. ATD Word I_DVS in ROP Mode Write IORB

Bit
Number

4

11

12

Bit
Value

0
1

0
1

0
1

Meaning for ROP Write Function

Include control byte
Do not include control byte

Do not send post-order line feed
Send post-order line feed

Send post-order carriage return
Do not send post-order carriage return

Read Function fROP Mode)

The* read order is used to obtain status information from the
serial printer. Two types of read orders can be issued: normal
status read and attention status read. An application indicates
in I_DVS the type of read desired.

NORMAL STATUS READ ~" ' - *"'

When an application issues a normal status read order, the
IORB field I_.ADR must point to a 10-byte buffer. Upon completion
of the read order, this buffer contains a device identifier and
may additionally contain status information.

8-72 CZ05-00

PRU1004 and 7007 printers provide a device ID in the first
byte of the status buffer? the remaining bytes are unused.

PRU7070 and 7075 printers provide device status information
in addition to the device ID, which is supplied in the first
status byte. Refer to the appropriate serial printer manual for
additional information on device status.

Table 8-26 summarizes the device IDs that are returned in
response to a status read request.

Table 8-26. Device IDs for Serial Printers

Printer

PRU1004
PRU7007
PRU7070
PRU7075

Device

21
22
31
32

ID

ATTENTION READ

This option applies only to the PRU1004 and 7007 printerss; it
informs the application when a device has gone off-line or has
been reset by the operator. The status buffer is not updated to
reflect the device ID of the printer.

If this option is specified, the read order is returned to
the issuing application only when:

• The printer runs out of ribbon
• The printer runs out of paper . '
• The printer's reset switch is pressed.

Read IORB (ROP Mode)

Table 8-27 shows the signficance of bits of the I__DVS word
that are applicable to a ROP mode read order.

Table 8-27. ATD Word I_DVS in ROP Mode Read IORB

Bit
Number

Bit
Value Meaning for ROP Mode Read Function

0
1

Normal status read "*
Attention status read (PRU1004 and 7007 only)

8-73 CZ05-00

Status Codes Returned in I CT1 (RQP Mode)

ATD returns status codes in I_CTl and I_ST. The status code
returned in I._CT1 consists of the right byte of the status
returned in the Rl register (when the I/O order completes). A
status code often has more than one possible meaning. As
explained later in "Status Information under I_ST", a user can
determine a specific meaning by referring to word I_ST. For
example, the status 0104, in itself, can mean illegal printer
command, zero buffer address, or zero buffer range. If bit 13
of I_ST is set to 1, the status 0104 means zero buffer address.
If, however, bit 14 of I_.ST is set to 1, the status 0104 means
zero buffer range*

SUCCESSFUL COMPLETION (0000)

A zero status (in I_CT1) indicates successful completion of
the order. A write order IORB can additionally indicate (in
I_ST) a device attention condition (initiated by the operator) on
PRU7Q70 and 7075 printers. This condition in no way interferes
with successful completion of this or subsequent orders placed
against the printer. By initiating a device attention condition,
the operator can directly interact with the application that is
controlling the serial printer.

INVALID ARGUMENT STATUS (0104)

This status is returned for the following reasons:

• In write IORB

- Illegal printer command (PRU7070, 7075). Consult
appropriate printer manual for details.

- Zero buffer address.

- Zero buffer range.

• In read IORB

- Read buffer less than 10 bytes long.

DEVICE NOT READY STATUS (0105)

An order is posted back with this status when a PRU7070 or
7075 printer is in an off-line state. The LPH issues this error
status once? subsequent or outstanding write orders are serviced
when the device is put in an on-line, operational state. The
reported off-line condition is usually caused by the printer
running out oE ribbon or paper. „

8-74 CZ05-00

HARDWARE ERROR STATUS (0107)

This status is returned in a, write order for the following
reasons:

• Hardware printer fault (PRU7070, 7075)

• Failure of printer to respond to print or status commands
(PRU7070, 7075).

Status Information in I ST

The bit settings in I_ST qualify the status codes returned in
I_CT1, as shown in Table 8-28. The first column of the table
gives the bit in I_ST; the second column gives the status code
returned in I_CT1? the third column shows the significance of the
status code (column 2) when the I_ST bit (column 1) is set to
one.

Table 8-28. IORB Word I_ST (ROP Mode)

Bit
Return
Status Meaning When Bit Set to 1

0000

0104

0105

0107

Operator initiated attention (PRU7070, 7075)

Illegal printer command (PRU7070, 7075)

Device off-line (PRU7070, 7075)

Hardware printer fault (PRU7070, 7075)

13 0104

0105

0107

Zero buffer address

Paper out (PRU7070, 7075)

No response by device to print or status commands
(PRU7070, 7075)

14 0104

0105

Zero buffer range

Ribbon out (PRU707Q, 7075)

8-75 CZ05-00

Error Processing

The length of the write order determines how an application
should react to a 0105 (device not ready) status when addressing
a PRU7070 or 7075 printer, If the data to be written is less
than the device block or frame size (typically 125 or 253
characters, depending on the printer model), the application can
assume that the data will be completely printed when the device
goes to an on-line state. Otherwise, the application should not
assume that the data will be completely printed.

The application should assume that the device will fail to
complete any print operation when a 0107 (hardware error) status
is reported.

Timeout Processing

There are no timeouts for read or write orders.

STREAM MODE

Stream mode is used mainly for the transfer of files:

• To an application from a paper tape reader
• From an application to a paper tape punch
• Between cooperating applications.

Stream mode requires, minimally, a half-duplex communications
line. If full X-ON/X-OFF flow control (described later under
"Flow Control") is desired, a full-duplex communictions line must
be used. This mode supports data transfer at rates of up to 9600
bits per second.

Four I/O request blocks (lORBs), of standard length, are
supported: connect, disconnect, read, and write.

Connect Function

An application selects the stream mode of ATD by setting bit
one of I_DVS to one.

The following stream mode options can also be specified with
a connect order.

AUTO CALL

An application can specify the auto call option. Specifying
auto call in I_DVS enables an application' to establish a
connection using either an 801-A or an 801-C ACU data set.

8-76 CZ05-00

CONFIGURATION MASK

Bits six and seven of I_DVS in the connect IORB allow an
application to choose between transmision of seven or eight bit
data. The same bits also allow an application to choose between
odd parity check? even parity check, or no parity check.
Settings of the configuration mask override the type of parity
check established by the ASD directive when the system was
configured.

Connect IORB J4fid_e.)

Table 8-29 gives the significance of the I_DVS bits that
govern the connect options already described.

Table 8-29. I_DVS Word in Connect IORB (Stream Mode)

Bit
Number

1

2

6,7
.

Bit
Value

0
1

0
1

00
01
10
11

Meaning for Connect Function

Do not use stream mode
Use stream mode

Do not use auto dial
Use auto dial

Seven bit data; no parity check
Seven bit data; odd parity check
Seven bit data; even parity check
Eight bit data; no parity check

Disconnect Function (Stream Mode) •~ v

An application uses the disconnect IORB to terminate stream
mode processings

The following paragraphs describe the options that an
application can specify with a disconnect order.

ABORT QUEUED ORDERS

If the abort option is specified, outstanding lORBs (active
and queued) are terminated with a device unavailable status
(010B)e The disconnect order is immediately serviced. If the
abort option is not specified, all outstanding lORBs are allowed
to complete before the disconnect order is serviced.

8-77 CZ05-00

HANG UP

If the hang-up option is selected, the terminal is physically
disconnected when the disconnect order is serviced. If the
hang-up option is not specified, the communications connection
remains active after servicing of the disconnect order (i.e., the
terminal is logically disconnected, but remains physically
connected).

pisconnect IORB (Stream Mode)

Table 8-30 gives the significance of those I_DVS bits that
govern the disconnect options already described.

i

Table 8-30. I_DVS Word in Disconnect IORB (Stream Mode)

Bit
Number

Bit
Value Meaning for Disconnect Function

14 0

1

Abort outstanding requests

Wait until outstanding requests complete before
disconnecting terminal

15 0

1

Hang up the phone

Do not hang up the phone

Read and Write Functionality

Stream mode input/output functions can best be understood as
an interaction between a transmitter and receiver. For this
reason, read and write functionalities are initially discussed
together.

CONTROL BYTE (STREAM MODE)

Stream mode supports a different type of control byte
processing than do the the other modes of ATD. In the other
modes of ATD, the control byte controls pre-order processing; in
stream mode, the control byte is used to:

1. Return the status of a read or write order to the issuing
application.

2. Control the execution of read and write orders.

8-78 CZ05-00

The second use of the control byte allows an application to
directly control certain aspects of stream mode processing even
if the application is accessing the LPH through the File System
(rather than through Physical I/O). The second use of the
control byte is described later in this section under "Read
Function" and "Write Function". The following paragraphs concern
first use of the control byte.

On completion of a read or write order, the stream control
byte contains a value that indicates the return status of the
completed order. Table 8-31 correlates control byte values with
standard system codes returned in register Rl and I_CT1.

Table 8-31. Stream Control Byte Return Codes

Return
Code

0000

0104

0106

0107

010B

010F

Stream
Control Byte

00

44

46

47

4B

4F

Meaning

Successful completion

Invalid parameter

Device timeout

Hardware error

Device unavailable

End of file _ - *„

- PROCESSING OF CONTROL BYTE AND DEVICE SPECIFIC WORD

rr As mentioned above, the stream control byte can be used,, like
the IORB device specific word I_DVS, to specialize execution of
an I/O order. The processing of control byte and I_DVS
.information varies between read and write orders.

When a set of read orders are issued to read an entire file,
I_DVS and the stream control byte of only the first read order
are used to control the read operation. The information supplied
by the first read order is used to process subsequent read orders
(regardless of the their I_DVS or stream control byte settings)
until the entire file has been received. ,

This particular method of processing is necessary because, as
explained later in the example of file transmission, stream mode
must be able to accept incoming data after the first read in the
absence of subsequent read orders« Because the incoming data
must be handled? the information for processing the data must be
taken from the control byte and I_DVS that were specified by the
first read order.,

8-79 CZ05-00

When, however, a set of write orders is issued to write an
entire file, each write order is processed according to the I_DVS
word and control byte supplied with that order. The one-time use
of I_DVS and control byte information, described above, does not
apply.

FLOW CONTROL PROTOCOL

Stream mode supports an optional X-ON (DC1)/X-OFF (DCS)
protocol to maintain the orderly transmission of data.

: i -

Protocol Operation '* '- '-

The receiver indicates readiness to receive data by issuing
an X-ON to the transmitter. After transmission has begun, the
receiver can at any time interrupt transmission by issuing an
X-OFF to the transmitter. The transmitter can resume sending
data after receiving an X-ON from the receiver. After
transmitting all the data, the transmitter can send an X-OFF to
signify the end of transmission.

In sum, the receiver can solicit data by issuing an X-ON and
suspend the transmission of data by issuing an X-OFF. The
receiver solicits transmission when a buffer is available to
store incoming data and suspends transmission when a buffer is
not available.

Protocol Combinations

By means o£ stream control byte and I_DVS values, four
combinations of flow control can be established.

1. Transfer is solicited and suspendable.

2. Transfer is not solicited but is suspendable.

3. Transfer is solicited but is not suspendable.

4. Transfer is not solicited and is not suspendable. if

If transfer is suspendable, a full-duplex communications line is
required? otherwise, a half-duplex line can be used.

',. j
Suspendable transfer is recommended for configurations that

operate at high line-speeds, where there is an increased
possibility of data loss due to the receiver's inability to "'-'
supply read orders in a timely fashion.

Table 8-32 lists recommended combinations of line control
according to line speed and type of operation.

8-80 . CZ05-00

Table 8-32. Recommended Line Control Combinations.

Operation

Receiver

Application

Application

Application

Paper Tape Punch

Application

Application

Paper Tape Punch

Transmitter

Application

Paper Tape Reader
(Auto Start)

Paper Tape Reader
(Manual Start)

Application

Paper Tape Reader
(Auto Start)

Paper Tape Reader
(Manual Start)

Application .

Line
Speed

High

High

High

High

Low

Low

Low

Recommended
Combination

I

x : '̂ -

2

2

3

4

4

CONTROL CHARACTERS - , ,

The signficance of control characters DC1 and DC3, when
issued by the receiverf has already been discussed under "Flow
Control". The following control characters are issued by the
transmitter.

Control (Hex)

Carriage return (OD)
DC3 (13)
Backslash (5C)
Del (7F)

Meaning

End of Record
End of file
Hide
Pad

When stream mode encounters a carriage return, indicating end
of record, it posts the current read IORB as successful (zero
return status) with a non-zero residual range status in I_ST1.

Stream mode interprets DCS as indicating both end of record
and end of file. It posts the current read order back to the
receiving application with nonzero residual range status in
I_ST1. It posts the next read IORB with an end of file status
(OF in I_CT1).

8-81 CZ05-00

Assuming that the edit option has been selected, stream mode
intreprets the backslashr or hide control character, as a signal
to treat the next character as data/ without interpretation. For
example, if a backslash precedes a carriage return, ATD treats
the carriage return as data instead of as an end of record ™J
indicator. (The edit option is explained in the next
subsection.) - -•-

The LPH discards a DEL encountered in the input unless it is
preceded by a hide character. The assumption is that an unidden
DEL is either a rubout from a paper tape device or .a pad
character from an application.

EDIT OPTION

If the edit option is selected by both the transmitter and
receiver, stream mode performs the following:

• On the transmit side, precedes with a backslash all "&
non-printable ASCII characters (X'OO1 to X'lF' and X'7F').

• O.n the receive side, discards any transmitted hide '
character and accepts the following character as data.
All unhidden non-printable ASCII characters are discarded.

To establish the edit option, the read application must
select it in the first read order, by means of I_DVS or the
control byte. The write application must select the option, by
the same means, with each write order.

If the edit option is not selected on the transmit side, the
LPH will not edit with the backslash all nonprintable ASCII
characters. If the edit option is not selected on the receive
side, the LPH will accept most characters (as either data or
stream control characters)«, Only the DEL character is
unconditionally removed from the incoming data stream.

FILE TRANSFER

The principal use of stream mode is to transfer files. A
file, in stream mode, is a collection of records, each terminated
by a (non-hidden) carriage return. The end of file is indicated
by a DC3 character.

The following example of file transfer between two
applications (called A and B) illustrates the stream mode
functions thus far described. The example is illustrated by '
Figure 8-2. ;

It is assumed that both applications have issued connect '*
orders specifying stream mode.

8-82 CZ05-00

From Figure 8-2, it can be seen that the first read order'
issued by A specifies how the file is to be read. A control byte
is to be used; transfer operations must be solicited and can be
suspended. Application B specifies the same processing options,
but does so with each write order. -,

, Because the transmitting side indicates support for solicited
transmission, the first write order does not initiate
transmission of data until an X-ON (DC1) is received. The X-ON
signifies that the receiver is ready to accept data.

The carriage return and line feed in the first write buffer
are recieved as data (rather than control characters) because the
control bytes set up by both applications specify edited
transmissions.

ATD issues a carriage return when all the data in the first
buffer has been transmitted, causing the first read order to be
posted back to application Ae The carriage return was specified
in the control byte of the first write order.

Because the LPH does not immediately receive a second read
order, it issues an X-OFF to suspend data transmission.. However,
between the posting of the first read order and the issuance of
DCS, the transmitting side has sent the first three characters of
the second write order (JKL)* These characters are stored in the
receive-side Multi-Line Communications Processor (MLCP) and
edited according to -the control byte and I_DVS supplied with the
first read order.

After a second read order has been issued, ATD sends an X-ON,
causing the resumption of data transmission.

The two DELs in the second write buffer are transmitted
because the second write control byte (unlike the first)
.specifies non-edited transmissions. On the receive side,
however, stream mode strips out the DELs because they are not
preceded by the hide character.

There is again a delay in the transmission of data. When the
third write order is ultimately issued, an X-ON is sent by ATD on
the receive side to initiate transfer of data from the buffer
associated with the third write order.

The stream control byte associated with the third write
buffer directs ATD to send an end of file (DC3), which in turn
causes the receive side ATD to post back the third read buffer
with data received before the DC3. The read application
ultimately detects the end of file condition after the fourth
read is issued. This read is posted back with an 010F status and
a stream control byte of 47, both of which indicate an end of
file condition.

8-83 CZ05-00

RECEIVE SIDE TRANSMIT SIDE

APPLICATION
PROGRAM A

Issue Read tl ->
DSW > CO00
BUF » §...
SCB - 40

ATO STREAM
MODE

*Send del

<- Post Read *1
STS » 0000
BUF » iABCcrlf
SCB » 40

**Send dc3

Send A
Send B
Send C
Send \
Send cc
Send \
Send If
Send cc

Send J
Send K
Send L

ATD STREAM
MODE

APPLICATION
PROGRAM B

<- Issue Write tl
DSW - OOCO
BUF ' iABCcrlf
SCB * 40

Post write tl -> J

STS • 0000
BUF » iABCcrlf
SCB - 40

<- Issue Write *2
DSW - OOCO
BUF * §JKLMNdeldel
SCB - 42

lssu« Read *2 -> **Send del ->
DSW * COOO
BUF *
SCB - n/a

<- Post Read #2
STS » 0000
BUF » WKLMM
SCB - 40

**Send'de3

Send M
Send N
Send del
Send del
Send cr

Send V
Send W
Send X

Post Write *2 ->
STS » 0000
BUF - SJKLMNdeldel
SCB » 40

<- Issue Write 13
DSW - OOCO
BUF - 3VWXYZ
SCB - 41

Issue Read *3 -> **Send del
DSW - COOO
BUF -
SCB • n/a

<- Post Read *3
STS * 0000
BUF * 8VWXY2
SCB » 40

Issue Read *4 ->
DSW = COOO <- Post Read t4
BOP » o. „ „ STS " 010F
SCB » n/a

STS
BUF
SCB

Send Y
Send Z
Send dc3

Post Write »3 ->
STS » 0000
BUF » SVWXYZ
SCB = 40

47

NOTES

DSW
SCB
STS
BUF
\
del
dc3
del

Device Specific Word
Stream Control Byte
Status
Buffer
Hide Control Character
DC-1 (X-ON)
DC-3 (X-OFF)
Delete

cr
If
n/a

** a

Carriage Return
Line Feed
Not Applicable
Only if Solicited
Option Selected
Only if Suspendable
Option Selected

Figure 8-2. Saimple File Transfer Operation

8-84 CZ05-00

Read Function

The read order is used to receive data from a paper tape
device or cooperating stream mode application. Read order
options are described in the following paragraphs.

SOLICITED TRANSFER

If this option is selected and a read buffer is available?
stream mode sends an X-ON (DC1) to the transmit side, indicating
that the receiving side can accept data.

SUSPENDABLE TRANSFER

If this option is selected, and there is no read buffer
available to store the incoming data, and at least three
transmitted characters have been received, stream mode sends an
X-OFF (DCS) to the transmit side. When a read buffer becomes
available, stream mode issues an X-ON (DC1).

CONTROL BYTE

The echo and edit options can be selected by setting bits of
the control byte, as shown in Table 8-33.

Table 8-33. Read Order Stream Control Byte

Bit
Number

3

6

Bit
Value

0
1

0
1

Meaning

Do not echo received data
Echo received data

Edit received data
Do not edit received data

If the control byte option is specified, the first byte of
the read buffer is assumed to contain a stream control byte.

The setting of a stream control byte overrides the
corresponding bit setting in I_DVS. The setting is significant
only in the control byte associated with the first read IORB;
subsequent settings are ignored*

The user can take advantage of the fact that control byte
bits 0 through 2 are not defined when specifying control byte
settingsc By setting bit 1 to one and bits 0 and 2 to zero, the
user can specify a control byte that is in the printable ASCII
range. For example, a control byte with bit 1 set to one and
specifying no edit (bit 6 set to one) is equivalent to 42 (an
ASCII letter B).

8-85 CZ05-00

When the read operation is complete, the stream control byte
contains the status of the completed order (refer to "Stream
Control Byte Support" earlier in this section).

ECHO

If this option is specified, all received data is echoed or
"reflected" back to the transmitter. If the option is not
specified, received data is not echoed back to the transmitter.

EDIT

If this option is specified, a hide control character in the
data stream is discarded and the succeeding character is treated
as data. The latter can be any character from the ASCII
character set, including the DEL character. If the nonprintable
ASCII characters X'00! to X'OC', X'OE1 to X'lF', and X'7F' are
not preceded by the hide control character, they are discarded
from the data stream. The nonprintable character X'OD1 (carriage
return) is treated as an end of record indicator when not
preceded by a hide control character.

If the option is not specified, the hide control character is
treated as a data character having no special meaning, and only
DEL characters will be removed from the data stream.

IQRB (Stream Mode)

Table 8-34 gives the significance of IJDVS bits that govern
the read options already described.

Table 8-34. I_DVS Word in Read IORB (Stream Mode)

Bit
Number

0

1

2

3

6

Bit
Value

0
1

0
1

0
1

0
1
0
1

Meaning for Connect Function

Transfer is not solicited
Transfer is solicited

Transfer is not suspendable
Transfer is suspendable

Stream control byte is supported
Stream control byte is not supported

Do not echo received data
Echo received data

Edit received data
Do not edit received data

8-86 CZ05-00

Write Function

The write order is used to transmit data to a paper tape
device or cooperating steam mode application. Write mode options
are described in the following paragraphs.

SOLICITED TRANSFER

If this option is specified, stream mode does not begin
transmission of the first record of a file until an X-ON is
received. If this option is not specified, stream mode transmits
data without waiting for the X-ON signal.

SOSPENDABLE TRANSFER

If this option is specified? stream mode suspends
transmission of data when an X-OFF is received. The LPH resumes
transmission upon receipt of an X-ON.

If this option not specified, transmission proceeds without
regard to the receiver's ability to accept data.

LINE FEED AND CARRIAGE RETURN

If the line feed or carriage return option is specified, a
line feed or carriage return, respectively, is sent at the end of
a write operation. The carriage return is a signal to the
receiver; it is not accepted by the receiver as data.

EDIT

If this option is specified, all non-printable characters
(X'OO1 to XelF')r the hide character (X'SC1), and the DEL
character (X'TF1) are preceded by an inserted backslash. If the
option is not specified, these characters are transmitted without
a backslash. The action taken by the receiver depends upon
receiver's choice of options in the first read order. For
further details, see "Read Function" earlier in this section.

END OF FILE

If this option is selected, stream mode sends a DCS (end of
file) at the end of the current write order, indicating to the
receiver that the file has been completely transmitted.

CONTROL BYTE

The write options just described can be selected by setting
bits in a control byte, as shown in Table 8-35.

8-87 CZ05-00

Table 8-35. Write Order Stream Control Byte

Bit
Number

3

4

6

7

Bit
Value

0
1

0
1

0
1

0
1

Meaning

Do not send line feed at end of write
Send line feed at end of write

Send carriage return at end of write
Do not send carriage return at end of write

Edit transmitted data
Do not edit transmitted data * *" l

Do not send DC3 (end of file) at end of write
Send DC3 (end of file) at end of write

If the control byte option is specified, the first byte of
the write buffer is assumed to contain a stream control byte.

The setting of a stream control byte overrides the
corresponding bit setting in I_DVS.

The user can take advantage of the fact that control byte
bits 0 through 2 are not defined when specifying control byte
settings. By setting bit 1 to one and bits 0 and 2 to zero, the
user can specify a control byte that is in the printable ASCII
range. For example, a control byte with bit 1 set to one and
specifying no edit (bit 6 set to one) is equivalent to 42 (an
ASCII letter B).

When the write operation is complete, the stream control byte
contains the status of the completed order (see "Stream Control
Byte Support" earlier in this section).

WRITE IORB (STREAM MODE)

Table 8-3 S gives the significance of I_DVS bits that govern
the write options already described.

Table 8-36. I_DVS Word in Write IORB (Stream Mode)

Bit
Number

8

9

Bit
Value

0
1

0
1

Meaning for

Transfer is
Transfer is

Transfer is
Transfer is

Write Function

not solicited
solicited

not suspendable
suspendable

8-88 czos-tro

Table 8-36 (cont). I_DVS Word in Write IORB (Stream Mode)

Bit
Number

10

11

12

14

15

Bit
Value

0
1

0
1

0
1
0
1

0
1

Meaning

Stream control byte is supported
Stream control byte is not supported

Do not send line feed at end of write
Send line feed at end of write

Send carriage return at end of write
Do not send carriage return at end of write

Edit transmitted data
Do not edit transmitted data

Do not send DCS (end of file) at end of write
Send DCS (end of file) at end of write

Stream Mode Configuration

If stream mode is to support suspendable data transfer,
full-duplex communication facilities (communications lines and
modems) must be used* If neither of these options are specified,
half-duplex communications facilities can be used.

Stream mode supports data transfer at speeds ranging from 110
to 9600 bits per second.

grror Processing

When a parity or framing error is detected, an ASCII SUB
character (X'1A!) is stored in place of the received character
that was in error. When processing terminates abnormally, the
read order is posted with a hardware error (0107) status, and
I_ST indicates the reason for the termination.

Timeout Processing

A timeout occurs on an active read order if any of the
following conditions are not satisfied within 30 seconds:

• Read buffer is filled with received data
• Carriage return (end of record) is received
« DCS (end of file) is received,.

The timeout value for an active write order is also 30
seconds. This interval includes any time during which the
transmitter is waiting for a DC1 or DCS from the receiver.

8-89 CZ05-00

Section 9
STDIINE

PROTOCOL HANDLER

SYNCHRONOUS TERMINAL DRIVER fSTD) LINE PROTOCOL HANDLER

The Synchronous Terminal Driver (STD) line protocol handler
(LPH) supports synchronous polled terminals, and the asynchronous
receive-only printers (ROPs).

The basic VIP consists of a cathode ray tube (CRT) display
screen and keyboard, with a synchronous communications interface.
Its operating' speeds are as follows?

Device Type Peripheral

VIP7700
VIP7700R
VIP7804
VIP7760
VIP7740
VIP7710
TWU 1901

ROP
ROP
ROP
ROP, DSK
ROP, DSK
ROP

Receive—OnIv

TN 1200
TN 300
PRU 1003
PRO 1005
PRU 1901

Baud Rate

2000 to 4800
2000 to 9600
2000 to 19200
4800 to 9600
9600
9600
4800 to 9600

CZ05-00

GENERAL STD LINE PROTOCOL HANDLER OPERATION

Software Functional Support for the VIP

The following STD line protocol handler software functions
support the basic VIP terminal:

• Poll and select communications procedures

• Poll line control

- Poll list
- Poll interval
- Poll list stall interval

• Multipoint configuration support

• Switched and private line operation

• Auto-answer for switched network operation

• Modem, direct connect, and modem bypass interconnection
modes

• Message/block transfer to and from a CRT '

• Master LRN processing >

• Fully addressable CRT entry marker control

• Pre-editing (control byte) and post-editing (I_DVS)

• Transfer of hardware function code to and from the
application

• Long Q frame

• Error recovery procedrues

• Break processing (VIP7804 only)

• Half-duplex line function

• 2/4 wire line function,,

The following functions support added terminal options:

• User-controlled CRT forms mode

• Message/block transfer to receive-only printer (ROP)

• User-controlled storage and retrieval of forms on the
diskette (7740 and 7760 only).

9-2 CZ05-00

User-Supplied Software Functions for VIP Support

The application program must supply the following functions
to support data exchange between the terminal and the
application:

• User-specified device arguments (polling interval and, at
system building, station addresses and device type).

For messages to the VIP terminal, the application should provides

• Optional? hardware function codes (1, 2 for all VIP except
7804, which only uses 1)

• Complete message text, including all required format
control characters

• Optional; pre-editing and post-editing characters within
message text

• Mandatory; complete forms definition message text for
forms mode.

For messages received from the VIP terminal, the application must
provides

• Interpretation of hardware function codes (1, 2 for all
but VIP7804, which only uses 1)

• Message processing (complete message or block, with pos-
sible use of master LRN with either)

• Interpretation of format codes (LF, CR, HT, VT) in the
message text.

STD Request Response Time

Table 9-1 shows how to calculate the request response times
needed by the line protocol handler for the connect, read, and
write functions for the listed devices.

USING THE STD LINE PROTOCOL HANDLER

STD-Specific IORB Values

The VIP-specific input/output request block (IORB) item
I_CT2, device specific word I_DVS, and software status word I_,ST
are shown in Tables 3-2, 9-3t and 9-4, respectively. Bits not
explicitly described in the tables must be 0. Section 4
describes the general form of the IORB.

9-3 CZ05-00

Table 9-1. STD Line Prbtocol Handler Response Time

Function Response Time Device

Connect 5-minute timeout Communications
supervisor

Read/Write The following equation is used to
calculate the time required to
send/receive a message to/from
the CRT:

M/C - T

where:•
M = Message size (range)
C = Number of characters per

second (line speed)

Possible values for C:

250 » 2000 baud
300 - 2400 baud
600 = 4800 baud
1200 » 9600 baud
2400 = 19.2 kilo baud

T = Timeout value in seconds

NOTE

If M is less than or equal to
C, then T = 2.

The following equation is used to
calculate the time required to
send/receive a message to/from the
ROP attached to a CRT:

T + (M/R) = V

wheres

T » CRT timeout value (from above)
M » Message size (range)
R = ROP transmit rate

All devices

ROPs attached
to VIPs

9-4 CZ05-00

Table 9-1 (cent). STD Line Protocol Handler Response Time

Function Response Time Device

Read/Write (cont) Possible values for Rs

10 - 100 baud
30 - 300 baud
120 = 1200 baud

V = Total timeout value in seconds

Table 9-2. Function Codes in I_CT2 of the IORB

Function
Code Definition Use

1

2

A

Write

Read

Connect

Disconnect

Used by the line protocol handler to com-
plete the description of the requested I/O
function.

Table 9-3. STD Device-Specific Word I_DVS in the IORB

Bit
Number (s)

Bit
Setting Meaning of Bit Setting

For connect call only (function

0

2

0

1

0

1

No meaning.

Terminal-generated block

Do not use Auto Call Unit

Use Auto Call Unit

code A) .

mode.

•

9-5 CZ05-00

Table 9-3 (cont). STD Device-Specific Word I_DVS in the IORB

Bit
Number(s)

Bit
Setting Meaning of Bit Setting

Set cursor to home position on page overflow
(write request). (Not applicable to
VIP7804.)

Do riot set cursor to home position on page
overflow (write request). (Not applicable to
VIP7804.)

0

1

Control word specified (read/write request)

No control word specified (read/write
request).

5, 6, 7

000

001

010

Oil

100

101

110

111

Logical poll interval (read request, polled
lines only):

Poll continuously.

1-second poll interval.

2-second poll interval.

3-second poll interval.

4-second poll interval.

5-second poll interval.

15-second poll interval.

30-second poll interval.

8 0

1

No space suppress. (VIP7804 only.)

Space suppress. (VIP7804 only.)

0

1

Roll. (VIP7804 only.)

No roll. (VIP7804 only.)

9-6 CZ05-00

Table 9-3 (cont). STD Device-Specific Word I_DVS in the IORB

Bit
Number (s)

A

B

C

D

0

3

4

5

6

8

Bit
Setting

0

1

0

1

0

1

0

1

Meaning of Bit Setting

For HOP attached to VIPs 7700, 7700R, and
7760.

150/PRT ROP address.

150/NUL ROP address.

Hardware function codes are not specified
(write request) .

Hardware function codes are specified (write
request). (Not allowable for VIP7804.)

Do no timeout, use logical poll interval
(read request) .

Timeout immediately (read request).

Return key equals transmit (VIP7804 only) .

Return key equals normal (VIP7804 only) .

For write call only (function code 1)

0

1

0

1

0

1

0

0

1

No meaning*

Abort write IORB subfunction.

No preemptive write.

Preemptive write.

Include control byte.

Do not include control byte.

Reserved for system use (must be zero) .

Reserved for system use.

No meaning.

If bit 9 = one, supervisory write with reset?
otherwise, no meaning.

9-7 CZ05-00

Table 9-3 (cont). STD Device-Specific Word I_DVS in the IORB

Bit
Number (s)

9

A

B

C

Df E, F

•

•

-

Bit
Setting

0

1

0

1

0

1

0

1

000

001

010

Oil

100

101

110

111

Meaning of Bit Setting ^ jj

Normal message.

Supervisory messagef if no roll on connect.

RFU.

RFD.

No line feed at end of message.

Line feed at end of message.

Carriage return at end of message. -

No carriage return at end of message.

Number of copies to be printed (VIP 7804
only) .

1 copy.

2 copies.

3 copies. -f

4 copies.

5 copies.

6 copies.

7 copies.

8 copies.

For read call only (function code 2)

0

I

No meaning.

Abort read IORB subfunction,

0

1

No meaning.

ESC B Diskette request,

9-8 CZ05-00

Table 9-3 (cont). STD Device-Specific Word I_DVS in the IORB

Bit
Number (s)

9

Bit
Setting

0

1

Meaning of Bit Setting

For Read Call Only (cont)

Normal message c

Supervisory message , if no roll on connect.

For disconnect call only (function code B)

1

E

F

0

1

0

1

0

1

No meaning.

Send DLE EOT (VIP 7804 only). "

Purge outstanding requests and disconnect
immediately.

Wait until all requests are complete before
disconnecting.,

Hang up phone after disconnect.

Maintain phone connection after disconnect.

Table 9-4. STD Software Status Word I_ST in the IORB

Bit

1
2
6
7
8
E
7
8
D
F
0
2

Contents
of SRI

0
0
0
0
0
104
106
107
107
107
10B
10B

Meaning When Bit is Set to 1

f

ETB received
Data service error (transmit)
Long record received (receive)
Illegal character (transmit) ,
Sequence error (receive) * *
Range error
Read timeout
NAK limit reached
Page overflow ^
Busy "
Abort . . . " , _ . . "
Data service error (receive)

9-9 CZ05-00

Table 9-4 (cont). STD Software Status Word I_ST in the IORB

Bit

7
8
9
B
3
E

Contents
of $R1

108
10B
10B
10B
10B
10B

Meaning When Bit is Set to 1

Illegal character (receive)
Poll failure/sequence error
Excessive checksum/parity errors (receive)
Phone hang up
Read timeout
Not available . . _

STD Polling Options

Polling (the line protocol handler's request to the VIP ter-
minal on a polled line for data) is subject to four kinds of con-
trol: two specified at system build, and two specified at con-
nect time. The former consists of the poll lists and poll list
stall, while the latter are the poll interval and poll duration.

~ The application, at connect time, is required to specify the -
arguments for the poll interval and poll duration, by setting the
appropriate bits in the lORB's device-specific word I_DVS
(Table 9-3).

STD POLL LIST

The poll list specifies the station addresses to be used in
the polling sequence. Multiple occurrences of a particular
address may be used to increase the polling frequency of that
address. The list is defined at system build (see the System
-Building and Administration manual).

STD POLL LIST STALL

Poll list stall is the delay interval, in seconds, between
poll list cycles. This delay is specified at system build (see
the Building and Administration manual.

i i
STD POLL INTERVAL • ; '

The poll interval specifies the minimum period of time
between each successive request (poll) by the line protocol
handler for data from a VIP terminal. The line protocol handler
will poll the VIP once for each read request, and when the
request is not satisfied, again after the specified poll period
elapses.

9-10 CZ05-00

For exampler with a 1-second poll interval, the line protocol
handler will issue the same read request every second. For a
zero poll interval, the line protocol handler will poll the VIP
terminal continuously.

The application specifies the poll interval according to the
bit settings of bits 5, 6, and 7 in the device-specific word
I_DVS of the IORB, as shown in T.able 9-3.

STD POLL DURATION (TIMEOUT)

Poll duration, or the timeout interval, is the maximum time
that the line protocol handler will wait for polled data from the
VIP, before discontinuing the read attempt and read request. The
possible timeout intervals are immediate (i.e., after only one
poll) and indefinite (i.e., until requested data is received).
The application specifies the poll duration or timeout interval
with the bits 5, 6, 7, and C in the connect device-specific word
I_DVS, according to the bit values shown in Table 9-3.

STD LINE PROTOCOL HANDLER POLL FUNCTIONS

Within the parameters specified in the poll argument values
by the application, the line protocol handler provides all
necessary polling functions (e»g., how terminals share a common
line, or which terminal is processed next based on the poll
list).

When the application bypasses these line protocol handler
poll functions (i.e., by specifying immediate timeout after only
one poll)f the application must then provide for proper operation
and coordination among all terminals on the line.

When the application is to issue to the terminal (VIP
7804/7805) writes containing TXA or TXD escape sequences, the
user should first issue an asynchronous read* The use of
immediate timeouts on reads in this case could cause the read to
be issued and posted before the write is queued and issued,
resulting in a loss of data from the TXA or TXD command.

Polling is defined as the actual read, not the reading of the
poll list. Polling itself does not commence unless a read has
been queued. Only those stations on the poll list which have
reads queued will be polled.

Control and Characterisitcs of STD Input (Keyboard/Screen)
•~i

STD INPUT MESSAGE HEADER

The line protocol handler strips the message header from the
input data,, except for the hardware function codes, and does not
include ths header in the application's buffer.

9-11 CZ05-00

STD HARDWARE FUNCTION CODES ^

STD hardware function codes are listed in the appropriate
hardware device manauals.

These codes provide a special message labeling capability to
be used by the application. This capability does not apply to
the VIP7804.

The application can include two function codes in the message
header of each text message to or from a terminal by setting at
connect time the following in the IORB: (1) set to 1, bit B of
the device-specific word I_DVS (see Table 9-3); and (2) set to 1,
bit B (extension bit) of I_CT2 to specify that the IORB is
extended (see Figure 4-2 and Table 4-11). The line protocol
handler then inserts the two user-specified hardware function
codes at read time into the lORB's I_FCS word. ,

The VIP7804 has only one hardware function code that may be
used by the application program. This function code appears as a ̂
two-chacacter escape sequence in the data buffer. See the hard-
ware manual.

STD INPUT DATA ' :

The line protocol handler places into the application's
buffer all data, between the STX and ETX/ETB control characters,
received from the VIP terminal. The data is inserted into the
buffer in 7-bi.t ASCII, with the most significant bit always zero.
The LPH strips the ETX/ETB and LRC (longitudinal redundancy check
character, see "Line Protocol Handler Functions," earlier) from
the data and does not include them in the buffer.

"Control and Characteristics of STD Output

This subsection pertains to VIP output and is applicable to
the keyboardf display screen, or receive-only printer (ROP) as
indicated.

STD OUTPUT MESSAGE HEADER. >̂

The STD line protocol handler supplies the output message •"' *
header, but not the hardware function codes. Those for all but
the VIP7804 may be supplied by the application as described above
under "STD Hardware Function Codes."

At write time? when the hardware codes are specified, they
are placed in the I_FCS word of the IORB. To write function
codes to the 7IP7700 hardware, the application program must, at
connect time, set bit B (extension bit) of the lORB's I_CT2 word
to 1, to specify that the IORB is extended. When they are not ~
specified (i.e., bit 8 of I_DVS set to 0 at connect time), the
line protocol handler will insert two spaces, instead of function
codes 1 and 2, into the I_FCS word (see Figure 4-2 and Table
4-11) .

9-12 CZ05-00

CONTROL BYTE (SEND)

The control byte provides editing control (CR, LF, FF) for
both ROPs and CRTs, as described later in this section.

STD OUTPUT DATA

The application's output data must be 7-bit ASCII (the eighth
bit is ignored). Any ASCII control characters, if included in
the application's data, are not transmitted.

STD KEYBOARD/SCREEN OUTPUT EDITING CONTROL

The line protocol handler sends LF and CR editing characters
for VIP keyboard/screen devices according to the values of the B-
and C-bits of the device-specific word IJOVS (Table 9-3). The
application specifies these bit values at write time to send the
CR and LF characters, as follows?

I_DVS Bits Editing
Characters

1 £ Sent

0 0 C R
0 1 None
1 0 LF, CR
1 1 L F

STD RECEIVE-ONLY PRINTER EDITING SEQUENCE

The line protocol handler sends an output editing character
sequence for the receive-only printer (ROP) according to the
control byte supplied, the values of the B- and C-bits of the
device-specific word IJDVS (Table 9-3), and the VIP type to which
it is attached. The application specifies these bit values at
-write time to send the ROP output editing sequence, according to
the ROP type and the VIP type to which it is attached, as shown
in Table 9-5.

STD RECEIVE-ONLY PRINTER CONTROL SEQUENCE
i

The STD line protocol handler sends an output control
sequence according to the ROP type and the VIP type to which it
is attached as shown in Table 9-6.

9-13 . CZ05-00

Table 9-5. STD Receive-Only Printer Editing Sequence

CRT Type

All

All

VIPS7700, 77QOR
7760; VTS 7710,
7740

VIPS7700, 7700R,
7760? VTS 7710,
7740

VIP7804

VIPS7700, 7700R,
7760; VTS 7740
7710

VIPs7700f 7700R,
7760; VTS 7740,
7710

VIP7804

i

TWU 1901

Attached ROP
Type

All *
All

TN1200,
PRO 1005

TN300,
PRU 1003

TN300, TN1200,
PRU 1003,
PRU 1005

TN1200,
PRU 1005

TN300, PRU 1003

TN300, TN1200,
PRU 1003,
PRU 1005

I_DVS Bits

B C

0 0

0 1

1 0

1 0

1 0

•v

1 1

1 1

1 1

1 0

Output Editing
Sequence

CR

None

LF, CR, 36 DELS

LF, CR, 9 DELS

LF, CR

LF, 36 DELS

LF, 9 DELS

LF

LF, CR

Table 9-6. STD Receive-Only Printer Control Sequence

CRT Type

VIP7804

TWU 1901

VIPS7700, 7700R,
776CI; VTS 7740,
7710

V

Attached ROP
Type

All

TN300,
P.RU 1003

Form
Feed

X

X

X

/

zzzz
Output Editing

Sequence

FF

FF

FF, 65 DELS

9-14 CZ05-00

Table 9-6 (cont). STD Receive-Only Printer Control Sequence

CRT Type

VIPs7700f 7700R,
7760? VTS 7740,
7710

VIP7804

VIPS7700, 7700R,
7760; VTS 7740 ,
7710

VIP7804

VXPs7700, 7700R,
7760? VTS 7740,
7710

VIPS7700, 7700Rr
7760? VTS 7740
7710

All

Attached ROP
Type

TN1200,
PRU 1005

None

None

All

TN300,
PRU 1003

TNI 200,
PRU 1005

None

Form
Feed

X

X

X

ZZZZ

X

X

X

X

Output Editing
Sequence

FF, 250 DELS

CLR

FF, DEL

LF, CR

LF, CR, 9 DELS

LF, CR, 36 DELS

LF, CR

NOTES

1. Form feed (FF) is specified by bit 3 of the :
control byte.

2. ZZZZ represents the number of times an output
editing sequence is performed and is specified
by bits 4 through 7 of the control byte.

3« CLR clears all data attributes, moves the
cursor to home position, and puts the terminal
in text mode.

9-15 CZ05-00

PRINTER ESCAPE SEQUENCE FOR VIP7804

The STD LPH transmits the following printer escape sequence
before the first data message:

IB 5B 33 70 (PHLF)

and transmits the following printer escape sequence after the
last data message:

IB 5B 3C 70 (PEOM)

Printer Support

Receive-only printer support by the STD LPH falls into three
categories:

• VIP7804 attached ROP support
• VIP7700, 7700R, and 7760 attached ROP support
• PRU 1901 support.

For the VIP7804 attached ROPs, the STD inserts the start of
message printer escape sequence (print host with local fill
(PHLF)) before the first text message and appends the start print
escape sequence (printer end of message (PEOM)) to the last text
message. The application may supply the CR, LF, or FF characters
minus the time fill characters in the text buffer, or may
instruct the ;3TD LPH to supply the CR, LF, or FF characters via
the control byte or IORB device-specific word. Upon receipt of
the CR, LF, or FF character, the VIP7804 printer adapter supplies
the required time fill characters. For HT or VT, the application
must supply the HT or VT character and required time fill charac-
ters in the text buffer. In this mode an extended print buffer
of 132 print positions is available, as well as the option to
have all text transparent. Use of any of the options provided by
the VIP7804 printer adapter (e.g., copies option) requires the
application to supply the appropriate escape sequence in the text
buffer.

For the VIP7700, 7700R, and 7760 attached ROPs, the STD LPH
supports the 'transparent (150 PRT) and nontransparent (150 NUL) —̂̂
print modes based on the setting of I_DVS bit A of the ROP con-
nect IORB.

• Transparent mode: Allows the user to supply the CR, LF,
or FF characters and timing fill characters in the text
buffer, or instruct the STD to insert them. An extended
print buffer of 132 print positions is also available in
this mode.

9-16 CZ05-00

• Nontransparent mode: The user need not include the CR or
LF characters in the text buffer. The message received by
the terminal is interpreted in the display format (80
print positions), and the necessary CR and LF characters
are supplied by the terminal.

VTP7804 Support

While certain VIP7804 terminal operations are configurable by
the application (e.ge, roll, space suppress) via the connect
IORB, the STD LPH imposes the following operational modes in
order to ensure proper terminal operations

• Block transmit auto: Successive blocks will be sent by
the terminal, each time the terminal is polled, until the
last block has been transmitted.

• Verify before process: The terminal normally operates in
verify before process mode. In this mode, the terminal
does not process the data unless the BCC indicates that no
errors have occured. The transmitted data is restricted
to 1024 characters, including all text plus the control
characters CR, LF, FF, and DEL, supplied by both the
application and the STD LPH.

• Process before verify; The user wishing to use blocks
larger than 1024 characters must, at configuration time,
specify PB after the 7804 device type. In this mode, the
terminal displays characters as it receives them, without
protecting the integrity of the screen.

TWU 1901 Support

The TWU 1901 is a synchronous, polled, hard-copy device with
a keyboard. It should be configured as a CRT; the LPH will
handle the addressing (150 PRT; 150 NUL).

Masjte_iL_LRJL

Master LRN processing enables one receive buffer to service
up to a maximum of 32 terminals on a multi-dropped line. This
technique drastically reduces the number of receive buffers
required to support a multi-dropped environment. It is applica-
ble only to read requests, and is supported through the
user-supplied control word, (described below).

This feature is used most effectively when the application
issues two or more asynchronous read requests, each specifying
different buffers. The issuance of multiple read requests allows
the application to process received data while the STD LPH polls
another terminal for data* However, use of the master LRN fea-
ture does not guarantee that all terminals associated with the
master LRN are accessed sequentially, since STD does not poll for
data unless a read request has been queued. When data has been

9-17 . CZ05-00

received in this mode, STD returns the LRN, for which data was
received, in the right half-byte (RHB) of the user-supplied con-
trol word. The application can then determine which terminal
requires a response.

c
Sub-LRN Support

The ROP and diskette can be accessed only by sub-LRN. Access
to ROPs is handled by the File System, assuming that the user
entered the appropriate ROP and STDLN CLM directives at
configuration time. To access the ROP at the physical I/O level,
the application must set the sub-LRN in field I_ST to 1. If an
error is returned and the same IORB re-issued, the sub-LRN must
be reset, because STD might have returned a status in I_ST when
posting the ICRB, overwriting the original sub-LRN.

Block Mode Processing

Block mode processing is the transmission or reception of
small data blocks, which are components of a large message. It
conserve's buffer space, conserves total message transmission time
in the presence of errors, and reduces line errors. This mode,
applicable to the VIP7760, CTS 7600, and VIP7804, is supported
through the user-supplied control word.

In block mode transmit processing (ETB), a large message is
transmitted in small blocks of data. The application is respon-
sible for issuing an individual write request for each of these
blocks. In block mode receive processing (ETB), the terminal,
when polled, sends blocks of data until the last block is trans-
mitted. The application, in this instance, is responsible for
issuing the read request needed to initiate the transmission.

When I_DVS for the connect request specifies "terminal- '""
generated block mode", the application must set the IORB range
(RB_RA) to the size of the block expected. For the VIP7804, the
RB_RA values are 20-2704 (i.e., 32-9999 decimal). For the
VIPs7700, 7700R, and 7760,, the RB_RA value is FF (256 decimal).

Control Word

Master LRN and block mode processing require an additional ;

word at the beginning of the data buffer. The connect request
specifies control word utilization, and the IORB buffer address
(RB_ADR) contains the address of the control word.

If master LRN processing is desired, the right half-byte
(RHB) of the control word must be set to the LRN which the user
designated as the master. If master LRN processing is not
desired, the application must set the RHB of the control word to
zero (0). See Figure 9-1,

9-18 CZ05-00

0 1 2 3 4 S 6 7 8 9 10 11 12 13 14 15

I € N N N N N N N N

6 - 0

MESSAGE TERMINATED/TERMINATES WITH ETX

6 - 1

MESSAGE TERMINATED/TERMINATES WITH ETB

NNNNNNNN « 0

NO MASTER URN (CONNECT REQUEST)

NNNNNNNN « *nv

CRN OF RECIPIENT (RECEIVE REQUEST)/
MASTER URN (CONNECT REQUEST)

Figure 9-1. Control Word

Block mode processing requires that the application include
the control word in the IORB range (RB_RA) of the read/write
request. The IORB buffer address (RB__ADR) must contain the
address of the control word. On write requests, if the data to
be sent is a block (ETB), the application must set bit 3 of the
control word. If the data to be sent is an entire message or the
last block of a message? the application must set bit 3 of the
control word to zero. On read requests, if the received message
was terminated with ETBf the STD LPH sets bit 3 of the control
word to 1. If the received message terminated with ETX, the STD
sets bit 3 of the control word to zero. The use of the control
word does not preclude the use of the control byte for printer
editing. If the control word is used in conjunction with the
control byte, the control word precedes the control byte in the
buffer,,

Control Byte

The control byte provides editing control (CR, LF, FF) for
both ROPs and CRTs. This control is effected by setting bit 4 of
the write IORB, which causes STD to treat the first character
(third if the control word is specified) of the data as the con-
trol byte. The control type is examined by the STD and, accord-
ing to the bit settings, the STD transmits the appropriate char-
acters before the data. The control byte format is given in
Figure 9-2.

9-19 CZ05-00

0 1 2 3 4 S 6

R 1 Y Z Z Z

RESERVED (NOT EXAMINED)
Y-O

OO NOT ISSUE FORM FEED SEQUENCE
Y-1

ISSUE FORM FEED SEQUENCE

NUMSER OF UINIES TO SKIP BEFORE PRINTING (BINARY)
(E.&, IF ZZZZ!-0100..STO UPH WILL PERFORM
4 FF SEQUENCES;)

Figure 9-2. Control Byte

Output Data and Invalid Characters

The data must be 7-bit ASCII (the eighth bit is ignored).
The ASCII control characters SOH (01), STX (02), and ETX (03),
are not transmitted if included in the data. Instead, an SYN
(16) is transmitted by the STD LPH in place of each occurrence.

VIP7804 Message Range Requirements (Verify Before Process Mode)

The maximum number of characters that the VIP7804 terminal
(CRT/ROP) may have written to it is 1024 (verify before process).
If the application specifies editing control for the CRT/HOP, the
STD LPH inserts/appends the appropriate control characters (CR,
LFr FFf PHLFf PEOM) to the data. While these characters do not
appear in the data buffer and are not included in the IORB range,
they do occupy terminal buffer space. Therefore, the application
must account for these characters when issuing the data write
request. Specifically, the data plus STD-generated transmitted
characters must, be less than or equal to 1024.

VIP78Q4 Terminal Transmission Modes and Cursor Positioning

The VIP7804 terminal supports two methods for transmitting
data to the host and for positioning the cursor.

*"•

1. Return=Normal Mode: Data is transmitted from the termi-
nal to the host by pressing the TRANSMIT key. The cursor
is positioned to the next cursor position following the
data to be transmitted. The RETURN key may be used to
move the cursor to column 1 of the next line.

9-20 CZ05-00

2. Return=Transmit Mode: Data is transmitted from the ter-
minal to the host by pressing the RETURN key. Pressing
the AUTO LINE FEED (AUTO LF) key changes the cursor's
position after the data is transmitted, as follows:

AUTO LINE FEED depressed.
Cursor is positioned to column 1 of the next line.

AUTO LINE FEED not depressed.
Cursor is positioned to column 1 of the current line.

The received range residue is modified to not reflect the
reception of the CR/LF or CR.

VIP7804 Break Processing

Break processing on the VIP7804 is performed by the shifted
function (F12) key rather than by the BREAK key used on other
terminals.

When the terminal is operating in no-roll mode, pressing the
shifted break function key causes the ** BREAK ** message to be
displayed on the 25th line of the terminal. To respond to this
message, the operator should £

1. Acknowledge the break message by pressing function key 10

2. Respond to the break condition by:

a. Entering the UW, SRf or PI command, as appropriate

b. Pressing the transmit key after entering the command.

Supervisory Messageŝ -̂ »•

Supervisory message handling is applicable only to the
VIP7804. To read or write supervisory messages, an application
must first connect the terminal with bit 9 of I_DVS set to 1 (no
roll).

SUPERVISORY MESSAGE READS

To read a supervisory message, the application must set bit 9
of I_DVS to one in the read IORB. Servicing of the supervisory
read order places the cursor on the 25th line. To return the
cursor from the supervisory message line to the data region of
the screen, the operator musts

1. Press the return or transmit key (depending on the
terminal's operating mode) in order to terminate the read.

2. Press function code 10.

9-21 CZ05-00

SUPERVISORY MESSAGE WRITES

To write a supervisory messge, the application must set bit 9
of I_DVS to one in the write IORB. Servicing of the supervisory
write order places the cursor and message on the 25th line.

If bit 8 of I_DVS in the write IORB is set to one, STD
repositions the cursor to the location it occuppied before the
supervisory write. If this bit is set to zero, the cursor
remains on the 25th line until the operator presses function code
10.

Diskette Handling for the GTS 776Q and VTS 7740

The following conventions apply:

• The diskette cannot be accessed through the file system.
The application must use physical I/O, setting I_ST to 2.
The application must reset I__ST when re-using an IORB to
issue an I/O order.

• Device specific words in connect, read, and write lORBs
must indicate no control byte.

• The first two bytes of the application buffer must be one
of the following escape sequences:

Escape Sequence Meaning

! IB 57 Write
IB 42 Read, display on terminal
IB 56 Read, send to host
IB 51 Erase

• To read or write buffers over 256 characters, an
application must use ETB processing. Alternatively, CTS
7760 and VTS 7740 hardware allows the block size to be set
at 128 characters.

2/4 Wire Line Function

Two types of wire connections are supported:

1. Two-wires Two physical wires (one pair) make up the
electrical circuit onto which a data set may be
connected. There is a 250 millisecond data set turnaround
time.

2. Four-wire: Four physical wires (two pairs) make up the
electrical circuit onto which a data set may be con-
nected. Four-wire does not infer full-duplex operation.

9-22 CZ05-00

LONG Q FRAME LINE FUNCTION

ALL VIP terminal types supported by the STD LPH must be set
to long Q frame (i.e., the Q-frame response by the terminal is
SYN SYN SYN SYN SOH EOT).

ERROR PROCESSING BY STD LINE PROTOCOL HANDLER

Table 9-7 lists the errors reported by the STD line proto-
col handler for any VIP configuration. It also lists correspond-
ing return status error codes (see Table 4-10), corresponding
bits in the STD software status word I_ST (see Table 9-4), and
possible recovery actions.

Error Condition

Error during open

"Not available"
message received

Page overflow
not corrected

Invaiid range
in IORB

Read timeout

NAK limit
reached

Busy received

Purgea due to
.mmediate close or
read/write abort

Station disabled

Data service
rate error

Long record

Iliegao. character

Sequence error

Phone hang up

Excessive checksum
or parity error

Poll failure

Posted Error
Return Statas

B

7

7

4

6

7

7

B

B

0 (transmit)
7 (receive)

0

0 (transmit)

B (receive)

B

B

B

I ST
Bit

As
reported

E

D

E

7

8

F

None

None

2
2, 8

6

7

8

B

9

8

Possible
Recovery

None

None, or
retry once

None

Immediate
return

Retry four
times

Not applicaole
Retry four

times

None (ACK
sent to VIP)

Replace illegal
character with
SYN characters

None

Retry four
times

Retry four
times

Comments

Not fatal

Data lost

Bad character
in application's

buffer

-

9-23 CZ05-00

. - . 1

Section 10
PVEUNE

PROTOCOL HANDLER

POLLED VIP EMULATOR fPVE^ LINE PROTOCOL HANDLER

The PVE line protocol handler (LPH) allows a DPS 6/Level 6
system to be connected to a communications link that operates
according to the polled VIP protocol. The line can be half or
full duplex, dedicated, or switched, and operates at up to 9600
baud.

The PVE LPH also provides functionality to recognize and
respond to the VIP7760 controller poll.

The computer that controls the communications link is known
as the control station (CS)f which can be any Honeywell host
system that supports the VIP protocol.

GENERAL PVE LINE PROTOCOL HANDLER OPERATION

A PVE LPH, which is configured in a tributary processor,
supports up to 32 tributary stations per line. Each tributary
station appears to the control station as a VIP terminal*

To the control station? each PVE tributary station is known
by a poll address, and to the tributary processor, by a logical
resource number (LRN) „ There is a one-to-one relationship
between the poll address and the LRN,

10-1 CZ05-00

An application running in a tributary processor issues read
and wjrite requests against an LRN associated with a tributary
station. Similarly/ the control station communicates with a
tributary station by issuing poll and selection orders with the
appropriate poll or selection address.

Figure 10-1 illustrates a typical PVE configuration.

CS » CONTROL STATION
TS " TRIBUTARY STATION
M - MODEM

MIU - MULTIPLE INTERFACE UNIT

Figure 10-1. Typical PVE Configuration

When the PVE receives a select request with the LRN-
assoclated poll address, it forwards the message to the tributary
station to satisfy the application's read request. When the PVE
receives a poll request for the LRN-associated poll address, it
forwards the message to the control station to satisfy the
application's write request. Thus, the application provides the
equivalent of the screen and keyboard, with read and write
requests, respectively.

The PVE line protocol handler supports 'only the screen and
keyboard features of the VIP.

The PVE LPH also supports controller poll processing. This
processing option, specified at system build, permits the PVE
line protocol to support controller poll orders. Such orders are
issued by the control station in support of a VIP7760 (CTS 7600)
controller configuration. A typical controller configuration is
shown in Figure 10-2., As many as eight controllers can be asso-
ciated with a single communications link; up to 32
uniquely-identifiable stations can be associated with the con-
trollers, grouped in any number under each controller. Each
station so grouped, however, must have a unique poll address.

10-2 CZ05-00

cs MIU

CONTROLLER

0

CONTROLLER

7

CS - CONTROL STATION
TS - TRIBUTARY STATION
M = MODEM

MIU = MULTIPLE INTERFACE UNIT

- Figure 10-2. Typical Controller Poll Configuration

The advantage of controller poll processing is that the con-
trol station can issue a single controller poll message to a set
of stations that are attached to the controller, instead of issu-
ing individual sequential poll messages to the same set of sta-
tions c When the PVE receives a controller poll messager it
individually checks all PVE stations that are associated with
that controller. If any station has a write request pending, PVE
forwards the message to the control station in response to the
controller poll request.

USING THE LINE PROTOCOL HANDLER

~ PVE-Spec^fic IORB Values

The PVE-specific IORB item I_CT2, device-specific word I_DVS,
and software status word I_ST are shown in Tables 10-1f 10-2, and
10-3, respectively* Bits not explicitly described in the tables
must be 0. Section 4 describes the general form of the IORB.

10-3 CZ05-00

Table 10-1. Function Codes in I_CT2 in the IORB

Function
Code

0

1

2

A

B

Definition

Wait online

Write

Read

Connect

Disconnect

Use :

Used by the line protocol handler
to complete the description of
the requested I/O function

f " >S

),

Table 10-2. PVE Device-Specific Word I_DVS in the IORB

Bit
Number

0

1

Bit
Setting

0

0

Meaning of Bit Setting

Must be zero. 4 ,."* i - > i

Must be zero.

For connect call only (function code A)

2

3

4

5

6

7

8

0

1

0

0

0

0

0

0

1

Do not use Auto Call Unit. —

Use Auto Call Unit. ̂ .-....; v *

Must, be zero.

Must be zero.

Must be zero.

Must, be zero.

Must be zero.

Does not support VIP function codes.

Supports VIP function codes.

10-4 CZ05-00

Table 10-2 (cont). PVE Device-Specific Word I_DVS in the IORB

Bit
Number

8
(cont)

9

A

B

C

D

E, F

Bit
Setting

0

0

1

0

0

0

00

01

10

11

Meaning of Bit Setting

NOTE

Inclusion of function codes in I_FCS by
the application requires that bit B
(extended IORB indicator) in IraCT2 be
set to 1, specifying that the IORB is
extended.

Must be zero.

Include received DEL characters in buffer.

Strip received DEL characters.

Must be zero.

Must be zero.

Must be zero.

LPH response to application when LPH
receives data but no read IORB
available.

Send NAK. \

Send ACK. 1 VIP
> Status

Send BSY status. 1 Codes

Send NAK (same as 00) .)

For disconnect call only (function code B)

E

F

0

1

0

1

Abort (dequeue) all lORBs on request
queue.

Process all outstanding requests on
request queue.

Hang up phone after disconnect.

Do not hang up phone after disconnect.,

10-5 CZ05-00

Table 10-3. PVE Software Status Word I_ST in the IORB

Bit

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

P

Meaning When Bit Set to 1

N/A

N/A

Data service rate error

N/A

Communications control block (CCB) service
error

N/A

Long record

0 = ETX character received
1 = ETB character received

NAK limit reached '

Excessive checksum/parity errors

Nonzero residual range

Phone hang-up

N/A

N/A

N/A
}

Fatal error: bus parity or memory error

VIP Protocol Message Structure for PVE

Figure 10-3 shows two VIP protocol message structures for
PVE.

10-6 CZ05-00

Control and Characteristics of PVE Input

PVE INPUT MESSAGE HEADER

The PVE line protocol handler strips the message header,
between the SOH and STX control characters, and does not include
it in the application's buffer.

TYPE 1:

SYN
SYN
SYN
SYN

NUMBER OF CODES WAY VARY FROM CPU TO CPU.
THE NUMBER OF CODES MUST BE ZERO FOR A POLL
OR SELECT MESSAGE. A CODE OF 26a MUST NOT BE
INCLUDED IN THE LP CALCULATION. ONLY THE
FIRST TWO FUNCTION COOES ARE RECOGNIZED BY
THE TERMINAL.

NUL
PRT
ACK
NAK
BSY
NA
PGOF

TERMINAL POLL ADDRESS
TERMINAL SELECTION ADDRESS
DISPLAY ADDRESS

MAY BE ET8 CHARACTER

LONGITUDINAL REDUNDANCY
CHARACT6R. INCLUDES ADR
THROUGH ETX, LESS SYN.

END OF
MESSAGi
FRAME

TYPE 2: (QUIESCENT MESSAGE)

SYN (OR OPTIONAL) SYN
SYN SYN
SYN SYN
SYN SYN
SOH EOT
EOT

Figure 10-3. VIP Protocol message Structure for PVE

PVE HARDWARE FUNCTION CODES

PVE hardware function codes are listed in the appropriate
hardware device manuals*

These codes provide a special message-labeling capability to
be used by the application.

10-7 CZ05-00

The application can include two function codes in the message
header of each text message by setting at connect time the fol-
lowing in the IORB: (1) set to I/ bit 8 of the device-specific
word I_DVS (see Table 10-2); and (2) set to I, bit B (extension
bit) of I_CT2 to specifiy that the IORB is extended (see Figure
4-2 and Table 4-11). The line protocol handler then inserts the
two user-specified hardware function codes at read time into the
lORB's I_FCS item.

PVE INPUT DATA

The line protocol handler places into the application's
buffer all data between the STX and ETX control characters. The
data is inserted into the buffer in 7-bit ASCII, with the most
significant bit always zero. The LPH strips the ETX and LRC
(longitudinal redundancy check character, see Section 1,
"Communications Subsystem Error and Correction Procedures") from
the data and does not include them in the buffer.

It also strips DEL characters when the application, at con-
nect time, sets to 1 the A-bit of the device-specific word
I_DVS (Table 10-2).

<i

By setting the E- and F-bits of I_DVS as shown in Table 10-2,
the application can control the response that the line protocol
handler sends when it receives data, but no read IORB is
available.

Control and Characteristics of PVE Output

PVE OUTPUT MESSAGE HEADER

The PVE line protocol handler normally supplies the output
header between the SOH and STX control characters. The applica-
tion can specify hardware function codes (1, 2) as described
above under "PVE Hardware Function Codes." To write function
codes,, the application program must, at connect time, set bit B
(extension bit) of the lORB's I_CT2 item to 1, to specify that
the IORB is extended. At write time, when specified, the codes
are extracted from the I_FCS item of the IORB. When the codes
are not specified (bit 8 of I_DVS set to 0 at connect time), the
line protocol handler will supply two spaces, instead of the
codesF into I_FCS. (See Figure 4-2 and Table 4-11.)

PVE TERMINAL ADDRESS (ADR) AND MESSAGE STATUS (STA) , -

The PVE line protocol handler supplies an ADR (terminal
addreiss) of Xs60' (keyboard/screen) and an STA (message status)
of NUL to the application.

PVE OUTPUT DATA

The application's output data must be 7-bit ASCII. The most
significant bit is used by the line protocol handler during
transmission of odd parity.

10-8 CZ05-00

Output data must not include the ASCII control characters
SOH, STX, ETB, ETX, EOT, or SYN.

The line protocol handler supplies output ETX control charac-
ters and longitudinal redundancy check characters (LRCs)
(described in Section 1, "Communications Subsystem Error and
Correction Procedures").

PVE LINE PROTOCOL HANDLER TIMEOUT INTERVALS , •

Table 10-4 lists the timeout intervals used by the line
protocol handler for the connect, read? and write functions. The
line protocol handler will attempt or reattempt the functions
until the indicated timeout period has elapsed.

In addition to the interval in the table, there is also a
gross timeout of one minute? which expires when the control sta-
tion ceases to poll or select any tributary station.

Table 10-4. PVE Timeout Intervals

Function Timeout Interval

Connect

Read

Write

200 seconds

Indefinite

Indefinite

ERROR REPORTING BY PVE LINE PROTOCOL HANDLER

Table 10-5 lists the errors reported by the PVE line proto-
col handler. It also lists corresponding return status error
codes (see Table 4-10) and corresponding bits in the software
status word I_ST (see Table 10-3).

10-9 CZ05-00

Table 10-5. Errors Reported by PVE Line Protocol Handler

Error Condition

No interrupt from MLCP

NAK limit reached

Purged due to immediate
close

Station disabled

Fatal error interrupt
level

Data service rate error

Communication control
block service rate error

Long record

Phone hanc[-up

Nonexistent resource, or
Bus parity error, or
Unrecoverable memory
error

Posted Error
Return Status

6

7

B

B

B

0 (send)
7 (receive)

7

0

B

B

I_ST
Bit

7

8

None

None

None

2
2, 8

4, 8

6

B

None

Comments

Poll failure or
CCP/MLCP failure

Write failure

-

*

Not fatal

Not fatal

l

10-10 CZ05-00

Section 11
27 80137 80 BSC UNE

PROTOCOL HANDLER

BSC 278Q/378Q LINE PROTOCOL HANDLER

The binary synchronous transmission (BSC) 2780/3780 line
protocol handler (LPH) supports BSC 2780 and BSC 3780
point-to-point, nontransparent or transparent EBCDIC? or non-
transparent ASCII transmission between a DPS 6/Level 6 system and
another host system (subject to certain restrictions) .

The 3780 protocol is similar to the standard 2780 protocol
and unless specifically stated otherwisef the rest of this
section and the term BSC pertain to bothe

GENERAL BSC LINE PROTOCOL HANDLER OPERATION

When a station (device or computer) at either end of a commu-
nication line has a message to send? it requests use of the line
by sending an ENQ bit message., (See Appendix G for definition of
ENQ and other control characters.) The receiving station must
respond with an ACK/0 sequence before the sending station can
transmit a data message.

11-1 C205-00

BSC Transmit and Receive Operations

A station that has control of the line, i.e., the right to
transmit, is known as the master (primary) station. The station
that relinquishes control, i.e., will receive, is the slave
(secondary) station. Primary and secondary are arguments of the
BSC CLM directive used during system build.

When the first data message from the master station is suc-
cessfully received, the slave station responds with an ACK/1
sequence. Acknowledgments for subsequent remaining messages
alternate between ACK/0 and ACK/1. The master/slave status for
each respective station remains in effect until the master sta-
tion gives up control by sending an end-of-transmission (EOT)
character (which is not acknowledged by the slave station).

When a bidding station does not receive an ACK/0 response
within a specified interval (timeout period), it sends another
ENQ message. At the same time, or at nearly the same time, the
other station may be sending an ENQ message, bidding for the
line. Thus both stations may be bidding with neither receiving _x
an ACK response. This is known as line contention. Line conten-
tion can be avoided by designating one station as the primary and
the other as secondary during system build. Then when the desig-
nated primary station receives an ENQ response to its bid mes-
sage, it retransmits the ENQ message to the secondary station,
which in turn ignores its own bid request and responds to the
primary station with an ACK or NAK.

The BSC line protocol handler allows a receiving station to
reply to a data message with an reverse interrupt (RVI) message
if it has an urgent requirement to transmit data.

Figure 11-1 illustrates bids and other interactions between a
master and slave station*

BSC Da.ta Transmission Modes

BSC operates in either basic data transmission mode or in
advanced data transmission mode, according to whether a control
byte is included in the data being transmitted. (See "BSC -̂̂
Control Byte (Receive)" and "BSC Control Byte (Send)" later in
this siection.)

BSC BASIC DATA TRANSMISSION MODE

In basic data transmission mode, there is no control byte
included in the data being transmitted along the communications
line.

11-2 CZ05-00

PRIMARY STATION A

BIDS

SECONDARY STATION B

MASTER

RELEASE

ACCEPTS 810

SLAVE

BIOS

TIME-OUT

BIOS AGAIN

ENQ(BID)
ACKO
DATA

^ ACK1
DATA
ACKO

EOT (RELEASE)

ENQ(BID)
ACKO

DATA
ACK1

TEOT (RELEASE)

ENQ ENQ

ENQ

ACKO

ACCEPTS BIO

SLAVE

BIOS FOR PRIMARY

MASTER

BIDS

ACCEPTS BIO
WOULD HAVE TIMED-OUT HERE

Figure 11-1. Example of BSC Communication
ifc-

' BSC ADVANCED DATA TRANSMISSION MODE

In advanced data transmission mode, the application includes
a control byte that occupies the first byte of the output buffer
but is not transmitted across the line. The control byte
indirectly controls the operation of the line protocol handler
(e«,g.? sending an ETB or ETX) , or conveys information about a

-_data transfer (e.g0, whether transparent text was received).

BSC 278Q and BSC 3780 Differences

The 3780 protocol differs from the 2780 protocol in that the
3780 protocol allows an application to:

• Receive a conversational reply

« Receive two records and to transmit a single record, when
the double-block option is selected at connect time
(whereas the 2780 protocol allows both transmission and
reception of two records)

• Receive multi-block records and to transmit a single
record, when the multi-block option is selected at connect
time (whereas the 2780 protocol allows both transmission
and reception of multi-block records)

• Receive and transmit selected BSC control characters in
nontransparent mode.

11-3 CZ05-00

BSC Record Types

The BSC LPH supports three forms of record transmission:

1. Single-record transmission
2. Two-buffer transmission
3. Multiple intermediate text block (ITB) sequence.

To identify the record constructs in a more meaningful and
uniform mannerr the following terms will be used:

« Single-block (in place of single-record or single-buffer)
» Double-block (in place of two-buffer)
• Multi-block (in place of multiple ITB sequences).

BSC 278Q/378Q Features

The following discussions in this subsection include refer-
ences to BSC-specific fields in the input/output request block
IORB (see Table 4-8) and to control bytes. See Tables 11-4 and
11-5 later in this section for descriptions of the
device-specific word I_DVS and software status word I_ST,
respectively. Control bytes are described under "Control Byte
(Receive)" and "Control Byte (Transmit)".

BSC DOUBLE-BLOCK FEATURE

With the double-block feature, the use of the second buffer
reduces line turnaround time, i.e., two records can be trans-
mitted with only one acknowledgment. However, there are these
disadvantages:

• When a line (parity) error occurs, both records must be
retransmitted.

• One transmission requires that two writes be issued, which
are not posted until an acknowledgment is received.

• Four buffers are necessary to operate the line
efficiently.

Figure 11-2 shows record transmissions with and without the
double-block feature.

11-4 CZ05-00

WITH DOUBLE-BLOCK FEATURE

STX

WITHOUT

ETBBCC

ACM « .«_ „ ,,

DOUBLE-BLOCK FEATURE

Figure 11-2. BSC Double-block Feature in Record Transmission

Before selecting the double-block feature, compare the advan-
tage of better line utilization against the disadvantages of a
more complex program and increased buffer usage, and consider the
following:

1. In BSC 2780 with the double-block option, two records can
be received or transmitted (using an ITB (intermediate
text block) sequence).

2. In BSC 3780, with the double-block option, two records
can be received, using an ITB sequence, and single
records can be transmitted. This implies that an appli-
cation using BSC 3780 must be able to receive up to two
records at any one time, but can only initiate
single-record transmission.

3. The double-block feature cannot be used with synchronous
reads, because the intermediate files being received may
be terminated by an ETX record. If the ETX record is the
first of the two records being read, the second read
(synchronous) would not be posted to the system.

For example:

READ (asynchronous)
*

« process
e>

READ (synchronous)
»

process

Assumes always two records
per transmission.

11-5 CZ05-00

The following sequence is better:

READ (asynchronous)
— READ (asynchronous)
WAIT (1)
•

process
•

READ (asynchronous)
WAIT (2)
•

. process
•

BSC MULTI-BLOCK FEATURE

The multi-block feature allows an application to send or
receive from 1 to 7 records in a single transmission. Use of
multi-block reduces line turnaround time in that only one write
order,r one user buffer, and one acknowledgment are required for
the transmission of multiple records.

This feature is optionally selected at connect time. When
using BSC 2780, an application selects the multi-block feature to
both send and receive multiple-record transmissions for the
duration of the connecty single- and double-block transmissions
are precluded. When using BSC 3780, an application selects the
multi-block feature only to receive multi-block transmissions.

For this feature to be selected at connect time, its use must
have been provided for at system build. This is accomplished by
.an argument in the BSC CLM directive. Indicating the possible
use of the multi-block feature during system build does not
require that it be selected for use at connect time, since
selection is optional. However, selection of this feature at
connect time is prohibited if the possibility of its use was not
provided for during system build.

When 3780 and multi-block are specified at connect time, the
receive buffer must be organized as shown in Figure 11-3.
Transmit buffer organization remains the same as for
single-record transmission* When 2780 and multi-block are
specified at connect time, the receive and transmit buffers must
be organized as shown in Figure 11-3. The buffer shown in Figure
11-3 is divided into two sections, a header section and a data
section. The data section contains the user's records, referred
to as data blocks., Only the data blocks of a data buffer are
transmitted, with the appropriate protocols inserted. The header
section is interpreted by and controls the processing of the BSC
LPH. Table 11-1 defines the contents of the buffer's header
section. Figure 11-4 illustrates the transmission of the data
blocks shown in Figure 11-3.

11-6 CZ05-00

-1 WORD-

HEADER
SECTION

DATA
SECTION'

CONTROL FIELD

BLOCK COUNT

BLOCK HEADER

BLOCK HEADER NO. 2

BLOCK HEADER NO. 3

DATA BLOCK NO. 1

DATA BLOCK NO 2

DATA BLOCK NO. 3

Mrt **

} 1 i

BLOCK OFFS6

BLOCK SIZE

1

1

0

1

T 2

3

5

I '
8

9

A

B

C

D

("

F

10

11

12

13

14

15

16

17

18

y//////,
3

8

A

7

C

_ _ _ _ l _ » _ - _

_ _, _ _L_ _ _ _ _

_ _ _ _1_. ._

__,_=-=l_ — __

I

_ _ J _ _ _ _ _ =

1

--™-1---"-

^-"^am
i_
L

1 _

i

">v

11
~"\

i ^

J

Figure 11-3. Multi-block Buffer Organization

11-7 CZ05-00

Table 11-1. Multi-block Header Section Field Descriptions

Transmit (2780 Only) Receive (2780/3780)

Control
Field

Block
Count

Block
OfEset

Block
Size

Contains optional
control byte.

Byte 0:

Byte 1: Must be zero.

Number of blocks to be
transmitted.

Posted back with actual
number transmitted.

Word offset from base of
buffer to beginning of
data block.

Posted back with contents
unchanged.

Number of characters
(bytes) in data block to
be transmitted«,

Posted back with residual
ranger if any.

Same as for transmit.

Maximum number of
blocks which can be
received.

Posted back with
actual number
received.

Same as for transmit.

Maximum number of
characters (bytes)
which can be
received.

Posted back with
actual number
received.

1

STX---(DATA BLOCK NO. 1) ITB BCC SYN SYN STX

- - - (DATA BLOCK NO, 2) ITB BCC SYN SYN

STX - - - (DATA BLOCK NO. 3) - - - ETB BCC

ACKO---

Figure 11-4. BSC Multi-block Transmission of Buffer
Shown in Figure 11-3.

11-8 CZ05-00

The following rules apply to the construction of a
multi-block buffer:

• Data blocks cannot overlap.

• Each data block begins on a word boundary.

• The range value in the IORB need not be specified? this
value is calculated from the buffer header section by
system software. The range value returned in the posted
read IORB is the header size plus total block lengths plus
any gap(s) between blocks. Range value returned in the
posted write IORB is equal to the header size.

• Buffer space may exist between data blocks but must not be
used because its contents may be overwritten by system
software.

• Block headers and the corresponding data blocks they
define must be in the same sequence. The first header
block must define the first data block, the second header
block must define the second data block, etc. These
header blocks precede the data blocks,

• During a single connectr the number of data blocks can
vary for each transmissionf provided they do not exceed
the maximum allowed. This maximum number, which can vary
from 1 to 7f is specified by the user at system build.

• If, during a read operation, fewer data blocks are
received than were specified in the block-count field of
the buffer's header section, the block-count field is set
equal to the number of data blocks received and the IORB
is posted back with bit A of the software status word
I_ST set to 1, indicating nonzero residual range.

BSC TEMPORARY TEXT DELAY (TTD) FEATURE

The following describes the sequence of the temporary text
delay (TTD) features

1. When a master station receives an ACK, and no output
request block (lORBs) are queued, that station waits 2
seconds for one IORB (or two lORBs when there are two
buffers) to be queued.

2. The master station then sends the temporary text delay
(TTD) control character sequence (STX, ENQ) to the slave
station.

11-9 CZ05-00

3. When the slave station responds with a NAK, the master
station checks whether the application has queued the
appropriate write requests. If the write requests are
not queued, the master station continues the TTD sequence
until the application issues the necessary write
requests.

4. If the EOT or ETX bit (A-bit or D-bit) in the I_DVS word
of the IORB is set (Table 11-4), one write request will
effect transmission.

Figure 11-5 is an example of the temporary text delay
sequence.

MASTER , SLAVE

MESSAGE 1 *-

_ ACK/0

MESSAGE 2 — • »-

-* — ••— ACK/1

TTD (STX. ENQ)

rro ——
—«• — — NAK

MESSAGE 3 — »-

-a — — — ACK/0

Figure 11-5. BSC Temporary Text Delay (TTD) Sequence Example

BSC WAIT BEFORE ACKNOWLEDGE (WACK) FEATURE

A BSC slave station will send ACK/0 and ACK/1 responses to
messages satisfactorily received, provided there is at least one
outstanding read request (two with the double-block feature), in
addition to the request being processed.

1. When no read is queued, the slave station posts the cur-
rent read, waits 2 seconds for read requests to be
queued, then sends a WACK response, indicating to the
master station that the last message was received, but
the slave station cannot accept more data.

2. The master station waits (timeout), then sends an ENQ
message,

3. If a read request was queued during the timeout, the
slave station responds with an ACK, and the master sta-
tion can send its next data message.

11-10 CZ05-00

4. If no read request was queued during the timeout, the
slave station waits another 2 seconds, and when neces-
sary sends another WACK sequence.

The ASCII and EBCDIC WACK sequences are OLE ,- and DLE ,
respectively.

Figure 11-6 is an example of the wait before acknowledge
(WACK) sequence«,

MASTER

MESSAGE 1

MESSAGE 2

MESSAGE 3

TIMEOUT

SUAVE

• ACK/0

• ACK/1

• WACK

ENQ

MESSAGE 4

ACK/0

ACK/1

Figure 11-6. BSC Wait Before Acknowledge (WACK)
Sequence Example

BSC REVERSE INTERRUPT (RVI) FEATURE

When a slave station is processing read requests and must
unexpectedly transmit an urgent messagef that station must issue
a reverse interrupt (RVI) message, which informs the master
station that the slave station is requesting control of the line,

On receiving an RVI characterr the master station should
empty its buffers and give up control of the line. However, the
master station does not have to acknowledge the RVI by giving up
control,,

The application program can request the BSC line protocol
handler to send an RVI character, by either of the following
methodss

11-11 CZ05-00

1. Use of the control byte. The application issuing read
requests issues a transmit request with bit 5 of the con-
trol byte set to 1 (see Figure 11-12) and with the urgent
message in the application's buffer.

2. Use of the device-specific word I_DVS of the IORB. The
application issuing read requests issues a transmit
request with the B-bit of I_DVS set to 1 and with the
urgent message in the application's buffer.

The application issuing write requests can detect an RVI
character by either of these methods:

1. Test bit 3 of the control byte after a successful write
request is posted. A bit setting of 1 indicates that the
RVI for that IORB was received.

2. Test bit 3 of the lORB's software status word I_ST. A
bit setting of 1 indicates an RVI was received.

Figure 11-7 is an example of a reverse interrupt (RVI)
sequence.

MASTER . SLAVE

ACK/1

URGEI
(NOW

t

Figure 11-7. BSC Reverse Interrupt (RVI) Sequence Example

BSC END OF TRANSMISSION (EOT) FEATURE

The application program, by any one of the following methods,
can cause the BSC line protocol handler to send an
end-of-transmission (EOT) message:

11-12 CZ05-00

• At connect time, specify use of the control byte by
setting to 0 bit 4 of the lORB's device-specific word
IJDVS. When bit 4 of the first byte of the application's
buffer {control byte, specified at write time) is set to
If the BSC line protocol handler will send an EOT control
character after the data in the application's buffer i.s
successfully transmitted.

• When the control byte is not specified at connect time?
set to 1 A-bit of the lORB's device-specific word IJDVS at
write time. The BSC line protocol handler will send an EOT
control character after the data in the application's
buffer is successfully transmitted.

• After successful completion of a write request, issue a
disconnect with or without a queue abort, and no physical
disconnect. The master station will send an EOT character
and give up its master status. However, when another IORB
is queued for write, that station will again request its
master status.

The application can detect receipt of an EOT control charac-
ter in either of the following ways:

• If the control byte was specified at connect time, bit 4
of the control byte, of the read request on which the EOT
was received, will be set to 1.

•

• If the control byte was not specified at connect time, bit
12 of the software status word I_ST, of the request on
which the EOT character was received, will be set to 1.

With either method, the line protocol handler does not post
any read requests queued before the EOT character was detected.
To remove read requests from the queue, the application must
issue a disconnect with a queue abort. The line protocol handler
always posts the IORB with a device unavailable (B) return status
(Table 4-10) «, The BSC line may or may not be available for
further use? depending on whether or not an EOT character was
sent abnormally.

BSC SWITCHED LINE DISCONNECT (OLE EOT) FEATURE

A DLE EOT sequence is used to indicate the imminent intent of
the transmitting station to do a physical disconnect. Use of
this feature is selected at connect time by setting bit 5 of the
lORB's UDVS word to 1. If bit 5 is instead set to 0, the line
protocol handler will transmit EOT instead of a DLE EOT. This
transmission of the EOT will occur as described in the pre-
ceding description of EOT,,

Reception and notification of a DLE EOT sequence, indicating
pending line hang-up by the transmitting station, is performed in
two ways?

11-13 CZ05-00

• If the control byte was not specified at connect time,
bits 9 and C are both set to 1 in the lORB's software
status word for the read request on which the DLE EOT was
received.

• If the control byte was specified at connect time, bits 3
and 4 of the control byte are both set to 1 for the read
request on which the DLE EOT was received.

Transmission of a DLE EOT sequence is initiated for a discon-
nect request when the following two conditions are both true:

• Bit F of the disconnect IROB's device-status word is set
to 0 (this is a request for a physical disconnect).

• Bit 5 of the connect lORB's device-specific word was set
tO lc

Table 11-2 defines the conditions under which EOT or DLE EOT
is selected for transmission or reported as having been received,

Table 11-31. Transmission and Reception Conditions
for EOT and DLE EOT

Receiving Station

Connect IORB
Selected

EOT

* DLE EOT

DLE EOT

Character
Transmitted

DLE EOT
* j

DLE EOT

EOT

Reported to
Application

EOT

DLE EOT

• EOT - 't * "

, J >.*• '

Transmitting Station

Connect IORB
Selected

t EOT

EOT

DLE EOT

DLE EOT

Disconnect IORB
Specified

Logical Hangup

Physical Hangup

Logical Hangup

Physical Hangup

Character
Transmitted

EOT

EOT ™:;;, "'.]

EOT ^ r, ,_, ̂
f ' , r

DLE EOT
l-.Cj

11-14 CZ05-00

BSC Line Protocol Handler Timeout Interval

When a line is idle (no station controls the line), the
timeout interval in waiting for a line-request bid is 10 minutes.

Once a station has successfully bid for a line, the timeout
interval for subsequent reads (from the slave station) or writes
(from the master station) is 12 seconds.

BSC Features Specific to 378Q

BSC 3780 CONVERSATIONAL REPLY FEATURE

The conversational reply feature permits a 3780 application,
after transmission of an entire message (whose last record is
denoted by an ETX rather than an ETB), to selectively receive a
message from a host computer without a preliminary line bid
sequence.

The conversational reply sequence serves as the affirmative
reply to the last message transmission block, and as a break or
interrupt to later transmissions. The line protocol handler
indicates to the application receipt of a conversational reply
sequence in bit 5 of the IORB software status word I_ST, and/or
in bit 2 of the control byte of the ETX write order.

In the following example, a 3780 application attempts to
transmit three 2-record messages to a remote host computerc The
transmission sequence is interrupted by the receipt of a conver-
sational reply, which occurs after transmission of the second
message. After the complete conversational reply (containing one
or more records) is received, transmission of the third message
can resume, following completion of a successful line bid
sequence^ Figure 11-8 illustrates the example sequencec

The.application's use of the conversational reply feature
requires that the application issue the requisite number of read
orders (dependent on single or double-block mode) before the
transmission of a text block that terminates with an ETX
sequence. If the application does not issue the required
read(s), the last text block is not transmitted, and the line
protocol handler will initiate a temporary text delay (TTD)
sequence until the necessary read orders are issued. If the
application does not transmit an ETX sequence, it need not issue
supporting read order(s).

BSC 3780 DOUBLE-BLOCK FEATURE

The discussion under "BSC Double-block Feature" earlier in
this subsection applies also to BSC 3780 operation.

11-15 CZ05-00

8SC 3780 APPLICATION

TRANSMISSION OF
FIRST MESSAGE

TRANSMISSION OF
THIRD AND
FINAL MESSAGE

ENQ

ACKO

STX . ..ET8

ACK1

STX . .. ETX

ACKO

STX ... ETB

ACK1

STX ... ETX

ACKn

EOT

ENQ

ACKO

STX ... ETB

ACK1

STX .. ETX

ACKO

EOT

HOST SUPPORTING
BSC 3780 APPLICATIONS

1

t
f

TRANSMISSION OF
SECOND MESSAGE '

/ STX ..ETB __

ACK1

STX . ETX ' '

INTERRUPTING"
CONVERSATIONAL REPLY

TRANSMISSION OF
REMAINDER OF THE
CONVERSATIONAL
REPLY

Figure 11-8. Example of Conversational Reply in BSC 3780
Transmission Sequence

11-16 CZ05-00

BSC 3780 TRANSMISSION/RECEPTION OF BSC CONTROL CHARACTERS

In BSC 2780 nontransparent mode, detection of any BSC control
characters within a message would abort the transmission or
reception of that message.

In 3780 nontransparent mode, selected, noncritical BSC con-
trol characters (i.e., STX, SOH, DLE, NAK, and EOT) can be suc-
cessfully transmitted and received.

USING THE BSC 2780/3780 LINE PROTOCOL HANDLER

pSC-Specific IORB Values

The BSC-specific IORB item I_CT2, device-specific word I_DVS,
and software status word I_ST, are shown and defined in Tables
11-3, 11-4, and 11-5, respectively. User-specified bits not
specifically described in the tables must be O e Section 4 has a
general description of the IORB.

Table 11-3. Function Codes in I_CT2 Field in the IORB

Function
Code

0
f-

1

2

A

B

Definition

Wait online

Write

Read

Connect

Disconnect

Use

Used by the line protocol handler
to complete the description of
the requested I/O function.

11-17 CZ05-00

Table 11-4. BSC Device-Specific Word I_DVS in the IORB

Bit
Number

0

1

Bit
Setting

0

0

For

2

3

4

5

6

7

0

1

0

0

1

0

1

0

. 0

1

Meaning of Bit Setting

Must be zero.

Must -be zero.

connect call only (function code A) ---•

Do not use Auto Call Unit.

Use Auto Call Unit.

Must be zero.

Use control byte.

Do not use control byte.

Do not support OLE EOT seqeuence.

Support OLE EOT sequence.

Must be zero.

Use single-block or double-block feature.
(See bit 8.)

Use multi-block feature.
For 27 80s Both send and receive.
For 3780s For receive only.

(Bit 8 must be zero.)

NOTE

Bit 7 must be zero for bit 8 to be meaningful.

8

9

0

1

0

1

Use single-block per transfer.

For 2780: Use double-block for send/receive.
For 3780s Use double-block for receive.

Use BSC 2780 protocol.

Use BSC 3780 protocol*

1

11-18 CZ05-00

Table 11-4 (cent). BSC Device-Specific Word I_DVS in the IORB

Bit
Number

Bit
Setting

t

Meaning of Bit Setting

For write call only (function code 1)

A

B

C

D

0

1

0

1

0

1
0

1

Do not send EOT after this transmission.

Send EOT after this transmission.

Do not send RVI if station is in slave status.

Send RVI if station is in slave status.

Send data in nontransparent mode.

Send data in EBCDIC transparent Mode.

Send ITB or ETB eharcters following the data.

Send ETX characters following the data.

For disconnect call only (function code B)

E

F

0

1

0

1

Abort (dequeue) all IROBs on request queue*

Process outstanding requests on request queue«

Disconnect line on completion. If bit 5 was set
to 1 on connect , then send OLE EOT sequence.

Do not disconnect line on completion»

Specifying Use of BSC 2780 and/or 3780 to the System

The inclusion of BSC 2780 and/or 3780 in the system is done
during system build. The application can select and use either
2780 or 3780 according to the setting of bit 9 in the
device-specific word I_DVS in the IORB (see Table 11-4).

11-19 CZ05-00

Table 11-5. BSC Software Status Word I_ST in the IORB

Bit

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

P

Meaning When Bit Set to 1

N/A

N/A

Data service rate error

Lost line bid; RVI received

Communications control block service error

Conversational reply received (3780 only)

Long record

0 = ITB and/or ETB characters received
1 = ETX character received

N/A

0 = not meaningful
1 » OLE EOT received, if bit C is also 1

Nonzero residual range

Phone hang-up -

EOT character received

Transparent message received

NAK limit reached

Fatal errors bus parity or memory error

Formats and Characteristics of BSC Input Data ' ' , :

The formats and characteristics of BSC input data for both
ASCII and EBCDIC are described and illustrated below.

Figure 11-9 shows the format and contents of BSC input data
received from another computer.

11-20 CZ05-00

SOM
If

(CONTROL BYTE) DATA
1 1

EOM 8CC

SOM (START OF MESSAGE)
A ONE- OR TWO-CHARACTER SEQUENCETHAT IS STRIPPED 8Y
THE BSC LPH.

CONTROL BYTE
THE CONTROL BYTE. IF SPECIFIED, IS THE FIRST BYTE OF THE
APPLICATION'S DATA

DATA
INFORMATION STORED IN THE APPLICATION'S BUFFER AND
SPECIFIED AT READ TIME.

EOM (END OF MESSAGE)
A ONE- OR TWO-CHARACTER SEQUENCE THAT IS STRIPPED BY
THE BSC LPH.

8CC
AN LRC CHARACTER OR CRC CHARACTER THAT IS INSERTED BY
THE BSC LPH.

Figure 11-9. BSC Input Data Format and Contents

BSC CONTROL BYTE (RECEIVE)

When bit 4 of the lORB's device-specific word I.JDVS is set to
0 at connect time (see Table 11-4)t the BSC line protocol handler
uses the first byte of the application's buffer as the control
byte. Figure 11-10 shows the control byte's format and content.

0 1 2 3 <t, 5 6 7

BITS-0 THROUGH 2
NOT APPLICABLE; NOT EXAMINED

BITS - 0
NOT MEANINGFUL

BITS - 1
OLE EOT RECEIVED IF BIT 4 IS ALSO 1

BIT 4 = 0
DATA STORED IN APPLICATION'S BUFFER

BIT 4 - 1
EOT RECEIVED; NO DATA STORED IN APPLICATION'S BUFFER

BITS
NOT APPLICABLE; NOT EXAMINED

BIT 6 - 0
DATA RECEIVED IN NONTRANSPARENT MODE

BITS - 1
DATA RECEIVED IN TRANSPARENT MODE

BIT? - 0
ITB OR ETB RECEIVED

BIT? - t
ETX RECEIVED

Figure 11-10 Control Byte (Receive) for
BSC Line Protocol Handler

11-21 CZ05-00

ASCII INPUT FOR BSC

ASCII input characteristics and format (Figure 11-9) are as
follows?

1. SOM (start-of-message) consists of the STX control char-
acter only.

2. The control byte (if specified at connect time) is stored
in the first byte of the application's buffer, and indi-
cates the end-of-message (EOM) sequence. When bit 7 is
0, it indicates detection of an ITB or ETB control char-
acter; when If it indicates detection of an ETX charac-
ter. Note that bit 7 of both the control byte and of
I_ST are specified.

3. Data must be 7-bit ASCII with odd parity. The BSC line
protocol handler strips the parity bit and resets it to
zero when it stores it in the application's buffer.

/

4. The EOH sequence, one of the three control characters
ITB, ETB, or ETX, is indicated by bit 7 of the IORB soft-
ware status word I_ST after a successful read is posted.
See Table 11-5 for bit 7 indicators.

5. The BCC (block check character) is described in
Section 7, "Line Protocol Handler Functions."

EBCDIC INPUT FOR BSC

EBCDIC input format and characteristics are as follows:

1. SOM (start-of-message) consists of the STX control char-
acter only.

2. The control byte (if specified at connect time) is stored
in the first byte of the application's buffer, and indi-
cates the end-of-message (EOM) sequence, as follows:

Bit 4 a 1 End of transmission (EOT) detected.
Bit 7 - 0 ITB or ETB character detected.
Bit 7 = 1 ETX character detected.

3. Data must be 8-bit EBCDIC; it will not have any BSC con-
trol characters.

4. The EOM sequence, one of the control characters ITB, ETB,
or ETX, is indicated by bit 7 of the IORB software status
word I_ST after a successful read is posted. See Table
11-5 for bit 7 indicators.

11-22 CZ05-00

5. The BCC (block check character) is described in Section
7, "Line Protocol Handler Functions."

TRANSPARENT EBCDIC INPUT FOR BSC

Transparent EBCDIC input format and characterisitcs are as
follows:

1. SOM (start-of-message) consists of the two-character
sequence DLEf STXe

2. The control byte? if specified at connect time, is stored
in the first byte of the application's buffer/ and indi-
cates the EOM (end-of-message) sequence according to the
bit 7 setting (Figure 11-10).

3. Data may be any EBCDIC character, including BSC control
characters.

4. EOM (end-of-message) sequence may be one of the follow-
ing f indicated by bit settings of the IORB software
status word I^ST? after a successful read has been

:_si

fi
1

i

l

P Bits

1

0

0

1

Resulting

DLE

DLE

DLE

EOM Sequence

, ITB

, ETB

, ETX

The block check character (BCC) is described in Section
If "Line Protocol Handler Functions."

.and,, C.ha.c.acte.cl-S't j-gs., of BSC Output Data

Formats and characteristics of BSC output data (both ASCII
and EBCDIC) are described and illustrated below.

Figure 11-11 shows the format and content of BSC data trans-
mitted to another computer.

11-23 CZ05-00

sow
/ /

(CONTROL BYTE) DATA
I 1

EOM BCC

SOM
A ONE- OR TWO-CHARACTER SEQUENCE THAT IS INSERTED IN FRONT
OF THE DATA BY THE 8SC LPH.

CONTROL BYTE
THE CONTROL BYTE, IF SPECIFIED, IS STORED IN THE FIRST BYTE
OF THE APPLICATION'S BUFFER.

EOM
A ONE- OR TWO-CHARACTER SEQUENCE THAT IS INSERTED BY THE
BSC LPH.

BCC
AN LRC CHARACTER OR CRC CHARACTER THAT IS INSERTED BY
THE BSC LPH.

DATA - ' ' ' "*• " "̂
INFORMATION THAT IS TRANSMITTED FROM THE APPLICATION'S
BUFFER BY THE BSC LPH.

Figure 11-11. Format and Content of BSC Output

BSC CONTROL BYTE (SEND)

When bit 4 of the lORB's device-specific word I_DVS is set to
0 at connect time (see Table 11-14), the BSC line control handler
uses the first byte of the application's buffer as the control
byte. Figure 11-12 shows the format and content of the BSC line
protocol handler's control byte for sending data.

0 1 2 3 4 5 6 7

BITS 0,1 '
NOT APPLICABLE, NOT USED

BIT2»1
CONVERSATIONAL REPLY RECEIVED

BIT 3-1 ' , t
RVI RECEIVED (RETURN STATUS ONLY)

BIT 4-1
SEND THE DATA THAT IS IN YOUR BUFFER AND, ~' '•
AFTER IT HAS BEEN ACKNOWLEDGED, SEND EOT

BIT 5-1
SEND AN RVI RESPONSE ON THE NEXT ACKNOWLEDGMENT
OF A READ

BIT 6-0
SEND NONTRANSPARENT EBCDIC

BIT 6=1
SEND TRANSPARENT EBCDIC OR ASCII

BIT 7-0
SEND 1TB OR ET8

BIT 7-1
SEND ETX

Figure 11-12. Control Byte (Send) for BSC Line
Protocol Handler

11-24 CZ05-00

BSC ASCII OUTPUT

ASCII output characteristics and format are as follows:

1. SOM (start-of-message) consists of only the STX
character.

2. The control byte/ when specified, is assumed to be the
first byte of the application's buffer, and indicates the
•EOM (end-of-message) sequence, which is either ITBf ETB,
or ETX, designated as follows?

a. Bit 6 must be 0.

be Bit 7=0. Send ITB or ETB. ITB is sent when the
' record is odd numbered (1, 3, 5, etc.) and the
] double-block feature is used.

Bit 7 = 1 . Send ETX.

If the control byte is not specified, the EOM sequence is
defined by I_DVS as described in 4 below.

3. Data must be 7-bit ASCII; it cannot have any BSC control
characters*

4. EOMr which is either ITB, ETB, or ETX, can be indicated
by the control byte (see 2 above) or by the C- and D-bits

* of the IORB device-specific word I_DVS (Table 11-4 as
follows)s

a. C-bit must be zero.

