
Vx•

HONEYWELL

DPS 6 & LEVEL 6
GCOS 6 MOD 400
SYSTEM
PROGRAMMER'S
GUIDE —VOLUME II

SOFTWARE

DPS 6 & LEVEL 6

GCOS 6 MOD 400
SYSTEM PROGRAMMER'S GUIDE

, „ , VOLUME II

SUBJECT

Description of System Service Macro Calls

SPECIAL INSTRUCTIONS

This manual supersedes the System Service Macro Calls manual, order number
CB08-02, dated December 1978.

SOFTWARE SUPPORTED

Refer to the MOD 400 Guide to Software Documentation for information
regarding Executive releases supported by this manual.

ORDER NUMBER
' -** »* • *» >x

CZ06-00 ' * December 1982

Honeywell

Preface

The purpose of this manual is to enable Assembly language programmers to
use system service macro calls in their applications. The manual presupposes
knowledge of GCOS 6 Assembly language, which is described in the GCOS 6
Assembly Language Reference.

The manual consists of macro call descriptions, each of which includes the
following information:
• Arguments (if any) to be supplied with the call
• Registers into which the system places supplied arguments
• Register contents, including error codes, returned by the call
• The function of the call
• Special procedures (if any) for using the call

Many calls include examples of their usage.
The macro call descriptions are arranged alphabetically by name. A more

general discussion of system service macro calls, which groups the calls
according to their function, is found in Volume I of the System Programmer's
Guide.

In addition to describing individual macro calls, this volume provides detailed
information about the following subjects:

• Macro call format and conventions
• Data structures referred to by macro call arguments.

Honeywell disclaims the implied warranties of merchantability and fitness for a partic-
ular purpose and makes no express warranties except as may be stated in its written
agreement with and for its customer.
Tn no «*vent is Honeywell liable to anyone for anv -ndirect, soecial or consequential
damages. The information and specifications in this document are subject to change
without notice.

© Honeywell Information Systems Inc , 1982 File No.: 1R23, 1S23 CZ06-00

The following conventions are used to indicate the relative
levels of topic headings used in this manual:

Level Format

1 (highest) ALL CAPITAL LETTERS, UNDERLINED
2 Initial Capital Letters, Underlined
3 ALL CAPITAL LETTERS, NOT UNDERLINED
4 Initial Capital Letters, Not Underlined

;;; .';;• r. ./m x . .• . •-; ;-.

•,. '• • :_- /• J c. ...<': i..

iii CZ06-00

MANUAL DIRECTOR Y

The following publications constitute the GCOS 6 MOD 400
manual set. Refer to the "Software/Manual Directory" of the
Guide to Software Documentation for the current revision number
and addenda (if any) of relevant release-specific publications.

Manuals are obtained by submitting a Honeywell Publications
Order Form to the following address:

^
Manuals can be ordered from :

Honeywell Information Systems Ltd.
10 Cull en Way
London NW1 0 6JZ.

Honeywell software reference manuals are periodically updated
to support enhancements and improvements to the software. Before
ordering any manuals, you should refer to the Guide to Software)
Documentation to obtain information concerning the specific
edition of the manual that supports the software currently in use
at your installation. If you use the four-character base
publication number to order a document, you will receive the
latest edition of the manual. The Publications Distribution
Center can provide specific editions of a publication only when
supplied with the seven- or eight-character order number listed
in the Guide to Software Documentation.

^
Honeywell applications software packages, such as INFO 6, >̂'

TOTAL 6, and TPS 6, provide specialized services. Contact your
Honeywell representative for information concerning the
availability of applications software and supporting
documentation.

iv CZ06-00

Base
Publication

Number

CZ01

CZ02

CZ03
CZ04
CZ05

CZ06

CZ07
CZ09

CZ10

CZ15
CZ16
CZ17
CZ18
CZ19
CZ20

CZ21
CZ34
CZ35
CZ36
CZ37
CZ38
CZ39
CZ40
CZ41
CZ47
CZ48

CZ52
CZ53
CZ54
CZ59

CZ60

CZ61

CZ62
CZ63
CZ64

Manual Title

GCOS 6 MOD 400 Guide to Software ™" "
Documentation

GCOS 6 MOD 400 System Building and
Administration

GCOS 6 MOD 400 System Concepts
GCOS 6 MOD 400 System User's Guide
GCOS 6 MOD 400 System Programmer's Guide -
Volume I

GCOS 6 MOD 400 System Programmer's Guide -
Volume II

GCOS 6 MOD 400 Programmer's Pocket Guide
GCOS 6 MOD 400 System Maintenance Facility

Administrator's Guide
GCOS 6 MOD 400 Menu Management/Maintenance

Guide
GCOS 6 MOD 400 Application Developer's Guide
GCOS 6 MOD 400 System Messages
GCOS 6 MOD 400 Commands
GCOS 6 Sort/Merge
GCOS 6 Data File Organizations and Formats
GCOS 6 MOD 400 Transaction Control Language

Facility
GCOS 6 MOD 400 Display Formatting and Control
GCOS 6 Advanced COBOL Reference
GCOS 6 Advanced COBOL Quick Reference Guide
GCOS 6 BASIC Reference
GCOS 6 BASIC Quick Reference Guide
GCOS 6 Assembly Language (MAP) Reference
GCOS 6 Advanced FORTRAN Reference
GCOS 6 Pascal User's Guide
GCOS 6 RPG-II Reference
Data Entry Facility-II User's Guide
Data Entry Facility-II Operator's Quick

Reference Guide
DM6 I-D-S/II Programmer's Guide
DM6 I-D-S/II Data Base Administrator's Guide
DM6 I-D-S/II Reference Card
Level 6 to Level 6 File Transmission Facility

User's Guide
Level 6 to Level 66 File Transmission

Facility User's Guide
Level 6 to Level 62 File Transmission

Facility User's Guide
3SC Transport Facility User's Guide
2780/3780 Workstation Facility User's Guide
HASP Workstation Facility User's Guide

CZ06-00

Base -—/y

Publication ~̂.
Number Manual Title -'j

CZ65 Programmable Facility/3271 User's Guide
CZ66 Remote Batch Facility/66 User's Guide
CZ71 DM6 TP Development Reference
CZ72 DM6 TP Application User's Guide
CZ73 DM6 TP Forms Processing

In addition, the following publications provide supplementary
information:

AS22 ' Level 6 Models 6/34, 6/36, and 6/43
Minicomputer Handbook

AT97 Level 6 Communications Handbook
CC71 Level 6 Minicomputer Systems Handbook
CD18 Level 6 MOD 400/600 Online Test and

Verification Operator's Guide
FQ41 Writable Control Store User's Guide

Users should be aware that a Software Release Bulletin
accompanies each software product ordered from Honeywell. You
should consult the Software Release Bulletin before using the
software. Contact your Honeywell representative if a copy of the
Software Release Bulletin is not available.

vi CZ06-00

, - \ ~~ j CONTENTS
' - i >'* " r i: -

V. ' ' Page

SECTION 1 MACRO CALL SYNTAX AND CONVENTIONS 1-1

System Services 1-1
Monitor Calls 1-1
Macro Calls 1-2
Macro Call Syntax..... „ 1-2
Register Conventions and Contents. 1-3
Addressing Conventions .«, 1-4
Register Contents at Task Activation 1-6
Return Status Codes in $R1 1-7
System Service Macro Calls and Function Codes 1-7
Location of Macro Routines 1-8

SECTION 2 MACRO CALL DESCRIPTIONS 2-1

Abort Group ($ABGRP) 2-3
Abort Group Request ($ABGRO) 2-5
Account Identification ($ACTID) 2-7
Activate Group ($ACTVG) 2-9
Associate File ($ASFIL) 2-11
Bound Unit, Attach ($BUAT) 2-14
Bound Unit, Detach ($BUDT) 2-19
Bound Unit Identification ($BUID) 2-22
Bound Unit, Load ($BULD) 2-24
Bound Unit Transfer ($BUXFR) 2-30
Cancel Clock Request ($CNCRQ) 2-33
Cancel Request ($CANRQ) 2-35
Cancel Semaphore Request ($CNSRQ) 2-37
Change Working Directory ($CWDIR) 2-3 9
Checkpoint ($CKPT) 2-42
Checkpoint File ($CKPFL) 2-44
Clean Point ($CLPNT) 2-47
Clear External Switches ($CLRSW) 2-50
Clock Request Block ($CRB) 2-52
Clock Request Block Offsets ($CRBD) 2-55
Close File ($CLFIL) 2-56
Command In ($CIN) 2-6 0
Command Line Process ($CMDLN) 2-63
Console Message Suppression ($CMSUP) 2-66
Create Directory v$CRDIR) , . « 2-68
Create File ($CRFIL) 2-71

vii CZ06-00

CONTENTS

Page

Create File Key Descriptor Block Offsets ($CRKDB) 2-82
Create File Parameter Structure Block Offsets ($CRPSB).... 2-84
Create File Record Descriptor Block Offsets ($CRRDB) 2-87
Create Group ($CRGRP) 2-89
Create Overlay Area Table ($CROAT) 2-93
Create Segment ($CRSEG) 2-96
Create Task ($CRTSK) 2-100
Defer Checkpoint ($DFCKP) 2-104
Defer Request on Head ($DFRHD) 2-106
Defer Request on Tail ($DFRTL) 2-108
Define Semaphore ($DFSM) 2-110
Delete Directory ($DLDIR) 2-114
Delete File ($DLFIL) 2-117
Delete Group ($DLGRP) 2-120
Delete Overlay Area Table ($DLOAT) 2-122
Delete Record ($DLREC) 2-123
Delete Segment ($DLSEG) 2-126
Delete Semaphore ($DLSM) 2-128
Delete Task ($DLTSK) 2-130
Dequeue and Post ($DQPST) 2-132
Disable User Trap ($DSTRP) 2-133
Dissociate File ($DSFIL) 2-135
Enable User Trap ($ENTRP) 2-137 . J
Entry Point Identification ($ENTID) 2-139
Error Logging, End ($ELEND) 2-142
Error Logging Information, Exchange ($ELEX) 2-144
Error Logging Information, Get ($ELGT) 2-146
Error Logging, Start ($ELST) 2-148
Error Logging Table ($ELOG) 2-157
Error Out ($EROUT) 2-158
Expand Pathname (SSXPATH) 2-161
External Date/Time, Convert To ($EXTDT) 2-164 •)
External Time, Convert To ($EXTIM) 2-167 ^'
File Information Block ($FIB) 2-170
File Information Block Offsets (Data and Storage
Management Access ($TFIB) 2-178
File Information Block Offsets (Data Management Access
($FIBDM) 2-182
File Information Block Offsets (Storage Management Access
(SFIBSM) 2-185
Get Date/Time ($GDTM) 2-187
Get Device Information ($GIDEV) 2-190
Get Device Information Parameter Block Offsets ($DIPSB)... 2-194
Get File ($GTFIL) 2-196
Get File Access Rights (SGAFIL) , 2-217
Get File Access Rights Parameter Structure Block Offsets
(SGAPSB) 2-220

viii CZ06-00

CONTENTS

Page

Get File Accounting Information ($GTACT) 2-222
Get File Information ($GIFIL) 2-228
Get File Information, File Attribute Block Offsets
($GIFAB) 2-248
Get File Information, Key Descriptor Block Offsets
($GIKDB) 2-253
Get File Information, Parameter Structure Block Offsets
($GIPSB) 2-255
Get File Parameter Structure Block Offsets ($GTPSB) 2-257
Get File Record Descriptor Block Offsets ($GIRDB) 2-259
Get Memory/Get Available Memory ($GMEM) 2-261
Get Name ($GNFIL) 2-266
Get Names Parameter Structure Block Offsets ($GNSPB) 2-269
Get Working Directory ($GWDIR) 2-271
Group Identification ($GRPID) 2-273
Grow File ($GRFIL) 2-275
Grow File Parameter Block Offsets ($GRPSB) 2-280
Home Directory ($HDIR) 2-282
Input/Output Request ($IORB) 2-284
Input/Output Request Block Offsets ($IORBD) 2-287
Internal Data/Time, Convert To ($INDTM) 2-288
Kill (Abort) Task (SKILLT) 2-291
Message Group, Accept ($MACPT) . 2-293
Message Group, Cancel Enclosure ($MCME) 2-297
Message Group, Control Request Block ($MGCRB) 2-299
Message Group, Count ($MCMG) 2-304
Message Group, Initiate ($MINIT) 2-306
Message Group, Initialization Request Block ($MGIRB) 2-308
Message Group, Receive ($MRECV)... 2-312
Message Group, Recovery Request Block ($MGRRB) 2-317
Message Group, Recovery Request Block Offsets ($MGRRT).... 2-321
Message Group, Send ($MSEND) 2-322
Message Group, Terminate ($MTMG) 2-326
Mode Identification ($MODID) 2-328
Modify File ($MDFIL) 2-330
Modify File Parameter Structure Block Offsets ($MDPSB).... 2-336
Modify Reboot Parameters ($RBPRM) 2-337
New Command In ($NCIN) 2-343
New Message Library ($NMLF) 2-345
New Process ($NPROC) 2-347
New User Input ($NUIN) 2-348
New User Output ($NUOUT) 2-350
Open File (SOPFIL) 2-352
Operator Information Message ($OPMSG) 2-359
Operator Response Message ($OPRS?) 2-362
Overlay Area, Release ($CVRL3) , , . 2-365
Overlay Area Reserve, and Execute Overlay ($OVRSV) 2-367

"'.' - " q .-;.- %;

ix CZ06-00

CONTENTS

Page

Overlay, Execute ($OVEXC) 2-372
Overlay, Load ($OVLD) 2-376
Overlay Release, Wait, and Recall ($OVRCL) 2-380
Overlay Status ($OVST) 2-384
Overlay, Unload ($OVUN) 2-388
Parameter Block ($PRBLK) 2-391
Person Identification ($PERID) 2-392
Postpone Request on Tail ($PPNTL) 2-394
Profile Record, Accounting Update ($PRFAU) 2-395
Profile Record, Create ($PRFCR) 2-400
Profile Record, Delete ($PRFDL) 2-403
Profile Record, Get ($PRFGT) 2-406
Profile Record, Get User Information ($PRFIF) 2-409
Profile Record, Update ($PRFUP) 2-413
Read Block ($RDBLK) 2-416
Read External Switches ($RDSW) 2-420
Read Record ($RDREC) 2-422
Reboot ($RBOOT) 2-42 9
Recall From Head ($RCLHD) 2-432
Release Semaphore ($RLSM) 2-434
Release Terminal ($RLTML) 2-436
Remove File ($RMFIL) 2-438 ' }
Rename File/Rename Directory ($RNFIL) 2-441 ^
Report Message ($RPMSG) 2-444
Report Message, Display Formatting and Control ($RPDFC)... 2-453
Request Batch ($RQBAT) 2-458
Request Block Displacements ($RBD) 2-462
Request Clock ($RQCL) 2-463
Request Group ($RQGRP) 2-465
Request I/O ($RQIO) 2-471
Request Semaphore ($RQSM) 2-474 \
Request Task ($RQTSK) 2-477 /̂'
Request Specific Terminal ($RQSPT) 2-480
Request Terminal ($RQTML) 2-4 83
Reserve Semaphore ($RSVSM) 2-486
Restart ($RS) 2-488
Return ($RETRN) 2-491
Return Memory/Return Partial Block of Memory ($RMEM) 2-493
Return Request Block Address ($RBADD) 2-496
Reverify Password ($RVF?W) 2-498
Rewrite^ Record ($RWREC) 2-500
Roll Back (Recover) Files ($ROLBK) 2-503
Semaphore Request Block ($SRB) 2-505
Semaphore Request Block Offsets (SSRBD) 2-507
Set Dial (SSDL) 2-508
Set External Switches ($SETSW) 2-512
Set Group Attributes ($SGRPA) 2-514

x CZ06-00

CONTENTS

Page

Set Terminal File Characteristics ($STTY) 2-517
Shrink File ($SHFIL) 2-521
Shrink File Parameter Structure Block Offsets ($SHPSB).... 2-525
Signal Trap ($SGTRP) 2-526
Spawn Group ($SPGRP) 2-528
Spawn Task ($SPTSK) 2-536
Status Memory Pool ($STMP) 2-540
Suspend Group ($SUSPG) 2-542
Suspend for Interval ($SUSPN) 2-544
Suspend Until Time ($SUSPN) 2-546
Swap File ($SWFIL) 2-549
System Attribute Information, Get ($SYSAT) 2-551
System Identification ($SYSID) 2-553
Task Group Input ($TGIN) 2-555
Task Request Block ($TRB) 2-556
Task Request Block Offsets ($TRBD) 2-56 0
Terminate Request ($TRMRQ,) 2-561
Test Completion Status ($TEST) 2-564
Test File ($TIFIL (input), $TOFIL (output)) 2-566
Transfer and Return User ($XRETU) 2-570
Transfer User ($XFERU) 2-57 3
Trap Handler Connect ($TRPHD) 2-576
Unlock Dumpfile ($RLDMP) 2-579
User Identification ($USRID) 2-581
User Input ($USIN) 2-583
User Output ($USOUT) 2-5 86
Validate Checkpoint ($VLCKP) 2-589
Wait ($WAIT) 2-591
Wait Any ($WAITA) 2-593
Wait Block ($WTBLK).. 2-595
Wait File ($WIFIL (input), $WOFIL (output)) 2-597
Wait List, Generate ($WLIST).. 2-600
Wait on Request List ($WAITL) 2-602
Wait on Multiple Requests ($WAITM) 2-605
Wait List, Generate Multiple ($WLSTM) 2-607
Write Block ($WRBLK) 2-608
Write Record ($WRREC) 2-612

Appendix A Assumptions for File System Examples A-l

Appendix B Summary of Register Contents for System
Service macro Calls B-l

Appendix C Data Structure Formats. C-l
Clock Request Block Format C-2
File Information Block (?I3) Format and
Contents C-4

™ " J ' wt "* J - f ' * JL ' w *

xi CZ06-00

CONTENTS

Page

Input/Output Request Block (IORB) Format C-9
Semaphore Request Block Format C-12
Task Request Block Format C-15
Parameter Block Format C-17
Wait List Format C-18
Message Group Request Blocks C-18

ILLUSTRATIONS

Figure " - Page "N

2-1 Default Block Size (BKSZ) and Logical Record Size
(LRSZ) Diagram for Tape File 2-211

2-2 Validity Check Diagram for Block and Record Sizes... 2-212
2-3 Example of Alternate Index Use 2-215
2-4 File Operations Diagram for Date/Time Fields 2-224
2-5 Flowchart for Test File ($TIFIL and $TOFIL) Macro

Calls 2-569

C-l First Four Items of Request Blocks C-2 ;
C-2 Format of Clock Request Block C-2 -̂
C-3 Format of I/O Request Block C-9
C-4 Format of Semaphore Request Block C-13
C-5 Format of Task Request Block C-15
C-6 Format of Parameter Block C-17
C-7 Format of Wait List C-18

< TABLES

Table , Page

1-1 System Service Macro Calls 1-9

2-1 Create File Parameter Structure 2-72
2-2 Record Descriptor Structure... 2-76
2-3 User Error Logging Table 2-151
2-4 FIB Keywords 2-171
2-5 FIB Program View Keywords 2-173
2-6 Creation Information Block for $GTACT 2-225
2-7 Access Information Block for $GTACT 2-225
2-8 File Attribute Information for Device Files 2-234
2-9 File Attribute Information for Tape Files 2-236
2-10 File Attribute Information for Disk Files 2-238

xii CZ06-00

TABLES
Table Page

2-11 Additional File Attribute Information for I-D-S/II
Areas Only 2-240

2-12 Record Descriptor Information for UFAS Indexed
Files, Random Files, Alternate Indexes, and
I-D-S/II Areas . . 2-241

2-13 Disk File Options Field of $GIPSB 2-244
2-14 Disk Data Attribute Field of $GIPSB 2-245
2-15 Argument Values for $MGCRB Macro Call 2-300
2-16 Argument Values for $MGIRB Macro Call 2-310
2-17 MGCRB Argument Values for $MRECV Macro Call 2-315
2-18 Argument Values for $MGRRB Macro Call 2-318
2-19 MGCRB Argument Values for $MSEND Macro Call 2-324
2-20 Tape File Search Rules for $OPFIL Macro Call 2-354

B-l Macro Calls, Function Codes, and Register Contents.. B-2

C-l Contents of Clock Request Block... C-3
C-2 Format of FIB for Data Management C-4
C-3 Format of FIB for Storage Management C-5
C-4 Contents of FIB for Data Management C-6
C-5 Contents of FIB for Storage Management C-8
C-6 Contents of I/O Request Block e . C-9
C-7 Summary of IORB Fields for Operator Interface....... C-12
C-8 Contents of Semaphore Request Block C-13
C-9 Contents of Task Request Block „ C-15
C-10 Message Group Control Request Block (MGCRB) C-19
C-ll Message Group Initialization Request Block (MGIRB).. C-21
C-12 Message Group Recovery Request Block (MGRRB) C-25

xiii CZ06-00

-

t Section 1
MACRO CALL SYNTAX

AND CONVENTIONS

This section provides a brief definition of macro calls. It
then describes at length macro call syntax and register
conventions, which must be followed when using a call.

gYSTEM SERVICES

The macro calls described in this volume are system service
macro calls. A system service is a routine executed by the •_-
Executive in behalf of a running user application. System
services are functions frequently required by user applications,
such as the reading or writing of records, requests for memory,
loading of overlays, etc. System services save the programmer
the labor of coding routines that perform the same function;
system services also coordinate the execution of multiple
applications on a single system.

An application can call a system service routine by means of
a sequence of instructions (a monitor call) or a single
instruction (a macro call). ^

MONITOR CALLS >

A monitor call identifies the service being requested by
means of a function code. A monitor call usually must supply
information expected oy the requested system service in certain
registers. For example, to request the system service that
releases an entire block of memory previously allocated to the
user, the user codes the following sequence of instructions:

1-1 CZ06-00

1. An instruction loading register B4 with the address of j
the memory block to be returned to the pool of available ^^--
memory.

2. The instruction MCL, signifying "monitor call". • ''

3. An instruction identifying the requested service by its
function code, X'04041.

Assuming that the address of the memory block to be returned
is stored in a location labeled RET_MEM, the three instructions
may take the following form:

LDB $B4,>RET_MEM
MCL
DC X'0404f

MACRO CALLS

A system service macro call is an abbreviated form of monitor)
call. When requesting a system service by means of a macro call, ^-^J
the programmer codes a single instruction instead of several.
This instruction consists of a macro call name and any arguments
expected by the system service. For example, the following macro
call requests the return of a memory block whose address is
stored in location RET_MEM:

$RMEM RET_MEM
N

Before the source text is compiled, this macro call is)
expanded by the macro preprocessor into the three instructions "^
listed above. The programmer can request the Return Memory
function by coding either the three-instruction monitor call or
the macro call. The advantage of the macro call, besides its
brevity, is its independence from registers. It is possible
(though unlikely) that in some future version of the Executive,
the Return Memory routine will expect the location of the memory
to be loaded into register B5 rather than B4. In this case, the
above monitor call will produce an error; the macro call will x .̂
not. ^s '

MACRO CALL SYNTAX

Macro call syntax follows the conventions for Assembly
language (described in detail by the Assembly Language
Reference). The first field of the macro call can have an
optional label. If no label is used, at least one blank must
precede the macro call. User-selected items of data in a macro
call are known as arguments; these arguments are passed to a
system service macro routine by the macro processor.

1-2 CZ06-00

Within the called system service macro routine (which is gen-
eralized to handle any set of data passed to it), the macro call
arguments are associated with the service routine arguments —
the order of positional arguments in the macro call indicates the
variables to which the data is applied. Thusf the order of your
arguments must be the same as the positional arguments within the
system service macro routine. Unless stated otherwise, omitted
arguments that precede an included argument must be indicated by
the presence of a replacing comma for each omission. One or more
spaces must separate the macro call name from its arguments, with
a comma between each argument. The horizontal tab character is
equivalent to a space. A semicolon at the end of a line
indicates that the next line is a continuation line. < , -->

REGISTER CONVENTIONS AND CONTENTS * * --^

Macro call arguments are often loaded into registers for
access by the system services. An argument of a macro call can
specify that the corresponding system service argument is either
contained in memory or in a register. If an argument is omitted
from the macro call, the system assumes that the register
normally used to provide the value or address to the system
service routine contains the required value or address. For this
reason, it is important to know how the system service routines
use the registers, as well as the conventions that exist for
saving register contents.*

The system services use the following registers without
preserving their contents:

Rl R7
E2 02

m - ' ••'*- • *- -
Unless otherwise stated, the system services do not usually

alter the contents of the following registers:

S Bl T S3
I B3 RDBR Ml through M7

'"- f̂# • - B5 CI < f^ct , :'
M' B6 SI - « -• ;

" R5 " B7 SI >• ' " . - , • - ..1*;.'
S2 -' ^ .«. " j ^ ;., ,

When coding a macro call that uses a register whose contents
are not preserved, ensure that the contents of the register are
appropriate for each occurrence of the macro call.

*The file system macro calls preserve the contents of all
registers except Rl. B4 is the only register loaded by the file
system macro calls.

1-3 CZ06-00

ADDRESSING CONVENTIONS „)

Any macro call argument definition that specifies an argument
default of a specific register content will allow an argument ~̂ \
specification in the form =$Rn or =$Bn (n designates the register ^
to be specialized for the system service routine) to denote that
the register has been previously set to the value to be used.
When a macro call argument description specifies that the
location of a value or an address may be provided, any assembly-
level address syllable format that is valid for the type of
register being specialized can be used; that is, the value (if
less than or equal to two bytes) or address can be supplied as an
immediate memory operand (IMO) address syllable form by prefacing
the value or address with an equal sign (=). The Ilabel macro
notation is used only to distinguish between LDB and LAB
instructions when specializing a base register.

For example, the $WAIT macro call has a single argument that
specifies the location of the address of the request block to be
waited on. This location must be placed in base register B4. ^
The value specified for this argument in the $WAIT macro call can ^/'
take any of the following forms (among others):

=label

The label refers to the request block to be waited on.
An IMO address syllable format will be used by the LDB
instruction generated to load $B4.

label 1

The label refers to a field that contains the address of
the request block to be waited on. A P+DSP address
syllable format will be used by the LDB instruction
generated to load $B4.

<label

The label refers to a field that contains the address of - ~\
the request block to be waited on. An IMA address N y
syllable format will be used by the LDB instruction
generated to load $B4.

= $B4

$B4 already contains the address of the request block to
be waited on. No instruction will be generated to load
$B4.

$B3 contains the address of the request block to be
waited on. A register addressing address syllable will
oe used oy tne LDB instruction generated to load $B4.

1-4 CZ06-00

f '• $B3
s

ĵ $B3 contains the address of a field that contains the
(N, " address of the request block to be waited on. A direct

base addressing address syllable will be used by the LDB
instruction generated to load $B4.

*$B3

$B3 contains the address of a field that contains the
address of a field that contains the address of the
request block to be waited on. An indirect base
addressing address syllable will be used by the LDB
instruction generated to load $B4.

$B3.$R2

The address referred to by $B3 plus $R2 contains the
address of the request block to be waited on. An indexed
base addressing address syllable will be used by the LDB
instruction generated to load $B4.

If the address syllable is preceded by an exclamation point
(1), the instruction generated is a LAB rather than an LDB. For
examples : f

llabel

The label refers to the address of the request block to
be waited on. An effective address syllable format will
be used by the LAB instruction generated to load $B4 .

l*label
' • >- ^ • ~> a s?-f, - r • . £

The label refers to a field containing the address of the
request block to be waited on. A "LAB $B4, *label"
instruction will be generated to load $B4 .

Thus, macro call "location address" arguments (which are to
be loaded into base registers) can refer to the location of the
address of the data or data structure or can refer to the address
of the data or data structure. In the first case (location of
address) , the macro call loads the Bn register through an LDB
instruction, thus requiring that the "location address" values in

1-5 CZ06-00

the macro call arguments be the label of a location where the
address of the actual argument structure is located. In the
second case (address), the macro call loads the effective address
of the argument structure into $Bn directly (through a LAB
instruction) when the first argument is a label and is preceded
by an exclamation point (!) character. For example:

FIBPTR DC FIB

FIB RESV 16

$macro FIBPTR = LDB $B4,FIBPTR
•
• i.
. t

$macro IFIB = LAB $B4,FIB

REGISTER CONTENTS AT TASK ACTIVATION

When a task is activated, the contents of $B4, $B5, $B6, and
$B7 are the following:

$B4

$B5

$B6

$B7

Address of the task request block.

Address of the system-supplied termination routine (see
the Return ($RETRN) macro call).

Address of the top of the root/data segment of the bound
unit associated with the task. If this segment is larger
than 32K words, $B6 contains the address of the 32Kth
word of the segment.

Address of the parameter block containing the request
block argument list.

1-6 CZ06-00

REGISTER CONTENTS AT INITIAL TASK ACTIVATION

The M registers are set up as follows. When each task
starts, the system establishes the following default values for
registers Ml, M3, M4, and M5:

Ml » 00 " *°l ' ' ' ' ' - ' ,- *•*

Trace trap and all R-register overflow traps disabled.
*"r - ~ ' '.a •

M3 » 00
iV

CIP overflow trap and truncation trap disabled; CIP is
under direct CPU firmware control (i.e., not in software
test mode).

' « - - " : ' • " ' . .-DC-' " „ ;. L
M4 = 03 ', -:-t . . - ' , - • , _ ,

Truncation mode in effect. Scientific accumulators $S1
and $S2 and associated memory operands are two words
long; $S3 and associated memory operands are four words
long. : > , v->* .w .̂ - r

* \ < > f r

M5 = 20

Significance error trap enabled; exponent overflow and
precision error traps disabled.

Contents of these registers can be modified with the Assembly
language instruction MTM.

RETURN STATUS CODES IN $R1

The descriptions of the macro calls in Section 2 include
lists of status codes returned in $R1, together with an
explanation of each code. These lists are not intended to
include every possible return code; moreover, the explanations of
these codes are briefer than error messages provided by the
system. See the System Messages manual for a list of all $R1
return status codes, system messages, and additional definitions.

SYSTEM SERVICE MACRO CALLS AND FUNCTION CODES

Table 1-1 contains an alphabetic list, by macro call name, of
the macro calls described in the next section.

1-7 CZ06-00

The list includes the function codes associated with each
macro call (data structure generation macro calls do not have
function codes). The first two digits of the function code
designate the major function, and are used by the macro call }
trap-handling routine to locate the entry point of the -/
appropriate system service routine. The last two digits are a
subfunction code used by the system service routine to provide
the requested subfunction. When a macro call is executed, it
generates the following:

MCL
DC Z'mmss1

where mm is the 2-digit major function code and ss is the 2-digit
subfunction code. The function codes are provided for
information only; they will appear in program listings and dumps.

LOCATION OF MACRO ROUTINES

The macro routines are located either on cartridge disk or on
mass storage unit in a library named >LDD>MACRO>EXEC_LIB. On
diskette they are located in ~ZSYS02>LDD>MACRO>EXEC_LIB.

1-8 CZ06-00

Table 1-1. System Service Macro Calls

Macro
Call Name

(1)
Function Description

(2)

Function
Code
(3)

Function Group
(4)

$ABGRP

$ABGRQ

$ACTID

$ACTVG

$ASFIL

$BUAT

$BUDT

$BUID

$BULD

$BUXFR

$CANRQ

$CIN

$CKPFL

$CKPT

$CLFIL

$CLPNT

$CLRSW

Abort group

Abort group request

Account
identification

Activate group

Associate file

Bound unit, attach

Bound unit, detach

Bound unit
identification

Bound unit, load

Bound unit transfer

Cancel request

Command in

Checkpoint file »

Checkpoint

Close file r

Clean point

Clear external
switches

OD/OA

OD/07

14/02

OD/09

10/10

OC/09

OC/OB

14/06

OC/OA

OC/07

OC/01

08/02

OD/11

OD/OF

10/55-10/57

OC/13

OB/02

Task group control

Task group control

Identification and
information

Task group control

File management

Task control ,

Task control

Identification and
information

Task control

Task control

Task control

Standard system
file I/O

File management

Task group control

File management

File management

External switch

1-9 CZ06-00

Table 1-1 (cont). System Service Macro Calls

Macro
Call Name

(1)
Function Description

(2)

Function
Code
(3)

Function Group
(4)

SCMDLN

SCMSUP

$CNCRQ

$CNSRQ

$CRB

$CRBD

SCRDIR

$CRFIL

$CRGRP

$CRKDB

SCROAT

$CRPSB

$CRRDB

$CRSEG

$CRTSK

$CWDIR

$DFCKP

Command line process

Console message
suppression

Cancel clock request

Cancel semaphore
request

Clock request block

Clock request block
offsets

Create directory

Create file

Create group

Create file key
descriptor block
offsets

Create overlay area
table

Create file parameter
structure block
offsets

Create file record
descriptor block
offsets

Create segment

Create task

Change working
directory

Defer checkpoint

OC/08

09/02,09/03

05/01

06/01

10/AO

10/30

OD/03

07/OA

OC/OC

OC/02,OC/03

10/BO

OC/19

Task control

Operator interface

Clock

Semaphore handling

Data structure
generation

Data structure
generation

File management

File management

Task group control

Data structure
generation

Overlay handling

Data structure
generation

Data structure
generation

Task control

Task control

File management

Task control

1-10 CZ06-00

Table 1-1 (cont). System Service Macro Calls

Macro
Call Name

(1)
Function Description

(2)

Function
Code
(3)

Function Group
(4)

SDFRHD

$DFRTL

$DFSM

$DIPSB

$DLDIR

$DLFIL

SDLGRP

$DLOAT

$DLREC

$DLSEG

$DLSM

$DLTSK

$DQPST

SDSFIL

SDSTRP

$ELEND

$ELEX

$ELGT

$ELOG

$ELST

Defer request on head

Defer request on tail

Define semaphore

Device information
parameter structure
block offsets

Delete directory

Delete file

Delete group

Delete overlay area
table

Delete record

Delete segment

Delete semaphore

Delete task

Dequeue and post

Dissociate file

Disable user trap

Error logging end

Error logging
information, exchange

Error logging
information, get

Error logging table

Error logging, start

01/OD

01/OC

06/04

10/A5

10/35

OD/04

07/OD

11/30,11/31

OC/OD

06/07

OC/04

01/OB

10/15

OA/02

02/09

02/07

02/08

02/05

Request and Return

Request and Return

Semaphore handling

Data structure
generation

File management

File management

Task group control

Overlay handling

Data management

Task control

Semaphore handling

Task control

Request and Return

File management

Trap handling

Physical I/O

Physical I/O

Physical I/O

Data structure
generation

j Physical I/ 0

1-11 CZ06-00

Table 1-1 (cont). System Service Macro Calls

Macro
Call Name

(1)

$ENTID

$ENTRP

$EROUT

$EXTDT

$EXTIM

$FIB

$FIBDM

$FIBSM

$GAFIL

$GAPSB

$GDTM

$GIDEV

$GIFAB

$GIFIL

Function Description
(2)

Entry point
identification

Enable user trap

Error out

External date/time,
convert to

External time,
convert to

File information
block

File information
block offsets (data
management access)

File information
block offsets
(storage management
access)

Get file access
rights

Get file access
rights parameter
structure block
offsets

Get date/time

Get device
information

Get file information,
file attribute block
offsets

Get file information

Function
Code
(3)

14/07

OA/01

08/03

05/04

05/05

-

10/7C

05/06

10/66

••

10/60

Function Group
(4)

Identification and
information

Trap handling

Standard system
file I/O

Date/time

Date/time

Data structure
generation

Data structure
generation

Data structure
generation

File management

Data structure
generation

i

Date/time n

File management

Data structure
generation

File management

^

1-12 CZ06-00

Table 1-1 (cont). System Service Macro Calls

Macro
Call Name

(1)

$GIKDB

$GIPSB

$GIRDB

$GMEM

$GNFIL

$GNPSB

$GRFIL

$GRPID

- .

$GRPSB

$GTACT

$GTFIL

$GTPSB

5GWDIR

$HDIR

SINDTM

Function Description
(2)

Get file information,
key descriptor block
offsets

Get file information,
parameter structure
block offsets

Get file record
descriptor block " ,
offsets

Get memory/get ;
available memory

Get name

Get names parameter
structure block
offsets

Grow file

Group identification

i

Grow file parameter
structure block
offsets

Get file accounting
information

Get file

Get file parameter
structure block .
offsets

Get working directory

Home directory

Internal date/time,
convert to

Function
Code
(3)

_

— *

—

04/02,04/03

10/3C .

— ~_

10/38 , ,

14/08
_

_

• -̂ A.

10/42

10/20

—
--.

10/CO . -

14/OB

05/07

Function Group
(4)

Data structure
generation

'. o*

Data structure -]
generation

Data structure " ;
generation

Memory allocation

File management

Data structure
generation

File management

Identification and
information

Data structure
generation

»* •"

File management

File management

Data structure
generation

File management

Identification and
information ti
Dace/time

i

1-13 CZ06-00

Table 1-1 (cont). System Service Macro Calls

Macro
Call Name

(1)

$IORB

$IORBD

$KILLT

SMACPT

$MCME

$MCMG

SMDFIL

$MDPSB

$MGCRB

$MGCRT

$MGIRB

$MGIRT

$MGRRB

SMGRRT

Function Description
(2)

Input/output request
block

Input/output request
block offsets

Kill (abort) task

Message group, accept

Message group, cancel
enclosure

Message group, count

Modify file

Modify file parameter
structure block
offsets

Message group,
control request block

Message group control
request block offsets

Message group,
initialization
request block

Message group
initialization
request block offsets

Message group,
recovery request
block

Message group
recovery request
block offsets

Function
Code
(3)

-

—

OC/11

15/01

15/06

15/07

10/41

"
—

-

*"

"

•*

-

Function Group
(4)

Data structure
generation

Data structure
generation

Task control

Intergroup message
facility

Intergroup message
facility

Intergroup message
facility

File management

Data structure
generation

Data structure
generation

Data structure
generation

Data structure
generation

Data structure
generation

Data structure
generation

Data structure
generation

1-14 CZ06-00

Table 1-1 (cont). System Service Macro Calls

Macro
Call Name

(1)

$MINIT

$MODID

$MRECV

$MSEND

$MTMG

$NCIN

$NMLF

$NPROC

$NUIN

$NUOUT

$OPFIL

$OPMSG

$OPRSP

$OVEXC

$OVLD

$OVRCL

$OVRLS

Function Description
(2)

•»•• *f*-f ,

Message group,
initiate

Mode identification

Message group,
receive

Message group, send

Message group,
terminate

New command in

New message ~ - -
library

New process

New user input

New user output

Open file * " *

Operator information
message

Operator response
message

Overlay, execute

Overlay, load

Overlay release,
wait, and recall

Overlay area, release

Function
Code
(3)

15/02

14/03

15/03

15/05 • w

15/04 *.--

08/06

08/08

OD/OB *-

08/04
-•» --?

08/05
^ '

10/50,10/51

09/00
j*

09/01

07/00

07/01

07/07

07/06

Function Group
(4)

Intergroup message
facility

Identification and
information

Intergroup message
facility

Intergroup message
facility

Intergroup message
facility

Standard system
file I/O

Standard system
file I/O

Task group control

Standard system
file I/O

Standard system
file I/O

File management

Operator interface

Operator interface

Overlay handling

Overlay handling

Overlay handling

Overlay handling

1-15 CZ06-00

Table 1-1 (cont) . System Service Macro Calls J)
Macro

Call Name
(1)

SOVRSV

$OVST

$OVUN

$PERID

$PPNTL

$PRBLK

$PRFAU

$PRFCR

$PRFDL

$PRFGT

$PRFIF

$PRFUP

$RBADD

$RBD

SRBOOT

$RBPRM

$RCLHD

$RDBLK

Function Description
(2)

Overlay area reserve,
and execute overlay

Overlay status

Overlay, unload

Person identification

Postpone request on
tail

Parameter block

Profile record,
accounting update

Profile record,
create

Profile record,
delete

Profile record, get

Profile record, get
user information

Profile record,
update

Return request block
address

Request block
displacements

Reboot

Modify reboot
parameters

Recall from head

Read block

Function
Code
(3)

07/05

07/03

07/OC

14/01

01/OE

24/42

24/20

24/30

24/10

24/12

24/40

01/07

20/06

20/05

01/OF

12/00-12/04

Function Group
(4)

Overlay handling

Overlay handling

Overlay handling

Identification and
information

Request and Return

Data structure
generation

User registration

User registration

User registration

User registration

User registration

User registration

Request and return

Data structure
generation

Software reboot

Software reboot

Request and return

Storage management

j

1-16 CZ06-00

Table 1-1 (cont). System Service Macro Calls

Macro
Call Name

(1)
Function Description

(2)

Function
Code
(3)

Function Group
(4)

$RDREC

$RDSW

$RETRN

$RLDMP

$RLSM

$RLTML

$RMEM

SRMFIL

$RNFIL

$ROLBK

$RPDFC

$RPMSG

$RQBAT

$RQCL

$RQGRP

$RQIO

$RQSM

$RQSPT

$RQTML

Read record

I

Read external
switches

Return

Unlock dumpfile

Release semaphore

Release terminal

Return memory/return
partial block of
memory

Remove file
r

Rename file/rename
directory

Roll back (recover)
files

Report message, dis-
play formatting and
control

Report message

Request batch

Request clock

Request group
j

Request I/O i. <

Request semaphore

Request specific
terminal

Request terminal

11/10-11/16,
11/19

OB/00

20/04

06/03

17/04

04/04,04/05

10/25

10/40

OC/14

OF/04

OF/03

OE/00

05/00 - ^

OD/00

02/00

06/00

17/02

17/03

Data management

External switch

Request and return

Software reboot

Semaphore handling

Terminal function

Memory allocation

File management

File management

File management

Message reporter

Message reporter

Batch

Clock

Task group control

Physical I/O

Semapnore handling

Terminal function

Terminal function

1-17 CZ06-00

Table 1-1 (cont). System Service Macro Calls

Macro
Call Name

(1)
Function Description

(2)

Function
Code
(3)

Function Group
(4)

SRQTSK

$RS

$RSVSM

$RWREC

$RVFPW

$SDL

SSETSW

3SGRPA

$SGTRP

SSHFIL

SSHPSB

$SPGRP

$SPTSK

$SRB

$SRBD

$STMP

$STTY

$SUSPG

Request task

Restart

Reserve semaphore

Rewrite record

Reverify password

Set dial

Set external switches

Set group attributes

Signal trap

Shrink file

Shrink file parameter
structure block
offsets

Spawn group

Spawn task

Semaphore request
block

Semaphore request
block offsets

Status memory pool

Set terminal file
characteristics

Suspend group

OC/00

OD/10

06/02

11/40,11/41

24/01

IB/00

OB/01

OD/13

OA/03

10/37

OD/05

OC/05,OC/06,
OC/15

04/06

10/45

OD/08

Task control

Task control

Semaphore handling

Data management

User registration

Communications

External switch

Task group control

Trap handling

File management

Data structure
generation

Task group control

Task control

Data structure
generation

Data structure
generation

Memory allocation

File management

Task group control

1-18 CZ06-00

Table 1-1 (cont). System Service Macro Calls

Macro
Call Name

(1)
Function Description

(2)

Function
Code
(3)

Function Group
(4)

SSUSPN

$SWFIL

5SYSAT

$SYSID

$TEST

$TFIB

STGIN

$TIFIL

$TOFIL

$TRB

$TRBD

$TRMRQ

$TRPHD

$USIN

$USOUT

$USRID

$VLCKP

Suspend for interval;
suspend until time

Swap file

System attribute !

information, get

System identification

Test completion
status

File information
block offsets (data
and storage manage-
ment access)

Task group input

Test file for input

Test file for output

Task request block

Task request block
offsets

Terminate request

Trap handler connect

User input

User output

User identification

Validate checkpoint

05/02,05/03

10/5A

14/11

14/04

01/02

14/OC

10/62

10/63

01/03,01/04

OA/00

08/00

08/01

14/00

OD/12

Clock

File management

Identification and
information

Identification and
information

Request and return

Data structure
generation

Identification and
information

File management

File management

Data structure
generation

Data structure
generation

Request and return

Trap handling

Standard system
file I/O

Standard system
file I/O

Identification and
information

Task group control

1-19 CZ06-00

Table 1-1 (cont). System Service Macro Calls

Macro
Call Name

(1)
Function Description

(2)

Function
Code
(3)

Function Group
(4)

SWA IT

SWAITA

$WAITL

$WAITM

$WIFIL

$WLIST

SWLSTM

$WOFIL

$WRBLK

$WRREC

$WTBLK

$XFERU

SXPATH

$XRETU

Wait

Wait any

Wait on request list

Wait on multiple
requests

Wait file (input)

Wait list generate

Wait list, generate
multiple

Wait file (output)

Write block

Write record

Wait block

Transfer user

Expand pathname

Transfer and re-
turn user

01/00

01/01

01/01

01/01

10/64

10/65

12/10,12/11

11/20-11/26

12/20

17/06

10/DO

17/07

Request and return

Request and return

Request and return

Request and return

File management

Data structure
generation

Data structure
generation

File management

Storage management

Data management

Storage management

Terminal function

File management

Terminal function

1-20 CZ06-00

Section 2
MACRO CALL DESCRIPTIONS

This section describes in detail the system service macro
calls listed in the previous section (Table 1-1). The
descriptions are ordered alphabetically by function name (see
Column 2, Table 1-1).

"*- $«

Each description explains the purpose of the system service
routine invoked by the macro call. The description also defines
any arguments that the user supplies with the macro call.
Explanation of the routine's logic is limited to points that are
pertinent to proper use of the call. A section of notes in the
description provides the following information:

• Registers used by the macro call

• Possible error codes returned in register Rl and their
significance.

The list of error codes included in macro call descriptions
is only partial; moreover, the explanations of the codes are
briefer than the error messages provided by the system. For a
complete listing of error codes and accompanying system messages,
see the System Messages manual.

The following notational conventions are used in macro call
formats:

2-1 CZ06-00

Convention Meaning j

UPPERCASE CHARACTERS Required word; i.e., must be used ^
in the form specified. J

lowercase characters Symbolic name; i.e., must be
replaced by user-specified word(s)

[] Brackets. The item enclosed in the
brackets is optional.

j | Braces. An enclosed entry must be
selected.

NOTE

Brackets and braces can be combined as shown in
the following example:

f/, PRESERVE)])̂
[j, RENEW /J ^

The argument is optional; if specified, it must
take the form PRESERVE or RENEW.

... Ellipses. The immediately
preceding item may be repeated one
or more times.

A Required space. This character is J
used to indicate a required space
at the end of a string; embedded
spaces are usally represented
visually (i.e., by the absence of
any character).

2-2 CZ06-00

ABORT GROUP

ABORT GROUP (SABGRP) " , ' " " ' '

Function Code: OD/OA

Equivalent Command: Abort Group (ABORT_GROUP)

Terminate the indicated task group and delete it.

FORMAT:

[label]

ARGUMENTS:

$ABGRP [location of abort status],
[location of group id]

location of abort status " , .

Any address form valid for a data register; provides a
completion status code that is posted when the task group
is terminated. The abort status code is used as the ter-
mination code of the lead task of the aborted group.

location of group id "" ' • • • • • ;,~ iv. , - _r.:

Any address form valid for a data register; provides the
group identification of the task group to be aborted. If
this argument is omitted, the task group issuing the
macro call is aborted. If a group id is specified, it
must be the same as that used in the Create Group macro
call that initialized that task group.

DESCRIPTION:

This function terminates an existing task group, whether the
group is active or dormant. The Abort Group macro call
removes all data structures that define and control execution
of the task group, and returns all memory used by the group
to the appropriate memory pool. Any files that were open
during execution of the task group are closed. Any requests
pending against the group are canceled. The group is
deleted.

2-3 CZ06-00

NOTES

1. The system places the abort status codes sup- r
plied by argument 1 in $R6. If this argument is j
omitted, the system assumes that $R6 contains --
the abort status code to be used.

2. The system places the group identification sup-
plied by argument 2 in $R2. If this argument is
omitted, $R2 is set to zero to designate that
the issuing task group is to be aborted.

3. If a task group other than the issuing task
group is aborted, $R1 and $R2 contain the follow-
ing information upon return to the issuing task.

$R1 - Return status; one of the following:

0000 - Abort task group status set
0806 - Invalid group id

$R2 - Group id of aborted task group.

Example:

In this example, the Abort Group macro call causes the pro-
cessing of the current group request to be aborted with a
completion status of 40 (decimal). The task group is then
deleted, and any requests that may be queued on the group are
discarded.

$ABGRP = 40

2-4 CZ06-00

ABORT GROUP REQUEST

ABORT GROUP REQUEST (SABGRQ)

Function Code: OD/07 - > .

Equivalent Command: Abort Group Request (AGR)

Terminate execution of the current request in the indicated
task group. , t

FORMAT: ~ -> * -

[label] $ABGRQ [location of abort status],
[location of group id]

ARGUMENTS: - ,„
F - ~; ..

location of abort status 2

Any address form valid for a data register; provides a
completion status code that is posted when the request is
marked as terminated. The abort status code is used as
the termination code of the lead task of the aborted
group. ,, _ - . -

location of group id -

Any address form valid for a data register; provides the
group identification of the task group whose current
request is to be terminated. If this argument is
omitted, the current request of the issuing task group is
terminated. If a group identifier is specified, it must
be the same as that used in the Create Group or Spawn
Group macro call that initialized this task group.

DESCRIPTION: - J - „ - . ., „ .

This macro call terminates execution of the current request
in the indicated task group. It removes all defining and
controlling data structures except those associated with the
lead task (as defined by the Create Group macro call that
specified this group id), and returns the associated memory
to the appropriate memory pool.

2-5 CZ06-00

Open files for this task group are closed. The abort process
is not achieved until all outstanding input/output orders are
completed.

When the macro call has been executed, the abort status code
is posted, the request is removed, and the next request for
this group, if any, is processed by the lead task.

An Abort Group Request for a spawned group is equivalent to
an Abort Group monitor call.

NOTES

1. The system places the abort status code specified
by argument 1 in $R6. If this argument is
omitted, the system assumes that $R6 contains the
abort status code to be used.

2. The system places the group identification speci-
fied by argument 2 in $R2. If this argument is J
omitted, $R2 is set to zero to designate that the -̂
issuing task group request is to be aborted.

3. If the current request of a task group other than
the issuing task group was aborted, $R1 and $R2
contain the following information upon return to
the issuing task.

$R1 - Return status; one of the following:
J

0000 - Abort task group request status set
0806 - Invalid id

$R2 - Group id of task group whose current request
was aborted.

Example:

In this example, the Abort Group Request macro call causes)
the processing of the current group request to be aborted ^^-'
with a completion status of 20 (hexadecimal). If additional
requests are queued on the task group, the next (first)
request in the queue is processed:

END2 $ABGRQ =X'20'

2-6 CZ06-00

ACCOUNT IDENTIFICATION

ACCOUNT IDENTIFICATION (SACTID)
? »

Function Code: 14/02 ' "

Equivalent Command: None

Return the account component of the calling task group's user
identification to a 12-character receiving field.

FORMAT:
f £

[label] $ACTID [location of account id field address]

ARGUMENT: * * - - * ~
* * -i

location of account id field address *• ^ ~

Any address form valid for an address register; provides
the address of a 12-charactere aligned, nonvarying field
into which the system will place the account component of
the user identification associated with the issuing task
group.

DESCRIPTION:

This macro call returns the account component (i.e., the
account under which the user is working) of the task group's
user id to a field in the issuing task. See the System
User's Guide for more details.

The entire user id is returned by the User Identification
macro call.

2-7 CZ06-00

NOTES

1. The system places in $B4 the address of the
receiving account id field, supplied by argument
1. If this argument is omitted, the system
assumes that $B4 contains the address of the
receiving field.

2. On return, $R1 contains one of the following
status codes:

0000 - No error
0817 - Memory access violation.

Example:

In the following example, $B4 is loaded with the address
(ACIDFL) of a 12-character field, and the $ACTID macro call
is issued to place the account identification of the task ...
group in that field. ,)

^ACIDFL RESV 12,0
LAB $B4,ACIDFL
$ACTID

2-8 CZ06-00

ACTIVATE GROUP

ACTIVATE GROUP (SACTVG)

Function Code: OD/09

Equivalent Command: Activate Group (ACTG)

Reactivate a previously suspended task group.

FORMAT: ' . - . = , - .

[label] $ACTVG [location of group id] ^f ,

ARGUMENT: t . - <-. . f ,. * t -
- "r> '3L ' ' -

- location of group id r. - - _ .̂ ̂ /

Any address form valid for a data register; provides the
group id of the task group to be reactivated.

DESCRIPTION:

This macro call causes the system to reactivate the specified
suspended task group. The task group must have been
previously suspended through a Suspend Group macro call. The
system requeues on the appropriate level queue all tasks that
were active when the task group was suspended.

Before terminating, any online task group that has suspended
another online task group (through a Suspend Group macro
call) should reactivate that task group. If the suspending
task group does not issue an Activate Group macro call, or if
the suspended task group is aborted, the operator must issue
an Activate Group command for the suspended task group to
resume.

NOTES

1. The system places in $R2 the group id of the task
group to be reactivated, supplied by the argument.
If the argument is omitted, the system assumes that
$R2 contains the correct group id.

2-9 CZ06-00

2. On return, $R1 and $R2 contain the following infor-
mation:

$R1 - Return status; one of the following:)

0000 - No error

0806 - Invalid group id

080D - Specified task group not currently
suspended

$R2 - Group id as supplied. * • -

Example:

In this example, the Activate Group macro call is used to
reactivate the previously suspended task group whose group id
is Gl. All tasks in task group Gl that were active when the ^
group was suspended are requeued on the appropriate level)
queue. *—̂

ACTGAA $ACTVG =G1

2-10 CZ06-00

ASSOCIATE FILE

ASSOCIATE FILE (SASFIL)
* *' - , -,.

Function Code: 10/10

Equivalent Command: Associate (ASSOC) ? - ^ ^ ^ - ^

Associate a logical file number (LFN) with a specific path-
name. This association is typically done outside program execu-
tion to allow the program to be run against a pathname that is
not known until execution time. The Get File macro call or Get
File command may be more useful.

FORMAT: -'' * }

~ - lv * J

[label] $ASFIL [argument structure address]

ARGUMENT:

argument structure address

Any address form valid for an address register; provides
the location of the argument structure defined below.
The argument structure must contain the following entries
in the order shown. i -' , j
logical file number

A 2-byte LFN used to refer to the file; must be a
binary number in the range 0 through 255.

pathname pointer *

A 4-byte address that may be any address form valid
for an address register; points to a pathname (which
must end with an ASCII space character) to be associ-
ated with the LFN.

2-11 CZ06-00

DESCRIPTION:

This macro call establishes a logical connection between an
LFN and a pathname. It does not reserve a file or check to
determine whether the pathname identifies an existing file or
directory (i.e., the pathname entry may identify an incom-
plete pathname). Subsequent macro calls (e.g., Change Work-
ing Directory) have no effect on a previously associated
pathname because the pathname identified in this macro call
is fully expanded at the time of the call. Note that the
association established is specific to a task group; that is,
different task groups can associate different pathnames to
the same LFN.

NOTES

1. If the argument is coded, the system loads the
address of the argument structure into $B4. If
the argument is omitted, the system assumes that
$B4 contains the address of the argument structure.

2. On return, $R1 contains one of the following status
codes:

0000 - No error

0201 - Invalid pathname

0202 - Pathname not specified

0205 - Invalid argument

0206 - Unknown or invalid LFN

0210 - LFN already associated

0222 - Pathname cannot be expanded, no working
directory

0226 - Not enough user memory for buffers or
structures.

2-12 CZ06-00

Example: ' * *

This example assumes that $B4 has been loaded with the
address of the label FILE^A (i.e., LAB $B4,FILE_A). The
macro call that associates the path identified in the Create
File example (i.e., "VOL03>SUBINDEX.A>FILE_A) with LFN 5 is
coded as follows: -t

$ASFIL

FILE_A is defined in "Assumptions for File System Examples"
in Appendix A; as a result of issuing the Associate File
macro call, the first two entries in that structure are
referred to by the system.

3. " 1

k,t>v f nf „» 3'

2-13 CZ06-00

BOUND UNIT, ATTACH

BOUND UNIT, ATTACH (SBUAT)

Function Code: OC/09

Equivalent Command: None

Load the root of the specified bound unit and start its
execution.

FORMAT:

[label] $BUAT [location of root entry name address],
[location of segmented code address],
[location of code segment access rights],
[location of data segment access rights]

ARGUMENT:

location of root entry name address

Any address form valid for an address register;
provides the location of the address of the pathname of
the bound unit to be executed. The bound unit pathname
can have an optional suffix, in the form ?entry, where
entry is the symolic start address within the root. If
the suffix is not supplied, the execution of the bound
unit begins at the default start address established at
link time.

location of segmented code address

Any address form valid for an address register;
provides the address of any word in the code segment of
the bound unit to be attached. A null address
specifies the segment number (if any) specified at link
time. If no segment number was specified at link time,
a null address directs the system to assign a segment
number.

The system bypasses this argument if:

• The bound unit to be attached is globally
sharable (i.e., linked with the GSHARE
directive)

• The task that issues $BUAT is not running in a
swap pool.

2-14 CZ06-00

location of code segment access rights

Any address form valid for a data register; provides
the access rights (read, write, and execute) for the
code segment of the bound unit to be attached. Access
rights are expressed as a string of six bits, which are
used to specifiy the type of access as follows:

Bits Access Type

0-1 - Read
2-3 : _ Write ; 9 - '
4-5 " Execute

Ring access is coded as follows:

Bit Values Ring

00 3
01 2 "
1° ^ !
11 0

The system bypasses this argument if: ' •-" :

• The bound unit to be attached is globally
sharable (i.e., linked withthe GSHARE
directive)

• The task that issues $BUAT is not running in a
swap pool. . . , -.

In either of the two cases stated above, omitting this
argument does not cause the system to assign default
access rights. Otherwise, omitting this argument
causes the system to assign the following default
access rights to the code segment:

Read = 3 lf C

Write = 0 " "
Execute = 3 , , ^ ̂

location of data segment access rights

Any address form valid for a data register; provides
the access rights for the data segment of a bound unit
to be attached. Access rights are specified in the
same manner as for argument 3.

2-15 CZ06-00

The system bypasses this argument if: '<

• The bound unit to be attached was not linked
with the -R argument of the Linker command

• The task that issues $BUAT is not running in a
swap pool.

In either of the two cases stated above, omitting this
argument does not cause the system to assign default
access rights; otherwise, omitting this argument causes
the system to assign the following default access
rights to the data segment:

Read = 3
Write = 3
Execute = 3

DESCRIPTION:
!

Arguments 2, 3, and 4 (which pertain to segments) are
applicable only when the the call is issued from a swap
pool. (Further limitations to the applicability of these
arguments are noted in their descriptions).

When the call is issued from a swap pool, the address space
of the issuing task is compared to the total address space of
the bound unit to be attached. If the two address spaces
overlap, a warning message is returned to the error out file, -

^The segment number specified by argument 2 overrides a --'
segment number specified at link time. If the bound unit to
be attached has been linked with the -R argument of the
Linker command, the system assigns to that bound unit's data
segment a segment number lower by 1 than the segment number
specified for the code segment.

If the code or data segment of the bound unit to be attached
has been assigned a ring number at link time, arguments 3 and ^
4 can only lower that number; they cannot assign a ring)
number higher than one previously assigned. That is,
arguments 3 and 4 can only increase the protection already
given to a bound unit; they cannot lower that protection.

Up to seven bound units can be attached to a task at a given
time.

2-16 CZ06-00

When a bound unit is attached, its bound unit index
indentifier (a value from 1 to 7) is returned in $R6. The
bound unit index id can be used later to execute a Bound
Unit, Detach macro call; it must be supplied with all macro
calls that handle the attached bound unit's overlays.

When a globally sharable or sharable bound unit (linked with
the GSHARE or SHARE directives, respectively) is attached for
the second time by a given task, the bound unit index id
first returned is returned again; a new index id is not
established. When, however, a nonsharable bound unit is
attached for the second time, the bound unit is loaded a
second time and a new bound unit index id is established.

An attached bound unit is loaded according to the Loader's
general rules for allocation. When the bound unit to be
attached is globally sharable, no additional copy of the
bound unit is loaded; instead, the "number of BU users" is
incremented. When the bound unit to be attached is sharable
(i.e., linked with the SHARE directive) and has already been
loaded into a different segment than that specified by
argument 2, a private copy of the bound unit is loaded for
the issuing task. When a nonsharable bound unit is attached,
its external symbols are resolved with respect to the calling
bound unit.

NOTES

1. The address of the root entry name supplied by
the first argument is placed in $B2. If this
argument is omitted, the system assumes that
$B2 contains the address.

2. The address of any word in the code segment,
supplied by argument 2, is placed in $B4. If
this argument is applicable but omitted, the
system assumes that $B4 contains the address.

3. The access rights value for the code segment,
supplied by argument 3, is placed in $R7.
When this argument is applicable but omitted,
the access rights default to those given above
in the description of argument 3.

4. The access rights value for the data segment,
supplied by argument 4, is placed in $R6.
When this argument is applicable but omitted,
the access rights default to those given above
in the description of argument 4.

5. On return, $R3, $R4, $R5, $B1, $B3, $B5, and
$B7 are preserved. $R1, $B4, $B6, $R6 contain
the following information:

2-17 CZ06-00

$R1 - Return status; one of the following:

0000 - No error

0602- No memory available for attached
bound units array

082C - Number of attachable bound units
exceeded

1605 - Relocation error

1607 - Media error

1608 - Symbol resolution error

1609 - File not found

160A - No memory available for bound
unit

160D - Bound unit entry point not
defined

160F - Bound unit cannot run in System
Group Task

1614 - Access violation

1615 - Invalid bound unit format

1619 - Concurrency violation

$B4 - Address of entry point

$B6 - Address of data section (if any)

$R6 - Index id of attached bound unit.

2-18 CZ06-00

BOUND UNIT, DETACH

BOUND UNIT, DETACH (SBUDT) - --" " *.

Function Code: OC/OB - , " . . » -
1 > * • *,

Equivalent Command: None

Unload a bound unit that has been attached or loaded by the
issuing task.

FORMAT :

[label]

ARGUMENTS :

$BUDT [location of pathname address] ,
[location of bound unit index id]

location of pathname address ' '" £ -

Any address form valid for an address register; provides
the location of the pathname of the bound unit to be
detached from the issuing task. A null address signifies
that the bound unit to be detached is specified by its
bound unit index id, supplied by argument 2. A null
address must be used when detaching a nonsharable bound
unit.

location of bound unit index id

Any address form valid for a data register; provides the
bound unit index id (a value from 1 to 7) of the bound
unit be to detached. The index id is returned in $R6 by
the Bound Unit Attach ($BUAT) or Bound Unit, Load ($BULD)
macro call that initially loaded the bound unit to be
detached.

If argument 1 supplies a pathname, argument 2 may be
omitted. If argument 1 supplies a null address, argument
2 must specifiy a bound unit index id.

DESCRIPTION:

The task issuing this call must have previously issued a
Bound Unit, Attach ($BUAT) or Bound Unit, Load ($BULD) macro
call that loaded the bound unit to be detached by this call.

2-19 CZ06-00

To detach a nonsharable bound unitf the user must specify
in argument 1 a null address and in argument 2 the bound
unit's index id.

The bound unit specified by argument 1 or 2 is unloaded
according to the loader's allocation rules: If the
specified bound unit is sharable, it is physically
unloaded when the count of its users is decremented to
zero.

NOTES

1. The address of the pathname supplied by
argument 1 is placed in $B2. If the argument
is omitted, the system assumes that $B2
contains the address of the pathname. If $B2
is null, the bound unit index supplied by
argument 2 is used to identify the bound unit.

2. If argument 1 supplies a non-null address of a
pathname, argument 2 is bypassed. Otherwise,
the bound unit index id supplied by argument 2
is placed $R6. If argument 2 is omitted, the
system assumes that $R6 contains the index id
to be used.

3. On return, $R1, $R2, and $R6 contain the -
following information:

$R1 - Return status; one of the following:

0000 - No error

082A - No matching bound unit found to
be detached

0826 - May not detach the primary bound
unit of a task

0602 - No memory available to expand
pathname

0201 - Illegal pathname

0222 - Pathname cannot be expanded; no
working directory

$R2 - 0

$R6 - Bound unit index id.

Other registers are preserved.

-s

2-20 CZ06-00

Example:

The issuing task requests that the sharable bound unit PROG1 ,
previously attached by means of a Bound Unit, Attach macro
call, be detached. The address occupied by PROG1 is made
inactive relative to the issuing task; that is, it is removed
from the address space defined for the issuing task.

DTBU1 $BUDT 1ROOT

ROOT TEXT 'PROG1A

2-21 CZ06-00

BOUND UNIT IDENTIFICATION

BOUND UNIT IDENTIFICATION (SBUID)

Function Code: 14/06

Equivalent Command: Name

Return the symbolic entry point name of the bound unit being
executed by the issuing task to a 12-character receiving field.

FORMAT:

[label] $BUID [location of bound unit id field address]

ARGUMENT:

location of bound unit id field address

Any address form valid for an address register; provides
the addess of a 12-character aligned, nonvarying
receiving field into which the system will place the name
of the current bound unit.

DESCRIPTION:

This macro call returns the symbolic entry point name of the
currently executing bound unit to a specified field in the
issuing task. The name returned is that specified in the
first Linker EDEF directive whose address matches the entry
point of the current task; if not found, the initial start
address of the task.

NOTES

1. The system places in $B4 the address of the
receiving bound unit id field supplied by argu-
ment 1. If this argument is omitted, the system
assumes that $B4 contains the address of the
receiving field.

2. On return, $R1 contains one of the following
status codes:

0000 - No error
0817 - Memory access violation.

2-22 CZ06-00

3. On re tu rn , $B4 contains the address of the ,. , / - . . - ,
receiving field. I f no t f ound , 12 blank • , • • • • • • • ?
characters are placed in the receiving field.

Example:

In this example, $B4 is loaded with the address (BUNAME) of a
6-word field. The Bound Unit, Identification macro call is
issued to place the name of the currently executing bound
unit in that field.

BUNAME RESV 6,0 ; " '"" -^ ̂
LAB $B4, BUNAME .. _, . f

$BUID

2-23 CZ06-00

BOUND UNIT, LOAD

POUND UNIT. LOAD fSBULD)

Function Code: OC/OA

Equivalent Command: None

Load the root of the specified bound unit and return its
start address to the caller.

FORMAT:

[label] $BULD [location of root entry name address],
[location of segmented code address],
[location of code segment access rights],
[location of data segment access rights]

ARGUMENT:

location of root entry name address

Any address form valid for an address register;
provides the location of the address of the pathname of
the bound unit to be loaded. The bound unit pathname
can have an optional suffix, in the form ?entry, where
entry is the symolic starb address within the root. If
the suffix is not supplied, the start address returned
is the default start address established at link time.\

location of segmented code address

Any address form valid for an address register;
provides the address of any word in the code segment of
the bound unit to be loaded. A null address specifies
the segment number (if any) specified at link time. If
no segment number was specified at link time, a null
address directs the system to assign a segment number.

The system bypasses this argument if:

• The bound unit to be loaded is globally
sharable (i.e., linked with the GSHARE
directive)

• The task that issues $BULD is not running in a
swap pool.

2-24 CZ06-00

location of code segment access rights

Any address form valid for a data register; provides
the access rights (read, write, and execute) for the
code segment of the bound unit to be loaded. Access
rights are expressed as a string of six bits, which are
used to specifiy the type of access as follows:

gits - Access Type

0-1 Read >t
2-3 Write
4-5 Execute *• *- A

Ring access is coded as follows: ^ 7 "\ iv

git Values Ring , t ..«, c-
T ' 5 n " -

00 * 3-'- ' *~ ~ ' ' '>rn - ,\ v _~
'01 - ' & *• * c ? «-,. , .

' 10 • ' I '̂ -* W
11 & . * : „ . ,

7 . '„

The system bypasses this argument if:

• The bound unit to be loaded is globally
sharable (i.e., linked withthe GSHARE
directive) ^^-_ ,

• The task that issues $BULD is not running in a
swap pool. j j. -. , -

In either of the two cases stated above, omitting this
argument does not cause the system to assign default
access rights. Otherwise, omitting this argument
causes the system to assign the following default
access rights to the code segment: :* f-

Read = 3 „ - _ -**.-:•."
Write = 0 • • - • • • r : ̂ ' -
Execute = 3 •; ~fc. - ,

location of data segment access rights -: >;, ^

Any address form valid for a data register; provides
the access rights for the data segment of a bound unit
to be loaded. Access rights are specified in the same
manner as for argument 3.

The system disregards this argument if: . - ~

• The bound unit to be loaded was not linked with
the -R argument of the Linker command

2-25 CZ06-00

• The task that issues $BULD is not running in a ""N
swap pool. ^j)

In either of the two cases stated above, omitting this "~"\
argument does not cause the system to assign default .y
access rights; otherwise, omitting this argument causes
the system to assign the following default access
rights to the data segment:

Read = 3
Write = 3
Execute = 3

DESCRIPTION:

Bound Unit, Load performs the same functions as Bound Unit
Attach ($BUAT) with this excecption: $BUAT both loads the
specified bound unit and starts its execution; $BULD only
loads the specified bound unit, returning its start address
in $B4. After issuing $BULD, a task resumes execution at the "̂ s
next sequential instruction following the macro call. To ^/
start execution of the loaded bound unit, the user should
employ the instruction JMP $B4.

Arguments 2, 3, and 4 (which pertain to segments) are
applicable only when the the call is issued from a swap
pool. {Further limitations to the applicability of these
arguments are noted in their descriptions).

When the call is issued from a swap pool, the address space)
of the issuing task is compared to the total address space of -
the bound unit to be loaded. If the two address spaces
overlap, a warning message is returned to the error out file.

The segment number specified by argument 2 overrides a
segment number specified at link time. If the bound unit to
be loaded has been linked with the -R argument of the Linker
command, the system assigns to that bound unit's data segment
a segment number lower by 1 than the segment number specified \
for the code segment. ^)

If the code or data segment of the bound unit to be loaded
has been assigned a ring number at link time, arguments 3 and
4 can only lower that number; they cannot assign a ring
number higher than one previously assigned. That is,
arguments 3 and 4 can only increase the protection already
given to a bound unit; they cannot lower that protection.

Up to seven bound units can be loaded to a task at a given
time.

2-26 CZ06-00

When a bound unit is loaded, its bound unit index indentifier
(a value from 1 to 7) is returned in $R6. The bound unit
index id can be used later to execute a Bound Unit, Detach
macro call; it must be supplied with macro calls that handle
the loaded bound unit's overlays.

When a globally sharable or sharable bound unit (linked with
the GSHARE or SHARE directives, respectively) is loaded for
the second time by a given task, the bound unit index id
first returned is returned again; a new index id is not
established. When, however, a nonsharable bound unit is
loaded for the second time, the bound unit is loaded a second
time and a new bound unit index id is established.

A bound unit is loaded according to the Loader's general
rules for allocation. When the bound unit to be loaded is
globally sharable, no additional copy of the bound unit is
loaded; instead, the "number of BU users" is incremented.
When the bound unit to be loaded is sharable (i.e., linked
with the SHARE directive) and has already been loaded into a
different segment than that specified by argument 2, a
private copy of the bound unit is loaded for the issuing
task. When a nonsharable bound unit is loaded, its external
symbols may be resolved with respect to the calling bound
unit.

NOTES

1. The address of the root entry name supplied by
the first argument is placed in $B2. If this
argument is omitted, the system assumes that
$B2 contains the address.

2. The address of any word in the code segment,
supplied by argument 2, is placed in $B4. If
this argument is applicable but omitted, the
system assumes that $B4 contains the address.

3. The access rights value for the code segment,
supplied by argument 3, is placed in $R7.
When this argument is applicable but omitted,
the access rights default to those given above
in the description of argument 3.

4. The access rights value for the data segment,
supplied by argument 4, is placed in $R6.
When this argument is applicable but omitted,
the access rights default to those given above
in the description of argument 4.

5. On return, $R3, $R4, $R5, $B1, $B3, $B5, and
$B7 are preserved. $R1, $B4, $B6, $R6 contain
the following information:

2-27 CZ06-00

$R1 - Return status; one of the following:

0000 - No error

0602- No memory available for attached
bound units array

082C - Number of attachable bound units
exceeded

1605 - Relocation error *

1607 - Media error

1608 - Symbol resolution error

1609 - File not found

160A - No memory available for bound
unit

160D - Bound unit entry point not
defined

160F - Bound unit cannot run in System
Group Task

1614 - Access violation

1615 - Invalid bound unit format)

1619 - Concurrency violation

$B4 - Address of entry point

$B6 - Address of data section (if any)

$R6 - Index id of loaded bound unit.

2-28 CZ06-00

Example:

Bound unit PROG2 is loaded for use by the issuing task. When
execution of the bound unit is requested, the start address
is the default address. Bound unit PROG2 is found by apply-
ing the system search rules currently defined for the issuing
task group.

LDBU2 $BULD IROOT
•

f

ROOT TEXT 'PROG2A1 -
i

fr

f .V

"L L c

2-29 CZ06-00

BOUND UNIT TRANSFER

BOUND UNIT TRANSFER fSBUXFR)

Function Code: OC/07

Equivalent Command: None

Terminate the issuing task's execution of the current bound
unit. Return memory allocated for that bound unit and all
currently attached or loaded bound units. Initiate execution of
the specified bound unit.

FORMAT:

[label] $BUXFR

ARGUMENTS:

[location of command line address],
[location of command line size],
[location of memory area]

location of command line address

Any address form valid for an address register; provides
the pathname of the bound unit to be executed as the first
ASCII string in the command line.

location of command line size

Any address form valid for an address register; provides
the 2-byte size of the command line, including a blank
which terminates the pathname.

location of memory area

Any address form valid for an address register; provides
the address of the memory to be returned.

DESCRIPTION:

This macro call terminates execution of the current bound
unit and initiates execution of a specified bound unit. If
the resident bound unit is a sharable bound unit, the system
increments the count of tasks that are currently associated
with it.

2-30 CZ06-00
<./

NOTES
*o '

1. The system places in $B4 the address of the
pathname supplied by argument 1. When this
argument is omitted, the system assumes $B4
contains the address.

2. The system places in $R6 the size of the
command line supplied by argument 2. When
this argument is omitted, the system assumes
$R6 contains the size.

3. The system places in $B2 the address of the
memory area supplied by argument 3. When this
argument is omitted, $B2 is set to null (i.e.,
no memory is returned).

4. On entry to the transferred bound unit, data
registers and address registers contain the
following information:

$R1 - Unspecified

$R2 - Set to zero

$B2 - Unspecified

$B4 - Unspecified

$B6 - Address of the data space of the bound
unit

$R6, $R7 - Unspecified; preserved when $BUXFR
was issued.

Remaining registers are preserved when the
Bound Unit Transfer macro call is issued.

5. Any error encountered during processing
results in termination or deletion of the
issuing task, with appropriate status.

2-31 CZ06-00

Example:

In this example, control is transferred to the bound unit
"nxtbu" at entry point "xntry". The memory block whose
address is contained in $B3 is returned to the caller's
memory pool.

$BUXFR Icmdln,!cmdsz,=$b3

cmdln text 'nxtbu?xntry '

cmdsz equ ($-cmdln)*2

2-32 CZ06-00

CANCEL CLOCK REQUEST

CLOCK REQUEST (SCNCRQJ - ~?

Function Code: 05/01 ^i

Equivalent Command: None

Cancel a previously issued clock request.

FORMAT:

[label] $CNCRQ [location of CRB address]

ARGUMENT:

location of CRB address

Any address form valid for an address register; provides
the address of the clock request block (CRB) to be
removed from the timer queue.

DESCRIPTION:

This macro call removes a queued CRB that is no longer needed
from the timer queue. The CRB must have previously been
placed on the queue by a Request Clock macro call.

The Cancel Clock Request macro call is the only way to remove
a cyclic CRB from the timer queue. A noncyclic CRB will also
be removed when its interval elapses.

NOTES

1. The system places in $B4 the address of the CRB
to be disconnected from the queue, supplied by the
argument. If the argument is omitted, the
system assumes that $B4 contains the correct
address.

2. On return, $R1 and $B4 contain the following
information:

$R1 - Return status; one of the following:

0000 - No error

0401 - Invalid date, time, interval value

0403 - Invalid interval unit

2-33 CZ06-00

0404 - CRB not connected to basic timer queue i

$B4 - Address of CRB.

Example: -^

See the example given for the Wait on Request List macro
call.

2-34 CZ06-00

CANCEL REQUEST

CANCEL REQUEST fSCANRGp
\

Function Code: OC/01 * ^ , * v *̂ a* "
' -: - 3 - * :

Equivalent Command: None * * J - - '

Cancel a previously issued request made through a Request
Terminal, Request Specific Terminal, or Request Task macro call.

FORMAT:

[label] $CANRQ [location of address of request block]

ARGUMENT:

location of address of request block

Any address form valid for an address register; provides
the address of the request block whose request is to be
canceled.

DESCRIPTION:

This macro call cancels a request previously issued by a
Request Terminal, Request Specific Terminal, or Request Task
macro call.

NOTES

1. The system places in $B4 the address of the
request block containing the request to be can-
celed, supplied by the argument . If this argu-
ment is omitted, the system assumes that $B4 con-
tains the address of the request block.

2. On return, $R1 contains one of the following status
codes:

0000 - Request canceled

0803 - Invalid wait on request block attempted

0817 - Memory access violation

083C - Request block not active

083D - Request in process; unable to cancel.

2-35 CZ06-00

3. When $R1 contains an 083C return code, $R6 con-
tains the posted return code. The request block
was completed before this macro call was issued.

Example:

In this example, the Cancel Request macro call is used to
cancel the request established by a Request Terminal ($RQTML)
macro call. (See the example for the Request Terminal macro
call.)

END_RQ $CANRQ !IORB

2-36 CZ06-00

CANCEL SEMAPHORE REQUEST

CANCEL SEMAPHORE REQUEST (SCNSRQJ
-» •»*

Function Code: 06/01
> , 5 V t -,

Equivalent Commands None ; • -

If a previously issued Request Semaphore macro call caused a
semaphore request block (SRB) to be queued, cancel the effect of
that macro call by removing the SRB from the semaphore request
queue. Return to the issuing task.

FORMAT: - " '— ' *":

[label] $CNSRQ [location of SRB address] " ~ '

ARGUMENT: " r/ " - '** v :-

location of SRB address '" * •*

Any address form valid for an address register; provides
the address of the semaphore request block to be removed
from the semaphore request queue.

DESCRIPTION:

This macro call removes a specified SRB from its semaphore
request queue. The SRB must have been queued as the result
of a previously issued Request Semaphore macro call. The SRB
address specified in the argument of the Cancel Semaphore
Request macro call must be the same SRB address used in the
Request Semaphore macro call.

When executed, this function increments the counter estab-
lished by the Define Semaphore macro call, and previously
decremented by the Request Semaphore macro call.

When the SRB is removed from the semaphore request queue, the
memory required for its structure is returned to the system
memory area.

2-37 CZ06-00

NOTES)
^—X

1. The system places in $B4 the address of the SRB ,-̂
supplied by the argument. If this argument is)
omitted, the system assumes that $B4 contains the
SRB address.

2. On return, $R1 and $B4 contain the following
information:

$R1 - Return status; one of the following:

0000 - No error
0502 - Invalid SRB

$B4 - Address of SRB (as supplied).

Example: ,

In this example, the Cancel Semaphore Request macro call is J
used to cancel the semaphore request used in the example for ^̂
the Request Semaphore ($RQSM) macro call. It is assumed that
the task did not need the resource.

$CNSRQ 1SRB

2-38 CZ06-00

^ CHANGE WORKING DIRECTORY

CHANGE WORKING DIRECTORY (SCWDIR) - > , • ' ; : _ _ -

Function Code: 10/BO

Equivalent Commands Change Working Directory (CWD)

Change the working directory to the one specified in the
macro call. This function is usually done outside program
execution. * _ . . .0 „ - ̂

FORMAT:

[label] $CWDIR [argument structure address]

ARGUMENT: . . . , - . .

argument structure address - c .

Any address form valid for an address register; provides
the location of the argument structure defined below.
The argument structure must contain the following entry.

new working directory

A 1- to 45-byte pathname, which includes and must end
with an ASCII space character, identifying the new
current working directory. At least one nonspace
character must be specified.

DESCRIPTION: , « . . .;-.

The specified pathname, which may be absolute or relative,
must point to an existing directory; that is, this macro call
does not dynamically create a directory. If a return status
code other than 0000 is returned (see Note 2, below), an
attempt is made to reestablish the previous working direc-
tory; if a subsequent error results, future functions may
return an 0222 error code.