* b. D-bit * 0. Send ITB or ETB. ITB is sent when the
record is odd-numbered (1, 3, 5, etc.) and the
double-block feature is used.

i
D-bit - 1. Send ETX.

5. BCC (block check character) is described in Section 1,
1 "Line Protocol Handler Functions."

BSC EBCDIC OUTPUT

EBCDIC output characteristics and format are as follows:

1. SOM (start-of-message) consists of only the STX
character.

2. The control byte? when specified, is assumed to be the
first byte of the applications buffer, and indicates the
EOM (end-of-message) sequence, which is either ITB, ETB,
or ETX, designated as follows:

11-25 CZ05-00

a. Bit 6 must be 0.

b. Bit 7=0. Send ITB or ETB. ITB is sent when the
record is odd-numbered (1, 3, 5, etc.) and the
double-block feature is used.

Bit 7=1. Send ETX.

If the control byte is not specified, the EOM
sequence is defined by I_DVS as described in 4 below.

3. Data may be 8-bit EBCDIC; it cannot have any BSC control
characters.

4. EOM (end-of-message), which is either ITB, ETB, or ETX,
can be indicated by the control byte (see 2 above) or by
the C- and D-bits of the IORB device-specific word I_DVS
(Table 11-11) as follows: _

a. C-bit must be zero.

b. D-bit = 0. Send ITB or ETB. ITB is sent when the
record is odd-numbered (1, 3, 5, etc.) and the
double-block feature is used.

D-bit = 1. Send ETX.
i „ >

5. BCC (block check character) is described under "Line
Protocol Handler Functions", earlier.

BSC TRANSPARENT EBCDIC OUTPUT

Transparent EBCDIC output characteristics and format are as
follows: i

1. SOM (start-of-message) consists of the two-character
sequence DLE, STX.

2. The control byte, when specified, is assumed to be the
first byte of the application's buffer, and indicates the ^ ,
EOM (end-of-message) sequence, which is either DLE ITB,
DLE ETB, or DLE ETX, designated as follows:

a. Bit 6 must be 0. , ,,,

b. Bit 7 = 0 . Send DLE ITB or DLE ETB. DLE ITB is sent
when the record is odd-numbered (1, 3, 5, etc.) and
the double-block feature is used.

Bit 7 = 1 . Send DLE ETX.

11-26 CZ05-00

If the control byte is not specified, the EOM sequence is
defined by I_DVS as described in 4 below.

Data may be any EBCDIC character, including any BSC con-
trol characters.

EOM, which can be either DLE ITS, DLE ETB, or OLE ETX,
can be indicated by the control byte (see 2 above) or by
bit 4 and bit D of the IORB device-specific word I_DVS
(Table 11-4) as follows:

a. Bit 4 must be 1,

b. D-bit = 0. Send DLE ITB or DLE ETB. DLE ITB is sent
when the record is odd-numbered (1, 3, 5, etc.) and
the double-block feature is used.

D-bit - 1. Send DLE ETX.

BCC (block check character) is described in Section 7,
"Line Protocol Handler Functions".

11-27 - CZ05-00

Section 12
TTYLINE

PROTOCOL HANDLER

TTY LINE PROTOCOL HANDLER

The TTY line protocol handler supports asynchronous terminal
devices, generically classified as teleprinter-compatible (TTY),
that include certain ASR, KSR, and visual information projection
(VIP) terminals.

A basic TTY terminal consists of either a printer and key-
board or a VIP7100/7200/7800 display and keyboard. (Paper tape
is not supported.) Each type of TTY terminal has an asynchronous
communications interface that permits operation at up to 9600
baud*

GENERAL TTY LINE PROTOCOL HANDLER OPERATION

T/TY Message Formats

Figure 12-1 illustrates TTY message formats. On input, the
application receives only the text portion of the message. On
output messages, the application can control print format with a
control byte that is specified as the first character of the
output buffer (in the IORB device-specific word I_DVS, described
later). At connect, read, or write, the application can, with
the I_DVS word, dynamically specify which message format is to be
usedc

12-1 CZ05-00

TEXT CR. ETX. COT.'OR BUFFER PUU.

OYNAMIC
CONTROL,BYTE TCXT EOM

TtxT COM

DYNAMIC
CONTROL
BYTi

TEXT

INPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

t Figure 12-1. TTY Message Formats

TTY Character Mode and Buffered Mode Transmission

TTY CHARACTER MODE

Transmission for all TTY terminals is usually in character
mode (one character at a time), a characteristic of the hardware
that provides that?

• The TTY line protocol handler does all editing of data
before any transmission.

• Multiple input lines are not allowed at the same time.

TTY BUFFERED MODE (VIP7200 AND VIP7800)

For VIP72t)0 and VIP7800 only, the buffered mode, available as
a hardware option, permits:

• The TTY line protocol handler to process multiple lines of
input at the same time

• The operator to do local editing of data before it is
transmitted

• The application to instruct the TTY line protocol handler
not to edit input data.

12-2 CZ05-00

Buffered mode permits the TTY line protocol handler to pro-
cess a write order while a read order is pending. A "quasi full
duplex" operation gives the line protocol handler the ability to
have the application send to the terminal sequences that cause
the terminal to send information back to the application's
buffer.

Buffered quasi full duplex operates as follows:

1. When the channel control program (CCP) of the multiline
communications processor (MLCP) is currently processing a
write order to the terminal, a subsequent read or write
operation is not given to the CCP until the current write
order completes.

2. When the CCP is processing a read order and the next order
is a write orderf that write order is processed while the
read order is active. _ -

3. When the write order (step 2) completes and the read order
has not yet completed, a subsequent read or write order
will not be processed until the read is completed. When

• the read order is completed before the write order,
actions in 1 above take effect.

4. When the read order is completed, the line protocol
handler returns to its original state, i.e., no orders
pending. The line protocol handler can initiate read or
write orders to the CCP.

VIP7200 AND VIP7800 HARDWARE SWITCH OPTIONS WITH CHARACTER OR
BUFFERED MODE

The TTY line protocol handler supports the following VIP7200/
--VIP7800 hardware switch options for character mode or buffered
* mode operation as followss

Mode Buffered Mode

CHARACTER/BUFFER switch in CHARACTER/BUFFER switch in
CHARACTER position BUFFER position

Internal Even/Odd Parity Internal Even/Odd Parity switch
switch set to select EVEN set to select EVEN

' HALF/FULL DUPLEX switch in HALF/FULL DUPLEX switch in FULL
FULL position position

LINE/PAGE switch as required by
user

Internal end-of-message switch
set to select ETX or EOT only

12-3 , CZ05-00

VIP7200 AND VIP7800 FUNCTION AND CONTROL KEYS

Function and control keys on the VIP7200 and VIP7800 are sup-
ported only in buffered mode.

When issuing a write request that will cause an automatic
response by the terminal, the application must first issue an
asynchronous read request, then issue a write request that con-
tains a control message to the terminal.

TTY Line Protocol Handler Timeout: Intervals

Table 12-1 lists the TTY line protocol handler's timeout
intervals for the LPH functions.

Table 12-1. TTY Line Protocol Handler Timeout Intervals

Line Protocol
Handler Function

Connect

Read

Write

Timeout Interval

Five minutes

Character mode:

Buffered mode:

five minutes after receipt
of the first character of
the message

five minutes after the
line protocol handler
receives the request.

Thirty seconds

USING THE TTY LINE PROTOCOL HANDLER
•-. *q • • - , lA.' '

TTY-Specific IQRB Values , .-',.. - •. - •

The TTY-specific IORB item I_CT2|i device-specific word I_DVS,
and software status word I_ST are shown and defined in Tables
12-2, 12-3, and 12-4, respectively. User-specified bits not
specifically described in these tables must be 0. Section 4
describes the general form of the IORB. , • ,,(

!•

12-4 CZ05-00

Table 12-2. Function Codes in I_CT2 of the IORB

Function
Code

0
1
2
A
B

Definition

Wait online
Write
Read
Connect
Disconnect

Use

Used by the line protocol handler
to complete the description of
the requested I/O function

Table 12-3. TTY Device-Specific Word I_DVS in the IORB

Bit
Number

0

1

Bit
Setting

0

0

Meaning of Bit Setting

Must be zero.

Must be zero.

For connect call only (function code A)

2

3

4

0

1

0

0

1

Do not use Auto Call Unit.

Use Auto Call Unit. - - -

Must be zero.

First byte in buffer on output is a control
byte.

First byte in buffer on output is a data
byte.

For read call only (function code 2)

5

6

0

1
0

Input data is in nontransparent mode.

Input data is in transparent mode.

Must be zero.

12-5 CZ05-00

Table 12-3 (cont). TTY Device-Specific Word I_DVS in the IORB

Bit
Number

Bit
Setting Meaning of Bit Setting

t
For write call only (function code 1)

7

8

9

0

1

0

0

Stop output immediately on detecting a BRK
received from the terminal.

Continue output when BRK detected.

Must be zero.

Must be zero.

For read call only (function code 2)

A 0

1

Do not echo keyboard input.
5

Echo keyboard input.

For read and write calls (function codes 2, 1)

B

C

0

1

0

1

No LF (line feed) at end of message.

LF (line feed) at end of message.

CR (carriage return) at end of message.

No CR (carriage return) at end of message.

For connect call only (function code A)

D

-

0

1
Data transfer is in character mode.

Data transfer is in buffered (block) mode.

For disconnect call (function code A)

E

F

0

^

1

0

1

Abort (dequeue) all lORBs on the request
queue.

Process outstanding requests on the request
queue.

Hang up phone after disconnect.

Do not hang up phone after disconnect.

12-6 CZ05-00

Table 12-4. TTY Software Status Word I_ST in the IORB

Bit Meaning When Bit Set to 1

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

N/A

N/A

Data service rate error

N/A

Communications control block (CCB)
service error

No stop bit in character input

Long record

N/A

N/A

N/A

Nonzero residual range

Phone hang-up

N/A

N/A

N/A

Fatal error: bus parity or memory error

Control and Characteristics of fTY Input Data

This subsection describes user control over the character-
istics of TTY input data, and applies to character-mode process-
ing unless otherwise noted.

TTY CONTROL BYTE (INPUT)

The description of the TTY control byte for output (see "TTY
Control Byte (Send)K below) applies also to the TTY line protocol
handler's control byte for input.

12-7 CZ05-00

TTY NONTRANSPARENT INPUT

TTY input is nontransparent when the application sets to 0
bit 5 of the lORB's device-specific word I__DVS (Table 12-3).
Input is accepted until the end-of-range or a CR (carriage
return), ETX (end of text), or EOT (end of transmission) control
characterr whichever is first, is reached. The line protocol
handler does not transmit the CR, ETX, or EOT control character
as part of the message. i

TTY TRANSPARENT INPUT

TTY input text is transparent when the application sets to 1
bit 5 of the device-specific word I_DVS at read time (Table
12-3). All input data, including any control characters, is
stored in the buffer until end-of-range is reached.

TTY LINE FEED (LF) AND CARRIAGE RETURN (CR) INPUT SEQUENCE

The application can specify at read time a sequence of LF and
CR characters, with the B- and C-bits of the lORB's device-
specific word I_DVSf as indicated in Table 12-3. When the mes-
sage is received successfully, the specified character combina-
tions are retransmitted back to the terminal.

KEYBOARD INPUT CHARACTER AND LINE CONTROL

When an input character with a parity error is received, the
line protocol handler sends a BEL character back to the termi-
nal «= The user must then retype that input character if it is to
be included in the text being sent to the application.

The user can correct or delete erroneous characters or lines
and can declare control characters to be data characters, as
described below.

To correct one or more characters in the current line, i.e.,
before the CR is pressed, press the @ key. This deletes the
character that immediately preceded the @ character, and displays
the @ symbol. Each succeeding @ entry deletes another character,
moving from right to left to the beginning of the line.

To delete the current line, i.e., before the CR is entered,
press and hold the CTRL (control) key and press X. This deletes
the current line, displays the message *DEL* on the next line,
and results in a carriage return. The user can then enter a cor-
rect linee

To cause a control character (e.g., @, CTRL X, CRf and \) to
be accepted as a data character (transparent mode) press the
backslash (\) key before entering that control character. The
system interprets the backslash as an escape character. In
transparent mode, all input characters are data characters and
have no editing functions«

12-8 CZ05-00

TTY DISPLAY OF INPUT CHARACTERS

The user can cause an input character to be echoed to the
terminal (displayed on the screen or typed on the console) by
setting to 1 the A-bit of the device-specific word I_DVS (Table
12-3). For full duplex printers, the application need specify
that characters be returned only when they are to be echoed by
the system software.

TTY INPUT IN BUFFERED MODE (VIP7200 AND VIP7800 ONLY)

When the application at connect time sets to 1 the D-bit of
the device-specific word I_DVS, input is accepted until an ETX or
EOT control character or end-of-range is encountered.

When the application sets bit 5 of I_DVS to 1 at read time/
TTY input in buffered mode is transparent, i.e., there is no
editing0 When the bit 5 is set to Oe TTY input in buffered mode
is nontransparent; i.e.f control characters are edited.

As in character mode, the application can specify an LF and
CR sequence, as described above under "Line Feed (LF) and Car-
riage Return (CR) Input Sequence."

Control and Characteristics of TTY Output Data

This subsection describes user control of the characteristics
of TTY output data and is applicable to character-mode processing
unless otherwise stated.

TTY CONTROL BYTE (SEND)

The TTY line protocol handler's control byte, included as the
first character of the application's buffer, controls the mes-
sage's head-of-form sequence. At connect time, the application
specifies the control byte by setting to 0 bit 4 of the lORB's
device-specific word I__DVS (Table 12-3) .

Figure 12-2 shows the format and content of the TTY control
by tee

12-9 CZ05-00

El
•ITOs

0 - NO $r«CTAL ACTION
1»IGNORE CARRIAGE RETURN

ANO/OR LINE FEED IN
DEVICE-SPECIFIC WORD

BITS 1 THROUGH 2:
NOT USED

SIT 3:
«« DO NOT GENERATE A

• HEAD-OF-FORM SEQUENCE
f • GENERATE HEAO-OF-FORM

SEQUENCE CONSISTING OF
If. OL ISSUED THREE TJMBS

Bfll* 4 THROUGH 7:
NOT USED. MUST BE ZERO

Figure 12-2. Control Byte for TTY Line Protocol Handler

END-OF-MESSAGE (EOM) SEQUENCE ON TTY OUTPUT

The EOM sequence is controlled by the B- and C-bits of the
lORB's device-specific word I_DVS (Table 12-3), as specified by
the application at write time. The TTY line protocol handler
sends an EOM sequence according to the following B- and C-bit
values:

I DVS

B

0
0
1

0
1

EQM Sequence

CR, DEL, DEL
DEL, DEL
LF, CR, DEL, DEL
LF, DEL, DEL

At read time, the application can specify the same B- and
C-bit values in order to send an EOM sequence back to the termi-
nal when the message is successfully received.

TTY DETECTION OF BRK CHARACTERS

When the application sets to 0 bit 7 of the device-specific
word [_DVS at write time, the line protocol handler will imme-
diately stop all output when it detects a BRK key character in
the input stream from the terminal. The line protocol handler
ignores the BRK character when bit 7 is set to 1, until the write
order is completed.

12-10 CZ05-00

TTY OUTPUT IN BUFFERED MODE

Control and characteristics for TTY output in buffered mode
are the same as described above for character mode. Howevert in
processing in buffered mode (VIP7200/7800 only), the line
protocol handler processes all physical I/O requests in the same
sequence as they are received. If there is already an
outstanding read request, only a subsequent write request can be
initiated before the read request is satisfied or the timeout for
that read request is elapsed.

12-11 CZ05-00

at

I'

Section 13
SYSTEMACCESS

This section describes MOD 400 user access procedures.

USER ACCESS PROCEDURES

When you are at a user terminal, access to the system depends
on the way your terminal is described to and recognized by the
system.

Access to the system requires:

1. Physical connection between your terminal and the cen-
tral processor.

2. Logical connection between you (the user) and the oper-
ating system.

In some cases, the Executive performs the second step for you
automatically after you have made the physical connection.

CONNECTING THE TERMINAL TO THE CENTRAL PROCESSOR

You can connect your terminal to the central processor by two
methods, depending on the type of terminal you have: a direct-
connect terminal or a dialup terminal.

13-1 CZ05-00

,:.:fJK*,.~ _.-.;'.-_l-.,W,., ti,. .. :- .,-••.:,.' '--<™

logged in, your access to system facilities is governed by
control arguments entered in the LOGIN command or, under user
registration, in your user profile.

MANUAL LOGIN TERMINAL

When the connection to the system has been made at a manual
login terminal, a message-of-the-day and the login prompter
message:

LOGIN

followed by the system identification and the current date and
time appear at the terminal. If the terminal (and your user
profile) allow it, you may enter a full login line, such as:

' L JONES

to gain access to the system. (Check with the system operator for
the correct format of your full login line.) In a user registra-
tion system, you may then be required to enter your password in
response to the prompter message:

PASSWORD?

If you enter the login line and password correctly, the system
responds with a ready message and you can begin to enter com-
mands.

ABBREVIATED LOGIN TERMINAL

Some terminals and some user profiles allow login only by
abbreviation^ Most systems have defined one- or more
abbreviations that are available to users at any terminal, and
may have defined terminal-specific abbreviations in addition.
Check with the system administrator for the abbreviations that
can be used at your terminal.

If you wish to login by an abbreviation after the login
prompter message has been issued, enter a one-character login
abbreviation, such as:

In a user registration system, you may then be required to
enter your password in response to the prompter message:

PASSWORD?

If you have entered the correct abbreviation and password, the
system will respond with a ready message and you can begin to
enter commands.

13-3 CZ05-00

To find out what files are under this directory, enter;

LS

and the system responds with a listing of the files. Figure 13-1
shows a sample listing.

PROCEDURES AND CONVENTIONS AFTER ACCESS

It may be necessary to request operator intervention or
interrupt a running task while at your terminal. The procedures
and conventions used to perform these actions are described
in the following paragraphs.

Sending Messages to the Operator

To send a message from your terminal to the system operatorf
you can enter the Message (MSG) command described under "Working
With Files". For example, if you want to abort the current batch
requestr you could enters

MSG "PLEASE ABORT BATCH REQUEST"

Interrupting (Breaking) a Task

You can interrupt or break a running task to reenter com-
mands , temporarily halt the task, or terminate it.

To effect a break from the user terminal, press the BREAK
(BRK) keye The system then issues the break prompter message:

BREAK

Your response may be any one of the following:

1. Enter any command (see the Commands manual). This may be
followed by another command or by one of the responses
described in steps 2 through 4. If the entered command
is not Start (SR), Logoff (BYE), New Procedure
(NEWJPROC)t Unwind (UW), or Program Interrupt (PI)
(described later)r the lead task again enters break mode
and issues another **BREAK** message requesting another
response.

13-5 CZ05-00

2. Enter one of the following break mode responses to the
BREAK message:

a. Start (SR). This resumes execution of the suspended
task as though the break had not been made.

b. Unwind (DW). This releases all tasks and you
return to command level.

c. Logoff (BYE). This aborts and deletes the current
task group request.

d. New Process (NEW_PROC). This aborts all task
requests in the task group except for the lead task,
then restarts the task group, using the same argu-
ments as specified in the initial task group request.

Any of these commands terminates the current break; i.e.,
there will be no other **BREAK** message after they are
executed.

3. Enter Unwind (UW). All tasks will be terminated and you
return to command levele

If the terminated task was invoked following a break, the
lead task reenters break mode, issues another **BREAK**
prompter message, and awaits a response.

4. Enter Program Interrupt (PI). The task interrupted is
currently suspended.

For Linker and Editor? suppress output and return to
directive input level. The PI command suppresses output
resulting only from the Linker MAP directive.

The PI command is meaningful only to the Linker and
Editor running in a task group whose lead task is the
Command Processore The commands described in steps 1, 2,
and 3 may be used with the Linker and Editor.

Example:

You issue a List Names (LS) command and the output begins to
appear on the screen at your terminal. You want this output
to be printed on the line printer. You should immediately
press the Break (BRK) key and take one of the following

13-7 ' CZ05-00

Section 14
FILE CONVENTIONS

This section presents MOD 400 file conventions as well as a
procedural scenario titled "Working With Files". Tnis scenario
provides a detailed explanation of frequently used file system
commands and procedures.

OVERVIEW

A file is a logical unit of data composed of a collection of
records. The principal external devices available for storing
files are:

• Disk devices (diskettes? cartridge disksf cartridge module
disksf and mass storage units)

• Magnetic tape units.

These external devices are referred to as volumes (e.g.,
diskette volumer tape volume).

Various conventions to identify and locate files have been
established for their effective control when stored on disk and
magnetic tape. The conventions facilitate the orderly and effi-
cient use of the stored data.

Unit record devices (such as card readers, card punches, and
printers) also use the file concepts. However, since unit record
devices cannot be used to store files, there is less need to

14-1 CZ05-00

The following paragraphs describe the root directory and
other special types of directories.

ROOT DIRECTORY

There is a tree structure for each disk mounted at any given
time. At the base of each tree structure is a directory known as
the root directory. This is the directory that ultimately con-
tains every element that resides on the volume either immediately
or indirectly subordinate to it.

The root directory name is the same as the volume identifier
of the volume on which it resides. The directory VOL01 in Figure
14-1 is a root directory.

SYSTEM ROOT DIRECTORY

One or more disk root directories can be known to the system
at any time during its operation. One of thesef the system root
directory, is required at all times. This volume normally
contains system programsr commands, and other routinely used
elements«,

SYSTEM BOOT DIRECTORY

The system boot directory is the root directory of the volume
used to initialize the system. It must contain a number of
directories and files that the system needs to perform its
functions. These are described in the System Building and
Administfation manual.

USER ROOT DIRECTORIES

The File System can recognize one or more user root direc-
tories. These are root directories of volumes created and used
for the installation's own particular needs. They may contain
user application programs and their associated data filesf appli-
cation program source and object unit filesf listing files? or
anything else that you want to store, either temporarily or
permanently.

INTERMEDIATE DIRECTORIES

When a volume is first created, it contains only a root
directory* You can create, within this directory, any additional
directories required to satisfy the needs of your installation.
Considert for example, a volume that is to contain data used by
two application projects? each of which has several people asso-
ciated with it. Each of these people has one or more files of
interest to him,, The volume has been initialized and contains a
root directory name. Two directories can be created subordinate
to the root directory, each identified by the project namec
Then, subordinate to these directories, a directory can be
created for each person associated with each project.

14-3 CZ05-00

It.

path of the working directory is made known to the File System,
and if the desired element is contained in that directory, the
element can be specified by just its name. The File System con-
catenates this name with the names of the elements of the working
directory's access path to form the complete access path to the
element.

LOCATIONS OF DISK DIRECTORIES AND FILES

The File System has total control over the physical location
of space allocated to directories and files; you need never be
concerned about where on a volume a directory or file resides.
When a volume is first initialized, space is allocated to ele-
ments in essentially the order in which they are created. But
after the volume has been in use for some time/ elements may have
been deleted and the space they occupied made reusable. Hence,
when a new element is created, it is allocated the first avail-
able space. If more space is needed, it will be obtained from
another free area. Thus, there is not necessarily any
relationship between a file's extents and contiguous free disk
sectors.

Naming Conventions

Each disk file and directory name in the File System can con-
sist of the following ASCII characters: uppercase alphabetics (A
through Z), digits (0 through 9), underscore {_), hyphen (-),
dollar sign ($), and period(.). If lowercase alphabetic
characters are used, they are converted to their uppercase
counterparts.

The first character of any name must be an alphabetic. The
underscore can be used to join two or more words that are to be
interpreted as a single name (e.g., DATE_TIME). A period fol-
lowed by one or more alphabetic or numeric characters after a
file name is normally interpreted as a suffix to a file name.
This convention is followed, for example, by a compiler when it
generates a file that is to be subsequently listed; the compiler
identifies this file by creating a name of the form "FILE.L".

The name of a root directory or a volume identifier can con-
sist of from one to six characters. The names of other direc-
tories and files can comprise from 1 to 12 characters. The
length of a file name must be such that any system-supplied
suffix does not result in a name of more than 12 characters.

UNIQUENESS OF NAMES

Within the system at any given time, the access path to every
element must be unique. This leads to the following rules:

• Only one volume with a given volume_id can be mounted at
any given time. (The system will inform you of an attempt
to mount a volume having the same name as one already
mounted.)

14-5 CZ05-00

• Less than (<). Used at the beginning of a pathname to
indicate movement from the working directory in a direc-
tion toward the root directory. Consecutive symbols can
be used to indicate changes of more than one level? each
occurrence represents a one level change. When followed
by elements of a relative pathname, those elements repre-
sent changes of direction away from the root directory.
One or more of these symbols may precede only a relative
pathname.

• ASCII "space" character. Used to indicate the end of a
pathname* When represented in memory/ a pathname must end
with a space character.

The last (or only) element in a pathname is the name of the
entity upon which action is to be taken. This element can be a
device name, directory name, or file name, depending on the func-
tion to be performed. In the Create Directory command, for
example, a pathname specifies the name of a directory to be
created. The last element of this pathname is interpreted by the
command as a directory name; any names preceding the final name
are names of superior directories leading to it. An analogous
situation occurs in the Create File command, except that in this
case the final pathname element is the name of a file to be
created.

Absolute and Relative Pathnames

A full pathname contains all necessary elements to describe a
unique access path to a File System entity, regardless of the
type and location of the device on which it resides. The File
System uses this form in referring to a directory or file. How-
ever, it is frequently unnecessary to specify all of these ele-
ments; the File System can supply some of them when the missing
elements are known to it and the abbreviated pathnames are used
in the appropriate contextc An understanding of these conditions
and contexts requires an understanding of absolute and relative
pathnames.

Absolute Pathname. An absolute pathname is one that begins
with a circumflex (*) or a greater-than symbol (». (A pathname
that begins with a circumflex is a full pathname. This form is
used to locate directories and files that reside on a device
other than that on which the system volume, the volume from which
the system was initialized, is mounted.)

When an absolute pathname begins with a greater-than symbol,
the first element named in the pathname is assumed to be immedi-
ately subordinate to the system volume root directory. Thus, if
the system volume name is SYS01 and the pathname given is
>DIR1>FILEA, the full pathname becomes ~SYS01>DIR1>FILEA.

14-7 CZ05-00

, •»*•

RELATIVE PATHNAME3

DELTA
OLD>DELTA
<USERB>ALPHA
«PROJ2>USERA>DELTA

FULL PATHNAME

*SYS01 >PROJ1 >USERA>D6LTA
"SYS01 >PROJ1 >USERA>OLD>OELTA
*SYS01 >PROJ1 >USER8>ALPHA
"SYS01>PROJ2>USERA>OELTA

SYS01>PROJ1

aASSUME CURRENT WORKING DIRECTORY IS SYS01>PROJ1>USERA

Figure 14-3. Sample Pathnames

14-9 CZ05-00

Plus sign (+)
Comma (,)
Hyphen (-)
Period (.)
Slash (/)
Colon (s)
Semicolon (;)
Less-than sign (<)
Equal sign (=)
Question mark (?)
Underscore (_).

The underscore (_} can be used as a substitute for a space.
If a lowercase alphabetic character is used, it is converted to
its uppercase counterpart.

Any of these characters can be used as the first character of
a file or volume name.

The name of a tape volume can be from one through six charac-
ters; tape file names can be from 1 through 17 characters.

Magnetic Tape Device Pathname Construction

A magnetic tape volume must be dedicated to a single user.
Therefore, the device pathname convention must always be used
when referring to magnetic tape volumes or files. The general
form of a tape device file pathname is:

!dev_name [>vol_id [>filename]]

where dev_name is the symbolic name defined for'the tape device
at system building, vol_id is the name of the tape volume, and
filename is the name of the file on the volume. Tape devices are
always reserved for exclusive use (i.e., the reserving task group
has read and write access? other users are not allowed to share
the files) „

Automatic Tape Volume Recognition

Automatic volume recognition dynamically notes the mounting
of a tape volume. This feature allows the File System to record
the volume identification in a device table, thus making the
tape volume accessible to the File System software.

UNIT-RECORD DEVICE FILE CONVENTIONS

Unit-record devices (eege, card readers, card punches,
printers) are used only for reading/writing data; they are not
used for data storage and thus do not require conventions for
file identification and location.

14-11 CZ05-00

A command function reads its own input during execution from
the user-in file (normally assigned to your terminal). The
directives submitted to the Line Editor following entry of the
Editor command, for example, are submitted through user-in. A
task group normally writes its output to the user-out file
(normally assigned to your terminal). The user-out file can be
reassigned to another device or file (see "Controlling Output").
This reassignment remains in effect until another reassignment
occurs.

The Command Processor, and any commands it invokes, writes
any errors detected to the error-out file. The error-out file is
the same as the initial user-out file; it cannot be reassigned by
a command or command argument.

You can determine the full pathnames associated with each of
these files by issuing a Status Group (STG) command at your
terminal.

Command Level

The system indicates that it is at command level by issuing a
ready (RDY) message at your terminal. This assumes that you have
not disabled the ready message by a previously issued Ready Off
(RDF) command; if you have, the system still comes to command
level, but you are not informed. You can activate the ready
prompt at any time by issuing a Ready On (RDN) command.

When executing a command function, you can return to command
level in one of two ways:

• After a command function terminates, the system returns to
command level and awaits the entry of another command.
This command can be any function you wish to execute or it
can be a BYE command, indicating that you have no further
work to do and you want to terminate the current session.

• You can interrupt execution of an invoked command by
pressing the Break or Interrupt key at your terminal. See
"Interrupting Execution" below.

CONTROLLING YOUR OPERATING ENVIRONMENT

The following paragraphs describe the commands and procedures
that you may find most useful as an interactive system user.
Once at command level, you can perform a wide variety of system
operations using these commands and special system procedures.
Selected examples are designed to help you become familiar with
using the system for applications programming. For full descrip-
tions of all commands and their arguments, refer to the
manual.

14-13 CZ05-00

-if

•* it

You can now use the Create Volume (CV) command to assign a
unique vol_id to your new disk volume, using the following form
of the command:

CV 1DSKOO -FT WORK

where WORK is the vol_id you want to assign.

Using the -FT argument initializes all data structures on the
volume and establishes WORK as the root directory name; the root
directory pathname for this volume is ~WORK.

RENAMING DISK VOLUMES

If disk volumes having the same vol_id are used/ one of the
volumes must be renamed before the system will accept it. (A
tape volume cannot be renamed.) The command:

CV !DSKOO>OLD -RN NEW

renames the volume OLD using the -RN control argument; the new
volume name is NEW.

Directory Control

You can create an unlimited number of directories to organize
your files. The following commands illustrate how to change your
working directory? and create? rename, or delete directories.

CHANGING YOUR WORKING DIRECTORY

The system enables you to keep aware of your location within
the directory and file structure at any moment. You can also
request a list of the files and directories under any directory
to which you have list accesse

To list your working directory, use the List Working
Directory (LWD) commands

LWD
~SYSVLA>UDD>PROGS>LOWELL

The system responds with the absolute pathname of your work-
ing directory. If you want to change to some other directory,
use the CWD (Change Working Directory) command. For example:

CWD "SYSVLA>UDD>PROGS>JONES
RDY:
LWD
"SYSVLA>UDD>PROGS>JONES

The simple pathname of your new working directory is JONES.
Any number of users can work in the same directory at one time.

14-15 CZ05-00

Before creating your two directories, you enter a CWD command
to change your working directory to "WORK:

CWD "WORK

(Note that this step is optional; you need not change your work-
ing directory to the volume "WORK to create subordinate direc-
tories or files. You can create directories or files from any
location in the File System tree structure by supplying the
appropriate absolute or relative pathname of the file or direc-
tory you wish to create. However, for the sake of simplicity,
only simple pathnames are used here.)

To create the directory SHEPHERD, enter the commands

CD SHEPHERD

This directory now resides immediately subordinate to the
root directory "WORK.

To create the directory COOK, enter the commands

CD COOK

This directory now resides, along with SHEPHERD, immediately
subordinate to the root directory "WORK. Figure 14-4 illustrates
this directory tree structure.

WORK
roof directory

SH6PH6RO COOK

Figure 14-4. Location of Directories SHEPHERD and COOK

RENAMING DIRECTORIES

You can change the name of an existing directory using the
Rename (RN) command. For example, assume that within your work-
ing directory >UDD>PROGS>SMITH, there is a directory TEST. The
command:

RN TEST WORK

changes the pathname of the affected directory from:

>UDD>PROGS>SMITH>TEST to >UDD>PROGS>SMITH>WORK

14-17 CZ05-00

As another example, assume that you wish to create a file
under each of the two directories, SHEPHERD and COOK, shown in
Figure 14-5. Your working directory is the root directory WORK.
To create a file named REPORTS under the directory SHEPHERD,
enter the command:

CF SHEPHERD>REPORTS

where SHEPHERD>REPORTS is the relative pathname (relative to your
working directory) of the file you wish to create.

The file REPORTS now resides immediately subordinate to the
directory SHEPHERD, as shown in Figure 14-5.

WORK
root directory

SHEPHERD COOK

REPORTS

Figure 14-5. Location of Subordinate File REPORTS

Suppose you want to create a file named WORDLIST under the
directory COOK. Since your working directory is still the root
directory, WORK, enter the commandj

CF COOK>WORDLIST

where COOK>WORDLIST is the relative pathname of the file you want
to create. The file WORDLIST now resides immediately subordinate
to,the directory COOK, as shown in Figure 14-6.

WORK
root directory

SHEPHERD

_L
COOK

REPORTS WORDLIST

Figure 14-6 Location of Subordinate File WORDLIST

14-19 CZ05-00

in the directory "SYSVLA>UDD>PROGS>TOOLS, and wanted to copy in
the file ~SYSVLA>UDD>PROGS>COOK>REC3.A, he needs to type only;

CP <COOK>REC3.A

The command copies REC3.A into TOOLS and names it REC3.A by
default." You must be in the target directory to use this
feature.

For another example, to copy cards onto a tape named BSD01,
that is already mounted, enter:

CP 1CDROO !MT900>BS001>WESTNAMES

LOCATING FILES

You can use the Where (WH) command to locate and display a
file's full pathname. The system will search your working direc-
tory and the two system libraries, SYSLIB1 and SYSLIB2, looking
for your file. If the file is found, its full pathname is dis-
played. If the file is not found, an error message is dis-
played. You may find this command useful if you know the simple
pathname of a file but want to know its absolute pathname, or, to
determine if the file you want to locate exists.

LISTING FILES AND DIRECTORIES

You can list the contents of any directory that you have at
least list access to by using the List Names (LS) command.

For example, Cook lists the contents of his working directory
by enterings

LS

DIRECTORY: ~SYSVLl>UDD>PROGS>COOK

PHYSICAL STARTING RECORD
ENTRY NAME TYPE SECTORS SECTOR HEX LENGTH
**

START_UP.EC S 8 580 256
**

The record length is the number of characters per line.
Listing Cook's file with the -BF argument would produce this
information.

14-21 CZ05-00

DIRECTING OUTPUT TO A FILE

To direct output to a file (which need not have been pre-
viously created) using the FO (File Out) command, enter:

FO FILEA

All normal system output (such as a response to an LS com-
mand) will go to FILEA, which is your new user-out file. Error
messages and the ready message that go to the error-out file
cannot be redirected and will continue to appear at your termi-
nal. Thus, if you entered an LS command, the system would write
the listing to FILEA and respond at your terminal with only the
ready message. However, input directed to your terminal is
unaffected by the FO command.

DIRECTING OUTPUT TO A PRINTER

If you are performing functions that will lead to many pages
of output, you can direct output to a printer. The command:

FO ILPTOO

directs all subsequent output to LPTOO (assuming that you have
access to the printer)« Note that while you are using the
printer, no one else can use it. In a multi-user system you may
wish to avoid tying up the printer. (See "Deferred Printing" for
information on printing large files.)

REDIRECTING OUTPUT TO YOUR TERMINAL

After you have finished directing output to a printer, you
should redirect output to your terminal. Enter the FO command
with no arguments:

PO

(The default is to redirect output to your terminal.)

Printing Control
f

You can print files at your terminal or you can request
deferred printing. If you use the Print (PR) command, output
appears on your terminal (i.e., output goes to the user-out
file). This is inconvenient, however, if you are printing large
files. For large files, you have the option of using deferred
printing. The system will store your print request in a
first-in, first-out queue.

14-23 CZ05-00

c

NOTE

Deferred print requests are queued on disk and
are not lost when the system is restarted.

Program Execution

Most of the programs you write will require some type of
input and output. Before you execute a program, you must provide
information that tells the program where your input will come
from and where your output will go. The GET and REMOVE commands
allow you to reserve files and devices for program input and
outputt and, after program execution, to cancel those
reservations.

GET performs two functions. First, it reserves a file or
device for use by the executing program. This reservation may
set exclusive access or some degree of shared access (see
"Reserving Files or Devices"). Secondly, GET establishes a rela-
tionship between pathnames and the logical file numbers (LFNs) by
which you can gain access to files and devices.

Once program execution has terminated, you can use the REMOVE
command to cancel file/device reservations and the LFNs that your
program assigned with the GET command.

For example, you are compiling the Assembly Language program
CARDIN. CARDIN uses two files, a card reader (from which input
will be read) and a disk file (to which output will go). The
program refers to these two files by logical file numbers (LFNs)
1 and 3.

/

After linking your object unit into a bound unit, you must
use the GET command to reserve an input file (a card reader) and
an output file (a disk file).

To reserve the card reader, specify:

GET JCDROO -LFN 1

To reserve the disk file, specify:

GET AS_DIR>MASTER -LFN 3

In this example, it is assumed that the file MASTER was pre-
viously created under the directory AS_DIR. It is also assumed
that the directory AS_DIR is subordinate to your working
directory. (The GET command could have directed program output
to any file, not necessarily one named MASTER.)

14-25 CZ05-00

To send mail to another person, you might enters

MAIL LOWELL

where LOWELL is the person__id of the receiver. The system will
respond:

INPUT:

You can then enter the text of your message. Terminate the mes-
sage by entering a period (.) or the letter Q followed by a car-
riage return. Your message is queued in Lowell's mailbox until
Lowell issues a MAIL command to display mail.

To mail a file that might be a program or a long message for
many users, use the filename argument of the MAIL command:

MAIL LOWELL HEX^AS.A

This command mails the file HEX_AS.A- to Lowell. Long mes-
sages should not be sent to users at a VIP terminal.

NOTE

Before you can receive mail, either you or your
system operator must have previously created the
mailbox directory and the necessary mailboxes, and
have set access controls on these mailboxes» See
the System User's Guide manual for details.

ABSENTEE PROCESSING

MOD 400 offers both interactive and absentee (batch) process-
ing. As an absentee user, you submit requests against the system
batch task group ($B). Absentee processing allows you to perform
multiprocessing on the system? i.e.,, you can process interactive
tasks while the system processes one or more of your absentee
requests simultaneously. All system software components are
available to you as an absentee user.

The system operator creates the batch task group against
which all users place requests on a queued first-in, first-out
basis. To enter a request into the batch queue, use the Enter
Batch Request (EBR) command. The EBR command requires you to
specify a command-=in file containing commands to be executed in
the batch task group* Normally, you create this file on disk in
your working directory before entering your batch request.

14-27 CZ05-00

Section 15
LINE EDITOR

This section describes Line Editor functions and the Line
Editor directive set.

OVERVIEW

The Line Editor creates and/or alters character text that
constitutes filesi the files usually are source unit files. The'
statements in a source unit file can be written in FORTRAN,
COBOL, BASIC, PASCAL, or Assembly language. Throughout this
section, it is assumed that source unit files are being edited.

Editing is controlled by directives entered to the Line
Editor through the device specified in the in_path argument of
the Enter Batch Request (EBR) or Enter Group Request (EGR)
command. This device can be reassigned in the command that loads
the Line Editor.

All editing is done in a temporary work area called the cur-
rent buffer. When the Line Editor is invoked, the Line Editor
creates a current buffer* To save Line Editor output, you must
write the source unit contents of the current buffer to a file.

15-1 CZ05-00

LINE EDITOR SUFFIX CONVENTIONS

When you create a source unitr you should append the appro-
priate suffix identification character to the name of the file
that will contain the source unit. The suffix designates the
type of text that constitutes the source unit. The suffix must
be .C for COBOL programs, .F for FORTRAN programs, .PS for PASCAL
programs, .B for BASIC programs, and .A for Assembly language
programs.

When you specify the file names of Line Editor input and
output files (in Line Editor directives), the editor requires
that you designate the complete file name? including any of the
suffixes just listed. The Line Editor does not append a suffix
to its input and output files.

LINE EDITOR DIRECTIVE FORMAT CONVENTIONS

Most Line Editor directives consist of only a directive name,
a directive name preceded by one or two addresses, or a directive
name optionally preceded by one or two addresses and followed by
text and termination escape characters (SF) that designate the
end of the directive and cause the Line Editor to switch from
input mode to edit mode. These formats are illustrated here*
Note that if a directive includes text, the text may be specified
beginning immediately after the directive name (see Format 4) or
beginning on the next line (see Format 5).

FORMAT Is

dirname

FORMAT 2:

adr dirname

FORMAT 3s

dirname

FORMAT 4j

adr. nadr. dirname[text]IF

15-3 CZ05-00

will be used. Address default values are described later in this
section under each directive's argument descriptions.

Multiple Line Editor directives can be entered on a single
line? it is not necessary to separate each directive with a
delimiter, but one or more spaces can be specified/ as
illustrated below:

Directives not separated by delimiters!

dirnamedirname

Second directive
First directive

Directives separated by delimiterss

dirname dirname adr dirname

Third directive
Second directive
First directive

A comment can be included at the end of a directive line
(i.e., at the end of the last or only directive); the comment
must be preceded by a quotation mark ("), as illustrated?

adr dirname dirname"comment

To include a comment after an input mode directive/ specify the
comment after the terminator IF; otherwise/ the comment is
included as text.

adr. n adc,j dirname[text]lF"comment

Directive comment
Directive

If a terminal is the directive input device/ press RETURN at
the end of each line.

Methods of Specifying Addresses

Each address can be specified by one of the following methods
or by a combination of these methods:

• Number of line
• Position of line relative to the "current" line
• Contents of line*

15-5 CZ05-GQ

•t I

You can locate lines relative to the current line by specify-
ing an address that consists of a period followed by one or more
signed decimal numbers. For example, the address .+1 specifies
the line immediately following the current line, the address .-1
specifies the line immediately preceding the current line, and
.+5+5-3 specifies the seventh line after the current line.

When specifying an increment to the current line number, you
can omit the plus (+) sign; e.g., .5 is interpreted as .+5. When
specifying a decrement to the current line number, you can omit
the period; e.g., -3 is interpreted as .-3, and .5+5-3 is inter-
preted as .+7.

DESIGNATING CONTENTS OF LINE AS AN ADDRESS

You can designate that the Line Editor locate the first line
that contains a specified character or a specified sequence of
characters by designating those characters in an expression as an
address. An expression comprises one or more ASCII characters,
which must be delimited by slashes (e.g., /ASCII characters/).

The Line Editor will search the lines in the current buffer
until it finds the first occurrence of the specified expression;
unless specified otherwise,* the expression can be in any
position within the line* The Line Editor searches from the line
immediately following the current line (i«,e., .+1) through the
last line in the buffer; if a line containing the specified
expression is not found, the Line Editor then searches line 1 to
the current line. In the directive formats

/BBB/dirname

the address is the expression BBB. The Line Editor searches as
many lines as necessary for the first occurrence of BBB. The
contents of the source unit being searched are listed below.
(The numbers within parentheses represent line numbers.)

(1) AAA
(2) BBB
(3) CCC (current line)
(4) BBB

The specified directive causes the Line Editor to locate line
number 4f since this is the first line after the current line
that contains the expression BBB.

*If a circumflex () is designated as the first character of the
expression^ the expression must be the first expression on the
line; if $ is designated as the last character of the expres-
sion, the expression must be the last expression on the linee

of these special characters is described in the following

15-7 CZ05-00

3. For the Line Editor, two hexadecimal charac-
ters can be interpreted as one ASCII byte by
using the escape sequence !Kxx? where xx are
the two hex characters. However, this feature
must be used with care since some of the
hexadecimal characters may be confused with
control or special characters in ASCII
strings* The following is a list of the
hexadecimal characters whose use is
restricted?

OA is the line feed character; in a string
expression? it is interpreted as a request
for advancement to a new line.

2E and AE in a regular expression are
treated as ".".

26 and A6 in a string expression are
treated as "&".

2A and AA in a regular expression are
treated as "*".

24 at the end of a regular expression is
interpreted as "end-of-line •($)".

5E at the beginning of a regular expres-
sion becomes "beginning-of-line (")".

Rather than attempting to substitute in an
expression using the characters above? execute
a Change directive/ reentering the line using
hexadecimal and ASCII characters for the
entire line.

Following are some examples of expressions specified as addresses
in Line Editor directives. Following each expression is a
description of the line/character(s) in the current buffer for
which the Line Editor will search. In each case? the Line Editor
searches the lines sequentially? starting with the line
immediately following the current line to the end of the file?
and then from line one through the current line.

Expression Description

/A/ Locates the first line that contains the expression
A in any position in that line.

/ABC/ Locates the first line that contains the expression
ABC in any position on that line.

/AB*C/ Locates the first line that contains the expression
AC or A followed by any number of Bs and a C.

15-9 CZ05-00

COMPOUND ADDRESSES

An address can be formed by combining any of these methods. If
a compound address contains a line number, the line number must be
the first element of the address.

The first element of the compound address determines the
starting location from which the Line Editor will search for the
designated expression If the first element is a line number, the
Line Editor searches for the expression starting with the line
that immediately follows the specified line number., (Ordinarily,
the Line Editor searches starting with the line that immediately
follows the current line.)

Example 1;

10/ABC/

The Line Editor searches the lines in the current buffer for
the characters ABC, starting with line 11.

Example 2:

.-8/ABC/

The Line Editor searches the lines in the current buffer for
the characters ABC, starting eight lines before the current
line*

Example 3:

/ABC//DEF/

The Line Editor searches for the first line containing DEF
that occurs after the first line containing ABC.

Each expression in a compound address can be followed by a
signed decimal integer.

Example 4:

/ABC/-10/DEF/5

The Line Editor searches for the first occurrence of the
character string DEF that is within 10 lines before the first
line that contains ABC. After DEF is found, the current line
is the fifth line after the line containing the match for DEF.

15-11 CZ05-00

(1) ABC
(2) DBF (current line)
(3) GHI
(4) ABC
(5) XYZ
(6) ABC

These addresses specify the line immediately following the
current line through the second line after the current line.
The Line Editor locates lines 3 and 4. Line 4 becomes the
current line.

Example 5:

.1? 2dirname

These addresses are the same as those in Example 4, but they
are separated by a semicolon. If the contents of the sample
source unit are the same as in Example 4, this directive
causes the Line Editor to locate lines 3, 4, and 5. This
first address specifies the line immediately after the current
linef i.e., line 3« Line 3 then becomes the current line»
The second address specifies that the Line Editor locate
through the second line after the (new) current liner i.e.,
lines 4 and 5.

As the next example illustrates, the same series of lines can be
requested by specifying their addresses in more than one way,
using different delimiters^

Example 6s

/ABC/,/ABC/+3dirname
/ABC/;.+3dirname v

The contents of a sample source unit follows. The numbers
within parentheses represent line numbers.

(1) ABC
(2) DDD (current line)
(3) EEE
(4) PFP
(5) GGG
(6) HHH

The first series of addresses specifies that the Line Editor
locate the first line that contains ABC (line 1) through the
third line after that line (lines 2, 3, and 4). Line 4
becomes the current line«

The second series of addresses specifies that the Line Editor
locate the first line that contains ABC (line 1), make that
line the current line, and then reference three lines from the
"new" current line (lines 2, 3, and 4). Line 4 becomes the
current line*

15-13 CZ05-00

-NO_BLANK_SUPPRESS J.
-NBS)

No blank suppression; i.e./ the Line Editor does not
suppress trailing blanks on the input line (for one
invocation only). Subsequent invocations without -NBS
will suppress trailing blanks.

-FILE^SIZE nn (
-FS nn J

Alter the initial size of the work file to the size in
the user-supplied value of nn, where nn is a decimal
integer of up to four characters and designates the
number of 256-byte control intervals. If an output
file is created, it is initialized to the same size.

Default: 4.

-ARCS strings I
-ARG strings (

Up to nine character strings that are numbered sequen-
tially and may be passed to the Line Editor in the
"Change Origin of Text During Edit Mode" (!B) Line
Editor directive. Each argument following the -ARG
keyword is copied to buffer (ARGn). n denotes the
position of the argument following the -ARG and can be
any value from one through nine. If specified, this
argument and its strings must be entered last.

-SAFE name I
-SF name I

Permanent work files called name.EDWKl and name.EDWK2
contain the latest copy of the current buffer* Name
can be from one to six characters. Abnormal termina-
tion causes the work files to be closed in their cur-
rent state and saved for later use, and normal termi-
nation releases them. To reuse the work files, invoke
the Line Editor without -SAFE or with -SAFE and a
different name.

Default: Work files are temporary files and are
released under all conditions.

15-15 CZ05-00

Table 15-1 (cont). Summary of Line Editor Directives and
Escape Sequences

Directive/
Escape

Sequence Function
Topic Under

Which Described

K

M

N

p

Q

R

Execute command other
than Line Editor without
exiting from the Line
Editor.

Search for specified
line(s) that contain
specified character
string.

Add line(s) before a
specified address.

Copy line(s) in current
buffer to specified
auxiliary buffer. Do not
delete lines from current
buffer. Overlay existing
line(s) in auxiliary
buffer.

Send line feed to the
user-out file.

Move line(s) from current
buffer to specified
auxiliary buffer; delete
the lines from current
buffer and overlay exist-
ing line(s) in auxiliary
buffer.

Designate different line
as the current line.

Print" specified line(s)
in current buffer.

Conditionally terminate
execution of Line Editor.

Read text from file to
current buffers

Execute directive
(advanced usage —
general)

Global directive
(advanced usage —
general)

Insert directive (input
mode).

Copy directive (advanced
usage — auxiliary
buffers)

Line Feed directive
(advanced usage —
general)

Move directive (advanced
usage — auxiliary
buffers)

New Current Line directive
(advanced usage —-
general)

Print directive (edit
mode)

Quit directive (edit mode)

Read directive (edit mode)

15-17 CZ05-00

;>3

.-; i

Table 15-1 (cont). Summary of Line Editor Directives and
Escape Sequences

Directive/
Escape

Sequence Function
Topic Under

Which Described

!HXX

IK

!L

!M

IP

IQ

1R

IT

!U

1?

Interpret two following
hexadecimal characters as
one ASCII byte.

Copy line(s) in current
buffer to specified aux-
iliary buffer; do not
delete existing line(s)
in auxiliary buffer.

Send line feed to the
error-out file.

Move line(s) from current
buffer to specified aux-
iliary buffer; delete the
line(s) from current buf-
fer and append them to
existing line(s) in aux-
iliary buffer.

Type line number and con-
tents- of specified
line(s) in current
buffer.

Unconditionally terminate
execution of Line Editor.

Accept single line from
terminal.

Display line of text on
user-out file; subsequent
input/output will be on
the same line.

Convert specified lower-
case expression to

Cause message indicating
whether input or edit
mode is in effect*

Copy-append directive
(advanced usage —
auxiliary buffers)

Line feed directive
(advanced usage —
general)

Move-append directive
(advanced usage —
auxiliary buffers)

Print With Line Number
directive (advanced
usage — general)

Quit directive (edit mode)

Accept Single Line from
Terminal directive
(advanced usage — auxil-
iary buffers)

Type directive (advanced
usage — programming)

Uppercase directive
(advanced usage —
general)

15-19 CZ05-00

Table 15-1 (cont). Summary of Line Editor Directives and
Escape Sequences

Directive/
Escape

Sequence Function
Topic Under

Which Described

Define location to which
Line Editor can be
directed for subsequent
directive(s).

Label directive
(advanced usage ~
programming)

Type line number of
specified line in current
buffer.

Print Line Number
directive (advanced
usage — general)

Accept subsequent direc-
tive^) from specified
location in current buf-
fer or interactively.

Go To directive (advanced
usage — programming)

If specified line is in
current buffer? execute
specified directive(s)„

Address Prefix directive
(advanced usage —-
programming)

Annotate Line Editor
files.

Comment directive
(advanced usage —
programming)

CREATING A SOURCE UNIT

To create a source unit, perform the following steps.

1. Change the working directory to a user volume by specify-
ing the Change Working Directory (CWD) command (see the
Commands manual)«

2. Load the Line Editor. (See "Loading the Line Editor"
earlier in this section.)

3. If there already are lines in the current buffer, clear
the buffer by entering? 1,$D.

4. Enter the appropriate Input directive and text to be
included.

5. Make changes, if necessary, by entering the appropriate
Input and/or Edit directive(s).

6. Write the contents of the current buffer to a file by
using the Write directive.

15-21 CZ05-00

You can create a source unit by using the Append or Insert
directive. You can add lines to an existing source unit by using
any or all of the above directives.

Each input directive must have one of the following formats:

FORMAT 1?

adr« M;)adr2 dirnamej•i

[text]

!F["comment]

FORMAT 2:
•**1

dirname[text]!F["comment]

If directives are being entered through a terminal, the directive
can either be immediately followed by a carriage return and then
text (i.e., the lines to be included in the source unit), or the
directive name can be immediately followed by text, with addi-
tional lines of text (if any) added on subsequent lines. The text
can be any number of lines of ASCII characters. The maximum
number of characters per line is determined by the value specified
in the -LINE_LEN n argument of the ED command. The last line of
text must be followed by the escape sequence !F to terminate input
mode? otherwise, the next Line Editor directive is interpreted as
additional text. The escape sequence !F can be entered at the end
of the last line of text or in the first character position of the
next line. The next directive can begin in the next character
position or on the next line.

NOTES

1. To enter a blank from the operator terminal,
as the first character on a line, precede it
with an 1C sequence.

2. The characters IF can be included as text by
preceding them with 1C? in this case, IF does
not designate the end of the text.

3. When entering directives from a card reader,
the punch for an exclamation point is 12-8-7.

Input directives are described in detail on the following
pages. In the examples, numbers in parentheses are references to
line numbers and do not appear in memory or in text.

15-23 CZ05-00

APPEND

Example 1, Creating a New Source Unit:

In this example, the buffer is empty.

A
WWW
XXX
YYY
2.2-2:
IF

This Append directive puts lines WWW, XXX, YYY, and ZZZ into
the current buffer. Since the buffer is empty, it is not nec-
essary to specify an address. The lines will be inserted, in
the order in which they were entered, starting at line 1. The
lines put into the buffer constitute a new source unit which
can then be edited and/or written to a filee

Example 2, Adding Lines to an Existing Source Unit:

/TTT/A
UUU
IP
3A
WWW
XXX
IF

These Append directives put line UUU into the buffer immedi-
ately after the first line that contains TTT, and lines WWW
and XXX into the buffer immediately after the third line.

The contents of the buffer are:

(1) TTT
(2) VW

After the first Append directive is executed, the buffer will
contain:

(1) TTT
(2) UUU (current line)
(3) VW

15-25 CZ05-00

CHANGE

CHANGE fCl

Delete a single line or a series of lines in the current
buffer and then insert the text specified between the directive
name and the1insert terminator !F.

After the Change directive is executed, the current line is
the last line of inserted text. The inserted line(s) are given
line numbers and subsequent lines, if any, are renumbered.

FORMAT 1:

!F

FORMAT 2:

adr, CtextlF

ARGUMENTS:

adrt

Address of the first or only line to be deleted and
replaced.

Default: Current line.

adr2

Address of the last line to be deleted and replaced.

Default: Only the line identified by ad^ is deleted and
changed.

NOTE

If both adrj and adr2 are omitted, only the current
line is deleted and replaced.

15-27 CZ05-00

CHANGE

Example 3s

.,5C .,$C
XXX or XXX
IF IP

Each of the Change directives above deletes the current line
through line 5 and replaces them with a single line containing
XXX.

After the change directive is executed, the buffer will
contains

(1) AAA
(2) BBB
(3) XXX (current line)

15-29 CZ05-00

INSERT

Example 1:

In this example, the current buffer is empty.

I
AAA
BBB
CCC
ODD '
IF

This Insert directive creates in the current buffer a new
source unit comprising lines AAA, BBB, CCC, and DDD. The
lines can then be edited and/or written to a file.

In Examples 2, 3, and 4, the contents of the current buffer
are:

(1) AAA
(2) BBB
(3) CCC
(4) DDD (current line)

Example 2:

-21
XXX i
IF

This Insert directive designates that a line containing XXX be
inserted two lines before the current line.

After the Insert directive is executed, the current buffer
will contains

(1) AAA
(2) XXX (current line)
(3) BBB
(4) CCC
(5) DDD

Example 3: ~

/AAA/I
H1CJFH
KKK
IF

15-31 CZ05-00

EDIT MODE DESCRIPTION AND DIRECTIVES

In Edit mode, you can write to file text originated in input
mode, call up existing files, edit them, print them, and exit from
the Line Editor.

Edit mode directives have the following capabilities?

• Delete specified line(s) from the current buffer (Delete
directive)

• Print on the user-out file specified line(s) in the current
buffer (Print directive)

. « Terminate execution of the Line Editor (Quit directive)

• Read text from specified file into the current buffer (Read
directive)

• Substitute a designated string of characters in specified
line(s) with another spe'cified string of characters
(Substitute directive)

• Write specified line(s) from the current buffer to speci-
fied file (Write directive).

NOTES

1. To edit an existing source unit, the Read
directive must be previously specifiede

2. Until you are familiar with the Line Editor,
enter Print directives frequently so you can
determine the status of the lines being
edited.

3. To save the results of an edited or newly
created source unit, you must specify the
Write directive before you terminate execution
of the Line Editor.

Most edit mode directives have one of the following formatsj

FORMAT 1:

dirnamef comment]

FORMAT 2:

adr-j dirname["comment]

FORMAT 3j

adrt (})\ adr,dirname["comment]

L <'M
15-33 CZ05-00

DELETE

DELETE (D)

Delete a single line or consecutive lines from the current
buffer.

After the Delete directive is executed? each subsequent line
in the buffer is renumbered, and the current line is the line that
immediately follows the last line deleted or the last line in the
buffer if the previous "last line" was deleted.

FORMAT:

adri

ARGUMENTS:

adr1

Address of the first or only line to be deleted.

Defaults Current line.

Address of the last line to be deleted.
*

Default: Only the line identified by adr2 is deleted.

NOTE

If both adri and adrz are omitted, only the current
line is deleted.

In the following examples, the contents of the current buffer

adr5

are:

(1) AAA
(2) BBB (current line)
(3) CCC
(4> DDD
(5) EEE

15-35 C205-00

u

PRINT

PRINT

Print a single line or consecutive lines in the current
buffer. You can specify the address(es) of the line(s) to be
printed, or you can request a printout of the first line that
contains a specified expression. The printout is issued to the
user-out file; i.e«, the file designated in the -OUT out_path
argument of the Enter Batch Request (EBR) or Enter Group Request
(EGR) command, unless the file was reassigned in the File Out (FO)
command. If the printout occurs on the operator terminal, each
line of text is preceded by the group identification characters.

After the Print directive is executed, the current line is the
last (or only) line printed.

FORMAT 1:

Format including directive name P:

ARGUMENTS:

Address of the first or only line to be printed. The Line
Editor begins its search at the second line in the current
buffer.

Default: Current line.

adr2

Address of the last line to be printed.

Default: Only the line identified by adrj is printed.

NOTE

If both adrj and adr2 are omitted and P is speci-
fied, only the current line is printed.

FORMAT 2s

Format excluding directive name Ps

adr, I Aadr2

15-37 CZ05-00

PRINT

Example 3:

4P

This Print directive causes a printout of line number 4.

GGGHHH

After this directive is executed, the current line is line
number 4.

Example 4:

.,4P

This Print directive causes a printout of the current line
(line number 2) through line number 4:

CCCDDD
EEEFFF
GGGHHH

After this directive is executed, the current line is line
number 4e

Example 5s

/AAA/

This Print directive causes a printout of the first line that
contains AAA.

After this directive is executed, the current line is line
number le

Example 6:

This directive line contains (1) a Delete directive and (2) a
Print directive in which only an expression is designated.

This directive line deletes line number 3 and causes a print-
out of the first line that contains AAA. After the directives
are executed? the current buffer will contains

(1) AAABBB
(2) CCCDDD
(3) GGGHHH

15-39 CZ05-00

• 1

QUIT

QUIT (Q OR IQ)

Exit from the Line Editor. Quit must be specified at the end
of the editing session. This directive must be the last or only
directive on a line. If the directive input device is a terminal,
the Quit directive must be immediately followed by a carriage
return.

Quit is executed conditionally or unconditionally, depending
on which Quit format is specified. In a conditional Quit request
(Format 1), if a buffer has a pathname associated with it via a
Read or Write directive and the contents-of the buffer have been
modified but not written to a file before the Quit directive is
entered? a warning message is issued and Quit is not executed.
After the message? any Line Editor directive(s), including Write,
may be entered. If Write is not specified and Quit is reentered,
the Quit directive is executed and changes specified in previous
Line Editor directives are not saved. In an unconditional Quit
request (Format 2)f modified buffers are not checked before Quit
is executede

/

FORMAT 1:

Q

FORMAT 2:

!Q

Example:

A

AAABBB
CCCDDD
EEEFFF

IF

2D

W FIRST

Q

Append directive, which puts specified lines
into current buffer.

Lines that will be put into current buffer.

Designate the end of the insertion.

Delete the second line of text (e.g., CCCDDD),

Write all lines in buffer to file named FIRST.

Return control from the Line Editor to the
Command Processor.

15-41 CZ05-00

READ

READ fRl

Read text from a specified file into the current buffer. The
Read directive must be the only or last directive on a line.
After the Read directive is executed, the current line is the last
line read from the file.

FORMAT:

[adr]R[path]

ARGUMENTS:
*\ *

adr

Address of a line in the current buffer; the contents of
the specified file will be appended after this line.

Default: Last line in the buffer; if the buffer is empty,
the file is appended starting at the first line
in the buffer.

path

Pathname of the ASCII file to be read into the current
buffer. (Methods of specifying pathnames are described in
Section 14.) The pathname may be preceded by any number
of blanks.

Default: Pathname specified in the latest Read or Write
directive associated with the current buffer.
To determine which pathname- was specified last,
specify the Buffer Status directive, which is
described under "Advanced Usage of the Line
Editor" later in this section. If the path
argument is not specified and a pathname was not
previously specified, an error message is
issued,

1 NOTE

!CDR or any other device name beginning with an
exclamation point (!) may cause errors. The
exclamation point is a Line Editor escape
character. A read of JCDRxx (R ICDRxx) will try
to read file name DRxx because !C is a conceal
flage Use >SPD> in place of the exclamation point
(e»g«» R >SPD>CDRxx), or conceal a C (e.g., R
!iCODExx) .

15-42 CZ05-00

READ

Example 1?

R START

This Read directive reads into the current buffer the contents
of a file whose simple pathname is START. Since an address is
not specified, the lines are read into the buffer after the
last line that currently is in the buffer.

The contents of START are?

(1) AAA
(2) BBB
(3) CCC

If the buffer is emptyf after the Read directive is executed,
the current buffer will contains

(1) AAA
(2) BBB
(3) CCC (current line)

If the buffer already contains:

(1) XXX
(2) YYY ^
(3) ZZZ

After the Read directive is executed, the current buffer will
contains

(1) XXX
(2) YYY
(3) ZZZ
(4) AAA
(5) BBB

, (6) CCC (current line)

Example 2%

/CCC/R NEW

This directive reads the contents of the file whose simple
pathname is NEW into the current buffer after the first line
in the current buffer that contains CCC.

15-43 CZ05-00

READ

The contents of the current buffer are:

(1) AAA
(2) BBB (current line)
(3) CCC »
(4) CCC

The contents of NEW are:

(1) XXX
(2) ZZZ

After the Read directive is executed, the current buffer will
contains

(1) AAA '
(2) BBB
(3) CCC
(4) XXX
(5) ZZZ (current line)
(6-) CCC

Example 3 s

This example illustrates the Read directive used in conjunc-
tion with Append and Write directives. The current buffer is
empty.

A Puts subsequent lines into the current buffer.
AAA
BBB
CCC
IF Designates the end of the insert.
W NOW Writes the contents of the current buffer to the

file whose simple pathname is NOW.
R Reads into the current buffer, after the last line

in the buffer, the contents of NOW; NOW is the
pathname specified in the last Write directive.

After the Read directive is executed, the-current buffer will
contains

(1) AAA
(2) BBB
(3) CCC
(4) AAA
(5) BBB
(6) CCC (current line)

15-44 CZ05-00

SUBSTITUTE

SUBSTITUTE (S OR !S)

Replace each occurrence of a specified string of characters in
a single line or in a sequence of lines with another specified
string of characters.

After this directive is executed, the current line is the last
line located by the Line Editor.

S/regexp/string/

or

!S/regexp/string/ (See Note 3)

FOR!MAT:

adrt (; » adr2

adr^

ARGUMENTS s

adrt

Address of the first line to be searched for the specified
string of characters. The search begins at the second
line in the current buffer.

Defaults Current line.

adrz

Address of the last line to be searched for the specified
string of characters.

Default: adr,

If both adrt an<^
line is searched.

NOTE

are omitted, only the current

(Delimiter) Can be any character that is not in regexp or
string. However? the same delimiter must be used in each
of the three locations where a delimiter is required.

15-45 CZ05-00

SUBSTITUTE

regexp

String of characters for which the Line Editor is
searching? each occurrence of this character string within
the specified addresses will be replaced with the
character(s) specified in the argument "string".

Default: The last regexp specified. This can be
determined by entering the ZREGEXP directive, which is
described under "Line Editor Debugging Directives".

string

String of characters that will replace each occurrence of
regexp.

NOTES

1. If string contains the character "&" in any
positionr each occurrence of regexp to be
replaced will be replaced with regexp included ,
in string, in place of "&". For example, if
regexp is "in" and string is "&to", each
occurrence of "in" becomes "into". To cancel
the special meaning of "&", precede it with
1C.

2. The occurrence of a line feed in the string
expression determines the new line characters,
i.e., point in the resulting line at which the
line is to be split into two lines.

3. If the directive name IS is used (as illus-
trated in the second directive format) and the
specified substitution fails, no error message
is issued and execution of the command file
(if any) continues.

•

Example Is i , -

S/AEGDEF/ABC linefeed DBF/

This Substitute directive searches the current line and (1)
replaces each occurrence of ABGDEF with ABCDEF and (2) causes
the character string to be split between two lines. ABC will
be on the first line, and DEF will be on the second line.

15-46 CZ05-00

SUBSTITUTE

Example 2:

The contents of the current buffer ares ,

(1) E
(2) NTE
(3) R
(4) YOUR

l,3S/linefeed key//

After this Substitute directive is entered/ the current buffer
will contain:

(1) ENTERYOUR

In the following examples/ the contents of the current buffer
ares

(1) AAACCC
(2) BBBAAA (current line)
(3) CCCBBB
(4) DDDAAA

Example 3 :

2,4S/AAA/XXX/

This Substitute directive searches lines 2 through 4 and
replaces each occurrence of AAA with XXX.

After this directive is executed, the current buffer will
contains

(1) AAACCC
(2) BBBXXX
(3) CCCBBB
(4) DDDXXX (current line) I

Example 4:

./4S-CCC-UUU-

This Subsitute directive searches the current line (line 2)
through line number 4 and replaces each occurrence of CCC with
UUUe

15-47 CZ05-00

SUBSTITUTE

After this directives is executed, the current buffer will
contain:

(1) AAACCC
(2) BBBAAA
(3) UUUBBB \
(4) ODDAAA (current line)

Example 5:

-1,/DDD/S//&JJJ/

This Substitute directive searches one line before the current
line (line 1) through the first line that contains DDD (line
4) and replaces each occurrence of DDD with DDDJJJ.

After this directive is executed, the current buffer will
contain:

(1) AAACCC
(2) BBBAAA
(3) CCCBBB
(4) DDDJJJAAA (current line)

Example 6:
~- _fc v̂ t

/BBB/S//XXX/

This Substitute directive searches the first line after the
current line through the current line (line 2) and changes the
first occurrence of BBB to XXX.

After this directive is executed, the current buffer will
contain:

(1) AAACCC , •
(2) BBBAAA
(3) CCCXXX (current line)
(4) DDDAAA

15-48 CZ05-00

WRITE

WRITE

Write a specified line or a series of lines in the current
buffer to a specified file. If the file does not already exist, a
new file is created with the specified file name. If the named
file does exist and currently contains other data, the line(s)
written to the file via the Write directive replace the existing
contents.

To save the results of previously specified Line Editor
directives, you must specify the Write directive before you
terminate execution of the Line Editor (i.e.. Write must be
specified before Quit).

The Write directive must be the last directive on a line.
After the Write directive is executed, the specified line(s)
remain in the current buffer? a copy of them is written to the
specified file.

adr2Jj W [path]
ft

ARGUMENTS:

Address of the first line to be written to a specified
file.

Default? First line in the current buffer.

adr2

Address of the last line to be written to a specified
file.

Default: Last line in the current buffer.

NOTE

If both adrt and adr2 are omitted, all lines in the
current buffer are written to the specified file.

15-49 CZ05-00

WRITE

path
\

Pathname of the file to which the specified line(s) will
be written. (Methods of specifying pathnames are
described in Section 14.) The pathname may be preceded by
any number of spaces. Default: Pathname specified in the
latest Read or Write directive associated with the current
buffer. If a pathname was not previously specified, an
erior message is issued.

Example 1:

W IDENT

This Write directive writes all lines in the current buffer to
a file whose simple pathname is IDENT.

Example 2;

This example illustrates use of a Write directive in a sample
Line Editor session. In this example? there is a file named
EXIST that contains the following lines:

(1) AAA
(2) BBB
(3) CCC
(4) ODD

R EXIST

Read into the current buffer the contents of the file
named EXIST. The current buffer will contain:

(1) AAA
(2) BBB
(3) CCC
(4) ODD (current line)

1,$S/AAA/XXX/

Search each line in the current buffer and change each
occurrence of AAA to XXX. The buffer will contain:

(1) XXX

(3) CCC
(4) DDD (current line)

15-50 CZ05-00

WRITE

1,3W

Write lines 1 through 3 to the file specified in the
last Read or Write directive (i.e.f EXIST). EXIST
will contains

(1) XXX
(2) BBB
(3) CCC

Q

Terminate execution of the Line Editor.

15-51 CZ05-00

ADVANCED FUNCTIONS OF THE LINE EDITOR

The directives described on the previous pages permit you to
create a source unit and perform basic editing. The following
subsections describe Line Editor directives that perform general
advanced functionsf permit usage of auxiliary buffers, perform
debugging/ and perform programming functions. Within each subsec-
tion the directives are summarized and then described in detail
alphabetically by full directive name.

GENERAL ADVANCED LINE EDITOR DIRECTIVES

The general advanced Line Editor directives have the following
capabilities:

• Cause another specified directive to act on only those
lines that do mat contain a specified character string
(Exclude directive)

• Permit execution of a command instead of Line Editor
directives without exiting from the Line Editor (Execute ^,
directive)

• Cause another specified directive to act on only those
lines that conteiin a specified character string (Global
directive)

• Send line feed to user-out file and error-out file (Line
Feed directive)

• Convert the specified expression to lowercase (Lowercase
directive)

• Make a.different line the current line (New Current Line
directive)

• Print the line number of a specified line in the current
buffer (Print Line Number directive)

• Print the line number and contents of specified line(s) in
the current buffer (Print With Line Number directive) —̂'

• Convert the specified expression to uppercase (Uppercase
directive).

15-52 C205-0-0

EXCLUDE

EXCLUDE

Exclude specified elements. The Exclude directive can be used
in conjunction with Delete, Print? Print Line Number? and Print
With Line Number directives so that the specified directive acts
on only those lines that do not contain a specified character
string*,

After the Exclude directive is executed, the current line is
the last line searched by the Line Editor (i.e«, the line
specified in adr2 (see below)).

FORMAT ?

adr. Vx/regexp/
11

ARGUMENTS:

adr,

Address of the first line to be searched.

Default: First line in the current buffer.

adr2

Address of the last line to be searched.

Default: Last line in the current buffer.

NOTE

If both adr^ and adrt are omitted, all lines in the
buffer are searched.

Directive name with which the Exclude directive is being
isuedf must be one of the following:

D - VD deletes line(s) that do not contain regexp.

P - VP prints the contents of line(s) that do not contain
regexp«,

!P - VJP prints the line number(s) and contents of line(s)
that do not contain regexp.

a - V= prints the line number(s) of line(s) that do not
contain regexpc

15-53 , CZ05-00

EXCLUDE

(Delimiter) Can be any character that does not occur in
regexp. The same delimiter must be used before and after
regexp.

i

regexp

String of characters for which the Line Editor will
search? only lines that do not contain regexp will be
acted upon by the Line Editor during execution of the
directive name specified in argument x.

In the following examples, the contents of the current buffer
are:

•s

(1) JJJKKK (current line)
(2) LLLMMM
(3) NNNPPP
(4) RRRJJJ

Example Is -

1,3V1P/JJJ/

This Eaelude Print with line number directive causes the Line
E;ditor to search lines 1 through 3 and to print the line
number and contents of each line that does not contain JJJ.

- Typeouts

2 LLLMMM
3 NNNPPP

Current line: 3

Example 2:

VD'^JJJ*

This Exclude Delete directive deletes each line that does noj;
contain JJJ; since no addresses are specified, each line in
the current buffer is searched.

After this directive is executed, the current buffer will
contain:

;,
(1) JJJKKK
(2) RRRJJJ (current line)

15-54 CZ05-00

EXECUTE

EXECUTE fBl

Cause execution processing. The Execute directive permits you
to execute a command instead of Line Editor directives without
exiting from the Line Editor; ice., you can enter any command and
then continue to use the Line Editor. For example, the Execute
directive can be used to designate a printer as the Line Editor
output file. Otherwise, if you want a printout of Line Editor
output/ the printout is issued to the terminal, which is the
original user-out file.• If the user-out file is a line printer
and a Quit directive is entered to exit from the Line Editor, the
user-out file remains set to the printer.

The Execute directive must be the last directive on a line.

The current line is not affected by Execute directives.

FORMAT:

E command

ARGUMENT:

command

Any command (see the Commands manual). -

Example:

E FO >SPD>LPTOO

This Execute directive includes a File Out (FO) command, which
sets the user-out file to the line printer whose pathname is
>SPD>LPTOO«

15-55 CZ05-00

GLOBAL

GLOBAL (G)
•»

Act on only those lines that contain a specified character
string and can be used in conjunction with Delete, Print, Print
Line Number, and Print With Line Number directives.

After the Global directive is executed, the current line is
the last line searched by the Line Editor.

FORMAT:

adr Gx/regexp/

ARGUMENTS:

adr.

Address of the first line to be searched.

Default: First line in the current buffer.

adrz

Address of the last line to be searched.

Default: Last line in the current buffer.

NOTE

If both adrt and adr2 are omitted, all lines in
the current buffer are searched.

Diiective name with which the Global is being used; must
be one of the following:

D - Delete all line(s) in the specified range containing
regexp.

P - Print the contents of line(s) containing regexp.

IP - Print the line number(s) and contents of line(s)
containing regexp (see "Print With Line Number
Directive" later in this section).

» - Print the line number(s) of line(s) containing
regexp (see "Print Line Number Directive" later in
this section).

15-56 CZ05-00

GLOBAL

(Delimiter) Can be any character that does not occur in
regexp. The same delimiter must be used before and after
regexp.

regexp

String of characters for which the Line Editor will
search; only lines that contain regexp will be acted upon
by the directive name specified in argument x.

In the following examplesf the contents of the current buffer
are:

(1) JJJKKK
(2) LLLMMM
(3) NNNPPP
(4) RRRJJJ

Example Is

1,3G!P/JJJ/

This Global Print With Line Number directive causes the Line
Editor to search lines 1 through 3 and print the line number
and contents of each line that contains JJJ.

Typeouts

1 JJJKKK

Current line: 3

Example 2s

GD*JJJ*

This Global Delete directive deletes each line that contains
JJJ? since no addresses are specified/ all lines in the buffer
are searched.

After this directive is executed, the current buffer will
contains

(1) LLLMMM
(2) NNNPPP (current line)

15-57 CZ05-00

LINEFEED

LINE FEED fl, OR !L)

Send a line feed to the user-out file (L) or to the error-out
file (!L). After the Line Peed directive is executed, the current
line is unchanged. Default: none (addresses are ignored).

vFORMAT:

L or !L ;

15-58 CZ05-00

LOWERCASE

LOWERCASE (U)

Convert all occurrences of a specified expression within
specified addresses from uppercase to lowercase. After the
Lowercase directive is executed, the current line is the last line

FORMAT:

adr, fin adr2ll U/regexp/
LM JJ

ARGUMENTS :

Address of the first line to be searched.

Default? Current line.

adr2

Address of the last line to be searched.

Default: adr^ .

regexp

String of characters for which the Line Editor searches.
1 Only uppercase letters (A through Z) are converted? others
are not changed.

Example:

U/ADR/

This Lowercase directive searches the current line and changes
each occurrence of ADR to adr. The current line is:

ADR FIRST

After the Lowercase directive is executed, the line contains:

adr FIRST

15-59 CZ05-00

NEW CURRENT LINE

NEW CURRENT LINE

Cause the specified line to become the new current line. The
contents of the new current line are not printed after the
directive is executed.

FCRMATi

adrbl

ABGUMENT:

adr

Address of the Line that is to be the new current line.

Example:

/CCC/N

The following condition exists prior to execution of the N
di rective:

AAA (current line)

CCC
DDD

The situation will be as follows after the N directive is exe-
cuted.

AAA
BBS
CCC (current line)
DDD

15-60 CZ05-00

PRINT LINE NUMBER

PRINT LINE NUMBER f=/!P)

Print out the line number of a specified line in the current
buffer.

The printout is issued to the user-out file, i.e., the file
designated in the -OUT out_path argument of the Enter Batch
Request (EBR) or Enter Group Request (EGR) command? unless that
file was reassigned,,

After this directive is executed, the current line is the line
whose line number was typed.

FORMAT: /

Eadr3=

ARGUMENT?

adr

Address of the line whose line number is to be typed.

Default: Current line.

In the following examples the contents of the current buffer
are:

(1) AAABBB (current line)
(2) CCCDDD
(3) CCCEEE

Example

This Print Line Number directive causes a printout of the line
number of the first line that contains GCC.

Printout;

2

Current linei 2

15-61 CZ05-00

PRINT LINE NUMBER

Example 2:

This Print Line Number directive causes a printout of the line
number of the current line.

Printout: - < „

1
*

Current line: 1

15-62 CZ05-00

PRINT WITH LINE NUMBER

PRINT WITH LINE NUMBER (IP)

Print out the line number and contents of a single line or
consecutive lines in the current buffer.. The printout is issued
to the user-out file, i.eof the file designated in the -OUT
out_path argument of the Enter Batch Request or Enter Group
Request command? unless the file was reassignedo If the printout
occurs on a terminalr each line of text is preceded by the group
identification characters.

After this dir-ective is executed, the current line is the last
line whose line number and contents were typed.

FORMAT:

-l[Madr2
I i'f

ARGUMENTS s

adr1

Address of the first line whose line number and contents
are to be typed»

Default; Current line.

adr2

Address of the last line whose line number and contents
are to be typed.

Defaults Address specified for adrf .

NOTE

If both adr| and adrs are omitted, there is a print-
out ©f the line number and contents of the current
line.

In the following examples, the contents of the current buffer
are:

(1) AAA
(2) BBB (current line)
(3) CCC

15-63 CZ05-00

PRINT WITH LINE NUMBER

Example 1:

1, $! P

This Print With Line Number directive causes a printout of the
line number and contents of each line in the current buffer.

Printout:

1 AJvA
2 BUB
3 CCC
4 ODD

Current line; 4

Example 2:
/

IP

This Print With Line Number directive causes a printout of the
l;.ne number and contents of only the current line.

Printout:

2 BUB

Current line: 2

15-64 CZ05-00

UPPERCASE

UPPERCASE (ID)

Convert all occurrences of a specified expression within
specified addresses from lowercase to uppercase.

After the Uppercase directive is executed, the current line is
the last line read.

FORMAT:

adct[{;}adr']
ARGUMENTS:

!U/regexp/

adrt

Address of the first line to be searched.

Default: Current linee

adr2

Address of the last line to be searched.

Default: adr^ .

regexp

String of characters for which the Line Editor searches.
Only lowercase letters (a through z) are converted; others
are not changed.

Example:

IU/adr/

This. Uppercase directive searches the current line and changes
each occurrence of adr to ADR. The current line iss

adr first

After the Uppercase directive is executed, the line contains:

ADR first

15-65 CZ05-00

COMMENT

COMMENT (") . ' '

Annotate Line Editor command files. The text after the
Comment directive appears as program output but is ignored by the
Line Editor.

FC&MAT:

"comment

15-66 CZ05-00

AUXILIARY BUFFER DIRECTIVES AND ESCAPE SEQUENCES

In the previous pages of this section, it was assumed that
there is only a single buffer, the current buffer. The current
buffer must be usedf but one or more additional buffers, called
auxiliary buffers, also can be used. There are 64 auxiliary
buffers available for use.

i
The most common use of auxiliary buffers is for moving or

copying text from one part of a file to another«

To make an auxiliary buffer available and to put lines into
it, specify the Move, Move-Append, Copy, or Copy-Append direc-
tives, which are described in the following paragraphs.

Lines cannot be written directly from an auxiliary buffer to a
file; the auxiliary buffer must be designated in the Change Buffer
directive as the current buffer or the lines must be read back to
the current buffer via the escape sequence IB, which is described
under "Change Origin of Text During Input Mode", later in this
section. Lines can be written from the current buffer to a file
via the Write directive (see "Write Directive10 earlier in this
section).

You can determine the status of each buffer currently in use
by specifying the Buffer Status directive.

Auxiliary buffer directives have the following functions:

« Cause Line Editor to accept a line from terminal (Accept
Single Line From a Terminal directive)

• Determine status of each buffer in use (Buffer Status
directive)

• Make specified auxiliary buffer the current buffer (Change
Buffer directive)

• Cause Line Editor to accept subsequent text from a
specified auxiliary buffer

- During edit mode (Change Origin of Text During Edit Mode
directive)

- During input mode (Change Origin of Text During Input
Mode directive)

• Copy line(s) in current buffer to specified auxiliary
buffer; lines in current buffer are not deleted

- Delete existing lines in auxiliary buffer (Copy
directive)

- Do not delete lines in auxiliary buffer (Copy-Append
directive)

15-67 CZ05-00

• Destroy a buffer (i.e., release its file space) (Destroy
directive)

• Move line(s) from current buffer to specified auxiliary
buffer; lines in current buffer are deleted

- Lines overlay existing lines, if any, in auxiliary buffer
(Move directive)

- Linos appended to existing lines, if any, in auxiliary
buffer (Move-Append directive).

15-68 CZ05-00

ACCEPT SINGLE LINE
FROM A TERMINAL

ACCEPT SINGLE LINE FROM A TERMINAL (!R)

Permit a single line of directives or text to be entered
through a terminal. iR normally is used when Line Editor
directives are being executed from a buffer. When the Line Editor
encounters 1R,-the entire escape sequence is removed from the
input stream and replaced with the line read from the user-in
file.

FORMAT:

1R

Example:

T/ENTER YOUR NAME/
AiRIF

These directives are in the buffer that is being executed.

There will be the following message on the terminal:

ENTER YOUR NAME

You will respond with your name, i.e., Jane Jones.

Following the current line in the current buffer will be:

Jane Jones

15-69 CZ05-00

BUFFER STATUS

BUFFER STATUS

Display the status of each buffer currently in use. The
currenb line is not changed.

FORMAT:

X

DESCRIPTION:

Ths following information is displayed:

• Name of each buffer. The original current buffer is always
named 0.

• Number of lines in each buffer.
•̂

• Indicator as to which buffer is the current buffer. The
name of the current buffer is preceded by ->.

• Pathname specified in the last read or write if a buffer
has been read into and/or written from.

If the contents of the current buffer have been modified
(i.e., in the message, MOD appears before the buffer's name),
all of the following conditions must exists

• Lines from an existing file have been read into the current
buffer via a Read directive or the contents of the current
buffer have been written to a file.

• The contents of the buffer were modified via one or more
Line Editor directives.

Each message has the following format:

number of lines ->[MOD] (buffer-name) [pathname]
[number of lines [MOD] (buffer-name) [pathname]]

15-70 CZ05-00

BUFFER STATUS

Example:

This example illustrates usage of the buffer status direc-
tive. The file USE, which is in the working directory, com-
prises the following lines:

(1) AAA (current line)
(2) BBB
(3) CCC
(4) DDD

R USE

Read the contents of USE into the current buffer,
which is named 0.

1,$S*BBB*XXX*

I Search the first line through the last line in the
current buffer and change each occurrence of BBB to
XXX. After this directive is executed, the current
buffer will contains

(1) AAA
(2) XXX
(3) CCC
(4) DDD

3,4M2

Move lines 3 and 4 of the current buffer into auxil-
iary buffer 2. After this directive is executed, the
current buffer will contains

i

(1) AAA
(2) XXX

Auxiliary buffer 2 will contain:

(1) CCC
(2) DDD

Request the status of each buffer currently in use,
The following message will be issued:

2 »>MOD (0) USE
2 (2)

15-71 CZ05-00

CHANGE BUFFER

CHANGE BUFFER fBxl '

Change a specified auxiliary buffer to the current buffer.
The previously designated current buffer becomes an auxiliary
buffer,,

/

After this directive is executed, lines can be written from
the new current buffer to a file.

»

- FORMAT!

Bx

ARGUMENT:

Buffer name. The name must be 1 to 6 ASCII characters.
If tiae name comprises more than a single character, the
name must be enclosed within parentheses; otherwise, the
parentheses are optional. The original current buffer
name is 0. This name can never be altered. An auxiliary
buffer name, once specified, cannot be altered during the
current Line Editor session.

\

Example:

B3

This directive designates auxiliary buffer 3 as the current
buffer. If desired, lines can now be written from this buffer
to a file.

15-72 CZ05-00

CHANGE ORIGIN OF TEXT
DURING EDIT MODE

CHANGE ORIGIN OF TEXT DURING EDIT MODE

Cause the Line Editor to read subsequent directives from a
specified auxiliary buffer. IB can be specified within an
expression? pathname? text to be typed (i.e., in the Type
directive), or as a directivec When the Line Editor encounters
this sequence in an expression, pathname, or text? the entire
escape sequence is removed from the input stream and replaced with
the literal contents of the first line of the specified buffer; if
!B is a directive, the input stream is replaced with the entire
literal contents of the specified buffer* If another IB escape
sequence is encountered while accepting input from buffer x p the
newly encountered escape sequence will also be replaced by the
contents of its named buffer=

The buffer to which the input stream is redirected may contain
Line Editor requests, literal text, or both» If the Line Editor
is executing a request obtained from an auxiliary buffer and an
error occurs, the usual error comment is suppressed and the
remaining contents of that buffer are skipped., Control returns to
the statement immediately following the IB escape sequence that
called the auxiliary bufferc For example, if one thinks of the
escape sequence SB(X) as a subroutine call statement, the failure
to match a regular expression specified by some request in buffer
x may be thought of as a return statemente Once the last commands
in the auxiliary buffer have been processed, control returns to
the statement immediately following the !B escape sequence that
called the auxiliary buffer,,

The buffer name may be in the format (ARGn), where n is a
number from 1 to 9 that refers to the nth argument that followed
the -=ARG argument of the ED commando The escape sequence is
replaced with the first (or only) line of the buffer (ARGn)
created during initialization of the Line Editor.

FORMAT:

!Bx

ARGUMENT:

Name of the buffer that contains subsequent Line Editor
text. The buffer name must be 1 through 6 ASCII
characters. If the buffer name comprises more than a
single character, the name must be enclosed within
parenthesesi otherwise, the parentheses are optional.

15-73 CZ05-00

CHANGE THE ORIGIN OP TEXT DURING EDIT MODE

Example 1: !B as a directive

IB(TEST)

In this example, the contents of the current buffer and the
auxiliary buffer named TEST are:

Current buffer:

(1) A
(2) B -
(3) A
(4) D
(5) E

Auxiliary buffer:

1,$S/A/X/

This Substitute directive requests that in the current buffer
all occurrences of A be replaced with X. After the Substitute
directive is executed, the current buffer will contain:

(1) X
(2) B-
(3) X
(4) D
(5) E

The auxiliary buffer named TEST will contain:

1,$S/A/X/

Example 2: !B Within an Expression

2S/AAA/1B2/

This Substitute directive requests that in the second line of
the curient buffer, each occurrence of AAA should be replaced
with the; first line of auxiliary buffer 2.

The contents of the current buffer and auxiliary buffer 2 are:

Current buffer:

(1) AAABBB
(2) CCCAAA
(3) XXXYYY

15-74 CZ05-00

CHANGE THE ORIGIN OF TEXT DURING EDIT MODE

Auxiliary buffer 2:

ODD
EEE

After the Substitute directive is executed, the current buffer
containsj

f- *
1 (1) AAABBB

(2) CCCDDD
(3) XXXYYY

»

Example 3% !B Within Text to be Typed

T/IB2/

This Type directive (which is described later in this section)
requests that the first line of auxiliary buffer B2 be dis-
played on the user-out file.

Example 4: Buffer Name (ARGn)

The ED command includes the argument -ARC ABC "MY NAME" XYZ

S/DEF/1B(ARG3)/

This Substitute directive searches the current line and
replaces each occurrence of DBF with XYZ (i.e., the third
argument following -ARG in the ED command).

15-75 CZ05-00

CHANGE ORIGIN OF TEXT
DURING INPUT MODE

CHANGE QRIGIN OF TEXT DURING INPUT MODE (IE)

Cause the Line Editor to accept subsequent text from a
specified auxiliary buffer. The escape sequence !B can appear
within text of an Input directive.

When the Line Editor encounters !B, the entire escape sequence
is removed firom the input stream and replaced with the literal
contents of the specified buffer. If another IB escape sequence
is encountered after accepting text from the specified buffer, the
newly encountered escape sequence will also be replaced with the
contents of the named buffer.

FORMAT:

[text]!Bx |~[text]!BJ ...

ARGUMENT:

Name of the buffer that contains subsequent Line Editor
text. The buffer name must be 1 through 6 ASCII
characters. If the buffer name comprises more than a
single character, the name must be enclosed within
parentheses; otherwise, the parentheses are optional.

Examplej

/D/I
IB(TEST)IF

In this example, the contents of the current buffer and the
auxiliary buffer named TEST are:

Auxiliary buffer: s—'

(1) X
(2) Y
(3) Z

Current buffer:

(1) A
(2) B
(3) C

(5) E

15-76 CZ05-00

CHANGE THE ORIGIN OP TEXT DURING INPUT MODE

This Insert directive inserts the contents of the auxiliary
buffer named TEST into the current buffer before the line that
contains D,

After the Insert directive is executed, the current buffer
will contain:

(D A . : • • - : • • • • • ' . - • • . • • . - - • ' . ;
(2) B . - - : • . : •
(3) C
(4) X

' • (5) Y : - • ; . . . • • • • . ; , . -,v:. ,- - •./,
(6) Z

- ." (?) D • • - : < • • - • • - • • • • • • • • - - • - • - • • -
(8) E

The auxiliary buf fe r named TEST will contain:

(1) X
(2) Y
(3) Z ,

15-77 CZ05-00

COPY

COPY m

Write into a specified auxiliary buffer a single line or
consecutive lines contained in the current buffer. The lines in
the current buffer are iiot deleted; i.e., the lines are in both
the current and the auxiliary buffers. Any lines previously in
the auxiliary buffer are destroyed during execution of the Copy
directive.

After the Copy directive is executed, the current line in the
current buffer is the last line moved to the auxiliary buffer.
There is no current line in the auxiliary buffer until that
auxiliary buffer is changed to the current buffer via a change
buffer directive.

;\adr2 Kx

Address of the first line to be written into the specified
auxiliary buffer.

Default: Current line.

adr2

Address of the last line to be written into the specified
auxiliary buffer.

Default: adrt .

NOTE

If both adri and adr2 are omitted, only the current
line is written into the specified auxiliary buffer.

Name of the auxiliary buffer into which the specified
line(s) will be written. The name must be 1 through 16
ASCII characters. If the name comprises more than a
single character, the name must be enclosed within paren-
theses; otherwisef the parentheses are optional.

15-78 CZ05-00

COPY

Example:

1,3K{52)

This Copy directive copies into auxiliary buffer 52 lines 1
through 3 in the current buffer. The contents of the current
buffer arej

(1) FIRST (current line)
(2) SECOND
(3) THIRD
(4) FOURTH

After the Copy directive is executed, the contents of the cur-
rent buffer are unchanged, but the current line is line number
4. Auxiliary buffer 52 will contain:

(1) FIRST '
(2) SECOND
(3) THIRD

There will be no current line in the auxiliary buffer.

15-79 CZ05-00

COPY APPEND

COPY-APPEND fm

Write a line or lines from the current buffer to an auxiliary
buffer without destroying the contents of the auxiliary buffer.
The lines copied from the current buffer are appended to the
contents of the auxiliary buffer. The lines written are also
retained in the current buffer.

After the Copy-Append directive is executed, the current line
in the current buffer is the the last line written to the
auxiliary buffer or the last line in the buffer. There is no
current line in the auxiliary buffer.

FORMATS

!Kx

ARGUMENTS:

Address of the first line to be written to the specified
auxiliary buffer.

Default: Current line.

adr.

Address of the last line to be written to the specified
auxiliary buffer.

Default: adr|.

NOTE

If both addresses are omitted, only the current
line is written to the auxiliary buffer.

Name of the auxiliary buffer into which the specified
line(s) will be written. The name must be from 1 to 16
ASCII charactersD If the name is more than one character,
it roust be enclosed within parentheses; otherwise, paren-
theses are optional.

15-80 CZ05-00

COPY-APPEND

Example;
i

1,31K(ABUF)

This directive appends lines 1 through 3 of the current buffer
to the contents of auxiliary buffer ABUF. Thus, if the cur-
rent buffer and ABUF contain the following lines prior to
executions

Current ABIIE

(1) AAA (current line) (1) MMM
(2) BBB (2) NNN
(3) CCC
(4) ODD

They will contain the following after executions

Current

(1) AAA (1) MMM
(2) BBB (2) NNN
(3) CCC (3) AAA

DDD (current line) (4) BBB
(5) CCC

15-81 CZ05-00

DESTROY

DESTROY f"Bl

Release a specified auxiliary buffer's file space. Any buffer
other than buffer 0 and the current buffer may be removed? if the
current buffer name is specified, the directive is ignored and an
error messaqe is issued.

FORMAT?
i

A«Bx -• . .

ARGUMENT;

Name of the auxiliary buffer to be destroyed. The name
must be from 1 to 6 ASCII characters. If the name com-
prises more than one character, it must be enclosed within
parentheses; otherwise, parentheses are optional.

Example;

*B(AX) ••

This Destroy directive removes buffer AX.

15-82 CZ05-00

MOVE

MOVE (Ml

Move a single line or consecutive lines from the current
buffer to a specified auxiliary buffer; the lines no longer exist
in the current buffer. Any lines already in the auxiliary buffer
are destroyed by the Move operation.

After the Move directive is executed, the current line in the
current buffer is the line after the last line moved to the auxil-
iary buffer or the last line in the buffer. There is no current
line in the auxiliary buffer.

FORMAT:
I- T

MX

ARGUMENTS:

adrt

Address of the first line to be moved from current buffer
to auxiliary buffer.

Default: Current line.

adr2

Address of the last line to -be moved from current buffer
to auxiliary buffer.

Defaults adrt ,

NOTE

If both adr^ and adr? are omitted, only the current
line is moved from the current buffer to the auxil-
iary buffer.

Name of the auxiliary buffer to which the specified
line(s) will be movedc The name must be 1 through 6 ASCII
characters. If the name comprises more than a single
character, the name must be enclosed within parentheses;
otherwise, the parentheses are optional.

15-83 CZ05-00

MOVE

Example:

1,3M5

This Move directive moves lines 1 through 3 from the current
buffer to the auxiliary buffer named 5. In this example, the
contents of the current buffer are:

(1) FIRST (current line)
(2) SECOND
(3) THIRD
(4) FOURTH

After the Move directive is executed, the current buffer will
contains

(1) FOURTH (current line)

Auxiliary buffer 5 will contain:

(1) FIRST
(2) SECOND
(3) THIRD

15-84 CZ05-00

MOVE-APPEND

MOVE-APPEND MM)

Move one or more lines of text from the current buffer to the
specified auxiliary buffer. The lines are appended to the
existing contents of the auxiliary buffer? the existing contents
of the auxiliary buffer are not destroyed,, If the auxiliary
buffer contains no text, the lines are placed in the auxiliary
buffer starting at line 1. The lines moved are deleted from the
current buffer.

i

FORMAT?
r T

IMx

ARGUMENTS:

Address of the first line to be moved from the current
buffer to the auxiliary buffer.

Default: Current line.

adr2

Address of the last line to be moved from the current
buffer to the auxiliary buffer.

Defaults
D

NOTE

If both adri and adri are omitted, only the current
line is moved from the current buffer to the auxil-
iary buffer.

Name of the auxiliary buffer to which the specified
line(s) will be moved. The name must be 1 through 6 ASCII
characters. A name of more than one character must be
enclosed in parentheses; otherwise, parentheses are
optional.

15-85 CZ05-00

MOVE-APPEND

Example:

1,31M(SOOZ) • ,

This directive appends lines 1 through 3 to the contents of
auxiliary buffer SOOZ. The contents of the buffers are as
follows prior to the move:

Current SOQZ

(1) FIRST (current line) (1) AAAAA
(2) SECOND (2) BBBBB
(3) THIRD
(4) FOURTH

The buffers will contain the following after the move:

Current SQQZ

(1) FOURTH (current line) (1) AAAAA
(2) BBBBB
(3) FIRST - -
(4) SECOND
(5) THIRD

15-86 CZ05-00

LINE EDITOR DEBUGGING DIRECTIVES

The functions of Line Editor debugging directives are:

• Print contents of specified line(s) on the terminal
(Hexadecimal Dump directive)

• Display, on the user-out file, the last specified regular
expression (ZREGEXP directive)

• Display each directive line before it is executed (ZTRACE
directive).

15-87 CZ05-00

HEXADECEVtAL DUMP

HEXADECIMAL DUMP fZDUMP)

Print the contents of specified line(s) on the terminal in
both hexadecimal and ASCII formats. The output format consists of
the line number, the length (number of characters) expressed in
hexadecimal, eight words in hexadecimal format, and eight words in
ASCII format.

The display of each buffer line is separated from following
displays by a blank line. If a buffer line is too long to be dis-
played on a single line, it is continued on the next line, with no
blank line separation.

After this directive is executed, the current line is the last
(or only) line printed.

FORMAT:

adr, H? \adri"l ZDUMP

ARGUMENTS:

adrt

Address of the first buffer line to be dumped.

Default: Current line,

adr 2

Address of the last buffer line to be dumped.

Default: adtf .

NOTE

If both addresses are omitted, only the current
lino will be dumped.