The system issues a mount request when a disk volume contain-
ing the new working directory is not mounted. The task is
suspended until the volume is mounted or the operator cancels
the mount request.

2-39 CZ06-00

NOTES

If the argument is coded, the system loads the
address of the argument structure into $B4; if
the argument is omitted the system assumes that
$B4 contains the address of the parameter structure.

On return, $R1 contains one of the following stauts
codes:.

0000 - No error

Olxx - Physical I/O error

0201 - Invalid pathname

0202 - Pathname not specified

0205 - Invalid argument

0209 - Named file or directory not found

020C - Volume not found

0222 - Pathname cannot be expanded; no working
directory

0225 - Not enough system memory for buffers or
structures X

0226 - Not enough user memory for buffers or
structures

0228 - Invalid file type (not a directory).

2-40 CZ06-00

Examples ?* •" ", S >

This example is based on the following file system hierarchy
(see the System Concepts manual):

VOL01
I

I I
SUB.DIR.A SUB.DIR.B

SUB.DIR.AA

I

SUB.OIR.BB

FILE01 FILE02 SUB.DIR.BB1 FILE03
l

FILE04 SUB.DIR.B1B
I

f I
FILE05 FILE06

The current working directory is SUB.DIE.BIB, and FILE01 is
to be accessed from subdirectory SUB.DIR.AA. It is not nec-
essary to specify the absolute pathname to FILE01 if the
Change Working Directory macro call ($CWDIR) to SUB.DIR.AA is
specified, as shown below. The file can then be accessed
with the simple pathname FILE01. ;

To change to this working directory, the Change Working
Directory macro call can be specified: t .-- - - -

$CWDIR 1CHGPTH / - >- /̂r - _,
1 - -! ^ « f ,

to identify the path:

CHGPTH DC '««SUB.DIR.A>SUB.DIR.AAA'

or * • -• •

CHGPTH DC '~VOL01>SUB.DIR.A>SUB.DIR.AAA'

The first case uses the existing working directory as a base
from which to expand the relative pathname; the second case
produces the same result, but uses the absolute pathname.
See the System Concepts manual for more information about
relative and absolute pathnames.

2-41 CZ06-00

CHECKPOINT

CHECKPOINT (SCKPT)

Function Code: OD/OF

Equivalent Command: None

Cause a new checkpoint file image of the issuing task group
to be recorded on the currently assigned checkpoint file.

FORMAT:

[label] $CKPT

ARGUMENTS:

None

DESCRIPTION: ^

This macro call causes a new checkpoint file image of the
issuing task group to be recorded on the currently assigned
checkpoint file; performs a file system cleanpoint; and
constructs a checkpoint file image on which is recorded the
curent status of task, files, and screen forms. Once "N"
recorded, the checkpioint file remains an available restart ^
point until one of the following occurs:

• The next checkpoint for that task group is
successfully completed

• The current checkpoint is disassigned

• The task group request is terminated normally.

The macro calls associated with the checkpoint/restart ^
faciltiy are: Validate Checkpoint, Checkpoint, Restart,
Defer Checkpoint, Checkpoint File.

NOTE

On return, $R1 and $R2 contain the following
return codes:

If $R1=0, $R2 contains one of the following
return codes:

2-42 CZ06-00

0000 - No error

8000 - Return from restart

084A - Checkpoints disabled

0849 - No checkpoint file assigned J*

If $R2=0, $R1 contains one of the following
return codes:

084B - Task group not in checkpointable state

0602 - Insufficient memory available to complete
checkpoint » •*-

0107 - Physical I/O error writing to checkpoint
file.

Example:

In this example, the current checkpoint image is recorded on
the previously assigned checkpoint files. „ a

CPOINT $CKPT . Record checkpoint image

CZ06-00

CHECKPOINT FILE

• J
CHECKPOINT FILE (SCKPFL)

Function Code: OD/11

Equivalent Command: Checkpoint File (CKPTFILE)

Establish or terminate the checkpoint file assignment for the
task group request in which it is issued.

FORMAT:

[label] SCKPFL (ASSIGN I
IDISASSIGNJ

[location of pathname of checkpoint files] N^

ARGUMENTS:

ASSIGN
DISASSIGN

One of the following values is specified to indicate
whether the checkpoint files are to be established or
terminated: , -

ASSIGN

Establish the checkpoint files specified by the path-
name supplied in argument 1.

DISASSIGN

Terminate the checkpoint files specified by the path-
name supplied in argument 1.

location of pathname of checkpoint files

Any address form valid for an address register; provides
the pathname of the checkpoint files to be assigned or
disassigned.

2-44 CZ06-00

DESCRIPTION:

This macro call establishes or terminates the checkpoint file
assignment for the task group request in which it is issued.
If checkpoint files are to be assigned, a pathname must be
supplied in argument 2? if checkpoint files are to be disas-
signed, argument 2 is not required. The disassignment of
checkpoint files invalidates any currently valid checkpoint.

The macro calls associated with the checkpoint/restart facil-
ity are; Validate Checkpoint, Checkpoint, Restart, Defer
Checkpoint, Checkpoint File*

NOTES " 4 '

1. If ASSIGN is specified in argument 1, $R2 is set to
zero. If DISASSIGN is specified, $R2 is set to one.

2. The system places in $B4 the address of the pathname
supplied by argument 2. When this argument is
omitted, the system assumes that $B4 contains the
address.

3. On return, $R1 contains one of the following return
codes:

0000 - No error

0209 - File or directory not found (returned only
when call is issued with DISASSIGN argument).

0213 - Exclusive access not available

0846 - Checkpoint file is not a sequential file

0847 - Checkpoint file already assigned

0848 - File contains a valid checkpoint; unable to
assign

0849 - No checkpoint/restart file assigned.

2-45 CZ06-00

Example:

This example illustrates the use of the Checkpoint File macro
in the ASSIGN and DISASSIGN operations. The assignment is
made to a particular checkpoint file pair to establish the
checkpoint session. If the assignment fails because the
files already contain a valid checkpoint, this checkpoint can
be ignored and files can be reused by disassigning those
checkpoint files. This should be done if no restart is
desired from the checkpoint. After disassigning, the ASSIGN
can be reissued. At the end of the session, the current
checkpoint files are disassigned, making them available for
another checkpoint session.

$CKPFL

bez

cmr

bne

$CKPFL

bnez

$CKPFL

ASSIGN, IPath

$rl,>alldne

$rl, =vlderr

$rl,>errxit

DISASSIGN, IPath

$rl,>errxit

ASSIGN, IPath

Assign check-
point files

Continue if
successful

Disassign
checkpoint
files

Retry assign

checkpoint session

$CKPFL DISASSIGN Disassign cur
rent files

Path

vlderr

text

dc

1~myvol>ckptfile '

Z'08481 File contains
a valid check-
point

2-46 CZ06-00

CLEAN POINT

CLEAN POINT (SCLPNT)

Function Code: OC/13 * -

Equivalent Command: None

Define a clean and consistent point in program execution at
which all file records updated by the program are valid. Make
the updated records visible to other users sharing these files.
Write out to disk the records updated by the issuing task group;
unlock the records previously locked by the issuing task group,
for all files assigned to the task group.

" o
FORMAT: u *-

[label] $CLPNT
"*j " ». * j * r '

ARGUMENT: *

None. "*„ " s "J 4 ' "* ~" •. ..> > v *
DESCRIPTION: ~ - r -

"," i "•

This macro call results in the following: ' ~>

1. All disk buffers modified by the task group are written
to disk.

- *
2. If the end-of-data record for a disk file accessed by the

task group is altered, the directory record for that file
is updated.

3. All record locks set by this task group are unlocked,
allowing other users to continue processing.

4. The call defines the last good state to which files, sub-
sequently updated by the task group, can be rolled back
(i.e., recovered).

5. The recovery file is reset; that is, the macro call
deletes any "before" images previously recorded for all
files in the task group. (See the Roll Back macro call
for discussions about file recovery.)

6. Updates to files (i.e., after images) are written to a
system journal if one has been defined and if files have
the "restore" attribute.

2-47 CZ06-00

The period of all I/O activity during which the user is j
altering and manipulating records is defined as a phase, or ^s
interval between clean point executions, when data is in an .̂^
inconsistent or alterable condition. A phase change, when . j
data is declared to be consistent, is accomplished by the -^
Clean Point macro call. File recovery is done on a phase
basis; that is, a phase rollback (recovery) to the last Clean
Point execution, by means of the Roll Back macro call. The
call also resets the recovery file.

Record locking, a file system mechanism, provides multi-user
interference protection for shared file access. A record,
when accessed by a user, is locked by a lock applied to the
control interval(s) where the record is located. Locking is
on a first-come, first-served basis. Another user (task
group) sharing this file is denied access to that record and
any other record in the same control interval, until the pre-
vious user unlocks the record.

-N
The only limit to the number of locks at one time is the j
amount of memory dedicated to the lock pool at system ^/
building.

Record locks for a file may be requested when the file is
reserved through a Get File macro call or by a GET command.
Normally, record locking is an attribute set by the Create
File or Modify File macro calls/commands. Once record
locking for a file is requested, any access (read or write)
causes a lock. Once locked, records are unlocked only when a
Clean Point macro call is issued or when the file is closed.
(Abnormal task group termination also causes records to be
unlocked.)

Records should be unlocked when there is no further need to
lock them. Otherwise, when records remain locked, lock pool
overflow or deadlock record contention may result. The
description of the Get File macro call has more details about
record locking.

The Clean Point macro call allows a user to structure an .^^
application into steps. At the end of each step, successful
execution of the macro call ensures that all the file updates
have been written to disk, and that the resources used in
record locking are released to the system.

2-48 CZ06-00

NOTES a : i

1 TO perform the Clean Point function in a COBOL
program, the user must call an Assembly language
fubroutine that contains the Clean Point macro
call(s).

2. On return, $R1 contains one of the following status
codes:

0000 - No error ~t
Olxx - Physical I/O error
023A - Recovery file I/O error
0263 - Journal file I/O error. , ., ._, ,,

2-49 CZ06-00

CLEAR EXTERNAL SWITCHES

CLEAR EXTERNAL SWITCHES (SCLRSW)

Function Code: OB/02

Equivalent Command: Modify External Switches (MSW)

Set the specified switches in the task group's external
switch word to off; return the inclusive logical OR of the pre-
vious settings.

FORMAT:

[label] $CLRSW external switch name,
[external switch name],

[external switch name]

ARGUMENTS:

external switch name ... external switch name

A single hexadecimal digit specifying the external switch T
in the task group's external switch word to be set off. /
A maximum of 16 external switch names (0 through F) can
be specified. If no arguments are supplied, the system
assumes that $R2 contains a mask word specifying the
switches to be set off. If ALL is specified for any
argument, all external switches are set off.

DESCRIPTION:

This macro call provides a mask by which switches can be set ^
off in the external switch word of the issuing task's task ^^f

/

group. It also provides an indication of the previous
settings of the switches.

The mask word is $R2. Each bit that is one in $R2 causes the
corresponding bit in the external switch word to be set off;
each bit that is zero causes the corresponding bit to remain
unchanged.

y

2-50 CZ06-00

When the Clear External Switches macro call is executed, $R2
contains the new settings of the external switch word. Bit
11 (bit-test indicator) or the I-register provides an indica-
tion of the previous setting of the switches, as follows:

• If bit 11 is zero, no switch set off had previously been
set on.

• If bit 11 is one, at least one switch set off had pre-
viously been set on.

1 f - *:- ; - , /-

NOTES

1. The bits corresponding to the external switches
in the arguments are set on in $R2; if no argu-
ments are supplied, the system assumes that $R2
contains the mask to be used. If ALL is specified
for any argument, all bits are set on in $R2.

2. On return, $R2 and the I-register contain the
following information:

$R2 - External switch word after modification

I-register (Bit 11) - Inclusive OR of previous
settings of switches set off:

0 - No switch off was on
1 - At least one switch set off was on.

Example:

In this example, the Clear External Switches macro call is
used to turn off external switches 4, 8, and C of the task
group in which the issuing task is executing.

CLR_AA $CLRSW 4,8,C ^ * - - -
* t . v j"».

2-51 CZ06-00

CLOCK REQUEST BLOCK

1

CLOCK REQUEST BLOCK f$CRB)

Function Code: None

Equivalent Command: None

Generate a regular or cyclic clock request block (CRB) whose
length is from six to nine words.

FORMAT:

[label] $CRB [CRB type],

/WAIT,
/NWAIT, [termination action]
[interval value]

ARGUMENTS:

CRB type

A value specifying the type of CRB to be generated, as
follows:

C - Generate a cyclic CRB
R - Generate a regular (noncyclic) CRB

[WAIT 1
[NWAITJ,

One of the following values is specified to indicate
whether the requesting task is to be suspended until the
clock request has been satisfied.

WAIT

Suspend the issuing task until the clock request has
been satisfied (set W-bit to zero).

NWAIT

Do not suspend the issuing task (set W-bit to one).

2-52 CZ06-00

If this argument is omitted, the value NWAIT is assumed.

If WAIT is specified, argument 3 (termination action)
must be omitted. «• *

termination action

One of the following values is specified to indicate the
action to be taken when the clock request is satisfied.

SM=aa

Do not suspend the issuing task; release (V-op) the
semaphore identified by aa (two ASCII characters)
when timeout has occurred.

' RB=label - . _

Do not suspend the issuing task; issue a request for
the request block identified by label, when timeout
has occurred.

Note that the requesting task must be asynchronous, can
not wait on the requested task later on, and can only
point to a task request block (TRB). The requested task
must have already been created (not spawned), be
asynchronous, and have a valid LRN. When the requesting
task terminates, the TRB pointed to by "label" must be
inactive.

If this argument is omitted (or argument 2 is WAIT), the
generated CRB contains no termination option.

interval value

Unit of time after which completion of the request is
posted; has one of the following values:

MS=n
TS=m
SC=m
MN=m
CT=m
DT

MS indicates milliseconds; TS, tenths of seconds; SC,
seconds; MN, minutes; CT, units of clock resolution; and
DT, internal date/time.

n is an integer value from 1 through 65535; m is an
integer value from 1 through 32767. If DT is selected,
the application must store the 48-bit internal date/time
value at offset C_TM of tne created request block.

2-53 CZ06-00

DESCRIPTION:

The CRB is used as the standard means of synchronizing events -.
with the passage of time. A CRB contains the time at which, j
or the interval after which, completion of the request is to
be posted (marked as complete).

There are two types of CRBs: regular and cyclic.

When the interval specified in a cyclic CRB has been satis-
fied, it is automatically recycled to begin a new clock
request for the initially specified interval. This process
continues until a Cancel Clock Request macro call is issued
for this CRB.

A regular CRB is dequeued from the timer queue when the spec-
ified interval has been satisfied. A new Request Clock macro
call must be issued to requeue the CRB.

Example:

In this example, the Clock Request Block macro call is used
to generate a cyclic CRB with an interval of 500 milli-
seconds. The issuing task is not suspended. When the
request has been satisfied, the issuing task releases sema-
phore XX.

CLKAA $CRB C,NWAIT,SM=XX,MS=500 _

}

2-54 CZ06-00

CLOCK REQUEST OFFSETS

CLOCK REQUEST BLOCK OFFSETS (SCRBD)

Generated Label Prefixes?

C_RRB/QJ5EM , F
CRB label offset 0 -- ̂ .,

See Appendix C for the format of the clock request block

DESCRIPTION: -v.';

See the Clock Request Block macro call. = . - . , . . - , , •

2-55 CZ06-00

CLOSE FILE

CLOSE FILE (SCLFIL) - - - " • " • .

Function code: 10/55 (normal), 10/56 (leave), 10/57 (unload)

Equivalent Command: None

Terminates processing of the specified file. The file cannot
be processed again until another Open File macro call is issued.
The file to be closed is identified by supplying its logical file
number.

FORMAT:

[label] SCLFIL [fib address]
,NORMAL)
,LEAVE >
,UNLOAD)

ARGUMENTS:

fib address

Any address form valid for an address register; provides
the location of the file information block (FIB). The
FIB must contain a valid logical file number (LFN).

(NORMAL)
I NOR /

Normal mode for closing files; the file can be reopened
during execution of the task group.

If the file is tape-resident, the end-of-file (EOF)
labels are written (if necessary) and the tape is rewound
to its beginning-of-tape (BOT) position.

If the file is a terminal device, the line is discon-
nected according to the specifications made at system
building time.

For card punch files, a file mark card is punched. This
card is recognized as the end-of-file for read
operations.

NORMAL is the default value for this macro call.

2-56 CZ06-00

f LEAVE \
(LEV /

For tape files, the action is the same as for NORMAL
mode, except that the tape is not rewound; that is, it
remains at its current position.

For terminal device files, this argument indicates that
the line is not to be hung up, regardless of the specifi-
cation made at system building time. f

For card punch files, this argument indicates that a file
mark card is not to be punched. * * *

<UNLOAD\< > *IUNL j

For tape-resident files, the action is the same as for
NORMAL mode, except that after being rewound, the tape is
unloaded (i.e., cycled down).

For terminal device files, the line is hung up
(regardless of the specification made at system building
time).

DESCRIPTION: " ^ , f sj

The FIB address specified by the first argument of this macro
call can refer to the same structure specified in the Open
File macro call with which this macro call is paired.

This macro call causes all unwritten buffers to be written,
records to be unlocked, and the logical EOF label to be
updated. However, the call does not remove the file (see the
Remove File macro call) from the task group (i.e., the file
remains reserved for the task group and can be reopened).

If the file being closed is a card punch, a file mark card is
punched. A card reader/punch is considered to be a card
punch if the FIB program view word at open time had bit 2 set
to one (write permitted) and bit 1 set to zero (read not
permitted).

2-57 CZ06-00

The following information applies only to magnetic tape. The \
actions performed on closing a tape file are determined by ^^
these factors: -̂̂

• Whether or not the write permit bit (bit 2) in the
FIB program view word was set on when the file was
opened.

• Whether or not write operations to the file were
peformed.

Note that when a tape volume is opened for storage management
access, and only a device name is specified, processing of
labels is not performed. This is the user's responsibility.

1. Reserved and opened for writing:

a. If the file has been opened in RENEW mode, the
trailer label group is written, followed by an
end-of-data (EOD) tape mark. This action is per-
formed whether or not data records were actually
written into the file.

b. If the file has been opened in PRESERVE mode, the
trailer label group and EOD tape mark are written
only if write operations have been performed. In
this case, data and/or files located beyond the cur-
rent position of the tape are destroyed.

\
If no write operations have been performed, the j
trailer label group is not written and existing data
and/or files located beyond the current position of
the tape are preserved.

c. If the LEAVE option is specified, the tape is left at
its current position.

2. Reserved and opened for reading:

a. If the EOF tape mark has been detected, the trailer ^̂
label group is processed and the action specified by
NORMAL, LEAVE, or UNLOAD is taken.

If the LEAVE option is specified, the tape is posi-
tioned at the end of the current trailer label group.

2-58 CZ06-00

b. If the EOF tape mark has not been detected, the
trailer label group is not processed. When the LEAVE
option is specified, the tape is left at its current
position. A subsequent OPEN will correctly
reposition the tape before executing the Open
function.

/ &
The file information block can be generated by a File Infor-
mation Block macro call. Displacement tags for the FIB can
be defined by the File Information Block Offsets macro call.

»' » • * , j j
NOTES

> •*.. ' '
1. If the first argument is coded, the system loads

the address of the FIB into $B4; if the argument
is omitted, the system assumes that $B4 contains
the address of the FIB.

2. On return, $R1 contains one of the following status
codes:

0000- No error ^ a .'

Olxx - Physical I/O error - - * * -

0205 - Invalid argument
_̂ i

0206 - Unknown or invalid LFN . . -

0207 - LFN not open

0225 - Not enough system memory for buffers or
structures

*~ i * >

0226 - Not enough user memory for buffers or
structures

0236 - Tape block count error.

Example: * - ~-

In this example, it is assumed that the file opened in the
example for the Open File macro call is to be closed. The
macro call is coded as follows:

MYFIB DC 5 * LFN 5 "< z *
CLFILA $CLFIL IMYFIB

Since the second argument is not specified, the system
assumes NORMAL mode.

2-59 CZ06-00

COMMAND IN

o
COMMAND IN (SCIN)

Function Code: 08/02

Equivalent Command: None

Read the next record from the standard command-in file for
the issuing task.

FORMAT:

[label] $CIN [location of record area address],
[location of record size],
[byte offset of beginning of record area] -̂

ARGUMENTS: ^

location of record area address

Any address form valid for an address register; provides
the address of a record area in the issuing task into
which the next record on the command-in file will be
placed. •f\

location of record size ^^'

Any address form valid for a data register; provides the
size (in bytes) of the record whose address is given in
argument 1.

byte offset of beginning of record area

Any address form valid for a data register; provides the
byte offset of the beginning of the record area (from the)
address provided in argument 1). -̂

DESCRIPTION:

This macro call allows a task to read the next record from
the standard command-in file.

2-60 CZ06-00

NOTES

1. The system places in $B4 the address of the com-
mand input record area supplied by argument 1.
If this argument is omitted, the system assumes that
$B4 contains the record area address.

2. The system places in $R6 the record area size
supplied by argument 2; if this argument is
omitted, the system assumes that $R6 contains the
correct size.

3. If argument 3 is L, $R7 is set to zero to designate
that the record area begins in the left byte of the
specified address. If argument 3 is R, $R7 is set
to one to designate that the record area begins in
the right byte of the specified address. Any
other value for argument 3 designates the location
of the byte offset to be used, and is placed in
$R7. If argument 3 is omitted, the record area
begins in the left byte of the specified address,
and $R7 is set to zero.

4. On return, $R1, $R6, $R7, and $B4 contain the
following information:

$R1 - Return status; one of the following:

0000 - No error
0817 - Memory access violation

All data management read-next-record error codes
may also be returned. See the System Messages
manual.

$R6 - Residual range (number of bytes left unfilled
in record area).

$R7 - File type: bits 10 through 15 of $R7 contain
the hexadecimal value for the following file
types:

2-61 CZ06-00

File Type

02 Fixed relative
10 Line/serial printer
11 Card reader • '
12 KSR (MDC-connected)
1A Bidirectional MLCP
IB BSC
IE Output (only MLCP)
30 Variable sequential (spanned records)
32 Relative
33 Indexed (data)
34 Indexed (index)

$B4 - Input record area address.

Example:

In this example, the issuing task is to read the next record
of the command-in file into a 128-byte record area whose
address is in RECAD. The record area begins at an offset of
10 bytes from the indicated address.

INDAD $CIN !RECAD,=128,=10

RECAD RESV 5-1-64,0

2-62 CZ06-00

COMMAND LINE PROCESS

COMMAND LINE PROCESS (SCMDLN)

Function Code: OC/08 ^

Equivalent Command: None i t

Process the supplied command line by spawning a task to exe-
cute the command named in the first argument of the macro call,
and wait for the task's termination.

FORMAT: ' 'J"[f

[label] $CMDLN [location of command line address],
[location of command line size]

ARGUMENTS:

location of command line address

Any address form valid for an address register; provides
the address of the supplied command line.

location of command line size

Any address form valid for a data register; provides the
size (in bytes) of the command line to be processed.

DESCRIPTION:

This macro call allows you to embed commands in your program
(see the Commands manual). The same task that executes the
particular command when given from the terminal is spawned to
execute the command named in the macro call.

The task spawned on behalf of the macro call is provided with
a request block that has been constructed by the system to

- contain the edited arguments in system-standard Task Request
Block format. The task that issues this macro call waits for
the completion of the spawned task before continuing its own
processing. The spawned task passes the completion status
($R1) to the issuing task.

2-63 CZ06-00

NOTES >

The system places in $B4 the address of the com- .~
mand line, supplied by argument 1. If this argu- j
ment is omitted, the system assumes that $B4 con-
tains the address of the command line to be pro-
cessed.

The system places in $R6 the size of the command
line, supplied by argument 2. If this argument
is omitted, the system assumes that $R6 contains
the size.

On return, $R1 and $B4 contain the following
information:

$R1 - Return status; one of the following:

0000 - No error

0000-FFFF - Completion status returned by
spawned task

0601 - Invalid size for memory pool

0602 - Insufficient memory

0805 - Unbalanced quotation marks,
brackets, or parentheses

080C - Unresolved symbolic entry
point

1609 - Invalid bound unit pathname
for first argument

160A - Insufficient memory

FFFE - Honeywell component error previously
reported; reported error code found
in word following last pointer in
task request block argument list.

FFFF - Honeywell component error pre-
viously reported

$B4 - Address of supplied command line.

2-64 CZ06-00

Example: ' -• - * \-

In this example, the Command Line Process macro call causes a
command line to be processed which will cause the Assembler
to assemble the source program MYPROG, residing in the cur-
rent working directory. The Assembler will use 5K words of
memory, taken from the issuing task group's memory pool, for
its symbol table. The assembly listing will be written on
the device named LPT01, and the object code will be stored in
the file MYPROG.O in the working directory. If MYPROG.0 does
not already exist, it will be created.

$CMDLN !LINE,=LENGTH . ,

LINE TEXT 'MAP MYPROG -SZ 5 -GOUT >SPD>LPT01'
LENGTH EQU 2*($-LINE)

2-65 CZ06-00

CONSOLE MESSAGE SUPPRESSION

•T)
CONSOLE MESSAGE SUPPRESSION (SCMSUP)

Function Code: 09/02 (suppression), 09/03 (no suppression)

Equivalent Command: None

Turn console message suppression on or off for the issuing
task's task group.

FORMAT:

[label] $CMSUP [keyword]

ARGUMENT:

keyword -~̂ x

One of the following values:

ON

Turn on console message suppression (function code
09/02)

OFF J

Turn off console message suppression (function code
09/03)

If this argument is omitted, OFF is assumed.

DESCRIPTION:

This macro call turns console message suppression on or off \
for the issuing task's task group. ^^J

When console message suppression is turned on, operating
system components, such as Storage Management, do not issue
error messages to the operator terminal, either directly
(through the facility offered by the Operator Information
Message macro call) or indirectly (through the facility
offered by the Report Message macro call). Turning on
console message suppression does not disable these facil-
ities; rather, it prevents the system components from using
the facilities to report anything other than catastrophic
errors.

2-66 CZ06-00

/—N When console message suppression is turned on, the error code
normally used in the operator message is returned in $R1

\ „ (assuming the message had an error code).

When console message suppression is turned off, messages are
again issued in the normal manner.

NOTE

On return, $R1 contains one of the following sub-
function codes:

w*

0002 - Turn on suppression
0003 - Turn off suppression. * "

Example:

In this example, the issuing task turns on console message
suppression for the task group under which it is running.

SUPON $CMSUP ON

2-67 CZ06-00

CREATE DIRECTORY

CREATE DIRECTORY (SCRDIR)

Function Code: 10/AO

Equivalent Command: Create Directory (CD)

Create a new directory in the file system hierarchy. This
function is usually done outside program execution.

FORMAT:

[label] $CRDIR [argument structure address]

ARGUMENT:

argument structure address

Any address form valid for an address register; provides
the location of an argument structure that must contain
the following entries in the order shown.

pathname pointer

A 4-byte address that may be any address form valid
for an address register; points to a pathname (which
must end with an ASCII "space" character) that, when
expanded, identifies the directory in the hierarchy
in which the new directory is to be created and the
name of the new directory itself.

reserved

A 4-byte entry containing zeros.

DESCRIPTION:

This macro call can be use only to create new directories,
which are created with:

• An initial allocation of 8 physical sectors (allowing 32
entries) for diskette, 8 physical sectors (allowing 64
entries) for cartridge disk and storage module (except
19-surface, 200 tracks-per-inch), or 16 physical sectors
(allowing 128 entries) for 19-surface, 200 tracks-per-inch
storage module.

2-68 CZ06-00

• An increment allocation of 4 physical sectors (allowing 16
entries each) for diskette, 8 physical sectors (allowing
64 entries) for cartridge disk and storage module (except
19-surface, 200 tracks-per-inch), or 16 physical sectors
(allowing 128 entries for 19-surface, 200 tracks-per-inch
storage module).

• A maximum allocation of 4000 physical sectors (allowing a
maximum of 16,000 entries) for diskette, or 4000 physical
sectors (allowing a maximum of 32,000 entries) for
cartridge disk and storage module.

NOTES ' « <

1. If the argument is coded, the system reads the
address of the parameter structure into $B4; if
the argument is omitted, the system assumes that
$B4 contains the address of the parameter structure.

2. On return, $R1 contains one of the following
status codes:

0000 - Successful completion

Olxx - Physical I/O error

0201 - Invalid pathname i

0202 - Pathname not specified

0205 - Invalid argument

0209 - File or directory not found

020C - Volume not found

0212 - Attempted creation of existing file or
directory

0215 - Not enough contiguous logical sectors
available

0222 - Pathname cannot be expanded; no working
directory

0224 - Directory space limit reached or not
expandable

0225 - Not enough system memory for ouffers or
structures

2-69 CZ06-00

0226 - Not enough user memory for buffers or)
structures ^~"

022C - Access control list (ACL) violation. J

Example:

In this example, the macro call is used to create the sub-
directory, labeled SUBINDEX.A, identified in the Create File
macro call description example. This subdirectory must exist
before the path identified in that example (i.e., ~VOL03
SUBINDEX.A >FILE_A) can be used. Prior to issuing the Create
Directory macro call, the following parameter structure and
pathname must exist:

SUBDIR DC <DIRPTH
RESV 2-$AF
RESV 2,0

DIRPTH DC '~VOL03>SUBINDEX.AA'

The macro call can be specified as follows

SCRDIR ISUBDIR

2-70 CZ06-00

CREATE FILE

CREATE FILE (SCRFIL) , v- f
\

Function Code: 10/30 " * *° *~~- * ^
/„

Equivalent Command: Create File (CR) «

Create a new disk file by placing a description of the file
in the file system hierarchy and, optionally, by allocating space
for it. This function is normally done outside program execu-
tion. The user identifies this file by either a logical file \
number (LFN) or a pathname, or both. At completion of Create
File execution, the file is reserved exclusively for the task !

group. If the user supplies both an LFN and a pathname, the file
is created and reserved and, in addition, it is assigned to the
LFN. Subsequent macro calls (Open File, Read Record, etc.) can
then be directed to the file through this LFN. The Create File
macro call can be used to create any of the disk files which are
described in the Data File Organizations and Formats manual,
including:

Fixed-relative
Relative
Sequential
Indexed
Alternate index ..
Random (CALC)
Dynamic.

In addition, the Create File macro call can be used to create
a temporary disk file that will exist only during this task
group's execution. ?

FORMAT: ?

[label] $CRFIL [pathname structure address]
2

ARGUMENT: . „ _ _ . __j

pathname structure address

Any address form valid for an address register; provides
the location of the parameter structure defined below in
Table 2-1. The order of entries must follow the order
snown in the taole.

2-71 CZ06-00

Table 2-1. Create File Parameter Structure

Field Name
Size
(bytes) Meaning

LFN

Pathname Pointer

File Organization

The logical file number (LFN) used to
refer to the file. Must be a binary
number from 0 through 255, ASCII blanks
(which indicate that an LFN is not
specified), or -1 (FFFF) (which
indicates that the system should assign
an LFN from the pool of those
available).

Pointer to the pathname of the file to
be created. Zeros indicate that a
pathname is not specified. If
specified, the pathname must end with a
space character. A pathname conisting
of a single space character indicates
that a temporary file is to be created.

UFAS files:

'S1

'R1

'I1

'V
'C1

'X1

Sequential file
Relative file
Indexed file
Dynamic file
CALC (random)
Alternate index

Non-UFAS relative files: »

'2' = Fixed relative without
deletable records

'51 = Fixed relative with deletable
records

2-72 CZ06-00

Table 2-1 (cont). Create File Parameter Structure

Field Name
Size
(bytes) Meaning

Space Allocation
Options

Logical Record
Size

Bit 0: , *"" "

0 = Space initially allocated need
not be contiguous (i.e., may
consist of more than one extent).

_ 1 = Space initially allocated must be
contiguous.

Bits 1-2: ; 1

. MBZ

Bits 3-7: (for multivolume sets):

00000 = Disk space is initially
allocated on the volume
having the most space
available.

nnnnn = Disk space is initially
allocated on the
"nnnnn"th volume in the
set.

Length of the longest record in the
file. For file organizations R, S, I,
V, X, and Cf this size does not include
the logical record headers. For file
types 2 and 5, this size includes the
2-byte record header. Zero in this
entry takes the following defaults:

R: No default; must be specified
S: 16K bytes
I: CI size - 32 bytes
V: CI size - 18 bytes (dynamic files)
X: Key size + 6 bytes
C: CI size - 40 bytes (random files)
2: 256 bytes
5: 256 bytes

2-73 CZ06-00

Table 2-1 (cont). Create File Parameter Structure

Field Name
Size
(bytes) Meaning

Control Interval
size

Initial
allocation
size

Allocation
growth
size

Maximum
allocation
size

Free space
per CI

or

For UFAS files, the size of data
transfer to/from main memory (and thus
buffer size); includes both control
interval and logical record header
information; must be a multiple of 256
bytes. Zeros indicate a CI size of 512
bytes.

For fixed-relative files, defines only
the unit of space allocation; includes
record header information; must be a
multiple of 128 bytes. Zeros indicate
the device physical sector size (128 or
256 bytes).

Number of CIs to be allocated to the
file when it is created. Zeros indi-
cate that no space is to be allocated
initially. For random files, an
initial or maximum allocation size must
be specified.

Number of additional CIs to be
allocated whenever necessary. Zero
indicates 40 physical sectors.

The maximum number of CIs that can be
allocated to the file. Zeros indicate
no limit. For random files, either an
initial or maximum allocation size must
be specified.

For indexed files: the number of bytes
to be left free in each data CI at file
loading time. Records can be inserted
into these bytes without causing
overflow.

For alternate indexes: the number of
bytes to be left free in each index CI
at index-loading time. New index
entries can be inserted into these
bytes without forcing a CI split.

2-74 CZ06-00

Table 2-1 (cont). Create File Parameter Structure

Field Name

Inventory
threshold

Local
overflow
allocation

or

Hash results

Number of
record
descriptors

Size
(bytes) Meaning

For dynamic and random files:

The percent of a data CI, which must be
filled before inventory is updated.
Specifying an inventory threshold
causes the allocation of inventory CIs,
which contain 1 byte per data CI.
These inventory bytes, which describe
the amount of free space in
corresponding data CIs, facilitate the
insertion of new records.

For dynamic and random files, zero
indicates a threshold of 75%. For
other file types, this field is zero.

For indexed files: The frequency at
which local overflow CIs are allocated
at file-loading time. One local
overflow CI is allocated after every n
data CIs are allocated.

For random files: The number of •_* *
possible hash results; must be less
than or equal to the maximum number of
CIs.

Zero indicates one hash result per CI.

The number of record descriptors speci-
fied for the file. For indexed,
dynamic, and random files and alternate
indexes: The value must be Z'OOOl1,
since these files have only one record
descriptor. For other file formats:
MBZ.

2-75 CZ06-00

Table 2-1 (cont). Create File Parameter Structure

Field Name
Size
(bytes) Meaning

Pointer to
record
descriptors

Reserved

For indexed, dynamic, and random files;
alternate indexes; and I-D-S/II areas:
A pointer to the record descriptor
structure shown below. For other file
formats: A null value.

Must be zeros.

Table 2-2 describes the record descriptor structure, which is
pointed to by the Create File parameter structure.

Table 2-2. Record Descriptor Structure

Field Name

Record descriptor
size

Record type

Size
(bytes) Meaning

The size (in words) of this structure.
Zeros indicates a size of 9 words.

Bit 0:

1 = duplicate keys allowed
0 = duplicate keys not allowed

Bits 1-3: MBZ

Bits 4-15:

A value that uniquely identifies the
record type of the record described
by this structure. A record's type
is determined by the values of the
remaining fields in this structure.
Currently, the values of the
remaining fields are the same for all
records in a given random file,
indexed file, and alternate index.
Thus, for tnese files, bits 4-15
must be zero, indicating that all
records in these files are of the
same tvoe.

2-76 CZ06-00

Table 2-2 (cont). Record Descriptor Structure

Field Name

Number of key
components

Reserved

Key component
data type

Key component
size

Size
(bytes) Meaning

,•...* tc
The number of components in the
record's key. Must be 1 for random and
indexed files, in which there is only 1
component per key. Alternate indexes
support more than one component per
key.

Must be zero.

The data type of the key component.

•C1

'D1

'B1

'S1

'U1

Character string
Decimal unpacked, trailing sign
Signed binary
Decimal packed, trailing sign
Decimal packed, unsigned

For indexed files and alternate
indexes, a data type in upper case
(e.g., 'C') indicates ascending key
sequence, and, in lower case (e.g.,
'c')f indicates descending key
sequence.

The size of the key component.

For character string, signed binary, or
unpacked decimal fields: The size is
expressed in bytes.

For packed decimal fields:
expressed in half-bytes.

The size is

For signed packed decimal fields: The
size must include 1 half-byte for the
sign. - - •

2-77 CZ06-00

Table 2-2 (cont). Record Descriptor Structure

Field Name

Key component
location

Size
(bytes) Meaning

The offset of the key component
from the beginning of the record.

For character string, signed
binary, or unpacked decimal fields:
The offset is expressed in bytes.

For packed decimal fields: The
offset is expressed in half-bytes.

The first byte or half-byte in the
record is 1.

NOTE

The key component data type, size, and location
fields constitute one key component descriptor
that can be repeated within a record descriptor as
many times as the number of components per key.

DESCRIPTION:

This macro call cannot be issued if the file already exists
(i.e., if a Create File macro call with the same pathname has
been previously issued and the file has not been released),
or if the LFN is currently assigned to an open file in the
same task group. When properly coded, the Create File macro
call allocates space to the specified file in accordance with
the entries in the argument structure (i.e., it "creates" an
empty file, which can be loaded with data through data man-
agement or storage management macro calls) .

The file can be specified (in the argument structure) by (1)
an LFN only, (2) a pathname only, or (3) both an LFN and a
pathname.

2-78 CZ06-00

1. If only an LFN is specified, it must previously have
been associated with a pathname (see the Associate File
macro call).

2. If only a pathname is specified (i.e., the LFN field
contains ASCII spaces (2020)), the file is reserved
without a unique LFN. The only requests that can use
the file are those that can refer to it by pathname.
If a pathname is specified, and the LFN field contains
a value of -1 (FFFF), the system assigns a unique LFN;
it is the user's responsibility to return the LFN to
the pool of available LFNs (through the Remove File
macro call) when it is no longer needed. The unique
LFN is assigned from the pool of available LFNs for the
task group. The highest LFN not already assigned is
set in the LFN entry of the argument structure,
overlaying the previous contents (FFFF). You must move
this value to other structures (i.e., argument
structures or FIBs) as required.

3. If both an LFN and a pathname are specified, in
addition to their creation, the file is assigned to the
specified LFN.

Zeros are specified in the "initial allocation size" entry if
space is allocated according to the value specified in the
"allocation increment size" entry at file load time.

Allocation increment size, although stated in terms of CIS,
cannot resolve to a value greater than 8191 logical sectors
for mass storage units or 8131 physical sectors for diskettes
and cartridge disks. Disk space initially allocated to the
file may not be contiguous unless the contiguous allocation
is specified. If the contiguous option is specified, initial
space is also restricted to 8191 logical sectors. After the
space is allocated, the system reserves it with "exclusive"
concurrency control; as a result, it is not necessary to
issue a Get File macro call before an Open File macro call.
If the file being created is a temporary file (see the
"pathname pointer" entry described in the argument structure
description), it can be released (i.e., deleted) through the
Remove File macro call.

Offset tags for the parameter structure can be defined by the
Create File Parameter Structure Block Offsets and Create File
Key Descriptors Block Offsets macro calls.

2-79 CZ06-00

NOTES)

If the argument is coded, the system loads the ^ —.
address of the argument structure into $B4. If ')
the argument is omitted, the system assumes that
$B4 contains the address of the argument structure.

On return, $R1 contains one of the following status
codes:

0000 - No error

Olxx - Physical I/O error

0201 - Invalid pathname

0202 - Pathname not specified

0205 - Invalid argument -.

0206 - Unknown or invalid LFN —^

0208 - LFN or file already open

0209 - Named file or directory not found

020C - Volume not found

0210 - LFN conflict <

0211 - Unable to establish unique LFN

0212 - Attempted creation of existing file

0215 - Not enough contiguous logical sectors
available

0222 - Pathname cannot be expanded; no working
directory

0224 - Directory space limit reached or not
expandable

0225 - Not enough system memory for buffers or
control structures

0226 - Not enough user memory for buffers or
control structures

022C - Access control list violation.