Example:

The contents of lines 1 and 2 of the current buffer are:

(1) START EDIT
(2) VDEF

1,2ZDUMP

15-88 CZ05-00

HEXADECIMAL DUMP

This Hexadecimal Dump directive produces the following output
at the terminal:

0001 OOOA 5354 4152 5420 4544 4954 START EDIT

0002 0012 5644 4546 205A 4656 4552 2C58 2733 3033 VDEF ZFVER,X«303
3127 1s

Thus, 0001 indicates line number 1; OOOA indicates a length of
10 characters (Aw); followed by the hexadecimal equivalent of
START EDIT* A blank line is followed by the dump of line 2e
with a length of 18 characters (12te) • Because nine words are
required to fully dump the line, the output continues on the
next line of the terminal, with no blank line intervening.

15-89 CZ05-00

ZREGEXP

(r '

ZREGEXP

Display the last specified expression on the user-out file.
The current line is not changed.

* • ,
FORMAT:

ZREGEXP

Example':

S/AHC/DEF/
ZREGEXP - , --

This ZR12GEXP directive displays the last specified expression,
i.e., /ABC/.

15-90 CZ05-00

ZTRACE

Display each directive line on the user-out file before it is
executed.

FORMAT?

ZTRACE ION
OFFj

ARGUMENTS:

ON Each directive line is displayed before it is executed.

OFF Subsequent lines are not displayed before they are
executed.

Example:

This example illustrates a program that includes an ED command
to load the Line Editor and a ZTRACE ON directive. Following
is a printout of the Line Editor output.

Program including ED command and ZTRACE ON directive:

1 RL DIRECTORY
2 FO DIRECTORY
3 WS &1 "LS -BF"
4 FO
5 &A i
6 ED
7 ZTRACE ON
8 Bl
9 1 •
10 R DIRECTORY
11 GD/~ &/
12 GD/A» ENTRY NAME TYPE$/
13 GD/ D$/
14 l,$S/~. //
15 1,$S/"DIRECTORY: . //
16 $N
17 :C ?/"Y?M(2)
18 sD "*/~YS/~.*$/& >C!B2>&/?-H;>D
19 ?+l20 *r
21 BO
22 !B1
23 W DIRECTORY
24 Q

CZ05-00

ZTRACE

TYPE$/

//

Line Editor output:

EDIT-0200-09/11/0948
EDIT Bl
EDIT I
INPUT R DIRECTORY
INPUT GD/" $/
INPUT GD/". ENTRY NAME
INPUT GD/ D$/
INPUT 1,$S/"'. //
INPUT 1,$S/"DIRECTORY: ,
INPUT $N
INPUT :C ?/""/;M(2)
INPUT :D "*/""/S/".*$/&!C!B2>&/?+l;>D
INPUT
INPUT */
EDIT
EDIT
EDIT

.(**EDIT**
EDIT
EDIT
EDIT
EDIT
EDIT
EDIT
EDIT
EDIT
EDIT
EDIT
EDIT
EDIT
EDIT
EDIT
EDIT
EDIT

• **EDIT**
E,DIT
EDIT
EDIT

- **EDIT**
EDIT
E;DIT

""/DIP
BO
1B1
R DIRECTORY
GD/" $/
GD/". ENTRY NAME TYPE$/
GD/ D$/
lr$S/"; //
lr$S/"DIRECTORY: . // ,
$N
:C ?/"V;M(2)
:D "*/""/S/".*$/&!B2>&/?-H;>D
:D "*/"
:D "*/"

"*/""/S/".*$/&!B2>&/?+!|>D

k*/""/S/".*$/&lB2>&/?+l;>D
k*/~YS/".*$/&iB2>&/?+l?>D

W DIRECTORY
Q

15-92 CZ05-00

LINE EDITOR PROGRAMMING DIRECTIVES

Line Editor programming directives cause conditional execution
of subsequent directives, change the location of subsequent Line
Editor input, and display a line of text on the user-out file«
Programming directives can be in the directive input file
(specified in the -IN path argument of the ED command) or an
auxiliary buffer, or they can be entered through a terminal*,

Each conditional directive includes one or more other Line
Editor directives. The directives must be on a single line. If
the specified condition exists, the subsequent embedded
directive(s) are executed*, The following conditions can be
tested:

« Does specified line exist (Address Prefix directive)

• Does current buffer contain data (If Empty and If Data
directives)

• Is current line a specified line (If Line and If Not Line
directives)

• Is current line within specified lines (If Range and If Not
Range directives)

• Is specified expression within specified lines (Search and
Search Not directives)„

Programming directives also have the following capabilities;

• Change location from which Line Editor accepts subsequent
directives (Go To directive)

• Define location that can be the endpoint of a Go To direc-
tive (Label directive)

c Display a line of text on the user-out file (Type
directive).

NOTE

If a directive format comprises multiple directives,
the directives may be separated by spaces for
readability.

15-93 CZ05-00

ADDRESS PREFIX

ADDRESS PREFIX (?)

Execute! the directives contained in the Address Prefix Line
if the specified line exists in the current buffer; otherwise, do
not executes them.

FORMAT;

?adri; I directive [directive] ...

H
ARGUMENTS:

adr

Address of the line for which the Line Editor will search.

NOTE
4

If adr is immediately followed by a semicolon, adr
becomes the current line. If adr is immediately
followed by a commar the current line is not changed.

directive

Any Line Editor directive(s); they are executed only if
the specified line is found.

Example Is

?8?P

This Address Prefix directive specifies that if there is a
line 8 in the current buffer, print the contents of that line;
that line will become the current line.

Example 2s s

In this? example, the contents of the current buffer are:

(1] DEPGHI
(2} ABCXYZ
(3) ABCGGG (current line)

7/ABC/;S/ABC/DEF/

This Address Prefix directive designates that if there is a
line that contains ABC, make that line the current line, and
in that line replace each occurrence of ABC with DBF.

15-94 CZ05-00

ADDRESS PREFIX

After this directive is executed, the current buffer will
contains

(1) DEFGHI
(2) DEFXYZ (current line)
(3) ABCGGG

15-95 CZ05-00

j

GO TO

t -
GO TO (»

Change the location from which the Line Editor accepts
subsequent directives.

If the Go To directive is encountered in the buffer that is
currently being executed, the Line Editor accepts subsequent
directives from a specified location in that buffer. The location
must have been previously defined in that buffer by a Label
directive.

If the Go To directive is entered interactively, only direc-
tives in the current directive line are used.

FORMAT:

>label

ARGUMENT?

label

Location to which control is transferred; the Line Editor
accepts subsequent directives from this location.

If the label comprises multiple characters, they must be
enclosed within parentheses; otherwise, the parentheses
are optional.

Example 1:

In this example, the contents of the current buffer are:

(1) EAST ROCKAWAY, NY
(2) LONG BEACH, NY
(3) BRIGHTON, MASS
(4) ANDOVER? MASS
(5) HEWLETT, NY

Buffer 2 contains the following directives:

:(REPEAT)1,$P

Assign label REPEAT to Print directive line.

1,$S/MASS $/MASSACHUSETTS/P

Substitute each occurrence of MASS at the end of a
line with MASSACHUSETTS and print the contents of the
last line in the buffer (i.e., line number 5).

15-96 CZ05-00

GO TO

NOTE

When the Line Editor searches the buffer the second
time and does not find MASS at the end of a line,
control returns to the previous buffer or to the
terminal. •*

1,$S/NY/NEW YORK/XREPEAT)

Substitute each occurrence of NY with NEW YORK and
print the contents of all li-nes (iee., lines 1 through
5).

Example 2:

:A?/ABC/?S/ABC/DEF/P>A

If this directive is entered interactively, the following
actions take place0 The information to the right of each
action indicates how the action is requested in the directive
line.

Assign label A to directive line. :A

If ABC exists, take the subsequent
actions, ?/ABC/

Change the current line to the
location of ABC. j preceding the

substitute directive

Replace each occurrence of ABC
with DBF. S/ABC/DEF/

Print the current line. P

Go to line A (lego-? reexecute the
same directive line) >A

After all lines containing ABC have been acted upon (i.e.,
each occurrence of ABC has been replaced with DBF and the
resulting lines printed), control returns to the next direc-
tive entered interactively.

15-97 CZ05-00

IF DATA

IF DATA ftl

Execute the directives contained on the If Data directive line
if the current buffer contains data; otherwise, do not execute
them.

FORMAT:

tdirective [directive] ...

ARGUMENTS

directive

Any Line Editor directive(s); they are executed only if
the current buffer contains data.

15-98 CZ05-00

IF EMPTY

IF EMPTY

Execute the directives contained in the If Empty directive
line if the current buffer is empty; otherwise, do not execute
theme

FORMAT:

*#directive [directive] ...

ARGUMENT:

directive

Any Line Editor directive(s)i they are executed only if
the current buffer does not contain datae

15-99 CZ05-00

IF LINE

IF LINE (adr»)

Execute th<» directives contained on the If Line Directive line
if the current line is the specified line; otherwise, do not
execute them.

FORMAT?

adrtdiirective [directive] ...

ARGUMENTS:

adr > ...
Address of the line being checked to see if it is the cur-
rent line.

directive

__ Any Line Editor directive(s); they are executed only if
the specified line is the current line.

15-100 CZ05-00

IF NOT LINE

IF NOT LINE

Execute the directives on the If Not Line directive line if
the current line is not the specified line; otherwise, do not
execute them,,

t

FORMAT:

adr"fdireetive [directive] .«.

ARGUMENTS:
<9

adr

Address of the line being checked to see if it is the cur-
rent line.

directive

Line Editor directive(s)? they are executed only if
the specified line is not the current line.

15-101 , CZO.5-00

IF RANGE

IF RANGE fadrsf)

Execute the directives on the If Range directive line if the
current line is within specified lines; otherwise, do not execute
them.

FORMAT:

adrt l;\ adr2 tdirective [directive] ...

ARGUMENTS:

adrt :

Address of the first line to be searched.

adr2 •
i

Address of the last line to be searched,

directive

Any Line Editor directive(s); they are executed only if
the current line is within addresses adrj through adr2.
The current line is unchanged.

15-102 CZ05-00

IF NOT RANGE

IF NOT RANGE

Execute the directives on the If Not Range directive line if
the current line is not within specified lines; otherwise? do not
execute them.

FORMAT:

adrt it\ adr2 *#direetive [directive] ...

ARGUMENTS s

adrf

Address of the first line to be searched.

Address of the last line to be searched,,

directive

Any Line Editor direetive(s); they are executed only if
the current line is not within addresses adrj through
adr2 o The current line is unchanged.

Examples

l,l(T*S/yes/no/

This If Not Range directive specifies that if the current line
is not within lines 1 through 10, in the current line substi=
tute each occurrence of "yes" with "no".

15-103 CZ05-00

SEARCH

SEARCH f*)

Execute the directives on the Search directive line if a
specified expression is within specified lines; otherwise, do not
execute them.

FORMAT:

Cj |;ladr2*/regexp/directive [directive] ...

ARGUMENTS:

adr1

Address of the first line to be searched for the regular
expression.

Default: Current line.

adrz

Address of the last line to be searched for the regular
expression.

Default: adrt .

NOTE

If both adrt and adr2 are omitted, only the current
line is. searched.

regexp

String of characters for which the Line Editor is
searching.

directive

Any Line Editor directive(s); they are executed only if
the specified expression is within the specified
addresses.

15-104 CZ05-00

SEARCH NOT

SEARCH NOT ("*)

Execute the directives on the Search Not directive line if a
specified expression is not within specified lines? otherwise, do
not execute them.' The current line is unchanged.

FORMAT:

adrj f;)adrz "*/regexp/directive [directive] ...
(11

ARGUMENTS :

Address of the first line to be searched for the regular
expression.

Default: Current line.

Address of the last line to be searched for the regular
expression.

Default:

NOTE

If both adri and adrz ar^ omitted, the directives
are executed only if the regular expression is not
in the current line.

regexp

String of characters for which the Line Editor is
searching.

directive

Any Line Editor directive(s)j they are executed only if
the specified expression is not within the specified
addresses. The current line is unchanged.

15-105 CZ05-00

LABEL

LABEL f;)

Define ai location to which the Line Editor can be directed ,
(via a Go To directive) for subsequent directives. If a Go To
directive is; entered interactively, only the current directive
line is searched for the label. The Label directive must be
specified at the beginning of a line.

FORMAT:

:labeldirective [directive] ...

ARGUMENTSi

label

Location that can be the argument value of a Go To state-
ment (i.e., a location to which control can be transfer-
red) . If multiple characters constitute the label, they
must be enclosed within parentheses; otherwise, parenthe-
ses are optional.

directive

Any Line Editor directive(s); they are executed when
control passes to the specified label.

15-106 CZ05-00

TYPE

TYPE (T)
•%

Display a line of text on the user-out file. If the optional
exclamation point (!) is specified in the directive line, the next
input or output will appear immediately after the printout? on the
same line? otherwise, the next printouts are on subsequent lines,

FORMAT:

[!]T/text/

ARGUMENTS:

(Delimiter) Can be any nonblank character, but the same
character must be used in each place where a delimiter is
required.

text

Text to be displayed. Default: One blank line.

Example 1:
'*r "

- T/IDENTIFICATION NUMBER/

This Type directive prints IDENTIFICATION NUMBER. Since the
optional exclamation point was not specified, subsequent input
or output will appear on subsequent lines.

Example 2:

IT/IDENTIFICATION NUMBER !B2/

This Type directive prints IDENTIFICATION NUMBER and the con-
tents of auxiliary buffer B2. If B2 contains FOR THIS YEAR,
the printout will be: IDENTIFICATION NUMBER FOR THIS YEAR.
Since the directive name T was immediately preceded by an
exclamation point, the next input or output will appear imme-
diately after the printout, on the same line.

15-107 CZ05-00

PROGRAMMING CONSIDERATIONS

1. Tabbing causes embedded tab characters to be replaced with,
the appropriate number of spaces so that printed output on
a printer or terminal has "tab stops" at character posi-
tion 11 and at every subsequent 10 character positions.
Tab characters can be entered into Assembly language
source lines by pressing CTRL I on the terminal device
while entering insert and/or substitute directive(s).
CTRL I is a nonprinting tab character that has a hexadeci-
mal value of 09. Tabbing is not apparent until a printout
occurs. • . «? •-

2. The Line Editor uses a minimum of two temporary work files
in the working directory. These files are created by the
Line Editor when the Line Editor is invoked? they exist
only during the current execution of the Line Editor. A
minimum of 16 diskette or 8 cartridge sectors must be
available in the working directory for temporary work
files.. Additional temporary files are created for each
auxiliary buffer used? the number of temporary files is
limited by the space available in the working directory.

3. If you specify a buffer name comprising more than a single
chara.cter and omit the parentheses, only the first charac-
ter is considered the buffer name; subsequent characters
are treated as directives.

4. If a file manager error (190223, lack of space) or a phys-
ical I/O error (190107) is encountered/ use the Quit
directive to exit from the Line Editor, and restart after
the problem has been corrected. Attempting to recover by
other means (such as the escape sequences) may cause
unspecified results. If an error occurs while processing
a work file (this situation is indicated by an error
message that is not followed by a file name), the Line
Editor may terminate processing and a fatal error message
is issued.

5. An error occurs if the maximum number of lines that the
Line Editor will accept in a program has been reached.
Control is returned to command level. * . ,

15-108 CZ05-00

Section 16
UNKER

OVERVIEW

The Linker combines object units created by the language pro-
cessors (compilers and the Assembler) into a bound unit that you
can then execute. During a single execution of the Linker? a
single bound unit is createdo A bound unit contains a root or a
root with one or more overlays. The root and overlays cannot
exceed the physical memory available in your system's
configuration.

The Linker functions ares

• CREATE A BOUND UNIT -- A bound unit is the output file
that results from Linker execution. The bound unit is an
executable program,,

• BUILD A SYMBOL TABLE — During the linking process, the
Linker builds an internal symbol table used for resolving
external references. You can define a symbol within an
object unit or by using Linker directives defined later in
this section.

16-1 CZ05-00

• PRODUCE A LISTING ~ The linker listing has two parts, a
dynamic part and a static part.

- The dynamic part is generated continuously and contains
information about each object unit linked, the direc-
tives used, and a summary.

- The static part is produced in response to the MAP or
i MAPU directive and is a picture of the state of the link

when the MAP(U) directive is processed. It lists the
external definitions currently in the symbol table and
the undefined external references, if any exist.

During the link process, summary information about the
bound unit is automatically output to a list file. The
format of this information is:

ROOT T12STP2
* HIGHEST OVERLAY NUMBER: 2

LAF
******* k**

* * CMMN DATA BASE: 000000 START: 000000 .P.. HIGH: 000011
ROOT TBSTP2 BASE: 000000 START: 000000 . .U. HIGH: 00003P

t OVLY OVLNO * 0001 BASE: 00003P START: 00003F HIGH: 000060

KEY: S"SHAREABLE; F-FLOATING; I-CONTAINS AN IMA; U-CONTAINED AN UNDEFINED
REFERENCE; ->-IN-LINE DIRECTIVE; [...]-EMBEDDED DIRECTIVE

SIZE OF ROOT AND FIXED OVERLAYS: 000060
LAST BO RECORD NUMBER: 4 *
******* i** 2
LINK DONE 1' , '
********** , "'

RESOLVE EXTERNAL REFERENCES — The Linker resolves
addressses or values of external symbol references in
object units being linked. To do this, the Linker uses
external definitions found in the object units or declared
by th« LDEF or VDEF directives. (LDEF and VDEF are
described fully later.) When a bound unit is linked, the
unresolved external references are listed at the end of
the link mapc If unresolved external references exist at
the end of the list, an error message is displayed on the
error-out file, usually the terminal.

* Each control interval (logical record on the bound unit file)
has a size of 256 bytes (128 words).

**This line only appears if common has been gathered into one
contiguous area. The -R ECL parameter was specified.

*This line repeated for each overlay.

16-2 CZ05-00

LINKER DIRECTIVE

The Linker directive set may be grouped into nine functional
categories described in the following paragraphs.

Specifying Object Unitfs) to be Linked

LINK, LINKN, LINKnn, and LINKO designate that one or more
specified object units are to be linked. Object units specified
in LINK directives are not linked immediately; their names are
put into a link request list. Once a directive has been entered
which requires that all preceding link requests be honored,
linking begins* Specified object units in the primary input
directory are linked before specified object units in the
secondary input directory? within each directory? the object
units are linked in the order in which they were requested.

LINKN causes the Linker to link object units already named in
the link request list, and then to link object units specified in
the LINKN directive in the order in which they were requested.

LINKO performs in the same manner as LINKN, except that all
embedded directives in the named object unit(s) are ignored by
the Linker* LINKnn is a special form of LINKN used to perform
selective linking*,

fipecif y},ng Location(s) of Object Unitfs) to be Linked

Object units to be linked must be in at least one directory.
The Linker searches the primary directory first, then searches
other directories if they have been specified by directives
described below* When the Linker is loaded into memory, the
primary directory is the working directory. The directives used
to specify location(s) of object unit(s) to be linked are listed
below„ l

IN is used to designate a directory other than the working
directory as the primary directory.

LIB is used to designate a directory as the second directory
to be searched,,

LIB2 is used to designate the third directory to be searched.

LIB3 is used to designate the fourth directory to be
searched.

LIB4 is used to designate the fifth directory to be searchedc

LSR is used to request a list of the directories in the order
in which they are to be searched.

16-3 CZOS-00

Creating a Root and Optional Qverlay(s)
u> f

START is used to specify the relative address at which the
root or overlay will begin executing when it is loaded into
memory by the Loader.

BASE is used to define relative addresses (within the bound
unit) £or subsequent object units to be linked. Note that when
the lowest address of a root or overlay has been established
(i.e., an object unit has been linked), it is invalid to define a
lower BASE address within the root or overlay.

OVLY is used to name the nonfloatable overlay that follows,
and designates the end of the preceding root or overlay.

FLOVLY is used to name the floatable overlay that follows,
and designates the end of the preceding root or overlay.

CC permits a COBOL program that used CALL and CANCEL state-
ments to call overlays by their names.

1ST is used to identify the beginning of initialization code
in the root.

SHARE is used to designate that the bound unit is sharable
within the task group.

QUIT is used to designate that the last Linker directive has
been entered. Execution of the Linker terminates after the bound
unit has been created,, „, - l

FLOATB6 is used to suppress certain error checking on local
common references when the -R Linker argument has not been speci-
fied. Local common references are relocated as if B6 pointed to
the base of the containing overlay.

STACK is used to specify the size of the stack.area.

GSHARE is used to specify that the bound unit is globally
sharable.

SEG is used to specify that the subsequent object unit is to
be linked into one or two physical segments in memory.

SYS is used to designate that the bound unit can be loaded
into the system area as part of the system.

LINK, L3NKN, and LINKO are used to specify those object units
to be linked. The order in which specified object units are
linked, and when they are linked, is determined by the link
directive used.

16-4 CZ05-00

LOADING THE LINKER

The command LINKER is used to load the Linker.

After the Linker is loaded, a message is sent to the
error-out file indicating the version. The message format is:

LINKER-nnnn-mm/dd/hhmm

where nnnn is a release identification, mm/dd is the month and
day the Linker component was linked, and hhmm the time (hour,
minutes) at which that link took place.

FORMAT:

LINKER bound-unit-path [ctl_argl

ARGUMENTS s

bound-unit-path

Pathname of the bound unit file. The pathname can be
simple,, relative, or absolute and must be preceded by
a space* If the specified file already exists, the
existing information in the file is deleted and
replaced with the new bound unit. The bound unit

' pathname must be specified. It may be up to 57
characters in length. The format of the bound unit
file is relative,

ctl_arg

Control arguments? none or any number of the
following control arguments can be entered, in any
order:

Pathname of the device disk, card reader? operator's
terminal, or another terminal that will read Linker
directives.

Default: Device specified in the in_path argument
of the Enter Group Request command.

When this argument is specified, the prompt character
will not appearc

16-7 CZ05-00

PURGE Is used to remove from the symbol table unprotected
symbols that define a specified address or an address within a _̂>
specified range, and/or object unit names equated to a specified
address or an address within a specified range.

'/PURGE is used to remove a specified value definition from
the symbol table.

Reloading After System Failure

RR indicates that a sharable bound unit can be reloaded after
a system failure into locations other than those it occupied at
checkpoint.

Controlling the Directive File

The user specifies by the -IN argument of the LINKER command
the user-in file, from which the Linker reads directives.

1̂
An INCLUDE directive causes the Linker to accept directives

from a file specified with the directive rather than from , s ^
user-in.

When the Linker encounters a RETURN directive in the file
specified with INCLUDE, the Linker returns to user-in.

Terminating the Linker

QUIT is used to terminate the Linker. If a bound unit is
being creabed, execution of the Linker terminates after the bound
unit has been createdc If no bound unit is being created, QUIT
terminates execution of the Linker.

Subsections that follow include full information on:

Loading the Linker — Describes the Linker command used to
call the Linker and initiate Linker processing.

Entering Linker Directives — Describes the format line used
to enter directives.

Linker Directive Set -- Provides an alphabetic listing of the
Linker directives. Detailed descriptions of each directive and
examples of use are provided.

Linker Procedures •— Describes frequently used Linker
procedures.

16-6 CZ05-00

Producing Link Map(s)

LDEF is used to assign a relative location to an external
symbol. When a symbol is defined, its definition is put into the
Linker symbol table so that it can be used to resolve references
to the symbol during linking.

VDEF is used to assign a value to an external symbol. When a
symbol is defined, its definition is put into the linker symbol
table so that it can be used during linking to resolve external
references.

MAP is used to create a map that lists both defined and
undefined symbols.

MAPU is used to create a map that lists the undefined symbols
only.

-V ECL option will automatically list symbols as they are
defined.

Defining External Symbols

A symbol can be defined as a relative location or value by
specifying the LDEF or VDEF directive, respectivelyc The
symbol's definition is then put into the symbol table by the
Linker.

EDEF permits definitions in the Linker symbol table to be
made part of the bound unit so that they are available to the
Loader at execution timec

OVERLAYTABLE is used to put a value definition containing the
name of each overlay and its overlay number in the bound unit
symbol table.

COMM is used to define a labeled common block.

VAL is used to specify a value definition at LINK time. This
value is equivalent to the difference between two external loca-
tion definitions.,

Protecting pr Purging SymfooJ, (.g).

CPROT and CPURGE are used to protect and remove symbols asso-
ciated with labeled common blocks«

PROT and PURGE are used to protect and remove symbols and
object unit names from the symbol table* PROT prevents certain
symbols and/or object unit names from being removed from the
symbol table. Symbols are protected if they identify a specified
address or an address within a specified range? object unit names
are protected if they are equated to a specified address or an
address within a specified range.

16-5 CZ05-QO

-PT

If the -IN argument is not specified, -PT can be
f specified to produce a prompt character on the user

terminal. A prompt character is issued only if -PT
is specified.

-GOUT)list-path-name
-COUTA | • • * < - . ;

Name of the list file. The list file can be sent to
& disk, another terminal, or a printer. The list-
path-name is associated with this list file. If
-COOT is not specified, the list-path-name has a
default value of bound-unit-name.M in the working
directory. If -COUTA is specified, the listing is
appended to the specified file.

Error messages are written to the error-out file and
the list file. Linker error mesages are described in
the System Messages manual. a;

!

•»•"'
-HJ"

* ., .

nn designates the maximum number of 1024-word (IK)
; blocks of memory available for the Linker symbol

table; nn must be from 1 to 64. At least 1024 words
must be available.

"> -1* ,

Default: 2

-W • '

Save the Linker work files.

Default: Linker work files are automatically
released by the Linker upon Linker

} termination. -

5 Create a bound unit where all data areas defined as
1 common are separated from all other code. Required

for sharable bound units containing common data
' areas.

-VERBOSE)

J
Write externally defined symbols on the list file as
they are defined. Eliminates the need for the MAP
directive.

16-8 CZ05-00

-NOMAP

Suppress the list file,

(-SYMBOL (
| -SYM j

Create a debugger information file. This file is
used for symbolic debugging. The name of the file is
buname.v. This option should only be used for
FORTRANA or COBOLA programs.

Example:

LINKER MYPROG -IN MYDISK>CNL -COUT 1LPTOO -SIZE 6

This LINKER command loads the Linker and specifies the
followings

1. Bound unit will be a relative file named MYPROG in the
working directory*

2. Linker directives will be entered through disk file
MYDISK>CNLc

3. List file goes to a line printer (configured as LPTOO),
rather than to a variable sequential file named MYPROG.M
in the working directory„

4. The symbol table will use a maximum of 6K words of
memoryc

NOTE

LPTOO must have been previously defined in the
DEVICE configuration directive at system
generation time*

ENTERING LINKER

Linker directives are entered through the directive input
device. Several directives can also be embedded in Assembly
language CTRL statements. They are: LINK, LINKN, LINKO, SHARE,
EDEF, SYS, COMMr LSR, and VAL.

Linker directives consist of a directive name or a directive
name followed by one or more arguments. Each directive name may
be preceded by zero or more blank spaces. If one or more argu-
ments are to be specified in a Linker directive, the directive
name must be immediately followed by one or more spaces.

Multiple directives can be entered on a line by specifying a
semicolon (?) after each directive except the last on the line.

16-9 CZ05-00

The last directive on a line can be followed by a comment; to
include a comment, specify a space and a slash (/) after the last
directive and then enter the comment.

FORMAT:

directive [^argument,] [Aargument2] [A/comment]

If the directive input device is the operator's terminal or
another terminal, press RETURN at the end of each line (i.e., at
the end of the comment, or at the end of the last directive if
there* is no comment). There is no continuation between lines;
the values associated with a single directive cannot be continued
on a second line. ,,.

If an error occurs when entering a directive, an error
messcige is written to the error-out file. Linker error messages
are described in the gystem Messages manual* Determine what
caused the error, and reenter the directive correctly. If
multiple directives are entered on a line and an error occurs,
the error does not affect the execution of previously designated
directives. The directive that caused the error and subsequent
directives on that line are not executed.

LINKER DIRECTIVES SET

Linker directives are described in alphabetic order on the
following pages. Examples are provided to illustrate directive
usage. ^ . , .

16-10 CZ05-00

BASE

BASE

Defines the relative link address within the bound unit for
subsequent object units to be linked. At load time, all
addresses are relative to the beginning of available memory
(relative 0) in the memory pool of the task group. When a task
group is created, you specify the memory pool into which its
bound units are to be loaded.

Unless BASE directives specify otherwise, the root will be
linked, by default, at relative 0, and subsequent object units
are linked at successive relative addresses. A BASE directive
can be used at any point during linking to change the relative
locations of the root, overlays, or individual object units. A
floatable overlay always begins at relative Of therefore, in a
floatable overlay, BASE can be specified only .ajLtej: the first
LINK, LINKN, or LINKO directive* A BASE directive can specify a
previously used or defined location, or an address relative to
the beginning of the available memory,,

If unprotected symbols define locations that are equal to or
greater than the location designated in the BASE directive, those
symbols are removed from the symbol table.

The BASE directive cannot be embedded in Assembly language
control statements.

FORMAT?

BASE
-object-unit-name
xdef |7±\X8offset l~|§ LH J
*ODD
*EVEN
*Xioffsetl

ARGUMENTS:

$

Next location after the highest address of the linked
root or previously linked nonfloatable overlay.

16-11 CZ05-00

BASE

Highest address+1 ever used in the linked root or any
previously linked nonfloatable overlay.

r ~> *'
X1 address1 " * »' , ,,

A one- to five-character hexadecimal address enclosed in
1 single quotation marks and preceded by X. The specified

address is relative to the beginning of the root
(relative 0).

=object-unit-name -», *
1 Specified object unit's base address; the subsequent
1 root, overlay,? or object unit will be linked at the same

relative address as the specified object unit; which.must
have already been linked. Furthermore, the object unit
name must still exist in the symbol table (i.e., it has
not been purged).

xdef [|±J X«offset1 1

Address of any previously defined (non-common) external
symbol. If an offset is specified, it must be a hexadec-
imal integer with an absolute value less than 8000 (32768
decimal) .

The current address.
f-

*ODD

The current address, if it is odd; if it is even, base
address is converted to current address+1.

*EVEN

The current address, if it is even; if it is odd, base
address is converted to current address+1.

16-12 CZ05-00

BASE

*X'offset1

The next location whose rightmost hexadecimal characters
equal the offset (where the offset is a hexadecimal
integer of four or fewer characters).

Default: $ with the following exceptions:

Root - 0
Floatable overlay - 0

Example:

LINKER TEXT -COUT ILPTOO Load Linker.

START TEXTEN -PT

LINKER-300-07/08/1519

L?

1ST INIT

L?
LINK OBJ1.0BJ2

L?
MAP

Specify address where execution
begins when root is loaded.

Linker identification message.

Linker prompt.

Define INIT as the beginning of
initialization code.

Request that OBJl.O and OBJ2.0 be
linked.

Cause OBJLO and OBJ2.0 to be
linked? and produce a link map.

OVLY ABLE Designate end of the root, and that
a nonfloatable overlay named ABLE
immediately follows. The Linker
assigns the number 00 to this
overlay.

16-13 CZ05-00

BASE

L?
BASE =OBJ2

L?
LINK OBJ5

Subsequent object unit(s) consti-
tuting overlay ABLE will be linked
starting at the base address of the
object unit OBJ2.0; this address
can be determined from the map.
Unprotected symbols that define
locations equal to or greater than
the address of OBJ2 are removed
from the symbol table.

Request that OBJ5.0 be linked.

L?
MAP

L?
LINK OBJ6

Request the status of symbol table,

Request that OBJ6.0 be linked.

L?
OVLY FOX

L?
BASE $

L?
LINK OBJA,OBJB

L?
MAP

Designate the end of the above
overlay, and specify that a non-
floatable overlay named FOX immedi-
ately follows. The Linker assigns
the number 01 to this overlay.

Subsequent object unit(s) consti-
tuting the overlay named FOX will
be linked starting at one location
higher than the ending address of
OBJ6.0. This is the default BASE
address, so BASE $ need not be
specified.

Request that OBJA.O and OBJB.O be
linked.

Request the status of the symbol
table and cause OBJA.O and OBJB.O
link requests to be honored, i.e.,
linked.

16-14 CZ05-00

BASE

L?
OVLY ZEBRA

L? .
BASE X'11051

L?
LINK OBJC

L?
LINK OBJD

Designate end of above overlay 01
and name subsequent nonfloatable
overlay. The Linker assigns the
number 02 to this overlay.

Designate that subsequent object
units constituting overlay ZEBRA
will be linked starting at relative
location 1105.

Object unit OBJC.O will be linked
starting at relative location 1105.

Request that OBJDcO be linked.

L?
MAP

FLOVLY FLOAT

L?
LINK OBJE

L?
MAP

Designate end of above overlay, and
that a floatable overlay named
FLOAT immediately follows. The
Linker assigns the number 03 to
this overlayc This overlay will be
linked starting at the default base
address of 0.

Request that OBJE.O be linked,

QUIT

ROOT TEXT
LINK DONE
RDY;

16-15 CZ05-00

BASE

Figure 16-1 illustrates use of BASE directives in a bound
un:Lt that consists of a root and overlays. This example
assumes that the bound unit being created will be executed as
pai:t of task group Alr and memory pool AA will be used by
this task group. Figure 16-1 also shows memory pool AA's
location in memory relative to the system pool and another
pool. The object units specified by the following directives
are loaded into memory pool AA during execution of the bound
unit.

Figure 16-2 shows the configuration of memory pool AA at
different times during execution. Note that OBJ.O of the
root is overlayed by overlay ABLE and that overlay FOX is
partially overlayed by overlay ZEBRA. Also note that overlay
FLOAT is positioned by the Loader and is not necessarily at
the location shown in the diagram.

16-16 CZ05-00

BASE

ADDRESS HIGH MEMORY

RELATIVE 0 FOR ROOT

RELATIVE 0 Of ROOT

ADDITIONAL TASK
GROUP INFORMATION

ROOT AND OVERLAY AREA

TASK GROUP CONTROL
STRUCTURES

ADDITIONAL TASK
GROUP INFORMATION

ROOT AND OVERLAY AREA

TASK GROUP CONTROL
STRUCTURES

SYSTEM POOL

OPf SATING SYSTEM

MEMORY POOL
._ A8 (TASK
?GROUPA2

WILLUSi
THIS AREA)

MEMORY POOL
AA (TASK
GROUP A1
WILL USE
THIS AREA)

LOW MEMORY

Figure 16-1. Relative Location of Memory in Memory Pool AA

RELATIVE 0
OF ROOT

ADDITIONAL
TASK GROUP
INFORMATION

OBJ2Q

OBJt O

TASK GROUP
CONTROL
STRUCTURES

OVERLAY
FOX

OVERLAY
ABLE

ROOT

ADDITIONAL
TASK GROUP
INFORMATION

OBJBO

OBJAO

OSJ60

OBJSO

08J10

TASK GROUP
CONTROL
STRUCTURES

OVERLAY
ZFBRA

ADDITIONAL
TASK GROUP
INFORMATION

QBJOO

OBJCO

OBJAO

OBJ6O

O8JSO

OSJ1 O

TASK GROUP
CONTROL
STRUCTURES

OVERLAY/
FLOAT \

"̂LOCATION
1105

ADDITIONAL
TASK GROUP
INFORMATION

08JEO

OBJOO

OBJCO

O8JAO

OBJSO

OBJSO

OBJ1 0

TASK GROUP
CONTROL
STRUCTURES

Figure 16-2. Overlays in Memory Pool AA

16-17 CZ05-00

cc

CC (CALL-CANCEL)

Place each overlay name and its associated Linker-generated
overlay number into the bound unit attribute table so that the
COBOL program can call/cancel overlays by name. This directive
is used when linking COBOL programs that contain CALL/CANCEL
statements that invoke overlays.

To support the CALL/CANCEL facility, two object units are
required: ZCCECeO and ZCCECO.O. ZCCEC will be automatically
linked into the root, with ZCCECO linked as an overlay. These
object units require only the CC link directive.

The CC directive must be specified before the first LINK,
LINKN or LINKO directive in the root, and cannot be embedded in
Assembly language control statements.

FORMAT:

CC

16-18 CZ05-00

COMMON

COMMON

Defines a labeled "common" area of a specified size. It may
not be embedded in source code.

FORMAT:

COMMON)
} symbol,X'size1

COMM J

ARGUMENTS:

symbol

The external symbol to be treated as common.

X'size8

Size is specified as a one- to four-character hexadecimal
number bound by single quotes and preceded by the letter
X.

16-19 - CZ05-00

CPROT

CPROT

Do not remove the specified common symbols from the symbol
table.

•*. •-.

This directive cannot be embedded in Assembly language con-
trol statements.

FORMAT:

CPROT symbol , ,

ARGUMENT:

symbol v . . ., ,

Name of the external symbol that is to be protected. The
symbol must be specified in the COMM directive or defined
as common during assembly or compilation.

16-20 CZ05-00

CPURGE

CPURGE

Remove an unprotected common symbol from the symbol table.

FORMAT:

CPURGE symbol

ARGUMENTS

symbol

The external symbol to be removed from the symbol table.
The symbol must have been defined as common.

16-21 CZ05-00

EDEF

EDEP

Make a symbolic definition available to the Loader at load
time.

When EDEF is specified, the symbol's definition must already
be in the Linker symbol table.

Secondary entry points of bound units, whose code is to exe-
cute under control of a task, must be defined in an EDEF direc-
tive. This includes secondary entry points of overlays and the
root entry point when it will be explicitly used in a Create
Group command. The start address of the root and of each overlay
is placed by the Linker in the bound unit attribute table and
does not need an EDEF definition. The bound unit attribute table
is part of the bound unit. ^

If a bound unit is memory-resident, symbols (entry points and /̂
references) can be defined by EDEF so that they can be invoked by
any bound unit loaded by the system. At system configuration
time, when the resident bound units are loaded using the LDBO
system configuration directive, these symbols are placed in the
system symbol table. When the Loader loads other bound units
that contain unresolved references, it tries to resolve them with
the list of symbols defined for resident bound units.

If the bound unit is not memory-resident, the symbols in the
attribute table of the bound unit are meaningful only as defini-
tions.of secondary entry points. Although shared bound units can
be in the address space of more than one task group, the bound
unit attribute table is available to the Loader only when the
bound unit is being loaded. Unresolved references in any bound
unit will be resolved only to symbols defined in attribute tables
of resident bound units.

The EDEF directive can be embedded in Assembly language con-
trol statements.

^~s
FORMAT?

(EDEF)
\ > symbol.[,symbol,]
(EF Jl

16-22 CZ05-00

EDEF

ARGUMENTS:

symbolt

Any external definition comprising one to six charac-
ters* The symbol must have been previously defined; it
can name a root or overlay once the root or overlay has
been linked,, If the symbol was multiply defined, the
first definition will be used.

symbol2

Name of the symbol incorporated in the bound unit
comprising 1 to 12 characters. If symbo!2 is not speci-
fied, the name of the symbol placed in the bound unit is
that specified by symbol .

Examples

LINKER MYPROG -PT Load the Linker. The bound unit named
MYPROG will be created on the working
directory. The list file MYPROGoM is
also created on the working directory.

LINKER-300-07/08/1519 Linker identification message.

L?

LINK A

L?
LINKN B

L?
MAP

L?
EDEF B

L?
LDEF SYM,X'1234(

Linker prompt,

B is a symbol previously defined by an
XDEF statement in B.O as an external
location or value.

Assign relative location 1234 to
external symbol named SYM.

OVLY FIRST Declare end of root, and name non-
floatable overlay that immediately
follows„

16-23 CZ05-00

EDEF

L?
LINK X,Y

L?
EDEP SYM

L?
QD1T Declare that the last Linker direc-

tive has been entered. Execution of
the Linker terminates after the bound
unit has been created.

ROGT MYPFOG
LINK DONE
RDY:

LINKER PPOG2 -COOT ILPTOO -SIZE 2 -PT

Load the Linker; the bound unit to be
. created is named PROG2. The list file
is the printer. The symbol table is a
maximum of 2K words of memory.

LIKIKER-300-07/08/1519 Linker identification message.

L?
BASE X'22221

L?
LIKfKN W

L?
HAP

Subsequent object units will be loaded
into memory starting at the relative
address 2222.

Request that object unit W.O be
linked.

Produce a link map; in this map, it is
determined that object unit W.O
contains an unresolved reference to
the symbol SYM, which was defined in
the root of the bound unit MYPROG.

If MYPROG is loaded into memory via an LDBU configuration
directive^ when the Loader loads PROG2 the Loader will
resolve the unresolved reference in PROG2 to the symbol SYM,
which was defined in the root of MYPROG.

16-24 CZ05-00

EDEF

NOTE

An EDEF directive cannot be entered on the direc
tive line in which the object unit is specified*
For example, if the symbol TAG is defined in
object unit hf the following directive line is
allowed? LINK AiEDEF TAG.

16-25 CZ05-00

FLOATB6

FLQATB6

Suppress
when the -R
Linker that
local common
the basse of
reference,
fixed (root
within float

certain error checking on local common references
argument has not been used. The directive tells the
1:he user will manage $B6 himself and causes each
reference to be relocated as if the $B6 pointed to
the floatable or fixed overlay containing the
normally, $B6 is set by the system to the base of the
<ind fixed overlay) area, and local common references
ing overlays would be invalid.

Before usiing this directive, consult with the person respon-
sible for system building and determine available system memory.

This directive must be specified before the first object unit
containing a local common reference is linked.

FORMAT?

FLOATB6

16-26 CZ05-00

FLOVLY

Assign the specified name and a number to the floatable
overlay that immediately follows, and designate the end of the
preceding root or overlay. The characteristics of floatable
overlays are described at the end of this directive description.

FLOVLY must be specified as the first directive of each
floatable overlay.

The Linker assigns a two-digit number to each overlay. Over-
lays are numbered sequentially in ascending order; the first
overlay is 00 0

FORMAT?

FLOVLY name

ARGUMENTS:

name

Name ©f the floatable overlay that immediately follows«,
The overlay name must consist of one to six alphanumeric
characters? the first character must be alphabetic.

Examples

LINKER BU -PT Load the Linker and designate BU as
the bound unit name.

LINKER-300-07/08/1S19 Linker identification message.

L?
LINK A,B

L?
MAP Produce a link map. ' "*

L?
FLOVLY GR Declare the end of the root that

consists of object units A.O and B.O,
and specify that the next overlay is
a floatable overlay named GR,, The
Linker assigns the number 00 to this
overlay.

16-27 CZ05-00

PLOVY

L?
LINK X,Y; MAP
L?
PLOVLY BR Declare the end of floatable over-

lay GR and designate that the float-
able overlay that immediately follows
as BR. The Linker assigns the number
01 to this overlay.

L? , , , t
LINK R6 ."

L? "' * ' *
MAP

L?
QUIT
ROOT BU
LINK DONE

NOTE

External location definitions defined within a
floating overlay will automatically be purged at
the end of the overlay, because they cannot be
referenced from outside the overlay.

A floatable overlay must have the following characteristics:

1. External location definitions in the overlay are not
referenced by the root or any other overlay. , ,

2. Then* cannot be external references between floatable
overlays,

3. The overlay does not contain external references that are
not resolved by the Linker.

4. The overlay must be linked after all desired nonfloatable
overlays have been linked. ,

The overlay cannot contain P+DSP references to any other
overlay in the root*,

6. The overlay cannot contain IMA (immediate memory address)
refeiences within itself.

7. There can be IMA references (with or without offsets) to
locations in the root or any nonfloatable overlay.

16-28 CZ05-00

GSHARE

GSHARE

Indicates that the bound unit is globally sharablef which
means that the program is sharable between groups and the root is
always loaded into the system memory pool. This directive should
not be used if a SHARE directive would suffice^ System
performance may be affected if this directive is misused.
Floatable overlays are loaded into user space and are not shara-
ble unless overlay area tables (OATs) are used.

Before using this directive, consult with the person respon-
sible for system building and determine available system memory.

NOTE

Nonsharable bound units (linked without SHARE or
GSHARE) are always loaded into the user's memory
pool.

s
FORMAT:

GSHARE

16-29 CZ05-QO

IN

IB

Change the primary directory. The primary directory is the
first that the Linker searches for the specified object unit(s)
to be linked. The default primary directory is the working
directory. , t

NOTE

The IN directive must be specified before the
first LINK, LINKN, or LINKO directive that
requests the linking of an object unit that is in
the specified directory.

The specified directory remains the primary directory until
another IN directive is entered. If the primary directory is
changed via an IN directive and at a later time you want the task
group's working directory to be the primary directory, enter the
IN directive and omit the pathname.

FORMAT:

IN [path]

ARGUMENTS s

[path]

Pathname of the directory being designated as the primary
directory. The pathname can contain a maximum of 57
characters. A simple, relative, or absolute pathname can
be specified (methods of designating pathnames are
described in Section 14 of this manual). If path is
omitted, the working directory becomes the primary
directory.

NOTE

The IN directive can not be embedded in Assembly
language control (CTRL) statements.

16-30 - CZ05-00

IN

Example 1:

INA"DIR>PRIM

This directive designates that ~DIR>PRIM is the primary -
directory.

Example 2? •

This example illustrates use of the IN directive in conjunc-
tion with directives that request the linking of object
unitsc Assume that the primary directory is the working
directory, whose relative pathname is WORK>CURR? object units
X«0 and Y.OF are in the working directory. A.O and C.O are
not in the working directory.

LINKER OUTPUT -PT Load the Linkerj a bound unit named
OUTPUT will be created on the working
directory.

LINKER-300-07/08/1519 Linker identification message.

L?
LINKN X

L?
IN ~NEW>PRIM

L?
LINKN ArC

Request the linking of object unit
X.O; XeO is in the working directory.

Designate
directory<

'NEW>PRIM as the primary

Request the linking of object unit
A.O and C.O in the primary direc-
tory. "NEW>PRIM>A.O is the pathname
of A.O and ~NEW>PRIM>C.O is the path-
name of C.O, as expanded by the
Linker*

IN

L?
LINKN Y

L?
MAP, QUIT

Designate the primary directory as
the working directory.

Request the linking of object unit
YcO, in the working directory.
WORK>CURR>Y,0 is the pathname of Y.O,
as expanded by the Linker.

16-31 CZ05-00

INCLUDE

INCLUDE

Accept directives from a file other than user-in or the file
specified in the -IN ECL argument. When the Linker encounters an
end of file or a RETURN directive in the file specified by the
INCLUDE directive, it again seeks directives from the previously
active file. If used, the INCLUDE directive must be the last
directive entered on a line.

FORMATS . , < [' ' ' , """-

INCLUDE [path] f v.
' i

ARGUMENT: . %

[path]

Pathname of the file from which the Linker directives are
to be read. A simple pathname can be up to 12 char-
acters in length; an absolute pathname can be up to 57
characters in length. r

Example:

INCLUDE 1READER

This directive causes the Linker to accept directives from
the card reader.

•¥ J "!«' ' ,

NOTES

1. The directive file specified by the INCLUDE
directive cannot contain an INCLUDE directive.

2. The INCLUDE directive cannot be embedded in
Assembly language control statements.

16-32 CZ05-00

1ST

JL22

Identifies the beginning of the initialization start address
in the root. Initialization code is to be executed once?
immediately after the root is loaded at system boot time. After
the initialization code is executed, its space can be made
available for overlays. The 1ST directive must be associated
with an LDBU directive that specifies an initialization
subroutine table (1ST). LDBU, a CLM directive,- is explained in
the gystem Building and Administration manualo 1ST does not
execute unless the bound unit is specified in an LDBU directive.

FORMAT s

(1ST)
\ / external symbol
I IT)

ARGUMENTSs

external symbol

Symbol specified by label in 1ST section of LDBU.

NOTE

The 1ST directive cannot be embedded in Assembly
language control statements.

16-33 » CZ05-00

LDEF

LDEF

I
Assign a relative location to an external symbol. A symbol

should be defined only once, either as a location or as a value.
When a symbol is defined, its definition is put into the Linker
symbol table so that it can be used to resolve references to the
symbol during linking. When a symbol defined as a location is no
longer used, its symbol table entry can be cleared by specifying
the PURGE directive. PURGE has no effect if a PROTECT (PROT)
directive was previously-specified.

FORMAT:

LDEF

LF
symbol,

X'address1
^object-unit-name

xdef I~M X1 off set'1
* M I J

ARGUMENTS :

symbol

One to six characters, each of which must be an
alphanumeric character, a dollar sign ($), a period (.
of an underscore (_). The first character must be a
letter or a dollar sign.

Next location after the highest address of the linked
root or previously linked nonfloatable overlay.

Highest address+1 ever used in the linked root or any
previously linked nonfloatable overlay.

X'add): ess'

Hexadecimal address comprising one to five integers
enclosed in single quotation marks and preceded by X.
The specified address is relative to the beginning of
available memory (relative 0) in the memory pool.

16-34 CZ05-00

LDEP

sob j ect~uni t-name

Specified object unit's base address,

xdef [± X'offset8]

Address of any previously defined external symbol«, If an
offset is specified, it must be a hexadecimal integer
with an absolute value less than 8000 (32768 decimal).

The current address.

NOTE

The LDEF directive cannot be embedded in Assembly
language control (CTRL) statements.

Examples

LINKER BOUND -PT Load the Linker and designate
BOUND as the bound unit name*

LINKER-300=07/08/1519 Linker identification message.

L?
LINK hf BF C

L?

LDEF SYM, X'1234'

L?
OVLY FIRST

SYM assigned relative location 1234.

Declare end of root and name first
nonfloatable overlay.

LINK R? MAP

L?
LDEF QUIZP=C

L?
OVLY SECOND

assigned base location of the
previously linked object unit named
C.O.

16-35 CZ 05-00

LDEF

L?
LINKN D; LINK F; MAP

L?
LDEF NEW,SYM NEW assigned same location as the

symbol SYM, which was defined in the
root; i.e./ NEW is assigned relative
location 1234.

L?
OVLY NEXT

L?
BASE XS1300'

L?
LINK W,X; MAP

L?
LDEF

L?
OVLY THIRD

ANY assigned next location after
highest address of the previously
linked nonfloatable overlay, SECOND.

LINK Z

L?
LINK Q; MAP

L?
LDEF FOID,% FIND assigned next location after

highest address of the root or any
previously linked nonfloatable over-
lay, (A previous nonfloatable over-
lay was named SECOND; if it ended at
location 1566 and this is the high-
est location reached during the
linking of object units constituting
this bound unit, FIND would be
assigned location 1567.)

16-36 CZ05-00

LDEF

L?
QUIT
ROOT BOUND
LINK DONE
RDY:

This example illustrates the use of each format of the LDEF
directive.

16-37 CZOS-00

LffiorLIBl

LIB or LTB1

Designate a directory as the secondary directory. This
directive permits the linking of object units that are in
directories other than the primary directory. If an object unit
specified in the LINK, LINKN, or LINKO directive cannot be found
in the primary directory, the Linker searches the secondary
directory.

Linkei
If LIB is not specified, there is no secondary directory; the
er searches only the primary directory.

The specified secondary directory remains in effect until the
LIB dlrecti/e is respecified with a different directory name, or
without any directory name.

i

All specified object units in the primary directory are
linked first? then all specified object units in the secondary
directory ace linked, and so on. To cause object units to be
linked in an order that is independent of their location, the
LINKN or LirtfKO directive must be used.

NOTES

1. The LIB directive must be specified before the
first LINK, LINKN, or LINKO directive that
requests the linking of an object unit in the
secondary directory.

2. This directive cannot be embedded in Assembly
Language control (CTRL) statements.

FORMAT:

LIB [path]

ARGUMENTS

[path]

Pathname of the directory being designated as the second-
ary directory. A relative or absolute pathname can be
specified. (Methods of specifying pathnames are
described in Section 14.) If path is omitted, no search
of that secondary directory is made.

16-38 CZ05-00

LIB OR LIB1

Example Is

LIB DIR>SECND

This directive designates DIR>SECND as the relative pathname
of the secondary directory.

Example 2%

LIB DIR>SECND Designate DIR>SECND as the relative
pathname of the secondary directory.

LINK B Request the linking of object unit B.O?
B.O resides in the primary directory.

LINK A Request the linking of object unit A.0;
AcO resides in the primary directory.

LINK W Request the linking of object unit WeO?
WC0 resides in the secondary directory.
BIR>SECND>WeO is the full pathname of
WeO(p as expanded by the Linker«,

This example illustrates usage of a secondary directory that
contains unit W00, YcO, and Z.O.

16-39 CZ05-00

LIB
2
a
4

LIB
2
i
4

Designate directories as the third, fourth, or fifth
directory. If an object unit specified in the Linker directive
cannot be found in the primary or secondary directory, then the
third directory is searched and so on.

The specified directories remain in effect until another
LIB2, LIBS, LIB4 statement is given.

NOTES

1. The LIB2, LIB3, LIB4 directive must be speci-
fied before the first LINK, LINKN, or LINKO
directive that requests the linking of an
abject unit that is in one of these
directories.

2. The LIB2, LIB3, LIB4 directive cannot be
embedded in assembly language control
statements.

FORMAT s ' , ! . , " ,

(LIB 2)
<LIB3> [Apath]
(LIB*)

ARGUMENTS

[?ath]

Pathname of the third, fourth, or fifth directory to be
searched (if LIB is specified) if the object unit speci-
fied in a Linker directive is not found in the preceding
directories. A simple, relative, or absolute pathname
can be specified. If path is omitted, the specified
directory (2r 3, or 4) is removed from the list of direc-
tories to be searched by the Linker.

16-40 CZ05-00

LINK

LINK

Link one or more specified object units. Each specified
object unit name is put into the link request list. The object
units are linked when the first subsequent directive other than
LINK or START is encountered. When this occurs, the Linker
searches the primary directory and links the specified object
units in the primary directory in the order that they were
requestedc If all of the object units are not found and there is
a secondary directory, the Linker searches the secondary
directory and links specified object units found there, in the
order that they were requested. If there is a copy of an object
unit in both the primary and secondary directory, the copy in the
primary directory is linked.

The order in which object units are linked is important for
the following reasons? (1) it determines which object units will
be in memory when parts of the root or overlay are overlaid (2)
within the root and each overlay, the first start address encoun-
tered by the Linker (either in an END statement or a START direc-
tive) is used as the start address for that root or overlay,,

During each execution of the Linker, at least one LINK?
LINKN, or LINKO directive must be entered for each root or over-
lay „ Multiple LINK directives can be specified within a single
root or overlay. If LINK and/or LINKN and/or LINKO directives
request that the same object unit be linked more than once within
a single bound unit? only the first request is honored, unless
the object unit name has been purged*

LINK directives can be embedded in Assembly language control
statementsi the specified object unit(s) are added to the end of
the current link request list. See "LINKN Directive" and "LINKO
Directive" for the order in which object units are linked if
there are embedded LINK directives and/or LINKN and/or LINKO
directivesc

FORMAT:

S LINK) obj-unitt [,obj-unit2 J . , .
LK)

16-41 CZ05-00

LINK

ARGUMENTS:

obj-unit

Name of an object unit to be linked. An object unit name
consists of one to six characters, each of which must be
an alphanumeric character or a dollar sign ($), a period
(.)r or an underscore (_). If multiple object units are
specified, they are linked in the most efficient order.
The first charatcter must be a letter or a dollar sign
($).

16-42 CZ05-00

LINKN

Link object units in the exact order specified.

If directives request that an object unit be linked more than
once within a single bound unit, only the first request is
honored, unless the object unit name has been purged.

During each execution of the Linker, at least one LINKN,
LINK, ©r LINKO directive must be specified for each root or
overlay.

Multiple LINKN directives can be specified within a single
root or overlay.

LINKN directives can be embedded in Assembly language control
(CTRL) statementsi the specified object unit(s) are added to the
end of the link request list and the library search restarts at
the primary direetoryc

obj -=uni tt [, obj -uni t2]...

16-43 CZ05-00

LINKN

ARGUMENT;
'. ! , '•>' f

obj-unit

Name of an object unit to be linked. An object unit name
must be one to six alphanumeric characters and must not
inc.Lude a suffix; the first character must be a letter or

' dol.lar sign ($) . The Linker appends the suffix .0 to
each object unit name and searches for the specified
object unit name, including the suffix.

Examples of LINK and LINKN ' ~.- , *

In the following examples, assume that the working directory
is the iprimary directory and LIB and LIB2 directives have
been specified.

A.O
B.0 =

C .0*
D'°I

RIMAR'if

E.O
P.O
G.O
HcO

LIB

C.O
I.G
J.O
K.O

-* 2nd copy
of C.O

<
LIB2

Example 1?

LINK A,G,K,C,F

The modules will be linked in the following order:

A,Cp,G,FrK

Example 2:

LINKN A,G,K,C,F

The modules will be linked in the following order:

A,C,K,C,F

16-44 CZ05-00

LINKN

Example 3s

LINK A,G,K,Cp,F

Assume that module G.O contains "CTRL LINK B,J"°0 The modules
will be linked as follows?

AfCp,G,FfK,Bf J

Once Linker has started to search LIB, it does not return to
the primary directory unless a new link request list is
found. The two embedded requests were added to the current
link request list, forcing a rescan of all libraries.

Example 4s

LINKN A,GfK,C,F

Assume that module GcO contains "CTRL LINKN B,Jre. The
modules will be linked as followsi

A f* V f* B9 B T ">f\3fg^f\afC f Of >J

Assume that module GeO contains "CTRL LINK C". The modules
will be linked as followss

Example 6s

LINK GfDfW

Assume that module G.O contains "CTRL LINK C,B". The modules
will be linked as followsj

D,G,C,B,F

16-45 CZQ5-OQ

LINKN

Example 7:

LINK GrD,F

Assume that module G.O contains "CTRL LINKN C,B". The
modules will be linked as follows:

Df G fF fCfB

In this example, C and B are not added to the current link
request list because LINKN was specified instead of LINK.

16-46 CZ05-00

LINKnn

LINKnn

Link the specified object unit(s) if bit nn is turned on.
This directive allows selective linking«

The LINKnn directive must be used in conjunction with the
VDEF directive (or a VALDEF directive in a compilation unit)0
The VDEP directive is used to modify the bit setting in a 32-bit
array. The leftmost 16 bits in the array are set by the symbol
Z_MSKR? the rightmost 16 bits in the array are set by the symbol
Z_MSKU. Through the VDEF directive, you assign a value to Z_MSKR
or Z_MSKU that sets the appropriate bit "on" (a value of 1) or
"off" (a value of 0).

Each occurrence of LINKnn causes the array to be indexed by
nn. If the referenced bit is on (1), the link request is pro-
cessede If the referenced bit is off (0), the link request is
ignored.

The bits in the array are initially set on; i.e., all LINKnn
directives are processed. The array is modified by the VDEF
directive (as described above). The VPURGE directive must be
used to remove Z_MSKR and Z.J1SKU from the symbol table before
these symbols can be redefined*

t
FORMAT? I

•

LINKnn obj-unit,[,obj-unit2e..]

ARGUMENTS:

nn

Two-digit hexadecimal value between 00 and IF used as an
index in a 32°bit array.

obj-unitn

Name of the object unit to be verified for linking.

16-47 CZ05-00

LINKO

LINKQ
j

Operate in the same manner as the LINKN directive, except
that all embedded link directives in the named object units are
ignored.

Only the object units named are linked.
i * *" > i 1

The LINKO directive cannot be embedded in Assembly language
control (CTRL) statements.

v . i ^
FORMAT; - ' '-

i \
[,obj-unit2]...

ARGUMENT:

obj-unit

Name of an object unit to be linked. An object unit name
must be one to six alphanumeric characters and must not
include a suffix? the first character must be a letter or
dollar sign ($). The Linker appends the suffix .0 to
each object unit name and searches for the specified
object unit name, including the suffix.

16-48 CZ05-00

LSR

LSR

List the Linker search rules. The directories to be searched
by the Linker for object unit(s) are listed in the order in which
they will be searehedc

The LSR directive can be embedded in Assembly language con-
trol (CTRL) statementsc

FORMAT?

LSR ' .

16-49 CZ05-00

MAPandMAPU

MAP arid MAPU
* ! • « • » _ • .

Create a link map containing: (1) defined symbols that were
not purged and (2) undefined symbols to be written to the
list-file (see -GOUT in the Linker command) .

The MAPU directive lists only undefined symbols. Both the
MAP and MAPU directives can be embedded in Assembly language
control statements.

If MAP :i.s specifiedf each defined and undefined symbol gener-
ated by the linking of object units is listed in the map and pre-
ceded by the name of the object unit in which it is located. A
map also includes the names of object units that were linked
because of (imbedded Linker directives, and the symbols contained
in those object units. If the MAP directive immediately precedes
a QUIT directivef the link map will contain all the defined sym-
bols and undefined symbols of the completed bound unit that have
not btien removed (i.e., purged).

Ii: MAPU is specified? the map contains each undefined symbol
and the object unit in which it is located.

MAP and MAPU directives can be interspersed among other
Linker directives. When these directives are encountered all
object unitis named in the link request list are linked before a
map is produced. Maps are useful for determining whether all
required object units have been linked, and whether all symbols
referenced in those object units have been defined.

If there are any undefined references remaining after the
last object unit is linked, a MAPU directive is automatically
generated by the linker.

FORMAT?

(MAPI
IMP)
(MAPUI
\MU J

Default: No map produced.

A full link map (a map generated by the MAP directive) com-
prises the following sections?

START Address at which execution of the root or overlay
will begin; specified in the START directive or in
a linked object unit.

16-50 CZ05-00

LOW

HIGH

$COMM

CURRENT

EXTERNAL
DEFINITIONS

MAP and MAPU

Lowest memory address at which the current root or
overlay was based.

Next location after the highest address of the
current root or overlay.

Address assigned to COMMON for the bound unit. If
no common defined, this does not appear on the MAP.

Next location after the current address of the rtfot
or overlay (when the map was created).

All external symbols currently defined in the sym-
bol table* Unprotected symbols defined in the root
or a previously linked overlay will appear in the
map unless the symbols are purged via a PURGE or
BASE directive. Symbols erroneously defined as
both a value and a location will appear twice under
EXT DBFS.

All references to undefined symbols contained in
the object unit root and overlay(s) are listed in
the map,

For the root and each overlay containing undefined
symbols, the following information is presented?

• Root and overlay(s) containing references to
undefined symbol(s)

• Relative address of the last reference to the
symbol

If an undefined symbol is referenced in multiple
overlays? the symbol will be listed in the map more
than once.

If there are external references in both P-relative
and Immediate Memory Address forms to an undefined
symbol, the symbol is listed twice under UNDEF.

Figure 16-3 illustrates the formats of maps generated by the
MAP and MAPU directives.

UNDEFINED
REFERENCES

NOTE

The date and time at which the bound unit was
created is automatically put in the bound unit's
attribute sectione

16-51 CZ05-00

MAP and MAPU

At

vac

•x. |

co w a
vj «-. (M
o o o
o o o
o o o
Q O O

¥
o

a

t ac
0 t•
i*u
•J>*-*

^^e f
o
o*r
z •

**

•« c
m ••
c«
«j 7
OC

^

^1
K
O
V
<vs
«•

••
z
o
o »-

OJUj 1C
•̂e "W <^>e•̂ i Jt '•̂

o> z u.
0 •-> IS!
"V _i A

8
2
R

C
5
sX
2

• J

Ioe
ia
_i
<B

Ul
•)
w
«
A
0>
C»
O
oe »f* ^^ite ^9
1— O
C5 0
UJ 9

I
••«

I
§
o
o

*»
«p*
ty. .
C '
•v
a>
o

•e •*» vn
o « ru
o o o
o e c
» o o
o c. o

w.p

O
fa

a

O ® X
a o > ni
O O O i*» i-»
c» o (_* s~ _»
o o _j as o
o o

o f\j
C. K\ .» .. <J
o o w *>
o c- o? <n
O O Ul Ut

!̂
C

Ivo

c « « ^ = o e o o c
3 I 9 i 0 > « < a o o
• »« «r> 05 o o o

C9 o U l u < f % l 9 9 O O
C <V tt OE KV «O
OC O £5 O O
a. e o c. «> c. «v
ir
A (M

<s o f ev t-t
S >-= -I

Ul O 7t O O Ul UJ
J -« UJ O C- Ki f>4

o o «j erj

o a.
e r

N
> =}
IflD

A
2
3

O
4

A
I

A
oc

X
«!

at
)£
03

O
ac

Ui O

c
tx.
a.
»—
<n

i K x Z

$
>

1
£o
e

i
3
s

Ui

O -I O
_1 t* O

(A
f»S
O
o
o

*X
-«o 3£x s:

M U. Ui
CO Ut <O
•-t O *

A >» O O O «>
a «• •« •» o «j

a ^ o o z 2

A
t

A
I

<fj

A
a. « x £ u o
*> o- o a a zi
0£ •* O U -J —I

at -« >v
< ! - « » - •

K- _J _l
«o a o
u, u. u,
Ul UJ U*
a o a
Ul Ul UJ

a
Ui

16-52 CZ05-00

MAP and MAPU

o
o
o
o

«0 ir O
4J — <M
o & o
& o o
o o o

o»
I*o
.O
O
o

£
O

is,
U

«» w o

X
o

o

-o
a

X
£
a

x
a

oe
SC

-O •*» iT»
o» — «v
O O T»
c e c-
3 O 3
c- e e.

fii

o
o
o

a
*>

•s
a
«
s
J4
•H
.J

rv

*
*

* * *

* * *

* ft *
* « *

* « *
« *

* <* *

* 2, *

* *

*y «

« * *

« « «

* * *
* « «

« « *

O
O
o
o

ru
r
£
a *

*

9
-«•-
O

Jj
or

c, c
3 O
e c-

rw
z -•
^ (V e-»
O •" -J

00

Ul O U. U.
fa «•» fi fi
O O> O O
c o c e
© o o o
c e © ©

UJ
or

« « * «
* « « *

P. o
Jtf O
CJ O
© -3 O "3
_^ «-»«-< O

u<

o
£
2:
a

«

c o

o o
_J O O
a os
£ e.
X 1= 4J

O
O
o
o
o o
o —o
2 o
z: <=>
a «•»
u
x
fM _t

a
a s

X

*«
«

*

ts *i r+> si
o «-> »— f\
o o o o
o o o c

O O O -3 O
*• O C O G .
o
o «•»
3 —o I—
«-> x «*• «•

C «r a, *-«
c& C t- or _!
O u ws uj "T
fl£
a,
8- «J

*
«

<M JJ
<= c
o O
c o
o —

<\J CO
>• I
< vo
_» •-<

C «

•H
b

O
aJ
?
«—«
Is,
LU
O

•3 O O
«-• «« o
O O
o o •**
O 3 *-
O© <

-JO
a or
SE CL
X »=
UJ %

16-53 C205-00

MAP and MAPU

a£
zo-

SiS>
SCO

Z O
O UJ
a: is
o zi
o a.
M II
<J X

•» o
C9 UA
z »-
>-e <J
O UJ
< t—
iw c
z x

a
x N
oa

ui u«
£ U
< Z
z u/

ae
>- ut
«« u.
_j If
CE ae
uj
* UI
O 3

_l
a <
o >

co •*ae u
ic o
« z
« UJ

ae.
-«,UI
UJ u.

_IUJ

te«*»

IT
<V
IM
X.
C-
IM
X

O
IM

a
i

UI
in
«*
3

O
«
a.

o
v
«D

G
•»
O
X
«

r«.
o

« « « s
>« * * p
o« « « £

« « « 5
E

* * * $

« * * 2

o
(V
o

« «
« «
« «
« «
* «

n

CD nJ * « *
o a
K M * « «
« o

* * *

o
-* a
>• ae,

z
if.
z

(9
C
X
a
t~ x
K Uf
A _J
ft « (O
Ut U. 3T

UJ O

A
0$
C5
C

O
<V I

O (M
e K» ••
o o er> <
o o <r> i
9 O UI <
O O ft I

o <
ec «« £^ «

OfS CS <
«} (O
uj u< m
ae K KI i
0 0 0 '
O £3 O '
«s < o

fW
1*1
o UI I

U

U
Ai

^» s
u. r

i -. O
o u

. «. u
i m
m

S UI
a, evi a KI

. o o
< o

o
> ru o

K>
b O
i O <V
> o X
> O £

o
> •« O
! UI

W
-J
I
O
o
s»
O
o
X

•£
»
O
<J
(S

<o
o
<»
o
-v
0>
O

(V

ae
ut
_j

> a>
i z

@ «5

, O U.

«J _J <J O O
«J W J O O

•e •« •• (M
2.Z Z -* t

O O O O
<J> «J O

1 °% I e
O UI O
-* X « <

o
««
I
o

lit ©—<
£ O X
<-l O

N CO O
A P5 O
H= O eo O
Q£ O ̂ O

n
4J

£
I
J4

-u
c
8

vo
iH

(U
M

&
•H

«• o Z

Ut
« « «
« « «

A
I

A
I

UI
X

o
5C
Z

A
I

0;
u.

» SW tb ft

-̂ O f\8 —
IM 9> O K O
O _J X

A ft
z o

«-• c o- x
_i _i _i ui «i

>> x <o
A A O *-« 0"I I « t- -«

UJ U, O O"
X «M *V O
•-g A «=»
»- a fv« o*
— c «o «=»
IM _* %,

A <V
^ Z U4 O
Z O X X
•-i _J «-o ry
_j >- >- «

o •« o>

lei

16-54 CZ 05-00

MAP and MAPU

« c
o ©
o c

§
u

r
o

Cf?

X
u

O

« « *
* « *

« * *
« * «

* « *
« «

* *
* &, *

* * *
* x *

i
QE
O
It

i
£
O
u,

i
(U
t£
Q
a

©
o o o ©

© © ©
o o o

3£
eo UJ

•• I or
2 «s as
Q >-« 3
=1X0
« « *

* « *

u»

3

O

<j

1*1
e
o

iou

o
«
o
o

o o o

o
o

rv
£
X.

«J
_s
X
C!

UJ
1A
V*
o
o
o

c
z
o
u
-J

X
u

©
It, la, o

or
se
05

î
(V

* QE
« T

hJ!
orj
2 C,

O
O
o
o

o o
© ©
o o
G ©

X
O f*l

X
u

•V —ft «-«
© ©
o ©
© ©
© ©

(V
X
X I
o

CO
JJ
(6

Ofej
cu
flS

c
•i-S

C
o
o

(U
u
3

© UJ
© ̂
© ©
© ©

© O O ©
© © © e «=«
© O> «« © '3 £
O © 3E. «-» <-* 3C

* t3
O C « U

J O O >- _|
a, o- <
SO. J© x
X t- O > © O
U! « O e

« * « «

UJ

o © © © ©
© •«»=«©©

© ©
X o © «-«
Z 3 © ~e t-
O «-» «^ <y ftp
CJ Z •«
E CS C I-
N« J O O <«

16-55 CZ05-00

MAP and MAPU

z a
a w
t <r
tar
o.:»
oa.
te N
u x

in
m
o
o
o

O

o »•
•« o
o o

o
o

_§>
O O

o
o
o

Al
X
X
o
«J

C3
2"
N<

O
<
Utr
ae
o

vu
H=
<J
Ui
H-
a
Of
a
n
a

u/ ir»
(V

.J Ui
> X
O •<

z
•»

>
<
_I
ae

v but

ttJ
0
z
b^
(K
Ut
U.
I4t

o
o

o
X
o

»-> IA o m
•« ft <V ITt
O O «« O
o o o oo o u» .u. o i n KV o
O O l*\ *»» O lilt SA O

o o o o
00-0*00
o e> x o »

9 » O 3C O © W
a. ̂ o x
tK -I •*« U U ««
UIO >• J £ t-

•* X' t-e
_l O X £ >»
>• O O l°"« •<
O • !» fM

ttj
ae
Ul
Ik
№
at

UJ

to
Ul
o

^

O 3
J

a <
a >•

c
o •»
ft, u>
n o
« z
« Ul

ae.
•*> iu
u u.

* *
* «
« «
« «

* *
« «
« «

1 -* * * •>

o uiz
o -i ui « «

ooo «-«x
»• »• O Ifc U « «
o o u
O O (V -̂ •« * #
O O >= tj J
r» «-» <sr let» * *

_i -tat
4S > «l-4 * *

_i o o o a
a. or K M « *
x & •» « o
ui ae

« *

*

ui
it

Q.
4
X

A
t

« «

* «

« *

« O.

« •*

« 2

*
«

* «

« *

« *

O
>*
(V

n
4J

2
n!
S

a
•H

4J

0o

ro
I

vo

<u

•H
fa

in u, «
w « r^
o o o
o o o
o o o
o o o

OC - X
_J < X U
Q. >- O H«
X »S -J I
X « « «
ut * * *

16-56 CZ05-00

MAP and MAPU

*

i

i

<0
(f.
nt

, o

*
Out
ac t»

uo.
M II

It
c,
©
e

e>
o

U,1
a-

e

*

ku
tj

W
a?

ut
of

e <~ •

yj
O

© U*
< f-
Ui O

ii
!&.

UJ oJ
at o
-r as
2 u.-

Tf

IU
•» x»
O =)

J
Of <
o ^»

M
»—a>
O
G •«
at M
H M
* Z
« 0!

fib
•«* i£A

lU U.X Jj
<6 OE

a
<v

o
e

U, IK

i&ta.

a of
z a,

« « *
* « «
« « «
* 43 *

* « «
* * *
* « «
« « «
« * «

« « «

C « «

« « «

« * «

« « «

a
c

3

e*•&
H= ;
IT I
At
«,« i
'-il O

X
v

c ->
U O X! O 2.
ts ru t^ «v £

'VJ f\J f*» O
c e- e. o

x^ c o e _i
•= e c1 c
T -r "J
C C K1 o» »o «o C!
^ -s C <n &i fft
& e e <ft in v.
« O O UJ î U4

«V 3, S K° «J l«
rs o o © o

i e: o o e e ft.

I rv

LU O <
(DO «« .c

>S *-» ^ tu Ui •«

a
•» u

a
4J

£
a
I

•§
•H
•J

*J

§
O

(*•>
I

VB

*=
«s
i

A
e ca

c
tr

3= >—

X rv
S X

_J U
«f =(

tt:
a

UJ
o

A
i

C
li.

A
I

A
I

j « C :
, » <p G> ••a >« u i

, <J O O

16-57 CZ05-00

MAP and MAPU

o
x
«

Ul
•J

0.

c-
•
f.

B
O
C

O
Oe

2
Qu
<TJ
SB

A!
C

I
.4

O§

sg
z
e=-o

a,•<•
x
A
I

V

O

I
««
«=e T
sy Ul
o m

s o n
« o «s

t~ ©
t=s v* O
«£ e
2 f«»
A tn
t=* O e«
as o *•»
«=< «-s r<^
«fc O f*
M «V •w*
«, «^
O ru ««
o «• o
j -̂
A »^
z o
o ^
«i >- ry
>• M=J «
u < »
« X *«

V
ir

o
o

o s? e
• o a.

•- o «t

« « «

* # *

* * *
* « *
« « «

c
•»
o

ne o
) »c ^3
> a o

-4

«E
"SIS

sc
31:t=«

it.
f\8

O I
(V .
o

o <
«J
A
2 I
O i
-J<
>> :
(j

«v

V
(V

* tt, * -r-

« « «

* s, *
« «
« «

* « «

« * *
* * « _»

a.
« « « z

**.
« « « UJ

o
e
<3r

ae
«*
>—
O]

o <* <
*Vi lf> If!
o o o
o o o
o o o
o o o

•* X X
X o a
O «-o 3
_l X O

2
3

U.
UJ
o

o
2.
n
X.ro
CJ

o
u

o
o
o
o

o o o
v« «-t O
o o
o o
o o •*

t£ O
_j a u
a or

*J
C
O
o

I
vo
rH

(U
M
3
u>

•H

16-58 CZ05-00

MAP and MAPU

(V

o e>
o o

ry
i*» t-«
i-= -J
«F3 C

z o
O UJ
X W
X (C
O 3
o a.
H H

At
ft
O
O
O

Ai

«J

X
ftj

«*»
A»
O

€

o
(U

ft.o

o
o

o o
o o
o o
© O

o
o

At
2E

O

CS UJ

O U4
« t—
I*-! O
£ X

a.
« H
oe.

uj i

ae
>> tu

«s
g

ST8
fV

ae
k&i

o

1 »
iO

z
o

«?

X

O O O
*v <v o
o o
© o •»*
o«.SE
o o •*•

o
rw o

o •

o o •* «*»
O 000
o o o o
o o © © © o
o •* «•* o o ©

flt
UJ

ft

*
*

z
o

fsS JO
a K
X ffl=
X t-

X
o

Q

At

i KI if* jfi o rw w o « « ©
> o o o o o o o
O O O O O « M @ O

> O O O O < O 2 O O >
o o> o •* o o X o o> e=»

•3- O i-e
> UJ K- CW U t— =*

*

4
tot

Ult%

o
UJ

It.
UJ
e

O

>-> »
O
O e*
a uj

fi
•H

8

o «
«

M

0£
> UJ
te.
UJ •3

Ul (-«
•̂ X *=s X
© O •« «»
» 3B M

« « «

»« •*« O ll, UJ
<S G (J
© o »** t~ •«
O O *= <J _J
o o < ui a.

JO O O Q
a, or M M
x a, 3= « Q
UJ

«
*

UJ

16-59 CZ05-00

MAP and MAPU

r o
OUI
ac o
ZOC
O =3
U Q.
M •
U X

«,0
C9 Ut
Z I-
»-• O
c, u»
< fr-
it* c
x <K

a
« W
oa

o
o
o

* «

* «

* «

* * *

Ul
CO
m
«*
A
«Q

»-= (S
K O
*^ «
Ik &
f-« I-
A «J
Q Ul
C ^»
<J A

IK A K

e
v

t\i
a
»>

« Q
* X
« <

I -J J *
X- «° *
U £• «
« C «

* 3E <VS «
« e-t ffj ffi «
* OC i-e t-c *
« a, j _i «

A
I

a.
X
X

f*V Q O «*
KV <VI O rf>
0000
o o o o
o o o o
o o c o

as — X QC
«(Z C9 tt

«

*«

*«
OS

III

a o
000

a -* -* o
Ul 00
Z O O Kl
•̂ o o >-
U. O O «*
Ul -I
O U >
z -too
3 a a

Ul OE

z o
•« z
2 tU

IK
>> IU
•« U.
™l U
OEQt
UJ
» Ui
03_J

ae <
o>

o
o •»
<K U<
N U
« Z
« Ul

cr
•*UJ
UAU.
X UJ
< (X
z

I-
u< z
_! Ul

t_> -I
uta.

«

*
«
«
«

4-1

O

«-l * «
o o
M M
* O

Ul

* *

16-60 CZ05-00

MAP and MAPU

fU U, « •«
IT l*» f* «f» O
m o o o ut
o o e- o z
O © O O P-«
O © © © tt,

ItJB
oe •« oc oe Q
X X £ I Z
45 tS t» «

UJJ

o UJ tfx r*V Z a
O ~* 9 1*1 O
O O O O C* Ck
© O © O N Ul
O O O O "3 O
•© O © © O

«EI 00 OS (• 3£

>-»=»-»- f*l
« « « o:

O
fe(
a

«3 « CO «3

3E s

»=«

fi
•H

O <S ©
@ O @ '

CO CO OO

It* Ifcj tei I
0J OS €*S
«« .« . •
CIS CO (O

tal
ts ^

ee

4-1
C
O
U

O -I
=4 8

ife ** №
ft
I

*£ UJ
U
ffi
£ tft
3
2

€>•

»= •}

« it
j s«j «u a
ae o •« <v (&t 2 »— o

-ItaiteJ _*?»>• (£,!•(O O
« & , » > * «« Q. < •* <« Q£ « O U J
«X,Ob. * t- ^ J _« x u * OE ee
« > £ O * « £ X » » «S»fc *
« its -̂ « © ite o o Heu * 1̂ ̂
« OT « «• srsxr * o co
* t&f w cj * «
* ^ - > X f f i * = « « 3 £ ^ - » = > = «« *U*^
« O C S £ ~ J « X G ^ - t > *
« O »=« 3 «S « S: O 2S' » Ul * fc=c .
« ff. S; 2- * w a. O O ^ «es.

O
«s
IU
flg
2
3

0}

« Ul
« z
« o

« ̂
* z
« t-e
« ̂

oea.ui

va

UJ
QC
UJ
X
I-

o
bu

o
M
3
cn
•H

16-61 CZ05-00

OVEKLAYTABLE

QVERLAYTABLE

Include the name of each overlay and its associated
Linker-generated overlay number in the set of symbols passed to
the Loader at load time*

FORMATS

S OVEBLAYTABLE)
OE \
OT J

16-62 CZ05-00

OVLY

QVLY'

Assigns the specified name to the non-floatable overlay that
immediately follows, and designates the end of the preceding root
or overlay*,

OVLY must be specified as the first directive of each non-
floatable oyerlayc

The Linker assigns a two-digit number to each overlay.
Overlays are numbered sequentially, in ascending orderi the first
overlay is 00e

FORMATS

OVLY name

ARGUMENT?

name

Name of the nonfloatable overlay that immediately fol-
lows. The overlay name must consist of one to six alpha-
numeric characters? the first character must be

Load the Linker and designate BU
as the bound unit name*

Examples

LINKER BO -PT

LINKER-300-07/08/1519 Linker identification message.

LINK hf B? MAP

OVLY A2 Declare the end of the root (which
comprises object units A.O and B.O)
and specify that the next overlay is
a nonfloatable overlay named A2.
The Linker assigns the number 00 to
this overlay.

LINK X

LINK Y

16-63 CZ05-00

OVLY

L
MAP

L?
QUIT
ROOT BU
LINK DONK
RDY:

16-64 CZ 05-00

PROTECT

Prevents certain symbols and/or object unit names from being
removed from the symbol table,, Symbols that identify addresses
within the range' of addresses specified by the first operand
through the second operand are protected, and object unit names
equated to addresses within that range are protected. If a
second operand is not specified, the symbol at the address of the
first operand and any other symbols or object unit names equated
to that address are protected* Once a symbol or object unit name
is protected, it cannot be purged later. The protect directive
cannot be embedded in Assembly language control (CTRL)
statements^

FORMAT?

PROT
PT

ARGUMENTS:

$
%
X'address'

xdef
f

$
I
X*address'
sobj ect-uni t-name
xdef
*

Next location after the highest address of the linked
root or previously linked nonfloatable overlay.

Highest address+1 ever used in the linked root or any
previously linked nonfloatable overlay.

Xfaddress6

Hexadecimal address comprising one to five integers
enclosed in apostrophes and preceded by X. The specified
address is relative to the beginning of the root
(relative 0).

sobject-unit-name

Specified object unit's base address.

16-65 CZ05-00

PROTECT

xdef

Address of any previously defined external symbol.

f
»

The current address.
f

Example L:

PROT X'1234I,X'4565I

This directive protects symbols and object unit names that
identify addresses from 1234 through 4565.

Example 1%

PT =FIRST

This directive protects symbols that identify the base
address 3f the object unit FIRST and all symbols equated to
th.at addiress. The base address of FIRST is determined by
producing a link map (see "MAP and MAPU Directives").

Example J:

PROT SYM,X'55S5'

This directive protects symbols that identify ddresses from
thd address of the previously defined extern symbol named
SYM through 5555? object unit names equated those
addresses also are protected.

16-66 CZ05-00

PURGE

PURGE

Remove the following items from the symbol tables
unprotected symbols that define addresses greater than or equal
to the first address and less than or equal to the second
address* If a second operand is not specified, the symbol at the
address of the first operand and any other symbols or object unit
names equated to that address are purged.

An object unit currently being linked can contain definitions
used for previously linked object units that will not be used for
subsequent object units to be linked. By removing symbols that
are no longer required^ there is more room for symbols that will
be required by subsequently linked object units0

NOTES

1. Undefined symbols cannot be purged.

2. Symbols and object unit names that are pro-
tected by a PROTECT directive cannot be

Only symbol addresses (not values) can be
purged by this directive.

The PURGE directive cannot be embedded in
Assembly language control (CTRL) statements.

FORMAT;

$

PURGE I I X8address1
PE (| -object-unit-name I

; s xdef '

'$
%
Ix'address1
object-unit-name /
A^f I'xdef

)
ARGUMENTS: t

$

Next location after the highest address of the linked
root or previously linked nonfloatable overlay.

T
t

16-67 CZ05-00

PURGE

Highest address+1 ever used in the linked root or any.
previously linked nonfloatable overlay.

X'addres.s1 - I '-'- - " '

Hexadecimal address comprising one to five integers
enclosed in apostrophes and preceded by X. The specified
address is relative to the beginning of the root
(relative 0).

«*,
=object-unit-name • • , • ,

Specified object unit's base address,

xdef

Address of any previously defined external symbol.

*

The current address.

Example Ls

PURGE X'1234',XI4S65I

This directive purges unprotected symbols that identify
addresses from 1234 through 4565, and unprotected object unit
names equated to addresses within that range.

Example 2s ;̂ •
*

PE = I?IRST

This directive purges unprotected symbols that identify the
base addcess of the load unit FIRST and any other unprotected
symbol names equated to that address.

Example 3s

PURGE SYM,X'5SS5'

This directive purges unprotected symbols that identify
addresses from the address of the previously defined external
symbol SifM through 5555? unprotected object unit names
equated to addresses within that range also are purged.

16-68 CZ05-00

QUIT

QUIT

Indicates that the last Linker directive has been entered.
QUIT should be entered after the last overlay, or at the end of
the root if there are no overlays.

If object units were successfully linked, the bound unit is
completed and the Linker terminates; otherwise, the Linker
terminates execution immediately. t

The QUIT directive is required? it cannot be embedded in
Assembly language control statements.

FORMAT:

(QUIT)
JOT >
(Q j

16-69 CZ05-00

RERUN RELOCATABLE

RERUN RELOCATABLE fRRl

Reload the sharable bound unit at restart into locations ,
other than those it occupied when the checkpoint was taken (see
the Command!,? manual for details on checkpoint-restart) . If this
directive i:s not specified, the bound unit is reloaded at the
same system memory pool locations it occupied when the checkpoint
was taken.

The RR directive can be embedded in Assembly language control
statements.

FORMAT:

RR r -

NOTE

If the RR directive is used, it is important to
remember that after reloading, the current values
of the IMAs referencing locations in the bound
unit are no longer validf therefore, if the bound
unit contains IMAs (see the link map or compiler
list file to determine this), RR should not be
used.

16-70 CZ05-00

RETURN

RETURN

Accept directives from the user-in file. This directive
should only be specified in an INCLUDE file. A RETURN directive
in a file specified in an INCLUDE directive is logically
equivalent to an EOF mark? it returns the Linker to the user-in
file.

FORMAT: ,.

RETURN

16-71 CZ05-00

SEG

SEG

Cause the bound unit to occupy one or two physical segments
in memory. Before using this directive, consult with the person
responsible for system building and determine the segment numbers
available to task groups. The SEG directive can be entered at
^any point. You can specify the physical segment number(s) to be
assigned as well as the access (read, write/ and execute) to the
segment(s). This directive is only meaningful when the bound
unit is executed In a swap pool. J

FORMAT:

(SEGI jxr
\SG J W

ARGUMENTS 8

i /
code_segment_no' 1 Kcode_access[,data_access]

1 S,data_access

code_se<jment_no

Hexadecimal number from 1 to F that specifies the number
of the physical segment containing the bound unit if the
-R ISCL parameter in the Linker command is not specified.
When -R ECL argument is specified, code__segment_no is a
hexadecimal number from 2 to F and data^segmen^no is
equal to code_segment_no -1. There are 15 big segments
in memory* Each big segment is at most 64K. The user
can use big segment numbers from 1 to F.

code_access and data_access

Bit strings of exactly 6 bits that specify the access
riglit for the readable and writable segments, respec-
tively. Each bit string represents the corresponding
access fields in the segment descriptor. Representation
of the format of the access argument is:

L, RR RW

Execute access

•Write access

•Read access

16-72 CZ05-00

SEG

The two bit positions that designate each access repre-
sent ring numbers

Ring
Mi Number

11 0 Executive
10 1 ' Privileged real time
01 2 Unprivileged real time
00 3 Batch

A program making a reference (read, write, and execute)
to memory is given access, if the value of the ring
number of the program's privilege is less than or equal
to ring value of the desired memory location.

The defaults for the access fields ares

Data access - -R - always 000000
a

Code access - sharable
1—001100

- globally sharable

- otherwise 000000

SEG XB06\,000100

In this example if -R was not specified, segment 6 with
default access is assigned to the bound unit and the
specified data access is ignorede If -R was specified,
segment 6 with default access is assigned to the code and
segment 5 with the specified access is assigned to the

Example 2s

SEG ,001000

In this example, if -R was not specified, the loader
assigns a segment number with the specified access to the
bound unit. If -R was specified, the loader assigns a
segment number with the specified access to the code and
segment number -1 with default access to the data.

16-73 CZ05-00

SHAKE

SHARE

Designates a bound unit as shacable within a memory pool. If
another task requests that the bound unit be loaded, instead of
another copy of the bound unit being loaded, the existing copy in
memory is uised. The bound unit MLS£ have reentrant code, but the
system does not check to see that it does.

SHARE must be specified in the definition of the root before
the first overlay is defined.

«•> »«
SHARE directives can be embedded in Assembly language control

statements.
L> l

FORMAT:

(SHARE)
}SE - j

16-74 CZ05-00

STACK

Specifies the size of the stack in a decimal number of
words. If no STACK directive is specified, the Linker will use
the largest stack size specified in a object unit linked into the
bound unite

FORMAT s

STACK value-n

ABGUMENTs

value-n

The size of the stack in a decimal number of words.

16-75 CZ05-00

START

START

Specifies the relative location within a root or overlay at
which execution of the root or overlay will begin once it is
loaded into memory by the Loader.

If a linked object unit contains a start address (an
Assembler or compiler END statement was specified) and the START
directive is specified, the first start address encountered (in
either a START directive or an END statement) is used by the
Linker for that root or overlay.

FORMAT:

RT(
symbol

/

ARGUMENT:

symbol

Name of the external symbol whose address indicates the
relative address at which the root or overlay will begin
executing.

Default: Start address specified in the first linked
object unit that has a start address. If the
symbol is never defined or a start address
is not found, the start address is the first
non-common location in the root or overlay.

NOTE

For very large programs, the start address must be
within 64K of the beginning of the root or
overlay.

16-76 CZ05-00

SYS

SYS

Indicates that this overlay or root can be run as a system
task. This directive does not control where the bound unit is
loaded, rather it allows a bound unit to be executed either as «
system or user taske Before using this directive,, consult with
the person responsible for system building and determine
available system memory. The SYS directive can be embedded in
Assembly language (CTRL) statements.

FORMAT?

| SYS I
)SS |

Example:

SYS

16-77 CZ05-00

VAL

Defines a value at link time that is equivalent to the
difference between two external location definitions.

VAL directives can be embedded in Assembly language control
statements. >

FORMATS

!

VAL ! symbol/ external location - external location
VL (

ARGUMENTS:

symbol

Assign a name to the value of the distance between two
locations.

external location,,

Location defined externally.

16-78 CZ05-00

VDEF

VDEF

Assigns a value to an external symbol. The VDEF directive
cannot be embedded in Assembly language control statements0 A
symbol should be defined only once, as a value or as a location.
When a symbol is defined, its definition is put into the Linker
symbol table so that it can be used during linking to resolve
external references.

FORMAT:

!

VDEF \
VF J symbol,X'value'

ARGUMENTS s

symbol

One to six alphanumeric characters.

X1value1

Value of the designated symbol; must be a one-word hexa-
decimal integer enclosed in single quotes and preceded by
X.

16-79 CZ05-00

VPURGE

VPURGE

Remove the specified external value definition. This
directive cannot be embedded in Assembly language control „..<„
statements.

FORMAT! ,, ' • -

VPURGE value-definition-symbol

ARGUMENT:

value-definition-symbol

External symbol name associated with a particular value.

16-80 CZ05-00

LINKER PROCEDURES

This subsection describes the frequently used Linker proce-
dures. The examples provided show different methods for linking
COBOL programs, including one example that uses overlays.

Overview

The Linker is a system software program that functions as the
final stage of program development before program execution is
possible. Before linking? a program must be compiled (or assem-
bled) to produce one or more object units or compile units that
the Linker identifies for linkingc The Linker recognizes object
units by the .0 suffix (appended to each file name by the com-
piler) . The Linker combines' one or more object units to produce
a bound unit. A bound unit is an executable program consisting
of a root segment and zero or more overlay segments that can be
loaded into memory.

Using Overlays

In situations where memory is limited, it may be necessary
for you to divide your program into one or more overlay segments
so that individual portions of your program may be called into a
single memory area only when they are needed. Unlike the root
segment, which cannot be reloaded once it is tead into memory, an
overlay segment can be read in as often as it is needed. See
Example 4 for a link session that uses overlays.

Interrupting Linker Execution

If at any time during Linker execution you want to interrupt
processing, you can perform one of the following actionss

• Press the QUIT, INTERRUPT, or BREAK key at your terminal.

• Enter ACABID at the operator terminal, where id is your
two-character task group identification.

After performing one of the above actions, a **BREAK** mes-
sage will appear on your terminal. You can nows

• Enter any valid ECL command.

• Resume Linker execution as if no break had occurred by
entering the Start (SR) command.

16-81 CZ05-00

• Terminate Linker processing and return to command level by
entering the Unwind (UW) command.

• Restart your task group by issuing a New Process
(NEW_PROC) command.

NOTE

If you want to terminate the MAP operation and
jump to the next Linker directive, issue a Program " .
Interrupt (PI) command. „ , ,„

16-82 CZ05-00

Section 17
SINGLE-USER DEBUGGER

This section describes the programming debugging facility $D
DEBUG.

OVERVIEW

$D DEBUG is an interactive testing and error correction
facility used at program execution time to debug bound units.

$D-DEBUG runs in the dedicated task group $D. Any
breakpoints you set can be encountered by aJLL users. (Break-
points are discussed•later in this section.) Therefore, you
should ensure that you are the only user on the system when
utilizing the $D DEBUG. Note that you must use the $D DEBUG
facility when you are debugging the lead task or a sharable bound
unito t v

$P DEBUG CAPABILITIES

Data, referred to by program locations in terms of memory
addresses, are displayed in hexadecimal or ASCII dump format.
Using $D DEBUG directivesf you can suspend programs at selected
breakpoints during execution and examine inputr display data, or
alter valuesB

With the $D DEBUG facility you can:

• Define, store, and execute a sequence of directives

* Set or clear true breakppints in task code to monitor task
status

« Set or clear bound unit. braakpoJjifcs. to gain control of
bound units as they are loaded

« Display, change, and dump either memory or registers

« Evaluate expressions.

17-1 CZ05-00

• Do not enter a semicolon after the last directive on a
line. Press carriage return after the last (or only)
directive on a line.

• Enter all argument values in hexadecimal notation, except
where specified otherwise.

Special symbols are used in $D DEBUG directive lines. These
symbols are described in Table 17-1.

Table 17-1. Symbols Used in $D DEBUG Directive Lines

Symbol Type Meaning

Arithmetic Operators!
plus sign (4>)
minus sign (-)
K

Performs addition.
Performs subtraction.
Multiplies a hexadecimal integer by 1024
decimal (400 hexadecimal) when K is the
last character of an integer expression.

'Address Operators:
period (.)

ampersand (&)

I

brackets []

Represents the last start address used in
a previous memory reference directive (DH,
CH, DP).
Represents the address of the next loca-
tion beyond the last one used by a pre-
vious memory reference directive (DH, CH,
DP) .
Signifies the contents of the location
defined by the expression within the
brackets. Three levels of nesting may be
used.

Reserved Symbols;
$Bn

$Rn

$P

$1

$xv

$IV_Bn

Contents of base register n of the active
level. The values 1 through 7 can be used
for n.
Contents of the data register n of the
active level. The values 1 through 7 can
be used for n.
Contents of the program counter of the
active level.
Contents of the indicator register of the
active level.
Address of the Task Control Block (TCB) of
a trapped task which is currently at the
head of the active level's trap queue.
Represents the contents of the base regis-
ter n as stored in the Interrupt Save Area
(ISA) of the active level. The values 1
through 7 can be used for n.

17-4 CZ05-00

OIM default task group, enter the following com-
mand at any time:

C :$Ds ' T

Example 3:

Loading $D DEBUG at a user terminal, not the operator
terminal:

SG $D GRANT.TECH 7 IKSR01 -EFN DEBUGDB -POOL AB -WD >WORK

$D DEBUG Operation With MMU

The $D DEBUG task group is loaded in ring 0, a privileged
state, in order to run effectively in a protected (MMU) system.
$D DEBUG will handle traps to trap vector 14 (unauthorized referr
ence to protected memory) and to trap vector 15 (reference to
unavailable resource) and continue as described below.

An error message will be displayed if you try to access non-
virtual memory within any $D DEBUG directivef except the Dump
Memory (DP) directive. If a trap to trap vector 15 occurs when a
DP directive is specifled, $D DEBUG will dump as much of the
requested memory as possible. Once a nonvirtual address is
accessed, the rest of the current line to be printed will be
blank-filled. The current nonvirtual address will be advanced to
the value that is the next multiple of IK. This procedure will
continue until the area to be dumped is exhausted or the end of
memory is reached,,

$D DEBUG FILE REQUIREMENTS ^ '

Directive lines stored for later execution reside in a preal-
located disk file DEBUG.WORKc This file must be in the volume
major directory of the bootstrap device specified in the Set File
(SF) directive (described later in this section). The size of
the file must be 54 sectors whether on diskette, cartridge disk,
or any other mediae

ENTERING $D DEBUG DIRECTIVES

$D DEBUG directives consist of only a directive name and one
or more arguments. When entering directives, follow the rules
listed below:

• Separate arguments within each directive by at least one
space.

• If you enter more than one directive on a line, separate
each directive and its arguments from the next by a
semicolon (i).

17-3 CZ05-00

Table 17-1 (cont). Symbols Used in $D DEBUG Directive Lines

Symbol Type Meaning

Debug Language
(cont):
exp

rexp

Indicates a valid expression formed by
using expression elements. Expression
elements are addresses, reserved symbols,
and hexadecimal values up to 32 bits in
length. No more than one address is
allowed within an expression. An expres-
sion element may be preceded by the posi-
tive {+) or negative (-) unary operator.
Expression elements can be joined by the
addition (+) or subtraction (-) operator.
Consists of expt/exp,, where exp-t is a
hexadecimal number that is a value of a
location expression; expj is an optional
hexadecimal repeat factor whose value must
be between 1 and 32f767. If expi is
omitted, there is no repetition.
Separation character between directives on
the same line.
Signifies "all" in certain print, clear,
and list directives.

Table 17-2 summarizes $D DEBUG directives by function. These
directives are described in detail alphabetically on the follow- .
ing pages. In each directive's format, it is assumed that $D
DEBUG was previously designated as the OIM default task group
when the operator terminal is specified as user-in, so $D is
_not specified before each directive name.

' NOTES "'" "' '

1. Pay careful attention to the format of each
directive, because the usage of delimiters, if •--*'•'
any, between a directive name and the first
(or only) parameter varies according to which
directive is being specified.

- '> ~
2. Ii: a directive has a parameter in which you

may specify the logical resource number (Irn)
oi: the device on which information will be
printed, $D DEBUG uses the specified device

: * / without first determining whether the device
has been reserved for exclusive use by another
task.

17-6 CZ05-00

Table 17-1 (cont). Symbols Used in $D DEBUG Directive Lines

Symbol Type Meaning

Reserved Symbols
(cont):
$IV_Rn

$S

SSL

$E

G through Z

Represents the contents of the data regis-
ter n as stored in the Interrupt Save Area
(ISA) of the active level. The values 1
through 7 can be used for n.
Contents of the system status register
(level number and privilege bit only) of
the active level.
Represents the value of the level number
of the active levele
Used with set bound unit breakpoint direc-
tive to represent the entry point as
defined in the bound unit or by the
callerc Used in place of $P associated
with true breakpoints.
Twenty single-character symbols having
initial values of zeroe Values may be
assigned using the AS directive*

Debug Language:

parentheses ()

The condition to be satisfied in an IF
directive for continuous processing of the
directive line. * indicates a logical
'NOT1 which may optionally be used*
Indicate directive or header information
to be stored for later use. Unmatched
right parentheses result in an error. A
right parenthesis that is paired with the
first left parenthesis terminates the

17-5 CZ05-00

Table 17-2 (cont). Summary of $D DEBUG Directives by Function

Function Directive Directive Name

General execution FO
Hn
IF
LL

RF
SF
QT

Redirect output
Print header line
Conditional execution
Specify line length of
operator terminal or
another terminal currently
in use
Reset file location
Specify file location
Abort $D DEBUG task group

j , NOTES

1. The memory and register control directives
(AR, AS, CH, DH, and DP) apply to registers on
the active level. To determine which level is
the active level and/or to set the active
level to a specified value, see "Determining/
Setting the Active Level" below.

2. The following directives are predefined or
delayed-execution directives and directive
lines associated with them are stored in the
file DEBUG.WORK: Sn, Hn, Dn, DT, SBn.

Planning Considerations

SETTING TRUE BREAKPOINTS - -

True breakpoints can be set to trap at selected task code
locations. At true breakpoints, memory and register values can
be displayed and changed. In this way, a task can be executed,
the values of its variables checked as execution proceeds, code
modified, and if necessary, variable values changed in order to
test the sequence of code up to the next breakpoint.

The following are guidelines for setting true breakpoints:

1. True breakpoints can be set in a task group (or in an
overlay in a task group)- only when the task group/overlay
currently is memory resident. The Set Bound Unit Break-
point (SBn) directive should be used to gain control of a
task group bound unit/overlay when it is loaded, to allow
true breakpoints to be properly set.

2. True breakpoints may not be set in code that will be exe-
cuted at the inhibit level.

17-8 CZ05-00

Table 17-2. Summary of $D DEBUG Directives by Function

Function Directive Directive Name

Directive line definition
and handling

Dn
En
P*

Pn

Define directive line n
Execute directive line n
Print all predefined direc-
tive lines
Print directive line n

True breakpoint control C*
Cn
GO
L*
Ln

Sn

Clear all true breakpoints
Clear true breakpoint n
Proceed from breakpoint
List all true breakpoints
List true breakpoint n and
associated directive line
Set true breakpoint n

Bound unit breakpoint
control

CB*

CBn

LB*

LBn

SBn

Clear all bound unit ^
breakpoints
Clear bound unit breakpoint
n
List all bound unit
breakpoints
List bound unit breakpoint
n
Set bound unit breakpoint n

Trace trap control DT
PT
ST
ET

Define trace directive line
Print trace directive line
Start j-mode trace
End j-mode trace

Active level control SL
TL

Set active level
Set temporary active level

Memory and register
control

AR

CH
DH

DP

Print contents of all
registers of the active
level
Change memory
Display memory in
hexadecimal
Dump memory in hexadecimal
and ASCII

Symbol control AS

VH

Assign a hexadecimal value
to symbol or register
Print value of expression
in hexadecimal

17-7 CZ05-00

2. The Set Temporary Level (TL) directive designates a level
as the temporary active level; this permits you to dis- ~^/
play or alter registers of a level different from the
default terminal level without permanently changing the
default terminal level.

i
3. Whenever a break or trace point is processed for a task,

the active level is set to the level of that task for the
duration of any stored-directive line execution. After
this duration, the last operator-specified value of
"active level", if any, is again in force.

MAINTAINING A TRACE HISTORY - •» " -

When using $D DEBUG with disk-stored directive lines that
execute upon encountering a trap or a breakpoint, a trace history
may be maintained on a line printer.

ragfc

Also, while at a $D DEBUG true breakpoint stall, a particular ^
task may be set to run in jump-trace mode. In this case, every
departure from the current sequence of instructions generates a ^_s
trace trap.

SO DEBUG DIRECTIVES

This subsection provides a detailed description of the $D
DEBUG directives in alphabetical order by directive name.

The following notational symbols are used to describe the
format of $D DEBUG directives.

Notational Symbols Meaning

Braces f \ For a single enclosed argument, indicates
I I that the argument is optional. If more

than one argument is enclosed by braces in
1 a vertical listing, the braces indicate
' that a choice is to be made. In this

*' \ case, optional arguments are identified in
the text.

Ellipsis (...) Indicates the ability to repeat within s—
braces.

Delta (A) ~ Indicates one or more spaces.
Vertical bar (j) Indicates a choice between two or more

arguments.
"*• * -

Note that the use of braces shown above differs from the
usage defined in the preface.

17-10 CZ05-00

3. If sharable code contains breakpoints, each task that
uses the code encounters the breakpoint, regardless of
which task group the task is in.

True breakpoints are set in tasks by specifying the Set True
Breakpoint (Sn) directive; the detailed description of Set True
Breakpoint directive includes additional rules for specifying
true breakpoints*

<v *„ *

CONTROLLING OUTPUT USING A BREAKPOINT '<• -

Output can be redirected from an operator terminal by using a
breakpoint. When the breakpoint condition occurs, the File Out
(FO) directive can be used to redirect the $D DEBUG output. T

In the discussions that follow, the terminology "current $D
DEBUG output device" refers to either an interactive terminal
specified for a task group or the device defined by a File Out
(FO) directive.

DETERMINING/SETTING THE ACTIVE LEVEL

The active level is the priority level currently in effect.
Directives relating to specific task context are effective only
on the active level. You must establish a level as the active
level by specifying the Set Level (SL) directive before using any
of the memory and register control directives from the directive
input deviceo Thereafter, the active level assumes the value
that will most probably be needed, based on the $D DEBUG action
in progress! i.ee, breakpoint, trace trap, or temporary reference
to a different level.

If you want to reference specific task context on another
priority level from the directive device, you can change the
active level by respecifying the Set Level (SL) directive or
temporarily designate another level as the active level by speci-
fying the Set Temporary Level (TL) directive; in the latter case,
the level is considered the temporary active level. After the
desired actions are performed on the temporary active level, the
active level reverts to the level specified in the previous Set
Level directive*

The following are guidelines for determining which level is
the active level, and methods of setting the active and temporary
active level.

1. The Set Level (SL) directive sets (or changes) the active
level. The specified level becomes the default level
accessible by the operator terminal or another terminal
that is the directive input device.

17-9 CZ05-00

ASSIGN

Assign j , y

Assigns A specified hexadecimal value to a specified symbol.
This directive is used to alter registers of the active level and
to define reserved symbols. Bound unit breakpoints lie within
the Loader, not in your task context. As a result, the Assign
directive on a register is refused by $D DEBUG, if the current
level's task is stalled on a bound unit breakpoint.

FORMAT:
i i \ • *

ASAsymAexp^ AsymAexp... \

ARGUMENTS:

sym

A reserved symbol G through Z or a register. „
1 •*•

exp | , t

s An expression that resolves to a hexadecimal value of up
j. to 32 bits. The rightmost 20 bits are used for an
£. address register ($Bn) or for the program counter ($P);

the rightmost 16 bits are used for all other registers.

Example:

AS $R1 -2 X 1408 $B7 X+15

This example causes -2 to be assigned to data register 1,
1408 to be assigned to the reserved symbol X, and 141D to be
assigned to base register 7.

17-12 CZ05-00

ALL REGISTERS

All Registers

Prints contents of all registers for the active level.

FORMAT:

AR

ARGUMENT?

/Irn

Logical resource number of the device on which the print-
out, will occur.

Default: Current $D DEBUG output device.

This example causes the contents of all the registers for the
active level to be printed on the device referred to as logi-
cal resource number 3.

NOTE

References to registers on the active level are
valid only if the task has come to a true break-
point* Registers displayed at the time of a bound
unit breakpoint are not those of the specified
bound unite

17-11 CZ05-00

CLEAR ALL BOUND UNIT BREAKPOINTS

Clear All Bound Unit Breakpoints

Clears all bound unit breakpoints.

FORMAT:

CB*

Example:

CB*

This directive clears all bound unit breakpoints of the
active level.

17-14 CZ05-00

CHANGE MEMORY

Change Memory

Changes the contents of a single specified memory location,
or consecutive locations starting at that location, to specified
value(s).

FORMAT?

CHAexpArexpj Arexpe.. i

ARGUMENTS?

exp

First or only location whose contents will be changed,

rexp

Value(s) to be put in memory location(s).

Example Is - '

CH 200 4FFF 1716

Execution of this directive puts the value 4FFF into location
200 and 1716 into location 201.

2s

CH 100 0/10

In this example, locations 100 to 10F will be zero-=£illed.

Example 3?

CH 2000 0/10 1/10 2/10

This example shows how multiple repeat factors can be useds
execution of this directive causes locations 2000 to 20OF to
be given a value of zero? locations 2010 to 201F to be given
a value of 1? and locations 2020 to 202F to be filled with

17-13 CZ05-00

1 CLEAR BOUND UNIT BREAKPOINT

! *» j

Clear Bound Unit Breakpoint "

Clears a specified breakpoint for a bound unit.

FORMAT:

CBn '' l

ARGUMENT: ~ ~ '
*<n

n

Bound unit breakpoint to be cleared; must be a decimal
digit from 0 through 9. ,* ^ „ »

Example?
*• * c-

CB3

This directive causes bound unit breakpoint number 3 to be
cleared for the bound unit previously defined by SB3.

17-16 CZ05-00

CLEAR ALL TRUE BREAKPOINTS

Clear All True Breakpoints

Clears all defined true breakpoints.

FORMAT! * ,
*•" •»

c* ' • . . [
Example: '

C*

This directive clears all true breakpoints of the active
level.

17-15 CZ05-00

CONDITIONAL EXECUTION

Conditional Execution - '• - • •' '- -

Allows a set of conditions to be tested prior to execution of
other $D DEBUG directives. The IF directive is intended to be
used in a stored breakpoint directive line. It permits break-
points to b« reported without suspending the active level if the
specified condition does not exist. When a breakpoint occurs for
which an IF directive has been specified, the following actions
occur:

• Any directives preceding IF are executed.

• The IF conditions are evaluated, as follows:

If TRUE, a line in the following format is displayed on
the current $D DEBUG output device

,lhhhh..."

and any directives following IF are executed. If a GO
directive (described below) does not follow, the active
level is suspended.

If FALSE, no display occurs, and the directives following
IF ace not executed. The active level continues
processing.

FORMAT:

IF exp J*JJ-lJ,lhhhh....;

ARGUMENTS:

exp

Memory address of a byte string argument. This must
specify an address; $Rn (where 0 .£ n .£ 7) cannot be used
for exp. (No check for this error is performed,
however.)

17-18 CZ05-00

CLEAR TRUE BREAKPOINT

Clear True Breakpoint

The Clear True Breakpoint (Cn) directive clears a specified
true breakpoint.

FORMAT: '
i

Cn

ARGUMENT:

n

t Number of the true breakpoint; must be from 0 through 31
(decimal).

Example:

C3

This directive causes true breakpoint number 3 to be cleared.

17-17 CZ05-00

CONDITIONAL EXECUTION

If both conditions are met, the memory locations 42D1 through
43DO are dumped to the output device associated with LRN 5,
and the active level will continue, in response to the GO
directive. If either condition is not satisfied, the dump
will not occur, and the active level will continue without
suspension.

NOTE

The IF directive can be entered from the terminal,
in which case its action corresponds to its entry
in a stored directive line. However, using the IF

, directive from the terminal is of limited useful-
ness,, since the conditions to be tested can be
checked by using other directives (e.g., DH).

17-20 CZ05-00

CONDITIONAL EXECUTION

Specifies the condition to be tested when.comparing the
memory byte string value to the test parameter,, \\
optionally specifies logical negation; i.e., not less
than, not equal, not greater than.

Indicates that the argument is right-byte aligned,

hhhh...

The test parameter, expressed in ASCII as a dense string
of pairs of hexadecimal digits? each pair represents one
byte. The test parameter may not be an assigned symbol
(see the Assign directive (AS))0 The length of the
parameter is limited by the maximum size of a $D DEBUG

* stored directive (127 bytes). The parameter's ASCII
value must consist of pairs of hexadecimal values. If an
odd number of hexadecimal values is specified, a command
error is reported when the directive is executed and the
task remains suspended to allow for correction.

1 The IP directive terminator must be a semicolon (?)e

Examples

Assume that breakpoint 2, as defined below, is encountered
and that $B7 points to memory location 555F:

S2 135E (IF 100(T>,3E,-IF $B7=42Dl;DP/5 $B7/100;GO)

In this example two conditions must be true before the Dump
(DP) directive (described below) is executed:

1. The rightmost byte at memory location 1000 must be less
than or equal to 3Ee

2. The byte string found at memory location 555F must be
equal to 42D1.

17-19 * CZ05-00

DEFINE TRACE

Define Trace

Associates the directive line within the parentheses with the
occurrence of a trace trap or a BRK instruction not already
defined as a breakpoint. The specified directive line is stored
in the file DEBUG.WORK for future use. The entire define trace
directive may comprise a maximum of 126 characters.

When you reuse a disk that has predefined directive lines
from a previous execution, the lines may be referred to without
redefining them. (See the Set Trace Breakpoint Directive.)

FORMAT:

DTA(directive line)

ARGUMENTS:

(directive line)

Directive line comprising maximum of 126 characters.

Example 1: *- " •: - >

DT (AR)

This directive causes all registers to be displayed each time
a trace trap occurs. (See the All Registers Directive;)

Example 2:

DT () - v

This directive cancels the predefined trace directive line.

17-22 CZ05-00

DEFINE DIRECTIVE

Define Directive

Defines a specified directive line for future use and asso-
ciates that line with a specified number. The directive line is
stored on the file DEBUGeWORK and can be referred to by specify-
ing in an Execute (En) directive (described below) the number
with which it was associated., The entire Define directive may
comprise a maximum of 126 characters.

When you reuse a disk that has predefined directive lines
from a previous execution, the lines may be referred to without
redefining them. (See the Set True Breakpoint Directive.) This
prevents complex predefined directive lines from being respeci-
fied each time the system is reloaded for debugging the same
problem.

FORMAT:

DnA(directive line)

ARGUMENTS s
f

\

n

Number with which the specified directive line is asso-
, eiated? must be from 0 through 9.

(directive line)

One or more directives stored for future use.

Example Is

D3 (CH 100 0)

This example associates the number 3 with the directive
within the parentheses. Hereafter, each time the directive
E3 (see "Execute Directive") is executed, the parenthetical
directive will be executed and location 100 will be
zero-filled.

Example 2s

D4 ()

By storing a null directive line, this example deactivates a
previously defined directive line 4 which no longer is

17-21 CZ05-00

DUMP MEMORY

Dump Memory

Displays! an area of memory starting at a specified location
on the opereitor terminal or on another specified device. The
printout comprises a minimum of eight locations, and is in hexa-
decimal and ASCII notations.

If the printout is written to a terminal and a value equal to
or greater than 121 decimal was specified in the LL directive, 16
locations will be printed on each line.

NOTE

Up to 32K words of memory can be dumped in response
to a single DP directive. Dumps of more than 32K
must be performed as separate operations.

FORMAT:

DP |/lrn> Arexp Arexp...

ARGUMENTS:

Logical resource number of the device on which the dis-
play occurs.

Default: Current $D DEBUG output device,

rexp

Memory location(s) whose contents are displayed. The
display is always in a multiple of eight locations.

Example 1:

DP 200

Execution of this directive displays one line of memory in
both hexadecimal and ASCII, starting at location 200.

17-24 CZ05-00

DISPLAY MEMORY

Display Memory

Displays one or more specified memory locations in hexadeci-
mal notation either on the operator terminal or on another speci-
fied device. :

</lrni&rexp Arexp...

FORMAT;

DH

ARGUMENTS s

/Irn

, Logical resource number of the device on which the infor-
mation is displayed.

Defaults Current $D DEBUG output device,

rexp

Location (s) whose contents are displayed,, A minimum of
one location may be displayed.

Example l̂ s

DH 200

Execution of this directive displays on the current output
device the contents of location 200.

Example 2s

Execution of this directive displays the contents of location
200 to 2FP on the device associated with LRN 2.

17=23 CZ05-00

END TRACE

End Trace

Disables the j-mode trace for a specific task on the next
trap. The trace must first have been enabled using the ST
directive.

FORMAT:

ET

Example:

ET

This example disables the j-mode trace on the next trap.

17-26 CZ05-00

DUMP MEMORY

Example 2s
i

t DP/4 80/3C 200/240

This directive causes the contents of locations 80 to BF, and
200 to 43P to be displayed on the device associated with LRN
4. Although location 3C was specified in the directive? the
display is through location BF because displays always are in
multiples of eight locations.

17-25 CZ05-00

FILE OUT

File Out " "

Redirects output from the default $D DEBUG user-in terminal
to an alternate device, which must be either a printer or another
KSR-compatible terminal. This directive allows messages that
result: when a breakpoint or other condition occurs to be sent to
a device other than the terminal. It has no effect on input to
$D DEBUG.

FORMAT:

FO Irn

ARGUMENT;

Irn

Logical resource number associated with the printer or
terminal to which output is redirected. The Irn speci-
fied overrides any Irn previously specified, and remains
in effect until another FO directive is issued or until
$D DEBUG is terminated. However, stored directive lines
that include /Irn parameters take precedence over the FO
directive. That is, the value specified for /Irn in a
stored directive line is used instead of the Irn speci-
fied in FO.

NOTE

There is no validation of the Irn specified. Thus,
if an inappropriate device (e.g., diskette) is
specified, no error message is issued to inform the
user.

Examples

FO 2

Output is redirected from the terminal to the device associ-
ated with Irn 2.

17-28 CZ05-00

EXECUTE

Execute

Retrieves and executes a specified predefined directive
line. This directive may not be embedded in Define (Dn) direc-
tive linesi it is permitted in Set True Breakpoint (Sn), Define
Trace (DT) and Set Bound Unit Breakpoint (SBn) directive lines.
(These directives are described elsewhere in this section.)

FORMAT:

En

ARGUMENT:
[

n . -

Number of the line to be executed; must be from 0 through
9.

Example 1:

t D3 (CH 100 0)
E3

The directive E3 causes the retrieval and execution of line
3r which was previously defined in the Define directive as CH
100 Oc

Example 2:

D3 (CH 100 0)
• SI 100 (E3)•

In this example, the Execute directive E3 is embedded in a
Set True Breakpoint directive line. The Execute directive
will cause the retrieval and execution of line 3, which was
previously defined in the Define directive as CH 100 0,
whenever true breakpoint 1 is encountered.

17-27 CZ05-00

LINE LENGTH

Line Length - *•

Ma.ximum line length of each line entered through the operator
terminal or another terminal in use.

FORMAT: *

LLAvalue

ARGUMENT:

value
T

A hexadecimal number between IE (decimal 30) and 7E
(decimal 126).

Examples

LL 48

This directive signifies that the operator terminal or other
terminal in use has a maximum line length of 72 decimal
characters.

17-30 CZ05-00

GO

QQ

The GO directive resumes execution on the current active
level after a breakpoint and can optionally specify a limit~to-
pause counter value which applies to j-mode trace traps (see the
Start j-mode Trace Directive)„

FORMAT?

GO |ALLLL

ARGUMENTS

LLLL

ASCII expression of 1 to 4 hexadecimal digits yielding a
value greater than zero. If used, the ASCII expression
is preceded by one space.

Default: 1.

Example:
4

SO 100 (DH 200/10| GO)

The task encountering true breakpoint 0 will trap; the asso-
ciated directive line will be executed by $D DEBUG and the
last directive of the directive line (GO) will cause the task
to be reactivated.

17-29 CZ05-00

LIST ALL TRUE BREAKPOINTS

List All True Breakpoints

Lists all currently defined true breakpoints, their locations
in memory, and the instruction being replaced. Stored directive
lines, if any, are not displayed.

FORMATS

L*|/lrnl

ARGUMENT: , , -

/Irn

Logical resource number of the device on which printout
(will occur.

Default: Current $D DEBUG output device.
••>* :

Example of Listing:

BREAKPOINTS
1 LOG - OOABCD INST = OF02

In this example, true breakpoint 1 is set. •

17-32 CZ05-00

LIST ALL BOUND UNIT BREAKPOINTS

List All Bound Unit Breakpoints

Displays all currently active bound unit breakpoints.
/

FORMATS

LB* | /Irn \

ARGUMENT?

/Irn

Logical resource number of the device on which the list-
ing will occur.

Default: Current $D DEBUG output device.

Example of Listings

BU2 LWD

In this example, bound unit breakpoints 0 and 2 have been
previously set0

17-31 . CZ05-OG

LIST TRUE BREAKPOINT

List True Breakpoint

Displays the directive line associated with a specified true
breakpoint.

FORMAT s

Ln

ARGUMENTS:

n

Number of the true breakpoint whose directive line will
be listed; must be 0 through 31 (decimal).

/Irn

Logical resource number of the device on which printout
will occur.

Default: Current $D DEBUG output device.

Example:

L2/4

This directive causes the display of the directive line of
true breakpoint 2 on the device associated with LRN 4.

17-34 CZ05-00

LIST BOUND UNIT BREAKPOINT

List Bound Unit Breakpoint

Displays the directive line associated with a specified bound
unit breakpoint.

FORMATS

ARGUMENTS£

n

Number of the bound unit breakpoint for which the direc-
tive line is to be listed; must be 0 through 9«

/Irn

Logical resource number of the device on which the direc-
tive line will be listed.

Default: Current $D DEBUG output device.

Example s

This directive lists the directive line associated with bound
unit breakpoint 3. The listing occurs on the device associ-
ated with logical resource number 4.

17-33 CZ05-00

PRINT ALL

Print All

Displays all lines predefined by Define (Dn) directives.

FORMAT: „ ^

P*{/lrn| I

ARGUMENT: *-.

/Irn

Logical resource number of device on which printout will
occur.

Default: Current $D DEBUG output device.

Examples . < -<

P*/4

This example prints all the directive lines previously
defined by Define directive. The printout occurs on the
device whose logical resource number is 4.

17-36 CZ05-00

PRINT

Print
\

Displays a specified line predefined by a Define (Dn)
directive.

FORMAT:

Pn

ARGUMENTS :

n

{/irn}

Number of predefined line to be printed,' must be 0
through 9.

/Irn

Logical resource number of device on which printout will
occur*

Defaults Current $D DEBUG output device.

Example:

P9/4

This example prints the directive line previously specified
by Define directive 9. The printout occurs on the device
whose logical resource number is 4e

17-35 CZ05-00

PRINT HEXADECIMAL VALUE

Print Hexadecimal Value

Prints the value, in hexadecimal, of each specified
expression.

FORMAT:
' • f '. * -.

VH </lrn>Aexp Aexp...

ARGUMENTS:

/Irn

Logical resource number of device on which printout will
occur.

Default: Current $D DEBUG output device,

exp •>•""

Expression whose value is displayed. •"''-

Example: : '• i ":—'

VH ,+100-M ' r

This directive causes the display of the result of the compu-
tation defined by the last referenced memory location plus
100 (hexadecimal) minus the value assigned to the temporary
symbol M.

Example:

VH X-20

This directive causes to be displayed the result of
subtracting 20 (hexadecimal) from the value currently
assigned to the temporary symbol X.

17-38 CZ05-00

PRINT HEADER LINE

Print Header Line
5

Prints a specified header line starting at the head of form
or after a specified number of lines are skipped. The main uses
of the print header line directive are to document printed infor-
mation related to breakpoint or trace trap debugging, and to
annotate a line printer memory dump.

FORMAT:

Hn

ARGUMENTS:

n

Number of lines skipped before header line is printed;
can be 0 through 9« 0 causes header to be printed at
head of form.

/Irn

Logical resource number of device on which printout will
occur.

Default: Current $D DEBUG output device,

(header)

Any ASCII character and/or expressions? each expression
must be preceded by a percent (%) sign. If a percent
sign is to be printed, two percent signs must be used
(%%). A header line must end with a space character?
i.e., there must be a space immediately before the right
parenthesise Left and right parentheses must be balanced
within header lines.

Examplej

HO/2 (DUMP OF BREAKPOINT FOR LEVEL %$S)

This example illustrates a way to document dumps. As soon as
a carriage return is typed, the above header will be printed
at the top of a new page on the device identified by logical
resource number 2«

17-37 ' CZ05-00

QUIT

Quit * ' -" ~

Clears all breakpoints, closes the work file DEBUG.WORK, and
disables the $D DEBUG trap handler before effectively aborting
the $D DEBUG task group. If the group is aborted by a directive
other than QT, the results are unspecified.

FOBMAT:

QT ,

Example: *

QT

This directive clears all breakpoints/ closes the work file
DEE.UG.WORK, disables the $D DEBUG trap handler, and then
aborts the $D DEBUG task group.

17-40 CZ05-00

PRINT TRACE

Print Trace

Displays a pre-defined trace directive line.

FORMAT:
*

PT {/1ml ' 4j

ARGUMENT: ' '
I

/Irn

Logical resource number of device on which printout will
occur.

Default: Current $D DEBUG output device.

Example:

PT/4

This example prints the directive line previously defined in
a Define Trace directive. The printout occurs on the device
whose logical resource number is 4.

17-39 CZ05-00

SET BOUND UNIT BREAKPOINT

Set Bound Unit Breakpoint

Sets a. numbered breakpoint for a specified bound unit or
bound unit overlay. A given bound unit (BU) breakpoint refers to
either roots or to overlays, or to both. When a bound unit
breakpoint is encountered, a message informs the user where the
bound unit or overlay has been loaded into memory. True
breakpoints can then be set at specified locations in the
program. Because a bound unit is loaded at the time the task
associated with it is created, the level number displayed when a
BU breakpoint occurs is not necessarily the one used when
requests for that task are later executed.

The entire Set Bound Unit Breakpoint directive may comprise a
maximum of 127 characters.

The message format is:

*BO n $SL=OOxx $E=OOxxxx OOxx

n

Number of bound unit breakpoint; must be 0 through 9.

$SL=OOxx

Priority level.

$E=OOxxxx + OOxx

Bound unit base address plus entry point offset as
defined by the bound unit or by the caller. Used in
place of $P associated with true breakpoints.

FORMAT:

SBnA

ARGUMENTS:

bound-uni t-name
bound-uni t-name/overlay-numbe r
bound-uni t-name/*
*/overlay number
/

A(directive line)

n

Bound unit breakpoint number; must be from 0 to 9.

17-42 CZ05-00

RESET FILE

Reset File
i

Prohibits execution of directives that use the file
DEBUG.WORK until another specify file (SF) directive is issued.
The directives that use DEBUG.WORK are: P*f Pn, PT, Sn, En, Dn,
DT and SBn.

i)

FORMAT:

RF

Example:

RF

This directive prohibits execution of directives using the
file DEBUG.WORK. You must issue another specify file (SF)
directive before vou use those directives (listed above).

17-41 CZ05-00

SET LEVEL

Set Level - ' -

Sets the active priority level to a specified value. This
level remains in effect until another SL directive is issued.
The level may be temporarily changed via the Set Temporary Level
(TL) directive (described below).

FORMAT:

SL/Jexp

ARGUMENT:

exp

Number of active priority level in hexadecimal notation.
i
Default: 0

Example I:

SL C

This directive sets the active priority level to 12
(decimal). If the All Registers directive is entered after
the SL directive, the registers on level 12 are displayed.

Example 2:

This example shows how the active level can be designated,
permanently changed, and temporarily changed.

SL C The active level is 12 (decimal)

SL A, The active level is 10 (decimal)

TL B;AR The active level is temporarily set to 11
(decimal). After the AR directive is executed,
the active level reverts to level 10 (the level
specified in the last SL directive).

17-44 CZ05-00

SET BOUND UNIT BREAKPOINT

bound-uni t-name
•*. -

Name of the bound unit to which the breakpoint applies;
(up to six ASCII characters (first six characters of the

bound unit name)«,

overlay-number

Hexadecimal number of the bound unit overlay.

"All" roots or "all" overlays, depending on context,

(directive line)

Directives to be executed when the bound unit/overlay is
loaded.

Example: {

SB6 SOOZ/A (IF 3D02=5354;VH X-2?GO)

This directive sets bound unit breakpoint 6 for overlay
number A of the bound unit named SOOZ, The directive line
specifies that if the condition indicated is tr-ue (the byte
string at location 3D02 equals 5354) ? then the value of the
temporary symbol X minus 2 is displayed^ When overlay A is
loaded into memory, its location is displayed at the
terminal, and the directive line associated with bound unit
breakpoint 6 is executed.

17-43 CZ05-OQ

SET TRUE BREAKPOINT

Set True Breakpoint

Sets a numbered true breakpoint at a specified location.
When the true breakpoint is encountered, there is a typeout
indicating the contents of the location counter and the active
priority level? task execution is suspended; and the stored
directive line, if there is one, is executed. The Set File (SP)
directive is a precondition for directive line execution. The
entire Set True Breakpoint directive may comprise a maximum of
126 characters.

If there is a preexisting directive line associated with a
given true breakpoint and that directive line is no longer appli-
cable, clear the line by designating empty parentheses (} when
setting the breakpoint.

The message format is:

($D) BPn SP=OOxxxx $SL=OOxx

$P=OOxxxx

Location counter

$SL=OOxx

Priority levelr •*
NOTES *' . '

1. If a true breakpoint is set in any of the
following types of instructions, that break-
point must be cleared (using the Cn directive)
before continuing execution (GO) directive):
input/output, generic (BRK), scientific, LEV,
invalid instruction, or instruction with an
invalid address syllable. You may avoid this
restriction by clearing the existing true
breakpoint with a stored directive and then
resetting it in the stored directive line of a
subsequent Set True Breakpoint directive, as
shown in Example 3,

2. A GO directive embedded in a Set True Break-
point directive line allows task execution to
proceed after the desired operations have been
performed, without further operator
intervention.

17-46 CZ05-00

SET TEMPORARY LEVEL

Set Temporary Level

Sets the active priority level to a temporary specified
valuec The level specified in the TL directive remains in effect
until an SL or another TL directive is issued? or until the end
of the directive line* If the end of the line is reached before
another SL or TL directive is encountered, the value specified in
the last SL directive becomes the active priority level.

FORMAT?

TLAexp

ARGUMENT:

Value designating the temporarily active priority level.

Examples

SL 20
TL A?AR
TL BfAR

The first TL directive designates level 10 as the temporarily
active priority level so that all registers on that level can
be displayed via the subsequent AR directive.

The second TL directive designates level 11 as the temporar-
ily active priority level so that all registers on the level
can be displayed via the subsequent AR directive.

After the last TL directive is executed, the active level
will be 32 (decimal)s the level specified in the last SL
directive.

17-45 CZ05-00

SPECIFY FILE

Specify File *~t~

Identifies the device on which the file DEBUG.WORK is
located. Since the function of the SF directive is to find the
work file, it should be the first directive executed; failure to
do this results in the issuing of an error message as soon as a
directive that requires the work file is used.

fa? *

FORMAT:

SFAlrn

ARGUMENTS

Irn

Logical resource number of the disk device on which the
file DEBUG.WORK is located; must be specified in hexadec-
imal notation. This Irn must be the same as that of the
bootstrap device.

Example:

SF 1

This example specifies that the work file is on the device
whose logical resource number is 1.

17-48 CZ05-00

SET TRUE BREAKPOINT

FORMAT:

SnAexp/A(directive line)V

ARGUMENTS;

Number of true breakpoint? must be 0 through 31
(decimal).

exp

Location at which true breakpoint will occur,

(directive line)

Directive(s) that will be executed when the true break-
point is encountered.

Example Is

SO 100 (DH 200/lOfGO)

This directive will cause the display of locations 200 to 20F
when location 100 is reached and the task will proceed.

Example 2s

SO 100 ()

This directive cancels any directive line previously
associated with true breakpoint 0 and sets true breakpoint 0
at line 100.

Example 3:

50 1000 (AR;CO,«GO)
51 1003 (SO 1000;GO)

The first directive line sets true breakpoint number 0 at
location 1000f causes' a printout of all registers on the
active levelt and then clears true breakpoint number 0
because the instruction at location 1000 is restricted (see
Note 1 above).

The second directive line sets true breakpoint number 1 at
location 1003 and then reestablishes true breakpoint 0 at
location 1000? the second true breakpoint line causes no
visible action except the printing of the breakpoint message.

17-47 C205-00

SAMPLE 3D DEBUG SESSION

A sample DEBUG session is shown below to illustrate some of
the directives and procedures described earlier in this section,

The bound unit being debugged is TSTNOW, listed in Figure
17-1. The debugging session is shown in Figure 17-2.

17-50 CZ05-00

START j-MODE TRACE

Start j-mode Trace

Sets the given taskes Ml register j-bit on. As a result, any
departure from the current processing sequence will cause a
trap. $D DEBUG treates the trap as a "trace trap." The follow-
ing points applyj

• j-mode trace can be started only for a task which is cur-
rently suspended due to a true breakpoint.

• The Start j-mode Trace directive will be refused if the
task is suspended due to a bound unit breakpoint.

• j-mode processing is specific to a given task and is shut
off or restored at the monitor call interfacesc

• When a task is running in j-mode, $D DEBUG"s handling of
successive traps is governed by the limit-=to-pause counter
of the GO directive.,

• Limit-to-pause has a default value of 1, but may be set to
an arbitrary value by the GO directive. $D DEBUG decre-

, ments the limit-to-paus@ once for each occurrence of a
trace trap* When limit-to-pause assumes the value zero,
the trapped task is suspended to permit operator action,,
When the task is reactivated (GOA[LLLL]) the
limit-to-pause is reset to the default value or to a
user-specified value€

FORMATS

ST Ivl

ARGUMENT?

Ivl

The active level, <

Example:

ST C <

This example sets the task*s Ml register j-bit on at active
level 12.

17-49 CZ05-00

(M
og
o
a.

«t
I

o
o
*

«« • », T * *»*.t * ~ ^ e
as OK> 3 .̂
17 «V f» • • 9 • 9
U,! B 3 (• O- ' • O- 41 O *•

V? *n_j *O • U3 W • • r-iOfNJ • KOrvj* O % ' •?
<S M/»-Tu»- ^°^ «rt !•% ^-3f\jO ^>itw\<O«~« rvi 3 ^

3»°<«UH OA H O O >rO- Aj -J01«<NI-*O • O ^
V^ UJ V » <k * 00 x « v T - C Z N * O 3 PM« O C isi C

~3»- IV W(V O IN)*-1 % N (Ml_l \ M<Nli_l % <-> M-l
t, k WQC . » • » - * » . r \ j \» . (M M O

V* X M <Qv-l/> N <fl»—U^ l>» (O *-> w
O>

•H
4J

»• a • M
3 OB -H
O £ «>> «>> w > |4
</S(D^ V, C-' W «•= > OS 3.̂ K M » I X V t M X « I * D

. -a M -
t-*-*-t £T3J3 —'-Q—• V»

u rsirw (vK»w> S
* « I I I I I i

3-«- U 3<^ U 3*^
fc"^ »f »»<^ *< *cfc i

— 3 M -. 3 x— 3 «7

5
3 • 2
.••*
m
«• a A moo
*» «V ' «A «/^(Sj«M
«0 o rsj Owo

QOO u. »*> u.tr>r\! ' " s—S
OOO •* tf%

Oa
oo<- OOQOO oajoaocDi/^cvo a

<Or\j OOO ru«r<rvirvi f\4i/>r\j<M<vi/><cro<M O

•O f»-»-
OOOOOO OOO OO COOO OOOOOOO O OZ
OOOOOO OOO OO COOO OOOOOOO O O3

o

oooooooooooooooaooooooaoocooo oooa
OOOCOOOOOCOOOOOOOOOOOOOOOCOOO OOOUi
OOOCOOOOO 3COOCOCOOOOOOOOOCOOO OOO
QOUGOOUOOGUOOOCJOOGOGCJOGUOGOt-iCJ OUO

a
o
o
a

17-52 CZ05-00

* rt/»

0 >-
O </»
©

2
O

ut ••»
49 h»
< «
ft X

K
O

Mb kfc

< z
.1 •*
1 >

J
„«

O us
O 3

Cfk UI
z

06 O «-
W X N
J • •» .. « t •
<E % Vrf № *> <P°«M *•
X ^» «.«•- % rvi«= ro |rs< t^r- ~
u» o@ »O O"3)G II 3 I O Q
«/t O- <*».* fVlU 3 <fc=^ *UJ I 0=^ iyp
<Sl r ° < » > v « >9 n -J 4*C^ * "fcc « <flfM_! »)<" e *=o « <V S

efe IB «</t-^rsiv> «- 3<x OO <e n^—«t̂ »- «P= 3tM eo "» fn
O A 3»««BMB O ^3tt4A OASB~° <flll II O J3l8tr» O X cJ
w % I«M v «o <t % eo % « « , « > > %iu * ^ % * oa % « , « < _ ; % ~
O »• «i«*-#<©f«<. O «*">O«= O«~ «J>^"W>Gf>» O •̂ •C*= O w- i,̂

XX *" J3 t, fc • k. fSfflXI t= fe • J3 fc fe o> ts^m^ «- t • ^ <- t, • fe v T^
K ««A«««A KM«°«*t««««A x «A«A«f«* * «rt °

SB Z C

** w ' TJ« ». . *. 4J
«0 « 3 3 W

<«; >• w O f f l MO K "H
•*»«« a. ^v> «« « <Asi> t
fete. O <»-O"Q u w C

•*» W •• fll
OS « •» M* « «» 3

« . 0 « « « « « « 3 «« « C «« fj,

•H
fa

oo ooo oo coo oo
eo© o>» ooo

ooo»-«-
OO < «p>=f»»OO •~u'*>-©©OO> W(f»-P»OO
Ow O" ffi«oeooeo Offioo<~»@u&> SSQOQOOO

^ OO «" wtwtd.©© Ouu)<r°6O**> ouJtbOO Ouuj«~OO *~

OOO OO O OO©O© »=«-»=»»*.̂ ' ,-,= ,.»-»- (Sj(N)(VfVf̂ iv
U| ©OO OO O OOOOO OOOQO© OOOOO OCOOO O
«j ooo oo o ooeoe cooooo oooco ooooo o

ooooooooo •-•-*-«
OOOOOOOOOOOOOOOOGOOOQGOaOQOOCOQOOOOaOOCOOCGOO
OOOOOOOOOOOQOOOOCOOOOOOOOOOOCCCOGOOOOGCOCCGOO

17-51 CZ05-00

№
X
UJ

•

Q.

O.
•

1

•

•

O
O
a

a
a
o
a**
CO
u,
Q
*«e

O
o
0

< r»
O ct)
PI 'JJ
a
vf O
O rxi
it a
a. a
«t

o
UJ U
*- CD
O 0
O
11 (X!
_J O
tn o
«• o

••s

ru •£
-o
ro

ex O
OD -f
* 0

o-
a

- 0
fr) ..

*- o
ro

u •• o
o in —
«t — a

a
-I u
K -0
u, as
< ru <»
*

oo o on cu a— o o
C-1 CVI II

in
O O OS
ru CO »»
CJ O
ru ro

a
n •£ 0
CO (*) O
— O O
n n u

•r
o ro as
ru ro t«
r» <•
~o ro

o
^ in o
*- r) o
— — o
•r n ii

ro
O 0 05
CXJ CU «•
o- o
-O CVI

(_>
rv! O —
r^ ru o
-o o a
-r ru ii

CVI
— ru !*
-r co «*
o coru n

a
-- •„ a
t - — a
o- -r o
to co u
c c —
-r -r x
C = T*

UJ

a
-r
u
en

*«t
o»
PI O
a a
•r O
C3 0
I u

«J" •-•

at «»
v>

<
C3 -0
C3 M
o a
C3 -I1
o o
C3 U
11 a.
n t*
<n
vi

n-
•0

-r -r
a a
-IP -r

O O
~T II

C3 r*
Ii CO
M «»
a:
«»

M
-0

o n
C3 O ~
CJ -r o
C3 0 —
a ii ^
C3 ~0 <
u co -r
-"<*•»•
as x
«»

U 0.
r» acju: •-

C3 cvj ce
C3 0 •£
00 —
1 II
.- »i rv
j , £ —
t*> t» -p

O
a.. <
o r~
n co
.. Q

in -r
— 0

ii
a.
«*

CVI U!
CO »-
0 Q
•" O

II
- _J

tO U3
— t»

13
3 rj
-t

—i a.
ce ;o
U, x

UJ

o
«r
n

co en
a «»
a tu
Q «C
ii n o
•fl O O
cr -r o
<» o o

u u
-r i-«

O OB 1*
O <ft
Q
O <
ii o r~
in n co
x o o
«*• O -f

0 O
O H

O H O .
Q ro <e>
O as
O 4»

ii a>
-»• ^3
as •»• -r
i* 03 O

cvi -r
o a

Q -r n
o a K
O II CO
o ru «*
n ca
n <*
OE ro
«» -o

ra co
o a

to a -r
O 0 Q
O 0 il
Q O -0
II i| CO

CVI — •»
a: as
4A «(•

CJ

f».

o o u.
o a tu
Q O O
o oo
II II II
— ,- in
ae a^ ̂
»* '.!» •*

<

•O_)
en
«°4

f

ao
CV) (VI
a o
CVI CXI

o o
cu cu
a o
cxi (X)

a o
(V) CXI
o o
CU CXI

— o
-*• cu
Ul O
ew ru

•o o
co cu
o o
-r ru

Ul O
CVI CU
ro o
in cu

o o
-r cu
CO O
*r cu

«- o
-r co
0 O
ru ru

- *-*
O in
•t CO
CO f>
o c.-^
-r -r u
a c; f

O < < -C
tj < o» 03
CD O" O O
cj — •— —
II II II il
H- H> H- H-
tn to en en
2 Z 2 2
** fc*> •-« »-e

M t -t «t
-o -o r*. co
co ro ro co

en a o a a
t- -r -r -r ~r
2 O O O O
•-< u n a u
O «J o cj ij
a. 0 0 0 0
1C _l -J _/ _J
•E
UJ
tz — CU tO -I-
O3

<
(0
ro
o
-r
a
H
a,
<*

;

-r ui
_l ~~
: O

0
Ul "* II
> _J
-i en
i— «•
ej <
<
Z -0 -r
—i _)

0

o en a.
S ' •-> to
•o ^ -»

Ul

o
-r
n

o en
a «
o n
o u
M tn o
-000
as <r o
1* O O

u u
-*• «-i

O OB *»
a«»oo «t
» O S3
man
OS O O
* O -r

o a
O H

O H O .
o n «*
O 90
O 4»

H e>
•r -o
as -r -r
*> « O

cu -r
O 0

O -f II
a a f**
O H CQ
o eg <•
n ca

CO <*>
ce ro
4* -0

Q ro
o o

o o -r
0 O O
O O II
a o -o
II II 09
cu — *
ce ce
•» <*

o
f^

in o u.
o o ru
co a o
000
n u n
— .->. ki
CC ̂ Ji
«• 1* «»

(XI

<
0
UJ
W!

H>
0

u
<

0
CXI
CXI
n

0
cu
u
-o

-o
in
rv

»•
r>.
in
-0

CO
in
a
ru

-r
rv
u.
-o
u<
-0
CO
SI

*•
•r
O
rg

•*,
ru o
cj —
ro -^

u, o u.
in -p in
•<• ct f

(XI

<
3
a
Ul
u
H=
O

WJ 0
< n

CXI

a o
cxi cvi
CVI O
n cu
0 O
ru ru
u a
-o ru
— o
-0 CV)
in a
N. ru
— o
1̂ CU
in o-o ru
CD O
in cu
o a
ru ru

•f O
r- ru
u. a
-o ru

ui o
-o ru
ca a
<n in

— a
~r in
o ru
ru ro
*^ '^
ru t
ij CJ
ro ro
o zz
-r -r
0 —

S
.

B
R

A
C

K
E

T
S

.
O

R

P
A

R
E

N
T

H
E

S
E

S

E
X

IS
T

.
T

H
E

1

E

D
E

L
IM

IT
E

R

A
N

D

R
E

T
R

Y
.

^ X
ce —
<
S p-

:j
2 -J
o ce
—i a:
t- O

— •£ <J
a >-
— o
«.o .

t3 Q
in aJ
0 0 S
«3 UJ ic
O :j O

2 U.
r~ -t cc
— _» aJ

•C w ••
•• ia v
f j 2 -•. a
ui o — • -e

O
•H

CQ
CQ
0)
w
en

•H
rj>
Cn
3
A
0)
Q

0)
r-<
a,
CO

C/l

-p
c
o
o

CN
I

o a — — — « .i
O 1* 1* '-*» W ^ VP -J*
O - - - - - - - !

X O U) «- ti
O «» «• «» i* *i»
a — - - - -

ra-i c, a -
•« * *• vt u» •« •r * o

— -.3
«••*•!•• a. u> a.

i — x 1C I S

oe <s
S

17-54 CZ05-00

C9
Ct

M
o
r»
ai
o

« s
n *

Ul
K
o <n
H- w
cj in
3 —
ce
t— M
en —
>• 13
oe 3o -ti—
(J (VI
ul <0
ce
f^

* S3 ••
<! *̂ >

3 in
«" UJ C3

o 2 -*•
S «= 03
•- W C3
> I O «

>- «- in
(XI

22"
o < >n

o -» —

-i <ffl

; OB • tw
« «O

§
O Z

S * ~g .
U!

. j; —
U!

« I— UJ
UI £

O
•£
LU
ce

o. -
3 r-

i o a
ce t
19 US

I tC

a•̂
in

in
o
i
o
a
n
CK
i

UI

a.
o
(S
fB
'S

CO

-o
w
o

(A

I -C
_1 UI

—1 t— —3•j x -£ ce,
— ia u

•13—> UI -1 '.") IT>

s: =s
uJ O
•c ee
C3 13

a,
=>

I O

aa
ut .«
o o

in tt

to
o

o
o
o

o m
o o
O O
o —

o
F» -F
-0
n o
O r*
•*• rtS
s u
u

3 UJ -O
O «» P)
s o
l~ UJ O
UI —

— H- O O
Lt) A, O : J
»» Lt II CD

«t _l o
a. _j tn
o /«* « •»
—:- M

eg — -o
K ci

— UJ 3 O
3 t— CO f
CO < * O tu

O X Q i3
< «» «» 4» t» _J H

- — - to -j

UI

a
-r
№

o eno «•
o rs
O -0
ii -r o

-o a o
O£ -f O
« Q On n

*r >->
Q CO *
C3 «*•
Q
Q CO
II O -O
m o M
as a o
<» o -*•

o o
S M

Q i) a,
Q r? <*
o ce
o
11

a,
i

a,
as

ui

CJ •£
•t -

— -o .j

ao
CD

X

fj
-O
ri

£0 C3
i— r
Z O
—1 II

, o

cc
-£

ce o-« -o
-r
O

O -P
o o

rs o M
-o o w
en u co
o r»
-r ee,
o <•
n o
&, o
<» o o

o o
iu a Q
— o o
O il il
a M —
u as ce
_j «• *
tfl

— o o

M
O
n
o
•r
O
it
•Q
QQ

O
O
o

Q
O
O

CO
U,

o
e
Q

UI —ae
e -t
w ••>
OO
C3 "=

O -O

«
0

CO

1o
(U

(0
CO

< tt.
< Q

o <
o <
CD O-
u «-
II II

t— t—
№ UI
2 2

-O

3
№

•H
fa

•t
iu
re •

u .-
M* 1*

CVI
a
a
u

en o a
o> .. H= »r r
•«- a- 2 o a

«A ^̂ K u
>^» o o ij
•to. a. o o

— a. — ••>
to ca ce ^

f Q
-. „ ̂ -. >e x
a ea s, a
» «» Trt • rfi a.
- - — — -t Q

LU

cc - ex.
cc

ru

17-53 CZ05-00

Each numbered directive in Figure 17-2 is explained below by
a correspondingly-numbered comment.

1. Invoke the system-supplied EC file (GROUP$D.EC) to load
$D DEBUG.

2. Change the default group id to $D so that you will not
have to precede every line of input with f$De.

3. Open the DEBUG work file DEBUG.WORK.

The work file must reside on the boot volume; the logical
resource number of the boot device, specified by the SF
directive, is 1.

4. Set a bound unit breakpoint on the program TSTNOW,
specifying a directive line to be stored in the work
file. This directive line will be executed each time the
bound unit breakpoint is encountered.

5. List bound unit breakpoint 2.

6. From the $H group, invoke the program TSTNOW. This
invocation causes bound unit breakpoint 1 to be
encountered and the breakpoint message to be displayed.
Execution of th& stored directive line (specified in step
4) dumps a line of memory, starting at the location
associated with the symbol $E«

7. Set the level to that shown in the breakpoint message.

8. List all true breakpoints currently sete As the returned
message indicates, no true breakpoints have yet been set.

9. Set true breakpoint 1 at the location associated with $E
and specify a directive line that will be stored in the
work file for future execution.

10. List all true breakpoints currently set.

11. List the stored directive line associated with true
breeikpoint 2K

12. GO from the bound unit breakpoint 1. This directive >
initiates execution of TSTNOW. True breakpoint 1 is
encountered, its breakpoint message is displayed, and its
associated directive line is executed.

13. Assign the current value of $P (program counter) to the
temporary symbol X.

17-56 CZ05-00

CO
t—
z
(a=3

O

Q.
X
t
IU
oe
26

Q

O
0
№

?̂n
i—
en
Z
»«4

w
-O
PS
O
>f
O
il

CJ
0
-t

«e
•«
o»
«

t-°
u>
2
ME4

<
•O
n
o
-r
O
II
o
0
-J

<
»•
0»

II
H-
(A
z
e>4

-s

<
03
»-

ii
h-
Ui
S
e=J

.£

3
O
S
N>

a
o
o
o

*
C"S
-«
M

•f
Q
il
UJ
<»

U)

••
•
e
•
•

•
•
•

«
a.
•

•a
•

*

»̂

s
u
o

ao
e
m
o
u
5E«=

O
V-
o
-y

a
f^
CO
US

•-O
n
o
©

eg
o
«c

lO
M
••
in

B
R

A
C

K
E

T
S

,
O

R

P
A

R
E

N
T

H
E

S
E

S

E
X

IS
T

.
TH

E

W
E

D
E

L
IM

IT
E

R

A
N

D
 R

E
T

R
Y

.

«

to
X
'JC,

•t
3Z

2

LU
Z
I—

t~
O
U

oce

M
<t>
O>

t-4

*~•~ .£
O t-
— O

(X
o
f j

h>» eo OS «= — — ̂ •
R
Q
-f
Q
II
U
O
_j

— w n

G 3
_A

(S
_A

n
o
~f
o
n
w
o
_j

>r

o
A»I

»=»
A.
U,
•«
_J
/^
t̂e.

Of
Of
UJ
t—
^
X

a
G
if
_)
05
«e

«=

3
03

*
Q

a
o
CO
U

n
•̂ •«
M 0
-0 0
fj -r
0 0
•r n
O x

e a
..A. -1~ **. ^

=>
n*=

•£
••3 °
3 -0
-t _!

0

«-« U5
K "-<
U, X

X Z
•t <A ^A

(3
If*
O L3
CO UJ
O 0

-y

f~. ^f
— .J

•t
°« CO
t > %
lu n>

Z X

a
Ul
E
cc
0
U.
cc
Ul
- M

.J
-<

k
rk

• *^>.

(̂.e

-u

-p§
U

<u

17-55 CZ05-00

29. Reinvoke the bound unit TSTNOW from the $H group. Bound
unit breakpoint 1 is encountered again, as in step 6.

30. Verify the value of temporary symbol X.

31. GO from bound unit breakpoint 1.

Note that even though $D DEBUG has listed true break
points (step 28), none are set and none are
encountered. Unlike bound unit breakpoints, true
breakpoints must be reset between multiple invocations of
the bound unit being debugged. When the bound unit is
reinvokedp a new copy of the bound unit is loaded into
memory, overwriting the version containing true
breakpoint instructions.

17-58 CZ05-00

The value of $P is currently the base address of the
bound unit. Having assigned to X the value of $P, you
can now refer to any location in the bound unit by the
expression 'X + offset1. Offsets are shown in column 2
of the bound unit listing (Figure 17-1).

14. Dump one line of memory, starting at offset 7.

15. Set true breakpoint 2 at offset 7, specifying a directive
line to be stored in the workfile for future execution.

16. List all true breakpoints currently set.

17. GO from true breakpoint 1. Execution of the bound unit
continues.. When breakpoint 2 is encountered, the message
is displayed and the associated directive line is
executed.

18. Set true breakpoint 3 at offset 17, specifying a stored
directive line*

19. GO from true breakpoint 2, causing breakpoint 3 to be
encountered, the message to be displayed, and the
associated directive line to be executed.

20. Set true breakpoint 4 without specifying a directive
line,, The directive line executed when breakpoint 4 is
encountered will be one previously specified and
currently stored in the DEBUG workfile.

21. List all the true breakpoints currently set.

22. List the stored directive line associated with breakpoint
4. The message returned indicates that this directive

t line is nullc Therefore, encountering breakpoint 4 will
I cause only the message to be displayed. (Null directives

are explained earlier in this section under the
description of the Define Directive (Dn) directive.)

23„ Go from breakpoint 3, causing breakpoint 4 to be
encountered.

24. Display all registers.

25. Dump one line of memory, starting at offset 5F.

26. Dump two lines of memory, starting at offset 5F.

27. GO from true breakpoint 4. TSTNOW completes execution;
the default group reverts to $H, which awaits input
(RDYK

»

28. List all true breakpoints currently set. „

17-57 CZ05-00

• Set or clear bound unit breakpoints to gain control of
bound units as they are loaded

a •

• Set or clear quick breakpoints (from the $S group only) to
monitor time-dependent tasks without undue distortion of
time

• Display, change, and dump either memory or registers

• Evaluate expressions. •?
INVOKING THE MULT^-USER pEfiUGGER

The command used to invoke the Multi-User Debugger is:

DEBUG

There are no valid arguments with this command. -

MULTI-USER DEBUGGER FILE REQUIREMENTS

For true and bound unit breakpoints, Debugger directives can
be stored in a user-defined work file. If used, this file must
be opened by the Specify File directive (the SF directive is
described later in this section) and must always be followed by
the suffix ".DB". This work file requires a size of 64 sectors
on any media.

The Multi-User Debugger directives associated with quick
breakpoints are stored in memory, and optionally, in a work file
as described above. Output generated by these directives is
written to memory and, optionally, to a user-defined quick disk
file. This quick disk file must have been created previously
outside the Debugger task using the Greater File command (see the
Commands manual for details) and must be referenced within the
Multi-User Debugger task by a Specify File (SF) directive. This
file must end with the suffix ".QK".

The Debugger directives mentioned above are identified and
described in Table 18-2, later in this section.

MULTI-USER DEBUGGER MEMORY REQUIREMENTS *

To set true or bound unit breakpoints, the reentrant portion
of the Multi-User Debugger requires a minimum memory area of
22§0te words. The sepairate data portion of the amount of memory
required per group is approximately 1575io words. This includes
all non-reentrant code, the Multi-User Debugger overlay area, and
all necessary data information. •-

To debug time-dependent tasks using quick breakpoints, the
total amount of memory required is 7500to words (for reentrant
and data portions) plus the amount of memory you requested for
the quick memory buffers. The quick memory buffers are described
later in this section.

' ' 18-2 CZ05-00

MULTI-USER DEBUGGER OPERATION

The Multi-User Debugger is restricted to the write privileges
of the group it servesj several users can debug within their own
groups without affecting other groups. Since the Multi-User
Debugger runs under any user-defined groupf memory protection is
dependent upon the task group. If no memory protection is estab-
lished, you can alter any and all memory; therefore,, the task
should run in a protected environment.

The Multi-User Debugger handles traps to Trap Vector 14
(unauthorized reference to protected memory) and Trap Vector 15
(reference to unavailable resource) and continues as described
below. ,

An error message is displayed if you try to access
non-virtual memory within any Multi-User Debugger directive
except the Dump Memory (DP) directive. If a
Trap-to-Trap-Vector-lS occurs when a DP directive is specified,
the Multi-User Debugger dumps as much of the requested memory as
possible. Once a nonvirtual address is invoked? the rest of the
current line to be printed is blank-filled. The current
nonvirtual address is advanced to the value that is the next
multiple of IK. The procedure continues until the area to be
dumped is exhausted or the end of memory is reached,

ENTERING DIRECTIVES

Multi-User Debugger directives consist of a directive name
only or a directive name and one or more arguments, within a
directive, arguments are separated from each other by one ©r more
spaces^ Multiple Debugger directives can be entered on a single
line; each directive, except the last, must be followed by a
semicolon d). At the end of each line (i.e., immediately after
the last or only directive), press carriage return. Except where
otherwise specified, all argument values are entered in hexa-
decimal notation.

Debugger directives may only be entered when the Debugger has
control of the group. This occurs when:

• The Debugger is loaded.

• A breakpoint occurs.

• You press the BREAK key and "DEBUG15 is typed as the
post-break input. (Break key functionality is described
later in this section.)

Special symbols are used in the Multi-User Debugger directive
lines,, These symbols are described in Table 18-2.

18-3 CZ05-00

NOTE < > « - . * .

^ The Multi-User Debugger will only recognize tasks
f which are in a trapped state.

Table 18-1 summarizes Multi-User Debugger directives by func-
tion. These directives are described in detail on the following
pages. •.

-"• •' S» _,-

NOTE

' Pay careful attention to the format of each direc-
1 tive, because the use of delimiters, if any, - *
between a directive name and the first (or only) > ~~
argument varies according to which directive is
being specified.

Table 18-1. Summary of Multi-User Debugger
Directives by Function

Function Directive Directive Name •

Directive line
and handling

Dn
En
P*

Pn

Define directive line n
Execute directive line n
Print all predefined directive
lines
Print predefined directive
line n

True breakpoint C*
Cn
L*

Ln

Sn

Clear all true breakpoints
Clear true breakpoint n
List all true breakpoints and
associated directive lines
List true breakpoint n and
associated directive line
Set true breakpoint n

Bound unit
breakpoint control

CB*

CBn
LB*

LBn

SBn

Clear all bound unit
breakpoints
Clear bound unit breakpoint n
List all bound unit break-
points and associated direc-
tive line
List bound unit breakpoint n
and associated directive line
Set bound unit breakpoint n

18-4 CZ05-00

Table 18-1 (cont). Summary of Multi-User Debugger
Directives by Function

Function Directive Directive Name

Quick breakpoint
control

CQn
CQ*
LQn

LQ*

PQ

RQ
SQn

Clear quick breakpoint n
Clear all quick breakpoints
List quick breakpoint and its
associated directive line
List all quick breakpoints and
their associated directive
lines
Get memory block for quick
breakpoint information storage
Print pointer to quick memory
block
Return quick memory
Set quick breakpoint n

Trace trap control DT
PT
ST
ET

Define trace directive line
Print trace directive line
Start j°=raode trace
End j-mode trace

Active level control SL
TL

Set active level
Set temporary active level

Memory and
register control

AR

CH
DH
DP

Print contents of all
registers of the active level
Change memory
Display memory in hexadecimal
Dump memory in hexadecimal and
ASCII

Symbol control AS

VH

Assign a hexadecimal value to
symbol
Print value of expression in
hexadecimal

General execution

FO
GO

IF
MODE

SF
SP

QT

Temporary escape to the com-
mand processor
Redirect output
Continue execution from
breakpoint
Print header line
Conditional execution
Change from numeric to
symbolic mode or vice-versa
Reset file location
Specify file location
Temporarily suspend the
Multi-User Debugger; return
control to the command pro-
cessor ('sleep)
Abort Multi-User Debugger task
(quit)

18-5 CZ05-00

Table 18-1 (cont). Summary of Multi-User Debugger
Directives by Function

Abnormal Trap
Control

CT
TB
TT

Clear abnormal trap bit
Turn on abnormal trap bit
Terminate trapped task

NOTE

The memory and register control directives (AR,
CEf DH, and DP) apply to registers on the active
levele To determine which level is the active
level and/or to set the active level to a speci-
fied valuer see "Determining/Setting the Active
Level" below*

Table 18-2. Symbols Used in Multi-User
Debugger Directive Lines

Symbol Type Meaning

Arithmetic

plus sign (+)

minus sign (-)

K r

Performs additon.

Performs subtraction.

Multiplies a hexadecimal integer by 1024 decimal
(400 in hexadecimal) when K is the last charac-
ter of an integer expression.

Address
Operators

period (e)

ampersand (&)

brackets []

Represents the last start address used in a pre-
vious memory reference directive (DH, CH, DP).

Represents the address of the next location
beyond the last one used by a previous memory
reference directive (DHf CH, DP).

Signifies the contents of the location defined
by the expression within the brackets. Three
levels of nesting may be used.

18-6 CZ05-00

Table 18-2 (cont) Symbols Used in Multi-User
Debugger Directive Lines

Symbol Type Meaning

Reserved
Symbols

$Bn

$Rn

$P

$1

$IV

$IV_Bn

$IV_Rn

$IV_Mn

$IV_Sn

Contents of base register n of the active
level. The values 1 through 7 can be used for
n.

Contents of the data register n of the active
level. The values 1 through 7 can be used for
n.

Contents of the program counter of the active
level.

Contents of the indicator register of the active
levelc

Address of the Task Control Block of a trapped
task which is currently at the head of the
active level's trap queue.

Represents the contents of the base register n
as stored in the Interrupt Save Area (ISA) of
the active level. The values 1 through 7 can be
used for n.

Represents the contents of the data register n
as stored in the ISA of the active level. The
values 1 through 7 can be used for n.

Represents the contents of the Commercial or
Scientific Instruction Processor mode control
register n as stored in the ISA of the active
levelc For the Commercial Instruction Processor
mode? n must equal 3« For the Scientific
Instruction Processor mode n can be either 4 or
5.

Represents the contents of the scientific accu-
mulator register n as stored in the ISA of the
active level. The values 1 through 3 can be
used for nc

Represents the contents of the K register n as
stored in the interrupt save area (ISA) of the
active level. The value of n can be 1 through
7.

18-7 CZ05-00

Table 18-2 (cont). Symbols Used in Multi-User
Debugger Directive Lines

Symbol Type Meaning

$Kn

$S

SSL

$E

$T ,

G through Z

$CI
lr

j !
$C1

$SI I

$Mn
- f i
T

Debug Languages

parentheses ()

Contents of the K register n of the active
level. The value of n can be 1 through 7.

Contents of the system status register (level
number and privilege bit only) of the active
level.
Represents the value of the level number of the
active level.

Represents the entry point of a bound unit as
defined in the bound unit or by the caller.
This reserved symbol is used only at the time of
a bound unit breakpoint, in place of $P
associated with true and quick breakpoints.

Represents the address of the stack of the
active level.

Twenty single-character symbols having initial
values of zero. Values may be assigned using
the AS directive. ,- * !
Represents the contents of the Commercial
Processor indicator word of the active level.

Represents the contents of the Commercial
Processor remote descriptor table of the active
level.

t - - ̂

Represents the contents of the Scientific
Instruction Processor (SIP) indicator word of
the active level.

Represents the contents of the mode control
register of the active level. The values 1
through 7 can be used for n.

The condition to be satisfied in an IF
directive for continuous processing of the
directive line. {"} indicates a logical 'NOT'
which may optionally be used.

Indicate directive or header information to be
stored for later use. Unmatched right
parentheses result in an error. A right
parenthesis that is paired with the first left
parenthesis terminates the directive definition,

18-8 CZ05-00

Table 18-2 (cont) Symbols Used in Multi-User
Debugger Directive Lines

Symbol Type Meaning

Debug Language
(cont)s
exp

rexp

Indicates a valid expression formed by using
expression elements. Expression elements are
addresses, reserved symbols, and hexadecimal
values up to 32 bits in length* No more than
one address is allowed within an expression. An
expression element may be preceded by the posi-
tive (+) or negative {-) unary operator.
Expression elements can be joined by the
addition (+) or subtraction (-) operator.

Consists of expt/exp2, where expt is a
hexadecimal number that is a value of a location
expression? expj is an optional hexadecimal
repeat factor whose value must be between 1 and
32,767. If exp2 is omitted, there is no

Separation character between directives on the
same line. .

Signifies "all" in certain print, clear, and
list directives.

MULTI-UgER DEBUGGED AND BIfrEAK KEY

Typing "DEBUG" as a response to the break key transfers you
to the Multi-User Debugger task. To return to the previous stack
level? enter the Sleep (SP) directive or terminate the Debugger
completely with the Quit (QT) directivec The description of the
Debugger and break key functionality applies only to true and
bound unit breakpoints, and not to quick breakpoints. Break key
functionality is not supported in the $S task group.

If DEBUG was the task that was broken, any command is a valid
response, including PI, UW, SR, or NEW_PROC.

18-9 CZ05-00

NOTE

The Program Interrupt (PI) response will return
the user group to the Debugger input level and
allow the entry of Debugger directives.

If the Debugger task was broken and "DEBUG" is
entered as the response, you are placed in the
Debugger input mode*

The Unwind (UW) response will cause the Debugger
to execute either the GO or SP directive, depend-
ing on which is appropriate at the time of the
BREAK. If the Debugger was activated as the
result of encountering a breakpoint, entering UW
causes execution of the GO directive.

PLANNING CONSIDERATIONS

Setting True Breakpoints and Bound Unit Breakpoints

True breakpoints'and bound unit breakpoints can be set to
trap at selected task code locations. At true breakpoints,
memory and register values can be displayed and changed. At
bound unit breakpoints, only memory can be displayed and
changed. The registers displayed at the time of a bound unit
breakpoint are not those of the trapped task. In this way, a
task can be executed, the value of its variables checked as exe-
cution proceeds, code modified, and if necesary, variable values
changed in order to test the sequence of code up to the next
breakpoint.

Setting Opjcfc Breakpoints

Quick breakpoints can be set to trap at selected locations to
monitor time-dependent functions (for example, monitoring a
driver). At these breakpoints, memory and registers can be
stored in a block of memory (reserved by means of the Get Quick
Memory directive) and, optionally, in a disk file to be retrieved
and studied at some later time at your convenience. These
breakpoints must be set when you are running in the system task
group ($S)e

Preliminary Steps for Using Quick Breakpoints

Before invoking the Debugger from the $S task group:

1. Calculate the approximate amount of memory necessary for
the quick memory buffers.

18-10 CZ05-00

2. Create a Debugger quick disk file with the format

path.QK ;.

using the Create File (CR) command (see the Commands
manual). The quick disk file must be created from a
user-defined group. It should be created as a a relative
file with a control interval (CI) size greater than or
equal to the size of the quick memory blocks that you
specify in the Get Quick Memory (MQ) directive.,

i

3. Enter the command

EC ! CONSOLE ' ',

to load the command processor.

Now you can invoke the Multi-User Debugger and monitor the
time-dependent task without causing any time distortion within
the task.

Guidelines for Setting Breakpoints

• True breakpoints can be set in a bound unit in a task
group (or in an overlay of a bound unit in a task group)
only when the task group/overlay currently is memory
resident* Use the SBn (Set Bound Unit Breakpoint)
directive to gain control of a task group bound
unit/overlay when it is loaded,, to allow true break-
points to be properly set.

• True breakpoints may not be set in code that will be exe-
cuted at the inhibit level (level 3).

• True breakpoints are set in task groups by specifying the
Set Breakpoint (Sn) directive. (The detailed description
of the Sn directive later in this section includes addi-
tional rules for specifying true breakpoints.)

• Quick breakpoints can only be set from the system task
group ($S); i.e»«. you must be debugging from the terminal
designated as the operator terminal.

• Quick breakpoints are set in the $S task group by specify"
ing the Set Quick Breakpoint (SQn) directive. (The

! detailed description of the SQn directive later in this
i section includes additional rules for specifying quick

• Only quick breakpoints may be set in sharable code.

18-11 CZ05-00

• Quick breakpoints may be embedded in true or bound unit
directive lines. Note that in this case you set all
breakpoints from the system task group and that these
breakpoints could impact alj. users. Thus, caution must be
taken when debugging in the system task group.

Controlling Output .-•->*

Output can be redirected by using a true or bound unit break-
point. When the breakpoint condition occcurs, the FO directive
can be used to redirect the output.

When quick breakpoints are utilized, output sent to the pre-
viously specified user-defined disk file can be retrieved after
closing the disk file and, outside the Multi-User Debugger task,
entering the PR_QK command (see the Commands manual for details.)

Determining/Setting the Active Level

The active level is the priority level currently in effect.
Directives relating to specific task context are effective only
on the active level. When the Debugger is activated by a
breakpoint or trace trap? the active level is automatically set.
Thereafter, the active level is determined based on the Debugger
action in progress? i.e<F breakpoint, trace trap, or temporary
reference to a different level.

To reference specific task context on another priority level,
change the active level by respecifying the Set Level directive
(SL) or temporarily designate another level as the active level
by specifying the Set Temporary Level directive (TL)j in the
latter case, the level is considered the temporarily active
level. After the desired actions are performed on the
temporarily active level, the active level reverts to the level
specified in the previous Set Level directive.

Following are guidelines for determining which level is the
active level, and methods of setting the active and temporarily
active level.

1. The Set Level directive (SL) sets (or changes) the active
level* The specified level becomes the default level
accessible by the operator terminal or another terminal
that is the directive input device.

2. The Set Temporary Level directive (TL) designates a level
as the temporarily active level; this permits you to dis-
play or alter registers of a level different from the
default terminal level without permanently changing the
default terminal level. The temporarily active level
exists for the duration of one input line. The input
line consists of the TL directive plus any other
directives addressed to that level.

18-12 CZ05-00

3. Whenever a break or trace point is processed for a task,
the active level is set to the level of that task.

Maintaining a Trace History

When using the Debugger with disk-stored directive lines that
execute upon encountering a trap or a breakpoint, a trace history
may be maintained on the device specified as user-out <>

Also, while at a Debugger breakpoint, the suspended task may
be set to run in jump-trace mode (j-mode). In this case? every
departure from the current sequence of instructions generates a
trace trap.

MULTI-USER DEBUGGER DIRECTIVES

The rest of this section consists of detailed descriptions of
the Multi-User Debugger directives, presented in alphabetic
order.

The following notational symbols are used to describe the
format of Multi-User Debugger directives.

i
Notations! Symbols Meaning

braces | I For a single enclosed argument, indicates
' ' that the argument is optional. If more

than one argument is enclosed by braces in
a vertical listing, the braces indicate
that a choice is to be made* In this
case, optional arguments are identified in
the text.

Ellipsis (...) Indicates the ability to repeat within
braces,,

Delta (A) Indicates one or more spaces.

Vertical bar (|) Indicates a choice between two or more
arguments.

N

Note that the use of braces shown above differs from the
usage defined in the preface and employed in other sections.

1.8-13 CZ05-00

ALL REGISTERS

All Registers ~ ,

The All Registers directive (AR) prints on the device - ~
specified as user-out all registers for the active level. Bound
unit breakpoints lie within the loader, not in the task context.
As a result, the display of registers at a bound unit breakpoint
are not those of the task and can be ignored. - - .

j

FORMAT:
J

' -• ' .»,

AR

18-14 CZ05-00

ASSIGN

Assign

The Assign Directive (AS) assigns a specified hexadecimal
value to a specified symbol? this directive alters registers of
the active levelf and defines reserved symbols. Bound unit
breakpoints lie within the loader, not in your task context., As
a result, the Assign directive on a register is refused by the
Multi-User Debugger, if the current level's task is suspended on
a bound unit breakpoint.

FORMAT:

, ASAsymAexp/AsymAexpc.. j

ARGUMENTS:

sym

A reserved symbol G through Z or a register,

exp

An expression that resolves to a hexadecimal value up to
32 bits* The rightmost 20 bits are used for an address
register ($BnK the program counter ($P), or the bound
unit entry point ($E); the rightmost 16 bits are used for
all other registers.

Example:

AS $R1 -2 X 1408 $B7 X+15

-2 is assigned to data register 1, 1408 is assigned to the
reserved symbol X, and 141D assigned to base register 7.

18-15 CZ05-00

CHANGE MEMORY

Change Memory

The Change Memory directive (CH) changes the contents of a
single specified memory location, or consecutive locations start-
ing at that location, to specified value(s).

NOTE , i

This directive changes memory only. To alter
register contents, see the Assign (AS) directive.

FORMAT:

CHAexpArexp^Arexp.. .>

ARGUMENTS:

exp

First or only location whose contents will be changed,

rexp

] Value(s) to be put in memory location(s).

Example 1:

CH 200 4FFF 1716

Put the value 4FFF into location 200 and 1716 into location
201e

Example 2:

CH 100 0/10

Locations 100 to 10F are zero-filled.

Example 3:

CH 2000 0/10 1/10 2/10

This example shows how multiple repeat factors can be used:
Locations 2000 to 200F are given a value of zero, locations
2010 to 201F are given a value of 1, and locations 2020 to
202F are filled with 2s.

18-16 CZ05-00

CLEAR ABNORMAL TRAP BIT

Clear Abnormal Trap Bit

Clear the abnormal trap bit set in the debugger's indicator
word.

j

This bit is set to request that a special debug breakpoint
message be displayed if a task in a group encounters an
unexpected (abnormal) 0303xx trap condition. If the bit is not
set, the trap information is displayed and the task is
terminated.

With the bit set, the trap information is displayed, the task
is suspended, and a special breakpoint message appears. These
events allow the user to decide whether to continue executing the
task (by entering GO) or to terminate the task (by entering TT).

FORMAT:

CT

18-17 CZ05-00

CLEAR ALL BOUND UNIT BREAKPOINTS

Clear All Bound Unit Breakpoints • '

The Clear All Bound Unit Breakpoints directive (CB*) clears
all bound unit breakpoints, but not their associated directive
lines.

FORMAT: J

CB*

18-18 CZ05-00

CLEAR ALL QUICK BREAKPOINTS

Clear All Quick Breakpoints

The Clear All Quick Breakpoints directive (CQ*) clears all
quick breakpoints, but not their associated directive lines.

FORMAT:

CQ*

18-19 CZ05-00

CLEAR ALL TRUE BREAKPOINTS

Clear All True Breakpoints

The Clear All True Breakpoints directive (C*) clears all
defined true breakpoints, but not their associated directive
lines.

FORMAT:

C*

18-20 CZ05-00

CLEAR BOUND UNIT BREAKPOINT

Clear Bound Unit Breakpoint
k

The Clear Bound Unit Breakpoint directive (CBn) clears a
specified breakpoint for a bound unit, but does not clear the
associated directive line.

FORMAT s

CBn

ARGUMENT?

n

Specifies the bound unit breakpoint to be cleared; must
be a decimal digit from 0 to 9.

Examples

CBS

Breakpoint number 3 is cleared for the bound unit previously
defined by SB3; the associated directive line is not cleared.

18-21 CZ05-00

CLEAR QUICK BREAKPOINT

Clear Quick Breakpoint

The Clear Quick Breakpoint directive (CQn) clears a specified
quick breakpoint, but not the associated directive line.

FORMAT:

CQn

ARGUMENT:

n

Number of the quick breakpoint; must be a decimal digit
from 0 through 8.

Example:

CQ3

Quick breakpoint number 3 is cleared; the associated
directive line is not cleared.

18-22 CZ05-00

CLEAR TRUE BREAKPOINT

Clear True Breakpoint

The Clear True Breakpoint directive (Cn) clears a specified
true breakpoint, but not the associated directive line.

FORMAT:

Cn !

ARGUMENT:

n

Number of the true breakpoint; must be from 0 through 31
* (decimal).

*

Example:

C3

True breakpoint number 3 is cleared; the associated directive
line is not cleared.

18-23 CZ05-00

CONDITIONAL EXECUTION

Conditional Execution

The Conditional Execution directive (IF) allows a set of con-
ditions to be tested prior to execution of other Multi-User
Debugger directives. The IF directive is intended to be used in
a stored breakpoint directive line. It permits breakpoints to be
reported without suspending the active level if the specified
condition does not exist. When a breakpoint occurs for which an
IF directive has been specified, the following actions occur:

• Any directives preceding IF are executed.

• The IF conditions are evaluated, as follows:

If TRUE, a line in the following format is displayed on
the current Debugger output device

and any directives following IF are executed. If a GO
directive does not follow, the active level is suspended.

If FALSE, no display occurs, and the directives following
IF are not executed. The active level continues
processing. }

FORMAT:

(IBMIF exp rv{ = >Mhhhh...;

ARGUMENTS:

exp

Hexadecimal memory address of a byte string argument.
This must specify an address; $Rn (where 0 <L n i 7)
cannot be used for exp. Since no check for this error is
performed, however, if you use $Rn, results are
unpredictable.

18-24 CZ05-00

CONDITIONAL EXECUTION

Specifies the condition to be tested when comparing the
memory byte string value to the test parameter,
optionally specifies logical negation; i.e., not less
than, not equal, not greater than.

{•I
Indicates that the argument is r-ght-byte aligned,

hhhh...

The test parameter, expressed in ASCII as a string of
pairs of hexadecimal digits; each pair represents one
byte. The test parameter may not be an assigned symbol
(see the Assign (AS) directive)„ The length of the
parameter is limited by the maximum size of a Multi-User
Debugger stored directive (127 bytes). The parameter's
ASCII value must consist of pairs of hexadecimal values.
If an odd number of hexadecimal values are specified? a
command error is reported when the directive is executed
and the task remains suspended to allow for correction.
If the IF directive is embedded in"a Quick Breakpoint
directive line, this error condition is a false state and
the rest of the directive line is ignored and the task
will continue. The IF directive terminator must be a
semicolon (?).

Example;

Assume that true breakpoint 2, as defined below, is
encountered, and that $B7 points to memory location 555F:

S2 135E (IF 100CT>,3E,«IF $B7=42D1;DP $B7/100;GO)

Two conditions must be true before the Dump (DP) direc-
tive is executed?

;

1. The rightmost byte at memory location 1000 must be
less than or equal to 3E0

2. The byte string found at memory location 555F must be
equal to 42D1.

18-25 CZ05-00

CONDITIONAL EXECUTION

If both conditions are met, the dump is executed, and the
active level continues in response to the GO directive.
If either condition is not satisfied, the dump does not
occur, and the active level continues without suspension.

NOTE

The IF directive can be entered from the terminal,
in which case its action corresponds to its entry
in a stored directive line. However, using the IF
directive from the terminal is of limited useful-
ness, since the conditions to be tested can be
checked by using other directives (e.g., DH).

18-26 CZ05-00

DEFINE DIRECTIVE LINE

Define Directive Line

The Define directive (Dn) defines a specified directive line
for future use and associates that line with a specified number.
The directive line is stored on the user-defined work file and
can be referred to by specifying in an Execute (En) directive the
number with which it was associated. The entire Define directive
may comprise a maximum of 126 characters.

When you reuse a disk that has predefined directive lines
from a previous execution, the lines may be referred to without
redefining them. (See "Set True Breakpoint Directive (Sn).")
This prevents complex predefined directive lines from being
respecified each time the system is reloaded for debugging the
same problem.

FORMAT:

DnA(directive line)

ARGUMENTS:

n

Number with which the specified directive line is associ-
ated? must .be from 0 through 9.

(directive line)

One or more directives stored for future use.

Example 1:

D3 (CH 100 0)

Associate the number 3 with the directive within the paren-
theses. Hereafter, each time the directive E3 (see "Execute
Directive (En)" below) is executed, the parenthetical direc-
tive is executed and location 100 is zero-filled.

Example 2:

D4 ()

By storing a null directive, deactivate a previously defined
directive line 4 which is no longer required.

18-27 CZ05-00

DEFINE TRACE

Define Trace

The Define Trace directive (DT) associates the directive line
within the parentheses with the occurrence of a jump trace trap
or a BRK instruction not already defined as a breakpoint. The
specified directive line is stored in the user-defined work file
for future use. The entire Define Trace directive may comprise a
maximum of 126 characters.

When you reuse a disk file that has predefined directive
lines from a previous execution, the lines may be referred to
without redefining them. (See "Set True Breakpoint Directive
(Sn).")

FORMAT:

DTA(directive line)

ARGUMENT:

(directive line)

One or more directives stored for future use.
. i

Example 1? - _

DT (AR)

All registers are displayed each time a trace trap occurs.
(See "All Registers Directive (AR).")

Example 2s

DT ()

Cancel usages of the predefined trace directive line.

18-28 CZ05-00

DISPLAY MEMORY

Display Memory

The Display Memory directive (DH) displays one or more speci-
fied memory location(s) in hexadecimal notation either on the
terminal or on another specified device,,

FORMAT:

DHArexp<Arexp.. .>
()

ARGUMENT;

rexp

Location(s) whose contents are displayed. A minimum of
one location may be displayed.

Example 1?

DH 200

Display the contents of location 200.

Example 2 s

DH 200/100

Display the contents of locations 200 to 2FF.

18-29 CZ05-00

DUMP MEMORY

Dump Memory J

The Dump Memory directive (DP) prints on the terminal or
another specified device an area of memory starting at a speci-
fied location. The printout comprises a minimum of eight loca-
tions and is in hexadecimal and ASCII notations.

NOTE

Up to 32K words of memory can be dumped in
response to a single DP directive. Dumps of more
than 32K must be performed as separate operations.

FORMAT:

DPArexp<Arexp...%

ARGUMENT s

rexp

Memory location(s) whose contents are displayed. The
display is always in a multiple of eight locations.

Example Is

DP 200

Display (at the current user-out device) one line of memory
in both hexadecimal and ASCII, starting at location 200.

Example 2s

DP 80/3C 200/240

Display the contents of locations 80 to BF and 200 to 43F on
the-current user-out device. Although the repeat expression
of 3C was specified in the directive, the display is through
location BF because displays are always in multiples of eight
locations.

18-30 CZ05-00

END TRACE

End Trace

The End Trace directive (ET) disables the j-mode trace (see
the Start j-mode Trace directive (ST)) for a specific task on the
next trapo - ;

t-

FORMAT? , ;

' ETAlvl ~ ;

ARGUMENT^

Ivl

The level, as previously specified by the last ST
directive. Ivl is preceded by one space. The trace must
first have been enabled using the Start j-mode Trace
directive (ST).

18-31 CZ05-00

ESCAPE

Escape

The Escape directive (E) passes the rest of the input buffer
to the command processor for processing. Debugger directives can
precede the portion of the input buffer to be passed to the com-
mand processor, if they are separated by semicolons (;). They
cannot, howevert follow commands passed to the command pro-
cessor. Once an Escape directive has been encountered, the rest
of the input line is interpreted by the command processor. This
allows multiple commands to be passed to the command processor
using only one escape directive.

FORMAT:

EAexp|;expl . j

ARGUMENT:
»

exp

Any command.

Examples

E TIME

Return the time.

NOTE

Do not use the Escape directive to invoke the
bound units that you intend to debug. The
Multi-User Debugger must be terminated (see the
Sleep directive (SP) for details) before invoking
a bound unit containing breakpoints.

18-32 CZ05-00

EXECUTE

Execute

The Execute directive (En) retrieves and executes a specified
predefined directive line,, This directive may not be embedded in
Define directive (Dn) lines; it is permitted in Set True Break-
point (Sn), Define Trace (DT), and Set Bound Unit (SBn) Break-
point lines.

FORMAT:

En

ARGUMENTS

n

Number of the line to be executed; must be from 0 through
9.

Example Is

D3 (CH 100 0)
E3

f

The directive E3 retrieves and executes line 3, previously
defined in the Define directive as CH 100 0.

)
Example 2s

D3 (CH 100 0)
SI 100 (E3)

The Execute directive (E3) is embedded in a Set True Break-
point directive line. The Execute directive retrieves and
executes line 3? previously defined in the Define directive
as CH 100 Of whenever true breakpoint 1 is encountered.,

18-33 CZ05-00

FILE OUT

File Out . ^

The File Out directive (FO) redirects output from the current
user-out file to the device specified by the pathname argument.
This directive allows messages that result when a true or bound
unit breakpoint or other condition occurs to be sent to a device
other than the user-out file. It has no effect on input to the
program.

FORMAT:

FO

ARGUMENT:

path

The pathname of the device to which output for the group
is directed. If path is omitted/ user-out defaults to
the group's original user-out file.

Example:

FO 1LPTOO

Output is redirected from the current user-out file to a line
printer.

18-34 , CZ05-00

GET QUICK MEMORY

Get Quick Memory

The Get Quick Memory directive (MQ) reserves the requested
amount of memory for storing (in memory buffers) the output from
execution of a Quick Breakpoint directive line.

FORMAT:

MQA I-BS exp-j.A |-RS expl A. |-NB expl

ARGUMENTS:

-BS exp

Size of buffer specified in words (hexadecimal).

Default: 800

-RS exp

Size of record specified in words (hexadecimal).

Default: 100

-NB exp

Number of buffers requested; must be -two or more.

Default: 2

NOTES

1. To use quick breakpoints, enter this directive
JLLr_s_fc after invoking the Multi-User Debugger
in the $S task group*

2. Each buffer must contain at least two
records. The first record of each buffer con-=
tains the information needed by the Multi-User
Debugger as listed below.

18-35 CZ05-00

GET QUICK MEMORY

Offset

0
4
5
7
9

10
11
12
13
14
15

Number
of Words

4
1
2
2
1
1
1
1
1
I
1

Definition

File system information
Quick file identifier
Pointer to next buffer in chain
Pointer to next available record in buffer
Maximum record size
Number of records still available in buffer
Number of records not completed in buffer
Number of records for reset
Current buffer number (n+l)
Number of buffers in the memory block
Indicators word

buffer in use
buffer full
buffer ready for reuse
buffer information lost
last buffer to be written to disk
disk file has cycled

X'l1

X'21

X'4'
X'8'
X'101

X»20'

The minimum size for each record is 19 words.

Example:

MQ -RS 80

Request memory. The default values for buffer size and the
number of buffers requested are used. Each record is 80
words long.

18-36 CZ05-00

GO

The GO directive resumes execution on the current active
level after a breakpoint and can optionally specify a
limit-to-pause counter value which applies only to j-mode trace
traps (see the Start j-mode Trace directive (ST)).

FORMAT? ,

GO I ALLLL.I ' ; ; V

ARGUMENT: . ' . ; ; ' ; ; ; L; _

. LLLL ""•" ' ' • • ' • ' " • " ' ' ^ '•' '•' " - '''•-'•'

Optionally^ an ASCII expression of 1 to 4 hexadecimal
digits greater than zero. The ASCII expression is pre-
ceded by one space.

Defaults 1

Examples •

SO 100 (DH 200/10,«GO)

The task encountering true breakpoint 0 traps; the Associated
directive line is executed by the Multi-User Debugger and the
last directive of the directive line (GO) reactivates the
task.

18-37 CZ05-00

LIST ALL BOUND UNIT BREAKPOINTS

List All Bound Unit Breakpoints

The List. All Bound Unit Breakpoints (LB*) directive displays
all bound unit breakpoints and their associated directive lines
if the work file is open. If the work file is not open, only
defined bound unit breakpoints are listed. If the work file is
open, the listing contains all bound unit breakpoints and all
associated directive lines. It is possible to list a bound unit
breakpoint with no corresponding directive line or a directive
line with no defined bound unit breakpoint. However, if neither
a bound unit breakpoint nor a directive line is defined for a
particular bound unit breakpoint number, that bound unit break-
point number does not appear in the list.

FORMAT:
i

LB*

Sample Listing:

BUO (SO $E;GO)
BU2 LWD ()

The work file is open and bound unit 0 has a directive line
but no defined breakpoint; bound units 1 and 3 through 9 have
neither defined breakpoints nor directive lines; and bound
unit 2 has only a defined breakpoint.

NOTE

Ten bound unit breakpoints (one per bound unit; 0
through 9) can be set. See the Set Bound Unit
Breakpoint directive (SBn) description below.

18-38 CZ05-00

LIST ALL QUICK BREAKPOINTS

All Quick

The List All Quick Breakpoints directive (LQ*) displays all
quick breakpoints and their associated directive Iines0 You can
print a directive line without an associated quick breakpoint
(e«g.f if the quick breakpoint has been previously cleared), If
neither a quick breakpoint nor a quick breakpoint directive line
is defined for a particular quick breakpoint number/ that break-
point does not appear in the list.

FORMAT?

LQ* *
1 4 , •

Sample Listing:

QUICK BREAKPOINTS

1 LOG - ABCD INST - OF03 (GO)
3 (DP $P;AR;GO)

Directive lines are defined for quick breakpoints 1 and 3,
although breakpoint 3 is not currently set. Quick break-
points 0 and 2 through 9 have neither a' defined breakpoint
nor a directive linee

NOTE - •

Ten quick breakpoints (0 through 9) may be set.
See the Set Quick Breakpoint directive (SQn)
description below*

18-39 CZ05-00

LIST ALL TRUE BREAKPOINTS

List All True Breakpoints

The List All True Breakpoints directive (L*) lists all cur-
rently defined true breakpoints/ their location in memory, the
instruction which was replaced, and their associated directive
lines. If the work file is not open, the list consists of the
locations of the defined true breakpoints and the instruction '
being replaced* If the work file is open, all defined true
breakpoints and all associated directive lines are listed. It is
possible to list a true breakpoint without an associated direc-
tive line, or a directive line without an associated true break-
point. However, if neither a true breakpoint nor a directive
line is defined for a particular true breakpoint number, that
breakpoint number does not appear in the list.

FORMAT:

L*

Sample Listing:

TRUE BREAKPOINTS
1 LOG » OOABCD INST = OF02 ()
3 (AR;DP $P;GO)

True breakpoint 1 is listed with no directive line and true
breakpoint 3 has only a defined directive line. True break-
points 0 and 2 through 31 have neither a defined true break-
point nor directive line.

NOTE

32 true breakpoints (0 through 31) may be set.
See the Set True Breakpoint (Sn) directive
description below*

18-40 CZ05-00

LIST BOUND UNIT BREAKPOINT DIRECTIVE

List Bound Unit Breakpoint Directive

The List Bound Unit Breakpoint directive (LBn) displays the
stored directive line associated with a specified bound unit
breakpoint* (

FORMATS

LBn

ARGUMENT?

n

Number of the bound unit breakpoint for which the direc-
tive line is to be listed; must be from 0 through 9.

Example: ; *

LB3

List the directive line associated with bound unit breakpoint
3.

18-41 CZ05-00

LIST QUICK BREAKPOINT

List Quick Breakpoint . * * • -

The List Quick Breakpoint directive (LQn) displays a particu-
lar quick breakpoint number set by a Set Quick Breakpoint (SQn)
directive, and its associated directive line. You can print a
directive line without an associated quick breakpoint (e.g.f if
the quick breakpoint had been previously cleared).

FORMAT s

LQn -

ARGUMENT:

Number of the quick breakpoint whose directive line is
listed; must be a decimal digit from 0 through 9.

Example:

' LQ2

Display the directive line associated with quick breakpoint

18-42 CZ05-00

LIST TRUE BREAKPOINT

List True Breakpoint t

The List True Breakpoint directive (Ln) displays a particular
true breakpoint number set by a Set True Breakpoint (Sn) direc-
tive, and its associated directive line.

FORMATj

Ln

ARGUMENT:

n i

Number of true breakpoint whose directive line is listed?
can be 0 through 31 (decimal).

Example:

L2

Display the directive line of true breakpoint 2.

18-43 CZ05-00

MODE

Mode - -

Change the current mode of the debugger—from numeric to
symbolic or vice-versa.

FORMAT:

MODE NUM[ERIC]
SYM[BOLIC]

"DESCRIPTION: • ••

The debugging mode is set as specified.

Example: L

*

MODE SYM

The debugger is currently in numeric mode; the directive
changes the mode to symbolic.

NOTE :

A detailed description of the symbolic mode
directives and their use is found in the
Application Developer's Guide.

18-44 CZ05-00

PRINT

Print

The Print directive (Pn) prints specified lines predefined by
Dn directives. Use the Print All directive (P*) to print all
predefined lines.

FORMAT:

Pn

ARGUMENT:

n

Number of the line to be printed? can be 0 through 9.

18-45 CZ05-00

PRINT ALL

Print All

The Print All directive (P*) prints aUL lines predefined by
Dn directives. Use the Print directive (Pn) to print only speci-
fied predefined lines.

FORMAT:

P*

18-46 CZ05-00

PRINT HEADER LINE

Print Header Line
j* ,k*i ^t. t,

The Print Header Line directive (Hn) prints a specified
header line starting at the head of form or after a specified
number of lines are skipped. The main uses of the Print Header
Line directive are to document printed information related to
breakpoint or trace trap debuggingf and to annotate a line
printer memory dump.

FORMAT:

HnA(headerA)

ARGUMENTS s

n
< *:

Number of lines skipped before header line is printed?
can be 1 through 9, or 0. 0 causes header to be printed
at head of form*

(header) , '

Any ASCII characters and/or expressions? each expression
must be preceded by a percent (%) sign. If a percent
sign is to be printedr two percent signs must be .used
(%%). Left and right parentheses must be balanced within
header lines*

Examples

HO (DUMP OF BREAKPOINT FOR LEVEL %$S)

Document dumps. As soon as a carriage return is typed, the
above header is printed at the top of a new page.

18-47 CZ05-00

PRINT HEXADECIMAL VALUE

Print Hexadecimal Value

The Print Hexadecimal Value directive (VH) prints, in hexa-
decimal, the value of each specified expression.

FORMAT: ~ a ••
>

VHAexplAexpj {

ARGUMENT:

exp

Expression whose value is displayed.

Example:

' VH .+100-M " 1

Display the result of the computation defined by the last
referenced memory location plus 100 (hexadecimal) minus the
value assigned to the temporary symbol M.

18-48 CZ05-00

PRINT QUICK MEMORY POINTER

Quick Memory Pointer

The Print Quick Memory Pointer directive (PQ) prints the
hexadecimal address of the start of quick memory.

FORMAT:

PQ

18-49 CZ05-00

PRINT TRACE

Print Trace l ' ~

The Print Trace directive (PT) prints a defined trace direc-
tive line.

FORMAT:

PT

18-50 CZ05-00

QUIT

The Quit directive (QT) clears all breakpoints, closes all
Debugger work files, and disables the Debugger trap handler
before aborting the Multi-User Debugger task.

FORMAT?

QT

18=51 CZ05-OQ

RESET FILE

Reset File

The Reset File directive (RF) closes files and prohibits exe-
cution of directives that refer to user-defined files.

FORMAT:

RF n(QK)
ARGUMENTS:

DB
QK

DB - Close the Debugger work file and prohibit execution
of the P*r Pnf PT, Sn, Dn, DT, En, SBn, Ln, and LBn
directives. These directives may not be entered
until another specify file directive (SF) is issued
to open a new work file.

QK - Close the quick disk file and prohibit the quick
memory buffers from being written to the file. If
no quick breakpoints are currently set prior to the
issuing of an RF directive/ the following occurs:

(1) The current buffer is marked "last" used and
full.

(2) The quick disk file is closed after the
"last" buffer is written to the disk file.

(3) The writer task is terminated.

If there are quick breakpoints still set, steps (1)
and (3) are done, but step (2) cannot be guaranteed
to write all the buffers to the disk before the file
is closed.

18-52 CZ05-00

RETURN QUICK MEMORY

Return Quick Memory

The Return Quick Memory directive (RQ) causes (1) the quick
disk file to be closed after all memory buffers used have been
written to it? (2) the asynchronous writer task to be terminated,
and (3) memory to be returned to your pool.

NOTE

Both the quick memory and that memory necessary
i for quick breakpoint processing are returned to

your pool.

FORMAT?

RQ

18-53 CZ05-00

SET BOUND UNIT BREAKPOINT

Bound Unit Breakpoint

The Set Bound Unit Breakpoint directive (SBn) sets a numbered
breakpoint for a specified bound unit or overlay. A given bound
unit (BU) breakpoint refers to either roots or to overlays, or to
both. When the bound unit breakpoint is encountered, a message
informs you where the specified bound unit or overlay has been
loaded into memory, so that you can then set true breakpoints at
specified locations in the program. Because a bound unit is
loaded at the time the task associated with it is created, the
level number displayed when a BU breakpoint occurs is not neces-
sarily the one used when requests for that task are later
executed.

i

The message format is;

*BU n $SL=OOxx $E=OOxxxx + OOxx
/•

n

Number of bound unit breakpoint; can be 0 through 9.

$SL=OOxx ,

Specifies priority level.

$E=OOxxxx + OOxx

Represents the bound unit base address plus entry point
offset as defined by the bound unit or by the caller.
Used in place of $P associated with true breakpoints.

FORMAT:

I 1bound-unit-name
I bound-unit-name/overlay-number

SBnA < bound-unit-name/* }» ̂ (directive line)

*/
*/overlay-number
*

ARGUMENTS j

n
•»

Bound unit breakpoint number; can be from 0 to 9.

18-54 CZ05-00

SET BOUND UNIT BREAKPOINT

bound-unit-name

Name of the bound unit to which the breakpoint applies;
up to six ASCII characters (first six characters of the
bound unit name) e

overlay-number

Hexadecimal number of the bound unit overlay*

Stands for "all" roots or "all" overlays, depending on
context.

(directive line)

Directives to be executed when the bound unit/overlay is
loaded.

Example:

SB6 SOOZ/A (IP 3D02-5354,°VH M-2?GO)

Sets breakpoint 6 for overlay number A (hexadecimal) of the
bound unit named SOOZ0 The directive line specifies that if
the condition indicated is true (location 3D02 equals 5354)f
then the value of M minus 2 is displayedc When overlay A is
loaded into memory? its location is displayed at the
terminal, and the directive line associated with bound unit
breakpoint 6 is executed.

18-55 ' CZ05-00

SET LEVEL

Set Level

The Set Level directive (SL) sets the active priority level
to a specified value. This level remains in effect until another
SL directive is issued or a new breakpoint is encountered. The
level may be temporarily changed via the Set Temporary Level
directive (TL) (see below).

FORMAT:

SLAexp

ARGUMENTS

exp

Number of active priority level in hexadecimal notation.

Default: 0

Example 1: ' •

SL C

Sets the active priority level to 12 (decimal). If the AR
directive is entered after the above SL directive, the regis-
ters on level 12 are displayed.

Example 2: v
/

Designate the active level, permanently change it, and tempo-
rarily change ite

SL C The active level is 12 (decimal)

SL A The active level is 10 (decimal)

TL B;AR The active level temporarily is 11 (decimal)

After the desired action(s) are performed, the active level
reverts to level 10 (the level specified in the last SL
directive).

18-56 CZ05-00

SET QUICK BREAKPOINT

Set Quick Breakpoint

The Set Quick Breakpoint directive (SQn) sets a numbered
quick breakpoint at a specified location. When the breakpoint is
encountered? the stored specified directive line is executed and
the Debugger task continues. A message and any information
requested by the directive line are written to quick memory andr
optionally, to a quick disk file.

The entire Set Quick Breakpoint directive may comprise a max-
imum of 124 characters*

If there is a preexisting directive line associated with a
given quick breakpoint and that directive line is no longer
applicable, clear the line by designating empty parentheses ()
when"resetting the quick breakpoint.

The message format iss

($S)QBn Group Id TCB ptr Level

n

Quick breakpoint number? must be 0 through 9.

Group Id

Name of the group under which the task being debugged is
running.

TCB ptr

Location of the task control block of the task being
debugged.

Level

j Priority level of the task being debugged.

| ', . NOTES

1. A quick breakpoint cannot be set in any of the
following instructions? input/output, generic
(BRK), scientific, invalid instruction, LEV,
ENT, LNJr JMPj, STSf or any instruction with an
invalid address symbol.

18-57 CZ05-00

\
SET QUICK BREAKPOINT

2. A GO directive should be the last directive
t specified in a quick breakpoint directive
f . line. A GO directive embedded in an SQn
j directive allows task execution to proceed
t after the desired operation has been per-
t formed. The Multi-User Debugger appends a GO
* directive to the directive line.