J

2-80 CZ06-00

I " *Example: *

In this example, the argument structure labeled FILE_A,
defined under "Assumptions for File System Examples" in
Appendix A, describes the file to be created. In addition,
the following key descriptor structure has been defined:

KEY DC Z1 00000000' RESERVED
DC Z'01001 NO. OF COMPONENTS = 1
RESV 4,0 RESERVED
DC Z'430A' KEY COMP. DATA TYPE = C;

KEY LENGTH =10
DC 1 KEY LOC. IN RECD. = FIRST POSITION

Also, the pathname is defined as follows: - <*

IDX01 DC '"VOL03>SUBINDEX.A>FILE_A

After the preceding definitions have been made, the following
Create File macro call creates FILE_A:

$CRFIL !FILE_A

2-81 CZ06-00

CREATE FILE KEY DESCRIPTOR
BLOCK OFFSETS

CREATE FILE KEY DESCRIPTOR BLOCK OFFSETS (SCRKDB)
i

Associated Macro Calls: i

Create File, Get File/ Create File Parameter Structure Block
Offsets, Get File Information Parameter Structure Block
Offsets

FORMAT:

[label] $CRKDB [first letter of tags]

ARGUMENT: I
l

first letter of tag

Allows the user to rename the tags to avoid conflicts with
other labels in the same program.

Structure:

Word

0
1

2

3
4
5
6

7

8

Fields

Reserved

No. of Key Components Reserved

Reserved

Key Type Key length

Key Offset

NOTE

Reserved fields must be set to zeros to ensure
compatibility with later versions of this structure.

2-82 CZ06-00

Generated Offset Tags:

Tag

Y_NKC
Y_KTYP
Y_KLEN
Y_KOFF

Y_SZ

Corresponding
Offsets

(in Name

+2
+7
+7
+8

Number of key components -*>' "- -
Key type (first byte)
Key length, in bytes (second byte)
Key offset, in bytes

Size of structure (in words); not
a field in the block

NOTE

This macro call has the same effect as the Get File
Information, Key Descriptor Block Offsets macro
call.

' L

2-83 CZ06-00

CREATE FILE PARAMETER
STRUCTURE BLOCK OFFSETS

CREATE FILE PARAMETER STRUCTURE BLOCK OFFSETS (SCRPSB)

Associated Macro Calls: Create File, Create File Key Descriptor
Block Offsets

FORMAT:

[label] $CRPSB [first letter of tags]

ARGUMENT:

first letter of tag

Allows the user to rename the tags to avoid conflicts with
other labels in the same program.

Structure:

Word

0

1
2

3

4

5

6

7

8

9

10

Fields

Logical File Number (LFN)

Pathname Pointer

File Organization Allocation options

Logical Record Size

Control Interval Size

Initial Allocation Size

Allocation Growth Size

Maximum Allocation Size

Free Space per Control Interval/
Inventory threshold

Local Overflow Increment/
Hash results

j

2-84 CZ06-00

11
12
13

14
15
16
17

Number of Record Descriptors

Record Descriptor Pointer

Reserved

NOTES

Reserved fields must be set to zeros to
ensure compatibility with later versions of
this structure. , , , -

The last five fields of a record descriptor
constitute a key descriptor describing the
key by which the record is accessed.

Generated Offset Tags:

Corresponding
Offsets

Tag
•̂î H*̂

R_LFN

R_PTHP

R_ORG

R_OPT

R_LRSZ

R_CISZ

R_INSZ

R_GRSZ

RJWXSZ

R_FPC

R_INVT

R_HASH

R_LOV

(in Words)

0

+1

+3

+3

+4

-1-5

+6

+7

-1-8

+9

+9

-HO

+10

Entry Name

Logical file number (LFN)

Pointer to path

File Organization (first byte)

Allocation options (second byte)

Logical record size

Control interval size

Initial allocation size

Allocation increment size

Maximum allocation size

Amount of free space per CI (indexed
files)

Inventory threshold (dynamic/random
files

Number of hash results (random files)

Local overflow allocation increment
(indexed files)

2-85 CZ06-00

R_NRD +11 Number of record descriptors

R_RDP +12 Pointer to record descriptors

R_SZ 18 Size of structure (in words); not a
field in the block

NOTE

To refer to a key descriptor within a record descriptor,
use offset tags generated by the Create File Key
Descriptor Block Offsets ($CRKDB) macro call.

2-86 CZ06-00

CREATE FILE RECORD DESCRIPTOR
BLOCK OFFSETS

CREATE FILE RECORD DESCRIPTOR BLOCK OFFSETS (SCRRDB)

Associated Macro Calls: n\

Create File, Get File Information, Create File Parameter
Structure Block Offsets, Get File Information, Parameter
Structure Block Offsets

Structure:

Word

0

0

1

2
3

4
5

Fields

Size of Record Descriptor Block (including this field)

Record Type

Number of key components Reserved

Reserved

Reserved

Generated Offset Tags:
(Basic record descriptor)

Tag

R_RDSZ

R_RT

R_NKC

Corresponding
Offsets

(in Words) Entry Name

Size of record descriptor block
(including this field)

Record Type

Number of key components

2-87 CZ06-00

(for each key component within basic record descriptor)

Corresponding
Offsets

Entry Name

Key type (first byte)

Key length, in bytes (second byte)

Key offset in bytes

NOTE

This macro call has the same effect as the Get File
Record Descriptor Block Offsets macro call.

Tag

R_KTYP

R_KLEN

R_KOFF

fin Words)

0

0

+1

2-88 CZ06-00

CREATE GROUP

CREATE GROUP fSCRGRP) . ,

Function Code: OD/03 j :
. - t .: , *i.

Equivalent Command: Create Group (CG)

Define a new task group. Allocate and initialize the data
structures required to control the task group within the speci-
fied memory pool. Create the lead task as described under the
Create Task macro call.

& I

FORMAT: * c.

[label] $CRGRP [location of group id] ,
[location of memory pool id],
[location of base level] ,
[location of high logical resource number] ,
[location of high logical file number],
[location of root entry name address]

ARGUMENTS: - - » to * -.

location of group id

Any address form valid for a data register; provides the
group id of the new task group. The group id must be a
2-character (ASCII) name that does not have the $ charac-
ter as its first character.

location of memory pool id ,. - - -. , - / ' . - . - -

Any address form valid for a data register; provides the
id of the memory pool to be used to satisfy all memory
requests emanating from the created task group. The
memory pool id consists of two ASCII characters that name
a pool defined at system building. If this argument is
omitted, the new task group uses the memory pool associ-
ated with the issuing task group.

location of base level)

Any address form valid for a data register; provides the
base priority level, relative to the system level, at
which the lead task executes.

The base level of 0, if specified, is the next higher
level aoove the last system priority level. The sum of
the highest system physical level plus 1, and the base
level of a group, and the relative level of a casK within
that group, must not exceed 6210 .

2-89 CZ06-00

location of high logical resource number

Any address form valid for a data register; provides the
highest logical resource number (LRN) that is used by any
task in the task group. The LRN can be a value from 0
through FC (hexadecimal). If this argument is omitted,
or if the value specified is less than the highest LRN
used by the system task group, the system task group's
LRN is used.

location of high logical file number

Any address form valid for a data register; provides the
highest LFN to be used by any task in the task group.
The LFN can be a value from 0 through FF (hexadecimal).
If this argument is omitted, the value F is assumed.
(Refer to the Associate File macro call.)

location of root entry name address

Any address form valid for an address register; provides
the address of the root entry name string that specifies
the pathname of the bound unit to be executed as the lead
task. The bound unit pathname can have an optional
suffix in the form of ?entry, where entry is the symbolic
start address within the root segment. If this suffix is
not given, the default start address (established at
assembly or link time) is used. EC7ZXECL specifies the
command processor as the lead task.

DESCRIPTION:

This macro call causes the initialization and allocation of
all data structures used by the system to define and control
the execution of a task group. It also causes the loading of
the root segment of the lead task of the task group. It does
not cause the system to activate any task within the task
group.

NOTES

1. The system places in $R2 the group id supplied
by argument 1. If this argument is omitted, the
system assumes that $R2 contains the group id to
be used.

2. The system places in $R4 the memory pool id sup-
plied by argument 2. If this argument is omitted,
the system assumes chat $R4 is set to zero to
indicate that the memory pool of the issuing task
group should be used by the newly created task group.

2-90 CZ06-00

The system places in $R5 the base priority level sup-
plied by argument 3. If this argument is omitted,
the system assumes that $R5 contains the base pri-
ority level to be used.

~~
The system places in $R6 the high LRN value supplied
by argument 4* If this argument is omitted, the
system sets $R6 to zero to indicate that the value
of the highest LRN created for the system task is
to be used. •• - * *« , ,. <j

The system places in $R7 the high LFN value specified
by argument 5. If this argument is omitted, the
system sets $R7 to 15.

The system places in $B2 the address of the root
entry name supplied by argument 6. If this argument
is omitted, the system assumes that $B2 contains the
address of the bound unit to be executed by the lead
task.

On return, $R1 and $R2 contain the following
information:

$R1 - Return status; one of the following:

0000 - No error

0601 - Invalid memory size or memory pool

0602 - Insufficient memory

0804 - Group id in use

0806 - Invalid group id

0807 - Invalid memory pool id

0808 - Invalid base level

0809 - Invalid high LRN

080A - Invalid high LFN

080C - Unresolved start address

OE02 - No memory available for nonswap-
pable task

160A - Insufficient memory in pool for
this group

2-91 CZ06-00

160B - Invalid overlay nesting

$R2 - Group id of created group.

Example: J

In this example, a new task group is created with a group id
of Gl; the group uses memory pool Pi and has level 40
(decimal) assigned as a relative base level. Both the high
LRN and high LFN are defaulted (only the number of LRNs
equivalent to that configured for the system task group is
available, and the highest logical file number available is
15 decimal). The task group's lead task begins execution at
the entry point ENTRY1 of the bound unit PROG1, as found by
application of the system search rules.

GROUP1 $CRGRP = 'G1' ,='P1' ,=40, ,, 1ROOT

ROOT TEXT ' PROG1 ?ENTRY1 A '

-\

2-92 CZ06-00

CREATE OVERLAY AREA TABLE

CREATE OVERLAY AREA TABLE (SCROAT) , 5

~ ' f > r

(* -«. <
"* s Jt\ ..

Function Code: 07/OA - -:
t c

Equivalent Command: None ' ~-'- . ^

Create an overlay table (OAT) to be used for sharing
floatable overlays; create in memory the overlay area described
by this OAT.

FORMAT: - -

[label] $CROAT [location of OAT address],
[location of size of overlay area entry],

v ^ ' ^ [location of number of overlay area
entries],
[location of bound unit index id]

ARGUMENTS: :

location of OAT address

Any address form valid for an address register; provides
the location into which the system places the address of

N -' the OAT. c - - : -. -
t

location of size of overlay area entry
o -

Any address form valid for a data registers; provides the
location of a value specifying the number of words to be
contained in each entry in this overlay area. This value
should be equal to or greater than the size of the
overlays to be placed in the area for loading.

V

—' location of number of overlay area entries

Any address form valid for a data register; provides a
value specifying the number of entries in this overlay
area. (The size of each entry is defined by argument 2.)
The correct value for this argument depends on the number
of overlays of this size used by the bound unit and the
frequency of their release.

2-93 CZ06-00

location of bound unit index id

Any address form valid for a data register; provides the
index id (0-7) of the bound unit from which this $CROAT
call is issued and with which the created OAT is
associated; used only if the issuing task has previously
executed a Bound Unit, Attach ($BUAT) or Bound Unit, Load
($BULD) macro call. These two calls return in $R6 the
index id of the attached bound unit. The index id of the
primary (i.e, attaching) bound unit is 0.

DESCRIPTION:

The overlay area and overlay area table created by $CROAT
permit the sharing of floatable overlays by tasks in the same
task group. (See the System Concepts manual for information
about overlay area and overlay area tables.)

The memory space for the overlay area created by this call is
obtained from the memory pool in which the current bound unit
is loaded. If the current bound unit is not sharable, memory
is obtained from the pool associated with the group of the
issuing task. If the current bound unit is sharable, memory
is obtained from the system pool. If the current bound unit
is in a swap pool, memory is obtained from the bound unit's
segment, which dynamically expands to accomodate the overlay
area.

Once created, an OAT is associated with the current bound
unit by means of a field in the bound unit's bound unit
descriptor (BUD) block. That field points to a queue of OATs
created by the bound unit; OATs in the queue are ordered by
ascending area size.

Before an OAT is created, the bound unit's OAT queue is
searched for an OAT whose entry size is equal to that
specified by argument 2. If such an OAT is found, no OAT is
created by this call. The address of the existing or created
OAT is returned to the location specified by argument 1.

Argument 3 is applicable if the issuing task is a multi-bound
unit task (i.e., has previously executed a Bound Unit Attach
($BUAT) or Bound Unit, Load ($BULD) macro call). Even if the
issuing task has detached (by means of the Bound Unit, Detach
macro call) all tasks previously attached, the issuing task
is still considered to be a mulit-bound unit task, and a
value must be specified for this argument. Index id numbers
1-7 refer to attached bound units; the index id of the
primary (i.e., attaching) bound unit is 0. If not
applicable, this argument is bypassed.

The Overlay Area, Reserve and Execute Overlay ' SOVRSV^ and
Overlay Area, Release, Wait, and Recall (SOVRCL) nacro calls
eacn require that an OAT and overlay area oe present; tnus,
each call must be preceded by $CROAT.

2-94 CZ06-00

NOTES

1. The system returns the address of the OAT
in $B4 and stores it in the memory location
specified by argument 1. If argument 1 is
omitted, the system stores the address only
in $B4.

2. The system places in $R2 the size of the
entry supplied by argument 2. If this
argument is omitted, the system assumes
that $R2 contains the correct size.

3. The system places in $R6 the number of -
entries supplied by argument 3. If this
argument is omitted, the system assumes
that $R6 contains the correct number.

4. The system places in $R7 the bound unit
index id supplied by argument 4. If this
argument is omitted, the system assumes
that $R7 contains the correct number.

5. On return, $R1, $R2, $R6, and $B4 contain
the following information:

$R1 - Return status; one of the following:

0000 - No error '- l '

0602 - Insufficient memory; user
system area or segment

OE02 - No memory available for non-
swappable task

1602 - Invalid argument (size or
number of overlay areas)

160A - Insufficient memory

$R2 - Actual size of overlay area entry (if
$R1 is 0000) ; for overlay entry in a
segment, rounded up to nearest 256
words.

$R6 - Actual number of overlay areas
allocated to this area (if $R1 is
0000) .

2-95 CZ06-00

CREATE SEGMENT

CREATE SEGMENT (SCRSEG)

Function Code: OC/OC

Equivalent Command: None

Create a segment in the address space of the issuing task;
assign the segment to the initial bound unit of that task.

FORMAT:

[label] $CRSEG [location of segment access rights],
[location of segment size],
[location of segmented address]

ARGUMENTS: '

location of segment access rights

Any address form valid for a data register; provides the
access rights (read, write, and execute) for the segment
to be created, Access rights are expressed as a string of
six bits, which are used to specifiy the type of access as
follows:

Bits Access Type

0-1 Read
2-3 Write
4-5 Execute

Ring access is coded as follows:

Bit Values Ring

00 3
01 2
10 1
11 0

location of segment size

Any address form valid for a double word data register
(i.e., an address, or hexadecimal string if a constant);
provides the segment's size, in words. The actual size of
the created segment is the specified size rounded up to
the next 256-word increment.

2-96 CZ06-00

location of segmented address
j

Any addres form valid for an address register; provides
the address of any word in the segment. When null is
specified/ the system selects a segment number that is
consistent with that specified by argument 2 and with the
availability of segment numbers to users.

DESCRIPTION:

This call enables the issuing task to create dynamically a
segment of the size specified by argument 2. The created
segment is added to the issuing task's address space.

The segment's address, specified by argument 3, must be that
of an available user segment. User segments may be any of
the fifteen large segments; however, the assignment of user
segments, made by the system administrator, can vary from one
installation to another.

v
$CRSEG is appropriately issued by a task running in a swap
pool. If issued from a nonswap pool, the call is converted
into a Get Memory function with the DENY argument.

After execution of $CRSEG, $B2 contains a pointer to the
start of the created segment; $R6,$R7 contain the size of the
created segment.

The System Concepts manual describes in detail ring and
segment access, segment size, and segment numbers.

NOTES:

1. The system places in $R2 the segment's access
rights value supplied by argument 1. When the
argument is omitted, the system assumes that
$R2 contains this value.

» _1 V-

2. The system places in $R6 and $R7 the size of
the segment supplied by argument 2. When the
argument is omitted, the system assumes that
$R6 and $R7 contain the segment size.

3. The system places in $B2 the address of any
word in the segment, supplied by argument 3.
When the argument is omitted, the system
assumes that $B2 contains the segmented
address. When argument 3 specifies zero, the
system selects the segment number.

2-97 CZ06-00

4. On return, $R1, $R6, $R7, and $B2 contain the
following. (Contents of these registers are
undefined for a return with an error.)

$R1 - Return status code; one of the
following:

0000 - No error

0602 - Memory unavailable

0817 - Memory access violation; attempt
to destroy an address (with the
created segment), without the
right to do so, of the following

• Sharable bound unit root
• System segment
• Non-user-created segment

082E - Argument error:

• Size exceeds 64K

• Size inconsistent with the
specified segment number

$R6, $R7 - Actual size of created segment

$B2 - Pointer to start (offset = 0) of created
segment.

Example:

In this example, the requesting task creates a 2K-word
segment and assigns it to the inital bound unit. Ring 3 has
read and write access rights, but execute access is
restricted to ring 0. The segment number of the created
segment is C. On successful return to the issuing task, $B2
contains the address of the first word of the created
segment; $R6 and $R7 contain the segment's size. The address
and size of the segment are saved in SEG_A and SEG_S,
respectively. When the task has finished using the segment,
the segment is deleted with a Delete Segment ($DLSEG) macro
call.

2-98 CZ06-00

$CRSEG ^B'OOOOllOOOOOOOOOO';
=2048,
+ $A

$A * Z'OOOCOOOO1
 f

* CHECK FOR ERROR OR INSUFFICIENT MEMORY
*

BNE2 NO_GO
*
* SAVE THE SEGMENT'S ADDRESS AND SIZE

*
STB $B2, SEG_A
SDI SEG_S

* NOW DELETE THE SEGMENT
*

$DLSEG SEG_A

SEG_A DC <$
SEĜ S DC OB(31,0)

2_99 CZ06-00

CREATE TASK

CREATE TASK fSCRTSK)

Function Code: OC/02 (same bound unit),
OC/03 (different bound unit)

Equivalent Command: Create Task (CT)

Add the supplied task definition to the set of currently
defined tasks within the task group of the issuing task.

FORMAT :

[label] $CRTSK [location of logical resource number] ,
[location of relative priority level] ,
[location of start address],
[location of root entry name address]

ARGUMENTS :

location of logical resource number

Any address form valid for a data register; provides the
location of the logical resource number (LRN) by which
the issuing task group can refer to the created task.
The LRN (a value from 0 through 252) cannot exceed the
value used as the high LRN in the Create Group macro call
that created the group of which this task is a member.
If the LRN value is set to -1, the system selects an
available LRN, starting with the maximum, and returns it
to the user in $R2 .

location of relative priority level

Any address form valid for a data register; provides the
location of the priority level, relative to the task
group's base priority level, at which the created task is
to execute. If this argument is omitted or is -1, the
priority level used is that of the issuing task.

location of start address

Any address form valid for an address register; provides
the location of the task start address when the newly
created task is to execute in cne same bound unit as the
task that issued the Create Task macro call. (Function
code OC/02.) Either the location of the start address or
the location of the root entry name address,, but not
Doth, can be specified.

2-100 CZ06-00

location of root entry name address

Any address form valid for an address register; provides
the address of the pathname of the bound unit root
segment to be loaded for execution by the newly created
task. The bound unit pathname can have an optional
suffix in the form of ?entry, where entry is the symbolic
start address within the root segment. If this suffix is
not given, the default start address (established at link
time) is used. (Function code OC/03.) Either the loca-
tion of the start address or the location of the root
entry name address, but not both, can be specified.

DESCRIPTION: ~ ' *

This macro call causes the allocation and initialization of
the data structures that define and control task execution.
The call does not activate the task; the Request Task macro
call is required for task activation.

One or more Create Task macro calls can be issued to create
one or more tasks within a task group.

When a Create Task macro call is executed, the system builds
a resource control table (RCT) and a task control block (TCB)
for the created task. The address of the RCT is placed in
the logical resource table (LRT) in association with the
appropriate LRN.

If the new task is to execute the same bound unit as the
issuing task, the count of tasks associated with the unit is
incremented (function code OC/02) to prevent premature reuse
of memory containing the bound unit.

If the specified bound unit is not a sharable bound unit that
is currently resident in memory, the root segment of the
bound unit is loaded into memory belonging to the task group.
If the specified bound unit is both sharable and currently
resident, the count of tasks associated with the unit is
incremented. (Function code OC/03.)

NOTES

1. The system places in $R2 the LRN supplied by
argument 1. If this argument is omitted, the
system asssumes that $R2 contains the LRN for
the created task.

2-101 CZ06-00

The system places in $R6 the relative priority)
level supplied by argument 2. If this argument ^~s
is omitted, the system sets $R6 to the relative --\
priority level of the task issuing this macro)
call.

Arguments 3 and 4 are mutually exclusive. If both
are supplied, argument 3 is used and a diagnostic
is issued. Information derived from either argu-
ment is placed in $B2. If these arguments are
omitted, the system assumes that $B2 contains the
start address to be used.

On return, $R1 and $R2 contain the following
information:

$R1 - Return status; one of the following:

0000 - No error ~x

Olxx - Media error ^~s

0209 - File or directory not found

0602 - Memory unavailable

0809 - LRN too large

0813 - Referenced LRN already in use or v>\
invalid J

0827 - Invalid bound unit file format

0830 - LRN not available

082D - Group's available memory quota
exceeded

OE02 - No memory available for nonswap- j
able task ^/

1604 - Unresolved symbolic start address

160A - Insufficient memory

1611 - Zero length overlay referenced

1513 - Invalid pathname format

1615 - Invalid bound unit format

$R2 - LRN of created task.

y

2-102 CZ06-00 !

Examples: *| , s s

In this example, the Create Task macro call makes a task
known as logical resource number 10 (decimal) of the issuing
group. The task will execute at priority level 2 relative to
the group's relative base level. The task will execute the
procedures contained in the bound unit PROG10, as found by
application of search rules, and enters the bound unit at
entry point PROG10.

$CRTSK =10,=2,,IROOT
c

\ • J- V *,
* * •• *

ROOT TEXT 'PROG10 ' *

In this example, the Create Task macro call makes a task
known as logical resource number 12 (decimal) of the issuing
group. The task executes at the same priority level as the
issuing task. The task executes the same bound unit as the
issuing task and starts at the address represented by the
label SSA.

$CRTSK =12,,,!SSA

2-103 CZ06-00

DEFER CHECKPOINT

DEFER CHECKPOINT fSDFCKP)

Function Code: OC/19

Equivalent Command: None

Enable or disable the ability of the issuing task group to
take new checkpoints.

FORMAT:

[label] $DFCKP

ARGUMENT:

E
D

One of the following values is specifed to indicate
whether the issuing task's ability to issue checkpoints
is to be enabled or disabled:

[E]- Enable the issuing task's ability to issue new ~^
checkpoints. J

[D]- Disable the issuing task's ability to issue new
checkpoints.

DESCRIPTION:

This macro call allows the issuing task to enable or disable
the ability to create new checkpoints. A count of Defer
Checkpoint calls is kept. New checkpoints can be created
only when an equal number of enable checkpoint calls have
been issued. If this argument is omitted, the current con-
tent of $R2 is issued.

The macro calls associated with the checkpoint/restart facil-
ity are: Validate Checkpoint, Checkpoint, Restart, Defer
Checkpoint, Checkpoint File.

2-104 CZ06-00

NOTES • , s •

1. If E is specified for argument 1, $R2 is set to
zero. If D is specified for argument 1, $R2 is
set to one.

2. On return, $R1 contains one of the following return
codes:

0000 - No error

082E - Argument error ($R2 is not equal to zero or
one) .

1 a'Example:

This example uses the Defer Checkpoint macro call to protect
an area or procedure from being checkpointed. The area is
bounded by a disable/enable checkpoint sequence.

$DFCKP D Disable checkpoints

procedure protected from checkpoints

$DFCKP E Enable checkpoints

2-105 CZ06-00

DEFER REQUEST ON HEAD -x

^-~S

• ")
PEFER REQUEST ON HEAD (SDFRHD)

Function Code: 01/OD

Equivalent Command: None

Dequeue the currently dispatched task request and requeue it
at the head of requests previously deferred at the specified
priority.

FORMAT:

[label] $DFRHD [location of defer priority] ,
[location of task start address] ~"\

ARGUMENTS : ^

location of defer priority

Any address form valid for a data register; specifies the
frame priority number at which the currently dispatched,
dequeued request is deferred. Must be a value between -Hi
and +32,767.

location of task start address

Any address form valid for an address register; provides
the address of the instruction to which execution of the
issuing task jumps after the Defer Request on Head macro
calling sequence. If task execution continues with the
instruction immediately following the call (i.e., does
not jump), the value of this argument must be null.

\
DESCRIPTION:

This macro call dequeues the currently dispatched request and
requeues it at the head of requests previously deferred at
the specified priority. If there is another active request
in the issuing task's request queue, that request is dis-
patched; otherwise, after completing execution, the issuing
task is suspended until it receives another request.

Following this call, casK execution can eicner continue witn
the next instruction or jump to a new task start specified by
argument 2 of the call.

2-106 CZ06-00

NOTES
> .*

1. The system places in $R5 the defer priority
specified by argument 1. If argument 1 is
omitted, the system assumes that $R5 contains
the defer priority.

2. The system places in $B4 the task start address
supplied by argument 2. If argument 2 is omitted,
the system assumes that $B4 contains either the
task start address or a null value.

3. On return (assuming that after the currently dis-
patched request is dequeued, there is another
active request in the issuing task's request
queue), $B4, $B5, and $B7 contain the following
information:

$B4 - Address of the request block for the new
request

$B5 - Address of the system-supplied termination
sequence, which consists of the following
code: j

LDR $R2,=$R1
MCL
DC Z'0103' » - . _ • > •

$B7 - Address of the request block's argument list,
equivalent to (RB_address+2*$AF=2).

2-107 CZ06-00

DEFER REQUEST ON TAIL

DEFER REQUEST ON TAIL f SDFRTL)

Function Code: 01/OC

Equivalent Command: None

Dequeue the currently dispatched task request and requeue it
at the end of the queue of requests previously deferred under the
specified priority.

FORMAT:

[label] $DFRTL [location of defer priority] ,
[location of task start address]

ARGUMENTS :

location of defer priority

Any address form valid for a data register; specifies the
frame priority number at which the currently dispatched,
dequeued request is deferred. Must be a value between +1
and +32,767.

location of task start address J

Any address form valid for an address register; provides
the address of the instruction to which execution of the
issuing task jumps after the Defer Request on Tail call-
ing sequence. If task execution continues with the
instruction that immediately follows the call (i.e., does
not jump), the value of this argument must be null.

DESCRIPTION: N,

This macro call dequeues the currently dispatched request and
requeues it at the tail of requests previously deferred at
the specified priority. If there is another active request
in the issuing task's request queue, that request is dis-
patched; otherwise, after completing execution, the issuing
task is suspended until it receives another request.

Following this call, casK execution can eicner continue with
the next instruction or jump to a new task start specified by
argument 2 of the call.

2-108 CZ06-00

NOTES '< - -p- ' - ̂

1. The system places in $R5 the defer priority spe-
cified by argument 1. If argument 1 is omitted,
the system assumes that $R5 contains the defer
priority.

2. The system places in $B4 the task start address
supplied by argument 2. If argument 2 is omitted,
the system assumes that $B4 contains either the
task start address or a null value. * .

3. On return (assuming that after the currently dis-
patched request is dequeued, there is another active
request in the issuing task's request queue), $B4,
$B5, and $B7 contain the following information:

$B4 - Address of the request block for the new
request

$B5 - Address of the system-supplied termination
sequence, which consists of the following
code:

LDR $R2,=$R1
MCL ' - •'
DC Z'01031

$B7 - Address of the request block's argument list,
equivalent to (RB_address+2*$AF=2).

2-109 CZ06-00

DEFINE SEMAPHORE

DEFINE SEMAPHORE (SDFSM)

Function Code: 06/04

Equivalent Command: None

Define a semaphore for the issuing task group; assign the
semaphore an identifier and an initial value.

FORMAT:

[label] $DFSM [location of semaphore id],
[location of initial value of semaphore]

ARGUMENTS:

location of semaphore id

Any address form valid for a data register; provides the
two ASCII characters that identify this semaphore.

location of initial value of semaphore

Any address form valid for a data register; provides the
initial value to which the semaphore is set. This value
specifies the number of simultaneous requests for the
resource identified by the semaphore. If this argument
is omitted, the initial value of the semaphore is set to
one (one user at a time).

DESCRIPTION:

This macro call allows different tasks within the same task
group to coordinate the use of a resource (such as a task
code, a device, or a file). The semaphore acts as a gating
mechanism that allows a requesting task to obtain the use of
a resource if the value of its associated semaphore is
positive.

When a semaphore is defined by a task, it is available only
to tasks within the task group of the defining task. See
"Semaphore Functions" in Section 2, Vol. I for a discussion
of semaphores.

2-110 CZ06-00

' The 2-character semaphore id indicated by argument 1 is a
, system symbol used by the operating system to coordinate
-̂=< requests for the resource being controlled. The initial
' . value indicated by argument 2 specifies the type of control

to be exercised. If this value is 1, the resource can be
accessed by only one task at a time. A value of 2 allows two
users, a value of 3 allows three users, and so on.

NOTES > '

1. The system places in $R6 the semaphore id supplied
by argument 1. If argument 1 is omitted, the
system assumes that $R6 contains the id to be used.

2. The system places in $R2 the initial semaphore value
supplied by argument 2. If this parameter is
omitted, $R2 is set to one.

3. On return, $R1 and $R6 contain the following
information:

—' $R1 - Return status; one of the following:

0000 - No error

0503 - Semaphore id previously defined in
issuing task group v

$R6 - Semaphore id (as supplied).

Example:

In this example, the Define Semaphore macro calls define two
semaphores named TH and LK.

TH is a semaphore having an initial value of 10. It controls
the allocation of 10 identical nonsharable resources, such as
magnetic tape drives, that are called "resources" in this
example. Any task requiring a resource does a P-op test (see
reserve semaphore) on this semaphore. If no resources are

-̂ available at the moment, the task is suspended until a
resource becomes available. When a task finishes using a
resource, it does a V-op (see release semaphore), thereby
making the resource available for use by other tasks. If any
other task is waiting for this semaphore when the V-op is
done, the task that has waited the longest is awakened.

2-111 CZ06-00

LK is a semaphore that has an initial value of one. It con-)
trols access to the free resource list by serving as a lock. —^
After a task has reserved the right to use a resource by per- ,-̂ v
forming the P-op on the TH semaphore, as described above, the ,)
task unlinks (the description of) a particular resource from
the free resource list. Upon entering a section where it
examines or modifies the free resource list, the task does a
P-op on the LK semaphore, thus ensuring the integrity of this
data base. After it stops using this data base, the task
does a V-op on the LK semaphore.

When the task finishes using the resource, it returns the
resource by doing a P-op on LK, linking (the description of)
the resource being returned into the free resource list,
doing a V-op on LK, and then doing a V-op on TH.

*
* DEFINE SEMAPHORES TO CONTROL RESOURCES
* ' ~-\

$DFSM ='TH',=10)
$DFSM ='LK' —'

* ROUTINE TO GET A RESOURCE
*
* FIRST GET RIGHTS TO TAKE A RESOURCE

$RSVSM ='TH'
*
* NOW LOCK THE FREE RESOURCE LIST
*

$RSVSM ='LK'
*
* TAKE A RESOURCE FROM THE FREE RESOURCE LIST

* THEN UNLOCK THE FREE RESOURCE LIST
*

$RLSM ='LKf
*
* END OF ROUTINE TO GET A RESOURCE
*
* ROUTINE TO RETURN A RESOURCE
*
* FIRST LOCK THE FREE RESOURCE LIST
*

$RSVSM ='LK'

2-112 ' CZ06-00

* NOW LINK THE RESOURCE BACK INTO THE FREE RESOURCE LIST
*

•
•

* THEN UNLOCK THE FREE RESOURCE LIST

$RLSM = f L K '

* FINALLY RELEASE THE RESOURCE
t-

* $RLSM s'TH1

* v ' 5
* END OF ROUTINE TO RETURN A RESOURCE ^ * -

2-113 CZ06-00

DELETE DIRECTORY

DELETE DIRECTORY (SDLDIR)

Function Code: 10/A5

Equivalent Command: Delete Directory (DD)

Delete a previously created directory from the system; remove
all of the directory's attributes, including its name, from the
immediately superior directory that describes it, and release all
space allocated to the directory. This function is usually done
outside program execution.

FORMAT:

[label] $DLDIR [argument structure address]

ARGUMENT:

argument structure address

Any address form valid for an address register; provides
the location of a parameter structure that must contain
the following entry.

pathname pointer

A 4-byte address that may be any address form valid
for an address register; points to a pathname (which
must end with an ASCII space character) that identi-
fies the directory to be released.

DESCRIPTION:

This macro call, in effect, reverses the Create Directory
action, provided the directory has no subordinate directories
or files (i.e., if the directory to be deleted contains a
subordinate directory or file, it is not deleted and an error
code is returned). In addition, if it is currently the work-
ing directory in any task group, the directory cannot be
deleted.

2-114 CZ06-00

NOTES

If the argument is coded, the system loads the
address of the parameter structure into $B4.
If the argument is omitted, the system assumes
that $B4 contains the address of the parameter
structure. • • -

On return, $R1 contains one of the following
status codes:

0000 - Successful completion ' ~'?

Olxx - Physical I/O error

0201 - Invalid pathname

0202 - This function requires a pathname to be
specified

0205 - Invalid argument

0209 - Named directory not found

020C - Volume not found

0213 - Cannot provide requested concurrency

0220 - Directory not empty

0222 - Pathname cannot be expanded; no working
directory

0225 - Not enough system memory for buffers or
structures

0226 - Not enough user memory for buffers or
structures

0228 - Invalid file type (not a directory)

022C - Access control list (ACL) violation.

2-115 CZ06-00

Example:

In this example, the Delete Directory macro call deletes the
directory created in the Create Directory example (i.e.,
SUBINDEX.A). The system uses the first entry to identify the
directory to be deleted. The Delete Directory macro call is
coded as:

SUBDIR DC <DIRPTH
DIRPTH DC '~VOL03>SUBINDEX.A

$DLDIR ISUBDIR

2-116 CZ06-00

DELETE FILE

DELETE FILE (SDLFIL) „ -^ ^ [
J T (- ' *t

Function Code: 10/35 - r t ~ i -

Equivalent Commands Delete File (DL) 3(^

Delete a previously created file from the system. All the
file's attributes, including its name, are removed from the
directory that describes it, and all space allocated to the file
is released. The file to be deleted is identified by supplying
either a logical file number (LFN) or a pathname. This function
is usually done outside program execution.

c

FORMAT: -j , . -]. ^ , ">- „

[label] $DLFIL [argument structure address]

ARGUMENT: , ,. , 1:̂ " "','-•*''

argument structure address

Any address form valid for an address register; provides
the location of an argument structure that must contain
the following entries in the order shown.

logical file number

A 2-byte LFN used to refer to the file; must be a
binary number in the range 0 through 255, or blank
(which indicates that an LFN is not specified).

pathname pointer

A 4-byte address that may be any address form valid
for an address register; points to a pathname (which
must end with an ASCII space character) that identi-
fies the directory in the file hierarchy in which the
file to be released is found (as well as the name of
the file itself).

Zeros in this entry indicate that a pathname is not
specified.

2-117 CZ06-00

DESCRIPTION:

This macro call, in effect, reverses the Create File action, ,.~̂
provided the file is neither open in this task group nor \
reserved by another task group. In the former case, a return
status code of 0208 is loaded in $R1; in the latter case, a
return status of 0213 is loaded in $R1.

The file to be deleted can be specified by (1) an LFN only or
(2) a pathname only. If only an LFN is specified, the file
must have been created or reserved (through a Create File or
Get File macro call, or equivalent command) with that LFN.

r f

For files other than disk files, the Delete File function is
equivalent to the Remove File function.

A restorable file (i.e., one created/modified with the
-RESTORE attribute) cannot be deleted unless the system's
after-image journal is open.

A disk file that contains accounting information cannot be
deleted unless its retention period has expired.

NOTES

1. If the argument is coded, the system loads the
address of the argument structure into $B4. If
the argument is omitted, the system assumes that
$B4 contains the address of the parameter structure.

2. On return, $R1 contains one of the following status
codes:

0000 - No error

Olxx - Physical I/O error

0201 - Invalid pathname

0202 - The LFN and pathname both were not specified

0205 - Invalid argument

0206 - Unknown or invalid LFN

0208 - LFN or file currently open in same task group

0209 - Named file or directory not found

020C - Volume not found

0210 - LFN conflict

0213 - File in use by another task group

J

2-118 CZ06-00

'"'> 0222 - Pathname cannot be expanded; no working * **
v directory

^ " 0225 - Not enough system memory for buffers or
structures

0226 - Not enough user memory for buffers or
structures

0228 - Invalid file type (a directory) i

022C - Access control list (ACL) violation-f •» ,

020E - File has not expired ~ "

0260 - Journal file is not open.

Example:

'""̂ In this example, the macro call deletes the file created in
^ the Create File ($CRFIL) macro call example. To do this, it

references the same argument structure as the Create File
macro call; the system, in turn, uses the first two entries
to identify the file to be deleted. The Delete File macro
call is coded as:

$DLFIL !FILE_A

'P
r

2-119 CZ06-00

DELETE GROUP

DELETE GROUP (SDLGRP)

Function Code: OD/04

Equivalent Command: Delete Group (DG)

Mark the task group as eligible for deletion when it becomes
dormant; then return all allocated memory to the associated
memory pool.

FORMAT:

[label] $DLGRP [location of group id]

ARGUMENT:

location of group id [

Any address form valid for a data register; provides the
group id of the task group to be deleted. This task
group must have previously been created by a Create Group
macro call. If this argument is omitted, the issuing
task group is deleted.

DESCRIPTION: ~)

This macro call removes all data structures built by the
Create Group macro call issued with this group id, when the
group becomes dormant. No further Request Group macro calls
can be issued for this task group once the Delete Group macro
call has been issued.

When a task group is deleted, the memory occupied by the data
structures defining the group, and any memory associated with ^
the execution of the group, is returned to the appropriate ^^J
memory pool.

The Delete Group macro call takes effect immediately if the
task group is dormant when the command is issued. If the
task group is active (i.e., its code is being executed and/or
there are requests in its request queue), the Delete Group
macro call takes effect when execution terminates and no
requests remain in the queue.

y

2-120 CZ06-00

NOTES ,) • ' I >^

1. The system places in $R2 the group id supplied
by argument 1. If this argument is omitted, $R2
is set to zero to designate that the issuing
task group is to be deleted.

2. On return, $R1 and $R2 contain the following
information:

$R1 - Return status; one of the following: _

0000 - Delete task group status set , &/*
0806 - Invalid group id

$ o
$R2 - Group id of deleted task group.

} j

Example:

In this example, the Delete Group macro call causes the task
group in which the macro call is executed to be deleted when
the group's tasks are all terminated and there are no queued
group requests.

NOABA $DLGRP

- JL.L

2-121 CZ06-00

DELETE OVERLAY AREA TABLE

Ĵ

o
DELETE OVERLAY AREA TABLE (SDLOATl

Function Code: 07/OD

Equivalent Command: None

Delete the named overlay area table (OAT).

FORMAT:

[label] $DLOAT [location of overlay area table address]

ARGUMENT:
t

location of overlay area table address

Any address form valid for an address register; provides
the address of the OAT to be deleted. {

DESCRIPTION:

This macro call deletes the specified OAT, and returns its
memory space to the task group's memory pool. Deletion
occurs only when all overlays in the overlay areas are
inactive (i.e., have no users attached to them). j

NOTES

1. The system places in $B4 the address of the OAT
to be deleted, supplied in the argument. When
the argument is omitted, the system assumes that
$B4 contains that address.