3. If the NR argument is specified/ there is no
evidence that the- quick breakpoint has been
encountered. If the directive line contains

t an IF directive and the condition specified is
I true» any requested information will be stored
j in the memory buffer.

FORMAT:

SQnAexpAJNR|A(directive line)

ARGUMENTS:

n

Number of the quick breakpoint; can be 0 through 9.

exp %

Location at which the quick breakpoint occurs.

t Quick breakpoint output is not stored in the memory
buffer.

(directive line)

Directives that are executed when the quick breakpoit is
reached* The directives allowed in a quick breakpoint
directive line are? AR, ASr CH, DH, GO, HS, IF, and VH.
The GO directive should only appear as the last entry in
the directive line; if omitted, the GO directive will be
appended«

If GO is the only directive specified in the directive
line, only the message described above is stored in the
memory buffer.

18-58 CZ05-00

SET QUICK BREAKPOINT

Example: ' ,

h SQ1 1D8B NR (IF 1000<,3E,-AR,'GO)

A quick breakpoint numbered "1" is set at location 1B8B» If
the condition specified in the directive line is ials£f no
information is stored in the memory buffer. If the condition
is true, the breakpoint message and the contents of the
active registers are stored in the memory buffer.

18-59 CZ05-00

* (•
SET TEMPORARY LEVEL

Set Temporary Level

The Set Temporary Level directive (TL) sets the active prior-
ity level to a temporary, specified value. The level specified
in the TL directive remains in effect until an SL or another TL
directive is issued, or until the end of the directive line. If
the end of the line is reached before another SL or TL directive
is encountered, the value specified in the last SL directive
becomes the active priority level. See the Set Level (SL) direc-
tive above.

FORMAT?

TLAexp

ARGUMENT s

exp

Value designating the temporarily active priority level.

Example:

SL 20
TL AfAR
TL B,«AR

The first TL directive designates level 10 as the temporarily
active priority level so that all registers on that level can
be displayed via the subsequent AR directive.

The second TL directive designates level 11 as the temporar-
ily active priority level so that all registers on that level
can be displayed via the subsequent AR directive.

After the last TL directive is executed, the active level is
32 (decimal): the level specified in the last set level
directive (SL)„

18-60 CZ05-00

SET TRUE BREAKPOINT

Set True Breakpoint

The Set True Breakpoint directive (Sn) sets a numbered true
breakpoint at a specified location. When the true breakpoint is
encountered,, the stored specified directive line, if any, is exe-
cuted; otherwise, there is a typeout indicating the contents of
the location counter and the active priority level, and the task
execution is suspended*, The Set File directive (SF) is a precon-
dition for directive line execution. The entire Set True Break-
point directive may comprise a maximum of 126 characters,,

If there is a preexisting directive line associated with a
given true breakpoint and that directive line is no longer appli-
cable, clear the line by designating empty parentheses () when
resetting the true breakpoint.

The message format iss

($H) BPn $P=OOxxxx $SL=OOxx

$P«OOxxxx

Location counter

$SL-OOxx

Priority level

NOTES

1. If a true breakpoint is set in any of the fol-
lowing types of instructions, the true break-
point must be cleared (Cn directive) before
continuing execution (GO directive)§
input/output, generic (BRK), scientific, LEV,
invalid instruction, or instruction with an
invalid address syllable. To avoid this
restriction, clear the existing true
breakpoint and then reset it in a subsequent
Set True Breakpoint directive.

2. A GO directive embedded in an Sn directive
line allows task execution to proceed after
the desired operations have been performed,
without further operator intervention.

18-61 CZ05-00

SET TRUE BREAKPOINT

FORMAT:

| SnAexp<A(directive
' ;

ARGUMENTS:
>

f
Number of true breakpoint; can be 0 through 31 (decimal).

exp

Location at which true breakpoint occurs:
r

(directive line)
% •

Directives that are executed when true breakpoint is
encountered.

Example Is

SO 100 (DH 200/10;GO) \ ,

Display locations 200 to 20F when location 100 is reached,
then proceed from breakpoint.

Example 2 s

SO 100 ()

Cancel any line previously associated with true breakpoint 0.

Example 3 s

50 1000 (AR?CO?GO)
51 1003 (SO 1000,-GO)

The first directive line sets true breakpoint number 0 at
location 1000t prints all registers on the active level,
clears true breakpoint number 0 because the instruction at
location 1000 is restricted (see Note 1 above), then proceeds
from the breakpoint,,

The second directive line sets true breakpoint number 1 at
location 1003 and then reestablishes true breakpoint 0 at
location 1000; the second true breakpoint line causes no
visible action except the printing of the breakpoint message.

18-62 CZ05-00

SLEEP

Sleep

The Sleep directive (SP) temporarily suspends the execution
of the Multi-User Debugger and returns control to the command
processor.

SP

18-63 • CZ05-00

SPECIFY FILE

Specify File

The Specify File directive (SF) identifies the relative or
full pathname of the Multi-User Debugger file to be opened.
Since the function of the SF directive is to locate the file,
first execute this directive; otherwiser an error message appears
as soon as a directive requiring the file is used. When using
quick breakpoints, the first directive entered after invoking the
Multi-User Debugger should be the Get Quick Memory directive; the
Specify File directive, an this case, should be the second direc-
tive entered.

FORMAT:

SFA
path
path -CYCLE
-CYCLE

ARGUMENTS:

path

Relative or full pathname of the file to be opened; rela-
tive pathname can be 1 to 12 characters in length. All
Multi-User Debugger work files must end with the suffix
*DB; all Multi-User Debugger quick disk files must end
with the suffix .QK.

-CYCLE

Used only with quick disk files. At end of file, returns
the Debugger writer task, which enters.debug information
into the file, to the beginning of the quick disk file.
If -CYCLE is not specified, the quick disk file is closed
at end of file even if there was more data to be written.

NOTE

If you did not initially specify the -CYCLE argu-
ment and desire to do so later in the Debugger
session, enter

SF -CYCLE

at any point later in the Debugger directive
sequence before end of file; this causes the
Debugger writer task to return to the beginning of
the quick disk file when it reaches end of file.

18-64 • C205-00

SPECIFY FILE

Example Is

SF GLASS.DB

Work file GLASS.DB is opened.

Example 2:
{

SF GLASS.QK -CYCLE

Quick disk file GLASS.QK is opened and, when end of file is
reached, the Debugger writer task returns to the beginning of
the quick disk file to continue entering input into the file.

Example 3 z

SF GLASS.QK
c

e

SF -CYCLE

Quick disk file GLASS.QK is opened. Later in the program,
force the writer task to return to the beginning of the quick
disk file to complete the writing task.

NOTES

1. If the .QK or .DB suffix is not specified in
the SF directive line for a work file, it is
assumed a work file is being requested and .DB
is appended before the file is opened.

2. If the specified work file does not exist, it
is created and opened with exclusive
read/write access when the SF directive is
entered. Only one user has access to a
Debugger work file at any given time.

3. If a simple pathname is entered, the system
looks only in the current working directory
for the specified work file.

• 4. You have the option of changing work files by
entering a new SF directive, thereby closing
the currently active file and opening a new
file in its place*

18-65 CZ05-00

SPECIFY FILE

5. The quick disk file must have been previously
created outside the Multi-User Debugger task
using the Create File (CR) command. The path-
name supplied must include the suffix .QK.
The argument values supplied must agree with
those used in the Get Quick Memory (MQ)
directive. In the following example, the
argument values are the default values of the
MQ directive.

CR filename.QK -REL -CISZ 4096 -SZ n -LRSZ 512

where n must be greater than or equal to 2.

6. The .QK suffix must be specified in the SF
directive line for a quick disk file; other-
wise, a default value of .DB is appended and a
work file is opened.

7. The quick disk file can only be opened when
running the Multi-User Debugger from the
system ($S) group. Only one quick disk file
can be opened at any given time. When the SF
directive is specified, this quick disk file
has exclusive write access.

8. Opening a quick disk file spawns the Debugger
writer tasko The writer task terminates when
the quick disk file is closed. This task runs
on level 62.

9. You have the option of changing the quick disk
file by entering a reset file (RF) directive,
thereby closing the currently active file.
Then enter a new specify file (SF) directive
to open the new file. ;

18-66 CZ05-00

START j-MODE TRACE

Start j-mode Trace

The Start j-mode Trace directive (ST) sets the given task's
Ml register j-bit on. As a result, any departure from the cur-
rent processing sequence causes a trap. The Multi-User Debugger
treats the trap as a "trace trap." The following points apply:

• j-mode trace can be started only for a task which is cur-
rently suspended due to a true breakpoint.

• The "Start j-mode Trace" directive is refused if the task
is suspended due to a bound unit breakpoint.

• j-mode processing is specific to a given task and is shut
off or restored at the monitor call interfaces.

• When a task is running in j-mod@f the Multi-User
Debugger's handling of successive traps is governed by the
"limit-to-pause™ counter of the GO directive,,

• Limit-to=pause has a default value of lr but may be set to
an arbitrary value via the GO directive., The Multi-User
Debugger decrements the limit-to-pause once for each
occurrence of a trace trap* When limit-to-pause assumes
the value zero? the trapped task is suspended to permit
operator action and a TRACE PAUSE message is issued. When
the task is reactivated (GO [LLLL]) the limit-to-pause is
reset to the default value or to a user-specified value.

FORMAT:

STAlvl

ARGUMENT:

Ivl

Active level of the task in question.

18-67 CZ05-00

TURN ON ABNORMAL TRAP BIT

Turn On Abnormal Trap Bit

Turn on the abnormal trap bit in the debugger's indicator
word. . , j , „ , . . ,

This bit is set to request that a special breakpoint message
be displayed if a task in the specified group encounters an
unexpected (abnormal) 0303xx trap condition. With the bit set,
the trap information is displayed, the task is suspended, and the
special breakpoint message is displayed. At this time, debug has
control of the group, allowing the user to determine what caused
the trap. The user can then decide to continue from the trap (by
entering GO) or to terminate the task (by entering TT)»

This bit is automatically set when debug is first invoked in
a group. It can be turned off at any time by typing the Clear
Abnormal Trap Bit (CT) directive.

The format of the abnormal breakpoint message is:

BP TP $SL=OOXX $P=OOXXXX
' 5

where:

$P points to the next location in memory following the
trapped instruction.

FORMAT:

TB

18-68 CZ05-00

TERMINATE THE TRAPPED TASK

Terminate the Trapped Task -* ;

Terminate the request previously entered against the trapped
task.

A user who decides that the task being debugged has been
sufficiently examined can terminate the task by this directive*
The TT directive can be executed only for a task suspended by a
true or special trap breakpoint.

NOTE

If TT terminates a task that has abnormally
trapped and is now suspended on the special
breakpoint, there will be no evidence of that task
left in the task group. Normally, the trapped
task's TCB and associated TSAs are left in the
group for later analysis of a dump*

FORMAT?

TT

18-69 CZ05-00

SAMPLE MULTI-USER DEBUGGER SESSIONS

Three sample debugging sessions are shown below to illustrate
some of the directives and procedures described earlier in this
section. The second and third debugging sessions illustrate
primarily the use of quick breakpoints,

Sample Session 1 - '

The bound unit being debugged is TEST, listed in Figure
18-1. TEST takes as an argument a number in the range 0 through
2. The function of TEST is to write to user-out one of three
numbered messages; the message number should correspond to the
number entered as the argument. .

The debugging session is shown in Figure 18-2.

18-70 CZ05-QO

s
ce

as e
W 0
» a

3

s
0

-» as
_4 3
Irt .3

I w
o

c
13 O

<« «* a
•« i
a e -

o - «
as v o > h, gt
w t 3 u o - v,

C
3

JS
> s»

•3 »> e — •c a
fc S3 -. 11 & » x
O >. -> 3". u -9 v.
3 ^ ^ w « » - ^

<« V <* —
a •a -> .s o> « o>
« - • — o . C ' O ^ S

a « a s» as 3 »
*0 «j IA € •«= Q —°
b, b ^ jg « « O =•
V <A M9 —) erf M

> a, a". a « —
c « o e - o < - > - ~

- = 3 - 3
3 «. a
o *» ^
i «

Ik! O
ft e

•3
O

C
OE
IU

•= a w
-. - a, o
_, a <.

a s s

• • a tn•a ^ <s "*u^ ^ >« W

n. O
a «

srt W -=

u C
C 9. o .

«* « Ai «« « «*
«= t6 If Q *» « »-=
^ « , * f e s / * « % ^ * * <*

K <rt £
I S 4°

u> 13
C •• 39 O

•» a
A It II S C

«J ^ *, ^ N«e

CO O

a a -
w ^s K

s e e wB e g .—
I l l W

SJ 0» ^ W, 1* >.
A * *a ^ 10 i»

y9 w* WQ

' • S i S <U

« — a.
3 — o

cn
=. e -s ^ e o

3
0»
•H
fe

•*, «=>
w= <~

o 3

_j- " s* " « ^ v • v •* " ̂ t^ —= s Co * ̂ * ™ « — * cr * — * -^ -™> •-=

18-71 CZ05-00

o>
e

w
AJ Irt
C 9

O •
•oas vi

w ^
—i *
ffl a
x »
<JU ~O

i/» •«
05 -3>

tu
va
<
<rt

O

m
O

r

c —
a —
i •<

C X
I <

«» -

o
<
IS!
</»
IU
X

ITJ —
OF) </»
v< ku
e — 8 «-

C
I!

44,̂
4>,

3
7 vj

CO

o
«
•̂M

S G — - *u
S" 3< S* ~ S" 3>
)̂ V ^? W9 A A

8 S 8 8 S S

O ** O <— >*.

T 3>
w* vt
5 S

CO

0)

= a
o a

= c

18-72 CZ05-00

($H)RDY:
TEST 1
(SH),/D
($H)RDY:

(T) DEBUG
($H)DEBUG-R210-07/18/1310
)SB1 TEST
LB*
($H) BUI TEST

($H)RDY;
TEST 1
($H) *BU 1 $SL=001B $E=OOFDDA + 0000 DATA+000000

X $E

($H) X=OOFDDA I &
©DP X/10 ' ' OS

($ H) M
($H) OOFDDA/ F877 9870 1702 7D02 0216 8DE7 9C87 9871 .w.p..} ...8
($H) OOFDE2/ BAD1 1001 A081 2EDO ABCO 0017 E822 AOD6 ...".. "g

Osi x
<̂ L* C
'(SH) TRUE BREAKPOINTS ' .2

1 LOC=OOFDDA INST=F877 M
v . M
A < n,

($H) ca
(SH) OOFDA/ 0002 9870 1702 7D02 0216 8DF7 9C87 9871 .. .'p. .}.:..„.. .q ^

c
*BP 1 $SL-001C $P-OOFDDA ' -H

. . . $R1^0000 $R2^0000 $R3^0000 $R4=0000 $R5=0000 $R6=0000 3
(S H) $R7-0000 $81-000000 $B2=OOFFA6 $83=000000 $B4=OOFFA2 -g
(S H) $85=001194 $B6=*OOFDDA $B7-OOFFA6 $P=OOFDDA $1 = 0000 $SM010 Q
DP $B7/10
($H)
(SH) OOFFA6/ 0002 FFAA FFAE 0000 0004 5445 5354 2020TEST ™
(SH) OOFFAE/ 0001 3120 0102 FFA2 FD82 FD42 0000 8002 ..1. B.... «,
2 X-i-A x -H

(SH) *BP 2 $SL-001C $P=OOFDE4 u
a

(SH) $R1^0004 $R2=0000 $R3^0000 $R4=0000 $R5=0000 $R6=0000
($H) $R7=0002 $B1=OOFFAF $B2=OOFFA6 $83=000000 $B4=OOFFA2
(SH) $85=001194 $B6=OOFDDA $B7=OOFFA8 $P=OOFDE4 $1=0004 $S=401C

SRI 1
$81

SH)
(SH) OOFFAF/ 3120 0102 FFA2 FD82 0000 8002 0000 1 B
DP X/10
($H)
(SH) OOFDDA/ 0002 9870 1702 7D02 0216 8DF7 9087 9871 ...p,.}.. q
($H) OOFFE2/ 8AD1 1001 0002 2EDO ABCO 0017 E822 AOD6 "..

X+B
L*

$H) TRUE BREAKPOINTS
(S H) 1 LOC=OOFDDA INST=F877 (
(SH) 2 LOC=OOFDE4 INST=A081
($H) 3 LOC=OOFD35 INST=2EDO

18-73 CZ05-00

*BP 3 $SL=001C $P=OOFDE5

($H) $R1=0001 $R2=0031 $R3=0000 $R4=0000 $R5=0000 $R6=0000
($H) $R7=0002 $B1=OOFFAF $B2=OOFFA6 $83=000000 $B4=OOFFA2
($H) $85=001194 $B6=OOFDDA $B7=OOFFA8 $P=OOFDE5 $1=0004 $S=401C
54 X+F ~ 1*
GO
($H) *BP 4 $SL=001C $P=OOFDE9
AR
($H) $R1=0001 $R2=0001 $R3=0000 $R4=0000 $R5=0000 $R6=080B
($H) $R7=0002 $B1=OOFFAF $B2=OOFDFE $83=000000 $B4=OOFFA2 ;-
($H) $85=001194 $B6=OOFDDA $B7=OOFFA8 $P=OOFDE9 $1=0024 $S=401C
DP $B2
($H)
($H) OOFDFE/ 0604 0808 0614 091B 4140 4553 5341 4745 AMESSAGE
55 X+14

i '

*B 5 $SL=001C $P=OOFDEE

$R1=0001 $R2=OOOB $R3=0000 $R4=0000 $R5=0000 $R6=080B
($H) $R7=0002 $B1=OOFFAF $B2=OOFDFE $83=000000 $B4=OOFE02
($H) $85=001194 $B6=OOFDDA $B7=OOFFA8 $P=OOFDEE $1=0024 $S=401C
DP $B4
($H)
($H) OOFFE02/ 414D 4553 5341 4745 205A 4552 4F20 4154 AMESSAGE ZERO AT
'DP $B4/10
($H)
($H) OOFE02/ 414D 4553 5341 4745 205A 4552 4F20 4154 AMESSAGE ZERO AT
($H) OOFEOA/ 4553 5420 4D45 5353 4147 4520 4F4E 4520 E.ST MESSAGE ONE
56 X+17
L*
($H)TRUE BREAKPOINTS l

1
2
3
4
5
6

LOOOOFDDA INST<=f877
LOC=OOFDE4 INST=A081
LOG OOFDE5 INST=2EDO
LOG -OOFDE9 INST=AOD6
LOC=OOFDEE INST=OOA4
LOC=OOFDF1 INST=0001

*BP 6 $SL=001C $P=OOFDF1

($H)
($H)
($H)
($H)
($H)
($H)
GO
($H)
AR
($H) $R1=0001 $R2=OOOB $R3=0000 $R4=0000 $R5=0000 $R6=0008
($H) $R7=0000 $B1=OOFFAF $B2=OOFDFE $83=000000 $84=005353
($H) $85=001194 $B6=OOFDDA $B7=OOFFA8 $P=OOFDF1 $1=0004 $5=4010
DP $84
($H)
($H) 005353/ 83C8 FF68 190E A870 0008 F851 E870 0000 ...h...p.
DH $B2+B
($H) OOFE09/ 4154
P FE09
($H)
($H) OOFE09/ 4154 4553 5420 4D45 5353 4147 4520 4F4E
AS B4 FE09
DP $84
($H)
($H) OOFE09/ 4154 4553 5420 4D45 5353 4147 4520 4F4E
DP $B4/10
($H)
($H) OOFE09/ 4154 4553 5420 4D45 5353 4147 4520 4F4E
($H) OOFE11/ 4520 414D 4553 5341 4745 2054 574F 2020

W

E!

§
•«-•
01
to
<u
CO

3
A
0)
Q

4J

O
0

cs
00

0)
u
s
CP

.Q.p..

ATEST MESSAGE ON

ATEST MESSAGE ON

ATEST MESSAGE ON
E AMESSAGE TWO

18-74 CZ05-00

GO
(SH) ILL INST "GO"
C6
GO
($H)TEST ME
($H)RDY:
TEST 1
($H) *BU 1 $SL=001B $E=OOFDDA + 0000 DATA=*000000

}DP $E/20
($H)
($H) OOFDDA/ F877 9870 1702 7D02
($H) OOFDE2/ 8AD1 1001 A081 2EDO
($H) OOFDEA/ A570 OOFF CBCO 0015
($H) OOFDF2/ 0801 1907 B870 0080

(L*
($H)TRUE BREAKPOINTS

0216 8DF7 9087 9871
ABCO 0017 E822 AOD6
CCA4 6048 7000 0001
F851 6COO 0001 OFOO

c • • • o •

($H)
($H)
($H)
($H)
($H)
C*
L*
($H)

1
2
3
4
5

LOC=OOFDDA
LOC=OOFDE4
LOC=OOFD35
LOC=OOFDE9
LOC=OOFDEE

INST=F877
INST=A081
INST=2EDO
INST=sAOD6
INST=CCA4

INACTIVE BP "L*B

)DP $E/20
($H)
($H) OOFDDA/ F877 9870 1702 7D02

OOFDE2/ 8AD1 1001 A081 2EDO
OOFDEA/ A570 OOFF CBCO 0015
OOFDF2/ 0801 1907 B870 0080
$E

$SL=001C $P=OOFDDA

($H)
($H)
($H)
S10
GO
($H) *BP 10
OP $P
($H)
($H) OOFDDA/ 0002 9870 1702 7D02
S X $P

VH X
($H) X=OOFDDA
CH X+14 CBA2
DP X+14
($H)
($H) OOFDEF/ CBA2 6048 7000 0001
DH X+25
($H) OOFDFF/ 080B
CH X+25 100B
iDH X+25
($H) OOFDFF/ 100B
'Sll X+16
GO
($H) *BP 11 $SL=001C $P=OOFDFO

0216 8DF7 9087 9871
ABCO 0017 E822 AOD6
CCA4 6048 7000 0001
F851 6COO 0001 OFOO

.w.p..}.

..p.«

0216 8DF7 9087 9871 • P -.}

0801 1907 B870 0080 'H ...

CO
ca

c
o
•H
CO
w

a>

3
£t
<U
Q

&
O

cs
I

CO

0)
u
a

($H) $R1=0004 $R2=OOOB $R3=0000 $R4=0000 $R5=0000 $R6=0010
($H) $R7=0002 $B1=OOFFAF $B2=OOFDFE $83=000000 $B4=OOFE09
.($H) $85=001194 $B6=OOFDDA $B7=OOFFA8 $P=OOFDFO $I=OOOF $S = 4010

$84/10

($H) OOFE09/ 4154 4553 5420 4045 5353 4147 4520 4F4E
OOFE11/ 4520 414D 4553 5341 4745 2054 574F 2020

ATEST MESSAGE ON
E AMESSAGE TWO

($H)TEST MESSAGE ON
($H)RDY

18-75 CZ05-00

At the start of the listing shown in Figure 18-2, TEST is
invoked with the argument 1. TEST should write to user-out TEST
MESSAGE ONE, but fails to do so. A debugging session follows.
Each Debugger directive beside which a number appears is
explained below by a correspondingly-numbered comment.

1. Invoke the Multi-User Debugger.

2. Set bound unit breakpoint 1 on bound unit TEST.

3. List all bound unit breakpoints.

4. Put the debugger to sleep (SP) to allow input to the group
through ECL commands.

Note that the group is back in "RDY" state, waiting for
input.

5. Type the bound unit name with an argument, causing a bound
unit breakpoint message to appear.

You are now back in debug mode, ready to type in debug
directives.

6. Assign temporary symbol X to the base of the program in
memory.

If the start address of the program is not offset zero,
the offset value must be subracted from $E to determine
the base.

Example:

Assume the following bound unit breakpoint message:

*BU 2 $SL=001B $E=OOABCD + 0023 DATA=000000

To set X to the base of the bound unit, you would type

AS X $E-23

or

AS X ABCD

7. Verify the value that has been assigned to X.

8. Display memory starting at the location assigned to X for
10 (hexadecimal) locations.

9. Set true breakpoint 1 at location X (the base of the bound
unit).

10. List all true breakpoints currently set.

18-76 CZ05-00

11. Display memory starting at location X.

Note that the instruction F877 has been replaced by
0002—a break instruction. The original instruction has
been saved in a table in Debugger workspace.

12. Reactivate the broken task by taping GO. The GO
directive causes the true breakpoint to be encountered
and the message to appearo

GO must be typed from a true breakpoint; SP is not
accepted at this time.

13. Display all registers. You must be at a true breakpoint
for register values to be meaningful. Register values
displayed at a bound unit breakpoint are not meaningful
for the bound unit being debugged.

14. Display memory pointed to by $B7 for 10 (hexadecimal)
locations.

15. Set true breakpoint 2 at location X + A.

16. Type GO, causing true breakpoint 2 to be encountered and
the message to appear.

17. Display all registers.

18. By means of the AS directive, change the value of $R1
from 4 to I*

The logic of the program calls for a division by 2 to
convert the number of bytes to words. Insteadf the
instruction at offset 9 multiplies by 2. The value of
$R1 is changed to correct this mistake.

19. Display memory pointed to by $B1»

20. Display memory starting at X, to show where breakpoints
are currently set,

21. Set true breakpoint 3.

22. List all currently active breakpoints.

23. GO from breakpoint 2.

24. Display all registers.

25* Set true breakpoint 4e

26. GO from breakpoint 3»

27. Display all registers.

18-77 CZ05-00

28. Display memory pointed to by $B2.

29. Set true breakpoint 5.

30. GO from breakpoint 4.

31. Display all registers.

32. Display memory pointed to by $B4.

33. Display more of memory pointed to by $B4 than was
requested for display by the previous directive.

34. Set true breakpoint 6.

35. List all currently active true breakpoints.

36. GO from breakpoint 5.

37. Display all registers.

38. Display memory pointed to by $B4.

39. Display in hexadecimal only (not in ASCII) memory at the
location pointed to by $B2 + B.

40. Display memory at location FE09.

41. Assign FE09 to $B4f which was not pointing to the proper
location.

42. Display memory pointed to by $B4 to confirm that the
j value just assigned to $B4 is correct.

43. Display more of memory pointed to by $B4.

44. GO from breakpoint 6. *•

The message ILL INST "GO" means that the breakpoint must
be cleared before the GO directive can be issued. The
description of the Set True Breakpoint directive (earlier
in this section) explains when a breakpoint must be
cleared before GO can be issued.

45. Clear breakpoint 6, replacing the 0002 break instruction
with the original instruction which has been stored in
Debugger workspace.

46. GO from breakpoint 6.
j

There are no more break points, and the bound unit
completes executionc The group is back in ECL mode,
awaiting input (RDY).

18-78 CZ05-00

47. Type in the bound unit name with argument in order to
step through the program again.

Note that the bound unit breakpoint is still set for
TEST.

48. Display memory starting at the base address of the bound
unit ($E).

v

49. List all currently active breakpoints.

Even though the Debugger thinks that true breakpoints 1
through 5 are active? there are no 0002 instructions in
memory at the specified locations. When the bound unit
TEST was reinvoked, a new copy of the bound unit was
loaded in memory? overwriting the version containing the
breakpoint instructions. It is important to remember
that true breakpoints must be reset after each invocation
of a program.

*.»

50i Clear all currently active breakpoints*

51. List all currently active breakpoints.

52. Display memory starting at the base address ($E) of the
bound unit.

You can enter the expression $E only when at a bound unit
breakpoint„ At other timesf refer to the value of $E by
assigning that value a temporary symbol in the range G
through Z.

53. Set true breakpoint 10.

It is possible to reuse breakpoint numbers 1 through 6.
The number 10 was chosen simply to show that higher
numbers are available.

54. GO from bound unit breakpoint 1.

55. Display memory pointed to by $P (program counter).

56. Assign the value of $P to the temporary symbol X.

57. Verify the value assigned to Xe

58. Change the instruction at offset 14 from LDB to LAB.

59. Display memory starting a location X + 14 of the bound
unit. (The displayed change has, of course, occurred
only in memory«,)

60. Display the contents of memory at offset 25 of the bound
unit.

18-79 CZ05-00

61. Change the value of the memory location X + 25.

62. Display the location again to view the new contents.

63. Set true breakpoint 11.

64. GO from breakpoint 10. ,

65. Display all registers. 4

66. Display memory pointed to by $B4. ;

67. GO from breakpoint 11.

Because no more breakpoints have been set, the bound unit
completes execution; the group is back at the RDY stater
awaiting input.

%

Sample Session 2

The bound unit TSTNOW, listed in Figure 18-3, is debugged
with quick breakpoints. The debugging session is shown in
Figure 18-4e

18-80 CZ05-00

oo

o
o

(M

«M

o A t
Cv»—>fMc» «~i3 •*

So. «B a OA K o
Ui %> % % % CO * *> %

O»- <V Uf«|
• to fe uae
x*t

IB
3
a

* eeOrw
. _ *=14MMO«-

O ^Oc rg *fisi<s <v-^ o
»- O2 «•
O fS)U« % N
» » o ^> ^
K M <««=v^

O
CM
a

to
fr<

•P

o
QE

W, > 06 I
•S3 T5 >"
«4 ̂ .̂ 4A

M -a
* e

=* 3 K

tf»

«e
o

o
M

moo
rg
in

Ouo
iM-Ovn

a
o

s©»- osioo omooaffiw-.tva o
OOO (M»o<M<\» A»»rir«i\)«vfcr>^fO<M o

QQOOOO OQ«
oooooo ooc

OO OOOO OOOOOOO
OO C5OOO OOOQC7OO

a oz
a 03

o

OOOOOCOOOOOQOOQOOOOOOOOOOCOOO
eeceoeoaoeooaooooooooooooeooa
oeocccaeoocoooooooaooooooeooo

a
•o
o
a

18-81 CZ05-00

e
o

o
Vfc <fc

«s z

O *U ~_

O 3 £
t >• O
* » g" i i • S
J • «B • » • 6*
as % w H * «->AJ .-
C «~ V"»- «> <M«- "> CM Kl»- 1J
iu ae feO 9.3 |O II2 I O .-j

« 304 co 4 «v)_>rv*c v- 3»4 eo <v *o—«i«i»- •- JPJ go 1
•* -3KV1 O A 3 — V 5 U B O £!UiT» O A 3— *> Hit O J3II V> O A

tSi o> « % \ w % u « « % % c o % % « w »ui « « % « e o % % » < _ > ^
ae w •»•>?«-» o <~ -j<*-js3r» o -j--O»- o^--i^>r-ofv o vo*- o s-
XX **• J3 k K o W u» CD ̂ 3 fc b • J3 V- fc • kMO3^9v,b » ^3 fc W - <• V

O <*«tt* K <* -•«*•*•)«» 1 *?*»*»*» KM — -W»V»*»V» X MMVtVt * <A
e •
ta t=
« £

O <«'D'O uu C 3W**Ot)uw UWWOu u C3O •O'O'O u u Wi^tS^ou C
-<_.673 «_._.-• S-3 a

4> w *P
£ « « « « « • 3 •« • C

S

8
•o •**
«

f>
I
00

c ,

0)M
3

GO OOO OO OOO
O-.T OOO O<T OOO

OO f wf-i^OO ^wr^oooo wr^rvoo rgorvoOO oa
O<«» O"
OO <-

OOO OO O OOOOO ^-»-«-«»».«- ^.^VCFXP. ivvMiMrvj IM
QOO OO O OOOOO OOOOOO OOOOO OOOOO O
COO OO O GOOO© COOOOO OOOOO OC-000 O

OOOQGOOOOOOOOOOOOOOOOCQOOOOOGOC3OCQQOOOGOOGQOQ
COOCOOOOOOOOOOOOCOOOOOOOOOOOOGCOOOOOOGOOOOOOO
OOO COCO COG OOOOOO COOO OOO OOOOO CrCCwOOOOQGO OOOOOO

18-82 CZ05-00

o
Z

cn
' to

•fIN,
o
C\J
Q

0
I
o

i as
Q O
O •

o z
z: -<

M tj
O s c-

CfJ

O! 3
O -t

i CU

* a •«
* -•»

3 in
*- w a

« Z -F
O « —

•«•

f>l
at

j

ew
Ml

rss
ifi
ae
-i
i

0 <
~i

t=
_j •-
-3 CO
3
ca, »
en 13
l»=3 e

Ui
s -
UI
(— uJ
:O S
*"> -̂s
1,15 I—

?1 '.t!
»-o >•=•

1 •£

lA

ee

ou -•
O :-
o a
ae «£
•3 u/

ce
X
o a.
C 3
Jj O
•£ ce
b3 -T

U.
"S

o
OJ

3C O
«t rj

as ••
•jj •-

: k- a

c?

3

CO
13 O
3 I
ce a
lij O
a ri
f^ i£
It I
•I 13
_J .-3

co

(9

•3
O

cn
n i—
O s*
o u.
1»T -J

Q
O
a
o
a
a
H
<
t—
*c
0

a
0
o
o

*
w
•€
O)
w
(V!
O
II
U!
«5

•t
o«
=••

as
a
o
o

0
o
Q

ID
Q
U

U

Q
-*•

o — a
tv o cy
US o-^
W - -I

Q -r
-0 (M *
rs >» «
O -o

M-l
o
C
0
•!-)

03
03
(U
cn
*
Û"
C

•H
Cn
tn
S
XI
diw
Q

„
^4

1

00
rH

O
^y
[-=
•fl

O
H

>/. en — cu X X

t3 X '- O I- id sn - a)
cc 1* • ae to oe «* cc o
A .. ~ t— — •• ce -
w ra x x iu to
<» < j 3 » ee «» ' > >- •• c? '"5

tj >- vj - < J - r : a .

II .-£
•3 ce
tl. LU

ill
«» LI. '
- O)

ui en>— «»
s%
Lt <=
«t
_J 3

•1C
ce

> uJ

o a»

•>. — ce X
f"s ce «* .">
-o -c — —
!VI -
m r*. r-
ru r» — riJ
O T «• f

tn c.i — !ki i
i a. <» « eg o -j
: a — — tn a> -..i

•H
fe

t- 08 99
f-l FH (-5

18-83 CZ05-00

o
3

X
UJ

en

-» o
O 13

•- O
o cu

O *r
<M +
•>» x
-O
n x
+ a

o x as
sj a «•

ce ce x
< -i >

•t «c <
< a- <o
O O ti-

ll 11 n
i— t— >—
cn in en
•3.-Z. -Z

to »**>>-) >-t

Z -t < <t
i—i -o r~ to
o rvi cxi cu
a, ru cu :-j
;e cu cu ru
«£ o o o
Ul II II II
at <j •-* ' J
co o o o

))_ !
if
;j
«i — nj n
r>
'3

K I ft w"* U*« ^

to»^
X
ui
tn
Ul
U)
Ul
X

Ul
ce
a.
CE
o

>
CE

OS

Ul
2£

Ul
O

Ul
I
t—

M
t3
Cr

CC O
a, «-«
0 t-
. — -jr o t-

Ul — O
I- — r>
t/3 C3
>• in
01 O Q

° co ui
ce o o
o

ui
ce
K
o

o
Ui

1C
U.

O£
III

•£
03

a:ui

o ui :j "

a
ce

'3
:>
ca
tu
o

- o
o a

o CM
•-3 -x
•- -I
C3 -r
• VI •?•
-» x
•o
<-j x
* es

o z as
13 a «*
tc ce x
•£ < :>

«t •£ -C
•t rr- :0
Cf № O

co <n rn
•Z.-&-Z,

CO « « =H
h-
^ -t -t •£
-s -0 ' - -O
o M i>« ><a
Cu ru i o ~<J
le rg 114 'u
' £000
UJ II 't II
ce ij >J <~>
tB O ' "i r3

.,J . J _J

-> O
oa
o ~
o tu
O v.

O -!•
rw >

o x ce
o a <*

ce as x
«£ -t >

U)
t—

5,
o
a.

UJ
C£
at

tj
1-5 — f (J f)

O >-

o in

j ^ o -•»
— o« o •• O •• O ri

:- i .- u. :- i- o
o a ce a a a, <j

n» «» **» *ft
;..o i?
» id >»
• .'J —

X X X X

O

it
r*9
U.

(O

rt»a,

<0
t-
U)
i^
x
ui
>
ce
o
rui
£

:£
tj
**
3
•3

2 a
ce

<4-4
O

O
•H
01
0)
<l>
CO

cn
3

i — — — — ce — — U. — U. O a.

O rt
n n

N m
n o»

18-84 CZ05-00

Each numbered Debugger directive in Figure 18-4 is explained
below by a correspondingly-numbered comment.

1. Establish standard I/O files for the system ($S) group.

2. Turn on the ready prompt. (Use of the ready prompt is
optional. In this example, RDY helps to distinguish user
input from system response.)

3. Change the default group id to $H.

4. Change the working directory of the $H group.

5. Create a quick disk file, specifying for control interval
and logical record size the default values of Get Quick
Memory (MQ) arguments.

6. Change the default group id to $S.

To use quick break points, you must invoke the Debugger
from the $S group.

7. Invoke the Multi-User Debugger. (The bound unit usually
resides in SYSLIB2 and can be invoked by the simple name
DEBUG.)

8. Request quick memory, using the default values.

9. Print the memory location at which quick memory begins.

10. Open the quick disk file.

11. Set bound unit breakpoint one on the bound unit TSTNOW.

12. List all bound unit breakpoints currently set.

13. Put the Debugger to sleep. This directive returns the
group ($S) to the ready state, allowing you to enter ECL
commands.

14. Invoke the bound unit TSTNOW. This command causes bound
unit breakpoint 1 to be encountered and its breakpoint
message to be displayed. The occurance of breakpoint one
reactivates the debugger, which will handle all input to
the $S group until GO or QT is entered.

15. Assign the value of $E to the temporary symbol X.

Since the value of $E is the base location of the bound
unit, all subsequent references to a location in the
bound unit can take the forms X + offset.

16„ Dump one line of memory, starting at the location
associated with the temporary symbol X.

18-85 CZ05-00

17. Set quick breakpoint 1 and its associated directive line
at offset 7 in the bound unit. >̂

18. Set quick breakpoint 2 and its associated directive line
at offset 17 in the bound unit.

19. Set quick breakpoint 3 and its associated directive line
at offset 27 in the bound unit.

20. List all currently active quick breakpoints and their
associated directive lines.

Note that the directive line for quick breakpoint 2 ends
with two GOs. The Debugger appends GO to the end of a
quick breakpoint directive line, whether or not the user
has already done so. The repetition of GO causes no
problems. Once a GO is encountered in a directive line,
the rest of the line (whatever it may be) is ignored. «~

21. Go from the bound unit breakpoint. The bound unit
completes execution without any visible evidence that the —^
quick breakpoints were encountered.

22. Reinvoke the Debugger.

23. List all quick breakpoints currently set and their
associated directive lines.

24. Clear the quick breakpoints just listed.

25. List all quick breakpoints currently set and their-
associated directive lines.

Note that although quick breakpoints 1, 2, and 3 are no
longer set, their directive lines remain for future use.
The clear breakpoint directive does not clear directive
lines.

26. Close the quick disk file currently in use.

27. From the $H group, change user-out to the line printer.

28. From the $H group, invoke the Debugger utility PR_QK to
print the information written to the quick disk file
TSTNOW.QK. The print-out of this information is shown in
Figure 18-5.

29. From the $H group, change user-out back to its original
device.

30. Change the user-out of the (default) $S group to the line
printer. In this case, FO 1LPTOO is a Debugger
directive.

18-86 CZ05-00

31. Dump 500 words of memory, starting at the location
displayed earlier by the PQ directive as the start of
quick memory (see step 9}. A print-out of this dump is
shown in Figure 18-6«

32. Change user-out of the $S group back to its original
device.

33. Print the start of quick memory.

34. Return the quick memory block.

35. Print the start of quick memory. A message is returned
verifying that the quick memory has been returned by the
RQ directive.

36. Abort the Debugger from the $S group.

18-87 CZ05-00

3 TO
9 K
9 a

«j
•3
•M

»^ -O l\i
IM "MO
rt* f* rw

o a .6 ry *\j
O O 39
O O J* fS* f>J
3 9 ~.
H a — o 3
— — > » • « • »
9 a "M nt
•» •* 3 n f

ft.
f 9 9

9 O O i/l ,/\
a o 14. j.
o o ru 9 9
O O I'-
ll H -O UJ OJ
»» «» 9 m M
JC Z O O

O X I
o »

a
•

8z
B
CO
£•«

0)
rH
•H

3a.

a:
D

3
S
IU
a
x
I4«
J>

9 O A* A*
O 9
tl Ul H O O* *M
J^ -• ̂ — 1/1 JS
OC 9 X O ̂ u. 9
0 7 •* 9 7 7 >M

H II 9
3) ./S » J» *M

9 I* 9 W l/> |T>
9 9 •* — 9
9 9 « » (M
9 9 v» 3 3
II 9 H 9 M IV IT>
» OJ » J f> f
a: ̂ or *^ »r> IP o
» II ** II 9 9 ^

~ 1-1 01
« ^» 3 3 •*!

O O IS> i/l
9 9 u. n. 9
9 9 9 1C a 9 Aj
9 * 3 — -NJ
II A* II fV •• — I**
•O >J -O •V J »
X rtj "Jr A* 9 9 9
4t 9 «» O •« <V "M

O C (V "V. -O
9 »> 9 3> -U /I
« -o H .a 9 (v r*
-VJ — A< — "VJ O
(X 1*1 X I** 9 •»
<« -v « -w -vj f»

en
•H
a
^
o

•--i
3a

4-4
O

05
4J
Ca>
-U
fi
o
u

in
I

oo

o
3
3,

9 I*" 9 *«> A* IT
3 a 9 £ 3 3 a
9 ¥» 9 w* 'V « »T
9 3 99
II H 9 M <V
«> ̂ -• v* *v —z o a « « i »
M* OJ M -V 'M « •«»

m -v u.
<M ^3 «

<U

V4
3
№
•̂fc,

3 Z j. — II — II —

II II •** II <V

2 10 II II II *W *l

a o
>>j « <
«= o *» :

18-88 CZ05-00

9 J ~.
M o -> ni .
> ii o "V
+1 *» O O <
_l T II M

X TJ •« <M —
«• « O> O O

IV It 9
(V r- Miv o en
O M M

.LI J

M 3 O O
O O O O

It O O
II IX O O
•s x n a
w we *n o
— je M

«A ^»
•/> o a
«» O M

O O
II O O
2 II O O

— — 00X II O
— 01 9 O
D IZ II

11 «A O
•» -o o

ru -u
IM i*»

o «M it
o o —»
O II <*

O <t -Q
ii -a
f* (V
a u <v
w r- (V

: u, 9
i IM U
9 o a.
o o •»

•*> 49
_ -y i
3 <M
O O i
It M
•o ni

0 O
o o
o o
o o
II 9

a '
i ru o ;
.> *» O IM .

-* *•» 3 *\J 9

O i
I II '

•u M 9 9 M y jj
A* f* M O O 9 (V
M c « o M M a
O •» «• *\J O O 9
« » M M />
9 -C •»> 0, If
S 1*1 3 CO .TI 9 9
•» -C O (V rfl Ki> 9

(V oj ~ — -« XI
V f» •£ 31 *** 9

O <V II 9 fl O •»>
O O x — •« IV ,/»
O II *« —= -̂ »*1 9°

O -C 9 901/1
o i o o r*> M
i»

n
r^ i
z

"•> U 9 M f(
nt •** r\i •*> i*t o

i *>j •> < o -M ry

u g> o (V «
» -< n M /^
UJ 9 O O p»°
_J O -« V AJ

IV If O «
» y o -v «.

uu 3

M "V

3 O « •«.
•V O
•S 2 -V

M "VI A» O S
H O O O -U fM•e -v •« •« a
U tf O 9 tf
•= J= 3 -V •*

9 >\! U. a
J5 /> 'M 3 fl SI
* 3 3" J% 'V -V

s /• o -y •«
II O *« & f\i }̂
a ii 9 1/1 c o
— — i O js (V1 "« 9 M M
I" Of J\ O « -^
O J5! -Li M 3>
3 9 "V! O O
X 3 O •%) "VS

« O 9 fU U
• U /> 9 O 4
• •» U, l/> <V <V

O O O « I* I
O IV "A -5- •** '
o o o ~ ni i
o •«

O ifl
O 9 r*1 rft I** t\l r+l 1

1 O U Al O O
' O 9 -/*•****
i O O 9 -O IM

O -I
•V K»
O •«
fV "*i

1 0 ^ 0 9 9 1
i O r*\ fV Ad f\l I

O t/t f** O «
» O 9 9 V IM
i o —> —. o O

IM a 9
«*! *S -*S
IV 1̂ O

9 0 - \ 4 O O O - M - « i * » :
OO"* !K i i * *K) r *»9t /^ '
O O O O O O O 9 9 '
e G ^ r ^ f ^ f ^ f ^ ' M r v '
o e o c o e o o o i
OO'M'^- '»'^ ' ' l -Vi'V'
— > o c ' \ < e o 9 c c i
O O ^ ^ ^ - O ^ A J I V i

•*> 3 rvj <M O
O C 9 i/l Î I
O 3 -O 9 Jl
« O 9 (M l« i

I O '
i m i
i o •

K> C.
O O
9 O
•e o

S. C
=f o

J* '

o

e '
o .
O i

X) O
e o
& c
3 S
e o
o &

m o o ru o ru o < i O <\t
> Vi 9
i O 9
i -y 'M
i o o
i r*i IV
! -3 O

f f f i O O O I M O O

i o :
o • ft -^

2 O
rf ^
9 O

O (\. £ :
•̂ -*^ - t̂ I

O O » '
•̂ -"S 9 i

0 3 9
•*» f*l *v i
O fi O
f« f^ fV I

O fW O '
"•< y v
o 9 nj
"I -M 9

I O O I
i "U ^ •

I O fV I
' O O

r\j ru o o i
-^ IM -^ •

I O IM
I 'V •**

i ra ̂ i o
' fV 9 •*

o "V
rw ir
O 9
<\S IV

O « 3
IV 9 Kt
o -w s
IV «» K\

»• e — o (v «j
•O -\i 9 -A ''J vs
3- m ^> (V o o
•̂ v> -o -̂ V -̂

M •" O 3 V
K1 p*l IV K» It *
M -• Jl Aj Jl

O -O
O -A '

o ru •
3 9
O — i

3 J
e fl

i O O

I O O .
' m <V •
• O O c

• o
I -*l .
I O :

C <
I O <
O '

> 9 © O
I -ft -ft ft
I ft O 9
(9 ••» -VI

rv »« w <s -e e
•̂ /^\ *\ -v ^ 1=̂
e e -> o 9 f\j
•̂ rw *o l̂ ^ p^

O 3
O O •
O O '

i .6 0 '\J -> S 3 O
i 9 r*l f*J r*t fvj o o
i 9 ̂ 3 A 9 3 3
i *n F« rv 9 9 e o
i C <V O « J1 IS O
I M ••» -O ^ -̂ O 3
1 9 wTI 'V* 3 1% O O
I -*» ~f\ V -yj ^ 3 o

Jl S> ^ J» -O 3 3
i F*I py P« 3 ^ <3 O
i «= O "\J O O O O
i p*1 pn p« rfs fvj e o

9 l/» © IX « S O
•̂ ^ "\J ^ - t̂ 3 O

' O .0 O ./* IM C 9
' ** 9 •*> •*) -*1 O O

t *M 9 "VI 3 *V! O O
p«a -*• v^ ry en G e
J^ 9 O — "** O O

, ifl M <•» <^ <l O O

. if if <v 9 e e c
) •« 9 ** -o -y -3 3
9 <V O C C O O

I **1 •*! M -^ -^ 9 3

i 3 » 3 M -V 3 9
t iv 9 ** K> »^ e e
I © 9 "U 3 -n 9 3
1 un "rt f*t f\ 9 O O

i in o e c -o e e
"̂ M "̂ ''I -̂ » 9

' -A Lf IV A. C « O
t 9 "O P^ •*! At -3 3

VO
I

ca

<u

, u. u. u= o
> yD </t 1̂ -O

• O O O O

18-89 CZ05-00

Sample Session 3

The code being debugged is in lower (system) memory, and
deals with a semaphore related to all console I/O. The true
breakpoint set in the following debugging session, shown in
Figure 18-7, is subsequently encountered at each I/O request made
to the console.

18-90 CZ05-00

tu
X

<n
d)

3

•—
-F
rv
o•«»
w
a*•*
i"̂
oi
° .
ri *
_J
i as
o o
o -
•F '
a '
a 2E
£ —

5C
-0 _J
M tj
O : t-
• J t_>
O

Ui u 1 O>
& <» i*

0

1

»
»

N
EW

D

IR
E

C
T

O
R

Y
S

4
0

5
J

S
8£

A

U
G

i:

o —
f m
>:E o

f= <•=

2 2
O <£

O -j
e f=

W_l —
-* « CO
•f 3
See -

0

* en is
* —S =

LU
jg — '
LU
N- LU
tn s
T" e=S
fO H-

t» ill
1-1 1—
I •£
f~ 13

~i CTCfS CO
3 (««»<*

CO
o
r̂ >
KIT
00

Ifl
c»

CVI
re
Cr>

ib

f-J
0=3

CJ

n>

•e
<— c
:t
1L,

fl
<e

-

_.
>=
O
•t
U)
ee.

&, -
Z3 >•
a ca
t£ -t
IS UI

K
=f
0 (3,
E ^
tu o ••
•£ te x s
13 '3 «» <*

EL I X
5» <« «• f J

U.
«e
_j
A U,
>=„ ce
CS 1
a: ..
w •«= _£
1— (3 O
< ae •

e 5 I
3 « w at
*-**=—*-*

•#
~Q

It
•« OS
_!
A
> •

• 66
ee
Ui 2£
t- o
<

3
O
z

>• 1-
i J2
i— >

Ûi

« zz
C5 & ««•

(O
»r

CXj

<**»

as

Ui
ae

X 0
(3 *-

• O U,
•A! UI <
_J OS _J
a, s\
E _j :-
•« «t oe
tn *-> ~ OE

o :- •« uj
h- O to p-

OE «• •'

I 3EZ S S
(» <ff « «6 0 3

^
«
«•»

*S
«
«»

ôi
o
o
r-5

UI №
_j i
0 13
Cfl •« 3
as >• OB
o a LU
o oe 'a ca

s en as («
C_! Q (* lil «• r.3 '

ui CE — ca •— s: u

0
o
rt
ta -
«
o
o
CV)

Q
w
P)
Q

-f
0"
o»
v=

Q
U
n
t"iUJ

w
in
u.
u,
0
CJ

P3 OB
0 cj
SJ «

inae -^ o;
— 0 0 •«
O o — «

u/ n
'i _i — a
on, a o —
a.S — o rj

-t M —
••"• tO ^™ «*̂ ••*

"1 W t O 0
3 »u. a, « •*• ts
i_ >— tn Q -~ — fn

§
•H
«
W
«

03

S1

•H
№
№
3
.a
(U
Q

•
r»
I

00
rH

0)
4 .
W

S
tp

•l-t
En

' U) ' o«> Q -

18-91 CZ05-00

n

Ou

Xw

s

a
o
to

at
z

tfl «-e
t-
z o
•-9 T-

o ro
a, —
x a
-£ O
LL> M
as o
oe o

O
O

U,
<
_j
A,

tj
-1 M OC HI

in »-

aa

en
>•
ir»
A, ••
a> >•
u: o
< cc

O
a.
:̂

-t
UJ
cr
OB

r
O
a.

tn
h-
cni»«
X

ae
o
UJ

o
o

o
•

Ul
-J
a.
I,
t

* tn J5 :
o «» «» •

ZII

ce
tg

o u f :
3 t- i
_i < i

XX

i ^
• • - «• (9 e«

- >• I >

a OQ ce a
cc u, ce a. cc

OJ
-~ ~ -3
O Ui

i « » « » ! l . ' 3 t 9 « » t - « » ^ « » < » « '
i - — ce ie a. -• '3 • — -

C
O

•H
(0
0)
4)tn

I
I
43
fi

8

00

3-
ri

18-92 CZ05-00

Each numbered directive in Figure 18-7 is explained below by
a correspondingly-numbered comment.

1. Change default group id to $H.

2. Change working directory of $He

3. List all quick disk files in the directory.

4. Change default group id to $S. • ' •

To use quick breakpoints, you must invoke the Debugger
from the $S group.

5. Change working directory of $S

6. Establish standard I/O files for the $S group.

7. Turn on the ready prompt, (Use of the ready prompt is
optional. In this example/ RDY helps to distinguish user
input from system response.)

8. Invoke the Debugger.

9. Request quick memoryf using the default values.

10. Print the start of quick memory.

11. Open the quick disk file SAMPLE.QK.

12. Dump a line of memoryf starting at location 131D. This
location is in system memory.

13. Set quick breakpoint 3 at location 131D, specifying a
directive line.

As already mentioned? breakpoint 3 will be encountered
at each I/O request made to the console.

14. List all quick breakpoints currently set and their
associated directive lines.

15. List search rules for the $H group.

16. List the current working directory for the $H group.

Even though the Debugger in running in the $S group, a
task running in $H (steps 15 and 16) can encounter a true
breakpoint.

18-93 CZ05-00

17. Clear all quick breakpoints.

The Debugger has remained active in the $S group while
quick breakpoints were encountered by a task running in
the $H group (steps 15 and 16). Input to the $S group is
still being handled by the Debugger.

18. List all quick breakpoints currently set and their
associated directive lines.

Note that no quick breakpoints are curreatly set. There
iSf howeverr a, directive line ready to be used for quick
breakpoint 3. The CQ directive does not clear directive
lines.

19. Close the currently active quick disk file.

20. Return the quick memory requested by the MQ directive
(step 8).

21. Print the start of quick memory. The message shows that
quick memory has been returned.

22. Abort the Debugger from the $S group.

23. Change user-out for the $H group to the line printer.

24. From the $H group use the Debugger utility PR_QK to print
information stored in the quick disk file. A print-out
of this information is shown in Figure 18-8.

18-94 CZ05-00

u

i
.£

•S
3
I

<» 0
0 0

H II

£ «

pf) **

sr A*
9 •*>
Q O
0 0

-v A*
£ *
M M

« F*.
ik tk

9 a
& 0

£ 00

0 «
0 0
9 O

X X

»*% m
Ji in
9 9
•V AS
« M
«• -0
oe at

© A»

© o
» £ it
MI «•*»

« *• *»
N
•S

<3> rv
9 o
H 9 H
V UJ *

«*>«««
l«
C5

ff1 rv
e 9
9 Uj O

K 9 x

10
3,

9- Ik
« O
<3> « 9
ID .k U
•V PC- Ai
as o QE

o
H

9 £ S
<e «s 9
© ©
W H

x « x
o

A
O

II

<D

««

Al
o
o
<v
<£
«

1*1
1*4

W

es

«

Q

fl-

OC

9
•ti
9
9
K
•Q
as

Pa
Ifc.

&

ffi 19 <S
« tf% «a

9 «> a
II IB
0$ «

O
9

« 10 9

*5 * JJ

n «* ta

efl W

Ô
i&a o u

O EX <3

K H
a, x

tt.
o

S 9 fiS
Ifc H *fc
f*. r^ r=>
O CE O

© o
« te

a 3 «
<ft © t»

©
H

<S X «

o e

•** a
"V 0

i* ii
a a

t — >

— *v

O 9
C 9

•w -v
£ 33
* **

ru •**
'*. 9

« 9

0 S

OB S

0 9

9 9

x ce

w rv
-> At
9 0
9 9
H te
« «
X IT

r*i |*=
*V It.

9 9
« 36 H ffi
JS -3 U% ~

^ W « W
U U
<» co

O 9
0 9

* <Ai » JJ

DC » » »
»^ ™a
lA «*

ft* K5
9 9
© t6) O UJ

« 9 0£ 9

» H
& X

9 Jb.
9 9
0 & 9 «
M «= H ik
IV f*» f%) f"
ac & z o

9 @
ie re

9 IS ® 3
9 M 9 M
» 9
oe n

ae < oe <

9 O

«Y

9̂
II

«

£

O
9

•V
a•«

J=*
•v
«

»

a

9
9
9

X

<M
<M
e
9
H
•6
tx.

K)
^B

9
H
LA

«<t

9
9

*
*»

f=W
9
9

K

9
9
3
II
'V
X

9
9
9
K

K

•«
9
9
II

a

ft
9
a
9
9

•v
«

*

0
O

a
9
n

A

9
9
9
H

at

nt
'M
9
9

«
X

9

9
<a M a
*« Jt -4

* ** »
II U
A n

9
9

U* » -J

M Mt It

» V*
9
9

1&) 9 W

9 X 0

td H
% a.

9
<£' 0 »
-t. H *.
p* /M P*
e at 9

9 9
n H

ffl 9 S
« 9 (A

9
IB

< X <

9 9

9
9
9
H

a

£k

IV

9
9

A«
«
rf»

U
-O

a

9

£

a
9
O

X

a
*
->j

X

+*>
*M

9
H
J^

¥»

J1
9

«*

Al
9
9

X

.k
9
9
II
ft*
X

9
O
9
II

X

9
9
»

tt

O

•0
a
9
O

*M
9
wt

tk
9

a
o

A

9
9
9

X

«
9

<V

X

9

9
OJ H
^(^

9 M
»
to

9
9

K c*

9>
9

W 9

9 X

M
a,

9
9

a 9
u, ti
p* n*
9 2

9
ia
a a
c* O

9
H

4 X

9
9
9
II

*

—

f\i

9
9

•w
£
W

a
*
«
•9

£

9

9

X

«
9

»

X

Pte

JB.

0
s »
— Jl
« M*
II
A

9
9

rt X
U M

1"*9
U., 9

9 X

II
3,

j=
O

U 9
^ ia
< -M
-o X

O
10

A 9
M» 9

3
ID

< X

»**
At
9
H

£

9

9
9

•u
£
v»

M
2

a

9

X

9
O
0

4£

oa
3

9

X

»***v
9

a H— js
9 •*
N
M

9
9

u we

rv
9

1*1 9

9 X

II
a.

s-
9

a o
L-. U
f*. -W
9 X

9
II

£ 9
<A 9

O
H

« X

9
9
9
II

£

^

(V

O
3

â
<*

9
•u

9

O

£

0

9

•£

U
0

9

X

P«a
-4=

0
O H
•*./«

» ««
II
J9

9
9

II •*

N=i
9

uJ 9

9 X

II
1°

,*,
O

U 9
1*1 ia
« OJ
Al X

9
IS

9 9
«* 9

3
II

< X

"*At
0
II

£

£

9
9

£̂

*

oj
AJ

a

o

<X>

9
9
9

•x

O
9

9

X

f*>
Al

9
£ '1
— ,/»

9 <•
M
*fS

3
O

9 0

H «*

AJ
9

U 0

— o

9 (X

II
a. >

0
0

0
=

?
H

1
!

Q

J
/0

<

o
ie

a 9
«* 9

9
II

4 X

9
9
9
II

fi

_
A«

9
9

•M
£
*A

UJ
a
c
9

a

9

=T

X

U
9

9

<£
X

r*>
u,

9
£ « a
— ft «

T « *
II II
tfl »

9
9

a s *
9 H 9

ii + ia

K)
9

IU 9 \U

-* 9 -=

9 EE @

II M
a.. a*,

o
a 9 a
u> » M.
r*= -\g f*>
0 X 0

9 O
10 IB

fi 9 £
<« 9 eft

e
13

< X •<

3 9 9 9 9

ii 10 H te IB it n
& « s « < e - e £ ' 9 : B « 9 ' S < s - o
< H) 3 3 < * £ c l * A * a O v 9 S * n £ * 4 A

• M t f t W I A c t i t f t c A W
10 H H IB 10 It) II
S> » 3> >> » x> »

•** *? *rv ffi *)

X
: lu > ii o u o n e u e » s n o u

»> « U 10 1C 10 « M
«te x rc ffi ffi * a

u o « a n

•a 3 a a a
it

ii ie ii ei w u 10 ii 10 ii n n
O » C ! » Q 3 Q S O 3 - Q 3
•~S«i-=««*"'« — »

«t M tiD IA e* M

; A ffi A a £ oe A
i . j -au'*>uau><'i_>aui/ i .>9
i — a — •v « v ~=
:« — •»o«e"-«e«9J.-<n"»'<r —

: e e e a o o o
: O 3 Q * c < i c ; s c , 3 O a ' Q 3
,-•1—>« — «-»» — a«s = j

« X £
* 3 ** 3 ^» 3 P*

M-l
0

a

Q

00
I

00

0)n
3
cn

18-95 CZ05-00

>*
A»

it

A

*

9
(j

9
9
H
•v
A

-

«*\
9

9
19

*

9

0

(1

X

u
9
o
9
H

ft

f^
AJ
o
0
It
.n
X

tf"
9

0

X

*v

H

X

o

o

•v

o

9
tt
X

*
IB
*•

— i

.*> 0
3 0
B 3

>= l«

5*3 U

UiA
X W

W
X
3 IB
X O
<4> "•

•- A
< 3
o

-s O
O O

fl II
A 9

»*» —
<X> -W
î A*

(V O
0 3
1* »
<V -M
a 9

-* a
9 9
9 19

O 3
H »

9 9

— — ,
0 —

II It

X X

« -0
9 o
* 0
*v o
(I II
X X

c *»
< Uh.
— o
9 0

s n A n«* l/> -• IP
0 X 0 X

» CO
*> » «« -o

0 -9

I** X l*» X

O X O X

ic iF
X X

3 4.

w e a o
-* fV f. (V

0 0
It H

* X •* X

0 0
9 9
0 9
it »
• 4 9 4 9
a -i 3) —

tl II
» »

— J «- -J

l« 9 H O
ir e j* ©
£ 9 a o
« w*

it te
£ 35

t/t U 3 *.»

<v -o
f « o tn
*u *• 9 *e
o o
H It U II
* a 9 o
B "• .H -•

A O
US 3 r*- 3
— <

H"»
<M

II

£

23
U

9
9
II
•\J
CD

3

X'
•»

9
II

9

9

9

II

X

*e
9
9
9
II

X

f*
"\j
9
9

JO II
— ./»
0 X

<o
« to

9

*n x

9 X

te
a.

9

« 9

I** *V

9
U

< X

9

9
H
•C £
£ -0

IB
»

«• J

» 9

9 9

** IS
A

9 u

9 »»
9
i« ie
« O
JB -•

«
*• o
h»

««
9

II

C

A
u
4)
0
9
II
AJ
r

c
t»k
«
9
M

a

'M

9

II

X

•£
9
9
9
H

X

^
9
9
9

<fi II
— J>
9 X

tf>
«* <M

9

K* X

9 X

»
i

>

r* fV
9 X

O
II

<»x
0

e
16
« r
U —

IB
>

«• -J

II 9

O 9
t*

»
ffi

/» J

•v
IV •*
9
H »
9 a
a •*

X
tP 3
^

9
9

H

I

f-»
•-*
-M

9
9
U
M
A

«

9
U

O

u
«
9

H

X

«
»
«T
ru
H
•O
X

»*J
î

9
9

9 H <fl
— ,A *•»
9 X 9

yi Ji
U* 9 «0

9

*** X ***

9

9 X 9

U It
&, a.

P^ -V '~>
9 X -o

9 9
te ie

A 9 a

< i *

0 9

9 6
II IB
4 a -o
X - 9

ID
»

-a J —

H 9 H

a 9 9«* <*
e

rf* U «

3 —

O 0
1C W M
« O «
« «*

«
r> o<**
«* »^

«•
9

II

9

2
W
-0
o
9
9
H
*M
9

4
>
9
9

9
H

A

'V
9
O

II

X

00
9
sr
-v
H
A
X

^
9
9
9
H OB
in —
X 9

It
CO

J> <*
9

X **

rf»

O

X 9

«
0.

y

AI <
x *•

9
W

9 9

X <

9

e
M

9 -O

No '
»

_(—

O IB
0 U1
0 ffl

«9

CO
u«

«

o
IB H
a 9
-» £

A
C3 J*

<*

9
9

II

9

*

--

•M
rt*

9
9
II
«M
9
M

9
9

Ĉ
9
3
»

9

•*

<M
9
••
9
II

X
w

9
9
9
9
U
O
X•*

r*
u.
9
9
H
J>
X

9
O

X

^
9

X

9

(̂
X

9

9
ie

x

9

N
>

-J

U. 9
3 9
a 9

X X
0 J

x
3 ID
x a
•*, —>

t- A
< 3
O

•A
At

II

9

*

A
U

••
O
3
II
M
A
•«*

4J
a
0
9
9
II

A
A

9
O
9
9
II

X
M

9
9
9
9
It
O
X<*

f^
f>4
O
O

A n— in
9 X

M
(0
* f->

9
9

rt X

*»
At
9

0 X

U
1.

9
9

r*> A*
9 X

9
IB

a 9
9
M

« ft

9
9
9
19
•0 C
a —

ie
>

*S J
•̂

IB 9
tf 0
£ 9

A
9 J

9
II IB
9 Q
A -«

A
*• 31
r*

••
9

II

a
*
*rt
a

ru
9
II
-M
a•*

^>
î
•c
9
9
II

9
«»

—

9
9
9
II

X
•*

«
9
9
V
II
4
X

*

A
«

9
A H
— J1
9 OE

N
»
V* 9>

9
O

Kl X

•t

*9

9 X

H
O,

3
9

< IV
OJ X

o
II

a o
9
II

< X

9
9
C
ID
O 9

9 — '

II
»

•̂

11 3
f 9
a 9
M

A
vP U

9
II II
9 O
a —

A
i/IO

O
9

II

a
A

iM
r«

9
9
II
•M
£

*

•y
«

*9
9
II

X
4

w-

9
«•
»
It

X
•A

-0
9
9
9
H
O
X
tft

r-
j.
9
9

A H

— j^
0 X

tt
»
A —

9
9

f*> X

A
(A
9

9 X

H
3.

O
« 9

•«. iM
9 K

e
IB

£ 9

3
II

« X

9
9
9
II
•O A
9 —

II
3s

•° ̂
VS

U 9
\f 9
a ow

9
0 U)

9
M U
9 O
a —

A
"» 3
4

.

A

9

II
CO

H*

Wt

II

4*

9

IB
X

<0

9

C
II

a
**

<
9
9
S
II
41
£

rA

II
*r
â

a

9
M
9
A

**

r>*
h»

--* — »î i 9 9

II II II

* a A
•• ^ *

* a »*
u w »*»
— -O Al
-» « —
9 9 9
3 9 9
II II H
-g -u ry
A X A
*» w w»

J* J. •*!a 9 oj
rO -* H>
a 9 A
9 9 9
9 9 9
II II II

9 X A

* * W

9 -V* U
9 O A
9 0 9
9 O 9
it n it
X X X* «t «*

« -6 r*
O 3» l/l
9 0 9
9 O fX
M H Ha -o «
X X X
W * M*

rt •• F*»

M 9 *M
9 9 9
9 9 9
U A H A tt A

X 9 X 9 X 9

II H N
« « »*

»« M *V «* < *»
9 9 rv
9 9 9
9 9 9 9 9 9
II 9 II 9 H 9

X »*» X r* X rt
*• It y» H •» «

«Q V* *̂
rt) ff- AI
9 9 9
9 U 9 Ul 9 uJ
9 — 9 — 9 —
M »*i M HI H rt

X 9 X 9 X 9
W» 9 «4 9 1* 9

U II U
X 0= X

3 > a.
9 9 0
3 * 3 9 9 U

"V r*> ry *» AJ u
X 0 X 9 X **

9 9 9
II It It

9 a o c 9 £

9 9 9
H II H

X 4 X < X «

9 9 0
9 9 9
9 O 9
H II II

9 -a a -o * -o
•* a — a -* a
» n n
> j> >

•̂ *» -^
«* O "* 3 **. 9

9 It 9 It 9 II
C I/* C l/» 9 l/»
o a 3 a o 9
It It II
a £ x
<j ./* u ,P u *

<M O «•
« 1** OS A* « *«
• -u , -w<* o

9 9 9
U II II II II It
C 9 O 9 O 9
— £ -• X -• X.

rt « i*V
A A £
3 Jl a /» 3 •*•

-. < f*.

18-96 CZ05-00

Section 19
REQUESTING AND USING

MEMORY DUMPS

This section provides procedures for requesting memory dumps,
as well as procedures for analyzing, interpreting, and resolving
errors using memory dumps. The following memory dump utilities
are described:

j

• MDUMP
• DPEDIT
• DCP

MDUMP UTILITY

The MDUMP is a stand alone utility that does not run under
the Executive. MDUMP may be used when it is not possible or
practical to use the debug utility dump facility.

MDUMP Requirements

To use MDUMP, you need a disk that contains an MDUMP
bootstrap record on sector 0, and a file (DUMPFILE) large to
contain the complete memory image. The Create Volume command is
used to prepare this disk (see "Preparing for MDUMP", below).

memory to the disk file, bootstrap the prepared disk
as described under "Procedure for Using MDUMP,* below. This
procedure loads and executes MDUMPe When MDUMP terminates, an
image of memory is contained in DUMPFILE.

19-1 CZ05-00

This file can be edited and printed using the Dump Edit utility,
also described later in this section.

Preparing to Execute MDUMP

Before loading the program for which a memory dump is
required, enter the Create Volume command:

CV path | -MDUMP nnnn
-MD nnnn

\ (-BOOT X'hhhh1)
j \ -BT X'hhhh1 j

ARGUMENTS:

path

Designates the pathname to the disk volume being prepared
for MDUMP. The pathname may be isyrapd or lsympd>volid.
If >volid is specified, the volume label is checked. The
volume must have been previously formatted via a Create
Volume command. (This command is described in detail in
the Commands manual.) The volume can contain other data.

) -MDUMP nnnn (
| -MD nnnn j

Writes the MDUMP bootstrap record to the volume specified
\ in the path argument and allocates a file (DUMPPILE)
I large enough to contain nnnn 4K word modules to be

dumped. The resulting dump volume may be used for any
configuration of memory less than or equal to the value
nnnn x 4K words.

-BOOT X'hhhh
-BT X'hhhh

hh')
' J

Creates bootstrap records and intermediate loader records
and writes them to disk sectors 0 through 6. The
optional X'hhhh1 field defines certain available boot-
strap options. See the Commands manual for details.

NOTE

This argument can be used in conjunction with
the -MDUMP argument to obtain a combination

, bootstrap/MDUMP (described below). . . °'"

Procedure for Using MDUMP

Once an executing program encounters a problem or a halt
occurs, you can obtain a memory dump by taking the following
actions:

1. Bootstrap MDUMP, which then sends the memory dump to the
disk file DUMPFILE.

19-2 CZ05-00

2e Rebootstrap the system.

3C Use the Dump Edit utility program (DPEDIT) to print all
or a portion of the memory dump from the disk volume that
contains MDUMP's output.

Procedure for Bootstrapping MDUMP

To bootstrap the MDUMP bootstrap record into memory, perform
the procedure shown below. MDUMP then transfers to the disk file
(DUMPFILE) the amount of memory image specified in the -MDUMP
argument of the Create Volume command.

1. Mount the disk containing the MDUMP bootstrap routine on
the device to be used in bootstrapping.

2. Press Stop and £Lear.

3. Set the P-register to 000416 .

4. Enter the channel number of the bootstrap device (i.e.,
the disk mounted in step 1) in register Rl.

If -BT was specified when creating the MDUMP dump device,
bit 12 must be on in the Rl value (i.e., Rl is set to
CCCSp where CCC is the channel number). This causes the
MDUMP bootstrap record to be selected.

5. Enter the initial address of the memory area into which
MDUMP is to be held in register Ble MDUMP requires as
much memory as will hold one sector of the disk device
type oh which it is stored* The initial address of Bl
should be at least lOO^f to ensure that hardware
dedicated locations are not overlayed.

6. Press Load? then .Execute. MDUMP is read into the memory
location specified in step 5 above, and dumps the amount
of memory image that fills DUMPFILE. The dump is
complete when an end-of-job halt occurs (see Table 19-1)0

NOTE

The size of DUMPFILE is limited by the capacity of
the storage device. A maximum of 120K of memory
can be stored on a diskette file.

MDUMP

No messages are issued during execution of MDUMP. If a halt
occurs during execution, the contents of the P-register and R6
register must be displayed to determine the significance of the
halt? as indicated in Table 19-1.

19-3 CZ05-00

Table 19-1. MDUMP Halts

Register Contents

P-Register R6 Register

003E =0

003E ~=0

03nn =0

Condition

End of job

Disk error

Trap handler
error has
occurred.

Operator Action

No operator action
required. For information
only.

Reboot MDUMP. (R6 con-
tains the disk status
word.)

For a description traps,
identified by nn, see
Appendix A and System
Messaaes,

Address relative to the initial address of MDUMP as stored in
memory.

! ' I

DUMP EDIT UTILITY

Dumps produced by the Dump Edit utility are written to the
user out file, which must be capable of receiving a 132-character

There are two sources of dumps: '

• Files created by the previous execution of the MDUMP util-
ity, (All or selected portions of the file can be
dumped.)

• Main memory. (A dump of main memory allows you to deter-
mine the configuration under which Dump Edit is
executing,,)

Dumps produced by Dump Edit may be logical (edited format)
dumps or physical (memory image format) dumps. Control arguments
in the DPEDIT command (described later in this section) allow you
to request either a logical or physical dump. If these control
arguments are omitted? execution of Dump Edit produces a full
logical dump followed by a full physical dump.

Logical and physical dumps are printed in both hexadecimal
and ASCII notation. Duplicate lines, if any, are suppressed.
Suppressed lines are designated as described under "Dump Edit
Line Format".

19-4 CZ05-00

Page Header

The page heading contains the following information:

• Indicates whether the dump is from main memory or a dump
file

• The date and time of the edit

• The version of DPEDIT used

• The version of the system DPEDIT is executing on

• The pool and group currently being dumped for
a logical dump

• The page number.

Dump Edit Line Format

The format of a basic dump edit line for both logical and
physical dumps is as follows:

Columns ' Content '

1-6 Six hexadecimal digits designating the starting physical
(real) address of the line of dump information. The
hexadecimal digit in print position 6 is always 0. This
forces the dump line to agree with the template printed
at the heading of each page.

7 Slash (/) - , '

8 Blanks t

9-14 Six hexadecimal digits designating the starting virtual
address of the line of dump information.

i
18-98 Sixteen consecutive wordsc Each word is represented by

four hexadecimal digits and is followed by a space.

99-100 Blanks

101-132 ASCII representation of the previous group of 16 consec-
utive words. A byte that is not printable is designated
by a period (.) .

1-11 Blanks

12-93 * * * * * * * * * * * (indicates one or more duplicate
lines)

94-132 Blanks

19-5 CZ05-00

Physical Dumps

In a physical dump/ the leftmost six columns of data -̂̂
designate real memory addresses. When the Memory Management Unit
(MMU) is in use, there may be ranges of invalid virtual addresses
in a physical dump from main memory. . When an invalid virtual
address is encountered, a message interrupts the listing of
memory locations, specifying the invalid virtual address and the
physical address for which no valid virtual address exists.

The virtual address is displayed whenever possible. If it
does not appear, it means that the virtual and physical addresses
are the same (in low memory), or that DPEDIT could not discover
the virtual address corresponding to a given physical address.
The listing of real locations resumes when the valid virtual
address is known. The numerical sequence of real memory
addresses, before and after the message, is unbroken.

A physical dump from an external dump file does not display ^
invalid virtual address messages, and the left column of
addresses is an uninterrupted continuum of physical addresses. ,

—̂s
A physical memory dump in Figure 19-1 was produced by Dump

Edit in response to the command:

DPEDIT "DMPVOL>DUMPFILE -NL -TO X'07311

Logical Dump Format

By means of DPEDIT control arguments, the user can select the
taste groups about which logical dump supplies information. File
system information can also be selected.

The main addresses in a logical dump are virtual addresses
(columns 9-14). The leftmost six columns of data are physical
addresses, and will be displayed whenever they differ from the
virtual addresses. This applies to dumps of disk files as well
as to dumps of main memory. For disk files, Dump Edit calculates
the virtual address in the same way as the Memory Management Unit
would under the same conditions.

LogicaJ. Dump Content

The arrangement of information in a logical dump is described
in the following paragraphs and illustrated in Figure 19-1.

SYSTEM SUMMARY

The information contained in a logical dump includes:

« Location and contents of hardware-dedicated main storage

• System time of dump

19-6 CZ05-00

• Time of system boot

• Time of power-fail restart (if it occurred)

• Hardware configuration

• Location and contents of System Control Block (SCB)

- Model number of central processor

- Presence (or absence) of the Commercial Instruction
Processor, the Scientific Instruction Processor? and the
Memory Management Unit

- Value of the real-time clock scan cycle

- Presence (or absence) of an operator's terminal

- High address of virtual memory

- High address of physical memory

• Software Configuration

- Name and version of operating system
- Presence (or absence) of the error message library
- Size of trap save area (TSA)
- Size of interrupt save area (ISA)
- Number of indirect request blocks (IRBs) in 1KB pool
- Presence (or absence) of the batch task group.

19-7 CZ05-QO

Ul•a
ut

• m m u<n

i*ui
••* »̂
oco>
>• v <
0.01
a z<
»»»**T> •»•
«t-ni « . •
nt < o • • a « • O

• •o

• uz • M x

%£o
1*1
Sis111

t a n m o « « o o o o

»«s »*• « o o o

a
a

a
u<•

o
44a.

o
•x
IV

a.x

j•«
ik
a,r

3 > O > O O O O O O > O O O O a > O 9

O O O O O O O 9 O O O O 0 O O

oo*»r<*r* .F>»r*=>r*>oo<Q'oo o
ooo-«rvft9'irtor>ia<«ioo o

CD 00-«»-o<-c*«»40U*0<«00«<a
•9090}3>9990»<<ac3> ^

o o o o o o o o o o o o o o L»

• 3 < O - * ' V * > * T l / 8 < 3 O t J ' ^ » ' 3 ^>
o> o-»-**«-^«<*-*«!4r»ainnjoo*ii .

O - 3 O O 9 O O O O < > < 4 3 = » 3 <<

o a o ^ o o 3 - 3 > o o ^ ^ - » 3 <
o o e o o o o o o o o o o o t»»

a> o o o o > » o o o o o o 3 O i o * o

3>o^^,^r^^^<^3»><«0 3>
ooo*4fum«rut^u.r«><auo u

1*. O C » - * - c - * - o - = - * O J - - « - * d 1 3 . « . O
O O O O O O O O O 9 > < r f i O O <

o v o o o o o o o o o o a o 9

o o o o o o o o o a ^ f i o o m
o - a o o o o o o o o o o Q o o

9 o o a o o o o o o o o o 3 9 « j j
O = » < A ' 3 3 O O O ' 3 9 - d 3 3 3 -t

Oa-«lk^tk^Lk,47'^M%3-3 ^S
O O O O « « o A d K t 9 U ^ < K t O O O 3

r*i O O O - « « * * « - * * < U S A , 3 l f c . 3 O « f «

a
- f l t a . - s o ' a a - a a a A f i o ' v ^ s ^ a
(- t f c C h O O ^ A J K ^ ^ O O O ^ ^ O 9

3 '
_ l 9 O) O 0 O a O O O 3 ^ 3 O 3 > 9

A 4 t t O O O a O O 9 3 9 - 3 3 O A 3
•— i
<

3 Q > o « (M ' * » » . n ' O f * - . o 3 * < o - * : s a

> 0 0 0 0 0 9 0 0 9 3 0 3 ^ 3 O
W
X
<

-£ X
< 3
w z
CE <

X

9»9»04>m(J<Or^4»OO<00U^9i^OH\
tr« IAFf-<OI&.<OO< OOF-Ol i^OOOO
ortfta otfe,*ootf loo3or-«.oc»oo
tnmroooik ivooooofvon ioooo

ikW9oou.oo-oinomoooe««oni
99'<*IOOP*°9OOfc O ^ l V O O O O O O O

•»^- -^oot fc i oo-^oo-* ia»oo'OOoo

C J < ^ t k V 3 t A j J o r > i b O » 4 « < a J O C » t / % U % ^ 4 > 4 »

f t i A ^ w o o t k O O O o o p n ^ n i r ^ o ^ t k

n j « « o H t o f v m o a o o * * < - « 9 O < » 4 > * « 9
'^^p-*»Ol fe i» ' -» 1 0 1 OO'» '«>OO«»3 '>O'J

r ^ 9 r n o o o o o o o o o i \ « (M « « O ' < > r M u .

^ J S O O J ^ O - ^ - ^ O) a «„ 3 O O> U ^ i t f T
f ^ 9 < N (O O O O U J (V O i « » - O (\ t O 4 O O O
• ^ j J O O O ^ 3 -• t! 3 » ^ 0 0 0 ^ 0 0 0
t n v f ^ o o t b o i u o o r ^ r ^ o - f M o ^ o o o

•nm'3'3 > O O l f c O O O O - S O 3 O O O - >

e •

-3 -* O n O U » 3 9 < 3 3 O e e 3 t L , O - « 1 9 3 ^ P - »

T ^ T 3 > ^ - ^ a < 2 E > a O O O J O ^ O 3 > A 3 P « = > O
lA 0
» * -3J%O* /» - * l l 3J * 'S^3 ' -O '^3 i /%^< iO3 > ^

» a* ̂ 3 V U= O 7 ^ t A O 3 > < ^ O O Q 9 O O

*v -v o

tr>^ O ' V ' V o o v o e o e ^ o o o o Q ' V o o

O V 9 O O 0 3 O O O M O 9 O O O I A A O O

a - t U M f t O O > O O ^ ^ t O < Q 9 O 2 — O

£ 3 3 3 M 9 > 9 A . ? 3 3 O O ' O O O 9 O ' 3 > < D ^
3 3 J »
J O 9

jj -v* 3JT- > « Q U 3 x (j . 3 * - - y - 1 > * X > * ^ ^ > = «

^ y j O 3 O O O O 0 3 O O O 3 O 3 O O O O O O
-5

An £>D 3 r
jj

AJBtJ «-='z s »
-0 -3j »•

^ » 99

,

fM
•O
O
O

CO

X
3

£

"<

£
L»
3
_t Ut, U» U.

A ̂ *i_ I*, a.
U/ Ik U. U.
*• ^J U, U. U.

£ Ik U. U.
^_ 3 ^ 0

ii J •» «. M
3 OJ 95 « ̂ ~

y> T r k* Ai -̂
>&> tU ^ X I U

«g tLi a Q x
— Jj >- « < <*

— •* — * _*
IS 1C » — o* >. >.
3 :j .3 .U _J ,£ X 0)
'/» « 0 * O O »
/> « — ^ 4 » At
J t S » - * > " « A i a j

^ ^ r u je ^
X * x! >3 A> J O,
xu^t^ie = < j t

« •« 1 s ,*• -̂
J J ^ - J O T - * ^ ^
« •*« ^ J «. i/t ̂

u -̂ t rs x *^ «
K — — — - — t » ?
jj e z « *
£ ~ U ' 3 . i J X £ C jj
r -• r t jjo J —
3^ j j - *X - * - - «X
uooz i -azzu i

o
•̂
?
•«
X
*>J
o
V
9
O
I

V
O >
• »

J
N,
O —
•o -?
« 0
3 **
3 />
- -E

^J

••
«• T

^ Jj

CO J>
)*• >1-
(K ff*

^ J
^ ^

— s — •

4 4
T£ 1C
A* Af
X X
o a

#
D

U
a

>:
M

I
0%

(I)n
3
№

•f)
PL4

19-8 CZ05-00

JE
O

a ui
I

o
u

V
ni
•o
O
I

coo

O> ®
O O

- » 3
V « ~ J
*t O ^» 9
1A »*l 0 tf9•• e t-

x »i
« ~ 3 .«j
•M -• € 3
•^ ni st -^ 3
•e -3 wd
O Z « £
>, J> 3 18
nt tu « as t»

' « Jj Z
• -ji a> «=«
: z •« 3

a,
£

»« ^ a, •
J «i 3 .

a -3 >— a
Z £ Z Z
33 ^3
33 > 3
X X ii J£
(9 (£ tS
* i£ .£ ^
U CJ « O
< « 8«
a o «j s

-a
It, te. 3 £
3 3 X 3

X Z ,

S = f e
-< -a 3 a
i * o isx tt 2 _» 3
— J 3
•̂ iS. 3 JS
U'C 0= Z J
S >-« il

3 a z
u. li, 3 4J 3
3 3 I—.*.

/» Q, *£a st te A! j 3
— ,» »._» a,IB.

o -u J »,
»iK'-E'3.3 S

•31'
3 '
X
,9 .

J 3 5

a E «=•̂ ^ as
oe.a 3

a x- E
z

19-9 CZ05-00

u, §

in zu. <a: oa.
U M. •»
CC OH-

•*• xuj» oo<
«-• U1X O O 0<
o aoo o o<
•> z «ooo<

<-• u i O O O O O O O
» >-z zz zzz z
»"t
K
Ok.

ii
I
o

au
(9

Inaoooooooooooooooooooouo
X3tf>««««««a««««w««>*««««o<ro
Da^fMtVAinfninjnKvrMCVfuniiMnjniiMfvnfrvoAo
Z3oi^mfimmiti'ir««r«>mi«ffnmi'*tiA*ti*^it««^Ai
• 4 C 9 9 O O O O O O O O O 9 O O O 9 O O O O O O O O

•> X M

I- X Z
« a

O >- U

U O o»-«
a 3 «o o<a, z a • » o o o o o o <

Ol-
X Z
u u

u< «
3 Z
UJ <

K K -I * <

(D

Pt

a"

V
V

(V O

O C 3 Z Z Z Z 7 Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z

(Us

a. o to u» «
a. z u ui uj I IU UJ Ul Ul U IU W U UJ 2 Z Z g

">"s">">"*>">"1" o
o

a.e * D 3 J
-J 2 2 Z Z Z Z

J O O J O 3 O O O O O D - 3 O O 3 O C 3 O O
~zzzzzzzzzzzzzzzzz

.00000000000000

•M
rn
/I

V
nt

< 3^JiAjlAIUJUJIiJUJi*JaJ
2
J
u

& -J -t
J 4 U
J 3 ->

— J J
a. -i i cj r ^r 4 ^ D * »
a .u I i. 2
3 1C J
X X

c
u

3
3
X

>• -1 U
X 3 * •

19-10 CZ05-00

« §

O U£
o

o
<j
cs

ni o»
X

! * £ • » « e a • • * • • • •

* « i c » * r i « ! • « «
• • » • « • e * • • • efC
• * « * o e e • * • • * « «

• . . « , * > . . « a «. * •
• % •» e • • c « • • « O «
• eM e e • « » * * • « *
»M • 0 « « » A * « » « »

• • • 9 o e « • • » * * « *

• . 1C c . * • • * . «* e.

• •«* « • • « • • * e • •

« »O « o • • • • • • • •

* •« -* o o o o fe, *. h. o o> o <
O^ O O OO ^ O U> 4k U- « Ul ̂ <
O **0 0 0 « 0 > 0 l 4 . l k « i
O O O OO O «» I*. U* O O U0 ̂ O> ik

mmo 09 aufcu. ̂ oor*>«lotfe
ur«>o ^o OU.U.4A. ^ o o »* o tfc
ikp»o O'O>«ota= , i« .u>*ooO'O)Ou>,
O««O © O O tk «fe, U. O O C B O O t k

n o ̂ eo o ««u. u= O O O O A C U .
ooo oo ooikik o o> HI o o tfc,
O O O > OO OfeaOlfe O O O O O I k

Ut O O O O O **» O Ik
900 oo r»oou.
0 0 0 0 0 « O O O l k ^
*COO 00 OOOtfc ,

M O O O@ O O O t k tad O O O * tt.

O O O O O - k U J O O I k C O O I V O O U .
ooo oo -soot*, a t ju^ooik A

ac
A B O O 00 O O O t f e 0 - C ^ O O U . 3
ooo oo o o o it o «*r- o o u> »-
OOO O O * O O O U = * O (_ S « O » U , X
OOO OO O O O t k O U, KS ** © (A, *-»

£
OOO OO O O O U. O O O O O Ifc. U
•«oo o 01 o> o o u= a> *j -as ^ff 3 a. «rt*
K» o o o o * o o o i t , e u * t & , U J o o i & , m
OOO 99 O 9 9 (k - o l ^ - O d - Q U B 2

O O O OO O O 3 U= Ifc 3> <39 O O Ut f->
o « a- oo o o o u, u, o-= o o u. 2
O 4 > O S - S J S O S ^ - f e l t - S L t O C O U . , jj
O «* -* 00 O O It U, © ta= UJ O O U. X

IO OOUc,U. i«t, ti. O O O U.
B.3« O> IA. Uo >A=, K -9 tA,*^ 3 -S ,̂
t O OU=, tk t fc , (SS «= -JO » O (fc

IIII
Q«-
\U\it

£
S£

u
111
X
Ui

o o

a
£

»

*X>

o o o o o <
3 -• M ^i» j

> O O 3 ® O O « ^ O ® »
) O O O G O O @ O O G @

«

flj

I I: o
•n O« etfl p
u d>
» s

2 ^
3 5

CTl

O K1 to
O <3 ̂
o -« — mo o o u, 4

»
3"

•V

O O t k U , ^ O O O <
OOU.I& S (_ 9 O O '

o o o <
« • » « • » •

Ad U. O O O It.

2
Ul
T

0?

•H

m
9
»

-• 3
a.

£
il

£
J

Al -0 «»
_l » Ai
*̂ E
Ik D

a. j u
5 « 3

U X
o x *-
X n

je
3 o «t »
^= « (_> -3-
i O JJ J-
-« -3 «« O A. 3 ^ 3 O

a 3 3 3

3-^-%-*5 ^-*>-^ -^-**-^^ -^*^
3 O O 9 O9 O O O 3 ^9
1,

I I•3
X 5

o
X MO
0} f^> O

o
J -00
O « o
•3 o o
a. o

X
>• DO
X — O
3 a. o
f -.0
« zr u

<a ̂

.0 ̂
01 o -n
u 30
2 a.
3
H- X>
U K

i i
I- *J
n x

19-11 CZ05-00

« §t* •*
» • e • <A • ft W

i • 3 • • • • •
• • • • • * • •
> U <• Ih • »3 •

OX • «. • «3

• <• • O

I
• • X • • •

»3 • « • •

•>
O

X
X
nt t>

o

i3 -o

«
•

» a

o
Xni

x
l•»
a

to.

Ul

o

U

<<

t>

A

p*

•a

in

IV

o

<
3
<v
-*
>

J
t
ji
X

u>
3

3
3

]£
J
O

D

n
*i
3
3
il

J I
1*1
e
.2

•̂̂
i!.
IU
z
U.

o *«
0<
0«
00

»0
< 0
• 0

ID 9

09
< 0

mo
mo
0 0

» *t
0 Jj

I/I O
o o
•ao
•*• o
r* IA

0 -O

ru«
Jl IM

»
o
3
o

0
3
O
O

3

3
O

O 3

a -s <••
o

o m o

0> 0

9 3
O O

X
•J 3 3
O O O

B O O

n a 3
Jj 0 0
O 3 0
J>
U

3 *3
— JJ (J
j 3 a

-» O 3
3
-*

Al.
UJ
K
Ik

n«o
0 0
0 0
00

oo
mo
00

o o

o o
0 0

vo

9 O
o o

o o

0 0

t^ o
4 0
9 O
*4 O

0 0

o o
3-3

a- o
« Ul

_» A
l/t 0
^ 0
» o

o o
3 O
O O
O 0

3 0

3, o
O O

•3 3

n o o
iA

0 < 0

Ui 0

o> •»
o o

«:
J 3 -•
^ 0 <

tt 0 0

» 3 3
Ai O O

3 3 3
3
U

3 3
—••* ! *
j«.r» ,n

-• o o
2
^

il.
LU

X
U.

oeo oo ooo oom o o >o o «* ^,00 oo oo ooo
OCbO 00 0««0 OOU4 OOU 00 900 9O OO O*«O
OOO OO OOO OOb. ^ O 4 OO V O ̂ «OO OO OOO
O O O OO O CB O O O 9» OOO OO *« O O OO OO O <B O

0~40 00 OOO" 000 000 0 •< 000 *«0 OO IkOO
ooo o>o u.o< ooo ooo oik ooo oo oo 9*00
O A O OO «*O« OOO OOO O 1*1 OOO 81AI OO 9OO

•<«o oo o o ao o o oo oorv «o ov^o «•» oo o <s •«

•«00 00 OOO 000 OOIA 90 «tflO O U OO O O -4
« CP <3 OO OO< O^*4 OOO 9»O OOO OO OO OOO

9O«* ««r«t OO«A -«O-4 OOiA 084* * O ̂ f*« <J OO OOO

o o .0 -d o o» o ry -ooao » o a O » ooun <u. oo ooo
0@»O> OUI 000 000 U0< < 0 ® 0 la. U« 00 000

ooo oo 009 ooo o -a> o j> o ooo a> o <v ooo

O -3. O •» O O O O O O O O O» O OO O O < OO 3>Ul OOO

O O -* "V! » — J O tn O«*r«t OAr' f O -O » O J/l O>9 O * (A O O
O O f M O O < O O O < U OO-A 99 O O U> O O OO U O <
ooo oo >o o d o-4:a ooo -* tj oom 01 o o o u* o u.
ooo oo o o -* ooo o < w oo ooo oo oo a> o uj

ooirt cto o o 1*1 009 otn9 oo oo*^ o o mo r^oo

9 o ̂ tno o *o o ooo onto oo oo«* oo oo ouo
» *

onto oo o o rvi o o ui o «r *n oai mo*< o — oo oo<
O ^ O O O OOJ1 O O < O»«K) -3J9 V O a 3O I/TO O ^ 9

o a -o 73 ^ .A .» -sr^xi o jn a r*e j </& o * o? o o yi o
ootu < o o ui o ooo ooo <AISI ooo -« o oo i/to
O ^ O * O O> V O O J^ O 3 O O * -• O> ,» O ^ O O 3 M3
O < U. OO OOO OOO O«-*O U « OOO O=O OO OO

O t f t V OO OOO O O * OK«U1 9O Ooofl OO 9O O-O
O Y « O ^^ o * ^ » o ^ o o a oo o < o oo < o 97
O t V O OO O -s O OOlk. O O O OO O 4 > < OO 9O -« tJ
3 -S O 3. O> 3 3 - 3 OO<> O O ^ O-O O O W 1 O O OO O 3

3 O O U= O 9 9 3 AS ^ Jj Of^CJ SO O O 7 OO OO OO

O - « O =PO » 3 " 3 t > » - O OJ^I O ^ 3 O O O-* OO 3"3
o o c *•» o o^o o o « o u, « o o ooo oo oo so

O««O O 3 O 9 3 3 3> O O O 3 93 O O O OO -* O 3X1

J% 3> ft O >• » 3 7 ^ 3 3 3 3 3 O d 3 O 3 O > O 3 O O O ^ >^OO -* =* O ^OOO
* < - « f l tk tA ta 'O O 4 <

o o o o o > i o ® -.0 ̂ o a ? o ooo o o — o o o o oito ooo o o> « t^

OOO OO 9U3* O •!— O OO O30 < « O O U4 O OO -« U «

3 0 3 ^-3 0 3 3 -^33 3 3 3 3 O 3 3 3oJ >1 3>OO
0 4 0 DO 000 V O O 30 -O O OOO O« «^> OOO

* x * ic *: * * « < *
J 3 T 3 J 3 3 ,J M 3 J- ' J A 3 ^ J 3 3 'J3O • J 6 T ' ^ ^ O O (J i 3 J ^ 3 O
~ o o o 300 o x- o o o o a* Q ooo 3 0 0 o u 4 s Ooo 3 -90 a o o o

H 3 O O O 3 3 C O O O fiOOO OOO -fi O 3 C » O O DO«(B » O A O O O

J » 3 3 3 » 5- 0 V> -A 3 3 fl < J 3 J 2 9 ^ » O 3 J 8 O 3 O / > O A / » O O UlJhIOO
^ j a ^ 3 ^ j 3 3 Ai ^ o- o xi ^ r» c» jj o xi x io3 jj o o o xioni j^oo tu^ao
3 3 0 0 3 3 0 " 3 3 3 0 J ^ O O Dxl^ 3 3 O 3 O O O 3 O O 3 O O 3 9 » O O
3 5 ^ -5 3 - 3 3 3 3 3
(J U il (J lA A l U U A l U J

3 O 9 3 3 3 O 3 3 J i 3 3 3 -33 O 3 3 OO^ OO " 3 3 3
^ A « r * — P-. JO » ? ' < & — ci — <\j »-a'Ala. — a aJ ^OUAifc, — t^ 9 »--«(M ^74^0

•3 ^ 3 ^ :s a s - 3 ^ 3
2 £. S, Z ^ 2 £. 4. £ Z
-0 - « - < -« -4 -e -6 -6 -9 »*

Jj. *J. &fi A j < i|. X0< Al *i *9. A«
U J y l J J A) Jj Xl A* sht ixl A*
£ i s x 12 ic T a: x x %
U. U . U . ik Ik I k O . I*. Ifc U.

t <U
« r-j
S 0.2 e<axw

3
Q

4J
C

8

09
k

Cn

19-12 CZ 05-00

ut
<*

a ut
1 %

o
19 a,

X
£

J 3
a n
< s

3
Q

ni
v-o
o
t

iI

Q
Ita,
c

O
u

0!
i-i

Mtn
n jo

a a

•H

19-13 CZ05-00

ia o
t* •»

ut
oc
(L
w
oe

i
o
o

a
ut»

-o
o

a.
I2 -o

•»f*»
j» ••»

•v
X
a

a.
k.

o o
O 9

0 O"

0 0

-00
O O
0 0

<p« o

0 0

O 9
O ti.
O «4
0 Jj

Jj »
«« O
O 9
0 0

Ut 9
-c u.

S It

a »
o o

o o

0 » .
0 U.

O UJ Vt
£

IP »» u
V 0 3

O 3 .Q

«t > X
o -e 3

l*» O O U
Oj -9
-« ro (V a
-U V U J

0 J •- U
a

O O t4/
0 O -J

* o <« M
J i,
J 0 I/I
J •» n :»
B C, <\J £

j
3 t» 3 »
3: & o ^
• - 3 3 Z
* 3 0 2

U «•« O U
.33 A*

"3 O> ^ •*
J i
X

X 'S *>
3 j> a a
2 jj j_ 1
-•-*-. 3

J 3 T J
^ 3 O >

• A « •**• 06 • * •

• m »wo
• o • • U e
• o •« • clfc «

« c • • U •
• e Z • • > •
• e O » • e 3

• « >B • « « <D

e e C£ • • o e

o o o o o o e
0-000000

0> O 9 0 0 0 9

O 00 0 0 *4 0

o o o o> o o o
U 0 0 0 0 0 0
o o o o o e o

o « o *« o o o
0 & 0 0 0 0 0

o o us o o a> o
O 9 9 O O <V O
O O O O O 9 O
0 0 0 3 0 V 9

O **S 3> O *» O O
O tfi 9 O f\t t\l O
9 * O 9 9 O O
o (V 9 o o m o

Uj 9 9 O O fM 9

O O 9 ® 9 "V 9

9 9 9 9 9 9 3
9 9 9 0 9 At Or

*9
o \i a- _t a a> o j
O ^- fM a (V P=^ < 9

O O O Q O r*? 9
3 ^ ' \ i > 9 T O i

^ u *-
3»* - » 9 3 9 - « ^ « ^ ^3<
90 0 0 (V 0 0 0 -C _J U

O9 O O (M O O O -c-5 ^
£

o o o o o c in 3
..£. 9 9 r \ | < 3 9 9 —

3 -S ̂ 3 9 V 3 9 3 9 •<«
-* *> S. X

W 2 9 O / V 9 9 9 U 929
E tj 0 0 0 0- 0 0 3 J
O <J k&« O O fV O O O * O
— J £
o» x o a o tft o> F»» u IA/ >-
"-8 3 ^3 ^ >J 3 3 9 j. Ji,
A, "3 O O ^ J 9 O « U ~*^

« tu
jj ^> g -S 3 *„ A A ^ J^
oo o o j1 o -* o r»

j u» ^ ^> a o j M
-A9 4 O 3 31 O O 0 .3
E t J
3-*«< » £ » > 3 « - 9 S ;
J X -9 > » /» tfc Oi ^ J

J * ^ ^ « ^ 3 * V 3 3> .-*

3 J 3 .» 9 ^ 7
** A J ^ Jj .b, 3
J J 0 0 0 5 J

o r* o o a o ^

• f*. • • » • •

« • • • * • •

3 • j • • • •
« • u£ • • • •

•#• • > » • • •

*« * 0 **0 9 9

9 m o 9 o 9 o
0 M -*9 0 0 0

9 IA O O 9 9 9

9 in« •< 9 9 9
9 in 9 9 9 9 9
9^90999

O K>U» -*0 0 0

9 I/I U. 9 9 9 9

9999999
9 ^» 9 O 9 9 9

0 OuJ 0 0 9 -.

9 9 9 9 9 9 9

9 ̂ 9 9 9 in 9
9 9 9 9 9 *M 3

9 9 9 9 3 9 rtj
999990*^

•̂
4)

» 0 J 0 3 0 0 V
4 O « 9 C O O *«

O O O O O O O ^ O
J

o r«- •* o o -c o o
o n -• o o i o j e

« >-
^ 9 O 9 O 3 » "3<

• 4 9 9 O 9 O 9 »-« «J
1C

«n o o o o m 9 u
3 3 O 3 3 9 O »

9 9 9 3 3 3 3 3

uo39 tn99 ae o
O * < « * 4 3 7 3 3 2
J D O 9 9 O U 9 ^~

J "C
U ^ ^ I O O 9 9 jj t—
^ , 3 O 3 3 - M 3 "C%
U 3 P*> O O O O i-» lii •*

n 3 J 3 ^ 3 3
IT J 9 O O Cf C
"M 9 / 1 3 9 3 3
9 3 3 O O O 3

J> O •£ 3 3 3 3
M 9 A 3 3 3 3

-* 9 J 3 3 3 3

3 0 O 3 3 3 O

U

i

• u • • • •
• u • • • •

e o 0—509
o ruoo oa

*« 9 9 «-*90

9 0 OflO 00

(V 00 * 0
0 0 0 f*> 0
ni o<» ««o

(VOffl 0 0

AB 0 0 9 9

u O o o e»
» Ik ** O O
O U. 9 0 9

9 9 9 9 O 9

9 9 O 9 9 9
ft

9 O I&, 9 O O 9
9 O < 9 9 9 (M

-* 9 3 O 9 9 ,/»
&

•A —3 — 3 O -3 O
O 9 9 O 9 9

•>•» O 9 9 9 9 O

* -*U *»
t n3as> .33 o <
9 O A 9 O O -« U

9 9 -« O O 9 J
f.

£ Q <•« O O O Q

0 ^ * 9 3 9 U%(
esr i to^c «o
9 9 O 9 3 9 C.

£
K» O O O O O IU M>

O O 3 9 4 O

9 9 o e o e

O 41 3 ̂ » 3
3 3 -W 3 3 3

I O 9 O O <3 9

33 3 3 O 3
O O IV 3 O 9
3 J 0 3 3 3
03 V S 9 9

•*! O 3 O -* 3
3 O V » O 3

3 9 M 3 3 3

V X X X N. X

0 T*> A ^ 4 O
M W M \S M M

j* n /» A n n
9 9 O O 3 9

Z
fcft

w
J
M

Ik

i
• o «. * O •

0
..
.e

.
V

a

«
«

*
i»

«
o

a
a

o
C

C
a

o
*

0

0
.
.
.
.
0
,
,
.
.
.
.
.

9 hi O **> — « O
o «r «• o -*o
-*w\ o*«m o
9 W 9 « 9 9

0 S» 00 9 0
0 U 0 0 *4 0
O « 9 O •* O

9 <f *•« IV 9 O

0 « 0 0 O 0

0 U « «• 0 0
9 * (fc, O O 9
O O Ik 9 O O
9 Vtt. 0 0 0

999999
O O O O O O

9 9 (S O U, 9
0 3 (V <3 -O 0

-« 9 9 9 «* 9

9 a* 9 9 tn O
999999

9 9 O O 9 O

9 * 9 9 9 3

9 O 9 O O O

f*» o -o na 9 o

m **i u* 3 a 9
O « Lfc. 9 in 9

Kl 9 O UJ O 9
< 9 3 ̂ 9 O

S *< 9 O 9 9 9

O O 0 O 9
o o •v 9 ry
O 9 9 9 O

O O <*} O «
3 3 It O >/»
9 t> O O *

3 3 •*? US 3
O 9 £ 9 9
3 3 a. >3 O
O O * 9 9

•̂ 9 9 3 ^1 9
3 3 "V 3 3 9

3 9 M O 3 3

3 9 3 9 9 3
0 ~ ry ro ;y ,n
M M V M V M

/» n n Ji n *n
3 9 O 3 O 9

LE
 S

Y
S

TE
M

 IN
FO

R
M

A
TI

O
N

E
X

C
E

R
P

T
FR

O
M

 T
H

E
 F

l

0)
iH
a
ctfxM
ag3
Q

(U
2

o
a

<u
M
3
s>

<x. -»
c *

u
4*
at

19-14 CZ05-00

9 • e •

(C M ft<f> *
« H= e Ot «

Itg • 1̂ «

1 a : :
*

«» « ««* •
m U » B 0
» » « «X

X « » •
m » •

t
• O -4 O

r<t a> -«s
_» k, em o
1 «cu.o

O <s>u «
• ooo
O Ul 000
O OO 0

* »00
,C -000

O OOO
u

e o o
o o o ®

0 0 0

(W If* 0
m m O

A o f» o
& 4 o>

v a o
m moo
•4 < O O O
P» O O O
««
•V 0 Fc Q

>, e m »>
-o
9 « 3- 3
8 moo

o MOO
*«

t- m o c
a mo —
Jj
0, » 0 0

3 - 0 mooa \tt o a

fw o o
m o o o
•«

<c t=> m •a o
^> ^ m a rv o
» a m •« a
«c

f« ••» <^ a
m s o o ?
ft rv o o o

»
dB >> o -o e

o m o j a -« a
C. _) 0 3
•s, O » 3 •» <» •«
IV O « O 1, 0 0 10
« — i / > • » — 031.
»> ni M •• « a e o o u ,
-• z -« -n 0 J» 3

U. J » 3 « « J - ^ 3 3

3 ••-•So. >i o -a 3
o ~ n a " '• ^

3. J f, — f

3 * -s <J..J5E C - 3 3 3
a 3 .J i. j, « u a c j

— . a y a< j ji jui

J X I , 3 - i J-<11^
«J » ^i^^u^ X 3 O 9
-s wt 1 J ^S 3
«. 3 £

X t, 1£ K J
a, <j s ^uji^^s A.
£ < --« ^ :O^>tO ^,1
3 i> « 0. Z i, £ 3
3 Z - C 3 3 J 3 I O

OOtalOO^dBOo«OOIUOOOtft O
oop°c»oo<no>O)9oiaoo9i^ e

^c»*«ooou<a>9oom^oou a

oo^ooitooc-ooofioofto a

o o o> o> o ̂ *« o ̂ o o ̂ ̂ o <o «« a
eooaon«oo«»«ooeoive a

oo<^of)mo«eo iuJ9>oKif^ e
oe</}(V<»oujo^-^o^poKtoe>U£ a

O>O«"OOQOA«<X>9>OO««QQG>nG O

oooc»e*«oooooooonAO « o

oooo>4Bo»«^ensooo9-evc e
a>oooi*)a>oa>cf>(ju,ooor»»oa o
ooo*><oujoouoo<^oouif f i ,e
^ -ao^ t jooa-o -^^ooooox-s

3
O OOf*^OO--*OO'P ' 15»Of*SOQ>-< S a
ooo-eoo<rooooo^ooo« ' o
• s - o o ^ - s o o o o o o o ^ ^ o o j a
ooon ioooooooon ieoe^ io

u
O U - O ^ f ^ O O O O U J Q O f n f ^ O C M ^ - s O

j=-«soj'M'3'«o-3ryoa>'3'MO><»Zo
a,

33-3)^=r *V»O 1 Oi*^ < - lOO«tK1O© O

%
CM

i S O U l O O O O O Q O O O U ^ O O O O U ^ O

• « O U O O O O A J O O O (J O € » O @ O

O r « % O O » « 3 Q . O m © O K % O O - g O © O

9 ' V ® O 9 9 9 ^ O 3 ' < V) O O 3 > 9 ® « O
Ui

U O O u £ Q f » ° O O C Q f V O O U 4 O K 1 O @ O
«9O'3 ' - * l jO '^OO»O®^ l />O*O' -3 ' O
^ © o s v o i c o o f s j o o o r y o o o f f i * o
-s

- ^ O O O O O O O O G O ® O O O O O O
J ^ 3 3 S i 3 S ^ 3 3 3 O - 3 » O C » O © a
•V
I ' j ^ .S j -a^ -s^ ia ja^P^s i^aa i^^o t ij
3 - - » O O O O < G » O O W O O O O A B » O

2 O 3 O O « 3 O O O U O O O O « 4 O -<

jO«- *O© ' * 1 iO«a 'K*«O '^O©(* iO ' ^

X ' v i a j 3 - 3 ' < « ' ^ 3 - ^ ' ^ ' 3 > » ' ^ ' « A a
O * > o o o o K g t = j o o - o o ^ o « » o r y ^
> 4 . U D O - 3 O O 3 O 3 - » r » 3 > % i O O 3 < » '3

l * , O 5 " ^ © » - 5 i 3 O O ' V © ^ O O ' ^ O t •*
^
J 3 3 O ' 3 ' 3 3 » 3 > i l O 3 r > O > C » O 3 O

_ S ^ 3 3 r 3 3 ^ O O O > O O O O - 3 i 3 O O
0

i t j ^ « « y t ^ - « * y ^ » J i * ^ » t ^ « n O
— . j. jtjujti S'3 ^-i •> > >-a -a ^'a* <i

O ^^ -^ i -H-n^r^K l^^^^^ ,^^^ ^^ a o o ^ o s o e o o o o o - o o ® o

£
a.
A,
i,l
3.
t)

*O • (> , * * • t o , * « F ^ « c e e c e

lk0lkU«^OCQUF^>4C*^9^^Ui0 O
<-<tfc,««^njrt lsQouc*©i»Ota r,tj a
9U««^O«B<'*<HauoUQ<P>(&>U °
«O9)V^© l 'VOc<«99ySO©t&,< O

r"»3eOG>U4OOUO«-«U49OI< l»< l« O

tAOlAJ<«^O«UJOIk4a4k,9a)UO O
© 01^ «« T-OU.O »» o h. *>©« e> o

oeiLAo<4>teikO«te.90o9^ o
o>etkUO«x9iu9i&««^jj«aBOUJC9 a

C*-***j<V»t^^-*^«*taE«C :>'=3'<« a

• *o«coowo>«<&oy c .®«s<oo« o
vu^-«^i^><3udtAi^9 t i i fcC»p^p^«<e a
^U4<E>eUUIa.U«=3f>f laB fVAf l9<4e O

ik OTfcL ik, ff- o « ia» mo u i*- < •«« o a
(k.<4lkl&>0>O<dD4kaBQ>OU9OOV O
cx^-owae^p^oo^uouoo^o
<=«9-O9a>OrVU99<^09 « O CS> S a

3
u>oe>*«oooO9d97 4i^-O3>aa
r«O*<3<%iOOO9O*«OUJUI&.(J^ O
=S 'OOC»OOOC3 'O^O14 .O^U<-«0
«or>oooo« 'womoxu^ l ' «a<a

u
U D O«OO»49U.OF^^4U4 '<P^«3O

o^«ooan j c r9>o0^ .aoon j>»o
a>ojj*=*-®oo-oo<»^> '< o aj ® 'j (•£ s

»-,

« O 4 S O O O U z , O O O @ - ^ 9 l k (J O O
X
UJ

OOHSf f l - ^ ^ i ^ t -aOOOO^UJOOUiO

00«09<<09999^^ ,U . i9 '« 0
»<3O(JO)*OO-sO"*C»^ ' tJ i<T 'O iO« O

o Q < o a » o o u j o f l o » o D ^ o o o
o*'»-oa>4ao.a'Moao»«o.*e , i-*o 3
e o n j o i A , u o o o 9 > « ^ o @ < < v o o

9 U D J 9 ^ > < V « A 3 3 ' V ' 3 O C 3 > - « O » « O

^u0 -nasj '3 iOO3>-<--» '3 i3'Oo a

J
moaoou D t t <vo> ,£ l f c i 9 :3oa -4 o

3tt' i .-^'1*>'i i-3'^3'-<i*P3'33 OIU» »
< O O U . 4 O A O O « « 7 9 T D 3 O U) I & 9 •O

' v o u - » o o e o o s » » > " * » ^ 4 . -0
tffl

n *j » o « o o <M>'-».JM.>=> *MO 3 j. a

•3)uJL*4._»««A31>Ol^l>l^03at 41
_«
3

^ j^ ,o - i ru^a* r t« ' ^o» '< i)^o *j
t Tg "*% !•*»!* iff .Ti*l3'lTl*>l*l5'l^(.T 1* (JT >^T(J

^ •*! -^ -^^1 r^r^ «>t .^tl-t it <<*)<**(** 1̂ 1 r*li*tt •*!
O O O O O O O 3 9 9 O d 3 ^ 3 3 O

^2
CE
u^
u,
UB

3
a

E
H

 P
O

O
L
 I
N

F
O

R
M

A
T
IO

N

1
B ..

a)
fH
QJ

s
Q,

€

Q

&
fl)g
•

<*̂ >

^>
0
u

rH
1

<y»
rH

(L)
M
3
№

•i-!
fa

-

r«
<A
•n<

\ n<

ll
X.
*•
2

1

3
3
1'
x<
il
J.I
^131

19-15 CZ05-00

w o

X
ne

:.- e
• » a*. •
• o • I *
a o • • •

3cc

o • « •
UJ • • •
H • • X

• • M B
• X • •

I
e

ooit ,oQ»uoF»ooo«o»mo»«omwovt<voar>ouh.
;rorw«e»<_>r' .oas»<3a-«>o»ajo>cvuoi«MOoiuu.or>»oowtt.
a»o«*OQoooooooooooo«»oo«»ooooQ«>e««ooik
< ja>oooGOOGe>oooo-«ooGooooQ>o:OGOoooi fe

IM U W* W* G O U A Uu I** UJ G
I^Q«^>lkl>UlkW*AMa

O UJ

i
PtG,
uo G ^-O • 4 O O « « G G « « O ^ * « G O * « O ^ « 4 I O ^ * « G O « 4 O O « « O O U B

0 0 0 > e Q e - « O G « « G O _ * > 0 - - ' - - - - -

o
u

o4e«o«cff^G0r*>onir tG>WK»ot*>G
(V<OIVO9H_O9>^OmiAG>Or*»O.a.UiG^OO9UIO«lkGI^>«onf
r » « _ O O O O O G O G Q O O O O O « e o G « « O O « * > O O O O O O « - e O
« O G G O G O ^ O G O G G G O O < » O G) O ^ O 9 G ^ O G O O O O) <

m>

imoce<roont<
P «•« G Q rt G Cl * <

a
id
x
w

I
Q

O O G O O O O O O O O O O O O O O 9 0 I
l t B fe ,OO<<9'OOU>Olfc .

otla,It

o o
e o

<D O
te! O

o o o
1^00
o e o

O O O U A O (V U O O «
O O U . r U O ' O H ^ O U ^ '
o o o o o o o o o o
O O O O 9 O O O

o m » o b. o
OU-OO4 ' !a '3<L>OI>^ao^U>O(MOOf< fM
O O O O O O O O O O « « O O O O O O * 4 O « ^ O

^•e<oiuu.sru.o«u<o->

o o <

O O O w « O G « « O @ « - 3 O O < » e G O - 9 « O O ^ - O O " « Q G ' » « O O « « O G 0 '
e
a
O^r<>4»Gtfc, O O O > A O ^m^UfXBO « U J O « (M ^ 4 J A O ^ O 37)^9
0 O (V < V O 9 ' t 0 t O l t 9 G < O i A O 9 > r » ^ O 0 G n t a G l 4 , U ^ O f ^ t 4 > G O » « O
r A O a O 3 9 G 3 - * > Q O - 3 < 3 9 9 3 9 O O G a 9 O 9 : > ^ * - « 3 a « > « - « 3

i4 .oo(vu.(MGmuoom

i^l^O^rM-O^MUJ^ ar^l^fO
<co<oowi»»u.h.niuai9
^G99>a*<O(AfNi9u. i^%qo

OOO^^OU,9(Jl^lkl/>

t-ouno-^Mi-sau.! _ _ _ _ _
3 ^ o G i n m o r ' - K t G 9 « r o r v < o o o a o G > « u G ^ u j 4 .oxooni 31 9 o o u u u o a « r> u.p>

m
m
If)

•^
a
o

e it!
-I
aa. «

X J Ul
3 « Z
O 3 <«

>— e
»• •»

UJ O •<
O 1&. i«»

o u

200
390

o o
a
zoo
•330
O o o
•a G 9

o o
o o
o o

) •« O O « & <
t— < O O O ^ 9 9 O O 9 9 O 9 O « 9 O <
< < M a o ^ « ^ G O > ^ G O « « O G - « O <

U 9 . Q O O * 4 a } Q « « O O - * O - 3 * « > O :

> 9 9 9 O O 9 O G O G ^ O (

^o^neo-aKotA:
« a f
• o « *« Z H . O G t k O A 4 m « I A ^ O

•3 O <
o o <
•O a •

> « « O G « « O O 4 > . O O « » O O « « < »««OG««GO«4O9««

> > U O J3 «•

3 O A O (4 , ' A O > 4 ¥ 9 / ^ O ' 3 99
G « < V G O * 4 O I « B 3 r G « i f . O C A - * >
O « O 9 _ » O O 9 O G O O O 3 9

^oaooiuoaoujGik
< 9 X 3 9
u, o » o o

G 9 < ^ O O « « O O <

: ji o •• o no

• "̂ X "V X
I O 3 O O
• o o» < <o
I -VI iM M M

I O 3 3 G G v» G
i u. o «^ nj m 9 m
I "I » » » » » »l

O O O G G O G O O G O G

+J
c
o
0

1
crs

0)

&
•H
fa

a,
X

19-16 CZ05-00

ue o
a »

•B 111

« ae

a
o

a
u

o

o
9

*H

4*4
4X

V
O
o
o

ds
o
UJ
•c

a
t
«

o c
3 C
9 0

O C

o c
o a

o a
fM N
O G
iv a
e cs
IV ft
V PV
№ If

C

<

*^

*»

C

C
» e

» —

«M

•o
G

1 0
e

i a

» 4
a
a
i*

a

4

a

«
c

» 0

» n

3 «
<

Iff
G
O"
O

a
9
U.
0

fl

J

1

I

fc*
o

O

&
*
«

«
<4

U
<e
i&
o

9
o
f*
c«

L

,

C

<*

fl

a

«
ee

«

c
e

<5

4
e

0
a
G
a

f\
o
•fl
G

3_i

§
U.
vs
K

gi
>i
<ED

i§
ut ue
3_i
t-9
Si
P
u

»

B

>

9

(U
i-i
a
1
x

a,

Q

№
-5 <£

f»
•«
•v
*̂ i
<v *
•s,
o
e
0 »

•̂
fi
^
-o r*.
O
4ft
a.
c
3 4
9

(rt

ffi
e

ff> 9
y
«o
"V
f*J
ir» -^

«-
*w
V «V
«
N>
ru
o *<
»
•<

9

* «at B
S -i
3 <*

^ O *"
— &

aj ^
J > J

fe 3
2=

& -1
E <
3 U£
^ tr c

< o o
U 0 0
UJ O O
<* 0 0

9 O O

o o o
o & o
^ o o
u> o o
•4 O 9

p^ 9
u a
jj * ̂ uj 0
4 O O < O
3- O O » 3>

—3 O O

o o o
z « o o
3 «J O *> O
« UJ
K=> »« O t— O
a. o G 3 o
K 0 0 MO
j -r
« O F*» h= ?*1
^J 9 9 Ho ro
O O UJ •« UJ

3 4 *
*=> h°
»-« 3 •# *« »
? 0 0 £ 0

' 3 0 3 -33
O O G

200 .£ 0
3 -3 3> 3 3
O 0 O O O
^ 3 3 J 0

33 3
O O O
O O 3

C O O 0
J»
i— fM 3 O
-» 3 O 3
^ O 0 i
D O O O

-̂r x x x
•3 3 3 3
3 U ^> U
o +i j j u
ti T J 4
J O O O
C
<
\£j)

a
«
£
US «

•V
O

-©
e»

o
o
9
o
o
a>

o
ru
*3

A*
3>
0
9

O

O

O
<o
0

.3
O
3
0

O
^
o
3

>
f\t
<3
O

O
3
O
O

X
:»
jj
ki

^
o

0 -3- -«
P*> O O
» »• 0
^ o o

9 ng «~
Kl C 0
o * «
•V —3 F*.
o a- o
o u» o
3 O O

m**nt •+
<O 0 — 0
^J O f^ 3
< tJ ^^ ©
•»
C-, Q 0 -:

lAi •**. <^
U. 00 <C
yt> iJ1 O

"G f O
a- it oj fv,

<< -« ^ w

0 — tfH^ rv, 0
O 3O U»

o* 0 J 3
N=
-^ 3 W% I/*
J? O O O
3 3 3 r*

o o —
; o P* o
3 3 J -^

O o <J «J
-3 0 > »>

3 <J T
O O ID
O O 3»
O O O

ru — r*i
_> »l> 1.O
O U, ff
(3 <3 Al

X X X
3 0 3
* ff> -a
U il xl

j T a
o o o

0)

4J
C
O
U

iH
I

o%
rH

<u
M
3

19-17 CZ05-00

u o
t* M«c »-

ui
•S 0
•c u<

o u>I
-e
<a o

o loo o a o
o u* o o o o

O O O O oft O
** o o o o o

O O O O O O O I Q

»- ni K. 9-00 «-»
o o
o o

<\fl
nt
X
-o

•->•>«
9» Z Z

00

< U! LU
O OS I I

IU U
<• "> -I -J
a. »- a, a.
3 •« I Z
O "-•«
ae r ~ -

i- a
n -i

0)
rH

I

g.

a
0^0000
o *% o » o o
o o o o o o

» » =r o o i
•< nj «^ ̂ o i

oooooooo
oooooooo
oooooooo
O O O O O O 9 9

o o
o o
o o

O 9 O O O - 3 O O

4J

oo

a.
t

IK
<4l
ae

o ;>

3
-J S
* —'

O B5

a
s

a. i-
aJ «a. t-
3 »

Z £
O 3

O
3 i-

la at *f. ^
a -«
« o o o
«, l^J Jj

C9 >• ̂
/> 2 « «
< •-* <J U
•C « -3 -5

a: -j _i
1 -3
O £ 0} 0>
•3 l« •<
05 »-
J> 2 J U

UI _J J

3 3 3 -3
ae «s <s o o
S °**- D | |

at ra it. x ac
X >• -M -J 3 ua.ol, I;D»x«
33 -* "5 (_l "C "3

O C. t» UJ O UJ
°« ̂ jj ̂ » r -i
e o» « t> it or
3 3 J> .» J 3
-« <• C X It U.

• 1- _J J J -« i3
i - » u j o « a > - i > e
j u > » 3 ^ » 3 . ' j ^ :
>""i i j -a .« — O i j :
. J. J Jj — E J _1
• «-) > t » t f > U 4 J 4 J ^
• — J X « — •>
' ^ J C O ^ H U J « £ ^
) i! •« € J 3 3 J j

I O « O (A O

3 o a> o •
0 0 0 0 1

o -* o o ir» o
O O O 9 O 3
O O O O O O

> O 9 9 3
> O O O O

tft O
o o
o o

Vlg.
•H
fa

.90000000

000
30-3

a »> -.
£ O Jl ' J

•J O uj *

V N, X
J 3 J ->
O fl O U

> «* A* 4

. O O O O O O O &

<x
2
3
X

19-18 CZ05-00

w
•»
W)

o • *« « o e e
e •
« e

e fl e
V • »

• « • *
• oM *
• tft • •

i

w
_«
I

o o out oct
O —J9O O O>

« nje o e

•9
O
<J

o « o
o o

O « Ulo as

ni
ni »
v«
e
i a.
e «s 3
• O

ws ae
(9

I

O.
x

Q «. 9 <\S99
«O O It O 9
onto »» 9

3 O O O O O

a «
o « a

o mo « I&, o
o a o •a it, o

o 9 o o o o
< 9 9 o 9 o
(V o o o o a>

vj a o »f», j»
pi 9 9 9 ma
a 9 o 3 a •'i

o ni o o o o

.0 < 9 9 9 3O
a a o 9 o «

u, <»«, 9 « •*
U. IfcH. S» O

o o o o <•«
o o <w o e
O O IA, O « O

IV O ft O O
9- 9 O O O
*» O fe, O « O
J1 3 U. O 9

9 O> 9 9 9
e o o 9 o

e O to, o 9

9 e o © <
•3999 7
O O U» 9 « «>*

<h

••*

O
o
•v

X
3

2
"3

C
X
3

<&, oa
9 A, 9
S -O 3

9 •* 9 9 O 9 9 -
9 ^ 0 9 3 ^9
9 e M M 9 ° > > ° 0
3wi ls=997J It 1 3

u£ CEff i 1 o « o o ; £ ^ o 9

o to o 9 № <&
9 Jl O S Ik 9

, 9 a jj 9 a a
«S9 « 9 f 0 9 9 9
9 3 ^ 9 ^ . 0 3 9
«9 O O (S 9 9 «

J 9 9

S 9 " \ » - 3 - « 9 9 3 9
««O(/19O A O Q O O £ i 9
3 9 « T O 9 9 « - « 9 9 9 a
O O D t t a O M e o g
3-»-« < « » J J - 3 - » 9 i i . 3 f » 3

9 « m 9 e
•3 ̂ 9 O « 9
9 f*S © 9 O

9333 9
0*00 9

9 ^ in o «s o
3 <J» -V -3> 0 9

«* ^« 9 O t^ O «
3 - V 9 9 3 A = O 9 ^ O

o>
•H

ae A = O Q £ £ J 4 ® 9 < ^ 9 @ 9 iS JS » O « 3!

' 9 9 9 9 4(

< 9 9 O O
3 9 « » 9

9 9 * V < - e - O C / 3 A 9m №
o« c* o* ^J ̂•X C£ «o O OS 3. UJ

i
•3
O

CL
£
3
Q
JE

J
oe
3
O
/>

3 ^ — ! « » J il^ i
3 « — - » -S 3 -T X

-IK w o _j o:
« •« U4 X O U 3
U Jb U li» X O

: o o _i >- ui

3 < p « ^ J 3 « ^ f ^ . - ^ O O O

-> « it! O J 0£
« •* UJI % 3 U 3
U *, U 1*4 « O

_(I O O _J t- IU

US O «! S
: o<j 3
) OS O

> a a u oe
O J5 t=< t-= <

UiO _»«
i % a u 3
) IU 06 O

J X Ci O -)1- I

19-19 C205-00

•B Ul
oc
OL

« Ul
•» at

M4

G- »«
« u

a • .ou.
• • «l*l O

oma • •
• * j*m«4i • • • • • •

ik BE ^ •* •-• • • • • „,

I • e • • •« C M * * f-
[• « « ! • • « « « > • • y

i:::: :*. :-.: «
[M « e * « » c « « £
b • • H « ̂ 4 • • • • ^

• • • O •

no*
M »<

IU U

• «O3 • . » «
• •« a • • • •
• • ! • * • » • • • «
• • o e u i * « v «
• oiuae • •< •«o to. . •-em
• o lu w « « • • J
• o a c u < « « « «

Uf O ̂ O (V O U

a uja

-o
n
o
u

3 —KV O O O «f O
U., •« tt ̂ O

u u. o o

U. 3 O O O K - O O
•» ~ O O O O K i O O

•s
^
IV O-
%,
•a
o
e
o a

•« •«
o aa,o UA u
O h— *—O •* «
3 U U
O O O

« O a o o
uJ o o o n o»

in
<o

O O O O O O O I V O O
Q > O O O Q 9 O t £ » O O
O O O O O O O 1 & O O

0000090000

I- « « O H > O O m O O
<* oooor«oo
UM0000900

§•
OU

a

(U
2

-p
c
o
u

a.
s
3 -a2

O o o « •«
1- < £ £
(J «.Q 0 »«
< t-= « Aj U^ | |
u, at a >- t- Q K

< U. IX« « T Ul
C C Z I — U. 3S 0 S_» •« ff»

O O '
o o .

: « u. 3 -i -i*
— to 3 -3
•« -j -= ea « t»

~ <j -3 f a,« ~a
Ul O <l UJ < K C

U! J >• J» O Q

O O O > O - f i «) K t O O O O < U J U O O O O O < O
^oa-M^oaooo ujtx imooaofto

O O 9 O < O 3 U . ^ 9 < < ^ 9 O O O O 9
cr

a a j a w v s y ^ a a jj>- r« -3 3 3 o a *
J £ O O O O O O O (V O O » O < O O O O * 1 _
(_ S 9 O > ' ^ O 3 > 3 I / > 3 9 O < C > ^ > F « - 4 O O 3 A O X - 3 O 3 U U o ^ " V I O
Q Q O O O O O P t O O O n u o ^ O O O O O U O Q O O O ^ 9 O * « O

i n r u o o o o v o v o

<v
X <V
o

t O O O Ifc, O i < L X O O 9 O O O <

ul -a •» » o 3
t - > - i - _ ' i u i f c a r j c E a
-4-4-9 f. -3 t—*-.

_J o o t
O 3 O .

O 'X M O O O O O ^ * ^
10 ^ • i ^ a 3 O ^ * ' i ' a aoo
i •> - " - » J ^ « 3 i . ' 3 3 ' T

I 3 •* CT ̂ O

3 3 5 -j: U — •» '

(U
M
3
&>

•H
fe

3 4
Q 3

a
<tf «

*

a a
» »
O O I

a, _iz f

19-20 CZ05-00

«0
Ut

0
r*v
n oe
N> to*
DO

• «
• fU •

• rtl

C v
• •
• A A <

• in
• «»
• >•
• 09

3> •
e

0
•

» ni
y c

••

«
«
c
e

•

«
V

V

e
0

*
e

o
V

e
•

c

e

e

e
e
•
e

o

e
• ;

e

G

•

e
o
0
®
e
o

*

e
e
c

•
e
0
«

c

**»

e

0
e>

c
e
*•
e
•

•
e

•
e
•
•

i
o
o

o
U
U

nt »
•x
•o
o
I

c a.
u J
a. O
C 0£
3 - 0 0

,.0

tn

ut
X
X

M
It
in

nt
o •«»

u
uj

ae
a

00
ont
00
0«t

00
0 0
oo
0 0

e o
00
0 0
o e

a a-
10 U.
3" 33
0 a

V) 0
Olt

o o
o &

as

< 0
O 0

» O
a o
0 0
0 3

Mlt
O (V
0 f
o o

.n JP
(j e
O *3

0 0

» 0
L> 0in -a
&m

a> o **
UJ O O
O 3 O
O O O
.n
O I*, O

U4 »
o o
<3 3

-n -s
0 0
o o

it 0 0
<j
o o ns
J -J e»
a. -o UJ

9 LL,
u
u n -«

X 3 0
n o o
* « 0
r -3 s
1 3 O

X V,
a 3>
04 U.
•̂ "5
#•» *•*
J1 ./»
O O

0 0
ont
eo
ons

o o
o o
00
0 0

o o
o o
o o
o o
<0 .»
!•>) <
9* O
a a>
UV 0
0 0
O «*3
3 3

a <s
3» 0
ISJ 0

9 O
^ o
o o
0 43

-0 ft

0 <
3 -O
0 LM

y» *
U 0
9 3
o o

» «
A O
in <
» it

o 3 ;r
U O O
O 3 -3
O O O
Jt
o u= ©

U 3
0 0
3 3

-n .3
0 0
3 ̂

* o o
-s
J J 0
A O U

•3. tt.

UJ
j .n -«

IX 3 0

m o o

^ -• o
t 3 3

"Z O C3

V "V

3 3

U 3
a a

tt /»
e o

00
Onl
0 M
OOT

O W
out
om
0 m

o o
oni
O Pt
o m
<so
it «
»ne
0 K»

kftfc.
0 *
0 p.
9 J1

a a>
a o
U 0

if o
•̂ o
0 0
•3 -3

«*>»
o nt
o a
e> u

jt s
U 0
•3 O

o o

•a it
A. O
Uu VI
^ r*t

O -3 =^
(J 0 0
o o o
o o o
./«
O Ik O

^ 3
e o
3> 3

ji a
o o
3 3

•X 0 0
U

J •« 3
» « UJ

3 U.
uj
•J J* "»
^ O 0
«J O O

*, — 0
*, O 3

•3 0

^ ̂J> *»
U ^»
•> o

n n
3 t?

e o
o nt
o o
oni

0 0
O IV
oo
e nt

o o
0 IV
0 0
am
« 0
«(V
4* o
e iv
tf> 0
o nj
o o
0 nt

a, o

O» <3>
U ra
« 0
o o
0 0
s »

-« ̂
0 lu
<a &
0 W

1̂ ̂
U 0
3 ̂
O O

a- in
<•« j
r« r>
» -i

•y a> y
fn o o
o & o
o @ o
n
o u, o

rv ^
-e o
^ 2
j» -s
& &
•s -s

X 0 0
U

'j J 3
CU « Ud

fc U.
Ud

J * —
X. ® ^
^S S3 O

i =» 0

5 ° ?
*~ O 3

^ •«*
3 3
«J F*i
3 e
/i> «
«3 O

o e
0 0
o o
0 0

eo
oo
00
e o

0 0
0 0
O 0
oe
ffi 0
F*l O
9 O
0 0

IT4 O
00
o o
o o

3 0

U 0
« 0

9 0
O <3
0 0
3 0

-=3 fft
O O
0 J>
s f

<ft »
U 0
3 -3
o o

« o-
%J -«
« r-
« rfl

3 S CM)

U 0 0
<S 3 0
U. 0 0
•7
o k, o

U 3
« O
U. 3

-S1 3
0 O
s -s

:̂ o o
^
J 0 3
T < 161

^S 1.
UJ
J ft **

i. 0 3
irt « O

« «! O

JC 3 3

" « 3

^ X
3 2
U 3
X £

-y *
o «,?

0 O
o ni
0 O
om

00
0 0
00
0 0

o o
0 0
o o
00

« tft
f» O
» »«
O IU

VI 0
o o
o <*»
9 O

3 0

Ft O

o o
\f. 0
o o
0 0
o o

-«*»
o ru
9 It
o o

<Jt lA
U 0
o o
o o

tk -»
* <
e 3
•o *\

0 S «
•o o o
« 3 3
o o o
^
O U, O

-O 0
< 0
3 O

,AO
o o
a o

1C 0 0
U

-133
X, S. UJ

U U.
U9
J » -*
a. <3 3
i/» ra o

c ** c
B. O 0

< 0 3

V V
9 3
<l !»,

^ a

/> A
0 O

o -a o MO o
<vi*» mo o o
0 Wt 0 0 0 •»
fWCT (MO O 0

O AJ O -* O «*}
*\8 m Afl O O O
O **7 <M O O 41
<v«» in o o o
0 » ff" 0 0 0
f*i in * ̂ o o
Afl M * ̂ O O
t m 9 o o o
O fO •* O (V tifi
<V 0 0 00 «
o o o o .e ̂
ftf O O O O O

o KI ni «• o o>
(vom mom
0 0 OO 0 0
rv 0 ou o 0

s -« o * o o
O O (V O -^ O
rw o o o o o

« •• IM » 0 0
n o Ft r** o O
tft O O O O O
^ O O .J ̂ O

f« a oj ̂ .3* o>
»^ «• ft* o o o
o o o o o o
nj o o @ o o

O <3 (V » O O
ru o rt t«^ o o
o o ̂ o o «
ftl o rn w © ©

o o m * c« ©
"V 3 f*l O OJ 3
o O ft O O O
">* <3 ^» O O "3

3 O O O> O =« S
O A* -3 111 O O «
3 >V 3 WiO 0 3
UHI o in o e e
3-

* o o o o ©
ww o a o o
3. 3 ru «• 0 3
iv ru pn <^ o o
— ! 3 O 3 3 O

3C * AJ O O « O
o
J U M 0 0 •» 3
Ol »«3 O -* <-s ̂ Q

d, M e> •s •s •a
U£
> » o *\i ^ 3 a
3. -3 ry o 3 o <•*
J3 0 "t 0 0 0 0

A. «^ O M O 5- O
fc 3 >l *>J V 3 3

v J M O o O »

V V >, >, X V
3 3 3 3 3 "3
3 « ry -t «• rft
> j -» a 3 ^
* J a- f s -f
o o o o o o

o o
0<W
0 0
0 CU

o o
o nt
o o
0<V

0 0
o no
O 0
0 IV

4O O

in ni
* 0o ni
IPO
out
O 0
o nt

a o
J> 0
Q O

9 0
0 0
o o
O 9

•* I*B
O 4
O Ift
0 O

i4V 7
U O
a <3
0 0

If* U
» <
« (V
<f «

O 3 O
U O O
*•» o o
U. O O

*
U 3
t*» o
te, ->

» 3
o o
3 O

3£ O O
o

- J '-J 3
<6 U lU

>&, I&,
UJ
_» » -«

X 0 3
» 0 0

•c -< o
J! ̂ 3

& » <3

•v -x
3 O
U O
*Q r̂ .

-» a
o o

o o o o
O! O O O
0000
OO 00

o o o o
o o o o
» o o o
& «s o o

0000
o o o o
l*» O O O
IV O O O

o o o o
0 0 O 0
o> o o o
0000

o o o o
o> o o o
o o o o
o o> o o
-« o o o
O .3 O O
ft O O O

O «=3 O O
o o nt o
o o o o
o o nt o
o o o o
o o n» o
0000
o o ni o

.3 O 3 O
o o nj o
e3 ̂ o a
o o ni o

•o •« ni o
-» o * o
O o 9 O
•3 ai mo

o -« o ut o
uj «s o ni o
U 0 -« pfc o
|A> 0 O ̂ O

3-

< O if) O
(V O 9 O
a© » fv -3

3 O O> 3
o o o o
3 O O O

ac o o o o
U

J < 0 0 3
J* ao o o o

a 3 3 -3
U*J t O 3 3

O. <3 O <3 O
9D O O O O

& ru o o o
% O 0 O «

* O -3 O -3

X V, X, V,
*» 3 O 3
uj U^ ® -*
<*£•<*» ^ ^

» * =s »
0 O O O

a)
rH

I1

I
Q

4J
C
O
U

(1)

3̂
№

•H
CM

o

^IB
UJ

X
o

a.
£

3
i-

19-21 CZ05-00

£
I

>» nk
a

d a
r^

it -*

xi
4
UJ
a

• : P
a z
• a
• 2
• 3
• Q

: s

u in o
o « o
at u, o

«j o a
e — o
rwo e*
o » o
Al >»0
V O O
moo

0X0
O O O>

o o o
00 -.
o o o
o o «

o o Q
000
o o o

IV O J" O
-* o cu o
^ o o o
o o oo

o o o
— 00

at •» o o

in •« o
9 O CJ

Ik O »
u. o «
I*. UX Jl
Ik •* O>

o sr <o o
o ̂ o **
o <o o o

o « o
o u., o

3000
9000
•1000
X

O IS O
» u, r-

<-• < o 0
z o o o
3 0 0 3

o o o
•a
Z o o o
.3003
O o o o
D 3 O O

O UJ O
9 O ««
o o o

o o o
O 9 O
000

«/l (A -ft
o o o

2 3 U O

» <> o
o
Z « 3 «
3 •< 3 O
O O » O
O 9 O O

3 -n 3
o o o
930
O OO O

O O O

<u

i

0)
S

-P
G

8

i
en

0)
u
3
№

19-22 CZ05-00

• e • • o

.J

ns

u*«B
uf

• o
• c
• c
e «
• nj
« j

a •
0 •

a *
V

rt
»

o
o

a,
£

m,
n

«
•A
v
(V

a. _i
x. t
s «

-

rv
J

•o O

j a, 3
a: 30
.U 3 3
01 oe
T .9 •*
uj »

•-* d ̂ IT* Jl X

& C* *->
oc ec oo 3 ̂ -4
-s •** ? (rt i
3 j ,3 -3 J»
•4 — S =* H

•a vx < uj ,3 «A
j vj U » 3 -i

A, Os, ,4, J jJ

-o № — \i e *t
* * ' r r» *w
14 *4 *l < V
r* <"H r* *> !•« •»

T:
t=» •* ^ %

* £ i C? -a
3 3
OT O ui uj u*
£, tj ̂ ̂ Z *»•
u/ U O * < «
i, <* x o r E

5
X

J
a.
X it rt
«o e
»> >» >-

H- t-
»• e»

*^ *3«
10)

UJ US UJ
<v -ox s
o aa < «
0 0

Ut Hi
~ ~ j j

Q, 1" Q, O.

g*J5
3E CS « CO
cs u
£ <
AJ Ul
»» o
^» J
>> m rt

^ 3 9
I; »• -o <s
— X ^ 0

o
3 r~
(=- U - «•

»| ,-= *-»
W K < «<
3 -o

<« o o o
•C | jj ̂

C9 »- *»

"< » O t,
E ^ 3 -3

ff -J «S
9= 3
3 jS « «
3 |-o ^s
2 *=
5 * AJ ^J

UJ -1 -fl
« t ̂ -r
«-» <r u> ta>
T -3
N» U K- (-

3 "3
« 0= G C
— 3 | 6
«» t*, « X

3 ig X ^3

IU C. •**
X J

& i£ ^
a 3 -3
* * to. a.

d *» 17 X

' a u j
•-» e j ^
— >i
J <A* «J -J

3 i T 3

N
U

^c
6

tp

U
f

i»
Ik

£
C

?
U

H
l!

f5
L

£

C
u

^
e

fr
iL

£
 C

u

I

«r o oo o o
< o o o o o
o o o o o o

4& Ik, O €» O O

OUI 000 0
o 0 o o e> o
KI o « e o o
f*=, 0 U40 0 0
0 0 «0 0 0
-* 0 «0 0 0

KS f*t ® O Q) O»

O (fc O O O O
G* -fl 0 0 0 O

If* UJ 1^0 0 0
!J U1 (J G> O O

< 4 o o o o
^ (*- ^ O O O>
o < o o o o
O O O O O O
@ >6 O O O O

tn rv K) o o o
o u ~»o o o
< T O O 3 9

w^ O -O S O O
o o o o o o
0000*0

* O r^ 3 J 3
7 O U. G F*\ O
s3 3 *-o S O O
O Q O O f* O

t/t 0 « 0 0 »
v « ̂ a a a>
O O O O !*» »«
O O O O 3 O

m o ui o o o
<j -3 ^P r» 3 o
^ O (S O O O

m o 9 c^ o «
-V 0 0 ai 3 -C'
in o e ^ r*. *
O 3 O Ut 3 «3

S -^ -3> S O 3
o o o o o o
S 0 -3 0 £» 3
o c o o o o

№ e AI o o c. **
J O O *• 3 3 <S
A o o r-» o o u.

a

O CM 0 0 3 O
3 -* O 3 3 3

v3 *̂ O O O> O

=*1 ̂ O O 3 **

o o o o o o tpi
^ 3 -3 3> » -» 3

-»

j 3 j ^ a 3 Ji
^ u a .LI ut* ^ <—
c j u a > »̂ .j

3 <P « ̂ 3t O 3

3̂^
2
3
X
*9

0 0
o o
o o

o e>

O O)
o o

0 0
0 0
0 0
0 0

o o
o o
o e

0 0
o e»

o o

O 0
o o
o o
o o

0 0

0 0
a> o

o o
o o

o o

O 3
o o
•3 O
o o

o o
3 3>
o o
O 9

0 0
o 3"
o o

o o
0 9
o o
•3 «

Ul 3
rt 0
S S
& 0

4* O O
•a -9 3

*3 O O

,£

0 0
O 3

4J O O
«*
X f"B O

- c o
3 O

ufi

3 3 3
J « «
/» •» "3

L
U

^
lC

A
b

.
«

O
b

7
^

A
O

/
O

o
Q

5
7

S
P

U
/

O
o

o
o

« G

CT«

« e
o

o
o

« e
9

9

« 0
«
o
9

o
9
o

« 9
9

9

« o
9

S
o

9

3
9

« 3
9

9
9

« o
9

9
« 3

e
e
9

« o
9

3
9

* o
9

o
3

« o

9
K J

9

G

* 9
3

•>

•-I

o
3.

X
a

<«
f-.
lA
o

O 9
9 9
9 9

~«9

9 9
9 9

9 9
99
9 9
9 O

9 O

9 9
9 9

O 9
9 9

9 9

9 9
9 9
9 O
9 9

0 9

O O
9 9

9 9
0 9

9 9

3 9
9 9
J 9
9 9

C <D
3 V
O O
9 3

O 9
<3 O
C O

o o
3 9
C 9
9 <3>

-3> 3
0 0
3 3
O 9

I** O 9
M 3 3
~* G 0

X

9 O
O O
O O

O C>

Jj O 0
J 3 3

*
3 3

OJ — "W
J •« -•

L
U

b
J

C
A

k
f

0
^

7
A

|u
/

O
b

O
b

7
fc

?
0

/
O

o

I

2

19-23 CZ05-00

OE
0.

« • o «i»

» el) « » O W
<A • • e> • 1̂ «

lo oo e< h. <

«
•9
3
<J

0 O O O O O f e . o O O O O O
00000014.000000

Uf O O O O O O O * l « * o e O O
o o o o o

H « O O O f * O O < A O G O O O
«aoontooivooooo

Q 4 O O O O I M O O O O O O O O
ooooooooooooo

IA O O a -ft e>

u oooooooa^oooo

feg « • o c
O

• O««0OOtft<« 9
1*9 U O O O U f V O * ^
o*°oooe««o»

|

O

••t*
OB

*

*«

« •

« e o u o № o o
o u = o o ^ o t n < » Q

AC
rv

o
i

a
c
3

.aoooooooa»a><.39

(J O O O O O O 3 1*̂ O O O 3

^ s ^ - r o - ^ o ^ s ^ a s s o
O O O It O O1 <b l L O t k O O O
3 O O * J O ^ O \ J O (» S O ^ O
O O O - « O O O < f f l O •< O O O

OO-3-^O «3^'-»^3iOO

O o 3 O S - J ^ s r ^ s ^ o o

OOO(JO«0«lt, ̂
u o o a o e e - « o o

cf tooo-orervo
Z «o

O^^-^OOOOOt^i-o (V O O 9 O O O O
f r o I k O O O O O O O
u m o o o o o o o
z
3 -*Oooo№?*=>«'
U^-orw^ooot jo^ 1

(J^-^fcfc-OOOO**

U o N O O t ^ O O O r t O

o u < v < e u , o o o r u
3 > O > O O f O O O »
f W O J f l - O ^ O O O ^

t- o o O O O O * * \ K G » O

-**J»'3' 3 J"^-*
H=- dO O <V O O O O ̂ O

0 0 9 O O U O O I

M < s > o o o o » « « < m
o o-»• o o r̂ o> f« a»
O © Kl Ifc O lf» O « O

: <«
»u%

(C Ml
•«IA

o in
o m
O If*

t sO O O

o o o u . < o o « x > m
P*» QOCDOU.r\|oa<t>
o o o o o t ^ o o ^ o
o ̂ -
o o

IS U, :
o u, •

o u, <

9 3
o o

o'M*jr- 'U«iA»-*
0 0 4 0 0 0 0 < U

t 9 U> t&. O O O

X O O O O O — J E U U . C J U . O O
O -3 3 < 9 O 3 < i & , ' S i & > O O

•*>O 3 ' *» '3-O» '*»Sf*V^3O
u o o o o o o o o o r v o o
il ̂ 239 '3>OO93tA ! , ' 3a
u c o o o e o o o o t f e o o

O 3 O 3 O > 3 « ^ . S O b k ^ O

A«
x AI
o

rv
a -*

O O K ^ O O O O ^ O I < ^ O O O
O O O ^ t » T » - 3 3 3 J > "9 •»

-O £ ^ ^ O - S D O J ^
O O O O O O O . O O
o ^ s c o o o o a - o a o

< QC
U / U 1 3 9 3 O •< * U.

95 t— O1 K» O O 7*^OU.
«« E < Y o a s ^ v o u .

Oj O= | O O 3 - 3 r ^ O U (M
a c o L & . o o o o o o < a .
*« •3>003^3<« 'n

z
a i~ ^ * - » ^ - O 3 f * » ' ^ B 3
j> « L i , o o m u o o
< C -3 JS U. 3 O C3 O 3 O
« (J O > * * V O A * O O O O

ni
•t

a
•«l
I*
•5

o o * n -s o »*«, fv o o>
•nuoo^«otjL.ooni

' J O O S - D O O O

CO

a.
f O O U , O O O 4 O

5 3 3 " 3 3 f* T> 1$ -» 3 3
H=.^c , - *eoe,c .w4Oi)
J J O l i . 3 » ^ 3 J 0 3

-4J O. O * O O O O O O O U »
3 O 3 « 6 i * 3 O 3 O « O 3 ^
o » o * «

O • C X S 0 ^ 2 O t k t l 9 3
O (T > O O - * O * O O

»— («* t— ^ t e - ^ ' ^ O - 3 0 ^ 3 3
•* *. < » * t f \ t / t ^ C \ I O O O O O O

u. -• x e o
co« c « Ui o < o > o n j « « 9 O
•-+ *+ •-<•>— « > * 3 3 J O ^ * t J « 3

*• j ^ ? - 9 « = o o o m * 4 ^ o
A T -« ^ » - 3 E O S O ^ > O T 5 3
« O > (O (J

^ j ^ - i j e o u - ^ ^ ^ o o n o
22 <a act> 0*0 — o o s o

O -T
e -*«»

^= —) us
IX O O

CO O O
A? O O
300

X O O
3oo

o o
a

o o
o y
o o

oes
K

$

OJ
t-l§•«JX
[4
a

>1
M
iI
^J
c
0
u

rH
I

OS

0)
k4
s

3 Ui
^ X

3 3 3 - 3 ^ 3 > J - 3 3 3 J 3 3
X > > a i J U I ^ t u U . O « « ' \ i r ' > - fJ j ->-J j j j j a j ^ j j
^ ^ o - ^ ^ - O - ^ I ^ O - ^ ^ t ^ l
O O O O C - O O 9 O O C O O

j 13 ^> j :> 3

o o o o o o o o

K
ij

J
<f
•3

« £ *> « O
•3 -• a -31

J 1
«* «*
3 a

o -•
-^ 1

& o

•«>, >»
<3 O
O e«

19-24 CZ05-00

Uf O
ts «

no loi
=s e

«=0
e «4
« «
w «
•« *
V
no

cc
O

O
u
ts

u
jj
X

« 9 F<9H5KS

<s ra o

nt out
o <
•c <

<a o ut
u» o p.

o o o
000

00 W
ie oin
o o in
eon.
009
OOP*

Mil*

ne
m <y

o o a
o o o j ~j
0 0 0

OT
IE
O

r
u

3

^

jj
N
-«
m o o © o

o o o o

•n o K»
-* o o

« o o o
X O O O
•J

O O (V
o o «
o o «
C= O . J

K»
-o o « »

000
o o ©

000
0 0 0

K* O (U
o o o

3 0 0 0
a

o o o
3 0 0
o o o

№. IV O O
jj a o o
«J O O O

« U 00
o out o
« « « o

W tt O O
o o * o
«3 » « O

U, It, U, O
•o -<l». f«
O O *4 U

O O O (V
rw < o uj

(U
r-4
a
(0

Q

i
0)
2

-p
c
o
u

o
.Lta,
£

IV
>»
o
a
">.

o o o « «
I- « .£ £
U ~> Q C. w «

>•<?*> 03oJu^ G G
•4I&Q: % t » l » f i t E U J
w < u ,^ !«-a -? i i -»
m z i ~ u , £ u u « n »
»--3<» u . r 3 3 E 3 ^
9»» tt,3_jjy u

I- t= ? tS <
<e j c° «9 M w OS

•»j3 •sa.-s-« -u
uj o -s iu« a, t »-
= _) ^ , a a £ « « 3 3 £
« j,) aj fv i K. 1̂ U-l It H- «
2 z 3 a •a •£ «

<3 i- O a! « s£ a:' OT
« ->^6 <J _» U -0
x x ^ u>^>->-ac
^ V $ ^ c « ^ Q < 4 « ^ « l l £
«S4 < « 4 J E < « « » « J ® < U « J
t-=l— t - ' ^ 3 2 ' I ^ -<
^ < ^ * ^ » O t U l J h t U J _ l ^ 4 k

ij .1 » •» 3 3
^» t - l - JUJ l» ,O 3» Tf.^

J
O o «, • O o r^ 9

-I O < **
m o ro o

Of O O O

O O O£ <
J -3 4J <
£ o ni <

O — <3 —& o o o

3
lu
J»

o o » o
• o o c
« 19 « a

£ <S O o
3

SJ «? O O

z o o o
3

W V O O
3 O O

>> o o o
£ 3 0 3
3
C O O 3
UJ O O O

^ 3 G «
JC 3 O ̂
a
S -3 3 -3
W -* O ft*
i" 3 3 Oru o nt

>> o o o
3£ S9 -3 O
o
£ 3 O 3
UJ (M O O
f o o •»

ru o o

> o o o
I O O O
I O -* O
» * <o o

o in e o us
•3 P- U, <
a o o «

O O 1*1 *1 O
J
CO O O O O

• 3 a i - t u > . j t j j •*
£ ^ £ O " « JJluJ^-*. .
3 3 ^ e ' » ~ ' » T _ i j ^ -
J U « , - a — ~ i 4 » J - « « 3 .a o -t r. _i c t. _> u. j. j

i&4 O O w
S 3 O i
to o o o

U; o o o
E 3 3 O
U C. CT O
Jj
n «» o *M

3 "U O

cc
— -3 J, U. :z. o « « <

or o i/l a r»
«< O O Q tf»
— o co * a

I
OS

(U
M
•3
Cn

' » t
> & o

0 0 0
(-* r-1 fH
t A ̂
o c* o

•O r* «
O t) O

•v •». V ^
3 3 r3 o
^ -ft O r*>
^» J -I u

l^>
a, J
£ 4
3 *>
a X
I

19-25 CZ05-00

• Batch Group Data (shown if batch group is present)

- Virtual address of beginning of background
- Virtual address of the end of background.

• Memory Pool Data*

- Pool identification
- Starting address of pool
- End address of pool
- Total size of pool
- Physical start address
- Total available space
- Maximum contiguous available space
- Number of available fragments (pieces) of pool space
- Number of users
- Table of attributes for each pool.

• Additional pool information

- Memory pool descriptor
- Bit map (unless it i
- Segment descriptors.

• System Symbol Table

Bit map (unless it is a queue-managed pool) ' v—

The names and values of all symbols that have an entry in
the system symbol table are displayed. Symbols are
grouped according to the bound unit(s) in which they
occur.

• File System Structures

- Record locking pool control block i
- Volume descriptor blocks (VDBs) :
- Directory descriptor blocks (DDEs) I

i - File descriptor blocks (FDBs) " ,
- Currency control blocks ~ l

- Remote extent blocks
- Wait control blocks ;

c - User control blocks
[- Semaphore control blocks :

- Record locking control blocks
- Device descriptor blocks (DDBs)
- Buffer control blocks
- Public buffer pool headers (BPHs)

f - Buffer control blocks (BCBs)
- Buffers*

*Supplied for each memory pool. The pool name for the batch
group is BATCH.

19-26 CZ05-00

The hierarchy of these file system structures is indicated by
the dump as shown in Figure 19-2f which is an abridged section of
a logical dump. Each block is assigned an integer that
corresponds to the level of the block in the hierarchye The
headings of all blocks are indented according to the depth of the
block., This makes it easy to see which files belong to volume
major directories and which belong to subordinate directories.
The display of the tree of file system structures may be
suppressed by the -NF argument.

The following file system structures are also displayed?

• Free indirect request block queue (only when editing a
dump file)

• Globally sharable bound units

- Bound unit description
- Bound unit attributes
- Bound unit*,

TASK RELATED INFORMATION

The preceding logical dump information is obtained from the
operating system area of memory and occurs once within a logical
dumpe The following information can be repeated more than once
depending on the number of active pools, task groups? and tasks.
This information is presented in the following order:

1. Memory pools (as allocated at CLM time) if there are task
groups assigned to themc

2 Task groups within a memory pool«

3 Tasks within a task group.

Memory Pool Structures

The following information is repeated for each pool with
assigned task groups £

« Sharable Bound Units

- Bound unit description
- Bound unit attributes ' '
- Bound unit.

19-27 CZ05-00

Task Group Structures

The following information is repeated for each task group in
a pool.

• Edited Task Group Information ",'&f
i ,'-">

- User name, account, and mode
- Assigned memory pool

. . - Bit map switches
- Outstanding requests to system group
- Address and name of control block for current working
directory, error-out, and user-out

• Group control block . (

• Logical resource table - *_
fc'n - -

• Logical file table :

• Task structures (detailed below)

• File control blocks (if there are active files)

• Work space blocks. ", ,

NOTES , .

, 1. For the system task group, IRBs (and hence
also RBs) are displayed only when DPEDIT is
processing a dump file; i.e., the display is
suppressed when the input is from current main
memory.

2. Work space blocks and FCBs for the batch task
group are not displayed when the batch group v
is rolled out.

Task Structures

The following information is repeated for each" task in a
groupj

• Edited Task Information

- Bound unit name, location, and start address
- Hardware level
- Logical resource number
- Enabled trap bit map
- Reserved and current overlay area locations
- Control block name and address for user-in and
command-in

19-28 CZ05-00

• Segment descriptor table (swap pool only)

• Memory control block for each segment (swap pool only)

• Task control block

• Trap save area

• MCL word space (for an MCL trap)

• Bound unit description

• Bound unit attributes

• Bound unit

• Overlay areas (if an overlay area table was used).

The firmware-defined fields (instruction, P-counter, I1, Zf
A, R3, and B3) for each trap save area (TSA) are displayed. If
the instruction is a monitor call, the function code is also
displayed.

In addition, a possible context of the remaining data and
address registers (Rl, R2, R4, R5, R6, R7f BIf B2? B4, B§, B6,
and B7) is displayed for each trap save areac This context,
which is extracted from the work space area of the trap save
area, may not be valid in all cases, but in general, is correct
due to internal conventions of the Executive.

DPEDIT Command

The DPEDIT command loads the Dump Edit utility program,,
Immediately after Dump Edit begins executing, a message is issued
to the error-out file giving the unique version number in the
following formats DPEDIT-nnnn-mm/dd/hhmm. The message "DUMP
COMPLETE" is issued to the error-out file immediately before the
execution of Dump Edit terminates. The format for the DPEDIT
command isj

DPEDIT [path] [ctl_arg]

ARGUMENTS s
f

path

Pathname of the memory dump file to be printed. Either
the path argument or the -MEMORY control argument must be
specified.

19-29 CZOS-00

ctl_arg

Control arguments; zero, one/ or more of the following
control arguments may be entered, in any order:

!

-SWAP_FILE swapfile name I
-SF swapfile name I

Identifies the swapfile (if any) associated with the
dumpfile specified by the path argument. The
swapfile name can be a simple name or pathname.

This argument is used only when dumping a file
previously produced by MDUMP. The argument allows
DPEDIT to include in its dump information about task
groups that were swapped out of the swap pool at the
moment recorded by the MDUMP image. If the DPEDIT
command requests information about a task group that
was swapped out and -SWAP_FILE is not specified, an
error results.

(-NO LOGICAL)

No logical dump of system control structures
produced.

Default: Logical dump produced.

-NO_PHYSICAL \
-NP j

No physical dump of memory produced.

Default: Physical dump produced.

-FROM X1address
-FM X1address

ss1)
' I

Low-memory address of area that will appear in physi-
cal dump; must be specified in hexadecimal. The
specified address must be a virtual address if memory
is being processed, and a physical address if a dump
file is being processed.

Default: Absolute 0.

-TO X1address1

High-memory address (up to five hexadecimal digits)
of area that will appear in physical dump? must be
specified in hexadecimal. The specified address must
be a virtual address if memory is being processed,
and a physical address if a dump file is being
processed.

s

19-30 CZ05-00

Default: High memory address of the dump file.

-MEMORY \
-MEM J

Produces a dump of main memory. If both the path
argument and this argument are specified, an error
message appears at the terminal. If the -FROM
(and/or -TO) control argument is used in conjunction
with the -MEMORY control argument? then the address
that is specified must be a virtual address*

Default: A dump is produced of the file specified in
the path argumente

GROUP f group id [group-id] e..
-GP |

Requests the logical dump to contain task
group-related information for the specified group(s)
only.

Default: Task group information for all groups is
included in the logical dump.

-NO_FILES \
-NF J

No tree of file management structures is produced.

Defaults A tree of file management structures is
produced.

-ME

Dump only the group in which DPEDIT is running in the
logical dump. Suppress all system information. This
is equivalent toi DPEDIT -MEM -NO_SYS -HP -GP
my_group-id

-NS

Do not dump the sharable or "globally sharable bound
units in the logical dump,

-NO_SYS

Do not dump the system area in the logical dump.

-PSYS

Limit the physical dump to the system area.

f
i

19-31 CZ05-00

-FORCE

If the error "DUMPFILE IS INCOMPLETE" (defined below)
appears, this argument causes DPEDIT to ignore this
condition and to try to process the file anyway.
Note that since part of the memory image is missing,
it may not be possible to get a logical dump.

NOTE

If no arguments are specified, the default is to
do a logical and physical dump of memory.

Example 1:

DPEDIT ~DMPVOL>DUMPFILE -NL -TO X'30001

This command loads the Dump Edit utility and requests only a
physical dump of the first 12K locations of the specified
dump file.

Example 2:

DPEDIT -MEM

This command loads the Dump Edit utility and requests a
logical and physical dump of current main memory.

Example 3:

DPEDIT -MEM -GROUP $S $D -NP -NF

This command loads the Dump Edit utility and requests a
logical dump of only the System and Debugger groups from
current main storage. The command suppresses display of the
file management structures.

Example 4:

DPEDIT -MEM -GROUP XX -NP -NF

By specifying a group that does not exist (i.e., XX) this
command requests an abbreviated logical dump consisting of
only the System Summary of the currently executing system.

Operating Procedure for Dump Edit

The following steps must be performed before the Dump Edit
program can be executed.

1. Mount the disk volume containing Dump Edit.

2. If Dump Edit is being used to print MDUMP output, mount
the disk volume that contains the memory image obtained
from the MDUMP memory dump.

19-32 CZ05-00

3. Execute Dump Edit by specifying the DPEDIT command
described previously.

DPEDIT processing can be stopped at any time by pressing the
"BREAK" key. A **BREAK** message appears on the user's terminal
display when processing stops. A GCOS 6 command may be specified
at this point. If the Unwind (UW) command is specified, the
end-of-processing details are automatically handled and control
returns to the command processor with a successful subtask
completion status., If the Start (SR) command is specified,
DPEDIT resumes processing.

If DPEDIT appears to be looping, the loop can usually be
broken and DPEDIT can be made to recover by forcing a **BREAK**
and entering the Program Interrupt (PI) command. Note, however,
that it is normal for DPEDIT to run for five or ten minutes while
dumping a large memory or dump file.

DPEDIT Error Messages

Fatal errors terminate DPEDIT processing, return control to
the command processor, and post an unsuccessful subtask comple-
tion status. Fatal errors include logical I/O errors and physi-
cal I/O errors as well as DPEDIT-specifie errors. Fatal error
messages are written to the error-out file. Error messages
specific to DPEDIT are listed below. Additional information on
error messages can be obtained in the Error Messages manual.

Immediately after execution of DPEDIT begins, and immediately
before execution terminates, a message is written to the error-
out file. These messages are explained in the description of the
DPEDIT commando

Informational messages that generally reflect some condition
peculiar to the data within the dump file may be interspersed
with the dump information in the user-out file. These messages
are provided to facilitate analysis of the dump and are listed
below. A brief explanation of each message is provided. "~" in
a message indicates that a parameter is supplied.

-MEM AND PATHNAME NOT ALLOWED ON SAME INVOCATION

Memory and dump file can not both be processed during a single
invocation of DPEDIT.

ARGUMENT NOT RECOGNIZED -•

An invalid argument was given in the DPEDIT command line.

ATTEMPT TO INCREMENT A VIRTUAL ADDRESS BEYOND FFFFF ' -

An internal error has occurred? the memory block dump routine has
incremented beyond the largest virtual address.

19-33 CZ05-00

DPEDIT CONTINUES AFTER A PI OR TRAP. P: * I: * LOAD ADR: *

DPEDIT has trapped or a break, program interrupt has been
executed. The P-register, I-register and load address at the
time of the interruption are displayed and DPEDIT recovers.

DPEDIT MUST EXECUTE IN THIS POOL TO DUMP THIS STRUCTIRE FROM
MEMORY

Because DPEDIT is executing in a different memory pool, it does
not have visibility to the structure. Either execute DPEDIT from
the current pool or take an MDUMP.

DUMPFILE IS INCOMPLETE

Either MDUMP did not complete properly or the dump file was too
small to hold the complete memory image (see the - RCE
argument) . . /-:

DUMPFILE IS INCORRECT FILE TYPE

The dump file must be a non-UFAS relative file.

ILLEGAL NUMBER OF ARGUMENTS

Too many group names follow the -GROUP argument.

LAST VALID DUMP LOCATION REFERENCED: *

Indicates the last valid dump address processed before an invalid
dump address was found.

NEED MOD400 REL2.1 DPEDIT TO PROCESS THIS DUMPFILE

A release 3.0 version of DPEDIT has accessed a release 2.1 (or
earlier) MDUMP file. ,

NULL BUD POINTER IN THE TCB

The pointer to the bound unit description in the task control
block is null*

NULL LINK IN THE "QUEUE

A null link was found in the specified hardware queue.

PHYSICAL ADDRESS IS NOT IN PHYSICAL MEMORY: *

DPEDIT has encountered a physical address that is higher than the
highest physical address of the system being dumped.

REQUIRED ARGUMENT MISSING

The address has not been specified for the -TO or -FROM argument.

19-34 CZ05-00

THERE WERE ERRORS DURING THE EDIT

If the output of DPEDIT was directed to a filer errors that tend
to appear frequently are only written on the file. If the
errors occurred during the dump, this error is issued to the
user's terminal.

THIS ADDRESS DOES NOT PALL WITHIN THE DUMP FILE? *

The specified address is not within the scope of the dump file.

THIS BOUND UNIT WAS PREVIOUSLY DUMPED IN ~ - ,

The bound unit was previously dumped in the specified group or
pool*

THIS SWAP POOL STRUCTURE CANNOT BE DUMPED PROM MEMORY

DPEDIT does not have visibility to the current structure. An
MDUMP is required.

VIRTUAL ADDRESS EXCEEDS PHYSICAL MEMORY? * ? -

The specified virtual address represents a physical address that
exceeds the highest physical address in the system being dumped.

VIRTUAL ADDRESS IS INVALIDS *

The specified virtual address exceeds FFFPFo

VIRTUAL ADDRESS NOT FOUND FOR *. DUMP FILE IS SUGGESTED.

During a physical dump of memory, the specified physical address
could not be translated into a valid virtual address for DPEDIT.
An MDUMP is needed,

VIRTUAL ADDRESS OFFSET EXCEEDS SEGMENT SIZE: *

The specified virtual address exceeds the segment size in the
corresponding segment descriptor.

VIRTUAL ADDRESS REFERENCES INVALID SEGMENT: *

The segment descriptor for this specified virtual address is
invalid*,

INTERPRETING AND USING MEMORY DUMPS

This subsection describes significant locations in memory
e how to interpret the contents of locations on memory
f and how to use memory dumps to perform the following

19-35 CZ05-00

• Finding the location in memory of your code
• Determining where a trap occurred
• Determining the state of execution of your code.

A trap is a special software- or hardware-related condition
that may occur during the execution of a task. Many traps are
caused by an error, but a few, such as the Monitor Call, are
not. The above procedures may have to be, performed if a trap
message is issued. Traps are described in Appendix A.

SIGNIFICANT LOCATIONS ON MEMORY DUMPS

Table 19-2 describes memory locations on the dump that may be
useful to refer to during debugging. It is assumed that you are
familiar with the data structures referenced. Brief definitions
of these data structures are contained in the glossary of the
System Concepts manual. Figure 19-2 illustrates a map of systems
data structures.

Table 19-2. Significant Locations on Memory Dump

Memory Address Meaning

0010/0011

0018/0019

0020-0023

0024-007F

0080-OOFF

Head of queue of available trap save areas
(TSAs).

Pointer to system control block (SCB) . This is
the key to locating all system data structures.

Level activity flags for levels 0 through 63.
Bits ON indicate which levels are ready to exe-
cute; the lowest (numerically) of these levels
is the level currently executing (i.e., the
active level). The level 63 bit always is on.
The clock level bit (4) may be on, and the
debug level bit is on if the dump resulted from
a Multiuser Debugger or a $D DEBUG DP
directive.

Trap vectors. Each trap vector is associated
with a specific trap condition and points to
that trap handler's entry address. The trap
vector for trap number 1 is in location 7E/7F.
The trap vectors for subsequent trap numbers
are in descending, contiguous locations; i.e.,
the trap vector for trap number 2 is in
location 007C/007D.

Pointers to interrupt save areas (ISAs) for
levels 0 through 63, respectively. A null
value means there is no dedicated task (i.e.,
driver) or nondedicated task ready to execute
on the specified level.

19-36 CZ05-00

«0
>*•

«Q

ft
9
hal

T
M.

9
ff
to
JJ Z5n m s

I HI II
• IPa> *>

1

-^

£
X

8s

1

e
_

/
a «.•

1-§-«:

?

i
-

8~

^~

_

__

—

i
8

S-

I
A

e
e

•

S -

S

—

->

>o
1*
m
<
m
r

I™"™" X
X

-H

%

£
S
0

*̂
•*-̂

— "-

£•4

r
i'

*^

• — .

8-

w

£

•»

"X.

__

—

—

*™™=

_

—

^^^

—
I

—
^^

S
S

« kj

S

o
e

o
£
*

is

r~

]^

8.
1 —

^_

\
§-

S

>

i

*s
5

f

>
*

£
e

s

IfiJ

«. . s

n'i—
__

^_^_
q-

1
 E

N
T

R
1£S |

—

L-

i§~

«

S

—

—
^KKE

_

—

_^

^~

s
I" —
«

i

—

_=

__

_

3
\

1

ifi

2

I

!_^5?_«5
E

11
I

I__

a

Locations Relative fro the System Control Block or.,, G^oup Control
Block

SCB+6/7

GCB+0/1

GCB+2/3

GCB+D/E

GCB+B/C

GCB+5/6

LRT-1

Pointer to the group .control
block (GCB) queue.

Pointer to next GCB in linked
list of GCBs.

Task group identification ($S
is the system group; $B is the
batch group). The system will
convert your user
identification to non-ASCII
representation*

Pointer to LFN 0 of logical
file table (LFT).

Pointer to LRN 0 of task
group's logical resource table
(LET)c

Pointer to first task control
block (TCB) of the group.

Number of entries in the LRT.

19-39 CZQ5-00

LRT+0/1

Pointer to LRN O's resource
control table (RCT); the RCTs
for subsequent LRNs are in
contiguous, ascending loca-
tions (LRT+1 points to LRN 1's
RCT). A null entry indicates
that the associated LRN is not
used.

NOTE
/

Within an RCT, location 0 is the channel number of
the resource if it is an input/output device.

RCT-2/-1

Pointer to task control block A
(TCB) for that resource. ^

Locations Relative to the Task Control Block (TCB) Pointer of the ̂
Desired Priority Level

TCB-8

TCB-1C/-1B

TCB-10/-F

TCB-E/-D

Hardware-assigned priority
level of the task.

Pointer to current bound unit
BUD.

Pointer to top of queue of
requests for the task.

Pointer to end of queue of
requests for the task (e.g.,
I/O requests for a driver).

19-40 CZ05-00

TCB-13/-12

TCB-D -15/-14

TCB-A/-9

TCB-C/-B

TCB-2/-1

TCB+0

Pointer to the group control
block (GCB) for the group to
which this task belongs.

Pointer to next TCB in this
group.

s Pointer to last TCB on this
priority level.

(Link to other task control
' blocks (TCBs) of the same or

different task groups assigned
to the same level.

Pointer to the queue of trap
save areas (TSAs) for the
task*, (Trap save areas are
described in detail in Appendix
Ac) If a TSA is present, the
task is executing system code
or a user trap; if no TSA is
present, check the program
counter in the interrupt save
area (ISA) portion of the TCB
t© determine the task's
progress.

Device word, including channel
number and level number. This
entry is null if the task does
not drive a device.

19-41 CZ05-00

TCB+1
»

Hardware interrupt save area.

INTERPRETING THE CONTENTS OF A DPEDIT LOGICAL DUMP

This subsection describes memory dump interpretation when the
DPEOIT logical dump format is used.

Finding the Location in Memory of Your Code

Locate your group-id and the TCB for your bound unit (BU).
The first six characters of the BU filename are printed beside
each TCB of the group in a logical dump.

The address at TCB-1C/- ^ is the address of the bound unit
(BO) description. The load Address of the bound unit is found at
this address +A. Calculate relative zero of the BU by
subtracting the relative start address on its link map from this
address.

Determining the State of Execution of Your Code at the Time of
the Dump

Dump analysis begins with gathering all relevant informa-
tions the dump itself, the console hard-copy (if any) of the
activity of a particular group (or groups)f copies of the
CLHJJSER and >START_UP«,EC files, plus any link maps.

These materials are required to understand the environment of
the system represented in the dump.

Three conditions are discussed below:

1. Halt at level 2.
2. User level active at the time of dump.
3. No level active at the time of dump, except level 63.

HALT AT LEVEL 2

Examination of the level activity indicators at locations
20-23 confirms that level 2 is active. The system will force
this condition to occur if either TSA or 1KB resources are
exhausted (see CLM SYS directive). Note that once level 2
becomes active, other lesser priority levels may activate but
will not receive CPU time.

The Dl register contains an ASCII "IR"- (4952) when IRB
exhaustion has occurred. Location 10/11 is zero when TSA exhaus-
tion has occurredc

If this symptom persists after augmenting the number of TSA/
IRBs available to the system, it is possible that either your
code or the system is improperly altering the TSA/IRB chains.

19-42 CZ05-00

To verify this, take a memory dump immediately after system
startup. This allows easy location of the TSA chains from
location 10/11 and the IRB chains from the first location of the
SCB. Compare this dump to one taken after all TSA/IRBs are
supposedly exhausted to verify that they really are. If the
system is suspect, supply both dumps to Honeywell,, TSAs can also
be exhausted by a recursive trap. A recursive trap uses up all
available TSAs. Adding TSAs simply allows for greater
recursion. In this instance, the system is suspect and dumps
should be supplied to Honeywell.

The optionally configured defective-memory trap handler may
also force a level 2 halt if a defective memory trap indicates
the operating system's trap save area is exhausted. In this
case, $R1 will contain X'DEFA'? $B1, the physical address of the
defective memory; and $B2, the logical address of the defective
memory.

USER LEVEL ACTIVE AT THE TIME OP DUMP

This often indicates a halt or software loop condition on the
active level. When a level is active, the pointer to the TCB
associated with the code running is in the interrupt vector for
that level. Match the TCB pointer with the TCBs listed for the
groups present in the system. When a level is active, use the
P-counter in the ISA portion of the TCB to locate the software
running at the last time this level's context was saved. Since •
the system clock is active on level 4f the P-counter in the ISA
for this level is usually helpful. It is also helpful to record
the contents of R/B registers and EO when entering STEP mode at
the control panel prior to taking the dump.

NO LEVEL ACTIVE AT THE TIME OF DUMP

This condition usually indicates a system failure in that all
tasks have been suspended and none are being reactivated. In
this situation it is helpful to determine the conditions existing
at this time. To do this, examine all TCBs in groups other than
the $S group. If the TCB under examination has not experienced a
default trap condition, it may or may not have an associated
TSA. If a TSA is shown, DPEDIT will display the monitor call
function code if the trapped instruction is 0001 (monitor call
generic).

When the system is called for a monitor function, only those
registers that must be preserved by the system are saved in the
TSA workspace. The saved registers are: B7, B6, B5, Bl, R5, R4,
Ml, beginning at TSA location E/F. The trap save area (TSA) is
illustrated belows

TSAL 1 R3 INSTR Z A P B3 RSU WORK SPACE

words 0/1 5 6/7 8/9 A/B C/D E/F

19-43 CZ05-00

Determining Where a Trap Processed by the System Default Handler
Occurred in Your Cods

If a trap message occurs on the operator terminal from the
system default trap handler, i.e., (id) BUname (0303zz) level,
the TCB of the referenced task group may be located using the
bound unit name (BUname). In this situation, unless the TCB is
subsequently requested, the last two areas associated with the
TCB are related to the system handling of the trap. The first
TSA following the TCB was used by the system to forcibly termi-
nate the task request in progress when the trap occurred. Your
information is found in the next TSA associated with the TCB. It
contains the hardware information described in the previous sec-
tion of this appendix, followed by a complete set of registers
current when the trap occurred. The order of the registers,
beginning at location E/F of the TSA, is: B7, B6, B5, B4, B2,
Bl, I, R7, R6, R5, R4, R2, Rl, Ml (B3, R3, I are already in the
TSA). When the TCB has been rerequested, only this second TSA
remains attached to the TCB.

FINDING THE LOCATION IN MEMORY OF YOUR CODE

The three activities above may be performed from the DPEDIT
physical dump presentation. The examination of TCB contents is
the same once the TCB is located. Use the following procedure to
find the TCBs for your group.

1. Go to location 0018/19; this location contains a pointer
to the system control block (SCB).

2. Go to location SCB+6/7; this location contains a pointer
to the group control block (GCB) queue? GCB+0/1 links to
the next GCB in the queue. Determine the group id at
GCB+2/3 is your group id.

3. Go to location GCB++5/+6 to determine the location
of the task control block (TCB) queue of the task group.

4. Go to location TCB-1C/-1B to determine the location of
your current bound unit descriptor (BUD).

5. Go to location BUD+A/B. This location is the relo-
cation factor of the bound unit; your code should start
at this location.

6. Go to location BUD+8/9; this location points to the
location of the bound unit attribute section (BAS).

7. Go to location BAS+0 to determine the bound unit's root
name; this name should be the same as the bound unit's
file name.

19-44 CZ05-00

8. If you did not find the root name for which you were
lookingr go to location TCB-15/-14; this location points
to the next TCB of the task group. Follow through the
chain of TCBs until you find your task's task control
block.

PRINTING AN INCOMPLETE MEMORY DUMP

By specifying the DPEDIT command with the -FORCE argument, an
incomplete memory dump may be printed. See the DPEDIT command
definition earlier for information on requesting the incomplete
memory dump,

REQUESTING AND PRINTING MLCP DUMPS - .„ ^

The Dump Communications Processor (DCP) utility is a system
maintenance tool that allows you to obtain a computer printout of
the formatted contents of the Multiline Communications Processor
(MLCP). The following MLCP Random Access Memory (RAM) areas are
displayed for each channel connected to the processors

• Line Control Table (LCT). A system structure that
contains control information for the line channels. Each
LCT is 64 bytes longs the first 32 bytes are for the
receive channel? the second 32 bytes are for the transmit
channelc

• Channel Control Blocks (CCBs). Data structures that are
used by the MLCP firmware to control the flow of data
between a main memory program and the MLCP. Each CCB is
eight bytes long.

• Channel Control Programs (CCPs). Microcoded programs that
process data charactersf protocol headersf and framing
characters. CCP functions are data character editing,
communications pac control, parity and cyclic redundancy
checksc and error detection and handling.

The dump of the communications processor is destructive in
that the context of the channel used for communication between
the Central Processing Unit (CPU) and the MLCP is lost until the
system is rebootstrapped. When you are trying to pinpoint a
problem with a particular channel, do not use that channel to
dump the communications processor because the information on the
printout for that channel would only apply to the dump operation
itself«, The dump channel must be in the same MLCP as the
information to be collected.

19-45 CZ05-00

MEMORY POOL CONFIGURATION REQUIREMENT

To view areas of the MLCP RAM using the DCP utility, the
memory pool of the task group in which DCP runs must be
configured as privileged, unprotected, and non-contained at
system startup. To configure the memory pool at system startup,
use the Configuration Load Manager (CLM) MEMPOOL directive: do
not specify the 0 (Unprivileged) and P (Protected) values; do
specify the NC (Non-Contained) value. See the System Building
and Administration manual for the full description of the MEMPOOL
directive.

DCP COMMAND
1 "" - * * * i

Write to the-user out file (the line printer attached to the
system) the formatted contents of the Multiline Communications
Processor.

N

FORMAT: . |

DCP[?SILENT] [ctl_arg]

NOTE

[PSILENT] is an optional entry point that
suppresses the welcome message.

i
ARGUMENTS: ,

I j
-DC [dump_channel]

The optional hexadecimal channel number to be used
, i destructively to dump the communications processor
, to the Central Processing Unit (which then sends the

i ; information to the user-out file). dump_channel must
be in the same MLCP as the information to be collected.

Default: channel 0000
t ^

- NOTE

Channel 0000 is an invalid MLCP dump_channel.
Thus, failure to specify a dump_channel will
result in an unavailable resource trap.

-HMA [hi_mem_addr]

The optional hexadecimal High Memory Address (HMA) at
which the dump of the CCP area terminates.

Default: Dump the entire CCP area.

19-46 CZ05-00

-RHU

Dump all areas designated as Reserved for Hardware Use
(RHU).

Default: Do not dump RHU areas.

DESCRIPTION:

The DCP command writes to the user-out file the formatted
contents of the communications processor associated with
dump_channelc For each channel of the MLCP, the following
are displayed:

• Line Control Table (LCT)

« Channel Control Blocks (CCBs)

« Channel Control Program (CCP) arear up to and including
the specified High Memory Address (HMA)

• Reserved for Hardware Use (RHU) areas, if required.

DCP is self-documenting. Enter

DCP ?

and the DCP command line format is displayed.

can be run as an operator command in the system group or
as a user command in any other group that has execution
privilege.

The information on the printout concerning the channel
selected as the dump_channel applies only to the dump
operation itself.

A hexadecimal number is represented by the appropriate
sequence of hexadecimal digits optionally preceded by an X.

The following error message is specific to DCPs

172C INVALID ARGUMENT nn

SAMPLE DCP PRINTOUT WITH COMMENTARY

Figure 19-3 shows a DCP printout of LCTs, CCBs, and CCPs
contained in MLCP RAM for the indicated channels and byte
addresses. The command that obtained the printout is:

DCP -DC F380

19-47 - CZ05-00

I- XO&ui

« 8 3 8 KQ<KH

JL JL JL JL --*__--,
Kl O O O O O O OO O O O O 99 OO OO OO OO O O 4)O O O O O O O
•« 00 OO OO OO 00 00 OO OO OO OO OO 00 OO OO OO OO
t/1 OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO
•« oo o- o oo oo o o oo oo oo oo o IP oo o *• oo oir oo oo
X
O oo oo oo oo oo oo oo oo oo o o oo oo oo oo oo oo
Al oo oo oo oo o o oo oo oo oo oo oo oo oo oo oo oo
X o o oo oo oo oo oo oo oo
«9 oo oo o o oo oo oo o o oo oo *«o oo oo oo oo oo oo
O oo oo oo oo oo oo oo oo
I OO OO OO OO OO OO OO O O OO OO OO O O O UL. OO OO OO
O OO OO OO OO OO OO OO OO OO OO OO OO Or* OO OO OO
* o o oo oo oo oo oo oo oo

-*1 OO O 3 OO OO 3 O OO 3 O 9 O O ./> O O OO 9 O O O 9 -t OO 3 O _
Qt OO OO OO OO *n <« 00 04 OO

OO OO 39 OO OO OO OO OO O r*l t 4 * O O O O OO 94 OO OO
9 oo oo oo oo oo oo oo oo rg o **j it r\jo oo <v o o — oo oo
& OO OO OO OO OO OO OO OO ./» P*» O «t -* O OO -* O 9 «•* O O OO

OO OO OO 00 OO OO OO OO 00 OO 00 00 « « OO O O OO 4J

OO OO OO OO O O OO OO OO O9 OO O9 OO O 4 OO OO OO 3
OO 09 00 OO 33 OO O O OO 3 <-« M 3 3 -* OO 3 -• OO 33 33 O
O O OO O O OO OO OO OO OO *•* »* OO -c *• OO -* *•• OO OO OO jj
OO OO OO OO OO OO OO 99 f*- J* Jl Jl « U. 3 ,/> O ./* 9 >g\ 99 99 TJ,

a O O 99 O O 99 O9 O O 99 99 O M 99 -* -t 99 »« t 99 9O 93 • H
• O O O O O O OO OO O O O O OO MJ O OO O(O OO O4> O O OO O O t,

(M O O OO OO OO fV UA Klt*J ft O» OO H
ft OO O O O O OO O O OO © O OO O O 9>O 9O OO 99 O O 99 OO £L|
w OO O O OO OO »JO O O OO OO
(0 OO) O O OO OO O O OO OO OO <e-e N» O -« «* f- O < •* f» O OO 99 _
9 O O OO OO OO OO 9O OO OO «•« tf> OO -* l/l 99 -̂ rf> OO 9O OS HI
9» O O 00 99 09 4»9 -O9 49 99 f)

^\ & O O 9 O 9 O 9 O O O O O O O O O 9 I*, >0 **t 9 <G f*l f*̂ C 'Nrf K> '̂ ^ O O O jC
nj OO OO 00 O9 4>*C 7 4 4<4 O = M
— 99 99 O9 O O OO OO OO OO O •'3* -O O O O J^-O OO O7 OO OO
% OO OO 9O OO OC OO OO OO OO K*l «> OO U"' -* OO 94 OO CO fll

OO 99 9O 9O OO OO O9 OO O O ^ -* 99 -*t*« OO rO .̂ •- O OO J*
OO OO O9 OO OO OO O O OO OO OO OO OO OO OO OO O C? 1̂

99 99 O O OO OO OO 99 99 9O 99 99 99 9JO O 9 3 9 *, 9 B
00 OO OO OO OO OO OO OO 9O «MO 9O OO OO OO OO OO fit
9O O O OO OO O O 9O OO 9O O O OO 99 OO O9 99 OO *4O fM
OO O O OO O O OO OO OO OO OO l/t tf> OO O in OO OtSt OO O9 WJ

OO 00 OO OO OO OO OO 00 «< OO £3) OO < -* OO
O3 -3-3 39 93 OO 93 39 33 39 9^ 33 J O O O -J3
OO OO OO OO 99 OO OO

99 99 O9 OO O9 *«9 39 -• O 99 —s O
_ . 9 ̂ OO OO 99 99 OTO •

OO OO OO OO 00 00 K9O 00 Kl O 00 Otk 00 90 00 >
OO OO OO OO OO OO 3TO OO 9O OO Of*. OO OO OO O>
90 OO OO 0< O ̂ Olt.
oo oo o ̂ oo oo oo rf» o oo <V9 o >O or» iB P*

oo oo 99 ^ -o r* <y> a- < _ _
o. o oo oo oo oo oo *t« oo in u. oo r** *o —5 o oo fl)
OO OO 9O OO OO «««« jj **> 9 -* ujft 99 W -• — -*- •* —
oo oo oo oo oo oo oft oo om oo o —
OO OO 00 OO OO OO 00 OO 09 OO OO

OO OO) OO © Q> OO O G* OO OO OBUS OO O}UI OO HSU* OO
(V OO OO OO OO OO OO 00 OO «J « OO O3 « 00 ffiW 00
ft oo oo oo o o oo oo o o oo ruv oo o* ^ oo rv9 oo
« ^o oo oo o o oo oo oo oo -«1*= © vr» ** -« oo —»ry oifd
o
v, e>o 001 oo o> o oo oo oo oo i*> -* o^ K* P*» oo rtrt
o oo oo oo oo oo oo oo oo oo uo oo oo oo
« « 0 0 OO OO OO COO f f iO OO O
V OO OO OO OO O O OO OO OO) CJO OO <J O OO *«O
<r> oo oo oo oo oo oo
O OO 99 O O OO OO OO OO OO 9O I*- O 9O 9O OO OO

oo oo oo oo oo oo oo oo oo oo oo oo 90 oo
AJ O G> OO OO OO OO 99 OO
• OO OO OO OO OO OO OO OO OO trt OO 00 OO Or*.

«« O9 OO OO 9O> -C * OO O -*
oo oo oo oo oo oo oo oo oo -o-a oo oo oo oo

4. OO OO OO 9^O 99 99 99 OO O9 ^ .— 99 99 9O O -*
O O O O9 OO 9O 99 OO OO O O C*i f\6 PO -* *vnj OO «*)F*1 O -̂ "t »*1
Q O9 OO 9O OO 9O OO OO OO U. U. 9O 'X^ OC1 U. U. 3O l̂ , U.

9 9 O O 3 3
4> O 9 O X. C

02

19-48 CZ05-00

o
I

fy««u . t& j43r«»ou»««<>d^ b «« l ' : i a aa«-»QQM. ik t t .p» -®rvo .Qonj rvu<<rv< 'Vf *»o* r« \<8^or*<> i ° rvavu jooooo
O O t & . « a F * » < * « O t ^ > O O O O O
ooi / iontn 'V .oooooo
ff'Udfcy^^tf^lfclAAOOOOO

u - a o « » « « 7 O o o o o
f * % 9 ^ O f ^ f » O « E * < P t f t O v = 3 O F t f » « > T O O * * ' ' l O O & ' l & , O U » t ^ l * . V * 9 « l ' 3 « * c | ^ U a t & . A l 4 j f t 4 O t t , O f V 4 O * Q O 9 O O O O

l / ^ O / V O t f » < ^ < » 9 t A 4 . l 4 O - < O 9 O r ' % r * > O a t O P « , r i . O ' < « l < h , i £ a O ~ a ^ » 3 t & , u ; , u » 3 ^ t t O ' 4 f t - ' « > . n . U ~ * > ' - 3 S O O O ' 3

V CQ »> -» «-» •) U, 43 O O 3 O O

1 °
Ka oo ®
tc «

« s
-! V
UJ (V
2 «
2 »

9>*c«aJ .4^^ .4 iOQ*i .A* '9<"«« '* tAe9 ' ' ^99 ^ •«<^a . t* 3 ? 1 A,^3 '»*^O3 ' /» j^« : = -3 '3 6 -«OJ 1 kfe . J^ < j J - 3 3 ' S ' ^ O O
* *> i r«o«eBP*« 'oor *<*oo<»K«c* f^«vrv (^©o^s^s^oorv f i ^ fVor* .oo fV<-«o fV 'C 'va j©«ooooo

• o o o o o

^ l k U £ l ^ 4 ^ 1 ^ l A t ^ ^ ^ O O Q r b < 3 ^ ^ 9 3 ^ ^ ^ k U t ^ U 4 ^ ^ ^ t 4 ^ e i r i a : ' G ' V i r t U 4 W « ' O O f ' > B . ^ 9 > ' —) O O O O O
«i«3O)p=»A0 'V-o'V^-iUb,fvni. ' \ i-<i«soor*.oor*»»*je6'^*=*oO'«£ rv j* as *j *V ^ A ^ ^ ^ o o ^ i j - ^o^^ooo
^ ^ 4 f c , O ^ ' O « < : 9 9 < - « l a . 9 > 9 > « 4 J 4 f e U ^ (^ 9 ' a J ^ O O t A () ^ « = « f f ' l f c , « s 0 1 ' = « 3 ^ l t , t r » { V « « i t ^ l i O ^ t A A t U l S t O O O O O

r = * « t 4 B r - ' x a S ^ ' V J ' ^ O 3 ^ A , ' 3 o « • 3 F ^ » * * 5 - * ^ ^ - o 3 ® y A j « o,^ s o o o o o
OfnF^O>r^< OO«iO'a i** :,ff'l>=.«^'i««=(3 i <o t / ^ J ^^uOuJO««aa fV^ j «a t & 9 oQO O O O O

O - « 0 u D a v r % « U O « A k (H » O ' V < - * O O < > - « > r ^ f ^ 9 - e ^ 4 A ^ - ^ « a flF -* <E a<^> • A ' V O ^ * o O P t o ' ^ O ^ O O O O 9 O >
— • w o ^ r f ^ f f - o o o o o

» 3 > ^ J ^ - * * ^ J b J b J % ^ - o 3 3 © ^ - * A , V 3 3 A i y - 3 ^ - O C » / » J " J t j J < « 3 * 4 j J - X f l 3 > / ^ - = - 5 ^ _ > ^ 3 » 3 ^
« «) « ' ^ ' i f i t j o K 4 5 y * i f c , - « < f * 5 - " < v r n a * 4 I o o - o * V ' y - * ^ 9 0 < r w o < ^ > » * u ^ o < - * * i j e i = b ' « o w D p n t ^ o o o & o
4A ffi —5 'V "< ̂ ̂ 'V*«'^*^< l f tA9> « <fe <y= t/6 it, i*= ̂ Jj V ** *T6 ̂ U^ >> 3>^ -o3^b , / t 'S< iJ «= ^J1^l jJUB3'3>99^

* ^ u ^ - ^ o o - ^ o ^ - ^ v f e c e ^ ^ c ^ (V ^ ^ K i r w t « ^ ^ f V) T O r t i f V 3 f t d « ^ ^ f f ^ ^ t f e f f i ® f y c a - - « - = 9 « c o o o o o
* ° « l ^ k & . i V « « < ^ O O O O O O
o O P - . O i f e f ^ ^ a i O O O O O O

e W U = « I 3 « » 3 » ^ = O O ^ O O

l O C I f ^ l ^ t / I O O O O O

&>
o

r^*ertf lOOi^«^uc<7sc»i^^f^t^O'^ivo<»r«^(Ooi5^ff : '^p^fvi^o*.«crw<«3 o o > G i i , O i r > ^ o o o o o c >
iA j r *>cs*«<»c fa f«Qoooa

o o o o
0000

1 fV ffl O 0s (ft —5

-p
3
o

0
a
0)

Cfl

•P
d
oo

CO
I

Ms

o o o o o o o o o o o o o o ^ o o o

/

I v(o

•̂ UJ

O - d A O & > * • £» **f*-P*r*- •«. ^* ^> r«» i
3 o = » e ^ * - . o < - » _ * c : r - - - -

50
<Q

19-49 CZ05-00

«t O = > 0 0 0 0 0
«•« oooeooooo o-o o
in o
•« O O O O O O O Q O
V
o o
(*t O O O O O O O O O O O O O O O O O O Q G O O O O O O O O O O O Q O O O O O O O O O O O 9 O O Q O
X O
<o o o o o o Q O O o o o o o o o o o o o o o o o a o o o o o a o o o o o o o Q o o o o o o Q o o o
o
f l O G O O O O O O O G O O G G O O O O O G O O O O
•3 Q 0 0 0 O Q O O O a a O O O O O O O O O a O O O O . 3 . 3 O 9 O 3 0 O O O O O O C i 3 3 0 . 3 9 0 9 0 0

* O O O O O O O O O O O O O O O Q O O O O O G O O O O O O O O O O O O O O O G O O O O O O O G O O 4J
<* 000000 O O O O O O O a O O O Q O I ^ O O O O O O O O O I S O O O O O O S O O O S O O O O O O J F-I
tt

O O O O 9 C » O A - 9 O ' 3 O ^ 9 O O O O O ^ O 3 O O O 9 O O O O O O O ^ O O 3 O O 9 O O O O O - 3 O O O
9 O C T O O O O O O O C T O O O O Jj
S. O O O O O O O O O 0 0 0 0 3 O 3 0 O O O O 0 0 0 3 0 3 O O O O O O O O O 0 0 3 0 ^ O O O C 3 O 3 0 ^= c•H

&̂
04

oaoooooooooooooooooooooooooo oooooooooooooooo

ooooooooooooooooooooooooooooooooo

O O O O O O O O O O O O O O 9 O
oooooooooooooo

oooooooooooooooooooooooooo

%
0)

o o o o o o o o o o o o o o a o < 7 O o o o o o o o o o
O> O 3 O O O O O O O O «S O O O ̂ O y O O O O O O "1* *3 O O t«>
O C O O * i O O O O O C O O O O

O O

oooooooooooooooooooooooooooooo

QOOOOOOO
o
ô

oooooooooooooooooooo^oooooooooooooo^ooooooooeooo
oo
oo a o o o o o o o o o o o o o o o o r-i
eeoo^o^ooooooooooooGooooeo^ooooooooooooooooooooo I
ooooooooooooooo oooooooooooooooo o oooooooooooooooo CT\
O O O O O O O O ' O I—i
o o o o o o o o - o
0090^0000090000000000000000^000000000000^0000000 ..
oooooeooooooo 'ooooooooooooooooooooooooooooooooooo |̂
ooooo>oo>ooo^^oo^ooo^oooooooo^oooooooooooooooooooo ^
O O O O O O O O O O O O O O O O - O rf_

. O > O O O O O O O Q O < 3 O . O O C (O O O O O < 3 i O CJI

> O O O O O O O e » C » O < S « » 0 0) O O O O O O O O < 3 C i O O O O O O O O O O O O O O O O O O O T4

^oooooooooooooo^oooooooooooo^oooooooo m

oooooooooooooooooooooooooooooooooooooo
O O O O O O O O O O O O O O O O 0 1 O O O O O O O O O O O O O O = > 0 0

oo
O O O O O O O O O O O O O O 9 o o o o o o o

ŷ
o o
O O O 9 O O ^ 9 > 9 O O O O d O O C » O O O O O O O O O O O O O O O O O 9 O > O > O 9 9 O O O O 3O 39
O O O O O O O O O O O O O O O O O O O © O O O O O © O O O O O O O O O O O i O O O O O O O 2 39

O ^ O O O O O O O O O O O O O O O O O O 3 O O O 1
o ^ 7 ^ a 9 < u ^ o r \ j 4 - o a > < U i A i o < V 9 A « c < w ^ j o n j ? ^ o v >
« > d » ® « « « 2 « « ^ O 9 l k ^ « / > « 7 > 9 > < ^ « » < a 4 < 4 - « 4 « 4 ^ £ > U L : CI.
oooooooo sooocooooojo-s.oooar'ooo

19-50 CZ05-00

I

Section 20
PATCH UTILITY

The Patch utility is used to apply patches to and remove
patches from object units and bound units. Patches are
identified by patch-ids« The Patch utility can also be used to
list, by patch-id? patches already applied to an object unit or
bound unite The listing is written to the user-out file,
terminal line screen? or printer for a hard copy.