2. On return, $R1 contains one of the following: \

0000 - No error

0602 - Memory not available to release overlay
areas

1610 - Named OAT not found in the queue

1618 - OAT cannot be deleted; overlay areas are
active.

2-122 CZ06-00

DELETE RECORD

DELETE RECORD fSDLREC) • ' " "

Function Code: 11/30 (current), 11/31 (key)

Equivalent Command: None

Remove the specified logical record from the file; valid for
all file organizations except fixed-relative without deletable
records, tape-resident sequential files, and device files.

FORMAT:

[label] $DLREC [fib address]
,KEY

I
ARGUMENTS:

fib address

, CURRENT)
!

Any address form valid for an address register; provides
the location of the file information block (FIB).

(CURRENT)
ICUR f

Indicates that the last record read by means of the Read
Record macro call (with read next or read with key mode
specified) is to be deleted. (This is the default value
for this macro call.) The user must code the following
FIB entry:

logical file number

KEY

Indicates that the record identified by the key value
pointed to by the FIB is to be deleted. The user must
code the following FIB entries:

logical file number
input key pointer
input key format

2-123 CZ06-00

DESCRIPTION:

Before this macro call can be executed, the file must have
been opened (see the Open File macro call) with a program
view word that allows access through data management (bit 0
is zero) and allows delete operations (bit 4 is one). The
file must have been reserved (see Get File macro call) with
write access concurrency (type 3, 4, or 5). In addition,
execution of this macro call has no effect on the next read
or write pointer (i.e., it can be issued between a Read Next
Record and Write Next Record macro call without disturbing
the sequence of the records being read or written).

The Delete Record macro call does not apply to fixed-relative
files with nondeletable records, tape files, and device
files.

The file information block can be generated by a File Infor-
mation Block macro call. Displacement tags for the FIB can
be defined by the File Information Block Offsets macro call. ~̂ \

NOTES

1. If the argument is coded, the system loads the
address of the FIB into $B4. If the argument is
omitted, the system assumes that $B4 contains
the address of the FIB.

2. None of the out values in the FIB are set by this •-:
macro call. J

3. On return, $R1 contains one of the following status
codes:

0000 - No error
Olxx - Physical I/O error
0203 - Invalid function
0205 - Invalid argument
0206 - Unknown or invalid LFN " \
0207 - LFN not open ^
020A - Address out of file
020B - Invalid extent description information
020E - Record not found
0217 - Access violation
0219 - No current record pointer
021E - Key length or location error
022A - Record lock area overflow
022B - Record deadlock occurred
022F - Unknown or invalid record type
0237 - Invalid record or control interval format
023A - Recovery file I/O error
0263 - Journal file I/O error.

2-124 CZ06-00

Example: *

The macro call in this example identifies the FIB that is
described under "Assumptions for File System Examples" in
Appendix A. The Delete Record macro call indicates that the
current record is to be deleted; it is assumed that the file
is open and that a Read Record ($RDREC) macro call immedi-
ately precedes the Delete Record macro call. The macro call
is:

$DLREC iMYFIB, CURRENT

The FIB identified by the address in the first argument is as
defined in the example for the Open File macro call.

; _

L x. '

2-125 CZ06-00

DELETE SEGMENT

DELETE SEGMENT (SDLSEG)

Function Code: OC/OD

Equivalent Command: None

Delete the specified segment.

FORMAT:

[label] $DLSEG [location of segmented address]

ARGUMENT:

location of segmented address

Any address form valid for an address register; provides
the location of any word within the segment to be deleted.

DESCRIPTION:

This macro call causes a previously created segment
(identified by the argument) to be deleted. The segment may
have been created at link time or created dynamically by the
Create Segment ($CRSEG) macro call. When the segment is
deleted, memory assigned to it is returned to the task
group's memory pool.

The following segments cannot be deleted:

• Root segment of a sharable bound unit

• Protected segments (e.g., group system area segment,
group work area
system segments)
group work area segment, overlay area table, and/or j

Segments to which the user does not have write/execute
access rights in the user ring.

NOTES

The system places in $B2 the address of a word
within the segment to be deleted, supplied in
the argument. When the argument is omitted,
the system assumes that $B2 contains that
address.

2-126 CZ06-00

2. On return, $R1 contains one of the following
status codes:

0000 - No error

0602 - Memory unavailable

0817 - Memory access violation; cannot destroy
addresses of: ^ > " w

• System segment ' /; -&n,&M:- j .me^vinpa

'••"•• - • Root of sharable bound unit =M £ ~ •'-vl.eO

• Segment to which user does not have
access.

Example:

See the example for the Create Segment ($CRSEG) macro
call.

2-127 CZ06-00

DELETE SEMAPHORE

DELETE SEMAPHORE (SDLSM)

Function Code: 06/07

Equivalent Command: None ,

Delete a counting semaphore that is currently defined for the
task group issuing this call.

FORMAT:

[label] $DLSM [location of semaphore id]

ARGUMENT:

location of semaphore id

Any address form valid for a data register; provides the
semaphore id, as two ASCII characters, of the semaphore
to be deleted.

DESCRIPTION:

This macro call deletes a counting semaphore that was
previously defined for the issuing task group with a Define J
Semaphore macro call.

The semaphore will be deleted only when there are no tasks
waiting for the resource controlled by the semaphore (see
Reserve Semaphore macro call). If tasks are waiting, a
return to the issuing task results and $R1 contains a 0504
status code. When there are no longer any tasks waiting on
the semaphore, the Delete Semaphore macro call must be
reissued. \

When the semaphore is deleted, all system references to it
are removed. Any attempt to use it results in a return to
the issuing task, with status code 0502 in $R1.

2-128 CZ06-00

NOTES

1. The system places in $R6 the semaphore id supplied
by the argument. When the argument is omitted,
the system assumes that $R6 contains the id to be
used.

2. On return, registers $R1 and $R6 contain the ~^ ""**
following:

$R1 - Return status; one of the following: , A » f c , . -

0000 - No error - ,-. _*
t " ~ B „ v 3». ~

0502 - Semaphore not defined

0504 - Semaphore request canceled

0506 - Semaphore is currently active and
cannot be deleted. - ^ * ~>~,r

$R6 - Semaphore id (as supplied). - _ ^:,

Example: !s^ * . . ,

The issuing task group requests that semaphores TH and LK (as
defined for the example given in the Define Semaphore ($DFSM)
macro call) be deleted.

DLSAA $DLSM ='TH'
CMR $R1,=Z'0506I * ̂
BE TH_BSY

DLSBB $DLSM -'LK1 -^
CMR $R1, = Z'0506' ,̂
BE LK_BSY

2-129 CZ06-00

DELETE TASK

DELETE TASK (SDLTSK)

Function Code: OC/04

Equivalent Command: Delete Task (DT)

Delete the definition of a task from the task group of which
the task issuing this macro call is a member.

FORMAT:

[label] $DLTSK [location of logical resource number]

ARGUMENT: -.

location of logical resource number

Any address form valid for a data register; provides the
location of the logical resource number (LRN) of the task
to be deleted. The LRN (a value from 0 through 252) must
have been specified in a previously issued Create Task
macro call. If this argument is omitted, the task issu-
ing the macro call is deleted.

DESCRIPTION:

This macro call removes the data structures constructed by
the Create Task macro call that was issued with the specified
LRN.

If the task is executing, the macro call causes its defini-
tion to be deleted when the task next issues a Terminate
Macro call that has no request blocks in its request queue.
No further Request Task macro calls can be issued for this
task after the Delete Task macro call has been issued.

If the task is not executing and there are no outstanding
requests for it, its definition is deleted immediately. When
the task is deleted, the memory occupied by its data struc-
tures is returned to the appropriate memory pool. The Delete
Task function operates asynchronously. The issuing task does
not wait until the referenced task is deleted.

2-130 CZ06-00

NOTES - . V/ - . .

1. The system places in $R2 the LRN specified by
argument 1. If this argument is omitted, $R2
is set to -1 to denote that the task issuing the
macro call is to be deleted.

2. On return, $R1 and $R2 contain the following
information: ~ - -

$R1 - Return status; one of the following: +10 ^ ^ >

0000 - No error ^ - ,. ,. ,t . ^ ^ ^̂
0802 - Invalid LRN -,-6tc —tss * rJ_~ $"

$R2 - LRN of deleted task. -v.,^

Example: * * "' -I

In this example, the Delete Task macro call causes the task
known as logical resource number 10 (decimal) within the
issuing task's task group to be deleted. If the Delete Task
macro call shown in this example has been executed in the
same task group as the Create Task macro call used in the
first example of the Create Task Macro call description, the
task created by that example is deleted. ^, , 33-

DLE_AA $DLTSK =10 *~; •» <• ,̂,

2-131 CZ06-00

DEQUEUE AND POST

DEQUEUE AND POST (SDQPST)

Function Code: 01/OB

Equivalent Command: None :

Dequeue the currently dispatched task request and post the
specified completion status. =. -

FORMAT:

[label] $DQPST [location of completion status]

ARGUMENT:

location of completion status

Any address form valid for a data register; provides the
status of the dequeued request. The user may select any
status code as the value of this argument.

DESCRIPTION:

This macro call dequeues the currently dispatched request and
posts its completion status. The issuing task immediately
continues execution at the instruction following the call,
without dispatching another request.

NOTES

1. The system places in $R2 the completion status
code specified by the argument. If the argu-
ment is omitted, the system assumes that $R2
contains the completion status code.

2. On return, $R1 contains the folowing informa-
tion:

0000 - Request successfully dequeued and posted
0814 - No currently dispatched request exists.

2-132 CZ06-00

DISABLE USER TRAP

DISABLE USER TRAP (SDSTRP)

Function Code: OA/02 - . r

Equivalent Command: None

Disable the handling of the specified trap for the issuing
task.

FORMAT: , , , . „ c^ . , ..

[label] $DSTRP [location of trap number] - J

ARGUMENT:

location of trap number

Any address form valid for a data register; provides the
trap number (0 through 63, decimal) of the trap to be
disabled. A value of -1 designates that all traps are to
be disabled. The trap number must have been specified in
an Enable User Trap macro call.

DESCRIPTION:

This macro call disables the hardware trap vector specified
by argument 1. All subsequent occurrences of the specified
trap are handled by the system's default trap handling rou-
tine until an Enable User Trap macro call is later issued for
the trap. (Appendix A, Vol. I describes trap handling.)

NOTES

1. The system places in $R2 the trap number of the
trap to be disabled, supplied by argument 1. If
this argument is omitted, the system assumes that
$R2 contains the binary number of the trap to be
disabled.

2. On return, $R1 and $R2 contain the following
information:

2-133 CZ06-00

$R1 - Return status: 7}

0000 - No error

0342 - Invalid trap number

0343 - A previously signalled trap is
still pending.

$R2 - Trap number supplied in macro call.

Example:

See the example given for the Trap Handler Connect macro
call.

J

2-134 CZ06-00

DISSOCIATE FILE

DISSOCIATE FILE fSDSFIL) " .*c .' • J(r
** i •*

Function Code: 10/15 ' ? -- t - - • > - , , ,,. >,

Equivalent Command: Dissociate (DISSOC)

Dissociate a previously associated logical file number (LFN)
from a pathname. This dissociation is typically done outside
program execution.

FORMAT:

[label] $DSFIL [parameter structure address]

ARGUMENT:

parameter structure address

Any address form valid for an address register; provides
the location of an argument structure that must contain
the following entry.

logical file number

A 2-byte LFN used to refer to the pathname; must be a
binary number in the range 0 through 255.

DESCRIPTION:

This macro call breaks the logical connection between the
specified LFN and its previously associated pathname (see the
Associate File macro call). It does not remove the file from
the task group (see the Remove File macro call).

NOTES

1. If the argument is coded, the system loads the
address of the argument structure into $B4. If
the argument is omitted, the system assumes that
$B4 contains the address of the argument structure.

2. On return, $R1 contains one of the following
status codes:

0000 - No error
0205 - Invalid argument
0206 - Unknown or invalid LFN.

2-135 CZ06-00

Example:

In this example, the macro call identifies the same argument
structure used in the Associate File macro call described
earlier (i.e., FILE_A). The effect of the Dissociate File
macro call is to remove the logical connection betwee the LFN
and the pathname IDX01, as established by the Associate File
macro call.

FILE_A DC 5 LFN5
$DSFIL !FILE_A ^ .

2-136 CZ06-00

ENABLE USER TRAP

ENABLE USER TRAP (SENTRP)

Function Code: OA/01

Equivalent Command: None

Enable a specified user trap for the issuing task.

FORMAT: - -- ̂

[label] $ENTRP [location of trap number]

ARGUMENT: x. - * . - .^-,- : „:
- ' *» "31 s v

location of trap number

Any address form valid for a data register; provides the
trap number of the trap to be enabled. The trap number
is a decimal value from 0 through 63, or a value of -1.
A -1 value designates that all user traps are to be
enabled.

DESCRIPTION:

This macro call causes a specific hardware trap vector, whose
number is derived from argument 1, to be enabled. All sub-
sequent occurrences of the specified trap cause control to be
transferred to a previously established trap handling routine
for the task (see the Trap Handler Connect macro call).

When the task group's general trap handling routine is
entered, $R3 contains the trap number assigned to the event
that caused the entry to the routine. $B3 contains the loca-
tion of the trap save area. The j-mode bit in the
I-register has been set off. All other registers are
unchanged. An return from trap (RTT) instruction is executed
to return from the task's trap handler. (See Appendix A,
Volume I for more information about trap handling.)

NOTES

1. The system places in $R2 the trap number of the
trap to be enabled, supplied by argument 1. If
this argument is omitted, the system assumes that
$R2 contains the binary number of the trap to be
enabled.

2-137 CZ06-00

2. On return, $R1 and $R2 contain the folowing ~̂
information: ^̂ /'

'—*N$R1 - Return status; one of the following: - j

0000 - No error

0341 - Trap handler entry not connected

0342 - Invalid trap number (requested trap
not a user class trap)

$R2 - Trap number supplied in macro call.

3. This macro call is required in order to enable a
software simulated trap in a task that the user
interrupts with the break key function, and for
which a PI or UW break response is entered.

Example:

See the example given for the Trap Handler Connect ($TRPHD)
macro call.

2-138 CZ06-00

ENTRY POINT IDENTIFICATION

ENTRY POINT IDENTIFICATION (SENTID) ^ * ̂ , - ,-

' *' -i - . ''"'.',"
Function Code: 14/07 ' -^ *." •* - ,

' ^ •- '
Equivalent Command: None ' < --

\." . - - ̂ , * r
Return the address or value corresponding to a symbolic name

that is defined in the bound unit currently executed by the
issuing task or in a bound unit permanently resident in memory.
The name must have been declared at link time by an EDEF
statement.

FORMAT: - + . . - . .

[label] $ENTID [location of symbolic name field address],
[location of id type],
[location of bound unit index id]

ARGUMENT:

location of symbolic name field address

Any address form valid for a data register; provides the
address of an aligned character string that contains the
symbolic name. " - * •

location of id type

Any address form valid for a data register; specifies
whether the information to be retured is an entry point
address or an overlay number. Possible values for the
argument are 'A1 (signifying "address") or 'V1 (signifying
"value") .

location of bound unit index id c

Any address form valid for a data register; provides the
index id (0-7) of the bound unit currently executed by the
issuing task; required only if the issuing task has
previously executed a Bound Unit, Attach ($BUAT) or Bound
Unit, Load ($BULD) macro call. These two calls return in
$R6 the index id of the attached bound unit. The index id
of the initial bound unit is 0.

2-139 CZ06-00

DESCRIPTION:

The call returns to the issuing task, in $B2, the entry point
address or, in $R2, the overlay id corresponding to the
symbolic name specified in the macro call.

Argument 3 is applicable if the issuing task is a multi-bound
unit task (i.e., has previously executed a Bound Unit Attach
($BUAT) or Bound Unit, Load ($BULD) macro call). Even if the
issuing task has detached (by means of the Bound Unit, Detach
macro call) all tasks previously attached, the issuing task
is still considered to be a multi-bound unit task, and a
value must be specified for this argument. Index id numbers
1-7 refer to attached bound units; the index id number of the
initial bound unit is 0. If not applicable, this argument is
bypassed.

If argument 3 is applicable, $ENTID resolves the specified
symbolic name by searching, in the order given, any attached,
currently executing bound unit; the primary bound unit; and ~~\
bound units made permanently resident in memory by a CLM LBDU ^^
statement. If argument 3 is not applicable, the currently
executing bound unit and then memory resident bound units are
searched. ,

NOTES
1. The system places in $B4 the address of the

symbolic name field supplied by argument
1. When this argument is ommitted, the
system assumes that $B4 contains the ")
field's address. -

2. If 'A1 (address) is specified in argument
2, $R6 is loaded with 0. If 'V (value) is
specified in argument 2, $R6 is loaded with
-1. If argument 2 is omitted, the system
assumes that $R6 contains the id type.

3. The bound unit index id supplied by
argument 3 is placed in $R7. If argument 3)
is omitted, the system assumes that $R7 "̂̂
contains the bound unit index id.

2-140 CZ06-00

4. On return, $R1, $R2, and $B2 contain the /v ;
following: n'

$R1 - Return status, one of:

0000 - No error

080C - Symbolic name not found;
unresolved symbolic start C!
address

0817 - Memory access violation

c $R2 - Value definition (if $R6 =-1 on
input) «*~. c:j

$B2 - Entry point address corresponding to _„.,,_
the specified symbolic name (if $R6=0 u""'"lj"'
on input)t : :î .— -, -, -

~ . -*. , I ••,* -v v ^ , • , - \ * i,«i _4.

• .• T- ' / * "• '' i . ',.-: - * "'* JC. '

Example:

The issuing task obtains the entry point address
corresponding to the symbolic name ENTRY1, The address is
returned to $B2, not stored in memory.

- v , : , $ENTID
*. . ; V"- • •• j '••'<:~,

•

ENTNAM TEXT 'ENTRYl'

2-141 CZ06-00

ERROR LOGGING, END

ERROR LOGGING, END (SELEND)

Function Code: 02/09

Equivalent Command: STOP_ELOG

Terminate the error logging function for the named device and
place current logging information from the system's logging table
into the user's logging table.

FORMAT:

[label] $ELEND [location of device-name],
[address of user's error logging table]

ARGUMENT:

location of device-name - ,

Any address form valid for an address register; provides
the address of the device-name for the peripheral
(noncommuncations) device for which the logging function
is to be terminated.

address of user's logging table

Any address form valid for an address register; provides
the address of error logging table previously generated
and initialized by the user. (See Table 2-3 in the
discussion of the Error Logging, Start macro call.)

DESCRIPTION:

This call terminates the error logging function previously
activated for this device. The system transfers logging
information values from the system's logging table into the
user's logging table. The information transferred is shown
in Table 2-3, under the description of Error Logging Start
($ELST).

The device name specified by argument 1 must have been
previously specified with the Error Logging, Start macro call
that activated error logging for that device.

j
2-142 C206-00

NOTES I - >

1. When argument 1 is specified, the system places
the location of the device-name in $B2. If this
argument is omitted, the system assumes that $B2
contains a pointer to the device-name.

2. When argument 2 is specified, the system places
the address of the user's logging table in $B4.
When this argument is omitted, the system assumes
that $B4 contains a pointer to that table.

3. On return, $R1 contains one of the following
status codesi

- \ - •* ^
0000 - Error logging terminated successfully

3B01 - Invalid argument (1 or 2)
T-\Mn

3B02 - Named device is nonexistent

3B05 - Logging function for this device is not
active

3B08 - Invalid function code

3BOA - Device-name refers to a communications
device. Macro call cannot be executed.

r
c t.

\ "^ '"

f- 3 «

^ i a i

1 ' r fc *̂

2-143 CZ06-00

ERROR LOGGING INFORMATION,
EXCHANGE

ERROR LOGGING INFORMATION, EXCHANGE (SELEX1

Function Code: 02/07

Equivalent Command: None

Verify, then save the values in the user's error logging
table; transfer current logging values from system's error
logging table to user's error logging table; move the saved
user-supplied error logging values into the system's logging
table.

FORMAT:

[label] $ELEX [location of device-name],
[address of user's error logging table]

ARGUMENTS:

location of device-name

Any address form valid for an address register; provides
the address of the device-name (previously coded in the
Error Logging Start macro call for this device) for the
device whose error logging values are to be exchanged. j

address of user's logging table

Any address form valid for an address register; provides
the address of the previously generated user's error
logging table. Table 2-3, found under the Error Logging,
Start macro call, defines the error logging table, the
first part of which the user must build and initialize
before issuing any Error Logging macro call. x

DESCRIPTION:

Like Error Logging Information Get, this macro call transfers
information from the system's error logging table to the
user's, about (1) the current status of the system's logging
table up to the time of the macro call, and about (2) the
last error that occurred. (See Table 2-3).

In addition, this macro call transfers to the system's error
logging table new values for the first six items (words seven
through twelve) of the user's error logging table. New
values are those entered by the user since the last execution
of Error Logging, Start for tne named device.

2-144 CZ06-00

During execution of this macro call, the system (1) checks
the new values of the user's error logging table for errors,
and if they are correct, saves those values; (2) executes an
Error Logging Information, Get macro call to move current
values from the system's logging table to the user's logging
table; and (3) moves and stores in the system's logging table
the new logging values verified and saved from the user's
logging table, thus replacing the previous values in the
system's logging table. History counters in the system's
logging table are reset to zero.

The device name specified by argument 1 must have been
previously specified with the Error Logging, Start macro call
that activated error logging for that device.

NOTES

1. When argument 1 is specified, the system places
the location of the device name in $B2. If the
argument is omitted, the system assumes that $B2
contains a pointer to the device-name.

2. When argument 2 is specified, the system places
the address of the user's logging table in $B4.
When the argument is omitted, the system assumes
that $B4 contains a pointer to that table.

3. On return, $R1 contains one of the following
status codes:

0000 - Error logging information successfully
exchanged

3B01 - Invalid argument (1 or 2) _^ A

3B02 - Named device is nonexistent

3B03 - Invalid value specified for minimum
number of I/O orders „ ,

3B05 - Logging function for this device is not
active

v

• 3B06 - Invalid value specified for threshold
. i

3B07 - Invalid initial value for I/O order J '
counter or device error counter

3B08 - Invalid function code

3BOA

V «» '

Device name refers to communications
device; macro call cannot be executed.

2-145 CZ06-00

ERROR LOGGING INFORMATION,
GET

JgRRQR LOGGING INFORMATION, GET (SELGT)

Function Code: 02/08 }

Equivalent Command: None
>

Retrieve current logging information values for the named
device from the system's error logging table; place them in the
user's error logging table.

FORMAT:

[label] $ELGT [location of device-name],
[address of user's error logging table]

ARGUMENTS:

location of device-name

Any address form valid for an address register; provides
the address of the device-name (previously coded in an
Error Logging, Start macro call for this device) for the
device whose error logging error information is to be
transferred. r

address of user's logging table -̂

Any address form valid for an address register; provides
the address of the previously generated user's error
logging table (see Table 2-3 in the discussion of the
Error Logging, Start macro call).

DESCRIPTION:
\

This macro call transfers current error logging information J
values for the named device from the system's error logging
table to the user's error logging table. Error logging must
have been previously activated for the device. Only those
items in the system's logging table that have corresponding
entries in the user's logging table are transferred.

The device name specified by argument 1 must have been
previously specified with the Error Logging, Start macro call
that activated error logging for that device.

2-146 CZ06-00

NOTES , ..*/;*,* K^ . •
lc When argument 1 is specified, the system places

the location of the device-name in $B2. If the
argument is omitted, the system assumes that $B2
contains a pointer to the device-name.

2. When argument 2 is specified, the system places
the address of the user's logging table in $B4.
When the argument is omitted, the system assumes
that $B4 contains a pointer to that table.

3. On return, $R1 contains one of the following :^
status codes: ,

0000 - Error logging values successfully
transferred

3B01 - Invalid argument (1 or 2)
T » -

* - \J ".

3B02 - Named device is nonexistent

3B05 - Logging function for this device is not
active

3B08 - Invalid function code

3BOA - Device-name refers to a communications
device; macro call cannot be executed.

"i".

2-147 CZ06-00

ERROR LOGGING, START

ERROR LOGGING, START (SELST)

Function Code: 02/05

Equivalent Command: START_ELOG

Activate error logging for the named device.

FORMAT:

[label] $ELST [location of device-name],
[address of user's error logging table]

ARGUMENTS:

location of device-name

Any address form valid for an address register; provides
the address of the device-name (designated at system
building) for the peripheral (noncommunications) device
to be monitored. Device name can have up to 12 ASCII
characters.

address of user's logging table

Any address form valid for an address register; provides
the address of the user's error logging table, which must
have been previously generated.

DESCRIPTION:

This macro call starts error logging for the named device and
maintains error logging information in memory. The call (1)
allocates a block of system memory for the system's logging
table and (2) checks parameters in words 7 through 12 of the
user's logging table and stores the values in the system's
logging table in memory.

Before this macro call is issued, the user must build and
initialize a user logging table, either hand coding it or
generating it by means of the Error Logging Table ($ELOG)
macro call. In this table, the user supplies values for
threshold ratio, minimum orders, initial orders, and initial
errors. To contain these values, the table must be 14 words
long, which is the minimum length required by Error Logging,
Start. If, however, the table is to recieve error logging
data (returned from the system erorr logging table by
subsequent macro calls), the table must be 59 words long.
The format of the user error logging table is shown in Table
2-3.

2-148 CZ06-00

After execution of this call, system increments the I/O
counter whenver an I/O order is issued. When there is a
device error, the system increments the device error
counter. When the specified number of I/O orders is pro-
cessed, the system checks the error threshold ratio. If the
value is exceeded, the system sends a message to the operator
and resets the system's error logging table for this device.

The logging table is reset under any of the following
conditions:

t,
• Designated error threshold ratio exceeded.

• Either the I/O order counter or device error counter
overflowed.

• Error Logging Information, Exchange macro call is
executed.

When either of the first two occurs, the current value of the
I/O order and device error counters are added to the history
values in the system's error logging table. (These history
values may be later delivered to corresponding history areas
in the user's logging table (see Table 2-3)}. If there is
overflow in the addition, these counters are reset to zero,
but the error threshold and I/O order minimum values are
retained. When Error Logging Information, Exchange executed
occurs, the items in the system's logging table are
reinitialized from the new values supplied in the user's
logging table.

Once initiated by the user, the error logging routine is
called by the system for (1) incorrectable hardware errors,
(2) correctable hardware errors, (3) unsuccessful I/O
operations, and (4) I/O operations that were successful only
after retries. For tape and all disk devices, retries may be
software-initiated. For the mass storage unit only, retries
may be hardware-initiated. The right byte of the I/O status
word (words 46 and 54 of the table) contains the number of
software retries for a successful I/O operation or the number
eight, indicating an unsuccessful I/O operation after the
maximum of eight retries. For some devices, the left byte of
the I/O status word contains the number of hardware retries
that preceded a successful I/O operation.

NOTES

1. When argument 1 is specified, the system places
the location of the device-name in $B2. If the
argument is omitted, the system assumes that $B2
contains a pointer to the device-name.

2-149 ' CZ06-00

2. When argument 2 is specified, the system places
the address of the user's logging table in $B4.
When the argument is omitted, the system assumes
that $B4 contains a pointer to that table.

3. The device-name must be that of a noncommunica-
tions peripheral device (which cannot be con-
nected to an MLCP).

4. On return, $R1 contains one of the following
status codes:

0000 - Error logging activated successfully

3B01 - Invalid argument 1 or 2

3B02 - Named device is nonexistent

3B03 - Invalid value specified for minimum
number of I/O orders

3B06 - Invalid value specified for threshold

3B07 - Invalid initial value for I/O order
counter or device error counter

3B08 - Invalid function code

3B09 - Insufficient system memory for logging
table

3BOA - Device-name refers to communications
device; logging cannot be activated.

5. The user can move the latest error logging infor-
mation values from the system's logging table to
the user's logging table with one of the follow-
ing macro calls: Error Logging Information, Get;
Error Logging Information, Exchange; or Error
Logging, End macro call.

j>

2-150 CZ06-00

Table 2-3. User Error Logging Table

ERROR LOGGING TABLE VALUES

User-Specified in $ELST and $ELEX Macro Calls

Word(s) Value (Signed Binary) Function

0-6

7, 8

9, 10

11

12

13

14

Reserved for system

2-word integer 2, 0; normally
initialized; to 0

2-word integer 2. 0; normally
initialized to 0

1-word integer 2. 0; normally
initialized to 0

1-word integer ̂ 0; normally
initialized to 0

1-word integer, from 0
through 1000, represented as
a fraction in thousandths;
i.e., DC 500 means .500

1-word integer ̂ 0

N/A

Counter for number of
incorrectable I/O order
errors

Counter for number of * *
correctable I/O order
errors

Counter for number of
incorrectable device read
errors

Counter for number of
correctable device read
errors - ^

Error threshold ratio;
ratio of DC 10 (i.e., 1%
suggested for magnetic
tape)

Minimum number of I/O
orders processed before
this threshold is checked

Values Returned by $ELGT, $ELEX, $ELEND Macro Calls

1-6

7, 8

9, 10

Two characters: a D followed
by a blank

12 characters

2-word integer

2-word integer

D signifies that this
refers to a device (as
contrasted with a volume)

Device name

Number of incorrectable
I/O order errors

Number of correctable
I/O order errors

2-151 CZ06-00

Table 2-3 (cont). User Error Logging Table

ERROR LOGGING TABLE VALUES

Values Returned by $ELGTf $ELEXf $ELEND Macro Calls (cont)

Word(s) Value (Signed Binary) Function

11

12

13

14

15

16

17

1-word integer

1-word integer

1-word integer

1-word integer

Not used

1-word integer, either 0 or
1; index to words 43-50 and
51-58

Overflow indicator, ASCII
0 or 1

Left byte:

Right byte:

Number of incorrectable
device read errors

Number of correctable
device read errors

Error threshold ratio

Number of I/O orders pro-
cessed before threshold
ratio is checked

N/A

Indicator to information
about the two most recent
errors, which is shown
below in words 43-50 and
words 51-58

0 = Most recent informa-
tion is in words
43-50

1 = Most recent informa-
tion is in words
51-58

0 = No overflow

1 = Overflow, exceeds
counter capacity of
words 7, 8 (number of
I/O orders)

0 = No overflow

1 = Overflow, exceeds
counter capacity of
word 9 (read/writs
errors)

2-152 CZ06-00

Table 2-3 (cont). User Error Logging Table

ERROR LOGGING TABLE VALUES

Values Returned by $ELGT, $ELEXf $ELEND Macro Calls (cont)

Word(s) Value (Signed Binary) Function

18-20

21

22, 23

24

25

26-28

29-34

35-40

41

42

3-word integer

1-word integer

2-word integer; history
counter value of number of
I/O orders

History counter value of
number of errors

History counter value of
error threshold ratio

3-word integer; history
counter value of data/time

Six words

Six words

1-word integer

1-word integer

Internal date/time (in
milliseconds) of error
logging startup for this
device

Number of minutes since
error logging started for
this device «

Number of I/O orders
issued up to time of last
counter reset; if over-
flow indicator (word 17)
was set, this value not
meaningful

Shows number of errors up
to time of last reset of
the counter; if overflow
indicator (word 17) was
set, this number not
meaningful

Error threshold ratio
when counter was last
reset

>
Internal date/time when
history counters were
last reset

Device name

Volume name, if volume
mounted

LRN for this device

Device type

2-153 CZ06-00

Table 2-3 (cont). User Error Logging Table

ERROR LOGGING TABLE VALUES

Values Returned by $ELGT, $ELEX, $ELEND Macro Calls (cont)

Word(s) Value (Signed Binary) Function

The next 16 words constitute an array containing two 8-word
entries (words 43-50 and 51-58), each with similar information
about the two most recent errors. See word 16.

41-45

46

47-49

3-word integer

One word

Device-specific words

Internal date/time
(milliseconds) of the
error

I/O status word

Word Meaning

For disk devices;

47 Status word 2 (for
storage module unit
only); bits 13-17
indicate which pro-
blem type corrected
by r e t ry

48 Cylinder number

49 Sector and track
number

50 Range or number of
sof tware__initiated
retries

For magnetic tape;

47 Status word 2

48 Configuration word
A

49 Task word (opera-
tion code)

50 Range or number of
software_initiated
retries

i

2-154 CZ06-00

Table 2-3 (cont). User Error Logging Table

ERROR LOGGING TABLE VALUES

Values Returned by $ELGT, $ELEX, $ELEND Macro Calls (cont

Word(s) Value (Signed Binary) Function

47-50
(cont)

Device-specific words
(cont)

Word Meaning

For printer:

47 Not used

48 Task word (configu-
ration word A)

49 Not used

50 Range or number of
x software_initiated

retries

For card reader:

47 Not used ~~~ "~"~

48 Not used

Not used49

50 Range or number of
software-initiated
retries

For terminal
(noncommunications);

47 Configuration word
A

48 Configuration word
B

49 Not used

50 Range or nurnoer of
software-initiated
retries

2-155 CZ06-00

Table 2-3 (cont). User Error Logging Table

ERROR LOGGING TABLE VALUES

Values Returned by $ELGTf $ELEX, $ELEND Macro Calls (cont)

Word(s) Value (Signed Binary) Function

51-58 Same as for words 43
through 50 above:

Words 51-53 same as 43-55

Word 54 same as word 46

Word 55 same as word 47

Word 56 same as word 48

Word 57 same as word 49

Word 58 same as word 50

\

2-156 CZ06-00

ERROR LOGGING TABLE

ERROR LOGGING TABLE (SELOG)

_ . ,̂ T ,, *"k ~*& , ̂ ' .. IVFunction Code: None

Equivalent Command: None

Generate and initialize a 59-word error logging table

FORMAT: , 1 f

[label] $ELOG [threshold], [min_orders], -~r,,
[init__orders] , [init_errors]

ARGUMENTS: - , ^
^ " *3 _ 9 j !

threshold

Specifies the error threshold (0 1 threshold 1 100). The
integer represents a decimal fraction in thousandths.
When error/orders exceed this fraction, a message is sent
to the operator, and the in-memory logging table is
reset. The default is zero.

i.

min_orders .-•*.,, -, ,r --

Specifies the minimum number of I/O orders before thresh-
old checking begins. The entry must be 20; default is
zero.

init_orders -. , ̂

Counter for orders, which is normally initialized to
zero. The entry must be 20; default is zero.

init_errors

Counter for errors, which is normally initialized to
zero. The entry must be 20; default is zero.

DESCRIPTION: " . / I

This macro call generates in line a 59-word error-logging
table (see Table 2-3). The call initializes the first 14
words of the table with values supplied by the arguments.
The error logging macro calls $ELGT, $ELEX, and $ELEND return
error logging data to words 15 through 58 of the table
generated by this call.

2-157 CZ06-00

ERROR OUT

ERROR OUT (SEROUT)

Function Code: 08/03

Equivalent Command: None

Write the next record to the error-out file for the task
group of the issuing task.

FORMAT:

[label] $EROUT [location of record area address],
[location of record size] ,
[byte offset from beginning of record area]

ARGUMENTS:

location of record area address

Any address form valid for an address register; provides
the address of a record area containing the record to be
written to the error-out file. The first byte of the
record must be a slew byte (print file form control byte/-
see "Printer Driver" in Section 6, Volume I.) The record
text begins in the second byte.)

location of record size

Any address form valid for a data register; provides the
size (in bytes) of the record whose address is given in
argument 1. The output size value must include the slew
byte.

byte offset from beginning of record area

Any address form valid for a data register; provides the
byte offset of the beginning of the record area (from the
address provided in argument 1). If argument 3 is L, the
record begins in the left byte of the address specified
in argument 1; if argument 3 is R, the record area begins
in the right byte of this address. Any other value for
argument 3 is taken to be the location of the byte
offset. If argument 3 is omitted, the record area is
assumed to begin at the left byte of the address speci-
fied in argument 1.

2-158 CZ06-00

DESCRIPTION:

This macro call allows a task to write the next record (an
error message record) to the current error-out file. The
error-out file is the same as the initial user-out file
defined in the Request Group macro call, and cannot be
changed during execution of the request.

NOTES

1. The system places in $B4 the address of the
record to be written, supplied by argument 1.
If this argument is omitted, the system assumes
that $B4 contains the address of the output
record.

2. The system places in $R6 the output record size,
supplied by argument 2. If this argument is
omitted, the system assumes that $R6 contains the
size of the record.

3. If argument 3 is L, $R7 is set to zero to desig-
nate that the record area begins in the left byte
of the specified address. If argument 3 is R, $R7
is set to one to designate that the record area
begins in the right byte of the specified address.
Any other value is assumed to be the location of
the byte offset to be used, and is placed in $R7.
If argument 3 is omitted, the record area is assumed
to begin in the left byte of the specified address,
and $R7 is set to zero.

4. On return, $R1, $R6, and $B4 contain the following
information:

$R1 - Return status; one of the following:

0000 - No error

0817 - Memory access violation

All data management write-next-record
error codes may also be returned. See
the System Messages manual.

$R6 - Residual range (number of bytes not
transferred from record area).

$B4 - Address of record area containing output
record.

2-159 CZ06-00

Example:

In this example, the issuing task is to write an error mes-
sage record on the error-out file. The record length is 12
bytes (including the slew byte). The output record is
located at the record area address RECAD. The record area
begins at the leftmost byte of the indicated address.

o
OUTRB $EROUT !RECAD,=12

RECAD TEXT 'AFIELD ERROR1

2-160 CZ06-00

EXPAND PATHNAME

EXPAND PATHNAME (SXPATH) ., '• ^ • " " • - - - i
•t ^ j. _,. »

Function Code: 10/DO 4

Equivalent Commands None

Develop a full pathname from a relative pathname.

FORMAT: ^
-4

[label] $XPATH [argument structure address]

ARGUMENT: . t .

argument structure address

Any address form valid for an address register; provides
the location of an argument structure that must contain
the following entries in the order shown.

input pathname pointer i

A 4-byte address that may be any address form valid
for an address register; points to a relative path-
name (which must end with an ASCII space character)
to be expanded.

output pathname pointer . , _ _ r ~ -

A 4-byte address that may be any address form valid
for an address register; identifies a 58-byte field
into which the absolute (i.e., expanded) pathname is
placed by the system.

pathname base ^

A 2-byte binary value that specifies the basis for
expanding the relative path, as follows:

0000 - Working directory
0001 - System library-1 ^
0002 - System library-2

2-161 CZ06-00

DESCRIPTION:

This macro call will expand any relative pathname, regardless
of the format in which it is supplied, into an absolute path- j
name. It is possible that the resulting pathname will point ' -J
to a nonexistent file. The expanded pathname cannot exceed
58 characters.

NOTES

1. If the argument is coded, the system loads the
address of the argument structure into $B4. If
the argument is omitted, the system assumes that
$B4 contains the address of the argument structure.

2. On return, $R1 contains one of the following
status codes:

0000 - Successful completion

0201 - Invalid pathname - - -*—*£'

0202 - Pathname not specified

0205 - Invalid argument

0222 - Pathname cannot be expanded; no working
directory.

Example: ;" •)
•*•***

In this example, the pathname of the working directory is
~VOL6>SUB1>SUB2>SUB3>SUB4. A fully expanded absolute path-
name is to be developed from the relative pathname «ADF. In
the macro call, the relative pathname («ADF) and the basis
(working directory) for developing the absolute pathname must
be defined, as well as an area into which the system can
place the fully expanded absolute pathname. The main memory
area is defined as follows: '; i

X_NAME RESV 29

The argument structure is built as follows:

XPND_1 DC <RELPTH
RESV 2-$AF,0
DC <X_NAME
RESV 2-$AF,0
DC 0

2-162 CZ06-00

The relative pathname is defined as follows:

RELPTH DC ' «ADF '

The fully expanded pathname ~VOL6>SUB1>SUB2>ADF is developed
as a result of the following macro call.

$XPATH IXPND_1

- jQ

2-163 CZ06-00

EXTERNAL DATE/TIME,
CONVERT TO

EXTERNAL DATE/TIME, CONVERT TO (SEXTDT)

Function Code: 05/04

Equivalent Command: Time (TIME)

Convert an internal format date/time value to an external
format date/time value.

FORMAT:

[label] $EXTDT [location of address of internal date/time],
[location of address of receiving field],
[location of size of receiving field]

ARGUMENTS:

location of address of internal date/time

Any address form valid for an address register; provides
the address of the 3-word field containing the internal
date/time value to be converted. This value must be in
the format returned by the Get Date/Time macro call.