The Patch utility, in modifying object or bound units, will
extend the file space, as necessary. Insufficient file space
will terminate Patch operations? therefore, you should ensure
that sufficient space exists to accommodate the patch(es) on the
medium (disk, etc.K

USING THE PATCH UTILITY

Patch execution is controlled by directives entered to Patch
through the operator's terminal, user terminal, a card reader, or
a sequential file. The Patch utility operates in batch mode or
in interactive mode. Each mode is described separately below,

Batch Mode

In batch mode the user can:

• Modify a bound unit's shared and system attributes by
setting/clearing bits in the bound unit's attribute table

• Assign a patch revision number to a bound unit

20-1 CZ05-00

• Assign an address to an undefined external reference

• Interrogate the current contents of a bound unit

• Apply a patch with or without verifying the existing value
of the location to be patched

• List patches

• Eliminate patches.

Patch processes as they are entered directives that modify a
bound unit's attribute or version number and interrogate the
bound unit. Regardless of the input sequence of other
directives? Patch processes them in the following order;

1. Eliminates patches
2. Defines undefined external references
3. Applies patches
4. Lists patches*

Interactive Mode

By specifying the Patch command with the -IA argument, a
bound unit can be patched in interactive mode. In interactive
mode, Patch directives must be completed before they are applied;
a directive is completed when the Patch utility reads a new
directive. Only the file specified on the Patch command line can
be patched with each invocation of the Patch utility.

Version number processing, manipulation of the shared or
system attributes, and interrogation are always performed as the
directives are keyed-in.

The Patch directives are listed and briefly defined below.
Detailed descriptions for each Patch directive are provided later
in this section.

Directive Directive Name

CLSY Clear system bit

DP Apply patch(es) to data section of bound unit or
to common area of object file

EP Eliminate named patch or all patches ^

GO Process previous patch directive

GNSH Set global share bit off

GSHR ~ Set global and root share bits on

20-2 CZ05-00

Directive
Name Function

HP

LDEF

LN

LP

LS

NS

Q

Apply hexadecimal patch(es) to specified file

Assign an address to an undefined external
location reference

List patches but do not exit from Patch

List patches and exit from Patch if mode is batch

List patches by name only and exit from Patch if
mode is batch

Set share bit off

Process previous patch directives and exit from
Patch

SD -Apply symbolic data patch(es)

SP Apply symbolic patch(es)

SS Set share bit on

STSY Set system bit on

VDEF Assign a value to an undefined external symbol

VN Verify or change revision number of bound unit

WA Interrogate bound unit

* List a comment on the user-out file

LOADING PATCH

To load Patchy enter the PATCH command, as follows:

FORMAT?

PATCH filenra [ctl_arg]

ARGUMENTS:

filenm

Pathname of the object unit file or bound unit file to be
patehede If an object unit is being patched, the last
two characters of the pathname must be .0.

20-3 CZ05-00

ctl_arg

The following control arguments may be entered:

-IA

Operate in interactive mode. Process one directive
at a time? error messages (if any) immediately follow
the applicable directive. If this argument is not
specified. Patch operates in the batch mode.,

»IN path

Pathname of the device through which Patch directives
will be entered; can be the operator terminal,
another terminal, a card reader, or a sequential
file* Error messages are written to the error-out
file. Patch error messages are described in the
System Messages manual.

Default: The task group's current user-in file.

-M6

Bound unit to be processed was created by the MOD 600
Linker.

This argument should not be used when patching an
object file. (The .0 at the end of the filenm on the
command line identifies to Patch that the file is an
object file.)

Default: MOD 400.

>-PROMPT I

If input is from the operator terminal or another
terminal, each time the PATCH utility program is
ready to accept an input line, the typeout P? appears
on the input device.

Defaults No prompt. , j ;

-SI

Suppress the display of the sign-on message (i.e.,
PATCHr followed by the revision number and the date
patch was created).

Default: Patch sign-on message is displayed.

20-4 CZ05-00

!

»SIZE n (
-SI }

Create a patch work area of n 1024-word blocks of
memory.

Default for ns 1.

SUBMITTING PATCH DIRECTIVES

Each Patch directive consists of only a directive name or a
directive name followed by one or more values. Values must be
separated by a delimiter« The delimiter can be a space, a comma,
or a semicolonc However, on an interactive device (ieeof a
terminal), the carriage return replaces the delimiter. Lines may
neither begin nor end with a comma or semicolonc If directives
are entered from a card reader, trailing blanks or column 80
replace the delimiter.

Multiple Patch directives may be specified during one
execution of the Patch utility. To patch another bound unit or
object unit, Patch must be re-executed.

For patching in the interactive mode:

« Patch directives are processed in the sequence in which
they are entered.

• Patch directives can be entered in any order, except that
Quit (Q) must be entered last.

• A patch directive must be complete before it is processed;
it is complete when Patch reads a new directive.

For patching in the batch mode?

• The List Patches Now (LN) directive must be the first
directive^ otherwise, it is processed like an LP
directive.

• Patches are first eliminated, then applied, and finally
listed regardless of the sequence in which the associated
directives are entered.

• The version number directives (VN), the share bit and sys-
tems bit directives (SS, STSY, CLSY, GSHR, GNSH, and NS)
are always processed interactively in the order in which
they are entered*

• The WA directive is processed when it is entered.

20-5 * CZ05-00

If directives are being entered through the operator terminal
or another terminal, press RETURN at the end of each line. Each
time RETURN is pressedr except after quit, the typeout P? is
reissued if the prompt control argument was specified in the com-
mand line.

To enter Patch directives for a different file, you must
reload Patch, specifying a different file in the filenm argument.

PATCHING TECHNIQUES

Techniques used when "Naming the Patch" and "Applying the
Patch" are described in the following paragraphs.

i
Naming the Patch

Each patch has a patch-id by which it is identified. When
applying patches with the DP, HP, SD, or SP directives, you must
specify a patch-id. The patch-id identifies the patch(es) and
specifies whether the patch(es) are to be applied to an object
unit, root, or overlay of a bound unit. To eliminate patches
from an object unit or bound unit, you must specify in the
Eliminate Patch directive the patch-id with which the patch(es)
are associated. See "Data Patch Directive (DP)" for a
description on how to designate patch-ids.

Applying the Patch.

If an object unit is being patched, object records are
created for the specified patches and appended to the end of the
object file, When the object unit is processed by the Linker,
existing values are replaced with the specified patch values.
Locations that contain external references should not be patched;
results are unspecified^

If a bound unit is being patched, each specified patch value
is applied directly to the proper image record in the bound
unit. The previous value, the patch-id, and the patch value are
saved in a Patch history record that is written at the end of the
file area allocated to the bound unit. This record is referred
to each time a List Patch or Eliminate Patch directive is speci-
fied.

NOTE

Use caution when patching executing bound units.
If a program or one of its overlays is loaded
while in the process of being patched, results are
unspecified.

PATCH DIRECTIVES

The Patch directives are described on the following pages in
alphabetic order by directive name.

20-6 CZ05-00

CLEAR SYSTEM BIT

CLEAR SYSTEM BIT

Turn off the system bit in the bound unit's attribute table.
This directive prohibits the patched bound unit from executing in
the system ($S) group. The CLSY directive is not allowed for
object files.

FORMATs

CLSY

NOTE

The system bit was initially set at link time by
the SYS Linker directive.

20-7 CZ05-00

COMMENT

COMMENT

List the accompanying text on the user-out file. The
contents of the Comment directive are not saved.

FORMAT:

* comment-text

20-8 CZ05-00

DATA PATCH

DATA PATCH

Apply (for bound units) one or more hexadecimal patches, by
relative location, to the data section of the bound unit. The
bound unit must have separate code and data sections? and have
been created by the Linker when the -R Linker ECL argument is
specified.

For object files, the DP directive causes patches to be
applied to common areas.

FORMAT:

For Bound and Load Units, Without Verification:

DP patch-id /addr patchval[patchval...][/addr
patchval..c]

For Bound and Load Units, With Verifications

DP patch-id /addr (verval patchval[verval patchval...])
[/addr (verval patchval[verval patchval...])]

For Object Files, Without Verification — Local Common Block:

DP patch-id /offsetl patchval[/offsetl patchval]...

For Object Files, With Verification — Local Common Block:

DP patch-id /offsetl (verval patchval)[/offsetl
(verval patchval)]...

For Object Files, Without Verification — Named Common
Block — One Blockname Per Directive:

i

DP patch-id blockname /offset patchvalf patchval..,,]/
offset patchval [patchval]

For Object Files, With Verification —• Named Common Block —•
One Blockname Per Directives

DP patch-id blockname /offset (verval patchval[verval
patchval]...)[/offset (verval patchval[verval
patchval])]

20-9 CZ05-00

DATA PATCH

ARGUMENTS:

patch-id

Patch-id of the patch(es) to be applied. A patch-id com-
prises eight to ten characters: the first six characters
can be any ASCII characters except spaces; the last two
to four characters must identify the root or overlay to
which the patch(es) are being applied. If an object unit
or the root of a bound unit is being patched, the
patch-id is eight characters, the last two of which must
be RT. If an overlay is being patched, the last two to
four characters identify the hexadecimal overlay number;
the first overlay is 00 for bound units created by the ™
Linker, and subsequent overlays are numbered consecu-
tively in ascending order. There may be no embedded /̂
blanks. Within the root and each overlay, patch-ids must
be unique.

/addr

Relative location at which the first (or only) subsequent
patch value will be applied. Each address must comprise
one to six right-justifiedf hexadecimal characters, and
must be preceded by the slash character (/). Subsequent
patch valuesf if any, are applied to succeeding memory
locations.

NOTE
v,

Care must be taken in specifying an address to be
patched. If the address of a location to be
patched is identified when a bound unit is being
executed, that memory address contains three pos-
sible factors?

1. The original address of the location in the
bound unit relative to the beginning of the
bound unite

2. The linking relocation factor.
v <

3. The loader relocation factor. *

If the address is identified at execution time and
the bound unit is to be patched, the loader relo-
cation factor must be subtracted from the address

20-10 CZ05-00

DATA PATCH

identified in the executing bound unit. If the
object unit is to be patched, both the linking and
loader relocation factors must be subtracted.
Object unit locations can also be obtained through
examination of the listing produced during assem-
bly of the object member.

offsetl

Non-negative offset from the beginning of $LCOMW.

patchval

A value of one to six hexadecimal characters to
insert into $LCOMW«, Relocatable values are not
permitted and only one patch value can be
specified for each patch.

blockname

Symbolic name of the common block. The name can
contain one to six characters.

offset

Offset from the symbol name of the common block,

/patchval

Value to be inserted at an address, replacing the
contents of that location. The value must be
specified as one of the followings

1. Data, represented by one to four hexadecimal
characters*

2. Relocatable address? represented by one to six
hexadecimal characters, preceded by the
character <.

verval

Verification value? one to six hexadecimal
characters specifying value that should be in
location before patch is applied*

20-11 CZ05-00

DATA PATCH

NOTES

1. Each vecval must be immediately followed by a
patchval. . . r

2. The verification value(s) and patch value(s)
associated with each address must be enclosed
within parentheses.

3. For consecutive locations, the old and new
values can be included within one set of
parentheses., The /addr field is adjusted
internally by Patch.

4. Within a set of parentheses, the number of
old values must equal the number of new
values.

5. The IMA indicator cannot be used with an old
value. IMA status is determined by Patch
from the module or from the new value.

6. For SLIC or LAF IMAs, old value and new value-
can be up to six characters.

7. For SLIC or LAF IMAs, Patch allocates two
words. For example, assume that the
following directive applies to a SLIC module:

DP patch-id,/100,(1111,<12345,ABC,DEF)

If the contents of 100 and 101 are 001111,
and the contents of 102 are ABC, the patch
will be applied, and as a result the contents
of the specified addresses will be:

Address Contents

100 01
101 2345
102 DEF

8. Verified and nonverified patches can be
included within one patch directive? however,
if the verify fails, none of the addresses in
the directive are patched.

20-12 CZ05-00

DATA PATCH

9. A left parenthesis cannot immediately follow
a right parenthesis. There must be a /addr
field between themc

10. In a bound unit, an IMA may be patched to a
non-IMA or a non-IMA patched to an IMA«

lie In object modules, patches to areas that have
no defined value cannot be verified. ,

12. In a bound unit, if the new value is not an
IMAr the old value can be no more than four
hexadecimal characters even if the old value
is an IMA.

13. SLIC means SAP/LAP independent code* MOD 400
bound units are usually LAF, but SLIC bound
units may still be patched and executed.,

20-13 CZ05-00

ELIMINATE PATCH

ELIMINATE PATCH

Eliminate all patches associated with a specified patch-id
from the designated object unit or bound unit. The patch(es)
must have been previously applied by DP, HP, SD, or SP
directives. To determine what patches have been applied, and
their patch-ids, enter one of the list patch (LN, LP, LS)
directives described later in this section.

\

FORMAT:

EP patchid
ALL

ARGUMENTS:

patchid

Patch-id of the patch(es) to be removed. A patch-id
comprises eight to ten characters: the first six
characters can be any ASCII characters except; spaces; the
last two to 'four characters must identify the root or
overlay to which the patch(es) are being applied. If an
object unit or the root of a bound unit is being patched,
the patch-id is eight characters, the last two of which
must be RTe If an overlay is being patched, the last two
to four characters identify the hexadecimal overlay
number, the first overlay is 00 for bound units created
by the Linker, and subsequent overlays are numbered
consecutively in ascending order. There may be no
embedded blanks. Within the root and each overlay,
patch-ids must be unique.

ALL

If the ALL option is used, all patches in the file are
eliminated.

20-14 CZ05-00

GO

Tell Patch that the previous directive is complete and is to
be processed. This directive is effective only in the inter-
active mode. In the interactive mode, a new Patch directive
signals the end of the previous one. The GO directive is used in
circumstances in which the user would like to have a directive
processed before entering any other directive.

FORMAT:

GO

20-15 CZ05-00

HEXADECIMAL PATCH

HEXADECIMAL PATCH

Apply one or more individual patches, by relative location,
to an object unit or bound unit.

' t '
If a bound unit is being patched, you can designate that

specified patch(es) be applied only if specified location(s) cur-
rently contain specified value(s); these are called verification
values. Within a single HP directive, verification values may be
specified for some or all of the locations. If any of the veri-
fication values do not match the values currently at the loca-
tions for which verification values were specified, non<=> of the
patches specified in the HP directive are applied.

FORMAT:

Without Verification Values:

HP patch-id,[base,]/addr,patchval[,patchval...patchval]
[,/addr,patchval[,patchval...patchval]]...

With Verification Values:

HP patch-id,[base,]/addr,(verval,patchval[,verval,
patchval])[,/addr,(verval,patchval[verval,
patchval])]

NOTES

1. One or more lines of arguments may be speci-
fied. When two or more lines of arguments are
entered for an HP directive, the last charac-
ter on each line must be a valid hexadecimal
character or right parenthesis. Individual
fields, values, and addresses must not be
split between lines. The entry of a Patch
directive name (e.g., EP, LP) at the beginning
of a line designates the end of the previous
Patch directive.

2. A space may be used in lieu of a comma as a
separator.

20-16 CZ05-00

HEXADECIMAL PATCH

/

ARGUMENTS:

patchid

Patch-id of the patch(es) to be applied. A patch-id com-
prises eight to ten characters: the first six characters
can be any ASCII characters except spaces; the last two
to four characters must identify the root or overlay to
which the patch(es) are being applied. If an object unit
or the rQQt of a bound unit is being patched, the
patch-id is eight characters, the last two of which must
be RT. If an overlay is being patched, the last two to
four characters identify the hexadecimal overlay number;
the first overlay is 00 for bound units created by the
Linker, and subsequent overlays are numbered consecu-
tively in ascending order. There may be no embedded
blanks. Within the root and each overlay, patch-ids must
be unique.

base

Optional argument allowed only for bound units. Base
defines a value that is added tp all locations; i.e.,
/addr specified in the associated DP, HP, SD, or SP
directives and all IMA references. If this argument is
omitted, the default value is zero. Base can be entered
as a hexadecimal address of one to six characters or as a
name that has been specified as an EDEF at link time and
placed in the bound unit symbol table. If a symbol name
is used, Patch finds the name in the symbol table and
uses its address as the base value. The format for the
symbol name as a base is +symname, where symname com-
prises 1 to 12 characters. If a hexadecimal address is
used for base, the plus sign is not required.

/addr

Relative location at which the first (or only) subsequent
patch value will be applied. Each address must comprise
one to six right-justified, hexadecimal characters, and
must be preceded by the character /. Subsequent patch
values, if any, are applied to succeeding memory
locations.

20-17 CZ05-00

HEXADECIMAL PATCH

NOTE

Care must be taken in specifying an address to be
patched in either an object unit or a bound unit.
If the address of a location to be patched is
identified when a bound unit is being executed,
that memory address contains three possible
factors:

, 1. The original address of the location in the
object unit relative to the beginning of the
object unit

2. The linking relocation factor

3. The loader relocation factor.

If the address is identified at execution time and
the bound unit is to be patched, the loader
relocation factor must be subtracted from the
address identified in the executing bound unit.
If the object unit is to be patched, both the
linking and loader relocation factors must be
subtracted. Object unit locations can also be
obtained through examination of the listing
produced during assembly of the object unit.

patchval

The value to be inserted at an address, replacing the
contents of that location. The value must be specified

1 as one of the following:

1. Data, represented by one to six hexadecimal
characters

2. Relocatable address, represented by one to six
hexadecimal characters, preceded by the character

verval

Verification value; one to four hexadecimal characters
specifying value that currently should be in location at
which subsequent patch will be applied. See the notes on
verification that follow the DP directive.

20-18 CZ05-00

HEXADECIMAL PATCH

Example 1:

HP PTCHIDRTf/lB2AflFFFflDFC,<2BFC,2D4Er<ABF2

This Hexadecimal Patch (HP) directive requests that the sub-
sequent patches/ identified by the name PTCHIDRT, be applied
to the root. Patch values 1FFF18 through <ABF2W are to be
inserted in successive locationsr with the first patch value
iFFFio to be located at address !B2Ate . The hexadecimal
patches are to replace any previous values in these
locations. The value to be inserted in address 1B2C« is the
two word addresss 2BFCte t which is to be relocated at load
timer the relocatable address ABF2W is to be inserted in
address 1B2F16 .

Example 2:

HP VPATCH01,/lFEAf(1A1f1B7,1A7,1B8)r/lE72,8900

This example illustrates the use of verification values in a
Hexadecimal Patch (HP) directive requesting that specified
patches, identified by the name VPATCH01, be applied to over-
lay 01. Patch will check location 1FEAW for the value
lAlj§ f and location 1FEB for the value 1A7^ ; if the values
are at those locationst then the contents of locations are
changed as follows? location IFEAif will contain lB7tf .
location IFEBte will contain lB8te t and location 1E72« will
contain 8900̂ . If either of the verification values is
incorrect, none of the three locations will be changed.

20-19 CZ05-00

INTERROGATE BOUND UNIT

INTERROGATE BOUND UNIT

Display on the user-out file the current contents of
locations specified by this directive. This directive cannot be
used to display locations in object files.

FORMAT: .,;

WA,[ovly/J/addrj [,words][,/addr2«••]
i

ARGUMENTS: *

ovly

Overlay number in hex that the address references. If
this field is omitted, the root is the default. The root
can also be specified as RT. For -R type bound units,
this field can be DP for data section or RT for code
section as well as being an overlay number.

addr

Specify the hex address within specified root or overlay
indicating where the display is to start.

words

Number of consecutive words to display. The default is 1.

20-20 CZ05-00

LDEF

LCfiE
" f . *

Assign a specified address to an undefined external location
reference and change all locations that reference this name.
This directive is not allowed for object files.

FORMAT:

LDEF;symname;[<]addr[;L]

ARGUMENTS:

symname - ;

Name of the undefined external reference that will be
assigned an address; can be from 1 to 12 characters in
length.

addr

Address to which symname will be assigned.

Address specified is an IMA address. If this argument is
not; specified/ the address is treated as P-fDSP.

C;L]

List all changed external references to symname on the
device specified as user-out.

Defaults No list.

Undefined external references in a bound unit can only be changed
one time. If you make a mistake, you must use HP patch
directives to correct each location containing the wrong
information.

NOTE

The user should be aware that there is no history
kept of .the changes that are made when the LDEF
directive is used. It is wise, therefore, to
utilize the L argument and retain the listing for
future reference.

20-21 CZ05-00

LDEF

Example 1:

LDEF;EPPTR;50;L -

This directive assigns address 50 to symbol EPPTR and lists
all locations that are changed to reference the address 50.

Example 2: : _ : - \ *•.--.:.

LDEF;PK;<50,*L - -

This directive assigns a'ddress 50 to symbol PK and changes
all IMA references to external symbol PK to address 50.

20-22 . CZ05-00

LIST PATCHES

LIST PATCHES
(

Produce a listing of all patches within the object unit or
bound unit being patched. The listing is produced on the
user-out file.

If a bound unit is being patched/ the listing designates, for
each patch, the following information in the order listed: full
patch-id, address at which the patch was applied, contents of the
location before the patch was applied, and the patch value.

NOTES

1. In the listing, the characters that identify
the root or overlay appear fJxat, and are
separated from the other character constitut-
ing the id by spaces. When a bound unit is
being patched in a common area, the letters CM
are printed rather than RT.

2. If termination of the listing of patches is
desired before normal completion of the list
process, use the BREAK facility followed by a
NEW_PROC command. The PATCH program must then
be reloaded.

FORMAT:
•

LP

Example:

0001 NOHLT3 000002E2 00000000 OOOOOF02

This printout is one line of a listing of patches applied to
a bound unit being patched. The printout has the following
meanings a patch identified by the patch-id NOHLT3 was applied
to overlay 01. The patch was applied to location 02E2; this
location previously contained 0000, and now contains OF02«

If an object unit is being patched, the listing designates,
for each patch, the following information in the order listed:
patch-id (excluding the last two characters, which identify the
root), address at which the patch was applied, and the patch
value.

20-23 CZ05-00

LIST PATCHES

Example:

NUMBRF 00000162
00000163

NUMBRH 000001A6
000001A7

00000444
00000222
00000333
00000444

000001A8 <00000221
000001AA 00000004
000001AC <00000321

This typeout is a listing of patches applied to an object
unit being patched. The first line designates that patch 0444,
whose patch-id is NUMBRFr was applied to location 0162. Note
that the last two characters of the patch-id (i.e., RT) were
omitted from the printout.

20-24 C205-00

LIST PATCHES NOW

LIST PATCHES NOW

List all patches in the specified file and then allow more
patches to be applied. This directive is effective only in batch
mode and can be applied only to bound unit files. It must be the
first directive issued. If it is not the first directive, or if
it is entered in interactive mode, it is processed the same as an
LP directive. The LN directive allows the current patches to be
listed and additional patches to be applied without reloading
Patch.

FORMAT:

LN

Example:

0000 CONRCT OOOOOOA8 0005A4D 0005A4E

This printout is one line of a listing of patches applied to
a bound unit being patched. The printout has the following
meaning: a patch identified by the patch-id CONRCT was
applied to overlay 00. The patch was applied to location
OOOOOOA8; this location previously contained 0005A4D, and now
contains 0005A4E.

20-25 CZ05-00

LIST PATCH NAMES

LIST PATCH NAMES * '

List the names (patch_ids) of the patches in the specified
file. Addresses and values are not listed.

FORMAT:
i
LS - ,

Example:

0000 CONRCT

The printout is one line of a listing of patches applied to a
bound unit being patched. The printout has the following
meaning: The patch identified by patch-id CONRCT was applied
to overlay 00.

20-26 CZ05-00

LIST SPECIFIED PATCH

LIST SPECIFIED PATCH

List those patch ids specified. Up to five patch ids can be
requested per run.

FORMAT:

LS patchid [;PATCH_id...]

Example:

LS NUMBRART; NUMBRBOO

In this example/ the directive will cause the entire patch
NUMBRART and the entire patch NUMBRBOO to be listed.

20-27 CZ05-00

QUIT

QUIT

Inform Patch that the last Patch directive has been entered,
and initiate processing of the specified Patch directives. This
directive should be preceded by at least one other Patch
directive. When the directive(s) have been executed, execution
of Patch terminates.

FORMAT:

Q

20-28 CZ05-00

SET GLOBAL SHARE BIT OFF

SET GLOBAL SHARE BIT OFF

Turn off the global share bit in the MOD 400 bound unit. The
share bit of the root is not affected by this directive. This
directive cannot be used in MOD 600 systems nor object unit
files.

FORMAT?

GNSH

20-29 CZ05-00

SET GLOBAL SHARE BIT ON

SET GLOBAL SHARE BIT ON

Set the global share bit of the root on in the bound unit.
This directive cannot be used for MOD 600 bound unit or object
files.

FORMAT:

GSHR

20-30 CZ05-00

SET SHARE BIT OFF

SET SHARE BIT OFF

Turn off the share bit of the root segment of a bound unit.
Patch alters the status of the share bit only; it makes no check
on the sharability of the module. This directive is not allowed
for object files.

FORMAT:

NS

NOTE

This is the bit that is set on by the Linker
directive SHARE.

20-31 CZ05-00

SET SHARE BIT ON

SET SHARE BIT ON ' ~ "'

Turn on the share bit of the root segment of a bound unit.
Patch alters the status of the share bit only; it makes no check
on the sharability of the module. This directive is not allowed
for object files.

FORMAT:

SS

NOTE

This bit designates that the bound unit is
sharable within a memory pool.

20-32 CZ05-00

SET SYSTEM BIT ON

SET SYSTEM BIT ON

Turn on the system bit in the bound unit's attribute table.
This directive must be employed if the patched bound unit is to
execute in the system ($S) group. The STSY directive is not
allowed for object files.

FORMAT: , ' '

STSY

NOTE

Before using this directive/ consult with the
person responsible for system building and
determine the available memory. This Patch
directive is equivalent to the Linker SYS
directive.

20-33 , CZ05-00

SYMBOLIC DATA PATCH

SYMBOLIC DATA PATCH

Apply patches for object and bound units created by the
Linker. For bound units, the directive causes patches to be
applied to the data portion of separated object units. For
object units, the directive causes one or more Assembly language
one-word symbolic instructions to be applied to common
areas, i.e., to either named or local common blocks. You can
verify the current contents of locations while patching.

FORMAT: '

For Bound Units — No Verification: ^

SD patch-id/offt patchvali [/off2 patchva!2•••]
>̂

For Bound Units — With Verification: -

SD patch-id/off-j (oldvaL, ;newva!1) [/of f 2 (oldva!2;
newva!2)...]

For Object Units — Named Common Block — No Verification:

SD patch-id;blockname;/offs;patchvali [patchval2 ...
patchvaln]

For Object Units — Named Common Block — With Verification:

SD patch-id;blockname;/offs?(oldval ;newval)[(oldval
;newval)]

For Object Units —• Local Common Block — No Verification:

SD patch-id;/offs;patchval

For Object Units — Local Common Block — With Verification: "~̂

SD patch-id;/offs;(oldval;newval)

NOTE

You can mix verification and nonverification
patches. For example: SD NUMBRART;/135;(111;CMV
$R7,8;2;STR $R6,=$R1);/150;ADD $R4,1000. Only the
patches at locations 135 and 136 are verified.

20-34 CZ05-00

SYMBOLIC DATA PATCH

ARGUMENTS:

patchid

Patch-id of the patch(es) to be applied. A patch-id com-
prises eight to ten characters: the first six characters
can be any ASCII characters except spaces; the last two
to four characters must identify the root or overlay to
which the patch(es) are being applied. If an object unit
or the rooiL of a bound unit is being patched, the
patch-id is eight characters, the last two of which must
be RT. If an overlay is being patched, the last two to
four characters identify the hexadecimal overlay number;
the first overlay is 00 for bound units created by the
Linker, and subsequent overlays are numbered consecu-
tively in ascending order. There may be no embedded
blanks. Within the root and each overlay, patch-ids must
be unique.

offn

Non-negative offset from the beginning of the block,

oldval

Current contents of specified location. If the current
contents are not oldvaln, all patches associated with
patchid are not applied.

patchval (object units — local common block)

Value to be inserted into the block. Relocatable values
ae not permitted,, and only one patch value can be
specified for each patch address.

patchval (object units —= named common block)

Value to be inserted at an address, replacing the
contents of that location. The value must be specified
as

opcode field., [,field2] [,field3]

where opcode specifies an Assembly language instruction
(except for I/O or floating point instructions); fieldn
specifies either a register or a hexadecimal value.

20-35 . CZ05-00

-. • r •
SYMBOLIC DATA PATCH

blockname • .,

Symbolic name of the common block. The name can contain
one through six characters.

offs " ' \X . ; ""' '•'"' ' : ' :;

i Offset from the symbolic name of the common block,

patchval (bound units)

,1 "alue to be inserted at an address, replacing the
; .-ontents of that location. The value must be specified
;. as a symbolic instruction.

newval
i

Specify the patch value to be applied. See the appro-
priate description of patchval, above.

20-36 CZ05-00

SYMBOLIC PATCH

SYMBOLIC PATCH
i

Convert and apply one or more Assembly language symbolic
instructions into the form of a hexadecimal patch. You can
verify the current contents of the location while patching.

FORMAT:

Without Verification:

SP patch-id [,-base] ;/addrj ;instruction!
[; instruction2 • •. instruction,,]
[/addr2 ; instruction/[instruction2. • .instruction,,]]

With Verification:

' SP patch-id [;base] ;/addr; (oldvalj ,-instructioni
[;oldva!2;instruction2...;oldvaln ̂ instruction,,])

NOTES

1. One or more lines of arguments may be speci-
fied. When two or more lines of arguments are
entered in an SP directive, instructions and

1 verification values must not be split between
' lines. No line may begin with a semicolon

(;). Individual fields, values, and addresses
must not be split between lines. The entry of
a patch directive name (e.g., EP, LP) at the
beginning of a line designates the end of the
previous patch directive. Hexadecimal patches
are not permitted.

2. You can use a carriage return instead of a
semicolon as a separator.

3. You can mix verification and nonverification
patches. For example:

SP NUMBRDRT;/135;(111;LDV $R1,1;2;CL =
$R2);/150;STB $82,400

Only the patches at locations 135 and 136 are
verified.

20-37 CZ05-00

SYMBOLIC PATCH

ARGUMENTS:

patch-id

Patch-id of the patch(es) to be applied. A patch-id com-
prises eight to ten characters: The first six characters
can be any ASCII characters except spaces. The last two
to four characters must identify the root or overlay to
which the patch(es) are being applied. If an object unit
or the root of a bound unit is being patched, the
patch-id is eight characters, the last two of which must
be RT. If an overlay is being patched, the last two to
four characters identify the hexadecimal overlay number.
The first overlay is 00 for bound units created by the
Linker, and subsequent overlays are numbered consecu-
tively in ascending order. There may be no embedded
blanks. Within the root and each overlay, patch-ids must
be unique.

base

Optional argument allowed only for bound units. Base
defines a value that is added to all locations; i.e.,
/addr specified in the associated DP, HP, SD, or SP
directives and all IMA references. If this argument is
omitted, the default value is zero. Base can be entered
as a hexadecimal address of one to six characters or as a
name that has been specified as an EDEF at link time and
placed in the bound unit symbol- table. If a symbol name
is used, Patch finds the name in the symbol table and
uses its address as the base value. The format for the
symbol name as a base is +symname, where symname com-
prises 1 to 12 characters. If a hexadecimal address is
used for base, the plus sign is not required.

For bound units created by the MOD 400 Linker the values
specified for the /addr fields and IMA references (if
any) must include the displacement of the root or
overlay. The displacement is equal to the base address
of the root or overlay as printed on the link map. The
user may add the displacement to each /addr field and
IMA, or achieve the same result by specifying the base
parameter in the Patch directive. For example, if the
first overlay of a bound unit is based at 1000 and a
patch to locations 100 to 103 and 200 to 204 is to be
made within the overlay, the following two patch
directives are equivalent when applied to a LAF bound
unit.

20-38 CZ05-00

SYMBOLIC PATCH

SP NUMBRAOO;/1100/LDR $R1, 1500;STR $R,=$R2

/1200/ADD $R1, 1600;JMP 1156

SP NUMBRAOO;1000;/100;LDR $R1,500;STR $R1,$R2

/200,-ADD $R1,600;JMP 156

/addr

Relative location at which the first (or only) subsequent
patch value will be applied. Each address must comprise
one through six right-justified hexadecimal characters,
and must be preceded by the character "/" Subsequent
patch values, if any, are applied to succeeding memory
locations.

NOTE

Object unit locations can be obtained by examining
the listing produced during assembly of the object
unit.

instructionn

Value to be inserted at an address, replacing the
contents of that location. The value must be specified
as:

opcode fieldt [,field2] [,field3]

where opcode specifies an Assembly language instruction
(except for I/O or floating point instructions)? field
specifies either a register or a hexadecimal value.

oldval

Specify the current contents of the specified loca-
tion. If the current contents are not oldval , all
patches associated with patchid will not be applied.

NOTE

When using verification patches, specify oldvaln
in hexadecimal notation, not as an Assembly lan-
guage instruction.

20-39 CZ05-00

VDEF

VDEF

Assign a specified value to an undefined external symbol and
change all locations that reference this symbol to the specified
value.

FORMAT:

VDEF;symname;value [;L]

ARGUMENTS:

symname

Name of the external reference that will be assigned a
value; can be from 1 to 12 characters in length.

value

Value that is assigned to all references to symname.

List all changed references to symname on the device
specified as user-out.

Default: No list.

Example:

. VDEF;VALZZ;50;L

Assign the value 50 to the undefined external symbol VALZZ
and change all locations that referenced VALZZ to 50.

NOTE

Undefined external references in a bound unit can be
defined by a VDEF patch directive only one time. If
you make a mistake? you must use HP or DP directives
to change each location containing the incorrectly
defined value. No listing of the VDEF patch
processing is kept; thereforer the L argument should
be used.

VDEF is used for changing undefined value
definitions. LDEF is used for changing undefined
location definitions.

20-40 CZ05-00

VERIFY/SET PATCH REVISION NUMBER

VERIFY/SET PATCH REVISION NUMBER

Allow a revision number to be assigned to a bound
unit patch. The revision number may be assigned
unconditionally? or on condition that a specified number
agrees with the revision number currently in the unit.
The patch revision number is stored in the unit as an
external value definition with the name ZPTREV.

FORMAT:

VN (str, , str2)

ARGUMENTS:

strt

Character string from one through four
hexadecimal digits that is compared with the
current patch revision number. If the string
does not match the current revision number/- no
change is made, and Patch terminates.

str2

Character string from one through four
hexadecimal digits to which the patch revision
number may be set. If stri is omitted or if
matches the current revision number, the patch
revision number is set to the value of str2. If
str^ is omitted and ZPTREV does not exist in the
bound or load unit, an external value definition
is created with a value of str2. If 3trj is
specified, str^ and str2 must be enclosed by
parentheses.

NOTE
i

This directive should not be used when patching an
object file.

20-41 CZ05-00

Appendix A
TRAP HANDLING

A trap is a special software or hardware related condition
that may occur during execution of a task. Traps include such
conditions as a program error, memory defect, arithmetic over-
flow, or the issuance of an instruction that calls for
hardware/software not configured into the system. Table A-l
lists the traps to which the system's hardware/firmware responds.

The design of any application program should provide that
when a trap occurs, the hardware/software response will include
calling a dedicated software routine (a trap handler) to react to
the trap. When trap handlers are provided, the task that caused
the trap may now handle the trap in a systematic and orderly way.

TRAP SAVE AREAS

Trap handling routines make use of trap save areas (TSAs). A
trap save area is a 104-word data structure that contains the
following:

• The contents of several registers. These registers are
available for use by the trap handling routine because
their contents can be restored upon the routine's
completion.

• The instruction associated with the trap.

• The address contained in the program counter when the trap
occurred. This is the address to which a return is made
when the trap handler routine terminates.

• Two words of additional information related to the trap.

• Trap handler work space.

The number of TSAs built by the system is determined by the
value that the user gives the TSA argument of the SYS directive
when configuring the system (see the System Building and
Administration manual).

A-l CZ05-00

<u

1

1

1

?1.. u 8

S1 £•

I l»
•3 an

I

I

§

si

v. a '8 s ;

i»

JJ V4 >
CO -M i
u <a

S S 5p01?
3 g "
S-3*1

S S 2
o ^ y

5S S > ,•r* a> w
V Q!§l
•u to
CO 0) O
G S**

Q<4»
U X U
r* « C

qj ^

yi'a.s—>« 8

S3

S
§ ft

II
a

•M -W

i i

"8

1*4 £ Q«
& cn<u

3

I
S3-

—« C fl
0, -• C

U U)
JJ M

u »

^018"s:
3

51 §
'$
M

S
l«
a oSii

;!l

i S

^3o S w S
s!l|3

<** m M jj
aJ^s §

•s

5
-U

ss- .s»

« u> ;
4 C I

0 -3 i

0> I O
JJ O ••*
(0 3 (0 i

JJ O 0) '
dj m i
O» C » (

M O M «

3^2 <
JJ T3 i
? n>

"o 8 '
x S <j 01 3 i

o jz.

I
*

41 I O
ij y -^
u 3 a

X U O
iJ O 08 U
d; ui k4
9> e « at
M O U (MS-iijj «>3«|M

. -* g» M o
• 3 •-)
) T3 JJ

U 01 «w
u •** C
41 w Osis

) a» ja
> JJ O
) rtj 4> JJ

*̂ 5? «y •**5 8-1 a

C-H >IU

W1M O O

"H fM fl

9~*A

•»'

Si
•̂ 4 Ws « s
< 5 S

0 4J 5
.fa* ol $
W--4 Q
01 8
JJ Oc~< -u-JIM gp «* .cA ** jj

£

•8

i
k4 H0,4,

S «j«
•** w
4J O»

•*4 U3a si

A-2 CZ05-00

81

S

.§ i
J-» U§ I
r-t -3

S
w
4J

a
s &

4J U
01 Wu m
'£ S

i** *J

= 7
jj u 4i
co jj tn

^ ,
s cu

13 O «S
td •«-« u

S jj -tJ
y

JJ w 0)
V) 4J W
w ui 3
2.S3

T . S *
W9 —•) kl
O -U AJ
S 0_

"8 H "8

t!2
*4 C Q4

bl <7> <1>

3*
-•H 4J Ul

<b S w

is
S"85
-* -U (fl
•" n Mu u v
>M c c^

** « to
kl ** 2

<M S fta 4/ X
CT IV

4) >a O
> V •-«

•s e a
3S-S

I

£ 3-
§ S

•W U|II

I a
"S3 "Sa

CD 4J W (0 4J
u (Q 3 w U)

£ 5 O £ -S

•O S O

,i
. g »
i -«H U
i 4J 4J

: 3 - o

ss-

i!

S O) 01
.xS'S,
501*
3 Cu 3 10

• a?ss

2 wi qj as C w a>
-^ O C -^ •-< O C >i

S
- u i o » s r o j i c n g

S O a t a e w S, to c 5
J J U O Q JJ Ls O S

tO O Q i M Q O O O *4 CO O

8 4J \ OS -W "-v W -W
JJ « <U jJ V «>y (U 3 m u 4t 3 5 w <uQ*y a 3 o,u a 3 au

a |
U) rtj JJ

5^-
U £ J! -01ta * S1"!!!*j AJ ̂ ITJ
S C -U

flj rtl

-w £ cno-
5*5 C

S qj ̂ -^
En —« *j

•-̂ > 3
JJ >,.̂ H U

B 3 a i

S c ̂ '

U <*4 -̂ S C41 a> B o
S cL S c ̂ -S o

a« 3 y to S
••4 tM U) <Q -< (fl

i ^ Q* u 4J w 4* 1)
! O g w as u cu u o

3 --« T3 « 5Q.Q.C
no w fd jj w h r i o x w
i *> C (0 rtj (U J J W 4 J W
: c to 3 h i x j (Q fls «u

n C • * O J < Q C E W 4-1
> j= —t as i- c -H —i —. to 0)» -M E a» 3J cn a; M
(•u-*4dartv w c i-j
is aalfi" &*%*I <U 4 J U C Q Q *J M flj (J3
> F-* 3 W "̂ 3 w ^

O Od<-4 (0 O O •-« — 4J

s-i i-is-
4* 5 w J <U

•si

•28

§̂&

A-3 CZ05-00

«

w
0>
jj

i§
u
S1

£
•9S1

1<
13

<•
*O

1
64

•a

1
§

•*4

?
u
•y
§

1
1

.p

U
•̂
<*-4
•̂

I

s
AJ
ft

Q

i
M

1

§•
&

.§ §
s §
M U
JJ 4J

S =
*J JJ

I 1

? T3
« a>

<M IW

u o

I 1

»-t ^
M Xs §

JJ 4J1 1
II §1tla S"x „ y

s| Ig

K
IT

 i
n
s
tr
u
c
ti
o
n

 w
h
ile

 T
SA

P
co

n
ta

in
s
 s

 n
u
ll
 p

o
in

te
r

In
s
tr
u
c
tio

n
 w

ho
se

 a
dd

re
ss

e
xp

re
ss

io
n

ill
e
g
a
lly

 g
e
n
e
r-

a
te

s

re

fe
re

n
ce

to

 a
 r

e
g
is

te
r

(i
.e

.,

th

is

in

s
tr
u
c
ti
o
n
 i
s

n
o
t

p
e
rm

itt
e
d

to

 u
se

 a
 r

e
g
is

-
te

r
ad

dr
es

s
s
y
lla

b
le

)

hd
k«
V

10 U
»H •*«

n)
«P
F4

8
1
£

1
IM

a.
I

S
*4-»
•-4u

1

1
VM

1
1

-s
•*^
"44

1
B

B
us

 p
a
ri
ty

 e
cr

o
r

oc

u
n
re

co
v-

e
ra

b
le

 m
em

or
y

d
a
ta

 e
rr

o
r

>»

i

r* w
~4 a

X̂j
•*4
U
it

2
CO V

S
1
u
4J

1

2
4J

i

tl»
-1 JJ U

S U JJ
3

o jj S
jj oi o5

la?•3^5
& Ad JJ

I
*M
•»4

U

1

•8
—4IM

!
1

A
n

c
p
e
ra

tio
n

 p
ro

du
ce

s
an

ex
po

ne
nt

va

lu
e

o
f

le
s
s

th

a
n

-6
4
 w

h
ile

th

e
 a

ss
o
ci

a
te

d
en

ab
le

 b
it

in
 r

e
g
is

te
r

MS

is
se

t

i~4
<M

<n g
»H 3

U

<w

jj

S
S

S
JJ

y
M
4Ja
?
jj

I

ill
U O JJ

2
O JJ $
jj 01 <n

3'** 8
158-
•3^5
Ot JJ JJ

3̂
M

1

"8
•*4

(M

•3

I

"8
JJ

ii
1
10

S

l»R to

S^Ji
S."
<*

cu
w

ss
t*
V

§
§•
£

8
jju
3
u
jj

1
?
0

I

sis-
••* JJ U
U U JJ
3 5

w-5 «
<u O
JJ CJ
C-^ JJ

-*4 VM flj
O -4 J=
£ jj jj

1

1

5
44

1

A
n

in
te

g
e
r

is

tr

u
n
ca

te
d

d
u
ri
n
g
 f
lo

a
ti
n
g
-p

o
in

t-
to

-
in

te
g
e
r

co
n
ve

rs
io

n
 w

h
ile

th

e
a
ss

o
ci

a
te

d
 e

n
a
b
le

 b
it

in
re

g
is

te
r

MS

is

se
t

y
u

*M

-1CM (Q

o
<W

JJ

8 O

& S

S
ti
JJ

i
su

I

t? 0.
<D-«* ia
•4 JJ Wo u *j

w -o
O JJ 1;
JJ u) u]

U-5 fl

41 O
JJ U
C ** JJ

•S"4 S
P-^4 JS
du 4j jj

1
u

3
U4

'3
a
I

T
he

 n
on

ze
ro

 p
o
rt

io
n

 o
f

a
fr

a
c
ti
o

n

is

tr

u
n
ca

te
d
 w

h
ile

th
e
 a

ss
o
ci

a
te

d
 e

n
a
b
le

 b
it

o
f

re
g
is

te
r

H5

is

se

t

>

in

I
s s.

o
1*4

JJs
3

s
i
14
JJ

1
s0

1

sis-
••4 jj w
U CJ JJ
(153
O jj oi
JJ (0 ffl

J i4-«4 (1J
o» ot^
S--2Q.JJ 4J

s
Oa

3
•-4
U4

1

1
Th

e
S

IP
 o

r
C

o
im

e
rc

ia
l

CP
a
tt
e
m

p
ts

 a
 w

ri
te

o
r

re
a
d

re
q
u
e
st

bu

s
cy

cl
e

 a
nd

re
ce

iv
e
s

a
NA

K

<uo

m M
O4

§
2a §
Is

T3
4>

IM

1
I

"S '•3
«M

U

a.

3

1

•2
•»4

U4

!

33 0) >,
JS35
0 u|s a
M^10

3 S J 3
o S ^

U 0)w -3
O JJ
te O O*
S C M

3 u

•O y k-
<9 Q u
41 u o
i- < £L k-i

< S W (U

w>. o
M u

9 M

^ *H r3
es ̂ CP

jy £
5 M
u O

O u
U O
C uis

§
jjs
w
4J
01
C

g
6
X

I!

i S
U "H

<U JJ O>
S tj ?a
S 3 u

^ w -o
o c <y

u Of fl
(U O ojj
C f^ JJ

•-4 m rtl
O--« -C
O* tj 4J

1

I

•o<u
*4J

u

1

Ir
h
e
 d

iv
is

o
r

o
f

a
 d

e
c
in

a
l

(d
iv

id
e

in

s
tr

u
c
ti
o
n

CD

DV
)

is
eq

ua
l

to

ze
ro

s
31
TJ

>

-o

^r04 O

"H

U

§2
3s

A-4 CZ05-00

#'

(0

9-
£

t
"8
u
i

3?

Ĉ--i ±>

fill

13
, § -ssi : i•w ••> S0,03 -. m
-? C o 3w -: 5 jjy T3
a o •g
'a u v rcu -x u
JS I O (UJ-* 3 gs 2*o c a if

S S

si.

i O u u
i >* <U O£

<-t * jc to J3 ?
i C "-. JJ fl3 *J U №

i O tO O* 3 ** QJ CAJ c « y 35
IM *4 B-0 I p5
O O1 -w (-H •-* 44 O

J ^ -4 41 3 WO

3 *O T3 41 -H 5 U ̂
, _ ^ fl £ «w 3 «

SH

'S2

. a* to
w O £ BO JJ
O £ ^j n» -M c;AJ >-) u r-t c £ 33
Q« O - <U -*-1 £-4C 4J £ " g a « S*-» 3 a« o - ^ 3 c > - 4
O "̂ r* O* O <U
(fl 03 M 4<t -U W r-ja j 4) y • u u i a t3•o^ w Q 3-<-< f a Si« a> S k 4 ^ - i £ c 3

ill s I li

| .S"S9
1"," s - s a 2 ? :

^-^•^ 3 0»-*H I

-0 -5 55 j* o J
w <W J3 *J i
-» ** C U o
jS v 3 u c *• o

4 W (U
O N

c2S3J!JU W S . S S i c
 w & c

<-. ~< .U C -U -•-» —i < U < 4 4 ^ p M <(? HI

19 iH C CT»*^ -
w (3 c

C 4) J5 41 UI
H« > W —1 ^

A-5 CZ05-00

0)
u

&
£

3
<
2
2
a-

en

•8

<uJJi§
u

S1
u
(X

1
S

•o

<

1Sjw

•
•o
u

*M
1
3

Si
w

i

!s

4J

U
-P«J
*4

I

•»*
44
••4

5
i
a.
1

S

1
4J

3

S
u
1!

, S
ills1
S 3 t-«
B U 4J
O -U

as >a
2J! S9
S ft S4f W O

131£ o 5

3
<w
•*4
O

&
I

3
*M
•̂

1S

An
y

of
 t

he

fo
llo

w
in

g:

•
Il

le
g
al

 d
ec

im
al

 d
ig

it
de

te
ct

ed
 (

lo
w

-o
rd

er

fo
ur

bl
ta

 a
re

 n
ot

 0
 t

hr
ou

gh
 9

) .

«
Il

le
g
al

 s
ig

n
d
ig

it
de

te
ct

ed
 (

no
t

a
re

co
gn

iz
ed

si
gn

 v
al

ue
) .

•
Il

le
g
al

 o
ve

rp
un

ch
 d

ig
it

de
te

ct
ed

.

1ŵ
H
-̂e

•̂

Kfl

3s
|H
Si

i
3
i
8

a.|S-
)-tiJ U
U «

o o «
4^<«4 .C

M -W

U ^« 3 T3
4J U dJc 44 a

S3§ ...

2
55
ft•I

I
13

R
ec

ei
vi

ng
 f

ie
ld

 o
f

an
 a

lp
ha

-
nu

m
er

ic
 i

ns
tr

uc
ti

on
 c

an
no

t
co

nt
ai

n
al

l
ch

ar
ac

te
rs

 o
f

th
e

re
su

lt
.

W
he

th
er

 o
r

no
t

a
tr

ap
 o

cc
ur

s,

th
e

re
ce

iv
in

g
fi

el
d

is
 a

lt
er

ed
 t

o
co

nt
ai

n
th

e
le

ft
m

os
t

pa
rt

 o
f

th
e

re
su

lt
 a

nd
 t

he
 C

I
(T

O
) i

s
se

t.

*i

§
w

-0 **
00 Ckw O

3
2is
3s

S
1
1
§
I

&!§• -
"s"o 3 a
-35
^ U!4> IS «n
JJ U Uc -u a
21s . -..,

1<u
-r4

»

*

3
<M

13

A
ny

 o
f

th
e

fo
ll

ow
in

g:

•
R

ec
ei

vi
ng

 f
ie

ld
 o

f
a

de
ci

m
al

in

st
ru

ct
io

n
ca

nn
ot

 c
on

ta
in

al

l
si

gn
if

ic
an

t
d

ig
it

s
of

 t
he

re
su

lt
.

•
D

ur
in

g
a

Sh
if

t
L

if
t

in
st

ru
ct

io
n,

a

no
nz

er
o

d
ig

it
 i

s
sh

if
te

d
ou

t.

1
44
k4

.

38
3
u

I

S
IM

O

1

1
U-t

f

1
<M

Q.

1

1
«M

|

5

|

"|
4J

V
M

1
8

3
<w
•*>4y

1

1
UH
•*^
O

1

1
«44

0*

1

I
«-4

15

3

S3-
M

1
M-*

3

8
4J

i-H

4J
X

S

"O
0)

-IH
U4
•**
tj

1

3
»4-l
-*H
ya
I

1
>4-l

U

3
R

es
un

(>
tio

n
of

po

w
er

by
 a

ut
om

at
ic

 p
ow

er
re

su
np

ti
on

 C
ac

il
ti

y

m Q«in 1?
w
01w

-4J

S

(H

i! 3
$

>W0 .5
03

S S1

s i
fl C3. |I jJ
k4

8-
i-4 W

**

8
. tj 8

*O 4) U]

i * 82 o S
8. " ** a- -•o u 13
H 4J U
O 4J
S rt> C
6 a S
S "V
•4J 01 ^H

3 (3id <Tj --.

ib
ed

 l
a
te

r
In

 t
h

is
 s

ec
ti

o
n
,

hi
gh

-o
rd

er

(l
ef

tm
os

t)

en
d

of

o
t

p
re

se
n

t,

th
is

in

st
ru

ct
io

n
 c

ra
l

p
ro

ce
ss

o
r.

t£
0£

fi
 m

an
ua

l
d
es

cr
ib

es
 C

cn
ro

er
c

u 41 C -w 4a .c c y-4j 01 « a
a> •*« u a*a n-to u 41 au qj J5 e

••H (0 fi -W <ta 5 :
4J S -U «W D

*M 2 g >

1 ! i » li -*H q> *H a« ^ - ^ ' 5 2
s .2 -.2 «
1 e is & e• a « -o

A-6 CZ05-00

TRAP HANDLING DURING TASK EXECUTION

There are several kinds of traps, as follows:

1. Traps handled by the system exclusively; Monitor Call is
currently the only trap of this type.

2. Traps handled first by the system, then possibly by the
user. These include Trace/Break if Debug is used, or SIP
when the simulator is present.

3. Traps, if enabled, handled by the user program; other-
wise, by the system.

4. Software generated traps, described below.

5. Cleanup (trap 0); not really a trap since there is no TSA
(trap save area), which is indicated when $B3 is set to
null. The condition causing trap 0 is the occurrence of
any other trap for which no trap handler has been
enabled. $R1 contains the number of the unenabled,
causative trap; other registers are unchanged. Return
from Trap (RTT) execution is not possible.

In cases 2 and 3 above, which go to the user program, $R3
contains the trap number; $B3 contains a pointer to the TSA.

Software Generated Traps

Software generated traps comprise the following:

• Program Interrupt (trap 1) - Caused by the PI command or
signal trap ($SGTRP) macro call.

• Unwind (trap 49) - Caused by the Unwind command.

• Suspend (trap 48) - Caused by the system's break handler,
BREAK command, or by the signal trap ($SGTRP) macro call.
The system suspends the task when no handler is provided.

• Power resumption notification (trap 53) - Caused by
automatic resumption of power after power failure on
systems configured with the power resumption facility
(described in Appendix E).

To receive the PI, Suspend, or power resumption notification
trap, the user program must enable it with the $TRPHD and $ENTRP
macro calls. • ~ (,

s

Program Use of Traps

The average program requires that the trap handler address be
set (with the $TRPHD macro call), and that the "cleanup trap"
(trap 0) be enabled with the $ENTRP macro call. In more complex
situations, requiring more than one cleanup action and, conse-
quently, more than one trap handling routine, the trap handler
address can be altered by means of the $TRPHD macro call.

A-7 CZ05-00

To respond to Program Interrupt (PI), trap 1 must be enabled
with the $ENTRP macro call. The trap handler distinguishes
between Program Interrupt and cleanup (trap 0), by comparing $B3
with null (see above). In simple programs, for Program Interrupt
to resume execution at some other location, the saved P-counter
in the trap save area (TSA) must be set, and a Return from Trap
(RTT) instruction executed. For more complex programs, the user
program should set a flag, then execute a Return from Trap (RTT)
instruction. The user program must then examine the flag at
appropriate places to avoid interrupts at inappropriate times
(e.g., in the middle of a write function).

Alternatively, trap 1 is not enabled; cleanup checks $R1 for
X'03011 (the error message signifying that no trap handler exists
for a Program Interrupt condition), then branches to the desired
location. When cleanup occurs, cleanup (trap 0) is automatically
disabled; it may be reenabled when required.

CONTENTS OP TRAP-RELATED MEMORY AREAS

In examining a dump to determine the nature of a trap condi-
tion, check particularly the contents of the TSA. The TSA and
related memory areas are illustrated in Figure A-l; their con-
tents are described below.

TSA TSA T3A

T3AC

> era J

NUU.

rre.

TSA - TRAP SAVt AACA
TSA4. - TRAP SAVf AMCA UNK

Figure A-l. Trap Handling Mechanism

Trap Save Area Link - When the trap save area is in use,
TSAL contains a null pointer (if this is the only or last
trap save area connected) or it points to the next trap
save area connected. The next TSA connected would be used
for handling a trap condition encountered by the trap
handling routine (i.e., a nested trap).

A-8 CZ05-00

I-Register - The contents of this register are saved by
hardware/firmware when a trap occurs. This register is
then available for use by the trap handler. The
high-order byte contains the quantity (40te - trap
number).

R3 Register - The contents of this register are saved by
hardware/firmware when a trap occurs. This register is
then available for use by the trap handler.

Instruction - The hardware/firmware stores the instruction
associated with the trap. If a multiword instruction is
involved, the first word is saved.

Z-Word - This word contains miscellaneous information rel-
ative to the trap. The format of this word is shown
below:

BIT: 01 3 4 7 8 9 11 12

R 0 0 0 BI P R 0 0 IS

15

R - If R=0, the saved contents of the A-word are mean-
ingful relative to this trap condition; if R=l, the
saved contents of the A-word are not meaningful.

BI - 4-bit field that is meaningful only when an indexed
bit or byte instruction is associated with the
trap. If an indexed b_i£ instruction is involved,
BI indicates the four low-order bits of the associ-
ated index register; bit 7 of BI stores the least
significant bit. If an indexed byte instruction is
involved, bit 4 of BI indicates the least signifi-
cant bit of the associated index register, and bits
5 through 7 are zeros.

• i - >.

PR - The privilege state of the task that was running
when the trap occurred. 00 or 01 = nonprivileged
state; 11 or 10 = privileged state. The value is
taken from the P-bit of the S-register.

IS - The length (in words) of the instruction associated
with the trap. If a multiword instruction is
involved and the trap occurs before the entire
instruction has been fetched, IS indicates the num-
ber of words that were fetched before the trap.

A-Word. In many cases, this word contains an address
associated with the trap. (This word is not meaningful if
bit 0 of the Z-word contains a 1.) The nature of the
saved address is governed by the specific trap condition
and the specific instruction associated with the trap.
Details relative to each trap condition are in Table A-l.

A-9 CZ05-00

• Program Counter - The contents of the program counter are
saved by the hardware/firmware when a trap occurs. This
is the address to which a return is made when the trap
handler completes. In most cases, the program counter
will point to the instruction or location following the
instruction associated with the trap. However, when an
input/output instruction is involved, the program counter
may point to an address within the instruction; in this
case, the trap handler must modify this word before issu-
ing a return to "normal" task processing.

• B3 Register - The contents of this register are saved by
hardware/firmware when a trap occurs. This register is
then available for use by the trap handler; as the trap
handler is entered, the B3 register points to the A-word
in the trap save area.

SYSTEM SUPPLIED TRAP HANDLERS

The following software components provide trap handling
facilities:

• Debug program
• Scientific Simulator
• Defective memory trap handler
• Default trap handler.

Traps handled by these system components can be passed onto
user-written trap handlers, as explained later in this section.

Trap Handling by the Debug Program

The Debug program operates as a task within the user group
(Multi-User Debugger) or as a task group identified by $D ($D
DEBUG). For a detailed description of the Multi-User Debugger
-and $D DEBUG, see Sections 18 and 17, respectively. In this
subsection, both debuggers are referred to collectively as the
Debug program.

Once the Debug program is loaded, you may set, clear, or list
breakpoints in the task code by use of Debug directives. When
the application program is executed, the Debug program is
activated by trap number 2, which occurs each time a breakpoint
is encountered. The action specified by the Debug directive for
that breakpoint will then be executed. For example, designated
memory locations can be printed out and execution of the
application program continued without operator intervention.
Information can be printed on a console or a line printer.

A-10 CZ05-00

Trap Handling by Scientific Simulator

When a system's configuration does not include a Scientific
Instruction Processor (SIP), this hardware component can be simu-
lated by the Scientific Branch Simulator and the Floating Point
Simulator, which, together, make up the Scientific Simulator.

FLOATING-POINT SIMULATOR

The Floating-Point Simulator reacts to trap number 3
(scientific operation not in hardware), which occurs whenever the
central processor encounters a nonbranch scientific instruction
during task processing.

While processing scientific instructions, the simulator pro-
vides automatic alignment of the operand's hexadecimal man-
tissas. It achieves maximum available precision by requiring
that mantissas have no leading zeros (i.e., all mantissas must be
normalized).

Note the following programming consideration for the
simulator:

• During its processing, the simulator may encounter an
error condition related to a scientific instruction; the
following can then occur:

- The simulator consults trap vector 5 if it encounters a
nonscientific instruction or other unrecognized
instruction.

- The simulator consults trap vector 7 if an SDV
(Scientific Divide) instruction has a divisor of 0. The
instruction will not be executed. - - --

- The simulator consults trap vector 8 if execution of a
scientific instruction produces exponential overflow.
The instruction will have been executed.

• To use a software routine to react to any of these trap
conditions, the user must provide a user-written trap
handler. The simulator will be invoked to handle traps
caused by execution of scientific instructions only if the
trap numbers have been enabled for the task executing
those instructions.

• No "overflow trap enable" bit of the Ml register should be
set to 1 as the simulator begins operation.

A-ll CZ05-00

SCIENTIFIC BRANCH SIMULATOR

The Scientific Branch Simulator reacts to trap 5. It pro-
vides FORTRAN and Assembly language programs with the means to
simulate the use of the scientific branch instructions.

Note the following programming considerations relative to the
simulator:

• The choice of the single-precision version (SSIP), or the
double-precision version (DSIP) of the simulator is indi-
cated in an argument of the system building SYS directive.

For SSIP only:

• The simulator uses registers R4, R5, and R7 as scientific
accumulator (SI) for comparisons; it uses Rl, R2, and R3
as work registers.

• The simulator uses the G, L, and U bits of the I register
to determine if the branch condition is true or false.
When a normal return is made to the user program/ the
branch will be executed if the branch condition is true;
otherwise/ the next sequential instruction following the
one that was trapped will be executed.

For both SSIP and DSIP:

• All other operation codes not handled by the Floating-
point Simulator or the Scientific Branch Simulator are
passed to the next trap handler in trap 5.

Defective Memory Trap

The defective memory trap handler performs the following:

• Identifies to the user the physical and virtual address of
defective memory.

• Informs the user whether or not the system remains oper-
, able after the detection of defective memory.

• Ensures that the area of defective memory will not be
reallocated after its detection.

The user loads the defective memory trap handler at the time
of system configuration by entering the LDBU directive and speci-
fying the simple pathname to the bound unit ZXDEFM (see the
System Building and Administration manual).

A-12 CZ05-00

The defective memory trap handler responds to detection of
defective memory by the following components:

• Central Processor Unit
• Scientific Simulator
• Input/Output controller. . -

If defective memory is detected by any of these three compo-
nents, and the system is able to continue, the following message
is sent to the operator's console, specifying the physical and
virtual address of the defective memory:

PROBABLE MEMORY FAILURE, PHYSICAL ADDR= ,VIRTUAL ADDR=

If the defective memory is CPU-detected (trap 17) and no
user-written trap was enabled for trap 17, an X'0311' error mes-
sage is also issued and the trapped program terminates.

If a user-written trap handler is enabled for trap 17, the
defective memory trap handler ensures that the 32-word area con-
taining the defective memory will not be reallocated to another
task, and control is passed to the user-written trap handler,
which normally returns task resources and terminates the task
request.

If the defective memory is detected by the Scientific Simu-
lator (trap 24), and, if no user-written trap handler is enabled
for trap 24, the X'03181 error message is issued (see the System
Messages manual) and the trapped program terminates.

A defective memory trap resulting from a file system I/O
order produces the probable memory failure message followed by an
X'01071 error message (see the System Messages manual).

If defective memory is detected, and the system is unable to
continue, register contents are as follows:

$R1 - X'DEFA1 (defective memory address)
$B1 - physical address of defective memory
$B2 - virtual address of defective memory

Knowledge of the address of defective memory permits the user
to map the defect onto a specific memory board, which can then be
replaced.

Whenever memory is found defective, it is returned to the
memory manager and marked as unavailable for reallocation.
Before memory can be returned to the memory manager, it must be
relinquished by all of its users. For that reason, if memory
found defective is within a shared area, such as a sharable bound
unit or group control block, each task sharing that memory is
liable to be trapped and terminated.

A-13 CZ05-00

When defective memory is marked unavailable for reallocation,
at least 32 words are so marked. Trap 17 and 24 identify the
exact location of memory detected as defective. I/O controller
detection is less precise since it knows that only some location
within the buffer is defective. In this case the memory manager
makes unavailable all pages containing any part of the suspect
buffer. The address cited in the probable memory failure error
message is the beginning of the suspect buffer.

System Default Trap Handling

When a trap condition occurs in task code that has not
enabled this particular trap or trap Of an error message is writ-
ten to the error-out file? the delete bit in the task control
block is reset, the task is terminated, but the task's resources
(memory and peripherals) are not released. Thus, a memory dump
can be taken so that the error condition can be examined.

USER-WRITTEN TRAP HANDLERS

User-written trap handlers are either task-specific or
system-wide. Both types are described below.

Task—Specific Trap Handlers
/

This type of trap handler is included in a task's bound unit;
it resides in a task group's memory pool. A task-specific trap
handler receives a trap only if the task, in whose bound unit the
handler is included, has done the following:

• Specified the trap number, by means of the Enable User
Trap ($ENTRP) macro call.

• Connected the trap handler to the trap's vector by means
of the Trap Handler Connect ($TRPHD) macro call.

The task-specific handler receives the TSA contents exactly
as if it was directly connected to the trap vector; but, in fact,
the monitor has intercepted the trap and simulated the TSA in
user-accessible memory.

System—Wide Trap Handlers >

A system-wide trap handler is loaded into system memory at
the time of configuration. It is directly attached to a specific
trap vector by user code. When any executing task in the system
signals that trap, the trap handler directly responds, bypassing
the Monitor (which, for a task-specific trap handler, would
intercept and analyze the trap). Thus, system overhead is
reduced; however, the same trap handling routine services all
tasks that incur a given trap condition.

A-14 CZ05-00

PASSING TRAPS

It is assumed that all vendor-supplied and possibly some
user-written trap handlers attached to the vector may encounter
situations which should be passed to the system default trap
handler. Also, several handlers can process the same trap. To
pass a trap from one handler attached to a trap vector to the
next handler:

1. Load the trap handler by means of an LDBU directive, thus
placing the handler in system memory. The system, at the
time of configuration/ implicitly loads the Scientific
Simulator's trap handler into system memory if the SSIP
or DSIP argument was specified in a SYS directive.

2. Write the handler to include initialization subroutine
table (1ST) code that will execute when the LDBU load
operation occurs and save the current address contents of
the trap vector(s) to be simulated, inserting its own
pointer(s) instead.

3. Code the user-written simulator to save the contents of
all registers upon entry so that if the trap should be
passed to the next trap handler, this handler can:

-*>

a. Restore all saved registers.
r*

b. Execute a jump-indirect through the location contain-
ing the pointer of the next handler saved in step 2
above. The J-bit in the Ml register must be off when
the jump-indirect is executed.

The rule is that each trap handler must get exactly the same
information in registers and TSA that it would have received if
it was the first trap handler accessed.

Programming Considerations for User—Written Trap Handlers

• A trap handler operates at the same priority level and in
the same privilege ring as the task whose execution caused
the trap.

• When a trap occurs, the hardware/firmware saves the task
related contents of the I-register, the R3 register, and
the B3 register in the trap save area. The trap handler
is free to use these registers.

• See Table A-l for a description of the contents of
selected words in the trap save area when various traps
occur.

A-l5 CZ05-00

Upon entry to the user trap handler, the J-bit in the Ml
register is arbitrarily turned off. Other bits in the Ml
register remain as they were when the trap occurred. Reg-
ister B3 contains a pointer to the A-word in the TSA.
Register R3 contains the vector number of the trap.

Traps that occur within the user trap handler abort the
task if they are the same type as the trap currently being
processed. This abort action prevents all TSAs from being
tied up by recursive traps, and prevents traps within the
MCL interface from going to the user trap handler.

Every trap handler should be reentrant; i.e., it should
not use an internal work area to store interim informa-
tion, since this information could be lost if an interrupt
occurs and, later, the same trap handler is called upon to
execute at a different priority level.

If you choose to define instructions of your own and have
them interpreted by a trap handler connected to trap vec-
tor 5, you should limit the instructions to the
user-reserved subset of the generic^ instructions. The
following diagram illustrates the memory format of generic
instructions.

BIT: 0 78 15

0 0 0 0 0 0 0 0 f
f - Function; the user-reserved range of

values for f is 128^f<256 (decimal).

• When a trap handler has finished its work, it must issue
an RTT (Return From Trap) instruction. The Ml register is
not restored. This instruction uses the current trap save
area to restore the task-related contents of the
I-register, the R3 register, the program counter, and the
B3 register. Consequently, when the RTT instruction is
executed, these elements of the trap save area should be
"correct" (i.e., as saved when the trap occurred).

Note that in some cases, particularly when a trap condi-
tion is related to an input/output instruction, the saved
value of thê program counter (in the trap save area) will
point to a memory location within the instruction itself.
This is not a legitimate point of return to "normal" task
processing. In this case, the trap handler must modify
the saved value of the program counter before issuing an
RTT instruction.

After the trap save area has been used to restore the reg-
isters indicated above, it is returned to the pool of
available trap save areas pointed to by a memory location
0010.

A-16 CZ05-00

When a trap occurs, the contents of registers Ml through
M7 are not saved in the TSA. Particular attention is
drawn to the Rl through R7 overflow trap enable bits and
the J-bit of register Ml, which can be set by a privileged
user. If the trap handler does not temporarily clear
these bits during its execution, another user trap handler
could be invoked erroneously on data register overflow or
branches. Such bits must be restored upon exit from the
handler.

A-17 CZ05-00

Appendix B
PROGRAMMING
CONVENTIONS

The following programming conventions are provided for
designing application programs to interface smoothly with system
software.

MODULE AND FILE NAME CONVENTIONS

Program names and load module names that begin with Z are
reserved for Honeywell use and should not be used for an applica-
tion program. System module names are six characters in length;
the second character defines the system component. Table B-l
lists the first two characters of each system module name and the
system component that it relates to.

The names of files that are processed by program development
software (compiler, assembler, and so on), are given a suffix by
the particular component doing the processing. Table B-2 lists
these suffixes.

B-l CZ05-00

Table B-l. System Module Name-Prefixes

Name
Prefix System Component

T f '

t

f

t

ZA

ZC

ZE

ZF

ZG

ZH

ZI

ZL

ZM

ZO

ZP

ZQ

ZR

ZS

ZT

ZU

zx

ZY

ZZ

Zl

Assembler

COBOL Compiler

Editor

FORTRAN Compiler

Configuration Load Manager

Trap Handler

Input/Output Drivers

Linker

Memory Management

Loader

Macro-Assembly Program

Communications

RPG Compiler :

Sort/Merge

TCLF Compiler and Processor

Utility Routines and Conversion Aids

Executive

File, Data and Storage Management

Program units internal to File, Data
and Storage Management

Advanced FORTRAN Compiler

B-2 CZ05-00

Table B-2. System Program File Name Suffixes

Suffix

.A

.AO

.B

.C

.DB

.EC

.F

.L

.M

.0

.P

.PS

• Q

cQK

.R

.T

.U

Pile Type

Assembly language source unit

Default user-out if user-in is disk

BASIC source program unit

COBOL language source unit

Multi-user Debugger work file

Execution command (EC)

FORTRAN language source unit

List unit

Link maps

Object unit

Macro-Assembly Program source program unit

PASCAL source unit

RPG Compiler generated linker directive file

Multi-user Debugger quick file

RPG language source unit

TCLF source program unit

Auto report source unit

CAL.LING SEQUENCE FOR EXTERNAL PROCEDURES

External procedures are those that are assembled or compiled
separately from the calling procedure. Tfrese procedures may be
either functions, that is, procedures returning a single value to
the caller, or subroutines, namely, procedures that alter data
contained in an area common to both the procedure and its
caller. For example, the FORTRAN mathematical routines (sine,
cosine, etc.) are external procedures. When it is necessary to
write an Assembly language external procedure, use the calling
sequence described below for compatibility with code generated by
the language processors.

B-3 CZ05-00

The external procedure calling sequence generated by the CALL
statement in Assembly language, COBOL, BASIC, FORTRAN and RPG is
of the form:

LAB $B7, list
LNJ, $B5.<entry

list - Label assigned to the argument list
entry - External label of subroutine's entry point -

The external procedure should assume that register B5 contains
the address of the caller's return point- and register B7 points
to an argument list having the format shown in Figure B-l.

0 9 10 15
1 ' '

87-
•

RSU m

POINTER TO FIRST ARGUMENT
1

POINTER TO LAST ARGUMENT

RSU: Reserved for system use (must not be modificed by called
procedure)

m: Length of argument list given by $SAF*n+l where n is the
number of arguments

Figure B-l. Argument List

REGISTER CONVENTIONS

The system services use the following registers without pre-
serving their contents: Rl, R2, R6, R7, B2, and B4. If the
information in these registers is of value to the application
program, it should save the register contents before making a
system control service request. Unless otherwise specified, the
following registers will not be altered by the system services:
S, I, R3, R4, R5, Bl, B3, B5, B6, B7, T, RDBR, CI, SI, SI, S2,
S3, and the M registers.

B-4 CZ05-00

Appendix C
ASSEMBLING, LINKING,

AND EXECUTING A
PROGRAM

This appendix describes procedures assembling, linking, and
executing an Assembly language source program.

INTRODUCTION

Assembly language programs are assembled by means of the
Macro-Assembly program (MAP), which processes macro calls and
assembles the source unit in one pass.

Input to MAP consists of a source program written in Assembly
language and optional control information. Output from MAP is:

• An Assembly language object (.0) program
• An Assembly language listing and diagnostic.

Input to the Linker consists of the relocatable object
program. Output from the linker is:

• An executable module
• A link map.

\

i
i
I
i

C-l ' CZ05-00

Figure C-l illustrates the operation of assembling (by means
of MAP) and linking, which produces an excutable bound unit.

Source
Program

Listing MAP

Object
Program

Link
Map Linker [Executable

iBound Unit

\

Figure C-l. Assembling and Linking a Program.

INVOKING MAP

To assemble an Assembly language source program by means of
the MAP facility, enter the following command:

MAP path [ctl_arg]

where:

path The pathname of the input source file. MAP
appends a .A to the supplied pathame; if this file
is not found, MAP appends a .P to the supplied
pathname to locate the source input file. Do not
append any suffix to the pathname when supplying it
in the command line.

ctl__arg None or any number of control arguments, which are
fully described in the Commands manual.

C-2 CZ05-00

Example:

The source file to be assembled is ADD.A, shown in Figure
C-2. This file is in the current working directory. MAP is
invoked by the following command line:

- MAP ADD

The terminal dialog is:

MAP ADD

MAP-1.1 -07/12/0716

0000 ERROR COUNT MACRO :SAMPLE

0000 ERROR COUNT ASSEMBLER :SAMPLE

0000 WARNINGS: SAMPLE

Invoke MAP

MAP responds with
version number, date
and time
Macro calls processed
without errors
Program assembled
without errors
No warnings

In this dialog, MAP refers to the program by its title,
SAMPLE. The title of an Assembly language program is declared in
the program's first line, as seen in Figure C-3. Although in
this case the program's title (SAMPLE) and simple name (ADD) are
different, they can be the same.

MAP produces an object unit (.0 suffix) and a listing file
(.L suffix). The listing is shown in Figure C-3.

C-3 CZ05-00

11 I LF.
HUM

GAMl'LK, '9-16' , ADDING
L X t C . I T B

NUMBLRS

*,tODG NUMBE.RIS (R O M LIST AND SUMS THEM INTO iK5

**UtHNI I IONS

TuBl
L1SI

ANSNO

DC
DC.
DC
DC

Z' 30313233J431J3A373B394 14?
1, iQ,t>0, 100,0

A ' STARTING ADDKlk 5£
0,0 CONVLKITO AN8ULR

or
D A f A LIS
ANnidlR

ASCII TABLE

*INltKNAl. l.UBROUlINE

*
AS.C1T

AGAIN

DONt.

*

1.1
LDV
Ct.
Dl-C
fcCf
DOL
LLH
I I H
S1H
J.NC
JMJ-
JM>'

f lALl /AI ION
»
SL'TUH CU

(I
CL
CL
C:L
Ct
i:t
t DV

*»BEGIN ADDING

*S T A R T DLC

CONVkT
FINIS

LDk
INC
ADD
JMP
LNJ
*USOUT
iTKMRS
tNO

=--*K^ CLKAK 1NDCX t OK ANSNO
»R2,'i LOAD COLIN I kR]
--4R4 Ct t Ak *R4 (00
-*ke' UKLKI HfNT COUNItR *
<DONl CHICK f OR LNl) Oh LOOP
»R'jr't hOWL rikUT 4 BITS INTO *R4
»R1,-iR4 MOVt flRST I OlIR BITS INTO INUfX kEGiyikR TOR
*R6,< IABLK.*R i hOVl. ASCII CONVLHSION INTO «R6
*R<f,,<ANSNO.*R3 STORE ASCII CONVl.RiJION IN AN'JNO '
-*K3 INCKCMf.NT AUNO INDtX
<Hb(tJ* GO 10 &IARI 0̂ LOOP
Jlil. KE-rUKN 10 MAIN PROGRAM

IAULE

"4K6

TOR COLINTER

(CONWRI KC) 1« StT 10 0 WHLN *R1 - -1
),<LIS1.*R2 GET A NUMBtR FROM LIST, USE *R2 AS INDEX
3 fO HOWL THROUGH LIST
,----*K3 ADD VALUES IN TWO REGISTERS

<£>TART LOOP UNIIL bCF BRANCHES
$U5r<A&CII

' ANSWER, =--6 MACRO TO DISPLAY ANSWER, SLEW BYfE
-U MACRO TO TERMINATE TASK REOULST
SAMPLF,SLI UP tNlRY POINT IS SETUP

Figure C-2. Source Unit ADD.A

C-4 CZ05-00

SftHPLf 9- 16
UOUOO 1
oooooa
UOUOCI3
UUOOO4
000005
OOUOU6
uououx
ouooos

OO0009

000010
OU0011

UOOO12
000013
000014
OUUUlb
000016
OOOO17
OO0018
0000 1 V
000020
OU0031
OU0022
otiooto
000084
OOOUSb
000026
OOUOD/
000028
000029
OOOOJC1
OOOCU1
00003;'
00003J
tinoos'.
00003'j
000036
000037
OUCI03B
OU0039
000010
OUU041
IHJ004.'

0000
0001
UOOJ
0003
0004
OOO'j
OOOA
0007
0008
000?
OOOA
ooou
oooc
0001)
oooc
ClOOF

0010
O011
00 M
0013
0014
0017
0018
001 y
00 1C
O01F
0020
0023

0024
tio:?s
0026
003/
OU.!U
0029
QOk'A
0028

002C
tlU.'l)

SAKPLI. 9 16
00004.1
000044
00004:1
OUOO'io
OOCIG4/
000010
OH004V
tiooosu
00001,1
CiOOOb?
OUtlOSJ
110001.4
oooot-r.
ooonsA
onooi/

00(10 (RROK
0000 i KROR

0030
OO33
0034
ooatp
UOJU

(IU3H
0031)
OO'JI-
00', tl
0041
001.'
U044
(.11141,
00'. 6

COUNT
COUNf

0000 UfiKNINR1-
00301) UOKl>
EOF

11 MO 01

.HDUlNfi ti

3031
3233
3435
3637
3839
4142
4344
4S46
0001
OOOA
0032
0064
0000
4 ISO
0000
0000

8/53
2COA
8/1(4
0802
0680
S084
920'.
E2VO
fc/BO
8A03
U300
830t,

U/S1
8/b2
8/bJ
U/i4
0/bS
8/b6
8/S7
1C05

aooi
0411U

0000

0000
OOOU

0000

imoo

, M)0 1 NO 5
U82U
BAD;'
Of.'aJ
838U
U'JOU

CHCO
to/o
/coo
000 I
030 i
AO/0
0001
OlOJ

HACKO

0000

oooo
oooo
no:<»
MIX
OOOA

oooo

OOJ'.

NUMBCKb

0023

OOOO
UOOL

0012

~

oono

NUHOEKU
OUOfl

HOPC
0010

sSCiMPLE
Hi.SEMHLEK ibAMPLI
t.hMt'1 E
Thdl E

19H2/OB/06 1424S08.1 HAP-1.1 -07/12/0716 GCOS6 N004OO-L3.0-06/18/1621
TITLE SAHHLE.'9-16'.ADDING 5 NUMBERS

ADDS NUNUfXb FROM LIST AND SUMS THEM INIO »K3

OtriNITIONS

PAGE 0001

TABLE

LIST

ANSWER
ANUNO

DC

DC

DC
DC

Z' 303132333433363738394 1424JV.4S46' ANSI TABLE

1.10.50.100.0 DATA LIST

•A '
0.0

STAHTINQ ADDRESS OF ANSWER
CONVERTED ANSWER

'INTERNAL SUBROUTINE

ASCII

AGAIN

OONL

CL
LOW
CL
DEC
BCF
OOt
UH
LLH
SIH
INC
JMP
JMP

•INITIALIZATION
»
SETUP CL

i a
I S
i ca.1 ct

LOW
*
•BEGIN AODINO

-»R3 CLEAR INDEX FOR ANSNO
«R2.4 LOAU COUNTER
»»M4 CLfcAR *R4 TO 0
>»R2 DECREMENT COUNTER
<I>ONE CHECK FOR CN(> OF LOOP
tRS.4 HOUC FIRST 4 BITS INTO tR4
»R1.«»R4 MOVE FIRST FOUR BITS INTO INDEX REGISTER FOR TABLE
*R6.(TABLE.*R1 MOVE ASCII CONVERSION INTO 1R6
tR6.<ANSNO.»R3 STORE ASCII CONVERSION IN ANSNO
»»83 INCREMENT ASNO INDEX
<AbA!N GO TO START Of LOOP -
»B5 KETUKN TO MAIN PROGRAM

• »R2
•»R3
«*R4

-«R7
*R1.S VALUt FOR COUNTER

START DEC
BCF <CONVRT KC) IS SEI TO 0 WHEN »R1 • • 1

-LAP 198S/OB/06 1424:08.1
LOW iHD
INC ><R:
APU

CONVRT.
JMH
LNJ

I All
LOk

DC
LOR
MCL
DC
tND

<START
*Bb.<ASCII
t

*R/.0

X'U801'

X'0103'
KiMI'LE ,S>EIUP

1 • 07/12/0716 GCO&6 M00400-L3.0-06/1B/1621
4K2 GET A NUMBbK f -KOM LIST. USE »R2 AS
TO MOVE THROUGH HbT
AI>U UAl UFS IN TWO REGISTERS
LOOP UNTIL BCf BRftNCHtTS

PAliE 0002
INDEX

StT »S6 TO MUr FLR SI/E
SI I >R7 10 iMOUAfL It-f (MOOT HI ft

WRKF TO OGLK OUI ULE
BtT *R2 TO COhl'l i TJON SIATUS

I tKMlNATt UIIHOUr HOU1F11NO !>TAkT AOORECS
I NIRY POINT 15 SLIUP

Figure C-3. MAP Listing of ADD.L

05 CZ05-00

INVOKING THE LINKER

Once the source program is assembled, it can be linked. To
invoke the Linker, enter the following command:

LINKER progname [ctl_arg]

where:

progname The bound unit pathname (simple, relative, or
absolute) of the bound unit to be created (usually
the program name; may be up to 62 characters in
length).

ctl_arg Linker control arguments include -PT, which
requests the Linker to issue a prompt (L?) for
input. For information on other Linker control
arguments, see Section 16.

For example, to invoke the Linker for ADD (assembled above),
enter:

f LINKER ADD -PT

The following Linker dialogue results:

LINKER ADD -PT Invoke the Linker.
LINKER -0300-06/18/0912 Linker responds with version

number, date, and time.
L? Linker prompts for input.
LINK ADD Link the object unit.
L? : •--•• -••-*
QUIT The last linker directive entered.
ROOT ADD Add 1 ; linked.
LINK DONE . " The L.nker is finished.
RDY: Control returns to command level.

The Linker produces executable code.

EXECUTING AN ASSEMBLY LANGUAGE PROGRAM

After you have prepared, assembled, and linked your program,
simply type in the program name to run it. For our sample pro-
gram, ADD, successful execution is shown below:

ADD Invoke the executable module. * ;•;;;"
OOA1 Sum is given in hexadecimal.
RDY: Control returns to command level. <

C-6 CZ05-00

Appendix D
DATA STRUCTURE

FORMATS

This appendix describes the following data structures:

Clock request block (CRB)
File information block (FIB)
Input/output request block (IORB)
Task request block (TRB) », ~-
Parameter block
Wait list
Semaphore request block (SRB)
Message group request blocks (MGCRB, MGIRB, MGRRB).

Any of the structures can be hand coded or generated by macro
calls. All structures but the parameter block and wait list can
be defined by macro call templates.

The first four items of the request blocks have an identical
format (but slightly different contents, depending on the block
type) as shown in Figure D-l. Later diagrams show the format of
each block type; tables show the contents of the block entries.

The offset symbol $AF signifies that number of words required
to specify a memory address. In this system/ $AF is equivalent
to two words.

The first field (-$AF or -1) of a request block need be pres-
ent only when the request block pointer/semaphore name is needed.

D-l CZ05-00

1-***!
{_f fA_MN««_MM

0 «-U*K

SA* M en

I»SA» a^cra

* \

i ' i * i 3 » 4 i s f ' i 7

MOUKST suoex POINT

ftcstwveo t<3* srsrt

ACTUHN STATUS

t*NM

i***
MUSI

T

a

MAM

I AS A

W

•

*

K31M

9OV

U

a

•
HAMI

TIM

s

i

£
C

P

P

°

M

UWCT

3

ION

P

'

Figure D-l. First Four Items of Request Blocks

CLOCK REQUEST BLOCK FORMAT

Figure D-2 shows the format of the clock request block; Table
D-l shows its contents.

1-8

a

a i t , a , a , T , « , t , * , » , < ; , o

T w u s P *

M a I o q I o

0 1

IP M .̂ NCXT 3 WQMOS A** A OArernM« vAuut.

IN UNITS W <.'St« TAflt.5 A-' I

Figure D-2. Format of Clock Request Block

D-2 CZ05-00

Table D-l. Contents of Clock Request Block

Word Label Bit(s) Contents

-$AF
-1

C_RRB/
C_SEM

0-31
0-15

Depending on the condition of the S- or
R-bits of C_CT1, this field contains a
2-word task request block pointer (R-bit
on)f or a 1-word semaphore name (S-bit
on) .

C_LNK 0-15 Reserved for system use.

$AF C CT1 0-7

8(T)

9(W)

A(U)

B(S)

C(P)

D(R)

E(D)

Return status. .

This bit is set on while the request
using this block is executing? it is
reset when the request terminates. The
system controls this bit; user should not
change it.

Wait bit. Set if the requesting task is
not to be suspended pending the comple-
tion of the request that uses this block.

User bit. User may or may not use this
bit; the system does not change it. In a
user-built CRB, must be 0 initially.

Release semaphore indicator.

0 = No release; 1 = Release, on comple-
tion of this request/ semaphore item
named in C_SEM.

Must be set by user if CRB is to be
referenced by a Wait Any ($WAITA) macro
call. If set, CRB can be referenced only
by $WAIT or $WAITA issued by the
requesting task.

Return clock RB indicator.

0 = No dispatch; 1 = Dispatch task
request block named in C_RRB after com-
pletion of this request.

Delete clock RB indicator, used usually
with the B(S) and D(R) bits.

0 = No delete; 1 = Delete and, when task
terminates, return memory to pool where
CRB is, first entry of its memory block.

D-3 CZ05-00

Table D-l (cont). Contents of Clock Request Block

Word

$AF
(cont)

1+$AF
- *

< *
r.

2+$AF

Label

C_CT1

C_CT2

C_TM

Bit(s)

F

0-7

8(0

9-B(M)

Contents

Implicit task start address. Must
always be 1 for CRB.

Value is -1. !

When set, indicates this block is asso-
ciated with a cyclic clock function.

When set, last two words contain an
interval in units specified by M. Each
interval value is as follows: 001 - in
milliseconds; 010 - in tenths of a
second; Oil - in seconds; 100 - in
minutes; 101 - in units of clock
resolution.

When reset (off) , the last ilnsfi words
contain a date/time interval.

Contents depend on M bit of C_CT2 .

FILE INFORMATION BLOCK (FIB) FORMAT AND CONTENTS

Tables D-2 and D-3 show the format, and Tables D-4 and D-5
show the contents, of the file information block (FIB) for data
management (record level) access, and for storage management
(block level) access, respectively.

Table D-2. Format of FIB for Data Management

Word

0

1

2

3

4

5

Label (s)

F_LFN

F_PROV

F_URP

F_IRL

F_ORL

0 1 2 3 4 5 6 7 8 9 A B C D E F

Logical file number (LFN)

Program view

User record area pointer

Input record length

Output record length

D-4 CZ05-00

Table D-2 (cont). Format of FIB for Data Management

Word

6

7

8

9

10

11

12

13

14

15

Label(s)

F_IRS/F_ORS

F_IRT

F_ORT

F_IKP

F_IKF/F_IKL

F_ORA

F_RFU2

0 1 2 3 4 5 6 7 8 9 A B C D E F

Input record status Output record status

Input record type

Output record type

Input key pointer

Input key format Input key length

Output record address

Reserved
* -*

Table D-3. Format of FIB for Storage Management

Word

0

1

2

3

4

5

6

7

Label(s)

F_LFN

F_PROV

F_UBP

F_BFSZ

F__BKSZ

F_BKN1

F_BKN2

0 1 2 3 4 5 6 7 8 9 A B C D E F

Logical file number (LFN)

Program view

i
• User buf fer pointer

Buffer size

Block size

Block number

D-5 CZ05-00

Table D-3 (cont). Format of FIB for Storage Management

Word Label(s) 0 1 2 3 4 5 6 7 8 9 A B C D E F

8

9

10

11

12

13

14

15

F_RFU3 Reserved

Table D-4. Contents of FIB for Data Management

Word Label Bit(s) Contents

F^LFN 0-15 Logical file number (LFN)

F_PROV 0

1-4

5-9

10

11

12

Access level,
management.

Set off for data

Process rules. Bit 1 for $RDREC, bit 2
for $WRREC, bit 3 for $RWREC, bit 4 for
$DLREC.

Key type. Bit 5 for primary keys, bit 8
for relative keys, bit 9 for simple keys
(bits 6 and 7 must be 00).

Record class. Set on for fixed-length
records only; off for fixed- and
variable-length records.

Record visibility. Set on if deleted
records are to be visible; off if
invisible.

Key storage alignment. Set on if storage
area begins at odd-byte boundary; off if
even-byte boundary.

D-6 CZ05-00

Table D-4 (cont). Contents of FIB for-Data Management

Word

1
(cont)

2,3

4

5

6

r

1

8

9f10

11

Label

F_PROV
(cont)

F_URP

F_IRL

F_ORL

F_IRS

F_ORS

F_IRT

F_ORT

F_IKP

F_JKF

Bit(s)

13

14

15

0-31

0-15

0-15

0-3

4-7

8

9

10-15

0-15

0-15

0-31

0-7

Contents

Record storage area. Set on if record
storage area begins on odd-byte boundary;
off if even-byte boundary.

Transcription mode. Set on if data
transferred in binary transcription mode;
off if ASCII mode.

Must be 0 .

Start address of user record area.

Input record length (in bytes).

Output record length (in bytes).

0000 - Unknown terminal control informa-
tion; 0001 - Records contain no terminal
control information; 0010 - Records con-
tain standard GCOS 6 printer control
characters.

Must be zero.

Read operations. Set on if the key of
the record just read duplicates the key
of the record previously read.

Write/rewrite operations. Set on if the
key of the record just written is a
duplicate.

Read operations. Set on if the key of
the record just read duplicates a record
that is yet to be read.

Must be zero.

Must be set to X'FFFF1 (all bits set on).

Must be set to X'OOOO1 (all bits set
off).

Start address of user key area.

Input key formate 0 for none specified;
1 for primary key; 2 for simple key.

D-7 CZ05-00

Table D-4 (cont). Contents of FIB for Data Management

Word

12,13

14,15

Label

F_IKL

F_ORA

F_RFU2

Bit(s)

8-15

0-31

0-31

Contents

Input key length (in bytes).

Output record address.

Reserved for later use; must be
X'OOOOOOOO1.

Table D-5. Contents of FIB for Storage Management

Word

0

1

-

2,3

4

5

6,7

8-15

Label

F^LFN

F_PROV

\

F_UBP

F_BFSZ

F_BKSZ

F_BKNO

F_RFU3

Bit(s)

0-15

0

1-2

4-12

13

14

15

0-31

0-15

0-15

0-31

All

Contents ' * •

Logical file number (LFN) .

Access level. Set on for storage
management.

Process rules. Bit 1 for $RDBLK; bit 2
for $WRBLK.

Must be X'OOOOOOOO1.
\

Buffer alignment. Set on when buffer
begins on odd-byte boundary; off when
even-byte boundary.

Transcription mode. Set on when data
transferred in binary transcription mode;
off when transfer is in ASCII mode.

Synchronous/asynchronous indicator. Set
on when $RDBLK and $WRBLK calls executed
asynchronously; off when synchronously.

Start address of user buffer area.

Buffer transfer size (in bytes) .

Block size (in bytes) .

Block number.

Reserved for later use; must be all
zeros.

D-8 CZ05-00

INPUT/OUTPUT REQUEST BLOCK (IORB) FORMAT

Figure D-3 shows the format of a nonextended input/output
request block (IORB) (see Section 4 for a description of of IORB
extensions). Table D-6 defines the specific fields for a
non-extended IORB. Table D-7 summarizes the IORB fields for
operator interface functions.

en-.CS««/l S«M

I_CT1

I««A* I.CT3

}•*** I AOR

ova

•*2-*A* I^SXT

»

0 t t t * 1 » t 4 I » I * > 7 I • 1 *

REQUEST SUQCX *OINTER/SEMA<«
L I 8 I c I ° t « t "

RSSERVEO FOR SYSTEM US I: AS A POINTER

RiTUBN STATUS

l*N ISM a FUNCTION

AQQRCSS

RANGE

oevfce

RESIDUAL RANGE

STATUS WO«0/MIGHCR06R 8ITS Of WO"OJ POR STQRArtE MOOUi.5

TOTAU EXTENSIQM UCNGTH «O EXTENSION LENGTH

Figure D-3. Format of I/O Request Block

Table D-6. Contents of I/O Request Block

Word

-$AF

-1

0

$AF

l

i

Label

I_RRB/

I_SEM

I_CT1

Bit(s)

0-31

0-15

0-31

0-7

8(T)

Contents

Depending on the S- or R-bits of I__CT1 ,
this field contains a 2-word task
request block pointer (R-bit on) , or a
1-word semaphore name (S-bit on) . Set
by user; used by system at termination
of request.

Reserved for system use. 2-word pointer
to indirect request block.

Return status

This bit is set (on) while the request
using this block is executing; it is
reset when the request terminates. The
system controls this bit; user should
not change it.

D-9 CZ05-00

Table D-6 (cont). Contents of I/O Request Block

Word Label Bit(s) Contents

$AF
(cont)

I_CT1
(cont)

9(W)

A(U)

B(S)

C(P)

D(R)

E(D)

Wait bit. Set by user if the requesting
task is not to be suspended pending com-
pletion of the request that uses this
IORB.

i
User bit. User may or may not use this
bit; the system does not change it.

0 = No release; 1 = Release, on comple-
tion, semaphore item named in
I_SEM.

Release semaphore indicator.

Must be set by user if IORB is to be
referenced by a Wait Any ($WAITA) macro
call. If set, IORB can be referenced
only by $WAIT or $WAITA issued by the
requesting task.

Return IORB indicator.

0 =» No dispatch; 1 = Dispatch task
request block named in I_RRB after com-
pletion of this request. If 1, system
executes $RQTSK, using I__RRB, when the
task terminates.

Delete IORB indicator. Used usually
with the B(S) and D(R) bits.

0 a No delete; 1 = Delete and when task
terminates, return memory to pool where
IORB is first entry of its memory block.

Implicit task start address,
always be 1 for IORB.

Must

1+$AF 0-7

8(IBM)
s t

Logical resource number (LRN). Identi-
fies device to be used.

IBM-type request. Changes interpreta-
tion of I_DVS to task word, and of I_RSR
and I_ST to configuration words A and B,
respectively.

D-10 CZ05-00

Table D-6 (cont). Contents of I/O Request Block

Word Label Bit(s) Contents

1+$AF
(cont)

I_CT2
{cont)

9(B)

A(P)

B(E)

C-F

Byte index. 0 = buffer begins in left-
most byte of word; 1 = buffer begins in
rightmost byte.

Private space; reserved for system use.

Extended IORB indicator. 0 = Standard
(nonextended) IORB; 1 = IORB extended to
at least 6+2*$AF items. Set by user.
(See I_EXT below.)

Function code. Driver or LPH function,
see Table 6-1.

2+$AF I_ADR 0-31 Buffer address. 2-word pointer.

2+2*$AF 0-15 Range. Number of bytes to be transfer-
red. Used as input field for cartridge
disk or mass storage unit.

3+2*$AF I_DVS 0-15 Device-specific information.

4+2*$AF I_RSR 0-15 Residual range. Indicates the number of
bytes not transferred. Filled in by the
system on completion of the order. Used
by the cartridge disk and mass storage
unit drivers as a data offset value.

5+2*$AF I ST 0-15 Modified device status. Shows mapping
of hardware status into software status
format. See Table 6-4. Set by user as
input field high-order bits of sector
number of mass storage unit. Set by
system after I/O completion.

6+2*$AF I_EXT 0-7

8-15

Left byte. Number of words, in binary,
in the IORB extension, not including
this I_EXT word.

Right byte. Number of words, in binary,
in physical I/O part of IORB extension,
not including this I_EXT word. This
count must be less than or equal to the
total extension length specified in the
left byte (0-7). This word is present
only when the B(E) bit in I_CT2 is 1.
(See Section 7 for a description of IORB
extensions.)

D-ll CZ05-00

Table D-7. Summary of IORB Fields for Operator Interface

Word Label Bit(s) Contents

$AF 9{W) For a $OPMSG call, the setting of the
W-bit in the output IORB controls return
to the caller. For a $OPRSP call, the
setting of the W-bit in the ineut IORB
controls return to the caller; the set-
ting of the W-bit in the output IORB has
no significance. For either call, return
to the caller is immediate if the signi-
ficant W-bit is on. If the significant
W-bit is off, return to the caller occurs
after the order is completed.

1+$AF I_CT2 0-7

9(B)

LRN = 0.

Must be off if the input/output buffer
begins at the left byte of the word whose
address is contained in word 3 (I_ADR) of
this IORB. Must be on if the
input/output buffer begins at the right
byte. >

2+$AF I_ADR 0-15 The word address of the message buffer
(which contains an output message or is
to receive an input message).

2+2*$AF I_RNG 0-15 The buffer size in bytes. This is the
length of an output message or the maxi-
mum length allowed for an input message.

SEMAPHORE REQUEST BLOCK FORMAT

Figure D-4 shows the format of the semaphore request block;
Table D-8 shows its content.

D-12 CZ05-00

{ir^*-""*'ii-*iM
0 T-U«K

SA* s_cn

1«*A* S_CTJ

3-SAP S_AO«

0 , 1 , 3, 3 , 4 , 5 , • , 7 , • , 9 , A , 8 , C , 0 , 6 , *

REQUEST 8LOCX POINTER/SEMAPHORE MAWS

RESERVED FOR SYSTEM USE

RETURN STATUS T w U S P R 0 t

• t o o o o o o o t

SEMAPHORE I06NTIPI6H

Figure D-4. Format of Semaphore Request Block

Table D-8. Contents of Semaphore Request Block

Word Label Bit(s) Contents

-$AF

-1

S_RRB

S_SEM

0-31 Depending on the S- or R-bits of S_CT1,
this field contains a 2-word task request
block pointer (R-bit on), or a 1-word
semaphore name (S-bit on). Set by user;
used by system when request terminates.

S L N K 0-15 Reserved for system use.

$AF S_CT1 0-7

8(T)

9(W)

A(U)

B(S)

Return status

This bit is set (on) while the request
using the block is executing; it is reset
when the request terminates. The system
controls this bit; user should not change
it.

Wait bit. Set if the requesting task is
not to be suspended pending the completion
of the request that uses this block.

User bit. User may or may not use this
bit; the system does not change it.

Release semaphore indicator.

0 = No release; 1 = Release, on completion,
semaphore item named in S_SEM.