N~

location of address of receiving field]

Any address form valid for an address register; provides
the address of a field in the issuing task that is to
receive the external format date/time value.

location of size of receiving field

Any address form valid for a data register; provides the
size of the receiving field identified by argument 2.
The field size must be less than or equal to 22 bytes. ^s;
If this argument is omitted, the size is set to 22 bytes
(the date/time value is resolved to a thousandth of a
second).

DESCRIPTION:

This macro call converts an internal date/time value (in the1

format supplied by the Get Date/Time macro call) to an
external date/time format. The date/time value appears in
the receiving field as a character string having the format:

2-164 CZ06-00

"TN Word Contents

0
1
2
3
4
5
6
7
8
9
10

yy
yy
/m
m/
dd
h

hm
m:
ss
.t
tt

(two
(two
(two
(two
(two
(two
(two
(two
(two
(two
(two

ASCII
ASCII
ASCII
ASCII
ASCII
ASCII
ASCII
ASCII
ASCII
ASCII
ASCII

yyyy
mm
dd
hh

year
month
day
hour

mm
ss
ttt

numeric characters)
numeric characters)
characters)
characters)
numeric characters)
characters)
numeric characters)
characters)
numeric characters)
characters)
numeric characters)

- minute
- seconds
- tenths, hundredths,

thousandths of seconds

The size of the receiving field cannot terminate with a punc-
tuation character (/, :, or .), Therefore, argument 3 cannot
specify a size of 5, 8, 16, or 19 bytes.

NOTES

1. The system loads the internal date/time value,
whose address was supplied by argument 1, into
$R2, $R6, and $R7. If argument 1 is omitted or
is = $R7, the system assumes that $R2, $R6, and
$R7 contain the value to be converted.

2. The system places in $B4 the address of the
receiving field supplied by argument 2. If
this argument is omitted, the system assumes
that $B4 contains the correct address.

3. The system places in $R5 the size of the receiving
field supplied by argument 3 in $R5, If this argu-
ment is given as =$R5, the system assumes that $R5
contains the correct size. If this argument is
omitted, $R5 is set to 22 bytes (thousandth of a
second resolution).

2-165 CZ06-00

4. On return, $R1, $R2, $R6, $R7, and $B4 contain the
following information:

$R1 - Return status; one of the following: '~\

0000 - No error

0402 - Invalid (negative) receiving field
length

040A - Improper access to external date/
time field

0817 - Memory access violation

$R2, $R6, $R7 - Internal date/time value supplied

$B4 - Address of receiving field.

Example:

See the example given for the Get Date/Time macro call.

2-166 CZ06-00

EXTERNAL TIME, CONVERT TO

EXTERNAL TIME, CONVERT TO (SEXTIM)

Function Code? 05/05 - \

Equivalent Command: None

Convert an internal format date/time value to an external
format time value.

FORMAT:

[label] $EXTIM [location of address of internal date/time],
[location of address of receiving field],
[location of length of receiving field]

ARGUMENTS:
\

location of address of internal date/time

Any address form valid for a data register; provides the
address of a 3-word field containing the internal
date/time value to be converted. This value must be in
the format returned by the Get Date/Time macro call.

location of address of receiving field

Any address form valid for an address register; provides
the address of a field in the issuing task that is to
receive the external format time value.

location of length of receiving field

Any address form valid for a data register; provides the
size of the receiving field identified by argument 2.
The field size must be less than or equal to 11 bytes.
If this argument is omitted, the size is set to 9 bytes
(the time is resolved to a tenth of a second).

DESCRIPTION:

This macro call converts an internal date/time value (in the
format supplied by the Get Date/Time macro call) to an
external time format. The time value appears in the
receiving field as a character string having the format
hhmm:ss.ttt (see below).

2-167 CZ06-00

Word Contents

0 hh (two ASCII numeric characters)
1 mm (two ASCII numeric characters)
2 is (two ASCII characters)
3 s. (two ASCII characters)
4 tt (two ASCII numeric characters)
5 t (two ASCII characters)

hh - hours ss - seconds
mm - minutes ttt - tenths, hundredths,

thousandths of seconds

The size of the receiving field cannot terminate with a punc
tuation character (: or .). Therefore, the third argument
cannot specify a size of 5 or 8 bytes.

NOTES

1. The system loads the internal date/time value,
whose address is supplied by argument 1, into
$R2, $R6, and $R7. If argument 1 is omitted or
is =?$R7, the'system assumes that $R2, $R6, and
$R7 contain the internal value to be converted.

2. The system places in $B4 the address of the
receiving field supplied by argument 2. If this
argument is omitted, the system assumes that $B4
contains the correct address.

3. The system places in $R5 the size of the receiv-
ing field supplied by argument 3. If argument 3
is =$R5, the system assumes that $R5 contains the
correct size. If this argument is omitted, $R5
is set to 9 bytes (tenth of a second resolution).

4. On return, $R1, $R2, $R6, $R7, and $B4 contain the
following information:

$R1 - Return status; one of the following:

0000 - No error

0402 - Invalid (negative) receiving field
length

2-168 CZ06-00

040A - Invalid access to external date/
time field

0817 - Memory access violation

$R2, $R6, $R7 - Internal date/time value supplied

$B4 - Address of receiving field.

Example:

In this example, the Get Date/Time macro call is used to get
the current date/timer in internal format (leaving it in $R2,
$R6, and $R7). The External Time, Convert To ($EXTIM) macro
call is then used to format this internal date/time value
into a displayable format with a resolution to milliseconds.
A message containing the external format date/time is then
written on the user-out file.

*
* GET THE CURRENT DATE/TIME.
*

$GDTM
*
* FORMAT IT FOR DISPLAY.
*

$EXTIM , IP1_JTIM,=11
if

* OUTPUT THE MESSAGE.
*

$USOUT 1P1_MSG,=P1_MLN

P1_MSG TEXT 'APHASE 1 FINISHED ATA'
P1_TIM TEXT !HHMM:SS.TTT'
P1_MLN EQU 2*($-Pl_MSG)

2-169 CZ06-00

FILE INFORMATION BLOCK

FILE INFORMATION BLOCK (SFIB)

Function Code: None

Equivalent Command: None

Depending on the arguments supplied in the call, perform one
of the following: t

• Build a 16-word file information block (FIB) containing
default values for the words.

• Alter the contents of an existing FIB.

• Call and expand the File Information Block Offsets macro j
call ($TFIB) to provide labels for the FIB entries. ^̂

FORMAT:

[label] $FIB [argument]

ARGUMENTS:

There are three types of arguments for this macro call:

• Keyword only
• Keyword with expression
• Keyword with option.

The keyword RESV generates a data structure. The File Infor-
mation Block macro call without the keyword RESV generates
executable code to modify an existing data structure.

When the macro call is coded with only the keyword RESV, a
16-word FIB containing default values is built. The entries ^
have the following values:

DC 0
DC B1Oil0010010000000'
DC 0,0
DC 80
DC 80
DC 0
DC Z'FFFF'
DC 0
DC 0,0
DC Z'0104f

DC 0,0
DC 0,0

2-170 CZ06-00

The default values generated for this FIB allow access to a
file for reading and writing, and access to a record by both
primary and relative keys. The default input and output
record lengths are 80 characters; the default key format for
input records is primary; key length is 4 bytes.

When the keyword RESV is used with other arguments, it pre-
serves all entries in the generated FIB that are not specifi-
cally changed by the other arguments.

The keywords listed in Table 2-4 apply to the words of the
file information block. These keywords can be coded in any
order. If a new FIB is to be built and a keyword is omitted,
the default value (described above) for that word is used.
If an existing FIB is to be modified and a keyword is
omitted, the existing value for that word is used. The table
below shows the keywords and possible expression va-lues, but
does not necessarily correspond to the FIB physical
structure. For more information, see System Programmer's
Guide, Vol.1. Tables 3-1 and 3-3.

Table 2-4. FIB Keywords

Keyword Expression

RESV

ADR=

URP=

IRL=

ORL=

ORT=

Build a new FIB (as opposed to altering an existing
FIB) .

Address of a FIB to be modified. Not used when building
new FIBs (i.e., when RESV is specified).

A value from 0 through 255, specifying the logical file
number with which the file is referenced; or -1.

For Data Management (Record Level) Access

Address of start of user record area

Maximum size of input record.

Actual size of output record.

Input record type; currently, must be Z'FFFF1.

Output record type; currently MBZ. i
t ^^

Address of user key area.

2-171 CZ06-00

Table 2-4 (cont) . FIB Keywords

Keyword

IKF=

IKL=

UBP=

BFS =

BKS =

BKN=

Expression

For Data Management (Record Level) Access (cont)

Type of key: '

00 - None specified
01 - Primary, relative, or CALC (random)
02 - Simple

Value specifying the length of the user key area (IKP).
256 ASCII characters is the allowable maximum for
primary and CALC keys. (Simple and relative keys are
always assumed to be four bytes.) When used with the
RESV keyword, the specified value for IKL must be a
1-byte hexadecimal number (e.g., OA, 01, etc.).

For Storage Management (Block Level) Access

Address of start of user buffer area.

Value specifying size of data transfer buffer size.

Value specifying size of block. With BKN, this value
identifies the start address of the data transfer.

Value specifying the starting block number of the data
transfer; an integer, from 0 to 65,535, relative to the
beginning of the file.

J

The keywords listed below in Table 2-5 apply only to the
program view of the FIB. The option values can appear in any
order, and more than one option can be specified for a
keyword. The bits in the program view word that are not
explicitly assigned a value through a keyword retain their
previously set values. Those values identified as "default"
indicate initial settings when the keyword RESV is
specified. Table 2-5 shows keywords and possible values
first for data management (record level) access, followed by
those for storage management (block level) access. See
System Programmer's Guide, Vol.1, Tables 3-1 and 3-2 for more
information.

2-172 CZ06-00

Table 2-5 (cont). FIB Program View Keywords

Keyword Option Meaning

For Data Management (Record Level) Access (cont)

Set Record Attributes

SRA=

RRA=

SDT=

RDT=

FL

DV

FL

DV

BT

BT

OP

Only fixed-length records allowed.

Deleted records are visible.

Fixed- and variable-length records allowed
(default) .

Deleted records are not visible (default) .

Set Data Transfer Attributes

Data is transferred in binary transcription
mode.

Data is transferred in ASCII mode (default) .

File is open for data transfer at the record
level (default) .

Set Area Boundary

ODD=

EVN=

KY

RC

KY

RC

User key area begins at odd-byte boundary.

User record area begins at odd-byte boundary.

User key area begins at even-byte boundary
(default).

User record area begins at even-byte boundary
(default) .

For Storage Management (Block Level) Access

Set Function

SFN=

RFN=

RD

WR

RD

WR

Blocks can be read by $RDBLK macro call
(default) .

Blocks can be written by $WRBLK macro call
(default) .

Blocks cannot be read by $RDBLK macro call.

Blocks cannot be written by $WRBLK nacro call.

2-174 CZ06-00

Table 2-5 (cont). FIB Program View Keywords

Keyword Option Meaning

For Storage Management (Block Level) Access (cont

Set Data Transfer Attributes

SDT=

RDT=

BT

AS

OP

BT

AS

ODD=

EVN=

BF

BF

Data is transferred in binary transcription
mode.

$RDBLK and $WRBLK macro calls executed
asynchronously.

File is open for data transfer at the block
level; (must be specified).

Data is transferred in ASCII mode (default).

$RDBLK and $WRBLK macro calls executed
synchronously (default).

Set Area Boundary

User buffer area begins at odd-byte boundary.

User buffer area begins at even-byte boundary
(default).

DESCRIPTION:

A FIB must exist for a file if that file is to be operated
upon by one of the following macro calls:

Open File ($OPFIL)
Close File ($CLFIL)
Test File ($TIFIL, $TOFIL)
Read Record ($RDREC)
Write Record ($WRREC)
Rewrite Record ($RWREC)
Delete Record ($DLREC)
Read Block ($RDBLK)
Write Block ($WRBLK) - . ,
Wait Block ($WTBLK).

If an existing FIB is to be modified and the argument ADR= is
not entered, $B4 is assumed to point to the FIB to be
modified.

Registers R7 and B5 are altered when an existing FIB is
modified.

2-175 CZ06-00

Macro global variable GX is used to prevent duplicate expan- ,.
sion of the File Information Block Offsets macro call v,

 x—;

($TFIB).

When the File Information Block macro call is used to alter
an existing FIB, arguments that use an address follow the
convention in which addresses preceded by the ! character
cause an LAB instruction to be generated, and addresses not
preceded by the i character cause an LDB instruction to be
generated. When values for arguments coded as
keyword=expression (IRL=, ORL=, etc.) are supplied, the
address of the value is distinguished by a preceding
character. No special character is needed to indicate that
the string following the = character is a value. The second
example given below uses both values and addresses (IFL=128
and LFN= 1GETPRM).

The expressions specified with each argument must be in a
form suitable for the DC statement. IKF and IKL must specify
a 1-byte hexadecimal number.

Example 1:

In this example, the File Information Block Offsets ($TFIB)
macro call is expanded.

$FIB

Example 2: s

In this example, an existing FIB is modified. This example
assumes that $B4 has been loaded with the address of the FIB
to be modified.

$FIB URP=!REC1,RFN=WR,SRA=FL,ODD=RC,IRL=12 8,LRN=!GETPRM

Execution of the macro call generates the following set of
instructions:

* \
LAB $B5,REC1 * ' —̂ '
STB $B5 , $B4 . F__URP
LBF $B4.F_PROV,B'0010000000000000'
LBT $B4.F_PROV,B'0000000000100100I

LDR $R7,=128
STR $R7,$B4.F_IRL
LDR $R7,GETPRM
STR $R7,$B4.F_LFN

2-176 CZ06-00

Example 3: '

This example generates a FIB so that the file can be accessed
for reading, writing, rewriting, and deleting records by
either primary or relative keys. The rewrite and delete bits
(bits 3 and 4) of the program view word are altered from the
original values (provided by the RESV parameter) by means of
the SFN=RWDL argument.

EXTFIB $FIB LFN=3,IKF=01,RESV,SFN=RWDL,SKA=PR,IKP= <KEY

This macro call generates the following FIB:

EXTFIB DC 3
DC B'OlllllOOlOOOOOOO
DC 0,0
DC 80
DC 80
DC 0
DC Z'FFFF'
DC 0
DC <KEY
RESV 2-$AF
DC Z'0104'
DC 0,0
DC 0,0

Example 4:

In this example, a 16-word FIB
values for all words.

,s generated with default

EXTFIB $FIB RESV

The following FIB is generated:

EXTFIB DC 0
DC B'0110010010000000
DC 0,0
DC 80
DC 80
DC 0
DC Z'FFFF'
DC 0
DC 0,0
DC Z'01041

DC 0,0
DC 0,0

2-177 CZ06-00

FILE INFORMATION BLOCK
OFFSETS (DATA AND STORAGE
MANAGEMENT ACCESS)

FILE INFORMATION BLOCK OFFSETS (DATA AND STORAGE MANAGEMENT
ACCESS) (STFIB)

Associated Macro Calls:

Open File, Close File, Test File ($TIFIL), Test File
($TOFIL), Read Record, Write Record, Rewrite Record, Delete
Record, Read Block, Write Block, Wait Block 7

FORMAT:

[label] $TFIB [first letter of tags]

ARGUMENT:

first letter of tag

Allows the user to rename the tags to avoid conflicts
with other labels in the same program.

Structure for Data Management Access:

Word

0

1

2
3

4

5

6

Fields

Logical File Number (LFN)

Program View

User Record Pointer ,

Input Record Length

Output Record

Input Record
Status

Length

Output Record
Status

2-178 CZ06-00

Word

7

8

9
10

11

12
13

14
15

Fields

Input Record Type

Output Record Type

Input Key Pointer

Input Key Format Input Key Length

Output Record Address .

Reserved

NOTE

Reserved fields must be set to zeros to
ensure compatibility with later versions
of this structure.

Structure for Storage Management Access:

Word

0

1

2
3

4

5

6
7

8
9

10
11
12
13
14
15

Fields

Logical File Number (LFN)

Program View

User Buffer Pointer

Buffer (Transfer) Size

Block Size

Block Number

Reserved

2-179 CZ06-00

NOTE

Reserved fields must be set to
zeros to ensure compatibility
with later versions of this
structure.

Generated Offset Tags:

Corresponding
Offsets

Tag fin Words)

F_LFN 0
F_PROV +1
F_URP +2
F_IRL +4
F__ORL +5
F__IRS +6
F_ORS +6
F_IRT +7
F_ORT +8
F_IKP +9
F__IKF +11
F_IKL +11
F_ORA +12
F_ORA1 F_ORA(+12)
F_ORA2 F_ORA+1{+13)
F_UBP +2
F_BFSZ +4
F_BKSZ +5
F__BKNO +6
F_BKN1 F_BKNO(+6)
F_BKN2 F_BKNO+1(+7)
F_SZ 16

Entry Name

Logical file number (LFN)
Program view
User record pointer*
Input record length*
Output record length*
Input record status (first byte)*
Output record status (second byte)*
Input record type*
Output record type*
Input key pointer*
Input key format (first byte)*
Input key length (second byte)*
Output record address*
(left half of F_ORA)
(right half of F_ORA)
User buffer pointer**
Buffer size**
Block size**
Block number**
(left half of F_BKNO)
(right half of F__BKNO)
Size of structure (in words); not
a field in the block

*Specific to $RDRECf $WRRECf $RWREC, and $DLREC macro call.
**Specific to $RDBLK, and $WRBLK macro calls.

2-180 CZ06-00

In addition to the offsets tags listed above, the following
program view (F__PROV tag, above) masks are defined:

Tag

MF_OPS
MF_RDA
MF_WRA
MF_RWA
MF__DLA
MF__PKA
MF__CKA
MF_RKA
MF_SKA
MF_FRA
MF_DLV
MF_KOD
MF_ROD

MF_BOD

MF_BTM

MF_AIO

Mask

Z'80001

Z'4000'
Z'2000'
Z'10001

Z'08001

Z'04001

Z'02001

Z'0080'
Z'00401

Z'00201

Z'00101

Z'00081

Z'00041

Z'00041

Z'00021

Z'OOOl'

Meaning

Open for storage management
Read operations allowed
Write operations allowed
Rewrite operations allowed
Delete operations allowed
Access through primary key
Access through CALC key
Access through relative key
Access through simple key
Fixed-length records allowed
Deleted records visible to program
Key area starts an odd-byte boundary
Record area starts at odd-byte boundary
(data management specific)
Buffer area starts at odd-byte boundary
(storage management specific)
Data transferred in binary
transcription mode
Next block function is asynchronous
(storage management specific)

2-181 CZ06-00

FILE INFORMATION BLOCK
OFFSETS (DATA MANAGEMENT
ACCESS)

FILE INFORMATION BLOCK OFFSETS (DATA MANAGEMENT ACCESS (SFIBDM))

Associated Macro Calls: -

Open File, Close File, Test File (input), Test File
(output), Read Record, Write Record, Rewrite Record,
Delete Record

f
FORMAT: < <-

[label] $FIBDM [first letter of tags]

ARGUMENT:

first letter of tag

Allows the user to rename the tags to avoid conflicts
with other labels in the same program.

Structure:

Word

0

1

2
3

4

5

6

7

8

9
10

Fields

Logical File Number (LFN)

Program View

User Record Pointer

Input Record Length

Output Record length

Input Record Status Output Record Status

Input Record Type

Output Record Type

Input Key Pointer

2-182 CZ06-00

11
12
13

14
15

Input Key Format Input Key Length

Output Record Address

Reserved

NOTE

Reserved fields must be set to zeros to ensure
compatibility with later versions of this
structure.

Generated Offset Tags:

Tag

F_LFN
F_PROV
F_URP
F__IRL
F_ORL
F__IRS
F_ORS
F_IRT
F_ORT
F_IKP
F_IKF
F_IKL
F_ORA
F SZ

Corresponding
Offsets

(in Words)

+2
+4
-1*5
-1-6
*6
4-7
+8
+9
+11
+11
+1 2
16

Entry Name

Logical File Number (LFN)
Program view
User record pointer
Input record length
Output record length
Input record status
Output record status
Input record type
Output record type
Input key pointer
Input key format (first byte)
Input key length (second byte)
Output record address
Size of FIB (in words); not a

field in the FIB.

first byte)
(second byte)

In addition to the offsets listed above, the following define
the program view (F__PROV) masks:

Tag

MF_OPD
MF_RDA
MF_WRA
MF_RWA
MF_DLA
MF PKA
MF_CKA
MF_RKA
MF_SKA

Z
Z
Z
Z
Z
Z
Z
Z
2

'8000'
'4000'
'2000'
'10001

'0800 '
'0400'
'0200'
'0080'
'0040 '

Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 8
Bit 9

Meaning When Bit Set to 1

0 = Open for data management
Read functions allowed
Write functions allowed
Rewrite functions allowed
Delete functions allowed
Access by primary key
Access by CALC key
Access by relative key
Access by simple key

2-183 CZ06-00

Tag Mask

MF_FRA Z'00201 Bit 10
MF_DLV Z'00101 Bit 11
MF_KOD Z'00081 Bit 12

MF_ROD Z'00041 Bit 13

MF_BTM Z'00021 Bit 14

Examples:

Meaning When Bit Set to 1

Fixed-length records allowed
Deleted records are visible
Key area starts at an odd-byte
boundary
Record area starts at an odd-byte
boundary
Data is transferred in binary
transcription mode

$B4 contains the address of the FIB. The user record pointer
field can be accessed with:

$B4.F_URP

The program view bit, which indicates that the user record
area starts at an odd-byte boundary, can be set by the
instruction:

LET $B4.F__PROV,MF_ROD

The FIB can be initially set to zero by the instructions:

LDV $R1,F_SZ-1
$A CL $B4. $R1

BDEC $R1,>-$A

Rl— SIZE OF FIB MINUS 1
CLEAR ONE WORD
LOOP UNTIL ALL WORDS CLEARED

2-184 CZ06-00

FILE INFORMATION BLOCK
OFFSETS (STORAGE MANAGEMENT

ACCESS)

FILE INFORMATION BLOCK OFFSETS (STORAGE MANAGEMENT ACCESS)
(SFIBSM)

Associated Macro Calls:

Open File, Close Filer Read Block, Write Block, Wait Block

FORMAT:

[label] $FIBSM [first letter of tags]

ARGUMENT:

first letter of tag

Allows the user to rename the tags to avoid conflicts
with other labels in the same program.

Structure:

Word

0

1

2
3

4

5

6
7

8
9
10
11
12
13
14
15

Fields

Logical File Number (LFN)

Program View

User Buffer Pointer

Buffer (transfer) Size

Block Size

Block Number

Reserved
-

*

2-185 CZ06-00

NOTE

Reserved fields must be set to
zeros to ensure compatibility
with later versions of this
structure.

Generated Offset Tags:

Tag

F_LFN
F_PROV
F_UBP
F_BFSZ
F_BKSZ
F_BKNO
F_SZ

Corresponding
Offsets
(in Words)

+2
+4
+5
+6
16

Entry Name

Logical file number (LFN)
Program view
User buffer pointer
Buffer (transfer) size
Block size
Block number
Size of FIB (in words);

not a field in the FIB

In addition to the offsets listed above, the following define
the program view (F_PROV) masks:

Tag Mask

MF_OPS
MF_RDA
MF_WRA
MF_BOD

Z'8000'
Z'40001

Z'20001

Z'00041

Bit 0:
Bit 1:
Bit 2:
Bit 13

MF_BTM

MF_AIO

Example:

Z'00021 Bit 14

Z'OOOl1 Bit 15

Meaning When Bit Set to 1

Open for storage management
Read functions allowed
Write functions allowed
Buffer area starts at an odd
byte boundary
Data is transferred in binary
transcription mode
Next block function is
asynchronous

$B4 contains the address of the FIB; $R6 and $R7 contain the
address of the next block to be accessed. The block number
field F_BKNO is set by the instruction:

SDI $B4.F_BKNO

The program view bit, which indicates that the next call will
be asynchronous, is set by the instruction:

LBT $B4 . F_PROV, MF_AIO

2-186 CZ06-00

GET DATE/TIME

GET DATE/TIME (SGDTM)

Function Code: 05/06

Equivalent Command: None

Supply the requesting task with the current internal
date/time value maintained by the system.

FORMAT:
i

[label] $GDTM [location of address of receiving field]

ARGUMENT:

location of address of receiving field

Any address form valid for a data register; provides the
address of a 3-word field in the issuing task that is to
receive the current internal date/time value.

DESCRIPTION:

This macro call returns to the issuing task the current
3-word internal date/time value. The leftmost word contains
the most significant 16 bits; the rightmost word contains the
least significant 16 bits. The value supplied is a binary
count of the milliseconds since 1 January 1901 at
00:00:00.000 hours.

NOTES

1. The internal date/time value is returned in
$R2, $R6, and $R7 and stored in the receiving
field specified by argument 1. If argument 1 is
omitted or is =$R7, the value is returned only in
$R2, $R6, and $R7.

2. On return, $R1, $R2, $R6, and $R7 contain the
following information:

$R1 - Return status; one of the following:

0000 - No error

040A - Invalid access to external date/
time field

2-187 CZ06-00

$R2, $R6, and $R7 - Current 3-word internal
date/time value. $R2 contains the most
significant 16 bits and $R7 the least ,,<--,
significant 16 bits.)

Example:

In this example the Get Date/Time macro call is used to get
the starting date/time, in internal format, of a process and
store it in the field ST_TIM. The Convert to External
Date/Time ($EXTDT) macro call is then used to format this
internal clock value, contained in $R2, $R6, and $R7, into a
displayable date/time format with resolution to a tenth of a
second. A startup message containing the external format
date/time is then written on the user-out file. Later, the
Get Date/Time macro call is used again to get the finishing
date/time of the process without storing it in memory. The
low order two words of the starting date/time are then sub-
tracted from the corresponding words of the finishing
date/time, leaving the elapsed time (in milliseconds) in $R6 j
and $R7. The subtraction is performed assuming a central ^̂
processor that does not have the subtract integer double
instruction. The high order word of the starting and finish-
ing date/time values is ignored with the assumption that the
elapsed time is less than 2 million seconds (about 24.855
days).

*
* GET THE STARTING TIME.

$GDTM 1ST_TIM
*
* FORMAT IT FOR DISPLAY.
*

$EXTDT ,!GO_TIM,20
*
* OUTPUT THE START UP MESSAGE.
*

$USOUT 1GO_MSG,=GO_MLN

2-188 CZ06-00

BEGIN PROCESSING

* GET THE FINISHING TIME.
*

$GDTM
*
* CALCULATE THE ELAPSED TIME.
*

SUB $R7,ST_TIM+2
BCT >$+3
ADV $R6,-1
SUB $R6,ST_TIM+1

ST_TIM RESV 3,0
GO_MSG TEXT 'APROGX STARTED ATA1

GO_TIM TEXT 'YYYY/MM/DD HHMM:SS.T '
GCL.MLN EQU 2* ($-GO__MSG)

2-189 CZ06-00

GET DEVICE INFORMATION

GET DEVICE INFORMATION (SGIDEV)

Function Code: 10/66

Equivalent Command: None

Retrieve information about a specified device.

FORMAT:

[label] $GIDEV [parameter structure address]

ARGUMENT:

parameter structure address N\

Any address form valid for an address register; provides
the location of the argument structure defined below. The
parameter structure must contain the following entries in
the order shown. (Entries marked with an asterisk (*) are
provided by the system. The user must supply values in
the other entries.) The size of each entry, whose
description follows this list, is as follows:

"x
Size

Parameter Structure Entry (in bytes)

logical resource number 2
logical component number 2
*device name 12
*hardware device type 2
*software device id 2
*channel number 2
*RCT indicators word 2
*timeout interval 2 --
*RCT status word 2
reserved for future use 4

logical resource number

A 2-byte LRN used to refer to the device; must be a binary
number in the range 0 through 255. This number must be
supplied.

2-190 CZ06-00

logical component number

A 2-byte logical component number (LCN) (i.e.,
sub-LRN) that refers to a device subcomponent. This
field should be set to zero if the device is not
addressable as a subcomponent.

device name

The system sets this 2-byte field to the 1- to
12-character name of the specified device. The name
supplied is that which the user gave to the device
when the system was configured. This field is space
filled.

hardware device type

The system sets this 2-byte field to the 4-digit,
hexadecimal device code of the specified device. The
device name and marketing identifier signified by each
code are listed in this manual under the Get File
Information ($GIFIL) description.

software device id

The system sets this 2-byte field to the 4-digit,
hexadecimal device descriptor of the specified device.
The first pair of digits identifies the device; the
second pair identifies the driver controlling the
device. The device and driver codes include but are
not limited to the following: i-

ID Device

00 undefined
01 card reader
02 card reader/punch
03-04 RFU
05 line printer
01$ serial printer
07-09 RFU
OA 7-channel magnetic tape
OB 9-channel magnetic tape
OC phase encoded magetic tape
OD-OF RFU
10 diskette
11 disk cartridge
12 storage module
13 cartridge module
14 Cynthia
15 mini diskette
16 Lark
17 Winchester
18-3F RFU

40
41
42
43
44
45
46
47
48
49
4A
4B
4C
4D
4E
4F
50
51
52

Device

VIP 7700
VIP 7760
VIP 7804
VTS 7710
VTS 7740
VIP 7100
VIP 7200
VIP 7207
RFU
VIP 7801
VIP 7808
VIP 7803
TTY (KSR)
Terminet 0300
Terminet 1200
POLY 21
VIP 7398
ROSY 24
ROSY 26
RFU

2-191 CZ06-00

JLB Device Driver

54 Spinwriter 5518
55-56 RFU
57 Sara 22
58-5A RFU
5B ASPI 10
5C ASPI 32
5D ASPI 38
5E RFU
5F ASPI 30
60 ASPI 35
61 ASPI 77
62 RFU
63 VIP 7401
64 VIP 7301
65 VIP 7307
66 VIP 7303
67 VIP 7399
68-7F RFU

00 undefined
01 card
02-03 RFU
04 printer
05-06 RFU
07 magnetic tape
08-OA RFU
OB disk
OC-OF RFU
10 KSR
11 console
12-3F RFU
40 VIP
41 STD
46-47 RFU
48 BSC 2780
49 BSC 3270
4A HASP
4B-4C RFU
4D PVE
4E RCI
4F LHDLC
50-51 RFU
52 HDLC
53 LLHA/LLHB
54-7F RFU

channel number
\

The system sets this 2-byte field to channel number of
the specified device.

resource control table (RCT) indicators

The system sets this 2-byte field to the current value
of the R_FLGS word in the RCT of the specified device.
The mask bits of this word and their significance are
shown below.

Mask

z'80001

z'8000'
z'80001

z'4000'
z'40001

z'20001

z'10001

Meaning

tape recovery requested
double density
input attention in KSR
IBM type diskette
tape recovery successful
tape block count invalid
2-word disk address

2-192 CZ06-00

Mask - -
Bit Meaning)

z'08001 not single character mode (KSR)
z'08001 do automatic volume recognition

(AYR) now
z'04001 disk type device
z'02001 communication connected device
z!0100' line printer or KSR
z'0080' attention has occurred
z'0040' disable device on attention
z'00201 device disabled
z'00101 error log busy
z'00081 corrected hardware error occured
z'00041 not connected to file system
z'00021 power failure recovery state

timeout interval

The system sets this 2-byte field to the timeout
interval (in seconds) of the specified device.

\
RCT status word

The system sets this 2-byte field to the current value
of the R_STTS word in the RCT of the specified device.
The value of this word indicates the hardware status
of the device's controller, and is of use in analysing
controller malfunctions. Modified values of R_STTS
appear in the I_ST entry of the IORB upon completion
of an I/O operation requested of the device.

DESCRIPTION:

To access specific entries in the parameter structure, use
the Device Information Parameter Structure offsets ($DIPSB)
macro call.

NOTE

1. The system places in $B4 the address of the
parameter structure supplied by the argument of
this macro call. If the argument is omitted,
the system assumes that $B4 contains the parameter
structure address.

2-193 CZ06-00

GET DEVICE INFORMATION
PARAMETER BLOCK OFFSETS

GET DEVICE INFORMATION PARAMETER BLOCK OFFSETS (SDIPSB)

Associated Macro Call: Get Device Information

FORMAT:

[label] $DIPSB [first letter of tags]

ARGUMENT:

first letter of tag

D

Allows the user to rename the tags to avoid conflicts
with other labels in the same program.

Structure:

Word

0

1

2
3
4
5
6
7

8

9

10

11

12

13

14
15

Fields

Logical resource number

Logical component number

Device name

Hardware device type

Software device id

Channel number

RCT indicators word

Timeout interval

RCT status word

Reserved for future use

2-194 CZ06-00

Generated Offset Tags:

Corresponding
Offsets

Tag (in words) Entry Name

D__LRN 0 Logical resource number (inpat)
D_LCN +1 Logical component number (input)
D_NME +2 Device name (1-12 characters)
D__TYP +8 Hardware device type
D_SDID +9 Software device id
D_CHNL +10 Channel number
D__IND +11 RCT indicator word
D__TINV +12 Timeout interval (seconds) -
D_STS1 +13 RCT status word
D_SZ 16 Size of the structure (in words);

not a field in the block

2-195 CZ06-00

GET FILE

GET FILE (SGTFIL)

Function Code: 10/20

Equivalent Command: Get File (GET)

Locate and reserve a file (tape or disk file, disk directory,
card reader, printer, or terminal device) for processing with the
specified access rights. The file is identified by supplying
either a logical file number (LFN) or a pathname. If both an LFN
and a pathname are supplied, the file is reserved and is assigned
to the LFN. Subsequent macro calls (Open File, Read Record,
etc.) can then be directed to the file through this LFN. If the
file is tape-resident, the Get File macro call supplies the nee- N
essary tape definition arguments. This function is normally done ^
outside program execution, to assign the LFN to a file that is '^-^
not known until execution time.

FORMAT:

[label] $GTFIL [argument structure address]

ARGUMENT:

NOTE _

Any tape-specific argument is bypassed if explicitly
specified by a previous GET command. This allows the
user to override tape arguments outside program
execution.

argument structure address

Any address form valid for an address register; provides
the location of the argument structure defined below. —̂ '
The argument structure must contain the following entries
in the order shown. A description of each entry follows
this list.

2-196 CZ06-00

Size
Argument Structure Entry (in bytes)

logical file number 2
pathname pointer 4
disk concurrency control 1
disk mount option 1
tape block size 2
tape logical record size 2
number of buffers 1
tape file sequence number 1
tape label format 1
tape data type 1
tape data format 1
tape file options 1
tape file section number £
tape retention period 2

logical file number

A 2-byte LFN used to refer to the file; must be a
binary number in the range 0 through 255, ASCII
blanks (X'20201) if an LFN is not specified, or -1
(X'FFFF1) if the system is to assign an LFN from the
pool of available LFNs.

pathname pointer

A 4-byte address that may be any address form valid
for an address register; points to a pathname (which
must end with an ASCII space character) that, when
expanded, identifies the file to be reserved. Binary
zeros in this entry indicate that a pathname is not
specified.

disk concurrency control

A 1-byte code, applicable only to disk files, that
specifies the concurrency control to be established
for the file.

If record locking is requested, the records in the
file will be locked in shared-read/exclusive-write
mode when the file is accessed. Once a file is
reserved with locking, it cannot be reserved by
another user (task group) unless that user also
specifies record locking.

2-197 CZ06-00

The type of file concurrency chosen indicates the file
access chosen by the user and the way in which the user
is willing to share access to the file with other users
(task groups). There are six types of concurrency con-
trol, as follows:

Type 5 - Write or read; others can write or read
(read/write sharing).

Type 4 - Write or read; others can read but not
write (read share, exclusive write).

Type 3 - Write or read; no others can write or
read (exclusive).

Type 2 - Read; others can read and write.

Type 1 - Read; others can read but not write
(read sharing).

Type 0 - If the file is already reserved, the
last concurrency specified is used. If
the file is not already reserved, type
3 concurrency control is used.

The value of the disk concurrency control byte is
determined as follows:

3it(s) Meaning

0 Lock specification:

0 - Do not lock records
1 - Lock records

1 Index only option:

0 - Not specified

1 - For Unified File Access System (UFAS)
indexed and alternate indexed files, the
user can access the index as if it were a
data file.

2-198 CZ06-00

Bit(s) Meaning

2 Foreign file option:

0 - Not specified

1 - Override the foreign file attribute, set by
the modify file function, to allow
processing of a file that contains data not
native to GCOS 6.

3 No lock option:

0 - Not specified

1- Through the specified LFN, allow records to
be read without being locked even though
the file has the record locking attribute.
The integrity of the data being read is not
guaranteed and no updates are allowed
through the specified LFN.

4 No wait option:

0 - Not specified

1 - Through the specified LFN, do not wait for
records that are locked by other users.
Either the record will be locked
immediately or an 022B error will be
returned, indicating that it is locked by
another user.

5-7 Concurrency control specification:

000 - Type 0
001 - Type 1
010 - Type 2
011 - Type 3
100 - Type 4
101 - Type 5

2-199 CZ06-00

tape file options)

A 1-byte code, applicable only to tape files, that -*x
defines packing, EBCDIC/ANSI translation, parity,)
file section number, and block sequence number usage.

Bit(s) Meaning

0, 1 0 = Not specified
1 = For 7-track tape: No Packing
2 = For 9-track tape: EBCDIC/ANSI

translation

2, 3 0 = Parity not specified
1 = Odd parity
2 = Even parity

Packing and parity bits are meaningful only
for 7-track tapes to be opened for storage --x
management (block level) access.)

4 0 = Not specified
1 = File section number supplied

5 Must be zero

6,7 0 = No BSN specified
1 = BSN not supplied
2 = BSN supplied "\

—.<•*
If 2 is specified, a BSN is assumed to be present on
input; on output, a BSN will be inserted.

If the file is not tape-resident, this entry is
ignored.

tape file section number

A 2-byte field specifying the relative file section)
number. Applies only to multi-volume tape files. _̂>

tape retention period

A 2-byte value, applicable only to tape files, that
specifies the tape retention period in days. Zeros
in this field indicate that the retention period is
not specified.

If the file is not tape-resident, this entry is
ignored.

2-204 CZ06-00

For files with variable-length records, the block
size can be any value, but should be at least as
large as the maximum record size plus the 4-character
logical record header and the length of any block
header information.

The block sequence number is specified by the tape
file options argument (see below).

The block size entry is ignored if the file is not
tape-resident.

If the file is not currently reserved and block size
is not specified (i.e., the field contains all
zeros), a value is computed based on the values for
logical record size, tape data format, and tape block
sequence number (BSN) indicator.

If the file is already reserved and block size is not
specified, the previously specified or computed value
is not changed.

tape logical record size

A 2-byte binary value, applicable only to tape files,
that specifies the logical record size in bytes.

The logical record size is the size of the longest
record in the block, excluding the logical record
header (if any).

If this is not a tape file, the tape logical record
size entry is ignored.

If the file is not currently reserved and logical
record size is not specified (i.e., the field con-
tains all zeros), a value is computed based on the
values for block size, tape data format, and tape BSN
indicator.

If the file is already reserved and logical record
size is not specified, the previously specified or
computed value is not changed.

2-201 CZ06-00

number of buffers ")/

A 1-byte binary value specifying the number of buf- .--.
fers to be allocated in a buffer pool specific to '. j
this file. Use this argument carefully and only when
the system-generated or operator-defined public
buffer pools or the user-defined private buffer pools
(i.e., for this user or task group only) are insuf-
ficient to satisfy this file's buffering
requirements.

Default: If the file cannot be assigned to a public
or private pool, a file-specific pool is
created. This pool contains two buffers
for indexed sequential files and one
buffer for all other types of disk files.
In addition, if the file has any alternate
indexes, one additional buffer is allocated
for all the indexes. For tape files, the .̂
default is two buffers. J

For more details on buffer pool concepts see the
Create Buffer Pool command description in the
Commands manual.

Buffer space is allocated at open-file time and
returned at close-file time when the file is accessed
through data management macro calls. Buffer space is
not required if the file is accessed through storage ^
management macro calls. .'

This entry does not apply to device files; buffers
are allocated according to information specified in
DEVICE directives at system building time.

tape file sequence number

A 1-byte binary code, applicable only to tape files,
that indicates the position of the file on a tape •)
volume set; can have the following values: ^/-'

00 - The desired file is the next file on the
volume

FF - Search for the file in a forward direction

nn - Relative sequence number of the file on the
volume set.