D-13 CZ05-00

Table D-8 (cont). Contents of Semaphore Request Block

Word Label Bit(s) Contents

$AF
(cont)

S_CT1 C(P)

D(R)

E(D)

Must be set by user if SRB is to be
referenced by a Wait Any ($WAITA) macro
call. If set, SRB can be referenced only
by $WAIT or $WAITA issued by the requesting
task.

Return semaphore RB indicator.

0 = No dispatch; 1 » Dispatch task request
block named in S_RRB after completion of
this request.

Delete SRB indicator. Used usually with
the B(S) and D(R) bits.

0 = No delete; 1 = Delete and, when task
terminates, return memory to pool where SRB
is first entry of its memory block.

Implicit task start address. Must always
be 1 for SRB.

1+$AF S_CT2 0-7

8-14

15

Value is -1.

Must be zero.

Must be one.

2+$AF S_ADR 0-15 Semaphore identifier
characters.

- two ASCII

D-14 CZ05-00

TASK REQUEST BLOCK FORMAT

Figure D-5 shows the format of the task request block; Table
D-9 shows its contents.

_&A0*
1 IT MNOST MM
!->» i - -

0 T.UN*

1 T_CT1

1-«A* T^CTI

I T ADA

J_ J_ * 1 9 . i i c i ° t ' i '
RIOUMT SLOCK POINf|6H'S*MA*t4O«e f|AV«

nesi nvf o *OR SYSTEM use AS A JOINTS*

RETURN STATUS

STA«T

AHGUMfNT

Figure D-5. Format of Task Request Block

Table D-9. Contents of Task Request Block

Word Label Bit(s) Contents

-$AF

-1

T_RRB/

T_SEM

0-31

0-15

Depending on the condition of the S- or
R-bits of T_CT1, this field contains a
2-word task request block pointer (R-bit
on)f or a 1-word semaphore name (S-bit
on). Set by user? used by system when
request terminates.

T_LNK 0-31 Reserved for system use.

$AF T_CT1 0-7

8(T)

9(W)

A(0)

Return status.

This bit is set (on) while the request
using this block is executing; it is
reset when the request terminates. The
system controls this bit; the user
should not change it.

Wait bit. Set by user if the requesting
task is flo_t to be suspended pending the
completion of the request that uses this
block.

User bit. User may or may not use this
bit? the system does not change it.

D-15 CZ05-00

Table D-9 (cont). Contents of Task Request Block

Word

$AF
(cont)

„

:

_1+$AF

2+$AF

2+2* $AF

Label

T_CT1
{cont)

i

,

T__CT2

T_ADR

T_PRM

Bit(s)

B(S)

C(P)

D(R)

E(D)

F

0-7

8-15

0-15

Contents

Release semaphore indicator.

0 = No release; 1 = Release, on comple-
tion, semaphore item named in
T_SEM.

Must be set by user if TRB is to be
referenced by a Wait Any ($WAITA) macro
call. If set, TRB can be referenced
only by $WAIT or $WAITA issued by the
requesting task.

Return task RB indicator.

0 = No dispatch; 1 = Dispatch task
request block named in T__RRB after com-
pletion of this request.

Delete TRB indicator. Used usually with
the B(S) and D(R) bits.

0 = No delete; 1 = Delete and when task
terminates, return memory to pool where
TRB is first entry of its memory block.

Implicit task start address. Must
always be 1 for TRB.

Logical resource number (LRN) .

Must be zero.

Start address if the I-bit of T_CT1 is
reset (zero) .

Beginning of argument list.

D-16 CZ05-00

PARAMETER BLQCft FORMAT

Figure D-6 shows the format of the parameter block,

NUMBER Of "AHAM6 re MS

AOOflESSOt I

AOO«£5SOf »ABAMETE« 2

AOOAESS Of I»AHAM{ TEH ,

«HJM8€» Of 8 V T 6 S

>SC» C"»RACT6« | ASCII CHARACTER

ASCII c»«®ACTe»

I O 8v f f S

«SCH

a .*>•

Figure D-6. Format of Parameter Block

NOTE

The parameter value strings need not be contiguous
with the address portion of the parameter block?
if the block is system-generated, each parameter
will have a trailing blank that is not included in
the byte count.

D-17 CZ05-00

WAIT LIST FORMAT

Figure D-7 shows the format of the wait list.

NUMBER/ITEMS TO WAIT FQfl TOTAL ITEMS IN CIST

AOORCSS o* FIRST BEQUEST BLOCK

EIGHTH BEQUEST SLOCK

Figure D-7. Format of Wait List

MESSAGE GROUP REQUEST BLOCKS

Tables D-10, D-ll, and D-12, respectively, show the content
of the following message group request blocks:

• Message group control request block (MGCRB)
• Message group initialization request block (MGIRB)
• Message group recovery request block (MGRRB).

Templates for these request blocks are generated by the
$MGCRT, $MGIRT, and $MGRRT macro calls, respectively.

S.

The request blocks can be generated by the $MGCRBf $MGIRBr
and $MGRRB macro calls, respectively.

Message group request blocks are used by the message facil-
ity for sending requests between task groups or tasks.

D-18 CZ05-00

Table D-10. Message Group Control Request Block (MGCRB)

Word Label Bit(s) Contents

MC_OS 0-31 Pointer? reserved for system use.

?AF MC_MAJ

0-7

8(T)

Major status.

Reserved for system use.

This bit is set (on) while the request
using this block is executing? it is
reset when the request terminates.
The system controls this bit? user
should not change it.

$AF MC_MAJ 9(W)

A(U)

B(S)

C(P)

D(R)

E(D)

F

Wait bit. Set if the requesting task
is not to be suspended pending the
completion of the request that uses
this block. !

User bit. User may or may not use
this bit? the system does not change
it. Display processing uses this bit
during a write.

Release semaphore indicator. Values:
0 = No release? 1 = Release (on close-
out) of semaphore,- which must be in
MC_OS -1.

Must be set by user if MGCRB is to be
referenced by a Wait Any ($WAITA)
macro call. If set, MGCRB can be
referenced only by $WAIT or $WAITA
issued by the requesting task.

Return request block indicator.
Values: 0 « No dispatch? 1 = Dis-
patch request block whose address must
be contained in MC_OS -$AF, after
closeout of this request.

Delete request block. Values: 0 = No
delete? 1 = Delete, and return memory
to the pool where MGCRB is the first
entry of its memory block.

I/O bit. Must be set* ;* . ^ ,

D-19 C205-00

Table D-10 (cont). Message Group Control Request Block (MGCRB)

Word

1+$AF

i
i

- i

1
• i

2+$AF

2+2*$AF

3+2*$AF

4+2*$AF

~5+2*$AF

6+2*$AF

I

7+2*$AF

Label

MC_OPT

MC_BUF

MC_BSZ

MC_DVS

MC_REC

MCJRSR

MC_MRU

MCLWTI

MC_EXT

Next 7
words

Bit(s)

0-7

8

9

A

B

C-F

0-31

0-F

0-F

0-F

0-7

8-F

0-7

8-F

Contents

General options:

Reserved for system use.

Must be 0.

Byte index. 0 - Buffer begins in
leftmost byte of the word; 1 = Buffer
begins in rightmost byte.

Must be 0 .

Must be 1 (extended MGCRB) .

Must be 0 .

Buffer pointer.

Buffer range (in bytes) .

Record-type code.

On send, insert record-type code? on
receive, return assigned record-type
code.

Residual range (in bytes) .

End message recovery unit (MRU) .
Reserved for system use.

Wait test indicator.
00 = Return null value to application;
01 = Wait.

Extension mechanism.

Binary value of 13+2*$AF, i.e.f number
of words in MGCRB following the
extension word.

Must be hexadecimal ' 7 ' .

Reserved for system physical I/O use.

D-20 CZ05-00

Table D-10 (cont). Message Group Control Request Block (MGCRB)

Word

14+2*$AF

15+2*$AF

16+2* $AF

-17+2*$AF

1 8-1-2 *$AF

18+3*$AF

19+3*$AF

_19+4*$AF

22+3*$AF

Label

MC_FNC

MC_REV

MC_MGI

MC_LVL

MC_LVR

MC_LVD

MC_PCI

MC_VDP

MC_TGI

MC_TSK

MC_NPI

MC_LEN

Bit(s)

0-7

8-P

0-F

0-7

8-F

0-F

0-31

0-F

0-31

0-F

0-F

Contents

Function. Reserved for system use.

Revision. Must be hexadecimal '21.

Message group id.

Returned in the $MINIT and $MACPT
macro calls.

Enclosure level.

Enclosure level requested.

Enclosure level detected according to
the following ASCII values: 0 = Not
end of record; 1 » End of record? 2 =
End of quarantine unit; 5 = End of
message.

Must be 0.

Must be zero.

Reserved for system use.

Pointer. Reserved for system use.

Must be 0 .

Length of text received.

Table D-ll. Message Group Initialization Request Block (MGIRB)

Word

0

Label

MI_OS

Bit(s)

0-31

Contents

Pointer. Reserved for system
use.

D-21 CZ05-00

Table D-ll (cont) Message Group Initialization Request Block
(MGIRB)

Word Label Bit(s) Contents

$AF MI_MAJ

0-7

8(T)

9(W)

A(U)

C(P)

D(R)

E(D)

Major status.

Reserved for system use.

This bit is set (on) while the
request using this block is exe-
cuting; it is reset when the
request terminates. The system
controls this bit; user should
not change it.

Wait bit. Set if the requesting
task is not suspended pending the
completion of the request that
uses this block.

User bit. User may or may not
use this bit; the system does not
change it.

Release semaphore indicator.
Values: 0 =» No release; 1 =
Release, on termination of this
request, semaphore whose name
must be in MI_OS -1.

Must be set by user if MGIRB is
to be referenced by a Wait Any
($WAITA) macro call. If set,
MGIRB can be referenced only by
$WAIT or $WAITA issued by the
requesting task.

Return request block indicator.
Values: 0 = No dispatch. 1 =
Dispatch,, after termination of
this request, request block whose
address must be contained in
MI_OS -$AF.

Delete I/O request block.
Vc,lues: 0 = No deleter 1 =
D<- -ete, and return raer ry to the
pc 3l where this MGIRB 3 the
first entry of its memory block.

I/O bit. Must be set.

D-22 CZ 05-00

Table D-ll (cont). Message Group Initialization
Request Block (MGIRB)

Word

1+$AF

2 + $AF

2+2*$AF

3+2*$AF

4+2*$AF

5+2*$AF

6+2* $AF

-

7+2*$AF

14+2*$AF

;

15+2*$AF

Label

MI_OPT

MI_BUF

MI_BSZ

MI_MPD

MI_RSR

MI_MDE
MI_IOP

MI_EXT

MI_DV2
(three
words)

MI_FNC

MI_REV

MI_MGI

Bit(s)

0-7
8-A
B
C-F

0-31

0-F

0-F

0-F

0-7
8-F

:&*r .

>

8-F

0-F
0-F
0-F

0-7

8-F

0-F

Contents

General options.

Reserved for system use.
Must be 0.
Must be 1 (extended MGIRB) .
Must be 0. '

Must be zero.

Buffer range (in bytes) .
Must be 0.

Message path description
identifier. Must be hexadecimal
•01'.

Residual range (in bytes) .

Must be 0.
Must be 0.

Extension mechanism.

Binary value of 31+2*$AF, i.e.,
number of words in MGIRB
following the extension word.

Must be hexadecimal '7'.

Maturity date/time in standard
internal date/time format (see
$INDTM) .

Function. Reserved for system
use.

Revision. Must be hexadecimal
•2'.

Message group id.

Returned in the $MINIT and $MACPT
macro calls.

D-23 CZ05-00

Table D-ll (cont). Message Group Initialization
Request Block (MGIRB)

Word

16+2* $AF

18+2*$AF

19+2*$AF

20+2*$AF

21+2* $AF

*• '

27+2*$AF

28+2*$AF

29+2*$AF

• t

36+2* $AF

Label

MI_PCM
(Two words)

MI_ADT

MI_NWI

MI_NDI

MI_MBI

(Six words)

MI_NWA

MI_NDA

MI_MBA

(•Six words)

MI_CNT

Bit(s)

0-F
0-F

0-7

8-F

0-F

0-F

0-F
0-F
0-F
0-F
0-F
0-F

0-F

0-F

0-F
0-F
0-F
0-F
0-F
0-F

0-F

Contents

Must be 0 .
Must be 0 .

Address type.

Address type (initiator); must be
hexadecimal '1'.

Addr "53 type (acceptor); must be
hexa cimal 'I1.

Must be 0. !

Must be 0 .

Initiator mailbox name.

Must be from 1 to 12 ASCII char-
acters, blank-filled, left justi-
fied as specified when the mail-
box was created, indicating that
only messages with this identi-
fier will be accepted; or six
words of zeros, indicating that
messages with any identifier will
be accepted.

Must be 0.

Must be 0.

Acceptor mailbox name.

Must be from 1 to 12 ASCII char-
acters specifying the acceptor
mailbox id, blank-filled, left-
justified. .

Count of number of active mes-
sages in the mailbox. Returned
with $MCMG macro call.

D-24 CZ05-00

Table D-ll (cont). Message Group Initialization
Request Block (MGIRB)

Word Label Bit(s) Contents

37+2*$AF MI_TGI 0-F Reserved for system use.

38+2*$AF MI_TSK 0-31 Pointer. Reserved for system
use.

38+3*$AF MI_SIP 0-31 Security information pointer.

Points to the security informa-
tion block (SIB) that points to
the logical submitter block con-
taining the user id (SI_PER), the
account id (SI_ACC), and the mode
(SI_MOD).

Table D-12. Message Group Recovery
Request Block (MGRRB)

Word Label Bit(s) Contents

MR_OS 0-3L Pointer,
use.

Reserved for system

$AF MR__MAJ

0-7

8(T)

9(W)

A(U)

Major status.

Reserved for system use.

This bit is set (on) while the
request using this block is exe-
cuting ; it is reset when the
request terminates. The system
controls this bit; user should
not change it.

I

Wait bit. Set if the requesting
task is not to be suspended pend-
ing the completion of the request
that uses this block.

User bit. User may or may not
use this bit; the system does not
change it.

D-25 CZ05-00

Table D-12 (cont). Message Group Recovery
Request Block (MGRRB)

Word

$AP
(cont)

\-

K*

1

~1+$AF

i

2+$AF

2H=2*$AF

3+2* $AF

4+2*$AF

Label

MR_MAJ
(cont)

•

MR_OPT

,

MR_BUF

MR_3SZ

MR_ITP

MR__RES

Bit(s)

B(S)

C(P)

D(R)

E(D)

F

0-7

8-A

B

C-F

0-31

0-F

0-F

0-F

Contents

Release semaphore indicator.
Values: 0 = No release; 1 »
Release, on closeout, of sema-
phore which must be in MC_OS -1.

Must be set by user if MGRRB is
to be referenced by a Wait Any
($WAITA) macro call. If set,
MGRRB can be referenced only by
$WAIT or $WAITA issued by the
requesting task.

Return request block indicator.
Values: 0 = No dispatch; 1 =
Dispatch request block, whose
address must be in MC_OS -$AF,
after closeout of this request.

Delete I/O request block.
Values: 0 » No delete; 1 »
Delete, and return memory to the
pool where MGRRB is the first
entry of its memory block.

I/O bit. Must be set.

General options.

Reserved for system use.

Must be 0 .

Must be 1 (extended MGRRB) .

Must be 0 .

Pointer. Must be 0.

Buffer range. Must be 0.

Must be 0.

Residual range.
Reserved for system use.

D-26 CZ05-00

Table D-12 (cont). Message Group Recovery
Request Block (MGRRB)

Word

5+2* $AF

14+2*$AF

15+2*$AF

17+2*$AF

16+2*$AF

18+3*$AF

19+3*$AF

Label

MR_RSN

r

MR_FNC

MR_REV

HBJHGl

MR_CNC

MR_FMT

MR.J1RU
(Two words)

MR_AMU
(Two words)

Bit(s)

0-7

8-F

0-7

8-F

0-F

0-F

0-31

0-F
0-F

0-=F
0-F

Contents

Reason-f or-terminate code.
0 = Normal message group termina-
tion; 22-26 = User-defined
abnormal termination of message
group.

Reserved for system use.

Function. Reserved for system
use.

Revision. Must be hexadecimal
•02'.

Message group id. Returned in
the $MINIT and $MACPT macro
calls.

Reserved for system use.

Pointer. Must be 0.

Reserved for system use.
Reserved for system use.

Reserved for system use.
Reserved for system use.

D-27 CZ05-00

Appendix E
BACKUP AND RECOVERY

MOD 400 supports facilities that enable you to save and
restore disk files, preserve the execution environment during a
power failure, perform file recovery at the record level, and
restart a program from a previously established point.

The save/restore facility allows you to preserve selected
disk files and directories on magnetic tape or another disk
volume and, when later required for processing, to restore the
files, directories, and associated structures to disk.

The power resumption facility uses the memory save and auto-
restart unit to preserve the memory image through a power failure
lasting up to two hours. If power is restored during this time,
the power resumption facility reconnects the previously online
peripheral and communication devices and restarts the tasks that
were running when the power failure occurred. If the power fail-
ure lasts more than two hours, the memory image is destroyed and
the power resumption facility disabled. When power is restored,
the user can reinitialize the system and use the file recovery
and checkpoint facilities to restart the system from a previously
established restart point.

*-

File recovery enables you to dynamically save record images
before they are updated and, if necessary, later write the images
back to the file, thereby returning the file to its unaltered
state. Pile recovery provides file integrity in the event of a
system failure.

E-l - CZ05-00

Pile recovery is provided through three distinct functions:

• "Before image" recording, which preserves a record prior
to its being updated.

• "Cleanpoint" or "checkpoint" declarations, which are
issued in your program and define a point at which all
updates are complete. When the updates are complete, the
associated before images are destroyed.

• "Rollback" or "restart" functions, which return the files
to their unaltered state by applying all before images

. > that have been recorded since the last Cleanpoint.

The Cleanpoint and rollback functions ^uld be used to pro-
vide file recovery in a transaction-orient environment. They
are best suited for applications in which <_ ingle transaction
causes a number of record updates. In a batch processing envi-
ronment, the checkpoint and restart procedures should be used for
file recovery and program restart.

The checkpoint restart facility enables you to establish a
point in the program to which you can return at a later time and
continue processing. The return point (checkpoint) is used to
save the current status of the task group. You issue a check-
point call in the program when you reach a point in processing
where the program could be restarted. A restart can be performed
at the most recently completed checkpoint at any time during pro-
cessing. If the task group is abnormally terminated for any
reason, it can be restarted at the most recent valid checkpoint.

DISK FILE SAVE AND RESTORE *

The Save and Restore programs allow you to save and restore
disk files and directories. Save is used to save disk files and
directories on a disk or magnetic tape volume for later restora-
tion by Restore.

The Restore program reconstructs the file structures copied
by the Save program. If a file being restored already exists on
the volume (or volumes), the Restore program replaces the current
file contents with the file data saved by the Save program* (The
access list is not altered.) If a file being restored does not
exist on the volume, the Restore program creates the file and
loads the saved data. (Access is set as defined in the saved
file.)

POWER RESUMPTION

Power resumption is an optional facility that allows the
system execution environment to be automatically restarted after
a power interruption. The DPS 6/Level 6 central processor must
have the memory save and autorestart unit. This unit can
preserve the memory image through a power failure lasting up to
two hours.

E-2 CZ05-00

(It cannot, however, preserve the state of the I/O controllers or
ensure that no operational changes have been made to the mounted
volumes.)

If fewer than two hours have elapsed when power is returned
to the central processor, the power resumption facility will per-
form the following functions:

• Reinitialize the system software.

• Reconnect peripheral devices.

• Reconnect communication devices serviced by the asynchro-
nous terminal device (ATD) line protocol handler or the
teleprinter (TTY) line protocol handler (see the System
Building manual for information on configuring devices
serviced by these LPHs; see Sections 8 and 12 of this
manual for information about the ATD and TTY LPHs,
respectively).

• Restart application tasks that were active at the time of
the failure.

the Power Resumption Facility

The power resumption facility must be included in the MOD 400
rExecutive at system building. The central processor must contain
a memory save and autorestart unit that has been activated by the
operator (see the System User's Guide for activation procedures).

When power resumption is specified in the system building .
dialog, all peripheral devices and all communication devices
associated with the ATD and TTY line protocol handlers are desig-
nated as reconnectable and will be automatically reconnected when
power is restored. If any ATD/TTY-associated device is not to be
'automatically reconnected, you must edit the CLM file to remove
'the -RECONNECT argument from the STTY directive generated for the
device. i
Power Resumption Procedures

The power resumption facility automatically performs the fol-
lowing functions:

• Restarts the device drivers, clock, communications subsys-
tem, and display formatting and control facility.

• Reconnects all peripheral devices that were online at the
time of the failure.

E-3 CZ05-00

• Reconnects ATD/TTY-associated communication devices that
were online at the time of the failure, except for those
devices designated as not reconnectable.

• Restarts the screen forms on reconnected terminals con-
trolled by the display formatting and control facility.

• Resets the system date and time if the date/time clock has
a separate battery backup unit.

• Reloads the memory management unit (if any).

• Reestablishes the integrity of mounted volumes.

• Restarts application tasks that were active when the power
failure occurred. (For an application to successfully
complete after being restarted, it may have to contain
user-written code to handle power failure/power
resumption.)

In order for an application task to be notified when a power
resumption has occurred, it must connect its own trap handler and
enable trap 53. Trap 53 condition will be signaled when the task
becomes active and is issuing its own instructions (not executing
Executive instructions). See "Trap Handling" in Appendix A.

After a power resumption has occurred, peripheral devices and
reconnectable ATD/TTY-associated devices that were online at the
time of the failure are again brought online. The system opera-
tor may be required to initialize certain peripheral devices. A
terminal user may be required to reenter the input line if he had
not pressed the RETURN or XMIT key when the failure occurred.
See the System User*s Guide for details.

PILE RECOVERY ' *
' I*

File recovery enables you to save record images from a file
before it is updated and to later write these images back to the
file, eliminating the alterations made during the updating.
Every time a record is updated, a copy of the record, as it
exists before the update, is written to a system-created file.
The system-created file is called a recovery file? the records it
contains are called before images. The system uses the recovery
files to bring data files to a consistent state following a soft-
ware failure or a system failure such as that caused by a loss of
power. When the before images are applied in reverse chronologi-
cal order to the data files, the data files are rolled back to a
previously established state.

Designating Recoverable Files

File recovery is optional. You can designate a file as
recoverable through the -RECOVER argument of the create file (CR)
command. Files not created as recoverable can be made recover-
able by specification of the -RECOVER argument of the modify file
attribute (MFA) command.

E-4 CZ05-00

Recoverable files can be made nonrecoverable through the
specification of the -NORECOVER argument in the MFA command.

Recovery File Creation

Each task (or task group in some cases) having a data file
designated as recoverable has associated with it a recovery
file. The recovery file is created by the system when the first
before image for a recoverable file is about to be written.

If the tasks in a task group have only sharable files, only
one recovery file exists for the group. If any task in a task
group has an exclusive .file, one recovery file is created for
each task in the group.

All recovery files are created subordinate to your working
directory. The names of the files are recorded in the RECOVERY
directory, which is positioned under the root directory of the
system volume. This directory is maintained by the system. Each
recovery file is assigned a name of the form:

$$RECOV.ggtt - • -
1 , f-- r -Jf

where: i • . ,
4- .

gg - Group identifier
tt - Task identifier -

File Recovery Process

The system recovers a data file (i.e., erases the updates,
made to it) by writing the before images back to the file.

You can declare points in your processing (called clean-
points) at which all file updates are considered valid. When a
cleanpoint is declared, all before images taken up to that point
are invalidated. New before images are written when you begin to
update the file.

You can perform a rollback at any time during processing.
When a rollback is requested, the before images are written to
the file, wiping out updates made since the last cleanpoint.

Use of the cleanpoint and rollback functions is recommended
in a transaction-oriented environment.

TAKING CLEANPOINTS ' * - ! '! ' • ,
, i i' . i , •

When you consider the data in your file to be consistent and
valid, you declare a cleanpoint in your program. Cleanpoints are
established by CALL "ZCLEAN" statements in COBOL programs or
$CLPNT macro calls in Assembly language programs.

E-5 CZ05-00

When a cleanpoint is declared, the system performs the following
actions:

• Writes all modified buffers to disk

• Updates all directory records J.

• Invalidates the recovery file before images that have been
taken for the data file

• Unlocks all records previously locked by the user (tasks
v i waiting for these records are activated).

Note that the file system performs a cleanpoint when a
recoverable file is closed.

REQUESTING ROLLBACK

Rollback initiates the recovery of a file to the condition in
which it was at the last cleanpoint. If programming in COBOL,
you request a rollback by coding a CALL "ZCROLL" statement. If
programming in Assembly language, you request a rollback by
coding a $ROLBK macro call. When a rollback is requested, the
system performs the following actions:

• Takes before images from the recovery file and writes them
to the data file, thereby wiping out updates made since
the last cleanpoint.

• Invalidates the before images on the recovery file.

• Unlocks all records previously locked by the user. (Tasks
t waiting for these records are activated.)

The file system performs a rollback when a task group termi-
nates abnormally.

RECOVERING AFTER SYSTEM FAILURE . ''

When the system is reinitialized following a system failure,
it checks for the existence of recovery files. If recovery files
do not exist, files had not previously been declared as recover-
able or updates had not previously been made to recoverable
files. If recovery files do exist, the system failure occurred
while updates were being made to a file that had the recover
attribute. If recovery files exist, the operator should issue
the Recover command so that the system will perform a rollback of
all recoverable data files. See the System User's Guide for
details.

E-6 CZ05-00

CHECKPOINT RESTART

The checkpoint restart facility allows you to provide a file
recovery and program restart capability in a batch processing
environment. Through checkpoint restart you can establish a
point in your program to which you can return at any time and
continue processing. This return point (called a checkpoint) is
used to save the current status of the task group request. You
can perform a restart to the most recently completed checkpoint
after the abnormal termination of the task group request or at
any point during the processing of the task group request. A
restart cannot be performed from an earlier checkpoint, nor can
it be performed after the normal termination of a task group
request.

Checkpoint restart does not support the use of the Listener
secondary login facility.

Checkpoint

When a task requests a checkpoint, the system records the
current contents of your memory and the current state of tasks,
files, and screen forms onto a checkpoint file previously
assigned. The system then takes a cleanpoint so that recoverable
files are synchronized with that checkpoint. See "File Recovery"
earlier in this section for a description of recoverable files
and cleanpoints.

The system supports one checkpoint task and any number of
other tasks that are dormant or are waiting on requests placed
against other tasks in the task group. (Thus, a single active
command executing under the command processor and/or any number
of nested ECs can be checkpointed.)

Checkpoint File Assignment

You can enable the checkpoint restart facility for your task
group and designate where its checkpoint images are to be
recorded by issuing the checkpoint file assignment (CKPTFILE)
command.

Checkpoints are written alternately to each of a pair of
checkpoint files. This technique ensures the availability of the
previous valid checkpoint if a failure occurs during the process
of taking a checkpoint. The system locates and uses only the
most recently completed successful checkpoint from the pair of
checkpoint files that you have specified.

When designating the checkpoint file, you specify a single
pathname (the last element of which can be a maximum of 10 char-
acters) . The system appends the suffixes .1 and .2 as appropri-
ate. If the system cannot find one or both of the specified
checkpoint files, it creates it/them.

E-7 CZ05-00

TAKING A CHECKPOINT

When a checkpoint is taken, the system writes a checkpoint -̂
image and performs a cleanpoint for all recoverable files. If
programming in Advanced COBOL, you request a checkpoint by coding
a CALL "ZXCKPT" statement or using the RERUN clause in the
I-0-CONTROL paragraph. If programming in Assembly language, you
request a checkpoint by coding a $CKPT macro call.

Your task group must be in a "checkpointable" state when it
requests a checkpoint. A task group is in a checkpointable state
when each task that is part of the group has requested a check-
point, is waiting on a request issued to another task in the task
group, or is dormant (i.e., there are no current requests for the
task).

Once a checkpoint is recorded by a task group,' it remains
Available as a restart point until the next checkpoint request is
completed, the current checkpoint file is disassigned (by the ^
-DISASSIGN argument of the CKPTFILE command), or the task group
request is terminated normally.

The lead task of the group may be waiting on both another
task which is a member of the group and a "break" request.

CHECKPOINT PROCESSING

When a task group takes a valid checkpoint, the system
records the following information on the checkpoint file estab-
lished for that group.

1. Executive information, including data structures, user
pool memory blocks, data segments of bound units linked
with separate code and data, and floatable overlays.

2. Status and pathnames of the standard I/O files and of
nonsharable bound units-.

3. Memory locations and pathnames of sharable bound units.

4. Current state of screen forms for terminals operating
under the display formattting and control facility.

5. Status and position of all active files (i.e., files that
have been associated, reserved, or opened).

When your file information has been recorded, the checkpoint
image is completed and a cleanpoint is taken. You must ensure
that files to be synchronized with the checkpoint restart process
have been designated as recoverable. Since the file system per-
forms a cleanpoint when a recoverable file is closed, you may
have to take a checkpoint prior to closing the file to keep
checkpoint restart synchronized with the state of the recoverable
file. (Temporary files cannot be designated as recoverable.)

E-8 CZ05-00

Checkpoints cannot be taken while an active local mail mes-
sage group exists (i.e., a checkpoint cannot be taken in the
period between message initiation or acceptance and message
termination).

Checkpoints are not made automatically obsolete by the normal
termination of the task under which they were issued. To invali-
date a previous checkpoint (taken during the execution of one
command) before processing a new command, you must take a check-
point immediately prior to the termination of that command.

t +

Restart

You can perform a restart at the following times:

• During the processing of the task group request that
issued the checkpoint restart.

• During the processing of a task group request that was
scheduled after the abnormal termination of the task group
request in which the checkpoint was taken.

• When the system is reinitialized following a system
failure.

*
When a restart request is issued, the task group issuing the

request is terminated abnormally and the task group request
recorded on the checkpoint file is again put into effect.
/

The system locates the most recently completed checkpoint and
reads the. checkpoint image from the file, rebuilding the Execu-
tive data structures and memory blocks, reloading bound units,
and repositioning active files.

f ••

Procedural code and workspace must occupy the same physical
memory locations that were used when the checkpoint was taken.
In general, task groups that are to be restarted must be the sole
users of exclusive memory pools or must be in a swap pool.
Sharable bound units referred to by these groups must be
permanently loaded (through the Load command in the system
startup EC file). The configuration under which the restart is
performed must be identical to that which existed when the
checkpoint was taken.

REQUESTING A RESTART t

To restart from the last completed checkpoint (and to abort
the current task group request if restarting during the session),
you issue the Restart command. The operator can restart an
existing task group that has a valid checkpoint by using the
-GROUP argument of the Restart command. If the memory blocks
required to effect the restart are not available, the restart
will be aborted. Specification of the -WTMEM argument of the
restart command will cause the system to wait until the specific
memory blocks required to perform the restart become available.

E-9 CZ05-00

If this is a restart following a system failure, the Recover
command must have been issued by the operator or through an EC
file to perform a system-wide rollback of all recoverable files. ^

If a restart is performed during a session, the abort
(termination) of the group request will cause a rollback of all
recoverable files in your task group. The abnormal termination
of the group request causes the last completed checkpoint image
to be retained as a valid checkpoint. The Abort Group and Abort
Group Request commands force an abnormal termination; the Bye
command causes a normal termination. The normal termination of
the command processor with a nonzero value in the $R2 register is
treated as an abnormal termination for checkpoint file purposes.

" *" -

RESTART PROCESSING
• "* t •,

When the Restart command is issued, the system performs the
following steps:

^
1. Locates the most recently completed checkpoint.

2. Validates that the restart is being performed under the —•x
same user id as that used when the checkpoint was taken.

3. Rebuilds Executive data structures.
i

4. Reads nonsharable bound units, data segments, floatable
overlays, and memory blocks that were obtained by
get-memory operations from the checkpoint image into the
same memory locations they occupied at the time the

- ' checkpoint was taken.

5. Reloads sharable bound units in the system memory pool.
Only the code segment is reloaded if the bound unit was

> linked with separate code and data. Unless it was linked
I with the restart relocatable attribute (Linker RR direc-

' 1 tive), the code segment is reloaded at the same system
pool memory locations occupied when the checkpoint was
taken.

6. Associates, gets, opens, and positions active user files _^
recorded on the checkpoint image. Rollback should have
been performed already; see "Requesting a Restart" above.

7. Restores the screen content of terminals that were oper-
ating under the display formatting and control facility

- i and were active at the time of the checkpoint.

8. Reissues the break request if such a request had been
- i issued by the lead task at the time of the checkpoint. •

9. Turns on the task that issued the checkpoint request at
the next sequential instruction after the checkpoint.

E-10 C205-00

The checkpointed state of the standard I/O files is reestab-
lished at restart time. Modifications made to files (e.g., EC
files) between the checkpoint and the restart must be restricted
to those that do not invalidate the repositioning of the files.
A command being restarted must remain in the same position in the
file; only those commands that follow the restarted command have
any effect on the restarted task group request.

Sharable bound units being used by a checkpointed task group
are reloaded and not restored from a checkpointed memory image
(except for the data segments of bound units linked with separate
code and data). Thus, all such bound units should contain only
code. All sharable bound units in use by a restarting task group
must be identical to the versions that existed at the check-
point. They cannot be relinked. If an overlay area table (OAT)
is in use for such a bound unit, no overlay area can be reserved
at the time the checkpoint is taken.

If the application programs that issue physical I/O orders
for communication devices, you must reissue connects to those
devices before issuing read and write orders to them.

E-ll C205-00

*

Appendix F
ASCII AND EBCDIC
CHARACTER SETS

Tables F-l and F-2 illustrate the ASCII and EBCDIC character
sets, respectively. In addition to the ASCII characters, Table
F-l shows the hexadecimal equivalents; Table F-2 shows the binary
and hexadecimal equivalents of the EBCDIC character set.

Following are lists of the control characters and special
graphic characters that appear in the two tables:

CONTROL CHARACTERS

ACK Acknowledge
BEL Bell
BS Backspace
BYP Bypass
CAN Cancel
CC Cursor Control
CR Carriage Return
GUI Customer Use 1
CU2 Customer Use 2
CU3 Customer Use 3
DC1 Device Control 1
DC2 Device Control 2
DCS Device Control 3
DC4 Device Control 4
DEL Delete
DLE Data Link Escape
DS Digit Select
EM End of Medium
ENQ Enquiry
EO Eight Ones
EOT End of Transmission
ESC Escape
ETB End of Transmission Block
ETX End of Text
FF Form Feed
FS Field Separator
SUB Substitute
SYN Synchronous Idle
TM Tape Mark

GE Graphic Escape
GS Group Separator
HT Horizontal Tab
IFS Interchange File Separator
IGS Interchange Group Separator
IL Idle
IRS Interchange Record Separator
IUS Interchange Unit Separator
LC Lowercase
LF Line Feed
NAK Negative Acknowledgement
NL New Line
NUL Null
PF Punch Off
PN Punch On
RES Restore
RLF Reverse Line Feed
RS Reader Stop
SI Shift In
SM Set Mode
SMM Start of Manual Message
SO Shift Out
SOH Start of Heading
SOS Start of Significance
SP Space
STX Start of Text
UC Uppercase
US Unit Separator
VT Vertical Tab

F-l CZ05-00

SPECIAL GRAPHIC CHARACTERS

$ Cent Sign
Period, Decimal Point

< Less-than Sign
(Left Parenthesis
+ Plus Sign
' Logical OR
& Ampersand
1 Exclamation Point
$ Dollar Sign
* Asterisk
) Right Parenthesis
; Semicolon
-t Logical NOT

Minus Sign
/ Slash
I Vertical Line
, Comma
% Percent
__ Underscore
A Circumflex

> Greater-than Sign
? Question Mark
x Grave Accent
: Colon
Number Sign
@ At Sign
1 Prime, Apostrophe
= Equal Sign
" Quotation Mark
" Tilde
{ Opening Brace
-T Hook
V Fork
} Closing Brace
\ Reverse Slant •
,-j Chair
| Long Vertical Mark
[Opening Bracket
] Closing Bracket

Table F-l. ASCII/Hexadecimal Equivalents

- f
H2

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

0

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
LF
VT
FF
CR
SO
SI

I

OLE
DC1
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
SUB
ESC
FS
GS
RS
US

2

SP
!

'•

#

s
%
A
•

(
)
•

+
,
-
.
/

HI

3

0
1
2
3
4

5
6
7
8
9

.
<
a

>
-t

4

(f

A
6

C
D
E
F
G
H
1
J
K
L
M
N
O

5

P
Q
R
S
T
U
V
w
X
Y
Z

I
\
1
A

—

6
•

a
b
c
d
e
(

(
h
i
)
k
1
m
n
o

7

P
q
r
t

t
u
V

w

X

y
z

»>»

DEL

^

F-2 CZ05-00

Table F-2. EBCDIC/Hexadecimal/Binary Equivalents

TABLE C 2 E8COIC/H6XAOECIMAL/BINARY EQUIVALENTS

B
IT

 P
O

S
IT

IO
N

S
E

C
O

N
D

 H
E

X

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

t i to

1111

0

1

2

3

4

5

6

7

8

9

A

3

C

O

E

F

00

00

0

NUL

SOH

STX

ETX

PF

HT

1C

DEL

GEa

RLFa

SMM

VT

FF

CR

SO

SI

01

1

OLE

OC1

OC2

TM

RES

Nl_

as

IL

CAN

EM

CC

CU1a

IPS

IGS

IRS

IDS

10

2

OS

SOS

f=S

SYP

LF

ETB

ESC

SM

CU2a

ENO

ACK

8EL

11

3

SYN

PN

RS

UC

EOT

CU3a

DC«

NAK

sue

01

00

4

SP

•r-

<

(

>

'

01

s

&

'
s

•

1

;

~i

10

s

/

a

t

K

-

?

11

7

\a

;

s

<9>

-

10

00

3

a

b

c

0

a

f

9

h

'

01

9

j

k

1

m

n

O

p

q

r

10

A

3

S

t

u

v

w

X

V

i

11

B

11

00

C

i a

A

a

c

o

E

F

G

H

1

5a

ya

01

0

I'

J

K

U

M

N

0

p

Q

R

10

E

\a

S

T

U

V

w

X

Y

z

da

11

F

0

t

2

3

4

5

S

7

8

9

a
1

eoa

'THIS CHARACTER IS NOT SUPPORTED IN THE 2780 CHARACTER SET

SIT POSITIONS o. i

BIT POSITIONS 2. 3

FIRST HEXADECIMAL DIGIT

P-3 CZ05-00

1

Appendix G
DEVICE-SPECIFIC CONTROL

CHARACTERS

This appendix lists the nonalphanumeric control characters
for devices supported by the communications subsystem.

NOTE

In this appendix, a slash between two characters
indicates that both keys are pressed
simultaneously, e.g.t CTRL/H indicates that the
CTRL key and H key are pressed at the same time.

Table G-l. TTY Nonalphanumeric Control Characters

Character

ENQ

BEL

BS

Hexadecimal
Value

05

07

08

Function-

Answer back

Ring Bell

Backspace (nondestructive
cursor backward)

Key Strokes

CTRL/E

CTRL/G

CTRL/H

G-l CZ05-00

Table G-l (cont). TTY Nonalphanumeric Control Characters

Character

LF

FF

CR

SP

Hexadecimal
Value

OA

OC

OD

20

Function

Line feed

Form feed (clear screen)

Carriage return

Space

Key Strokes

CTRL/J

CTRL/L

CTRL/M

CTRL/P or
space bar

NOTE

In a terminal with lowercase capability,
uppercase characters require the use of the
shift.

Table G-2. VIP Nonalphanumeric Control Characters

Character
Hex

Value Function Key Strokes

BS

HT

LF

FF

CR

ESC

SP

08

09

OA

OC

OD

IB

20

Backspace.

Horizontal tab.

Line feed.

Form feed.

Carriage return.

First character of a 2-,
3-, oc 4-character es-
cape sequence used for
VIP terminal control.

Space.

CTRL/H

CTRL/I

CTRL/J or LINE FEED

CTRL/L

CTRL/M or RETURN

ESC

v

CTRL/P or space bar

G-2 CZ05-00

x

Appendix H
SUBSYSTEM MODULES

This appendix describes subsystem modules: their purpose,
structure, and interface with the Edit Profile and List Profile
utilities. The intent of this appendix is to help developers
create their subsystem modules according to the requirements of
these two utilities. For the sake of clarity? references to the
profiles file will be more technical than in the user-oriented
manuals. Specifically, a 'section' of a user profile is a record
in the profiles file? the 'attributes' of a section are the
fields of the record; a 'section id' is a two-character record-
type identifier located in the record header.

SUBSYSTEM RECORDS

A subsystem record is 188 bytes long and consists of a
system-defined portion and a subsystem-defined portion. The
system-defined portion extends from bytes 0 through 59. This
area of the record cannot be accessed by the subsystem or
subsystem module.

The remainder of the record, defined by the subsystem, is
subdivided into two regions. Subsystem region 1, also known as
the access level region, extends from bytes 60 through 97. This
region can be read by the subsystem proper but can be written to
only by Edit Profile (via a subsystem module).

H-l CZ05-00

Subsystem region 2 extends from bytes 98 through 188. It can
be read or written to both by the subsystem proper and Edit/List
Profile (via a subsystem module). The subsystem proper uses
profiles file macro calls, documented in Volume II of this
manual, to read and write the subsystem records.

Subsystem-defined fields processed by Edit/List Profile (via
a subsystem module) must begin on an even byte (word boundary).

EDIT PROFILE fEP^ SUBSYSTEM MODULES
/

When the System Administrator uses Edit Profile's ADD, MOD,
or STATS functions on a subsystem record, EP calls the subsystem
module of that record type. The module provides EP with code and
data needed to perform the functions.

The module is a separate bound unit, linked non-sharable, and
without overlays. The naming convention is EP_id, where id is
the two-character record type identifier (section_id). The
module resides in a directory under the loader's search rules.

Edit Profile (EP) Module Contents

An EP module contains up to seven fundamental elements listed
below. The location within the module of any of these elements
is not important except for the pointer array, which must begin
at word one. Word zero (start address) must be the instruction
jmp $B5 (8385). This prevents the module from being executed as
an ECL command, which would cause a trap.

Elements of an EP module are: * -' * ' '"

1. Pointer array. • "
2. MOD function message number.
3. MODIFY routine.
4. Default values.
5. ADD routine.
6. Stat-names message number.
7. Table of statistics field descriptors.

Elements 6 and 7 need only exist if the subsystem record
contains statistics fields for display by the STATS function.

POINTER ARRAY • .' " •' * -

The pointer array starts at word 1 of the subsystem module
and contains six IMA pointers to the elements (2 through 7)
listed above (in the same order).

""* *

If the subsystem record contains no statistics, then the '"
pointers to elements 6 and 7 are zero.

The PTRAY assembler control statement is useful for creating
the pointer array.

H-2 CZ05-00

MOD FUNCTION MESSAGE NUMBER

This is a five digit number defined as a hex string constant
(i.e., DC Z'nnnnn'), identifying a message in the message
library.

The message is actually a table of names that is displayed in
list form by Edit Profile under the MOD function.

The entries in the table tell the user which fields can be
modified in the record. You may choose to specify individual
field names or, instead, group fields into categories, in which
case the table would contain the category names. - • . • •

The latter may be more helpful to the user but would entail
more work for the subsystem module developer because Edit Profile
processes only the initial table entries; your MOD routine would
have to display the elements of the chosen category. In either
case, the MOD routine must be coordinated with the make-up of
this table.

t>
The format of the table is as follows:

name I/name 2/name 3...name nl

Note that the entries are lower case, the slash character is used
as a separator, and the exclamation point is the end-of-table
marker. All other characters, including space, are legal for a
field name. The maximum length of an individual entry is 22
characters. The maximum total length is 240 characters (this is
a message library limitation).

The following example shows the first pointer in the array
pointing at the message number. Also shown is the message as it
would appear in the message library.

ptrary DC <msgnum , -

: msgnum DC Z'26301' .

Message library entry:

263010100000 login_id/login line defaults/current
terminal/language key/login traits/password status!

H-3 CZ05-00

NOTE

Creation of the message and insertion into the
message library must follow message reporter
specifications, which are found in System Messages
(CZ16).

Under the MOD function, Edit Profile retrieves the table from
the message library and displays it as a list with each entry
assigned an incremental number. Edit Profile also displays a
'NONE OF THE ABOVE' option following the last table entry, and
then prompts the user's selection. Figure H-l shows the format
of this list.

XX Section Menu

(1) name 1
(2) name 2
(3) name 3

(n) name n
(n+1) NONE OF THE ABOVE

Selection:

Figure H-l. MOD Function List Format

MODIFY ROUTINE

The subsystem module must contain a routine to change in
memory the field that the user has selected.

When the MOD function is executed, Edit Profile does the
following:

1. Loads ($BULD) the appropriate subsystem module into
memory.

2. Reads the subsystem record from the profiles file into
Edit Profile's memory buffer.

3. a. Displays in menu-like form the subsystem-supplied
table of names, each name assigned a number from 1
through n.

b. Prompts the user's selection.

4. Validates the selection to be within the range 1 through
n.

H-4 CZ05-00

^

5. Converts the selected number to hexidecimal and loads it
into $R1 (e.g., if 10 is selected, $R1 = OOOA).

6. Points $B1 at the access level region (byte 60) of the
record in memory.

7. Does a link and jump $B5 to the subsystem modify routine.

The subsystem MOD routine uses the value in $R1 to determine
which entry was selected from the list.

If a category was selected (assuming one was offered), the
routine displays a similar type of list containing the entries
under the chosen category, and then prompts for the user's
selection.

(. . . . • -•.

When the user's selection identifies a specific field, the
MOD routine prompts the user to supply the field's new
contents/value. ;

The routine replaces (in memory) the old field contents with
the new, puts zero in $R1 to signify a clean return, and jumps
back to Edit Profile at the address originally in $B5.

• •'••'• : ,•" ''.." ' . ! 5 .' •' :. NOTE '" .: . ' • • ' , ; : : '.. : :

"': The MOD routine can alter only bytes 60 through '
188 of the subsystem record (counting from
physical byte 1). l

The subsystem MOD routine: '; ' . ;

• Uses the error-out and user-in paths for all dialogue

• Does input verification on user responses
." -.: - • " - ' . . ' "• i~* •'•• '••']

• Does its own error reporting ' " ; "J

• Accepts YES, Y, NO and N as responses to yes/no questions

• Recognizes '?' as the help key and responds with a help
message if possible, or displays 'No help available' \

• Recognizes '<' as a 'back-up' key and returns to the
previous prompt/question. If '<' is received on the first
prompt, puts -1 in $R1 and returns to Edit Profile.

When the subsystem MOD routine returns, Edit Profile checks
$R1 and takes one of the following actions:

• $R1 = 0 (normal return). EP picks up at step 3
redisplaying the list but now offering two action keys (A)
Accept and (N) Negate. If 'A' is selected, the record in
memory (containing the changes) is written to the profiles
file and the MOD function is exited.

H-5 CZ05-00

• If 'N1 is selected, the original record is read from the
profiles file into memory, overwriting the changes made by
the subsystem MOD routine. EP then announces that the
changes have been negated and picks up again at step 3.

• $R1 =* -1 {back-up key used) . No change was made; EP
redisplays the list (step 3). The action keys are not
offered.

• $R1 X 0 or -1 (abnormal return). EP displays an error
message and exits the MOD function.

SUBSYSTEM DEFAULT VALUES *

The subsystem default values are a total of 128 bytes long
and represent the initial contents of the subsystem-defined
portion of the record (bytes 60 through 188).

When an ADD function is entered, EP creates a skeleton record
by copying the values into a memory bufffer before activating the
subsystem ADD routine.

ADD ROUTINE \

The subsystem module must contain a routine to build a new
subsystem record in memory field-by-field using information
gained from an interactive dialog with the system administrator.

When an ADD function is entered, Edit Profile builds a
skeleton record in memory containing the subsystem default
values. Edit Profile then sets $B1 pointing at the subsystem
defined portion (byte 60) of the skeleton and does a link and
jump $B5 to the subsystem ADD code.

The subsystem code issues directives and questions through
the error-out file requesting the administrator to respond with
field contents or answers to subsystem-specific questions. The
responses are accepted through user-in and validated. If the
response is invalid, the code issues a message to error-out
indicating the problem and then re-issues the directive or
question. Valid responses are put into the skeleton record at •
the appropriate offsets.

As in the MOD routine, the ADD routine must recognize the '?'
(help) and '<' (back-up) keys as defined by Edit Profile.

Return to EP is at the orginal $B5 address. Upon return, EP
checks the contents of $R1 as it does upon return from the MOD
routine.

H-6 CZ05-00

STAT-NAMES MESSAGE NUMBER

This is a 5-digit number defined as a hex string constant
identifying a message in the message library. The message is a
table of the names of the statistics fields that the STATS
function is to display.

The format of the table is exactly the same as the one
displayed by the MOD function and already described under "MOD
Function Message Number."

(- '

STATS DESCRIPTOR TABLE

The stats descriptor table contains a 3-word entry for each
statistic field in the record. The three words define the
stat-typer offset, and size of the field.

The stat-type word is a number indicating one of the
stat-types shown in Table H-l.

Table H-l. Edit Profile Statistic Field Types

Type

Decimal count

Hex count

Elapsed internal time

Internal date/time

Number

1

2

3

4

The offset word indicates the offset of the field in words.
(Keep in mind that the offset of the sixtieth word, for example,
is 59.)

The size word indicates the length of the field in words.

The following example shows a typical" stats descriptor table.

V - , '

stats DC 3, 49, 3 (elapsed time; offset: 49; size: 3 words) , / '
1. 52, 1 (decimal count; offset: 52; size; 1 word)
2, 53, 2 (hex count; offset: 53; size: 2 words)
4, 55, 3 (internal date/time; offset: 55; size: 3 words)

H-7 CZ05-00

LIST PROFILE fLP^ SUBSYSTEM MODULES

When List Profile processes a subsystem record/ it calls the s

LP subsystem module of that record type. The module is a
separate bound unitr linked non-sharable and without overlays.
The naming convention is LP_id, where id is the two character
record type identifier (section_id). The module resides in a
directory under the loader's search rules.

LP Module Contents '

An LP subsystem module contains up to four fundamental
elements listed below. The location within the module of any
element is not important except for the pointer array, which must
begin at word one. Word zero (start address) must be the
instruction jmp $B5 (8385). This prevents the module from being
executed as an ECL command, which would cause a trap.

Elements of an LP subsystem module are: " * "' ' %

1. Pointer array. /

2. Message number.

3. Descriptor table.

4. Special-field routine.

Element 4 need exist only if the subsystem record contains
any special fields (see "Special Field Routine" later in this
appendix).

POINTER ARRAY

The pointer array starts at word one of the module and
contains three IMA pointers to the elements 2, 3, and 4 listed
above (in the same order).

If the module does not contain a special-field routine, then
the associated pointer is null (zeros).

^~J
Message Number

This is a five digit number defined as a hex string constant
(i.e., DC Z'nnnnn1), identifying a message in the message
library.

The message is actually a table of the field names in the
subsystem record.

The field names are displayed in a column by List Profile
when the record is listed.

H-8 CZ05-00

In format, the table is exactly the same as Edit Profile's
table of modifiable field names, described earlier in this
appendix under "MOD Function Message Number."

Creation of the message and insertion into the message
library must follow the rules of the Message Reporter, which are
explained in System Messages (CZ16).

DESCRIPTOR TABLE

The descriptor table contains a three-word entry for every
field in the record.*

The three words define: field type, offset, and size.

The field type word is a number indicating one or more field
types shown in table H-2.

Table H-2. List Profile Field Types

Type

Decimal count

Hexadecimal count

Elapsed internal time

Internal date/time

RFU

Special field

ASCII

Radix 40

Bit string

Number

1

2

3

4

5

£

7

8

9

The offset word indicates the offset of the field in words.

The size word indicates the length of the field in words.

*The table of field names and the descriptor table should contain
entries only for subsystem-defined regions (i.e., bytes 60
through 188). The table should not contain entries for
fields in the system-defined region of the record. No entry
need exist for any unused area(s) in bytes 60 through 188.

H-9 CZ05-00

*List Profile's output buffer is 80 bytes long including the
control word. The maximum length of a field's contents is 50
ASCII characters.

H-10 CZ05-00

SPECIAL-FIELD ROUTINE

Any field in the record whose contents require interpretation
by the subsystem/ such as an indicator word, cannot be processed
by List Profile alone. Such fields require the existence of a
subsystem module routine to interpret and display the field
contents.

When List Profile encounters a special field, it builds an
argument structure comprising the following elements:

• Address of List Profile's memory buffer containing the
subsystem record

• Address of List Profile's output buffer (points at the
control word)

• Offset of the current field (in words)

• Length of the current field (in words)

• Byte offset into List Profile's output buffer for
placement of field contents.

The addresses are two words in length; the last three
arguments are one word each.

List Profile places the ASCII field name in its output
buffer, points $B4 at the argument structure, and does a link and
jump $B5 to the subsystem routine.

The routine uses the information in the argument block to do
the following:

• Determine which special field is being processed (if there
is more than one in the record)

• Interpret the contents of the field

• Place the translated ASCII meaning in List Profile's
output buffer at the supplied offset _̂>

• Display the output buffer to user-out.*

The routine maintains control for as long as it needs. In
the case of an indicator word, for example, each bit may require
a separate display, in which case the routine would have to clean
the buffer after a $USOUT, interpret and print the next bit, and
so on.

When done, the routine uses $R1 as a status register: a zero
in $R1 signifies normal return; a non-zero value in $R1 signifies
an error. The subsystem returns to List Profile at the address
originally supplied in $B5.

ASCII-ONLY SUBSYSTEM RECORDS

The Edit Profile and List Profile utilities can add, modify,
and list a subsystem record without the use of a subsystem module
if both of the following conditions are met:

• The subsystem-defined portion of the record contains only
ASCII data

• The subsystem was declared (by the DEC function) to
operate in this mode of record maintenance.

Edit Profile and List Profile view an ASCII-only record as
having two data regions: region one in bytes 60 through 97;
region two in bytes 98 through 188.

Under the ADD and MOD functions, Edit Profile prompts the
System Administrator as follows:

Enter data for region 1:

Enter data for region 2:

Any unused portion of either region is blank filled. List
Profile displays all of region 1 (38-characters) and 50 of the
90-characters in region 2.

H-ll CZ05-00

^

INDEX

$AF SYMBOL, D-l

$D DEBUG (SEE: SINGLE-USER
DEBUGGER)

2780/3780 BSC LINE PROTOCOL
HANDLER
2780/3780 DIFFERENCES,
11-3
3780 CONVERSATIONAL REPLY,
11-15

ADVANCED DATA TRANSMISSION
MODE. 11-3
BASIC DATA TRANSMISSION
MODE, 11-2

BIDDING FOR LINE. 11-2
CONTROL BYTE (RECEIVE),
11-21
CONTROL BYTE (SEND), 11-24
OLE EOT SEQUENCE, 11-13
DOUBLE-BLOCK TRANSMISSION,
11-4, 11-15
EBCDIC TRANSPARENT INPUT,
11-23
EBCDIC TRANSPARENT OUTPUT,
11-26
END OF TRANSMISSION (EOT),
11-12
ENQ,ACK SEQUENCES, 11-2
INPUT DATA FORMAT, 11-20
IORB VALUES, 11-17
LINE CONTENTION, 11-2
MASTER STATION, 11-2
MULTI-BLOCK TRANSMISSION,
11-4, 11-6

NON-TRANSPARENT MODE, 11-17
OUTPUT DATA FORMAT, 11-24
REVERSE INTERRUPT (RVI)
MESSAGE, 11-2, 11-11
SINGLE-BLOCK TRANSMISSION,
11-4
SLAVE STATION, 11-2
TEMPORARY TEXT DELAY (TTD),
11-9

TIMEOUT INTERVALS, 11-15
WAIT BEFORE ACKNOWLEDGE
(WACK)f 11-10

ABSOLUTE PATHNAME, 14-7

ACCESSING SYSTEM (SEE:
SYSTEM ACCESS)

i-1

ASCII MODE. CARD READER/PUNCH,
6-14

ASCII-ONLY PROFILES FILE
SUBSYSTEM RECORD, H-ll

ASCII/EBCDIC CONTROL CHARAC-
TERS (LIST), F-l

ASCII/EBCDIC SPECIAL CHARAC-
TERS (LIST), F-2

ASCII/HEXADECIMAL BINARY
EQUIVALENTS, F-3

ASR/KSR DRIVER
IORB FIELDS. 6-38
KEYBOARD INPUT. 6-37
PRINTER OUTPUT. 6-37

ASSEMBLING PROGRAMS, C-l

ASYNCHRONOUS I/O, 4-3. 4-17

ATD (BLOCK MODE)
BLOCK SIZE, 8-57
CONNECT FUNCTION, 8-57
CONTROL WORD, 8-58
DISCONNECT FUNCTION, 8-60
END OF BLOCK TERMINATORS,
8-57
ERROR PROCESSING, 8-67
ETX/ETB OPTION, 8-64
KEYBOARD LOCK, 8-63
PREEMPTIVE DATA WRITE
OPTION, 8-63
QUIT ON BREAK OPTION, 8-64
READ FUNCTION, 8-61
RETURN STATUS CODES, 8-67
SPACE SUPPRESSION, 8-58
SUPERVISORY MESSAGES, 8-62
TERMINAL SPEED, 8-66
WRITE FUNCTION, 8-63
WRITE ORDER PROCESSING,
8-63

ATD (FIELD MODE)
AUTO-INSERT CHARACTERS,
8-27

CURSOR OUT OF FIELD OPTION,
8-36

DEFINE FORM REQUEST, 8-29

CZ05-00

INDEX

ATD (FIELD MODE) (CONT.)
ERROR PROCESSING, 8-56
FIELD ATTRIBUTE DESCRIPTOR,
8-30

FIELD DESCRIPTOR, 8-29
FIELDS, DEFINED, 8-26
FORMS, DEFINED, 8-26
HANG UP OPTION, 8-40
HARDWARE SWITCHES. 8-55
INPUT VALIDATION, 8-27
MUST RELEASE FIELD, 8-28
RETURN STATUS CODES, 8-55
SELECTABLE FIELD VALIDATION
SETS, 8-36
SEPARATE SIGN FIELD, 8-28
SUBFIELDS, DEFINED, 8-27
'SUPERVISORY MESSAGES, 8-33,
8-37

TIMEOUT PROCESSING, 8-56
TYPE AHEAD OPTION, 8-37

ATD (ROP MODE)
ATTENTION READ, 8-73
CONNECT FUNCTION, 8-69
CONTROL BYTE. 8-72
DISCONNECT FUNCTION. 8-70
OLE EOT CONTROL SEQUENCE,
8-71

ERROR PROCESSING, 8-76
ETX/ACK PROTOCOL, 8-68
PROHIBITED SEQUENCES. 8-71
RETURN STATUS CODES, 8-74

ATD (STREAM MODE)
CONNECT FUNCTION, 8-76
CONTROL BYTE, 8-78, 8-85
CONTROL CHARACTERS, 8-81
DISCONNECT FUNCTION, 8-77
EDIT OPTION, 8-82, 8-87
ERROR PROCESSING, 8-89
FILE TRANSFER EXAMPLE, 8-84
PHYSICAL CONFIGURATION,
8-89

READ FUNCTION, 8-85
SOLICITED TRANSFER, 8-87
TIMEOUT PROCESSING. 8-89
UNSOLICITED TRANSFER. 8-87
WRITE FUNCTION, 8-87
X-ON/X-OFF PROTOCOL,
8-80

i-2

ATD (TTY MODE)
BUFFERED MODE. 8-16
CHARACTER DELETION, 8-21
CHARACTER MODE. 8-16
CONNECT FUNCTION, 8-17
DISCONNECT FUNCTION, 8-18
ERROR PROCESSING, 8-26
HARDWARE SWITCHES, 8-25
HIDE FUNCTION, 8-22
LINE DELETION, 8-21
READ FUNCTION, 8-19, 8-23
WRITE FUNCTION, 8-23

ATD LINE PROTOCOL HANDLER
BLOCK MODE (SEE: ATD
(BLOCK MODE))

ERROR PROCESSING, 8-7
FIELD MODE (SEE: ATD
(FIELD MODE))

I/O FUNCTIONS, 8-4
IORB PROCESSING ORDER, 8-6
IORB USED BY (FIG), 8-5
ROP MODE (SEE: ATD (ROP
MODE))
STREAM MODE (SEE: ATD
(STREAM MODE))
TTY MODE (SEE: ATD (TTY
MODE))

ATTENTION READ, ATD (ROP
MODE), 8-73

AUTO CALL UNIT, 7-8

AUTO-INSERT CHARACTERS,
8-27

AUTOMATIC VOLUME RECOGNITON
(AVR), 14-11

BATCH PROCESSING, 14-27

BEFORE IMAGES, E-2. E-4

BIDDING FOR LINE (BSC), 11-2

BLOCK ERROR CHECK (BCC), 7-0

BLOCK MODE ,
ATD, 8-57
STD, 9-18

CZ05-00

^

INDEX

BLOCK SIZE, ATD (BLOCK MODE),
8-57

BLOCK TERMINATORS, ATD (BLOCK
MODE), 8-57

BOUND UNIT BREAKPOINT. 18-10

BREAK PROCESSING
ATD, 8-14
ATD (TTY MODE), 8-14
TTYf 2-10

BREAKING (INTERRUPTING) A
TASK, 13-5

BUFFERED MODE
ATD (TTY MODE), 8-16
TTY, 12-2, 12-9, 12-11

BUFFERED PRINTER ADAPTER (BPA)
CONFIGURING, 8-13
CONNECTING, 8-13. 8-17.
8-59

DISCONNECTING, 8-19
WRITING TO, 8-13, 8-25,
8-66

BUFFERED QUASI FULL DUPLEX
OPERATION (TTY), 12-3

CALLING EXTERNAL PROCEDURES,
B-3

CARD READER/CARD READER-PUNCH
DRIVER
ASCII MODE, 6-14
FUNCTIONALITY, 6-14
IORB FIELDS, 6-17
VERBATIM MODE, 6-15

CARD READER/PUNCH PATHNAMES,
14-11

CHARACTER MODE
ATD (TTY MODE), 8-16
TTY, 12-2

CHECKPOINTS
FILES, E-7
TAKING, E-7, E-8 .
REQUIREMENTS,
E-8

CLEANPOINTS, E-2, E-5

CLOCK REQUEST BLOCK (CRB)
(FIG), D-2, (TBL) D-3

COMMAND PROCESSOR, 14-12

COMMAND-IN FILE, 14-12

COMMUNICATIONS PROCESSING
• FUNCTION CODES, 4-24

USING FILE SYSTEM MACRO
CALLS, 4-1, 4-2
USING PHYSICAL I/O, 4-2,
4-15

CONNECT FUNCTION
ATD (BLOCK MODE), 8-57
ATD (ROP MODE), 8-69
ATD (STREAM MODE), 8-76
ATD (TTY MODE), 8-17

CONTROL BYTE
ATD (ROP MODE), 8-72
ATD (STREAM MODE), 8-78,
8-85

ATD, 8-12
BSC, 11-21, 11-24 :
PRINTER, 6-19
STD, 9-19
TTY MODE. 8-12
TTY, 12-9

CONTROL WORD
ATD (BLOCK MODE), 8-58
STD, 9-18 t

CONVERSATIONAL REPLY (BSC),
11-15

CURSOR OUT OF FIELD OPTION,
8-36

CYCLIC REDUNDANCY CHECK (CRC),
7-10

i-3 CZ05-00

INDEX

DCP (SEE: DUMP COMMUNCATIONS
PROCESSOR)

DEFERRED PRINTING, 14-24

DEVICE CLM DIRECTIVE, 4-14

DEVICE DRIVERS
ASR/KSR (SEE: ASR/KSR
DRIVER)
CARD READER/ PUNCH (SEE:
CARD READER/CARD
READER-PUNCH DRIVER)
CONSOLEr 6-37
CONTROL OP, 6-13
CONVENTIONS, 6-2
DATA STRUCTURES USED WITH,
6-2
DISK (SEE: DISK DRIVER)
FUNCTION CODES IN IORB,
6-3

MAGNETIC TAPE (SEE MAGNETIC
TAPE DRIVER)
PRINTER (SEE: PRINTER
DRIVER)

DEVICE SPECIFIC WORD DEFAULT
VALUES, 4-14

DIAL-UP TERMINAL, 13-2

DIRECT CONNECT TERMINAL, 13-2

DIRECTORIES, DISK (SEE:
DISK DIRECTORIES)

DISCONNECT FUNCTION
ATD (BLOCK MODE), 8-60
ATD (ROP MODE), 8-70
ATD (STREAM MODE), 8-77
ATD (TTY MODE), 8-18

DISK DIRECTORIES
CREATING, 14-16
DELETING, 14-18
DIRECTORY NAMES, 14-5
DIRECTORY/FILE
RELATIONSHIP, 14-2
RENAMING, 14-17
ROOT DIRECTORY, 14-3
SYSTEM BOOT DIRECTORY, 14-3

i-4

DISK DIRECTORIES (CONT.)
SYSTEM ROOT DIRECTORY, 14-3
USER ROOT DIRECTORY, 14-3
WORKING DIRECTORY, 4-4,
4-15

DISK DRIVER
CARTRIDGE DISK, 6-28
DISKETTE, 6-24
LARK DISK, 6-29
MASS STORAGE UNIT, 6-36

DISK FILES
ABSOLUTE PATHNAME, 14-7
FILE NAMES, 14-5
LOCATING, 14-21
OUTPUT, 14-22
PRINTING, 14-23 '- -
RELATIVE PATHNAME, 14-8
RESERVING, 14-25

DISK VOLUMES ;

CREATING, 14-14
RENAMING, 14-15

OLE EOT SEQUENCE.
ATD (ROP MODE), 8-71 "
BSC, 11-13

DOUBLE-BLOCK TRANSMISSION
(BSC), 11-4, 11-15

DUMP COMMUNICATIONS
PROCESSSOR (DCP)
COMMAND, 19-46
CONTENTS OF DUMP,
19-45

MEMORY POOL CONFIGURATION,
19-46
SAMPLE PRINTOUT. 19-47

DUMP EDIT (DPEDIT) UTILITY
COMMAND, 19-29
ERROR MESSAGES, 19-33
EXAMPLE. 19-8
INCOMPLETE DUMPS, 19-45
INTERPRETING DUMP,
9-42

LINE FORMAT, 19-5
LOGICAL DUMP CONTENT.
19-6
LOGICAL DUMP FORMAT, 19-6

CZ05-00

INDEX

DUMP EDIT (DPEDIT) UTILITY
(CONT.)
OPERATING PROCEDURE.
19-32
OVERVIEW, 19-4
PAGE HEADER, 19-5
PHYSICAL DUMP FORMAT, 19-6
SIGNIFICANT LOCATIONS IN
DUMP, 19-36

EDIT OPTION, ATD (STREAM
MODE) 8-82, 8-87

EDIT PROFILE SUBSYTEM MODULE
ADD ROUTINE, H-6
ELEMENTS OF, H-2
MOD FUNCTION MESSAGE, H-7
MODIFY ROUTINE, H-4
POINTER ARRAY, H-2
STATS DESCRIPTOR TABLE, H-7
STATS-NAMES MESSAGE, H-3

END OF MESSAGE (EOM)
SEQUENCES (TTY), 12-10

END OF TRANSMISSION (EOT),
11-12

ENQ,ACK SEQUENCES (BSC), 11-2

ERROR PROCESSING
ATD (BLOCK MODE), 8-67
ATD (FIELD MODE), 8-56
ATD (ROP MODE), 8-76
ATD (STREAM MODE). 8-89
ATD (TTY MODE), 8-26
ATD LPH, 8-17
STD, 9-23

ERROR-OUT FILE. 14-12

ETX/ACK PROTOCOL, 8-68

ETX/ETB OPTION, ATD
(BLOCK MODE), 8-64

EXTERNAL PROCEDURES,
CALLING, B-3

FIB (SEE: FILE INFORMATION
BLOCK)

FIELD DESCRIPTOR, 8-29

FIELDS OF FORMS, 8-26

FILE INFORMATION BLOCK (FIB)
DEFINING OFFSETS FOR, 3-22,
5-5

FOR DATA MANAGEMENT (TBL),
3-7, D-6

FOR STORAGE MANAGEMENT
(TBL), 3-18, D-8

FUNCTIONS OF, 3-7, 5-4
GENERATING, 3-7
MACRO CALLS USING FIB, 3-6,
3-23, 5-4

MODIFYING, 3-7
PROGRAM VIEW ENTRY,
3-13. (TBL) 3-14

SIZE TAGS, 5-6

FILE RECOVERY
BEFORE IMAGES, E-2, E-4
CHECKPOINT FILES, E-7
CHECKPOINT REQUIREMENTS,
E-8

CHECKPOINT. TAKING, E-7,
E-8
CLEANPOINTS, E-2, E-5
RECOVERY FILE CREATION, E-5
RESTART, E-9
ROLLBACK, E-2, E-5

FILE TRANSFER BY ATD
(STREAM MODE), 8-84

V

FILES, DISK (SEE: DISK
FILES)

FILES, MAGNETIC TAPE (SEE:
MAGNETIC TAPE FILES)

FORMS PROCESSING (SEE: ATD
(FIELD MODE))

FORMS, DATA ENTRY, 8-26

FUNCTION CODES ' " "
DEVICE DRIVER, 6-3
COMMUNICATIONS, 4-23

HANG UP OPTION, ATD (FIELD
MODE), 8-40

i-5 CZ05-00

INDEX

HARDWARE SWITCHES
ATD (FIELD MODE), 8-55
ATD (TTY MODE), 8-25
TTY, 12-3

HOLLERITH-ASCII CODE (TBL),
6-17

INPUT/OUTPUT REQUEST BLOCK
(IORB)
FORMAT (FIG), 4-20, (TBL)
4-21, (TBL) 6-9, (TBL)
D-9
FUNCTION CODES
(COMMUNICATIONS), 4-25

FUNCTION CODES (DEVICE
DRIVERS), 6-3
GENERATING, 4-2
SOFTWARE STATUS WORD
(I_ST). 4-19, (TBL) 6-12
STATUS CODES IN I_CT1
(TBL). 4-16

USE OF. 4-1, 4-17, 4-18,
6-2, 6-13

IORB (SEE: INPUT/OUTPUT
REQUEST BLOCK)

KEYBOARD LOCK, ATD (BLOCK
MODE), 8-63

LINE CONTENTION (BSC), 11-2

LINE EDITOR
ADDRESS FORMS, 15-5
COMPOUND ADDRESSES, 15-4
CONDITIONAL DIRECTIVES,
15-93
DIRECTIVE DESCRIPTONS
(SEE: LINE EDITOR
DIRECTIVES)
DIRECTIVE FORMATS, 15-3,
15-23, 15-33
DIRECTIVES (TBL), 15-16
EDIT MODE, 15-2, 15-33
FILENAME SUFFIXES, 15-3
INPUT MODE, 15-2, 15-22
INTERRUPTING, 15-2
INVOKING, 15-14

LINE EDITOR DIRECTIVES
ACCEPT SINGLE LINE FROM A
TERMINAL (1R), 15-69
ADDRESS PREFIX (?),
15-94

APPEND (A), 15-24
BUFFER STATUS (X), 15-70
CHANGE (C), 15-27
CHANGE BUFFER (BX), 15-72
CHANGE ORIGIN OF TEXT
DURING EDIT MODE. (IB),
15-73

CHANGE ORIGIN OF TEXT
DURING INPUT MODE.
(!B) , 15-76

COMMENT ("), 15-66
COPY (K), 15-78
COPY-APPEND (!K), 15-80
DELETE (D), 15-35
DESTROY (~B), 15-82 ,
EXCLUDE (V), 15-53
EXECUTE (E), 15-55
GLOBAL (G), 15-56
GO TO (>), 15-96
HEXADECIMAL DUMP (ZDUMP),
15-88
IF DATA (#), 15-98
IF EMPTY (*#) , 15-99
IF LINE (ADRt), 15-100
IF NOT LINE (ADR"#), 15-101
IF NOT RANGE (ADRS^i),
15-103
IF RANGE (ADRS#),15-102
INSERT (I), 15-30
LABEL (:), 15-106
LINE FEED (L/!L), 15-58
LOWERCASE (U), 15-59
MOVE (M), 15-83
MOVE-APPEND (1M), 15-85'
NEW CURRENT LINE (N), 15-60
PRINT (P), 15-37
PRINT LINE NUMBER
(»/lP), 15-61

PRINT WITH LINE NUMBER
(IP), 15-63

QUIT (Q/1Q), 15-41
READ (R), 15-42
SEARCH (*), 15-104
SEARCH NOT (**), 15-105
SUBSTITUTE (S/1S), 15-45
TYPE (T), 15-107
UPPERCASE (10) , 15-65

*

i-6 CZ05-00

INDEX

LINE EDITOR DIRECTIVES (CONT.)
WRITE (W), 15-49
ZREGEXP, 15-90
ZTRACE, 15-91

LINE PROTOCOL HANDLERS
2780/3780 BINARY
SYNCHRONOUS COMMUNICATIONS
(BSC) (SEE: BSC LINE
PROTOCOL HANDLER)

ASYNCHRONOUS TERMINAL
DRIVER (ATD) (SEE: ATD
LINE PROTOCOL HANDLER)
LISTED 7—1
OVERVIEW OF FUNCTIONS,
7-3
POLLED VIP EMULATOR (PVE)
(SEE: PVE LINE PROTOCOL
HANDLER)
SYNCHRONOUS TERMINAL
DRIVER (STD) (SEE: STD
LINE PROTOCOL HANDLER)
TELETYPE (TTY) (SEE: TTY
LINE PROTOCOL HANDLER)

LINKER
BASE, 16-4
CCM 16-4
COMM, 16-5
CPROT, 16-5
CPURGE, 16-5
DIRECTIVE DESCRIPTIONS
(SEEs LINKER DIRECTIVES)

DIRECTIVE FORMAT, 16-9
EDEF, 16-5
FLOATB, 16-= 4
FLOVLY, 16-4
GSHARE, 16-4
IN, 16-3
INTERRUPTING EXECUTION,
16-81

LDBU, 16-22, 16-33
LDEF, 16-2, 16-5
LIB, 16-3,
LIB2, 16-3
LIB3, 16-3
LIB4, 16-3
LINK, 16-3
LINKER COMMAND, 16-7
LINKN, 16-3
LINKNN, 16-3
LINKO, 16-3

LINKER (CONT.)
LOADING LINKER, 16-7
LSR, 16-3
MAP, 16-2
MAPU, 16-2. 16-5
ORDER OF LINKING, 16-43
OVERLAYTABLE. 16-5
OVLY, 16-4
PRIMARY DIRECTORY, 16-3,
16-38, 16-40

PROT, 16-5
PURGE. 16-5, 16-34
QUIT, 16-4
RERUN RELOCATABLE (RR),
16-6

SEARCH RULES, 16-3, 16-38
16-40

SEG, 16-4
SHARE, 16-4
STACA, 16-4
START, 16-4
SYS. 16-5
VAL, 16-5
VDEF, 16-2. 16-5
VDEF, 16-47
VPURGE. 16-47

LINKER DIRECTIVES
BASE, 16-11
CC (CALL-CANCEL), 16-18
COMMON, 16-19
CPROT, 16-20
CPURGE, 16-21
EDEF, 16-22
FLOATB6, 16-26
FLOVLY, 16-27
GSHARE, 16-29
IN, 16-30
INCLUDE. 16-32
1ST, 16-33
LDEF, 16-34
LIB, 16-38
LIB 2,3,4, 16-40
LINK, 16-41
LINKN, 16-43
LINKNN, 16-47
LINKO. 16-48
LSR, 16-49
MAP AND MAPU, 16-50
OVERLAYTABLE. 16-62
OVLY, 16-63
PROTECT, 16-65

i-7 CZ05-00

INDEX

LINKER DIRECTIVES (CONT.)
PURGE, 16-67
QUIT, 16-69
RERUN RELOCATABLE (RR),
16-70

RETURN, 16-71
SEG, 16-72
SHARE, 16-74
STACK, 16-75
START, 16-76
SYS, 16-77
VAL, 16-78
VDEF, 16-79
VPURGE, 16-80

LIST PROFILE SUBSYSTEM MODULE
DESCRIPTOR TABLE, H-9
ELMENTS OF, H-8
MESSAGE NUMBER, H-8
POINTER ARRAY, H-8
SPECIAL FIELD ROUTINE. H-10

LOGIN TERMINAL, 13-2

LOGIN, ABBREVIATED, 13-3

LOGIN. AUTOMATIC, 13-4

'LOGIN, MANUAL, 13-2

LONGITUDINAL REDUNDANCY CHECK
(LRC) , 7-9

MACRO CALLS
BATCH, 2-2
CLOCK, 2-2
COMMUNICATIONS, 2-3, 4-3
DATA MANAGEMENT, 3-3
DATE/TIME, 2-3
EXTERNAL SWITCH, 2-4
FILE MANAGEMENT. 3-1, 4-3
IDENTIFICATION AND
INFORMATION, 2-4

LISTED (TBL), 1-3
MEMORY ALLOCATION, 2-5
MESSAGE FACILITY, 2-5
MESSAGE REPORTING, 2-3
OFFSETS DEFINITION, 3-22
OPEN FILE. 4-5
OPERATOR INTERFACE. 2-6
OVERLAY HANDLING, 2-7
PHSYICAL I/O, 2-7

i-8

MACRO CALLS (CONT.)
REGISTER CONVENTIONS, B-4
REQUEST AND RETURN, 2-8
SEMAPHORE, 2-9
SOFTWARE REBOOT, 2-14
STANDARD SYSTEM FILE I/O.
2-10
STORAGE MANAGEMENT, 3-6
TASK GROUP CONTROL, 2-11
TERMINAL CONTROL, 2-9
TEST FILE. 4-5
TRAP HANDLING, 2-13
USER REGISTRATION, 2-13
WAIT FILE. 4-5

MACRO-ASSEMBLY PROGRAM (MAP)
INPUT, C-l
INVOKING, C-2
OUTPUT. C-l

MAGNETIC TAPE DRIVER
DRIVER TYPES SUPPORTED,
6-41
FUNCTIONALITIES, 6-42
IORB FIELDS. 6-43

MAGNETIC TAPE FILES
AUTOMATIC VOLUME RECOGNITON
(AVR), 14-11

FILE NAMES, 14-10
FILE ORGANIZATION,
14-10
LABELLED TAPE FILE/
VOLUME RELATIONSHIP,
14-10
PATHNAMES, 14-11
RESERVING, 14-25

MAGNETIC TAPE VOLUMES
CREATING, 14-13
VOLUME/FILE RELATIONSHIP
14-10
VOLUME NAMES, 14-10

MAIL FACILITY, 14-26

MASTER STATION (BSC), 11-2

MCL (SEE: MONITOR CALLS)

CZ05-00

1

^J

^

INDEX

MDUMP
BOOTSTRAPPING, 19-3
CREATING FILE FOR, 19-2
HALTS, 19-3
REQUIREMENTS, 9-1

MEMORY DUMPS (SEE: DUMPEDIT
(DPEDIT), DUMP COMMUNICATIONS
PROCESSOR (DCP), MDUMP)

MESSAGE GROUP
INITIALIZATION REQUEST
BLOCK (MGIRB) (TBL), D-21

MESSAGE GROUP CONTROL
REQUEST BLOCK (MGCRB) .
(TBL), D-19

MESSAGE GROUP RECOVERY
REQUEST BLOCK (MGRRB),
(TBL) D-25

MODEMS SUPPORTED, 7-8

MONITOR CALL FUNCTION CODES
(TBL), 1-3

MONITOR CALLS, 1-1"

MULTI-BLOCK TRANSMISSION
(BSC), 11-4, 11-6

MULTI-USER DEBUGGER
BOUND UNIT BREAKPOINT. USE
OF, 18-10
BREAK KEY, 18-9
CAPABILITIES, 18-1
CONDITIONAL EXECUTION,
18-25
DETERMINING/SETTING ACTIVE
LEVEL, 18-12
DIRECTIVE DESCRIPTIONS
(SEEi MULTI-USER DEBUGGER

• DIRECTIVES)
DIRECTIVE FORMAT, 18-3
DIRECTIVES (TBL), 18-4
ENTERING DIRECTIVES, 18-3
INVOKING, 18-2
J-MODE TRACE TRAPS, 18-13
LIMIT TO PAUSE COUNTER,
18-3, 18-67

i-9

MULTI-USER DEBUGGER (CONT.)
MEMORY REQUIREMENTS,
18-2

NOTATIONAL SYMBOLS, 18-13
QUICK BREAKPOINT PROCEDURE,
18-10

QUICK BREAKPOINT, USE OF
18-10

QUICK DISK FILE, 18-2
SAMPLE SESSIONS, 18-70
SETTING BREAKPOINTS, 18-10
TRACE HISTORY, 18-13
TRUE BREAKPOINT. USE OF,
18-10

WORK FILE REQUIREMENTS,
18-2

j - i

MULTI-USER DEBUGGER DIRECTIVES
ALL REGISTERS, 18-14
ASSIGN, 18-15
CHANGE MEMORY, 18-16
CLEAR ABNORMAL TRAP BIT,
18-17

CLEAR ALL BOUND UNIT . ,
BREAKPOINTS, 18-18 "
CLEAR ALL QUICK
BREAKPOINTS, 18-19
CLEAR ALL TRUE BREAKPOINTS,
18-20

CLEAR BOUND UNIT
BREAKPOINT. 18-21

CLEAR QUICK BREAKPOINT,
18-22

CLEAR TRUE BREAKPOINT,
18-23
CONDTIONAL EXECUTION,
18-24

DEFINE DIRECTIVE LINE,
18-27
DEFINE TRACE. 18-28
DISPLAY MEMORY, 18-29 j " '
DUMP MEMORY, 18-30 .. [
END TRACE, 18-31 ' '
ESCAPE, 18-32 ;
EXECUTE, 18-33 ;

FILE OUT. 18-34
GET QUICK MEMORY, 18-35
GO, 18-37
LIST ALL BOUND UNIT BREAK-
POINTS, 18-38
LIST ALL QUICK BREAKPOINTS,
18-39

CZ05-00

INDEX

MULTI-USER DEBUGGER DIRECTIVES
(CONT.)
LIST ALL TRUE BREAKPOINTS,
18-40
LIST BOUND UNIT BREAKPOINT,
18-41
LIST QUICK BREAKPOINT.
18-42
LIST TRUE BREAKPOINT, :....
18-43
MODE, 18-44
PRINT, 18-45
PRINT ALL, 18-46
PRINT HEADER LINE, 18-47
PRINT HEXADECIMAL VALUE,
18-48
PRINT QUICK MEMORY POINTER,
18-49
PRINT TRACE, 18-50 V
QUIT, 18-51
RESET PILE, 18-52
RETURN QUICK MEMORY, 18-53
SET BOUND UNIT BREAKPOINT,
18-54
SET LEVEL, 18-56
SET QUICK BREAKPOINT. 18-57
SET TEMPORARY LEVEL, 18-60
SET TRUE BREAKPOINT, 18-61
SLEEP, 18-63
SPECIFY FILE, 18-64
START J-MODE TRACE, 18-67
TURN ON ABNORMAL TRAP BIT,

18-68
TERMINATE THE TRAPPED TASK,

18-69

MUST RELEASE FIELD, 8-28

OFFSETS DEFINITION MACRO CALLS
LISTED, 3-22 '
USING, 3-24

OPEN FILE MACRO CALL, 4-5

PARAMETER BLOCK, 5-3, (FIG)
D-17

PARITY ERROR CHECK, 7-9

PATCH DIRECTIVES
CLEAR SYSTEM BIT, 20-7
COMMENT, 20-8
DATA PATCH, 20-9
ELIMINATE PATCH, 20-14
GO. 20-15
HEXADECIMAL PATCH, 20-16
INTERROGATE BOUND UNIT,
20-20 ..,.-. . ,
LDEF, 20̂ -21 r:v:
LIST PATCHES, 20-23
LIST PATCHES NOW, 20-25
LIST PATCH NAMES, 20-26
LIST SPECIFIED PATCH, 20-27
QUIT, 20-28
SET GLOBAL SHARE BIT OFF,
20-29
SET GLOBAL SHARE BIT ON,
20-30
SET SHARE BIT OFF, 20-31
SET SHARE BIT ON, 20-32
SET SYSTEM BIT ON, 20-33
SYMBOLIC DATA PATCH, 20-34
SYMBOLIC PATCH, 20-37
VDEF, 20-40
VERIFY/SET PATCH REVISION
NUMBER, 20-41

PATCH UTILITY " : "; ; - l

BATCH MODE. 20-1
BOUND UNIT PATCHES, 20-6
DIRECTIVE DESCRIPTIONS
(SEE: PATCH DIRECTIVES)

DIRECTIVE FORMAT, 20-5
DIRECTIVES LISTED, 20-2
INTERACTIVE MODE. 20-2
LOADING UTILITY, 20-3
OBJECT UNIT PATCHES, 20-6
PATCH ID FORMAT, 20-10
PROCESSING SEQUENCE, 20-5

PHYSICAL I/O
DATA STRUCTURES, 4-18
CONVENTIONS, 4-15
PROCEDURES, 4-17

POLL DURATION (STD),9-11

POLL INTERVAL (STD),9-10

POLL LIST (STD), 9-10

^

^

1-10 CZ05-00

INDEX

POWER RESUMPTION,
CAPABILITIES, E-l, E-2
CONFIGURING, E-3

>

PREEMPTIVE DATA WRITE
OPTION, 8-63

PREFIXES, SYSTEM MODULE
B-2

PRINTER DRIVER
CONTROL BYTE, 6-19 , -
IORB FIELDS, 6-22

PRINTER PATHNAMES, 14-11

PRINTING, DEFERRED, 14-24

PROFILES FILE
ASCII-ONLY SUBSYSTEM
RECORD, H-ll
SUBSYSTEM RECORD FORMAT
H-l

PVE LINE PROTOCOL HANDLER
HARDWARE FUNCTION CODES,
10-8
INPUT MESSAGE HEADER, 10-7

: IORB VALUES (TBL), 10-4
MESSAGE STATUS (STA),

r 10-8
OUTPUT DATA, 10-8
OUTPUT MESSAGE HEADER, 10-8
RETURN ERROR STATUS, I_ST,
10-9

^ TERMINAL ADDRESS (ADR),
10-8

TIMEOUT INTERVALS, 10-9
, WITH CONTROLLER, 10-2

WITH TRIBUTARY PROCESSOR,
10-1 - -

QUICK BREAKPOINT, 18-10

QUICK DISK FILE, 18-2

QUIT ON BREAK OPTIONt ATD
(BLOCK MODE), 8-64

1-11

READ FUNCTION
ATD (BLOCK MODE), 8-61
ATD (STREAM MODE), 8-85
ATD (TTY MODE), 8-19, 8-23

READY OFF COMMAND, 14-13

READY ON COMMAND, 14-13

RECEIVE ONLY PRINTER (ROP)
ATD SUPPORT OF, 8-68
STD SUPPORT OF, 9-13, 9-16

RECOVERY FILE CREATION, E-5

RELATIVE PATHNAME, 14-8

REQUEST BLOCKS
CLOCK REQUEST BLOCK (CRB)
(FIG), D-2, (TBL) D-3

FILE INFORMATON BLOCK (FIB)
(SEE: FILE INFORMATON
BLOCK)
GENERATING BY MACRO CALLS,
5-2
INPUT/OUTPUT REQUEST BLOCK
(IORB) (SEE: INPUT/OUTPUT
REQUEST BLOCK)
LISTED, 5-2
MESSAGE GROUP
INITIALIZATION REQUEST
BLOCK (MGIRB) (TBL), D-21
MESSAGE GROUP CONTROL
REQUEST BLOCK (MGCRB)
(TBL), D-19

MESSAGE GROUP RECOVERY
REQUEST BLOCK (TBL), D-25
PARAMETER BLOCK, 5-3, (FIG)
D-17
PURPOSE OF, 5-1
SEMAPHORE REQUEST BLOCK
(SRB) (FIG) D-13. (TBL)
D-13
TASK REQUEST BLOCK (TRB)
(FIG) D-15, (TBL) D-15

WAIT LIST, 5-3, (FIG)
D-18

RESERVING DEVICES, 14-25

RESTART, E-9

CZ05-00

INDEX

RETURN STATUS CODES IN I_CT1
ATD (BLOCK MODE), 8-67
ATD (FIELD MODE), 8-55
ATD (ROP MODE), 8-74
FILE SYSTEM (TBL). 4-16

RETURN STATUS CODES IN I_ST
ATD (BLOCK MODE), 8-67
ATD (ROP MODE), 8-75
PVE, 10-9

REVERSE INTERRUPT (RVI) ,
MESSAGE, 11-2, 11-11

ROLLBACK, E-2, E-5

ROOT DIRECTORY, 14-3

SAVE/RESTORE FACILITY,
E-l, E-2

SELECTABLE FIELD VALIDATION
SETS, 8-36

SEMAPHORE REQUEST BLOCK
(SRB) (FIG) D-13, (TBL)
D-13

SEPARATE SIGN FIELD. 8-28

SET TERMINAL FILE
CHARACTERSTICS FUNCTION,
4-13

SINGLE-BLOCK TRANSMISSION
(BSC), 11-4

SINGLE-USER DEBUGGER
CAPABILITIES, 17-1
DEBUG WORK FILE REQUIRE-
MENTS, 17-3
DETERMINING/SETTING ACTIVE
LEVEL, 17-9
DIRECTIVE DESCRIPTIONS
(SEE: SINGLE-USER DEBUGGER
DIRECTIVES)
DIRECTIVE FORMAT, 17-3
DIRECTIVE LINE SYMBOLS '
(TBL), 7-4

DIRECTIVES (TBL), 17-7
J-MODE TRACE TRAPS, 17-10,
17-49

SINGLE-USER DEBUGGER (CONT.)
LIMIT TO PAUSE COUNTER.

! 17-29f 17-49
LOADING, 7-2
NOTATIONAL SYMBOLS, 17-10

! SAMPLE SESSION. 17-50
TRACE HISTORY, 17-10
TRUE BREAKPOINTS, 17-8

1 WITH MEMORY MANAGEMENT
UNIT (MMU), 17-3

SINGLE-USER DEBUGGER
DIRECTIVES
ALL REGISTERS. 17-11
ASSIGN, 17-12

; CHANGE MEMORY, 17-13
CLEAR ALL BOUND UNIT
BREAKPOINTS, 17-14
CLEAR ALL TRUE BREAK-
POINTS, 17-15
CLEAR BOUND UNIT BREAK-
POINT. 17-16
CLEAR TRUE BREAKPOINT,
17-17

CONDITIONAL EXECUTION,
17-18

DEFINE, 17-21 -
DEFINE TRACE. 17-22
DISPLAY MEMORY, 17-23
DUMP MEMORY, 17-24
END TRACE. 17-26
EXECUTE, 17-27
FILE OUT. 17-28
GO, 17-29
LINE LENGTH, 17-30
LIST ALL BOUND UNIT
BREAKPOINTS, 17-31
LIST ALL TRUE BREAKPOINTS,
17-32
LIST BOUND UNIT BREAKPOINT,
17-33
LIST TRUE BREAKPOINT, 17-34
PRINT. 17-35
PRINT ALL, 17-36 ''- •
PRINT HEADER LINE, 17-37
PRINT HEXADECIMAL VALUE.
17-38
PRINT TRACE. 17-39
QUIT, 17-40
RESET FILE. 17-41
SET BOUNT UNIT BREAKPOINT,
17-42

1

^

i-12 CZ05-00

INDEX

SINGLE-USER DEBUGGER ".* ' :
DIRECTIVES (CONT.)
SET LEVEL, 17-44
SET TEMPORARY LEVEL, 17-45
SET TRUE BREAKPOINT. 17-46
SPECIFY PILE, 17-48
START J-MODE TRACE, 17-49

SLAVE STATION (BSC), 11-2

SOFTWARE STATUS WORD (I_ST)
4-19, (TBL) 6-12

SOLICITED TRANSFER, ATD
(STREAM MODE),8-87

SPACE SUPPRESSION, ATD
(BLOCK MODE), 8-58

STANDARD I/O FILES. 14-12

STATUS GROUP COMMAND, 14-13

STD LINE PROTOCOL HANDLER
BLOCK MODE, 9-18
CAPABILITIES, 9-2
CONTROL BYTE, 9-19
CONTROL WORD, 9-18
CTS 7760/VTS 7740
CONVENTIONS, 9-22

- CURSOR POSITION AFTER
TRANSMIT. 9-21
DEVICE SPECIFIC WORD
(I_DVS) (TBL), 9-5

DISKETTE ACCESS BY SUB-
LRN, 9-18
ERROR PROCESSING. 9-23
HARDWARE FUNCTION
CODES, 9-12
KEYBOARD/SCREEN POST-
ORDER CONTROL, 9-13
MASTER LRN PROCESSING,
9-17

OUTPUT MESSAGE HEADER,
9-12

PHYSICAL LINE
CHARACTERISTICS, 9-22
POLL DURATION, 9-11
POLL INTERVAL, 9-10
POLL LIST, 9-10
RESPONSE TIME (TBL), 9-4

STD LINE PROTOCOL HANDLER
(CONT.)
ROP ACCESS BY SUB-LRN,"
9-18

ROP NON-TRANSPARENT MODE,
9-16 ' "

ROP PRE/POST ORDER
CONTROL (TBL), 9-13, s'
(TBL) 9-14, 9-16

ROP TRANSPARENT MODE. 9-16
SOFTWARE STATUS WORD
(I_ST) (TBL), 9-9

SUPERVISORY MESSAGES, 9-21
TWU 1901 SUPPORT, 9-17
USER RESPONSIBILITIES, 9-3
VIP 7804 BREAK PROCESSING,
9-21

VIP 7804 BUFFER SPACE,
9-20

VIP 7804 CURSOR
POSITIONING, 9-20

VIP 7804 SUPPORT, 9-17
VIP 7804 TRANSMIT KEYS,
9-20

SUBFIELDS OF FORMS, 8-27 3

SUFFIXES ,'•„'!.,.*'*•
SOURCE UNIT, B-3
SYSTEM FILE. B-3 -

- i

SUPERVISORY MESSAGES
ATD (BLOCK MODE), 8-62
ATD (FIELD MODE), 8-33,
8-37
ATD (TTY MODE), 8-10
ATD, 8-10
STD, 9-21

SYNCHRONOUS I/O, 4-3, 4-17

SYSTEM ACCESS
DIAL-UP TERMINAL, 13-2
DIRECT CONNECT TERMINAL,
13-2-
LOGIN TERMINAL, 13-2
LOGIN, ABBREVIATED, 13-3
LOGIN, AUTOMATIC, 13-4
LOGIN, MANUAL, 13-2

SYSTEM BOOT DIRECTORY, 14-3

i-13 CZ05-00

11

SYSTEM MODULE PREFIXES.
B-2

SYSTEM ROOT DIRECTORY, 14-3

SYSTEM SERVICE MACRO CALLS
(SEE: MACRO CALLS)

TASK REQUEST BLOCK (TRBr)
(FIG) D-15, (TBL) D-15

TEMPORARY TEXT DELAY (TTD),
11-9 ,

TERMINAL SPEED, ATD (BLOCK
MODE), 8-66

TEST FILE MACRO CALL, 4-5
ATD (FIELD MODE), 8-56
ATD (STREAM MODE). 8-89

TIMEOUT .PROCESSING
BSC, 11-15
PVE, 10-9
TTY, 12-4

TRAP HANDLING
DEFECTIVE MEMORY TRAP
HANDLER, A-13
FLOATING POINT SIMULATOR
TRAPS, A-ll
PASSING TRAPS, A-15
RETURN FROM TRAP (RTT)
INSTRUCTION, A-7
SCIENTIFIC BRANCH SIMULA-
TOR TRAPS, A-12
SOFTWARE-GENERATED,
A-7
SYSTEM TRAP HANDLERS,
A-7, A-10, A-14
TRAP SAVE AREA (TSA),
A-l
TSA CONTENTS (TBL),
A-2, A-8
TYPES OF TRAPS, A-7
USER TRAP HANDLERS, A-7,
A-14, A-15

INDEX
»• A

TRAPS
TRAP 0 (CLEAN UP),
A-7
TRAP 1 (PROGRAM INTER-
RUPT) , A-7
TRAP 48 (SUSPEND), A-7
TRAP 49 (UNWIND), A-7
TRAP 53 (POWER RESUMPTION),

. A-7, E-4
TYPES OF TRAPS, A-7

TRUE BREAKPOINTS, (MULIT-USER
DEBUGGER), 18-10

f <V j"- y '

TRUE BREAKPOINTS ($D) , 17-8

TTY LINE PROTOCOL HANDLER
BREAK PROCESSING, 2-10
BUFFERED MODE TRANSMISSION,
12-2. 12-9, 12-11
BUFFERED QUASI FULL DUPLEX
OPERATION, 12-3
CHARACTER MODE
TRANSMISSION, 12-2
CONTROL BYTE, 12-9
CORRECTION OF KEYBOARD
INPUT, 12-8

DELETION OF KEYBOARD
INPUT. 12-8

END OF MESSAGE (EOM)
SEQUENCES, 12-10

HARDWARE SWITCH OPTIONS.
12-3
INPUT FORMAT, 12-8
IORB VALUES, 12-4
MESSAGE FORMATS, 12-1
PARITY ERROR PROCESSING,
12-8
TIMEOUT INTERVALS, 12-4

• TRANSPARENT KEYBOARD
INPUT, 12-8

TTY NON-ALPHANUMERIC CONTROL
CHARACTERS (TBL), G-l

TWU 1901, STD SUPPORT OF, 9-17

TYPE AHEAD OPTION, 8-37

UNSOLICITED TRANSFER, ATD
(STREAM MODE), 8-87

i-14 CZ05-00

^>

» .,v^-

- T

J

-̂x , . , INDEX . „

USER ROOT DIRECTORY, 14-3

USER-IN FILE, 14-12 X"~ :

USER-OUT PILE, 14-12-, -,;̂ "J-"' ' "—?' ^J.COy "-.2:
-' >•; •-.ft;J._

VERBATIM MODE, CARD , I?|L
READER/PUNCH ,._ 6-15-,?'.";' - -2 ' - - "-''• :'- K?7"

VIP 7804, STD SUPPORT OP,; ::-- —-"•'--'•' -f"^--
9-17, 9-20 ;..;; f: ,-— _ -f-.-.v.-, o-:.-,-. =^-

VIP NON-ALPHANUMERIC CONTROL I :. - / " • "
CHARACTERS (TBL) , G-2 I -" : - • - ' : . - .

WAIT BEFORE ACKNOWLEDGE . '.: " "' ' '•-' -̂ '
(WACK), 11-10 ' ^"{

X S - I . -v „., .

WAIT FILE MACRO CALL, 4-5 " "̂ f. '",-./•"

WAIT LIST, 5-3, (FIG) D-18 j

WORKING DIRECTORY, 4-4, 4-15 ,. ~~\

WRITE FUNCTION - .. T
ATD (BLOCK MODE), 8-63 - '. 'ij*
ATD (STREAM MODE) , 8-87 ; ;":•;=••
ATD (TTY MODE), 8-23 '.''"- .;

WRITE ORDER PROCESSING, "' , ,
ATD (BLOCK MODE) , 8-6 3 ' r' > ._ :A "•

1 i—U

X-ON/X-OFF PROTOCOL, : . T

8-80 » '. .
K

j«. •r^ * -
II - -' -^

i-15 CZ05-00