If a pathname is specified, it is used with the tape
file sequence number to perform a file search when an
Open File macro call is issued. (The maximum
file-name length is 17 characters.)

2-202 CZ06-00

See the description of the Open File macro call for a
discussion of tape search rules.

If FF is specified, the search is performed from the
current position on the volume to the volume set
end-of-data.

If the file is not tape-resident, this entry is
ignored.

tape label format

A 1-byte code, applicable only to tape files, that
indicates the tape label format.

0 - No label format specified
1 - Tape has standard EBCDIC/ANSI labels
2 - Tape is not labeled

If the file is not tape-resident, this entry is
ignored.

tape data type

A 1-byte code, applicable only to tape files, that
specifies the data type.

0 - No data type specified
1 - Honeywell
2 - ANSI Level 3
3 - EBCDIC (IBM-compatible)

If the file is not tape-resident, this entry is
ignored.

tape data format

A 1-byte code, applicable only to tape files, that
indicates the data format.

0 - No format specified
1 - Fixed-length records
2 - Variable-length records
3 - Undefined records
4 Spanned records

If the file is not tape-resident, this entry is
ignored.

2-203 CZ06-00

tape file options)

A 1-byte code, applicable only to tape files, that -v
defines packing, EBCDIC/ANSI translation, parity, J
file section number, and block sequence number usage.

Bitfs) Meaning

0,1 0 = Not specified
1 = For 7-track tape: No Packing
2 = For 9-track tape: EBCDIC/ANSI

translation

2, 3 0 = Parity not specified
1 = Odd parity
2 = Even parity

Packing and parity bits are meaningful only
for 7-track tapes to be opened for storage —v
management (block level) access. j

4 0 = Not specified
1 = File section number supplied

5 Must be zero

6,7 0 = No BSN specified
1 = BSN not supplied
2 = BSN supplied "\

—̂If 2 is specified, a BSN is assumed to be present on
input; on output, a BSN will be inserted.

If the file is not tape-resident, this entry is
ignored.

tape file section number

A 2-byte field specifying the relative file section
number. Applies only to multi-volume tape files. /̂x

tape retention period

A 2-byte value, applicable only to tape files, that
specifies the tape retention period in days. Zeros
in this field indicate that the retention period is
not specified.

If the file is not tape-resident, this entry is
ignored.

2-204 CZ06-00

DESCRIPTION:

This macro call reserves the file with proper access rights
for use by the data management and storage managememt macro
calls. It can also be used to alter concurrency or tape
definition arguments established by a previous Get File macro
call, provided the file is not already open (see the Open
File macro call) in the task group in which you are
executing.

The file can be specified (in the argument structure) by an
LFN only, a pathname only, or both an LFN and a pathname.

• If specified only by an LFN, the LFN must have been pre-
viously associated with a pathname (see the Associate
File macro call) or it must have been previously assigned
to the file through the Get File or Create File function.

• If only a pathname is specified, the file is reserved
without a unique LFN. The only requests that can use the
file are those that can reference the file by a pathname
only, e.g., Get File, Get File Information, Delete File,
Remove File.

• If a pathname is specified and the LFN field contains a
value of -1 (FFFF), the system assigns a unique LFN from
the task's LFN pool. In this case, it is the user's
responsibility to return the LFN to che pool (by a Remove
File macro call) when the LFN is no longer needed. In
assigning a unique LFN from the pool, the system selects
the highest LFN available for assignment and sets it in
the LFN entry in the argument structure, overlaying the
previous contents (FFFF). The user must move this value
to other structures (argument structures or FlBs) as
required.

• If both an LFN and a pathname are specified, the file is
reserved and assigned to the LFN. This LFN-to-file
assignment remains in effect until the file is removed
from the task group or another Get File macro call that
specifies the same LFN is issued.

The Get File macro call allows the user to append ASCII char-
acters to a previously associated pathname or to a partial
pathname (see the Associate File macro call). This is done
by prefixing the string of characters to be appended (i.e.,
pointed to by the pathname pointer entry) with a colon (:).
The system replaces the colon with the previously associated
pathname, as follows:

2-205 CZ06-00

Previously Characters / ^\
Associated to be , ^'
Pathname Appended Resultŝnses

none : Working direct Dry -^
none :ABC ABC
"VOL1>UDD :>FILE01 ~VOL1>UDD>FILE01
~VOL2> :FILE02 ~VOL2>FILE02

As stated above, the Get File macro call can be used to alter
concurrency control. In doing so, note the following:

• If type 0 concurrency control is specified the first time
the file is reserved in a task group, the system reserves
the file for exclusive use (type 3 concurrency).

• If type 0 concurrency control is specified and the file
was previously reserved in this task group, the previous
concurrency control does not change. This could occur if
the user wanted to change the tape file definition argu- "\
ment or to address the file through a different LFN. '̂

• A Get File macro call does not alter the concurrency con-
trol established through a previously issued Get File com-
mand. Only by issuing another Get File command can the
concurrency established through a previous Get File com-
mand be altered.

• If device level access is desired (i.e., the pathname is .
in the form !dev_name[volid]), the following rules apply:

Type 3 exclusive concurrency control is set, regardless
of the value specified in concurrency control entry, if
the pathname is specified as:

ldev_name

No volume label validation is performed. Note that
tapes are always reserved with type 3 concurrency. ,

For disk volumes, type 2 concurrency control is set,
regardless of the value specified in the disk concur-
rency control entry, if the pathname is specified as:

idev_name>volid

The volume label is read and validated; if a mismatch
occurs, the action specified in the disk mount option
argument occurs.

2-206 CZ06-00

To change disk device-level concurrency control/ a
Remove File macro call must first be issued, and then a
new Get File macro call.

• The following rules apply to directories reserved through
a Get File macro call:

If the directory is reserved exclusively (type 3 con-
trol) r all subdirectories and files inferior to the
directory are also held exclusively. For example, a
Get File macro call having a pathname of volid (i.e.,
only the volume directory supplied) and a concurrency
of 3, would reserve the entire volume for exclusive use
through normal file, data, and storage management
facilities. This is not the same as device level
access (SPD dev_name), since it permits normal access
by the user at the file level.

If the directory is not reserved exclusively,
read/write share concurrency control (type 5) is set,
regardless of the specified value.

Directory-level concurrency cannot be changed by issu-
ing a new Get file macro call. To change
directory-level concurrency, a Remove File macro call
must first be issued, and then a Get- File macro call.

The record lock option is a mechanism that provides temporary
multi-user interference protection for shared file access.
When a record is accessed by a task group, it is locked (by
locking the control interval(s) in which the record is con-
tained) on a first-come first-served basis. If another user
is sharing the file, he will be denied access to the record
(and other records contained in the same control interval)
until the previous user unlocks the record (through the Clean
Point macro call) . Record locking can be set as a permanent
file attribute through the Create File (CR) command, the
Modify File Attribute (MFA) command, or the Modify File
(SMDFIL) macro call. Record locking is then automatically
initiated at each file reservation request. If record
locking is not specified as a permanent file attribute, when
set at get-file time it remains in effect only until the file
is removed. The user should consider the following points
when using record locking:

2-207 CZ06-00

• An LFN within a task group uniquely identifies a user for j
record locking purposes and thus provides interference ^^/-
protection between task groups. Since tasks within a task .,~
group may agree to access a file through different LFNs, J
interference protection is provided when the cooperating " '
tasks agree to respect the LFN assignments.

• Lock requests are valid only for disk-resident files (a
request to lock any other file is ignored). Directories
and entire disk volumes cannot be reserved with lock. The
primary index of an indexed file is never locked (since
once created, it is never updated).

• Files reserved with lock cannot be modified (written)
through storage management access.

• Records are locked in "shared read/exclusive write" mode,
which is explained as follows:

For purposes of record locking, file system users may)
be classified as "readers" and "updaters". Readers ^,'
have opened the file without update permission, since
they need only to read records. The are not concerned
if other users are reading the same record, but do not
want to read a record while it is being updated.

Updaters have opened a file with update permission.
They want to be the only users of a specific record.
The record lock facility makes sure that a given record
is accessed by only one updater or by n readers at one
time.

Accordingly, readers set read locks, updaters set write
locks. A given record may have any number of read
locks, or it may have only one write lock.

• Once specified, locking is automatic. Any access (read or
write) will cause an appropriate lock. The number of
locks that can exist at one time is limited only by the *
amount of memory dedicated to the lock pool (i.e., the ^
area of memory where locked records are recorded). (This
area is defined at system building; see the Building and
Administration manual.)

2-208 CZ06-00

When record contention occurs (reader attempts to lock a
record already locked by a writer, or writer attempts to
lock a record already locked by another reader or writer)f
the system normally performs a wait until the record is
unlocked. However, the wait is not performed under the
following conditons:

When the lock request would cause a deadlock. For
example, a deadlock would occur if a user wanted a
record that a second user had already locked, and the
second user was waiting for a record that the first
user had locked. Return code 022B indicates record
lock deadlock. Normal user response to this return
code is to issue a Roll Back macro call to recover the
updates done since the last Clean Point macro call was
issued, and then to start over.

- When the user has specified the "no wait" option.
There may be conditions under which an application does
not want to wait for the records to be unlocked. The
"no wait" option allows the user to receive an 022B
return status (indicating that the record is locked)
rather than be suspended.

• Record locking is initiated by the first user who reserves
the file with the record lock option. File reservation is
denied if the file is already reserved for writing without
record locking.

To initiate record locking, the file must be reserved for
writing (concurrency type 3, 4, or 5).

• A user who reserves a disk file with the "no lock" option
can read records without applying any record locks. The
records can be read even if they are currently locked and
are being updated by other users. Data integrity is not
guaranteed, and the user is not allowed to do any updates
through the specified LFN.

• The Clean Point macro call is used to unlock records. If
records are not unlocked, lock pool overflow or a deadlock
record condition will probably result. (See the Clean
Point macro call for details.)

2-209 CZ06-00

• The user must provide for all actions to be taken when
notified of lock pool overflow or record lock concurrency
conflict. When a record deadlock condition occurs, the
user should restart the current phase by unlocking all
records and recycling to the point where the interrupted
sequence began. (In so doing, some records may be
updated, thereby making a simple recycling unsatisfac-
tory.) From a practical standpoint, all records to be
updated or deleted should be read first to ensure access;
all inserts should be done first to make the unwinding of
a transaction easier to manage.

If an operator terminal is not included in the system, or if
messages to the operator terminal have been suppressed
(through a Console Message Suppression macro call), a Get
File macro call issued to reserve a volume that is not
mounted results in an 020C (volume not mounted) error return.

If a file is reserved through an LFN and a subsequent Get
File macro call is issued specifying the same LFN, this LFN
becomes associated with the new file. The previously
reserved file will remain reserved for the task group until
it is removed (through the Remove File macro call).

Since the Get File macro call performs so many functions, it
should be used as infrequently as possible. A Get File fol-
lowed by multiple Open File/Close File sequences is much more
efficient than a Get File, Open File, Close File, Remove
File, Get File, etc.

Offset tags for the argument structure block can be defined
by the Get File Parameter Structure Block Offsets macro call.

Tape file arguments are meaningful only when (1) a labeled
tape file is being created (opened) in RENEW mode or (2) an
unlabeled tape file is being processed for input/output. For
labeled tapes being opened for input (PRESERVE mode), the
various tape parameters are taken from the file header
labels.

2-210 CZ06-00

For tape files, default block size (BKSZ) and logical record
size (LRSZ) are computed as shown in Figure 2-1.

BKSZ NOT SPECIFIED HKb/NO! Sf ' t r iFHI)

LRSZ NOT SPECIFIED LHSZ SPECIFIED

HKS/ oPl (If H \)

LHS? NUT SPECIF IFD

BKSZ n

e-RROR

ERROR

Figure 2-1. Calculating Block Size (BKSZ) and Logical
Record Size (LRSZ) for Tape File

2-211 CZ06-00

0205 - Invalid argument

0206 - Unknown or invalid LFN

0208 - LFN or file currently open in same task
group

0209 - Named file or directory not found

020C - Volume not found

0210 - LFN conflict

0211 - Unable to establish a unique LFN

0213 - Cannot provide requested file concurrency

0222 - Pathname cannot be expanded; no working
directory

0225 - Not enough system memory for buffers or
structures

0226 - Not enough user memory for buffers or
structures

022A - Record lock area overflow or not defined

022C - Access control list violation

022E - Record lock concurrency conflict

0238 - Invalid file description.

Example 1:

In the following example, the Get File macro call identifies
an argument structure that contains the appropriate arguments
to reserve the indexed file created in the example for the
Create File ($CRFIL) macro call (i.e., FILE_A), with type 5
concurrency control (read/write share) and record locking.
The argument structure was built as follows:

2-213 CZ06-00

where the argument structure labeled FILE_X has been defined
as follows:

FILE_X DC Z'OOAS1 LFN=163
DC <DIRPTH PATHNAME '"VOL03 SUBINDEX.AA1

RESV 2-$AF

Assuming that the above definitions have been made, the fol-
lowing argument structure identifies the characters to be
appended to the incomplete path (DIRPTH):

WRTFIL DC Z'00051 See "Assumptions for File
System Examples" in Appendix A.
(The pathname is defined in
the example for the Create File
macro call.)

DC <IDX01
RESV 2-$AF
DC Z'80511 READ/WRITE SHARE; RECORD

LOCKING: ISSUE MOUNT REQUEST
RESV 2,0 INGORED
DC Z'02001 BUFFERS=2
RESV 4,0 IGNORED

It is assumed that the following macro calls have been issued
before the Get File macro call is issued:

$CRDIR 1SUBDIR (See Create Directory macro example)

\
$CRFIL !FILE_A (See "Assumption for File System j

Examples" in Appendix A.) - '

The Get File macro call altering FILE_A concurrency from
exclusive to share can be specified as follows:

SGTFIL IWRTFIL

Example 2:

In this example, the Get File macro call is used to append __
characters to an incomplete pathname defined as follows:

DIRPTH DC '"VOL03 SUBINDEX.AA1 (See Create Direc-
tory macro example)

This pathname has been associated with the LFN as follows:

$ASFIL 1FILE_X

2-214 CZ06-00

DC
DC
RESV
DC
RESV
DC
RESV

Z'OOA3'
<IDX02
2-$AF
Z'0301'
2,0
Z'02001

4,0

WTFIL2 DC Z'OOA3' LFN=163
PATHNAME POINTER

EXCLUSIVE: ISSUE MOUNT REQUEST
UNSPECIFIED
BUFFERS=2
IGNORED

The pathname labeled IDX02 is defined as follows:

IDX02 DC ':>FILE_C '

The result of specifying the above structure (WTFIL2) in the
following Get File macro call is to reserve the file identi-
fied by the pathname VOL03>SUBINDEX.A>FILE__C with exclusive
concurrency control:

$GTFIL IWTFIL2

However, before FILE_C can be opened and accessed, it must
exist in the file system hierarchy (i.e., it must have been
created as defined in the Create File macro call example).

Alternate Index Specific Information

EMPLOYEES
UFAS
Relative

EMP_NAME
Alternate
Index

EMP_NUMB
Alternate
Index

Figure 2-3. Example of Alternate Index Use

2-215 CZ06-00

A UFAS data file, with one or more alternate indexes, can be used
either as a standard data file or as an indexed file, depending ^
on the pathname specified at Get File time.

1. Specifying the pathname of the data file: '-•'

By reserving the data file directly, records in that file
can be used sequentially through the key supported by the
file organization or by an alternate key supported by one
of its indexes. In the example above, by specifying the
pathname "EMPLOYEES", records in EMPLOYEES can be used
sequentially by a relative record number, by a "simple"
key (CI and line number), or by one of the alternate keys
employee name or employee number.

- 2. Specifying the pathname of an index:

By reserving the file through an alternate index, the
data file can be used as a standard "indexed" file. In
the example above, by specifying the pathname "EMP_NAME",
records in EMPLOYEES can be used sequentially (ordered by
employee name), by a primary key of an employee name, or
by an alternate key of an employee number.

2-216 CZ06-00

GET FILE ACCESS RIGHTS

GET FILE ACCESS RIGHTS (SGAFIL)

Function Code; 10/73

Equivalent Command: List Access (LAC)

List the access rights of a specified user to a specified
disk file or directory.

FORMAT:

[label] SGAFIL [argument structure address]

ARGUMENT:

argument structure address

Any address form valid for an address register; provides
the address of the argument structure described below.
The argument structure must contain the following entries
in the order shown. (Entries marked by an asterisk are
provided by the system.)

logical file number

A 2-byte logical file number (LFN) that refers to the
file for which the function lists access. If speci-
fied, the LFN must be a binary number in the range 0
through 255. Two ASCII blanks (2020 in hexadecimal)
indicate that the file's LFN is not supplied. If
this entry contains blanks, the pathname pointer,
described below, must be supplied.

pathname pointer

A 4-byte address that may be any address form valid
for an address register; points to a pathname (which
must end with an ASCII space character) that identi-
fies the file or directory for which the function
lists access. If zeros are entered in the pathname
pointer field, the LFN must be supplied in the
preceding field.

user id pointer

A 4-byte pointer to a field that identifies the user
whose access rights the function retrieves. Zeros
indicate that the user id pointer is not supplied.

2-217 CZ06-00

The field that identifies the user comprises one to j
three of the following subfields: _̂̂

person
person.account
person.account.mode

Each person and account subfields can be from 1
through 12 characters long; the mode subfield, from 1
through 3 characters long. The subfields must be
separated from each other by a period; the last sub-
field must be followed by a space.

*access rights

A 2-byte field indicating the access rights of the
specified user to the specified file, as shown below.

Bit Meaning

0 1 - Access rights are for a directory

0 0 - Access rights are for a file

1 1 - Access rights returned result from an
empty access control list

0 - Access rights returned do not result
from an empty access control list

2-11 Zeros; reserved for future use

12 1 - Create access for directories

0 - Execute access for files

13 1 - Modify access for directories

0 - Write access for files

14 1 - List access for directories

0 - Read access for files

15 1 - Null access

0 - Access, as specified by other bits in
field.

2-218 CZ06-00

DESCRIPTION:

This macro call retrieves the access rights of a user to a
disk file or directory; the function does not apply to tape
or device files.

A disk file or directory can be specified in the parameter
structure block by either an LFN or a pathname. If a file is
specified by an LFN, the file must have been previously
assigned to that LFN by means of the Get File or Create File
macro calls or the equivalent Execution Control Language
(ECL) commands.

If a user id is not specified in the parameter structure
block, the file access rights retrieved are those for the
current user (i.e., the user issuing this monitor call).

NOTES

1. If the parameter structure address is coded,
the system loads the address of the structure
into $B4; if the argument is omitted, the system
assumes that $B4 contains the address of the
parameter structure.

2. On return, $R1 contains one of the following
status codes:

0000 - No error

Olxx - Media error

0201 - Invalid pathname

0202 - Pathname not specified

0205 - Invalid argument (incorrect user id)

0206 - Unknown or invalid LFN

0209 - Named file or some superior directory not
found

0228 - Invalid file type

022C - Access control list violation.

2-219 CZ06-00

GET FILE ACCESS RIGHTS
PARAMETER STRUCTURE BLOCK
OFFSETS

GET FILE ACCESS RIGHTS PARAMETER STRUCTURE BLOCK OFFSETS (SGAPSB)

Associated Macro Call: $GAFIL

FORMAT:

[label] $GAPSB [first letter of tags]

ARGUMENT:

first letter of tag

Allows the user to rename the tags to avoid conflicts with
other labels in the same program.

Structure:

Word

6
7
8
9
10
11
12
13
14
15

Field

Logical File Number

Pathname Pointer

User id Pointer

Access Rights

Reserved

2-220 CZ06-00

Generated Offset Tags:

Corresponding
Offsets

Tag (in Words)

L_LFN 0

L_PTHP +1

L_JJIDP -1-3

L_IND +5

L_SZ 16

Entry Name

Logical File Number (LFN)

Pointer to pathname

Pointer to user id

Access rights indicator word

Size of structure (in words);
not a field in block

2-221 CZ06-00

GET FILE ACCOUNTING -,
INFORMATION)

N '

GET FILE ACCOUNTING INFORMATION fSGTACT)

Function Code: 10/42

Equivalent Command: None

Retrieve the following information from the file accouning
information record(s) of a specified file:

Date/time created
User id of creator
Date/time last loaded
Date/time last modified
User id of modifier -̂
Date/time last accessed)
Retention period. -̂*'

FORMAT:

[label] $GTACT [argument structure address]

ARGUMENT:

argument structure address • '\
* **s

Any address form valid for an address register; provides
the location of the argument structure defined below.
The argument structure must contain the following entries
in the order shown. A description of each entry follows
this list:

Size
Argument Structure Entry (in bytes)

logical file number 2

pathname pointer 4

creation information block pointer 4

access information block pointer 4

reserved for future use; must be zeros 18

2-222 CZ06-00

logical file number

A 2-byte logical file number (LFN) that refers to
the specified file; must be a binary number in the
range 0 through 255 or ASCII blanks (X'20201) if an
LFN is not specified. If this entry contains
blanks, the pathname-pointer entry (below) must
point to a pathname.

pathname pointer

A 4-byte address that may be any address form valid
for an address register; points to a pathname (which
must end with an ASCII space character) that identi-
fies the file to be reserved. Binary zeros in this
entry indicate that a pathname is not specified.

creation information block pointer

A 4-byte address that may be any address form valid
for an address register; points to the creation
information block described in Table 2-6. Zeros in
this entry indicate that the caller does not wish to
retrieve information about the specified file's
creation and retention.

access information block pointer

A 4-byte address that may be any address form valid
for an address register; points to the access
information block described in Table 2-7. Zeros in
this entry indicate that the caller does not wish to
retrieve information concerning access of the
specified file.

DESCRIPTION:

This function reads information from a specified file's
accounting information records into the creation and/or
access information blocks pointed to by the function's
argument structure. These records, which reside in a
directory entry, are described in the Data File Organizations
and Formats manual.

Accounting information records will exist for a file only if
the creator specified the Accounting or Retention argument of
the Create File command.

2-223 CZ06-00

The file can be specified by either an LFN or a pathname. If
an LFN is specified, that same LFN must have been previously
specified when the file was reserved, by means of a Get File
macro call.

The "creation date" field of the creation information block
specifies the time at which a file's directory entry is
created. This time does not necessarily correspond to the
time at which the file is first loaded with data.

The "modification" date field of the access information block
specifies the time at which the file was last opened for a
write or load operation. This time does not necessarily
correspond to the time at which the file was loaded or last
written to, since a user who opens a file with the intention
of performing either operation might not actually do so.

Values returned in the "modification date" and "access date"
fields of the access information block can refer to either a
write or a load operation. Both of these operations can
involve access to or modification of a file. A value in the
"access date" field can refer, additionally, to a read
operation. To determine the signifiance of a value returned
in these fields, see Figure 2-4. The symbols
each represent a different date/time.

n a n nw ita , D , and"c

File
Operations

Load
Write
Read

Date/Time Fields
Access

a
b
c

Modification

a
b
^

Load

a
-
*•"

Figure 2-4. Interpreting Access Information

When a file is loaded, the date/time of that operation
(represented by "a") is entered in all three date/time
fields. The date/time of a write operation ("b") is entered
in the "access date" and "modification date" fields. The
date/time of a read operation ("c") is entered in the "access
date" field. Thus, if the value of all three date/time
fields are equal, those values refer to the last load
operation. The values of the "access date" and "modification
date" refer to the last write operation if they are equal but
differ from the value of the "load date" field. Finally, if
the value of the "access date" field is unique, it refers to
the last read operation.

2-224 CZ06-00

Table 2-6 shows the contents of the creation information
block used by the Get File Accounting function.

Table 2-6. Creation Information Block for $GTACT

Field Name

Size
(in

bytes) Meaning

RFU

Creation
Date

User id

Load Date

Retention
date

2

6

28

Reserved for future use.

Date and time, in internal format,
when the file was created.

User identification of the file's
creator. Person id is 12 characters,
account id is 12 characters, and mode
id is 3 characters.

Date and time, in internal format,
when the file was last loaded (i.e.,
opened in RENEW mode). Zeros indicate
an unknown load date.

Date and time, in internal format,
when the retention period expires.
Zeros indicate no retention period.

Table 2-7 shows the contents of the modification information
block used by the Get File Accounting Information function.

Table 2-7. Access Information Block for $GTACT

Field Name

Size
(in

Bytes) Meaning

RFU

Modification
Date

Reserved for future use.

Date and time, in internal format,
when the file was last modified.
Zeros indicate an unknown
modification date.

2-225 CZ06-00

0226 - Not enough user memory for buffers or
structures

0228 - Invalid file type

022C - Access Control List violation

0238 - Invalid file description information

023D - File does not have accounting information.

2-227 CZ06-00

GET FILE INFORMATION

GET FILE INFORMATION (SGIFIL)

Function Code: 10/60

Equivalent Command: None

Retrieve information about the specified file. The file is
identified by supplying either a logical file number (LFN) or a
pathname. This macro call returns information such as file type,
device type, and, optionally, other file attributes (logical
record size, block or control interval size, space allocation,
etc.). In addition, the user can receive a description of the
keys of an indexed or random file.

FORMAT:

[label]

ARGUMENT:

$GIFIL [argument structure address]

argument structure address

Any address form valid for an address register; provides
the location of the argument structure defined below.
The argument structure must contain the following entries
in the order shown. (Entries marked with an asterisk (*)
are provided by the system. The user must supply the
other entries.) The size of each entry, whose descrip-
tions follow this list, is as follows:

J

Argument Structure Entry

logical file number
pathname pointer
*device type
*logical resource number
*file type
*data format
file attribute pointer
*terminal software device id

or
*file options
*data attributes
key or record descriptor pointer
*key or record descriptor size
*number of related files

2-228

Size
fin bytes)

2
4
2
2
1
1
4
2

CZ06-00

logical file number

A 2-byte LFN used to refer to the file; must be a
binary number in the range 0 through 255, or ASCII
blanks (X'20201), which indicate that an LFN is not
specified. If this entry contains blanks, the
pathname-pointer entry (below) must point to a
pathname.

pathname pointer

A 4-byte address that may be any address form valid
for an address register. If an LFN is specified in
the first entry, this entry (optionally) points to a
58-byte field in main memory into which the system
places the full absolute pathname associated with the
LFN. If the LFN entry contains ASCII blanks, this
entry points to the location where a pathname (which
must end with an ASCII space character) is found.
This pathname identifies the file for which the
system is to retrieve information. Zeros in this
entry indicate that the pathname is not to be
returned. If zeros are specified, the LFN entry
(above) must contain a nonblank value.

*device type

A 2-byte entry into which the system places the
4-digit hexadecimal device code of the device con-
taining the file. The devices, their codes, and
marketing identifiers include but are not limited to
the following:

Peripheral Device

Card Reader

Card Reader/Punch

Teleprinter

CRT Keyboard Console

Keyboard Typewriter Console

Device
Type
Code

2008

2088

2018
2019

2020

2018

Marketing Identifier

CRU9101/9102/9103/9104

CCU9101/PCU9101

TTU9102
TTU9101

DKU9101

TWU9101

2-229 CZ06-00

Peripheral Device

Mass Storage Unit

Diskette

Cartridge Disk

Cartridge Module Disk

Serial Printer

Line Printer

Device
Type
Code Marketing Identifier

2360 MSU9101/9105
(40-megabyte)

2361 MSU9102/9106
(80-megabyte)

2362 MSU9103 (143/127-
megabyte)

2363 MSU9104 (288/256-
megabyte)

2010 DIU9101/9102

2330 CDU9101
2331 CDU9102
2332 CDU9103
2334 CDU9104

2380 CDU9121 (Removable;
16-megabyte)

2380 CDU9122 (Removable;
16-megabyte)

2380 CDU9123 (Removable;
16-megabyte)

2380 CDU9124 (Removable;
16-megabytye)

2381 CDU9122 (Fixed;
16-megabyte)

2383 CDU9123 (Fixed;
48-megabyte)

2385 CDU9124 (Fixed;
80-megabyte)

2388 CDU9125 (Removable;
8-megabyte)

2389 CDU9125 (Fixed;
8-megabyte)

2004 PRU9101
2006 PRU9102

2000 PRU9104/9106
2001 same as above but with

Option PRF9102
2002 PRU9103/9105
2003 same as above but with

Option PRF9102

2-230 CZ06-00

Peripheral Device

Magnetic Tape

Device
Type
Code

2045

2046

204D

204E

2049

204A

2079

207A

*logical resource number

Marketing Identifier

MTU9104 - 9-track,
800 bpi, 45 ips

MTU9105 - 9-track,
800 bpi, 75 ips

MTU9109 - 9-trackr
800/1600 bpi, 45 ips

MTU9110 - 9-track,
800/1600 bpi, 75 ips

MTU9114 - 9-track,
1600 bpi, 45 ips

MTU9115 - 9-track,
1600 bpi, 75 ips

MTU9112 - 7-track,
556/800 bpi, 45 ips

MTU9114 - 7-track,
556/800 bpi, 75 ips

A 2-byte entry into which the system places the LRN
that corresponds to the device on which the specified
file is located.

*file type

A 1-byte entry into which the system places a code
identifying the file organization of the specified
file, as follows:

2-231 CZ06-00

D - Directory file
S - UFAS sequential disk file
R - UFAS relative disk file * , -~N
1 - UFAS indexed disk file)
C - UFAS random (CALC) disk file
V - UFAS dynamic disk file
X - UFAS alternate index
A - UFAS I-D-S/II data base area
T - Tape device
0 - Device file (see device type)
2 - Fixed-relative disk file without deletable

records
5 - Fixed-relative disk file with deletable records

-1 - IBM diskette

*data format

A 1-byte entry into which the system places a code
identifying the format of the data, as follows: ~v

F - Fixed-length records /̂
V - Variable-length records (binary count size)

file attribute pointer

A 4-byte address of a 32-byte block in main memory
into which the system can place file-attribute infor-
mation, as described below; may be any address form
valid for an address register or zeros (which indi-
cate that the information is not required). The file
attribute block is described in Tables 2-8 through
2-11.

*terminal software device id or disk file options

For terminal files, this 2-byte field is set by the
system to a 16-bit software device descriptor, which
categorizes a device, both logically and physically,
by major and minor codes. These codes are listed
under the description of the Get Device Information
($GIDEV) macro call.

For disk files, this 2-byte field is set by the
system to indicate options described in Table 2-13.

*data attributes

A 2-byte field for disk files set by the system to
indicate the type of data recorded on the file, the
type of terminal control information present in each
record of the file, and the conformity of the file's
data and format to GCOS 6 standards. The data
attribute field is described in Table 2-14.

2-232 CZ06-00

key or record descriptor pointer

A 4-byte address of an 18-byte field in main memory
into which the system can place key-descriptor infor-
mation, as described below; may be any address form
valid for an address register, or zeros (which indi-
cate that the information is not required).

*key or record descriptor size

A 2-byte field specifying the size (in words) of the
user-declared area to receive record descriptor
information.

If the record descriptor pointer above is null, then
the system returns here the size required for record
descriptor information. If the record descriptor is
not null, this field should be set to define the size
in words of the specified record descriptor area (if
zero, a size of nine words is assumed).

*number of related files

A two-byte field indicating the number of alternate
indexes associated with the specified file. The Get
Name macro call can be used to retrieve the names of
the alternate index files.

2-233 CZ06-00

Table 2-8. File Attribute Information for Device Files

Field Name

Logical Record
Size

Block Size

File Indicators

File Indicators

Size
(bytes Description

The maximum size of a logical record in
bytes. This is a unit of data transfer
for a device file.

Same as logical record size.

Indicators that define how the device is
currently being processed through the file
system:

Bit 0-2: input/output capabilities:

100 = Input only
010 = Output only
001 = Input and output

Bit 3-4: Detabbing option (i.e., whether
or not spaces will be substi-
tuted for tabs on output):

10 = Detabbing done
01 = No detabbing done

Bit 5-8: Asynchronous I/O option:

1000 = Asynchronous input (read ahead)
0100 = Asynchronous output (double

buffered)
1100 = Asynchronous input and output
0010 = Synchronous input (no read ahead)
0001 = Synchronous output (single

buffered)
0011 = Synchronous input and output

Bit 9-10: System buffer option:

10 = Use system buffer for
synchronous I/O

01 = Do not use system buffer (i.e.,
use the user's record area)

Bit 11-12: Transfer mode option:

10 = Field transfer
01 = Block transfer

2-234 CZ06-00

Table 2-8 (cont). File Attribute Information for Device Files

Field Name
Size
(bytes) Description

File Indicators
(cont.)

Device Specific
Word 1

Device Specific
Word 2

Initial Device
Specific Word 1

Initial Device
Specific Word 2

Reserved for
Future Use

18

Bit 13-14: Restart option:

10 = Automatic reconnect on powerfail
or line-drop condition

01 = Return error to user on
powerfail or line-drop condition

Bit 15: Reserved for future use (zero)

The device-specific word to be used for
connect/disconnect orders.

The device-specific word to be used
during read/write orders.

The initial setting of device-specific
word 1 as specified at system generation
time.

The initial setting of device-specific
word 2 as specified at system generation
time.

Zeros.

2-235 CZ06-00

Table 2-9. File Attribute Information for Tape Files

Field Name

Logical Record
Size

Block Size

Tape Padding
Character

Tape File
Sequence Number

Tape Label
Format

Tape Data
Types

Tape Data
Format

Tape File
Options

Size
(bytes) Description

The maximum size of a logical record
in bytes. This size does not include any
logical record header information.

The size of a block in bytes. This size
includes logical record and block header
information.

Character to be used as padding to
fill out the last block.

The relative sequence number of the
file.

X ' O l 1

X ' 0 2 1

X ' O l 1

X ' 0 2 '
X ' 0 3 '

X ' O l 1

X ' 0 2 '
X ' 0 3 '
X ' 0 4 1

Standard labels
Unlabelled tape

Honeywell
ANSI Level 3
EBCDIC (IBM)

Fixed-length records
Variable-length records
Undefined records
Spanned records

Defines packing, EBCDIC/ASCII transla-
tion, parity, file section number, and
block sequence number options:

Bit 0-1: 0 = Does not apply
1 = No packing for 7-track

tapes; EBCDIC/ASCII
translation for EBCDIC
9-track tapes

2 = Pack mode for 7-track
tapes; no EBCDIC/ASCII
translation for EBCDIC
9-track tapes

Bit 2-3: 0 = Does not apply
1 = Odd parity
2 = Even parity

Bit 4-5: Zeros

Bit 6-7: 1 = Block sequence number
(BSN) not supplied

2 = 6-character BSN supplied

:J

2-236 CZ06-00

Table 2-9 (cont). File Attribute Information for Tape Files

Field Name

Tape File
Section Number

Tape Retention
Period

Reserved for
Future Use

Size
(bytes)

2

2

18

Description

The relative section number
file.

Tape file retention period
of days.

Zeros.

of the

in number

2-237 CZ06-00

Table 2-10. File Attribute Information for Disk files

Field Name
Size
(bytes) Description

Logical Record
Size

CI Size

Current Allocation
in Size

Allocation Growth
Size

Maximum Allocation
Size

Amount of Free
Space per CI

The maximum size of a logical record
in bytes. This size does not include
the logical record header.

For unified files, the size of a con-
trol interval (CI) in bytes. This
size includes both CI and logical
record header information.

For fixed-relative files, the size of
a physical sector.

The value of the highest numbered CI
the file which contains data.

The number of additional CIs to be
allocated to the file whenever it
becomes necessary to do so. This is
the size of an additional extent to
be added to the file.

The maximum number of CIs that can be
allocated to the file. This is the
limit to which the file can grow.

Zeros returned for I-D-S/II areas.

For Unified File Access System (UFAS)
indexed files, the number of bytes to
be left free in each CI at file
loading time. This supplies space
for records to be inserted without
causing overflow.

For UFAS alternate indexes, the
number of bytes to be left free in
each index CI at index load time.
This supplies space for new index
entries without forcing the index to
reorganize itself (i.e., without
forcing a CI split to occur).

2-238 CZ06-00

Table 2-10 (cont). File Attribute Information for Disk files

S-c

Field Name

or Inventory
Threshold

Local Overflow,

Hash Results,

or CALC Interval

Number of Record
Descriptors

Reserved for
Future Use

Size
(bytes) Description

For UFAS dynamic and random files and
I-D-S/II areas, the percent of space
in a data CI which must be filled
before inventory information is
updated. Inventory information is
used to determine the amount of free
space available in data CIs (see the
Create File macro call).

For I-D-S/II areas, zeros indicate
that the file has no inventory.

This field is zero for other file
formats.

For UFAS indexed files, a value that
indicates how often a local overflow
CI has been allocated when the file
was last loaded.

For UFAS random files, the number of
possible hash results (see the Create
File macro call) .

For I-D-S/II areas, the number of
records initially set aside for each
CALC set. The number of possible
hashing results is equal to the
maximum number of data records in the
area divided by the CALC interval.

This field is zero for other file
formats.

For UFAS indexed files, random files,
alternate indexes and I-D-S/II areas,
the number of record descriptors in
the file.

This field is zero for other file
formats.

Zeros.

2-239 CZ06-00

Table 2-11. Additional File Attribute Information for
I-D-S/II Areas Only

Field Name

Number of Data
Records

Number of
Records Per CI

I-D-S/II Options

Global Pointer
Size

Global Pointer
Base

Size
(bytes) Description

For I-D-S/II areas, the maximum
number of data records which can
exist in the file.

This field is zero for other file
formats.

For I-D-S/II areas, the maximum
number of records per CI.

This field is zero for other file
formats.

For I-D-S/II areas, identifies the
hashing algorithm:

0 = GOCS 66-compatible hashing
algorithm.

1 = GCOS 6-MOD 600 Release 110 hash-
ing algorithm.

For UFAS I-D-S/II areas, the size of
a global pointer (data base key) —
2, 3, or 4 bytes.

This field is zero for other file
formats.

For I-D-S/II areas, the global
pointer value (data base relative
record address) assigned to the first
record in the area.

2-240 CZ06-00

Table 2-12. Record Descriptor Information for UFAS Indexed
Files, Random Files, Alternate Indexes, and I-D-S/II Areas

Field Name
Size
(bytes) Description

Record Descriptor
Size

Record Type

Number of Key
Components

Reserved for
Future Use

Record Address
Range

The actual size (in words) of all the
record descriptor information for the
file. This includes the size field,
all the record descriptors (one per
record type defined), as well as all
the key components defined for each
record descriptor.

The record type that uniquely
identifies the record described by
this record descriptor.

Bit 0: 1 = Duplicate keys allowed.
0 = Duplicate keys not

allowed.

Bits 1-3: Must be zero.

Bits 4-15: Record type must be
zero for random files,
indexed files and
alternate indexes.

If the record contains a key, the
number of components in the key.

This field is 1 for UFAS indexed
files.

Zeros.

For I-D-S/II areas, the minimum and
maximum record numbers for storing
records of this record type in the
file.

This field is zero for other file
formats.

2-241 CZ06-00

Table 2-12 (cont). Record Descriptor Information for UPAS
Indexed Files, Random Files, Alternate Indexes,

and I-D-S/II Areas

NOTES

1. Data type, size, and location constitute one
key component descriptor that can be repeated
as many times as the number of components per
key. Only one component per key is currently
supported for UFAS indexed files.

2. Record type, number of key components, number
of non-CALC sets, record address range, key com-
ponent data type, size, and location constitute
one record descriptor, which can be repeated as
many times as the number of record descriptors.
Key component fields can also be repeated (as
mentioned above) within a record descriptor.

2-243 CZ06-00

Table 2-13. Disk File Options Field of $GIPSB

Bit Option

Record Lock Option:

1 = Records are locked allowing n readers or one
writer.

0 = Records are not locked.

Record Format Option:

1 = Supports both fixed and variable length records.
0 = Supports only fixed length records.

Immediate Update Option:

1 = The disk is updated whenever a logical record is
updated.

0 = Updates are kept in memory until one of the follow-
ing occurs: buffers are full, a cleanpoint is
reached, or the file is closed.

File Recovery Option:

1 = "Before images" of updates are saved to recover
the file to its last consistent state.

0 = "Before images" are not saved.

4-5 (MBZ)

6 Damaged File Indicator:

1 = File is not damaged.
0 = The file's data content is in a damaged or incon-

sistent state.

Write Protect Option:

1 = Write operations are allowed.
0 = Write operations are not allowed.

8 (MBZ)

9 File Restoration Option:

1 = "After images" of updates are recorded for later
restoration of the file to its last consistent
state.

0 = "After images" are not recorded.

10-15 (MBZ)

2-244 CZ06-00

Table 2-14. Disk Data Attribute Field of $GIPSB

Bit

0-3

4-7

8-11

12-14

15

Data Attribute

Data Code Attribute:

0000 = Undefined data
0001 = Binary (noncharacter) data
0010 = ASCII (character) data

Must be Zero.

Terminal Control Attribute:

0000 = Unknown terminal control information
0001 = No terminal control information
0010 = GCOS 6 printer control information

Must be Zero

Foreign Data Attribute:

0 = GCOS 6 file data
1 = Non-native (non-GCOS 6) file data

DESCRIPTION:

Before this macro call is issued, tape-resident files must be
open (see the Open File macro call) so that the system can
retrieve the file attribute information. (File attribute
information is stored in the tape labels.)

If neither the pathname nor the LFN is specified, a status
code of 0205 is returned.

If an LFN is specified, the file must have been previously
reserved through that LFN via a Get File or Create File macro
call (or equivalent command).

To access specific entries in the argument structure, use the
following macro calls: Get File Information, Parameter
Structure Block Offsets; Get File Information Key Descriptor
Block Offsets; and Get File Information, File Attribute Block
Offsets.

2-245 CZ06-00

NOTES
X,

1. If the argument is coded, the system loads the
address of the argument structure into $B4; if
the argument is omitted, the system assumes that
$B4 contains the address of the parameter structure.

2. On return, $R1 contains one of the following status
codes:

0000 - No error

Olxx - Physical I/O error

0201 - Invalid pathname

0202 - Pathname not specified

0205 - Invalid argument

^
0206 - Unknown or invalid LFN ^^/

0209 - Named file or directory not found

020C - Volume not found

0222 - Pathname cannot be expanded; no current
working directory

_N

0225 - Not enough system memory for buffers or J
structures

0228 - Invalid file type

022C - Access control list (ACL) violation

0238 - Invalid file description information.

Example: \/

In this example, the Get File Information ($GIFIL) macro call
is used to obtain information about the file reserved in the
example for the Get File macro call. The argument structure
is defined as follows:

2-246 CZ06-00

F_INFO DC 5 LFN=5
DC <PATH5 POINTER TO PATHNAME
RESV 2-$AF
RESV 3 fO DEV. TYPE, LRN,

FILE/RECORD TYPE INFO AREA
DC <FILATT POINTER TO FILE ATTRIBUTE AREA
RESV 2-$AF
RESV 6,0 RESERVED

PATHS RESV 29,0 FIELD TO RECEIVE PATH
FILATT RESV 16,0 FIELD TO RECEIVE FILE ATTRIBUTE INFO

Since, as stated under "Assumptions for File System Examples"
Appendix A, the Get File Information, Parameter Structure
Block Offsets, and Get File Information, File Attribute Block
Offsets macro calls have been included in the procedure, any
entry in F_INFO and FILATT can be referenced after executing
the following macro call:

$GIFIL !F_INFO

The following instructions allow the reference to be made:

LAB $B6,F_INFO
LAB $B7,FILATT

Then, for example, to reference the system-supplied logical
resource number and control interval size, respectively, the
following address syllables would be specified in the
instructions:

$B6.I_LRN SYSTEM-SUPPLIED LRN
$B7.K_CISZ SYSTEM-SUPPLIED CI SIZE

2-247 CZ06-00

GET FILE INFORMATION, FILE
ATTRIBUTE BLOCK OFFSETS

GET FILE INFORMATION, FILE ATTRIBUTE BLOCK OFFSETS (SGIFAB)

Associated Macro Calls:

Get File Information; Get File Information, Parameter Struc-
ture Block Offsets

FORMAT:

[label] $GIFAB [first letter of tags]

ARGUMENT:

first letter of tag

Allows the user to rename the tags to avoid conflicts with
other labels in the same program.

Structure for Tape-Resident Files:

Word

0

1

2

3

4

5

6

7
8
9

10
11
12
13
14
15

Fields

Logical Record (transfer) Size

Block size

File Sequence Number

Label Format and Data Type

Data Format and Options

File Section Number

Retention Period

Reserved

2-248 CZ06-00

Structure for Device Files:

Word

0

1

2

3

4

5

6

7
8
9

10
11
12
13
14
15

Fields

Logical Record (transfer) Size

Block size

File Indicators

Device-Specific Word 1

Device-Specific Word 2

Initial Device-Specific Word

Initial Device-Specific Word

1

2

Reserved

2-249 CZ06-00

Structure for Disk Files:

Word

0

1

2

3

4

5

6

7

8

9
10
11
12
13
14
15

Fields

Logical Record Size

Control Interval Size

Current Allocation Size

Allocation Growth Size

Maximum Allocation Size

File-Specific Field; see

File-Specific Field; see

File-Specific Field; see

File-Specific Field; see

details below

details below

details below

details below

Reserved

Generated Offset Tags:

For tape-resident files:

Tag

T_LRSZ
T_BKSZ
T_TFSN

T_TLF
T_TDT
T_TDF
T_TOPT

TJTFCN
T_TRTN
T_TRFU
T_SZ

Corresponding
Offsets

(in words)

0
+1
+2

+3
+3
+4
+4

+5
+6
+7
16

Entry Name

Logical record size
Block size
File sequence number (second
byte)
Label format (first byte)
Data type (second byte)
Data format (first byte)
Options for Block Sequence
Number (second byte)
File section number
Retention period
Reserved
Size of structure (in words);
not a field in the block

2-250 CZ06-00

/" For Device Files;

Corresponding
Offsets

Tag

T_LRSZ

T_BKSZ

T_FIND

TJSW1

T_DSW2

T__ISW1

T_ISW2

(in words)

0

+1

+2

+3

+4

+5

+6

T_SZ 16

For disk-resident files:

Tag

K_KRSZ

K_CISZ

K_CRSZ

K_GRSZ

K_MXSZ

K_SZ

Corresponding
Offsets

(in words)

0

+1

+2

+3

+4

+16

Entry Name

Logical record size

Block size

File indicator word

Device-specific word 1 (for
connect/disconnect orders)

Device-specific word 2 (for
read/write orders)

Initial (sysgen) device-
specific word 1

Initial (sysgen) device-
specific word 2

Size of structure (in words);
not a field in the block

Entry Name

Logical record size

Control interval/physical
sector size

Current allocation size

Allocation increment size

Maximum allocation size

Size of structure (in words);
not a field in the block

2-251 CZ06-00

Specific to indexed files:

Tag

K_FPC

K_LOV

K_HASH

K_NKD

Specific to

K_INVT

K_HASH

K_NRD

Specific to

K_FPC

K_NRD

Specific to

K_INVT

K_CINT

K_NRD

Corresponding
Offsets

(in words)

+5

+6

+6

+7

random and virtual

+5

-1-6

+7

alternate indexes:

+5

+7

I-D-S/II data base

+5

+6

+7

Entry Name

Amount of free space per con-
trol interval (indexed
files)

Local overflow allocation
increment (indexed files)

Number of hash results (random
files)

Number of key descriptors

files:

Inventory threshold

Number of hash results

Number of record descriptors

Amount of free space per
index control interval

Number of record descriptors

areas:

Inventory threshold

CALC interval

Number of record descriptors

J

J

2-252 CZ06-00

GET FILE INFORMATION,
KEY DESCRIPTOR BLOCK OFFSETS

GET FILE INFORMATION. KEY DESCRIPTOR BLOCK OFFSETS (SGIKDB)

Associated Macro Calls:

Get File Information; Create File; Get File Information,
Parameter Structure Block Offsets; Create File, Parameters
Structure Block Offsets

FORMAT:

[label] $GIKDB [first letter of tags]

ARGUMENT:

first letter of tag

Allows the user to rename the tags to avoid conflicts
with other labels in the same program.

Structure:

Word

0

1

2

3
4
5
6

7

8

Fields

Reserved

Record Type

No. of Key Componen

Reserved

Key Type

Key Offset

ts Reserved

Key Length

NOTE

Reserved fields must be set to zeros to
ensure compatibility with later ver-
sions of this structure.

2-253 CZ06-00

Generated Offset Tags:

Corresponding
Offsets

Tag fin words)

Y_RT +1
Y_NKC +2
Y_KTYP +7
Y_KLEN +7
Y_KOFF -1-8
Y_SZ 9

Entry Name

Record type
Number of key components
Key type (first byte)
Key length, in bytes (second byte)
Key offset, in bytes
Size of structure (in words); not a
field in the block

NOTE

This macro call has the same effect as the Create
File Key Descriptors Block Offsets

2-254 CZ06-00

GET FILE INFORMATION,
PARAMETER STRUCTURE BLOCK

OFFSETS

GET FILE INFORMATION, PARAMETER STRUCTURE BLOCK OFFSETS (SGIPSB)

Associated Macro Calls:

Get File Information; Get File Information, File Attribute
Block Offsets; Get File Information, Key Descriptors Block
Offsets

FORMAT:

[label] $GIPSB [first letter of tags]

ARGUMENT:

first letter of tag

Allows the user to rename the tags to avoid conflicts
with other labels in the same program.

Structure:

Word

0

1
2

3

4

5

6
7

8

9

10
11

12

13

Fields

Logical File Number (LFN)

Pathname Pointer

Device Type

Logical Resource Number

File Type Data Format

File Attribute Block
Pointer

Terminal Software Device
id or Disk File Options

Disk File Data Attributes

Key Descriptors Block
Pointer

Size of Record Descriptor
Information

Numoer of Related Files

2-255 CZ06-00

Generated Offset Tags:

Corresponding
Offsets

Tag (in words)

I_LFN 0
I_PTHP +1
I_DTYP +3
I__LRN +4
I_FTYP +5
I_RTYP +5
I_FABP +6

I_SDID +8

I_OPT +8
I_ATTR +9
I_KDP +10

I_RDSZ +12

I_NRF +13
I_SZ 14

Entry Name

Logical file number (LFN)
Pointer to pathname
Device type
Logical resource number
File type (first byte)
Data format (second byte)
Pointer to file attributes
(see $GIFAB description)
Terminal software device
descriptor id
Disk file options
Disk file data attributes
Pointer to key descriptors
(see $GIKDB description)
Size of record descriptor
information
Number of related files
Size of structure (in words);
not a field in the block

2-256 CZ06-00

GET FILE PARAMETER
STRUCTURE BLOCK OFFSETS

GgT FILE PARAMETER STRUCTURE BLOCK OFFSETS (SGTPSB)

Associated Macro Call: Get File

FORMAT:

[label] $GTPSB [first letter of tags]

ARGUMENT:

first letter of tag

Allows the user to rename the tags to avoid conflicts
with other labels in the same program.

Structure:

Word

0

1
2

3

4

5

6

7

8

9

10

Fields

Logical File Number (LFN)

Pathname Pointer

Disk Concurrency Disk Mount Option

Tape Block Size

Tape Logical Record Size

No. of Buffers

Tape Label Format

Tape Data Format

Tape File Sequence No.

Tape Data Type

Tape (File Options)

Tape File Section Number

Tape Retention Period

2-257 CZ06-00

Generated Offset Tags:

Corresponding
Offsets

Tag fin words)

G_LFN 0
G_PTHP +1
G_CONC +3
G_MNT +3
G_BKSZ +4
G_LRSZ +5
G_NBF +6
G_TFSN +6
G_TLF +7
G_TDT +7
G_TDF -1-8
G_TOPT +8
G_TFCN +9
G_TRP +10
G_SZ 11

Entry Name

Logical file number
Pointer to pathname
Concurrency control (first byte)
Mount option (second byte)
Tape block size
Tape logical record size
Number of buffers (first byte)
Tape file sequence number (second byte)
Tape label format (first byte)
Tape data types (second byte)
Tape data format (first byte)
Tape file options (second byte)
Tape file section number
Tape retention period
Size of structure (in words); not a
field in the block

2-258 CZ06-00

GET FILE RECORD DESCRIPTOR
BLOCK OFFSETS

GET FILE RECORD DESCRIPTOR BLOCK OFFSETS (SGIRDB)

Associated Macro Calls:

Create File; Get File Information; Create File Parameter
Structure Block Offsets; Get File Information, Parameter
Structure Block Offsets

FORMAT:

[label] $GIRDB [first letter of tags]

ARGUMENT:

first letter of tag

Allows the user to rename the tags to avoid conflicts
with other labels in the same program.

Structure:

Word

0

1

2

3
4

5
6

Fields

Size of Record Descriptor Block (including this field)

Record Type

Number of Key components Reserved

Low Record Number

High Record Number

2-259 CZ06-00

Generated Offset Tags:

Corresponding
Offsets

Entry Name

Size of record descriptor block
(including this field)

Record type

Number of key components

Low record number

High record number

NOTE

This macro call has the same effect as the Create
File Record Descriptor Block Offsets macro call.

Tag

Y_RDSZ

Y_RT

Y_NRC

Y__LRNG

Y_HRNG

(in words)

0

4-1

+2

+3

+4

J

2-260 CZ06-00

GET MEMORY/GET
AVAILABLE MEMORY

GET MEMORY/GET AVAILABLE MEMORY (SGMEM)

Function Code: 04/02 (Get Memory), 04/03 (Get Available Memory)

Equivalent Command: None

Allocate to the issuing task the requested amount of contigu-
ous memory. The memory is allocated as a block from the memory
pool of the task group to which the issuing task belongs. If the
specified amount of contiguous memory is not available, perform
one of the following actions:

• Return immediately to the issuing task without performing
any allocation (Get Memory with DENY specified).

• Suspend the issuing task until the required memory becomes
available (Get Memory with WAIT specified).

• Allocate the largest contiguous block of memory currently
available in the memory pool and return to the issuing
task (Get Available Memory with AVAIL specified).

FORMAT:

$GMEM [location of maximum number of words required],
"(DENY)1
{WAIT >
.(AVAIL).

ARGUMENTS:

location of maximum number of words required

Any address form valid for a data register; provides the
maximum number of words of memory to be allocated as a
block to the issuing task. The value used cannot exceed
the size of the pool minus the memory block header.
(Each bit in the bit map represents a 32-word alloca-
tion.) The value for the number of words cannot exceed
1,048,575 (minus the memory block header).

DENY

If the number of words of memory specified in argument 1
is not available either in the task group's memory pool
or, if the task group can extend into it, in the batch
group's memory pool, return immediately to the issuing
task. If argument 2 is omitted, DENY is
vaiae.

2-261 CZ06-00

WAIT)

If the number of words of memory specified in argument 1 --x
is not available either in the task group's memory pool)
or, if the task group can extend into it, in the batch
group's memory pool, suspend the issuing task until the
memory becomes available. Activate the task, allocate
the memory, and return to the task.

AVAIL

If the number of words of memory specified in argument 1
is not available either in the task group's memory pool
or, if the task group can extend into it, in the batch
group's memory pool, allocate to the issuing task the
largest contiguous block of memory currently available.

DESCRIPTION:

This call allows the issuing task to dynamically obtain a)
block of memory from the task group's memory pool. If argu- __̂ '
ment 2 is DENY, the task obtains a block of the specified
size or no block at all. If argument 2 is WAIT, the task is
suspended until the requested amount of memory becomes avail-
able. If the online pool extended into the batch pool, the
largest amount of memory available is allocated from the
batch pool.

If argument 2 is AVAIL, the task obtains a block of the
specified size or the largest block (less than the specified t_>
size) that is currently available.

When AVAIL (Get Available Memory) is specified, the actual
size of the memory block allocated may be much smaller than
the desired size. This situation occurs because the Memory
Manager does not wait for memory to become available.
Rather, it checks for contiguous memory of the specified size
and if none is available, allocates the largest contiguous
block of memory that is available. If no memory is avail- \
able, the system returns a status code of 0602. ^/'*

NOTE

When AVAIL is specified, all of available memory
may be removed from the pool. Other functions
(including the command processor) that require
memory from that pool then will not be able to
execute until memory becomes available.

2-262 CZ06-00

' N, When a return is made to the issuing task, the actual size of
the supplied contiguous memory block is placed in $R6 and

-̂̂ $R7. "Actual size" has the following meaning. Memory is
i allocated in 32-word units. A block of memory contains an

integral number of 32-word allocation units. A memory block
also contains a header whose size is three words. The value
returned in $R6 and $R7 is the specified number of words
rounded up to the next higher allocation unit, minus the size
of the memory block header.

NOTE

If AVAIL is specified and a block of the requested
size could not be found, the actual size of the
block is that of the largest contiguous memory
block available, minus the size of the header.

The maximum size of a memory block that can be obtained is
1,048,575 words, minus the memory block header. The block

' ^> size cannot exceed the pool size.

^ On return to the issuing task, $B4 contains the address of
the first usable word in the block (first word after the
block header).

The Get Memory/Get Available Memory functions enable the task
to dynamically acquire additional memory in response to pro-
cessing needs. When a memory block is no longer required, it
must be returned to the task group's memory pool (by a Return
Memory or Return Partial Block of Memory macro call). If a
task repeatedly acquires memory blocks and does not return
them, the task group memory area will become empty (or nearly
so), denying other tasks the opportunity to obtain memory
blocKs.

NOTES

1. The system places the number of contiguous
words of memory required, supplied by argument _
1, in $R6 and $R7. If this argument is =$R7,

-̂ the system assumes that $R6 and $R7 contain
the number of words desired.

When argument 2 is DENY, $R2 is set to zero.
When argument 2 is WAIT, $R2 is set to -1.
When argument 2 is AVAIL, $R2 is not set.
When argument 2 is omitted, $R2 is set to zero
(DENY).

2-263 CZ06-00

3. On return to the issuing task, $R1, $R6, $R7,
and $B4 contain the following information:

$R1 - Return status; one of the following:

0000 - If the call specified W/IT or
DENY, memory allocation was
successful. If the call
specified AVAIL, at least one
memory unit was allocated.

0601 - If the call specified WAIT or
DENY, requested contiguous memory
exceeds defined pool size; not
applicable if the call specified
AVAIL.

0602 - If the call specified WAIT or
DENY, the requested contiguous
memory was not obtained. If the
call specified AVAIL, no memory
allocation units were available.

The following codes could be returned if WAIT
or DENY was specified.

0818 - No task group with specified
group identifier exists (system
software error).

081A - Suspend in progress (system soft-
ware error).

081B - Rollout of online task group
attempted (system software
error).

081D - Batch task group already rolled
out (system software error).

081E - Unrecoverable media error during
rollout.

$R6, $R7 - Actual size of contiguous memory
block supplied, rounded up to the
nearest multiple of 32 words minus
3-word block header.

$B4 - If $R1 was 0000, address of first
usable word in memory block.

2-264 C206-00

Examples:

In this example, the Get Memory/Get Available Memory macro
call is used to obtain 2500 words of memory from the issuing
task group's memory area. If the memory is available, the
system returns with a status of 0000 in $R1, the actual size
of the memory area obtained in $R6 and $R7, and the address
of the first usable word of the area in $B4. The example
saves the address of the memory area in the field labeled
M__PTR and continues processing. If 2500 contiguous words of
memory are not available, the system returns with a status of
0602 in $R1. If the pool size is less than 2500 words/ the
system returns error code 0601 in $R1.

$GMEM =2500
BNE2 $R1,NO_MEM
STB $B4,M_PTR

M_PTR DC <$

In this example, the Get Memory/Get Available Memory macro
call is used to obtain the largest contiguous area of memory,
not exceeding 5000 words, available in the issuing task
group's memory area. If any memory is available, the system
returns with a status of 0000 in $R1, the actual size of the
memory area obtained in $R6 and $R7, and the address of the
first usable word of the area in $B4. If all of the memory
in the task group's memory area is in use at the time, the
system returns with a status of 0602 in $R1.

$GMEM =5000,AVAIL

2-265 CZ06-00

GET NAME

NAME (SGNFIL)

Function Code: 10/3C

Equivalent Command: None

Retrieve the names of alternate index files associated with a
specified file.

FORMAT:

[label] SGNFIL [argument structure address]

ARGUMENT:
)

argument structure address '

Any address form valid for an address register; provides
the address of the argument structure provided below.
The argument stucture must contain the following entries
in the order shown. (Entries marked with an asterisk are
provided by the system.)

logical file number Y

A 2-byte logical file number (LFN) used to refer to
the file; must be a binary number from 0 to 255 or
ASCII blanks (X'2020I)r which indicate that an LFN is
not specified.

pathname pointer

A 4-byte address that may be any address form valid
for an address register; points to a pathname (which >
must end with an ASCII space character) that identi- J

fies the directory in the file hierarchy in which the ^
file is found. Binary zeros in this entry indicate
that a pathname is not specified.

file number

The number of the alternate index file for which the
information is to be retrieved.

*name

A 12-byte field into which the system places the
alternate index file name that is related to the
given file number.

2-266 CZ06-00

*file type

A 2-byte field into which the system places the type
of file (X = alternate index).

*index id

A 2-byte field into which the system places a number
that uniquely identifies the index and that can later
be specified when accessing a data file.

*total number of related files

A 2-byte field into which the system places the total
number of related alternate index files associated
with a specified file. When the file number entry
above is equal to the total number of related files,
there are no more related files.

DESCRIPTION:

This macro call retrieves the names of the alternate index
files associated with a data file. The data file in the
argument structure can be specified by either the LFN or
pathname. If an LFN is specified, the data file must have
been previously reserved through that LFN with a Get File
function.

If the names of all the alternate index files associated with
a data file are required, multiple calls must be made with
the file number commencing at one and increasing by one until
the total number is reached. If the file number specified
exceeds the total number of alternate index files, an error
code (020F) is returned.

NOTES

1. If the argument structure address is coded,
the system loads the address of the argument
structure into $B4? if the argument is
omitted, the system assumes that $B4 contains
the address of the argument structure.

2. On return, $R1 contains one of the following
status codes:

0000 - No Error

01XX - Media Error

2-267 CZ06-00

0201 - Invalid pathname ^

0202 - Pathname not specified

0206 - Unknown or invalid LFN J

0209 - Named file or directory not found

020C - Volume not found

020F - Link or file number not found

0222 - Pathname cannot be expanded; no working
directory

0225 - Not enough system memory for buffers or
structures

0226 - Not enough user memory for buffers or
structures

022C - Access control list (ACL) violation.

2-268 CZ06-00

GET NAMES PARAMETER
STRUCTURE BLOCK OFFSETS

GET NAMES PARAMETER STRUCTURE BLOCK OFFSETS (SGNSPB)

Associated Macro Call: Get Name

FORMAT:

[label] $GNPSB [first letter of tags]

ARGUMENT:

first letter of tag

Allows the user to rename the tags to avoid conflicts
with other labels in the same program.

Structure:

Word

0

1
2

3

4
5
6
7
8
9

10

11

12

13

Fields

Logical File Number

Pointer to Pathname

File Number

File Name

File Type

Index id

Total Number of Related Files

Reserved

2-269 CZ06-00

Generated Offset Tags:

Corresponding
Offsets

Tag (in Words)

N_LFN 0
N_PTHP +1
N_FNUM +3
N_FNME +4
N_FTYP +10
N_DDID +11
N_NRF +12
N_RFU +13
N SZ 16

Entry Name

Logical File Number
Pointer to pathname
File number
File name
File type
Index id
Total number of related files
Reserved
Size of structure (in words);
not a field in block

J

2-270 CZ06-00

GET WORKING DIRECTORY

GET WORKING DIRECTORY (SGWDIR)

Function Code: 10/CO

Equivalent Command: List Working Directory (LWD)

Returns the name of the current working directory. This
function is usually done outside program execution.

FORMAT:

[label] $GWDIR [argument structure address]

ARGUMENT:

argument structure address

Any address form valid for an address register; provides
the location of the argument structure defined below.
The argument structure must contain the following entry.

working directory pathname

A 45-byte field, in main memory, into which the
system can place the full absolute pathname of the
current working directory.

DESCRIPTION:

This macro call returns the full absolute pathname of your
current working directory. Although the pathname may be
shorter than the maximum 45 characters, the argument struc-
ture must be large enough to accommodate the maximum number
of characters.

NOTES

1. If the argument is coded, the system loads the
address of the argument structure into $B4; if
the argument is omitted, the system assumes
that $B4 contains the address of the argument
structure.

2-271 CZ06-00

2. On return, $R1 contains one of the following
status codes:

0000 - No error

0205 - Invalid argument

0222 - Pathname cannot be expanded; no working
directory.

Example:

This example assumes the following file system hierarchy (see
the System Concepts manual) and that the working directory is
SUB.DIR.BB1.

VOL01

1
P"""™"

SU8.DIR.A
1r

SU8.DIR AA

1
FILE02

i
SUB.OIR.8

FILE01 SUB.DIR.BB

FILE03 SU8.DIR.BB1

I

FILE04 SU8.0IR B1B

I
FILE05

\

Coding the Get Working Directory macro call causes the system
to place the full absolute pathname of the working directory,
defined below, into the specified argument structure:

$GWDIR ICURDIR

CURDIR RESV 29

The path placed in the main memory field labeled CURDIR is:

~VOL01>SUB. DIR. B>SUB. DIR. BB>SUB. DIR. BB1AAAAAA

2-272 CZ06-00

GROUP IDENTIFICATION

GROUP IDENTIFICATION (SGRPID)

Function Code: 14/08

Equivalent Command: USER TGID

Returns the 2-character task group id for the current group
or for the group designated by the user identification specified
in the macro call.

FORMAT:

[label] $GRPID [location of user id field address]

ARGUMENT:

location of user id field address

Any address form valid for an address register; provides
the address of a field containing the user id of the task
group whose group is to be returned. When the argument
is null, the system returns the group id of the task
group where the issuing task is running. The user id
value, when specified, should be expressed as
person.account.mode followed by a space.

DESCRIPTION:

This macro call returns in $R6 the group id of the designated
task group. When the argument is null, the system returns
the id of the task group where the issuing task is running.
For any other group id to be returned, the user must know the
user id of that group. (The format of the user id is
described under the Login command in the Commands manual.)
Note that the User Identification macro call returns the user
id of the task group of the task that issues the call.

NOTES

1. The system placed in $B4 the address of the
user id field supplied by the argument. When
the argument is omitted, the system assumes
that $B4 contains the address of the user id
field.

2-273 CZ06-00

2. On return, $R1 and $R6 contain the following:

$R1 - Return status code; one of: ~̂tl

0000 - No error
0817 - Memory access violation
0837 - User not logged in
0838 - Invalid user id format

$R6 - Task group id of the designated task
group.

Example:

The macro call requests the group id of its own task group.
The id will be returned in $R6.

$GRPID =Null

2-274 CZ06-00

GROW FILE

GROW FILE (SGRFIL)

Function Code: 10/38

Equivalent Command: Grow File

Expand disk space allocated to a file and/or modify current
values for the file's maximum growth and maximum size.

FORMAT:

[label] $GRFIL [parameter' structure address]

ARGUMENT:

parameter structure address

Any address form valid for an address register; provides
the address of the parameter structure described below,
which must contain the following entries in the order
shown.

Size
Parameter Structure Entry (in bytes)

logical file number 2
pathname pointer 4
space allocation options 1*.
expansion size 2
growth size f 2
maximum size 2
(reserved for future use) 18 ~>.

logical file number

A 2-byte LFN specifying the file to be expanded; must
be a binary number in the range 0 through 255, or
ASCII blanks (which indicate that an LFN is not
specified). Either a LFN or pathname pointer (below)
must be specified.

pathname pointer • " *

A 4-byte entry that may be any address form valid for
an address register; points to a pathname (which must
end with an ASCII space character) that identifies the
file to be expanded. Binary zeros indicate that a
pathname is not specified.

2-275 CZ06-00

space allocation options

A 2-byte entry indicating where on a multivolume set
additional space is to be allocated. The bits of this
word have the following significance:

bits 0-10: MBZ

bits 11-15: 00000 = Allocate space on the volume
having the most available space

nnnnn = Allocate space on the 'nnnnn'th
volume in the set.

Bits 11-15 are meaningful only if an expansion size
(below) is specified.

expansion size

A 2-byte entry specifying the number of control
intervals by which the file is to be expanded by
execution of this call.

growth size

A 2-byte entry specifying, in control intervals, the
smallest increment by which the file's space can be
expanded. The value specified in this entry modifies
the value already specified or defaulted to by the
Growth Size argument of the Create File function, or
already specified by a previous invocation of this
macro call (The default growth size is 40 physical
sectors.) Zeros signify that the current growth size
is to be retained.

maximum size

A 2 byte entry specifying, in control intervals, the
maximum size to which the file can grow. The value
specified in this entry modifies the value, if any,
already specified by the Maximum Size argument of the
Create File function, or already specified by a
previous invocation of this macro call. The value
specified by this entry cannot be less than the
current, logical end-of-data. Zeros signify that the
current maximum size is to be retained. A value of -1
(FFFF) means that the new maximum growth size,
established by this call, is unlimited.

Reserved for future use

This 18-byte field must be zero.

2-276 CZ06-00

DESCRIPTION

This macro call expands the disk space allocated to a file;
at the same time, or alternatively, it modifies the current
value of the increment by which the file can grow and of the
the limit to which the file can grow. The current growth
size and maximum size values are established by the Create
File function or by an earlier invocation of this function.
Normally, this function is performed outside of program
execution by means of the Grow File command.

The space allocation options, described above, allow the user
to specify a member of a multivolume set on which additional
space is to be allocated. By specifying, in a sequence of
calls, different volumes for the same file, the user can
spread a file's space over several volumes in order to reduce
disk arm movement.

The function attempts to allocate the specified expansion
size in a single extent. If this is not possible, the
function allocates the largest available extents. The
segments allocated must be as large as the current maximum
growth size. If the full expansion size cannot be allocated
in segments of allowable size, the function allocates part of
the expansion size, returning an 0215 status (not enough
contiguous disk space available),

When expanding an online, multivolume file, the function
seeks contiguous space on the starting member. (This is the
member specified in the space allocation option parameter or,
if no volume was specified, the volume having the most
available space.) If segments equal to the specified
expansion size and of allowable size are not available on the
starting member, the function seeks contiguous space on other
members of the set.

The disk file to be grown can be specified in the parameter
structure by either an LFN or pathname. If specified by an
LFN, the file must have been previously reserved through that
LFN by the Create File or Get File function.

To expand a file beyond the current maximum file size, the
caller must modify the maximum file size by the same call
that expands the file.

When an alternate index is specified as the file to be grown,
space is allocated only for that index — not for the
associated data file.

2-277 CZ06-00

A restorable file (i.e., one created or modified with the ' j
-RESTORE attribute) cannot be expanded unles the system's ^/
image journal is open. „-.

.;
This macro call cannot be used to expand the following types
of file:

• Non-expandable files (i.e., files whose specified
initial size is the same as the specified maximum
size)

• Temporary disk files

• Directories.

NOTES

1. The system places in $B4 the address of the
parameter structure supplied by the argument.
If the argument is omitted, $B4 is assumed to j
contain the parameter structure address. ^̂

2. On return, $Rl contains one of the following
return codes:

0000 - No error

0201 - Invalid pathname
-

0202 - Pathname not specified . • _j

0205 - Invalid argument

0206 - Unknown or invlaid LFN

0209 - Named file or some superior directory
not found

020C - Volume not found %)
/'

0213 - Cannot provide requested file
concurrency

0215 - Not enough contiguous disk space
available

0222 - Pathname connot be expanded; no working
directory

0225 - Not enough system memroy for buffers or
structures

2-278 CZ06-00

0226 - Invalid file type (a device or
directory)

022C - Access control list (ACL) violation

0260 - Journal file not open.

2-279 CZ06-00

GROW FILE PARAMETER
BLOCK OFFSETS

GROW FILE PARAMETER BLOCK OFFSETS (SGRPSB)

Associated Macro Call: Grow File

FORMAT:

[label] $GRPSB [first letter of tags]

ARGUMENT:

first letter of tag

Allows the user to rename the tags to avoid conflicts with
other labels in the same program.

Structure:

Word

0

1
2

3

4

5

6

7
8
9
10
11
12
13
14
15

Fields

Logical resource number

Pathname pointer

Space allocation options

Expansion size

Growth size

Maximum size

Reserved for future use

J

2-280 CZ06-00

Generated Offset Tags:

Corresponding
Offsets

Tag fin words) Entry Name

G__LRN 0 Logical resource number
G_JPTHP +1 Pathname pointer
G_J)PT +3 Allocation options word
G_EXSZ +4 Expansion size (in CIs)
G^GRSZ +5 New growth size (in CIs)
G_MXSZ +6 New maximum size (in CIs)
G_SZ 16 Size of structure (in words); not

a field in the block.

2-281 CZ06-00

HOME DIRECTORY

HOME DIRECTORY (SHDIR)

Function Code: 14/OB

Equivalent Command: List Home Directory (LHD)

Return the pathname of the initial working directory of the
calling task group to a 45-character receiving field.

FORMAT:

[label] $HDIR [location of home directory field address]

ARGUMENT:

location of home directory field address

Any address form valid for an address register; provides
the address of a 45-character, aligned, nonvarying field
into which the system places the pathname of the default
working directory of the calling task group.

DESCRIPTION:

This macro call returns the pathname of the initial working ,.J
directory to a field in the issuing task. The pathname
returned is that specified in the -HD argument of the LOGIN
command. If the -HD argument was not specified, the pathname
returned is that set according to user registration arguments
or system defaults.

NOTES

1. The system places the address of the receiving \
home directory field, supplied by argument 1, ^
in $B4; if this argument is omitted, the
system assumes that $B4 contains the correct
address.

2. On return, $R1 contains one of the following
status codes:

0000 - No error
0817 - Memory access violation

On return, $B4 contains the address of the
receiving field.

2-282 CZ06-00

Example:

In this example, the pathname of the initial working direc-
tory of the calling task group is stored in the 45-character
field labeled DEF_WD.

$HDIR !DEF_WD

DEF__WD RESV 22,0
DC 0

2-283 CZ06-00

INPUT/OUTPUT REQUEST BLOCK

INPUT/OUTPUT REQUEST BLOCK (SlORB)

Function Code: None

Equivalent Command: None

Generates an input/output request block (IORB). The length
of the IORB is 11 to 12 words, unless extended (see extension
indicator argument).

FORMAT:

[label] $IORB [logical resource number],

J')<WAIT \
(NWAIT, [issuing task termination action],)
[buffer address],
[buffer byte alignment],
[buffer range],
[extension indicator]

ARGUMENTS:

logical resource number

A value from 0 through 252 specifying the logical
resource number (LRN) of the device involved in the
request. The value specified must be that of a system
LRN. If this argument is omitted, the left byte of the
I__CT1 word (see Appendix C) is set to zero.

[WAIT 1 ,
INWAIT]

One of the following values is specified to indicate
whether the requesting task is to be suspended until the
completion of the request:

WAIT - Suspend the issuing task until the request
is complete (set the W-bit to zero)

NWAIT - Do not suspend the issuing task (set the
W-bit to one)

If this argument is omitted, the value NWAIT is assumed.

If WAIT is specified, argument 3 (issuing task termina-
tion action) must be omitted.

2-284 CZ06-00

issuing task termination action

One of the following values is specified to indicate the
action to be taken upon the completion of the request.

SM=aa - Do not suspend the issuing task; release
(V-op) the semaphore identified by aa (two
ASCII characters), when requested task is
completed.

RB=label - Do not suspend the issuing task; issue a
request for the request block identified by
label, when requested task is completed.

Note that the requesting task must be asynchronous, may
not wait on the requested task later on, and can only
point to a task request block (TRB). The requested task
must have already been created (not spawned), be asyn-
chronous, and have a valid LRN. When the requesting task
terminates, the TRB pointed to by "label" must be
inactive.

If this argument is omitted (or argument 2 is WAIT), the
generated IORB contains no termination option.

buffer address

Address of a buffer area to be used for input/output
transfers involving the specified device. If this argu-
ment is omitted, the buffer address field in the gener-
ated IORB is initialized to zeros.

buffer byte alignment

A value specifying the beginning byte of the buffer, as
follows:

R - Buffer begins in right byte of word address
specified by argument 4

L - Buffer begins in left byte of word address
specified by argument 4

If this argument is omitted, a value of L is assumed,

buffer range

A value specifying the length, in bytes, of the buffer.
If this argument is omitted, the generated ICRB's range
value is initialized to zero.

2-285 CZ06-00

extension indicator

The following value, when specified, indicates that the
IORB is to be extended beyond the standard IORB. The
argument causes space for the IORB extension to be gener-
ated, resulting in an extended IORB (see Appendix C).
When the argument is omitted, the system generates a
standard-length IORB.

EXT - Generate an extended IORB

DESCRIPTION:

The IORB is usd as the standard means of requesting a phys-
ical I/O service. The IORB contains an LRN that identifies
the I/O device being addressed. The IORB also identifies the
location and size of the buffer to be used for physical I/O
transfers as well as the specific function requested.

Example:

In this example, the Input/Output Request Block macro call
generates a standard IORB having an LRN of zero, a WAIT
status indicating that the requesting task will wait for I/O
completion, and a label (DBUF) that gives the location of the
140-byte buffer area.

CONIO $IORB 0,WAIT,,DBUF,,140

2-286 CZ06-00

INPUT/OUTPUT REQUEST
BLOCK OFFSETS

INPUT/OUTPUT REQUEST BLOCK OFFSETS (S T O R E D)

Counterpart: $IORB (see Input/Output Request Block macro call)

Generated Label Pref ixes :

I__RRB/I_SEM
IORB label offset 0 (set, used by system)

I_CT1
I_CT2
I_ADR
I_RNG
I-DVS
I_RSR
X_ST

Extended words are:

I_DV2
I_FCS
I_HDR
X_ST2
I_QDP
I_TAB
I_CON

See Appendix C for the format of the input/output request
block.

2-287 CZ06-00

INTERNAL DATE/TIME,
CONVERT TO

INTERNAL DATE/TIME. CONVERT TO (SlNDTM)

Function Code: 05/07

Equivalent Command: None

Convert the external format date/time value to an internal
format date/time value.

FORMAT:

[label] $INDTM [location of address of external date/time],
[location of address of receiving field],
[location of size of external date/time]

ARGUMENTS:

location of address of external date/time

Any address form valid for an address register; provides
the address of a field containing an external date/time
value. This value must be in the format returned by the
Convert to External Date/Time macro call.

location of address of receiving field

Any address form valid for a data register; provides the
address of a 3-word field into which the system places
the internal format date/time value.

location of size of external date/time

Any address form valid for a data register; provides the
size of the external date/time value identified by argu-
ment 1. The size must be less than or equal to 22
bytes. If this argument is omitted, the size is set to
20 bytes (tenth of a second resolution).

The size must be such that the date/time value does not
end with the characters : (colon) or . (period).

DESCRIPTION:

This macro call converts an external date/time value (as
supplied by the Convert to External Date/Time macro call) to
internal format (as supplied by the Get Date/Time macro
call). The internal date/time value appears in the receiving
field as a binary count of the milliseconds that have elapsed
from 1 January 1901 at 00:00:00.0000 hours.

2-288 CZ06-00

NOTES

1. The system places in $B4 the address of the
external date/time value supplied by argument
1. If this argument is omitted, the system
assumes that $B4 contains the correct external
value.

2. The internal date/time value returned is
loaded into $R2, $R6, and $R7, and is placed
in the receiving field specified by argument
2. If argument 2 is omitted, or is =$R7, the
internal date/time value is returned only in
$R2f $R6, and $R7.

3. The system places in $R5 the size of the
external date/time value supplied by argument
3. If this argument is =$R5, the system
assumes that $R5 contains the correct size.
If this argument is omitted, $R5 is set to a
value of 20 (tenth of a second resolution).

4. On return, $R1, $R2, $R6, $R7, and $B4 contain
the following information:

$R1 - Return status; one of the following:

0000 - No error
0407 - Invalid external date
0408 - Invalid external time
040A - Invalid access to external

date/time field

$R2, $R6, $R7 - Generated internal date/time
value

$B4 - Address of supplied external date/time
value.

Example:

In this example, the Get Date/Time macro call is used to get
the current date/time, in internal format, leaving it in
registers $R2, $R6, and $R7. The External Date/Time, Convert
To macro call is then used to convert this internal format to
an external format, replacing the date portion (first 10
characters) of the field labeled TODAY. The TODAY field now
contains the external format date/time for 0800 hours of
today. The Internal Date/Time Convert To macro call then
converts this date/time value back to an internal format

2-289 CZ06-00

contained in $R2, $R6, and $R7. One day (86,400,000 milli-
seconds) is then added to this internal date/time giving the
internal date/time for 0800 hours tomorrow, which is stored
in the 3-word field labeled MORROW. The addition is program-
med with the assumption that the central processor does not
have the add integer double instruction.

GET THE CURRENT DATE/TIiME VALUE.

$GDTM

* CONVERT IT TO AN EXTERNAL FORMAT DATE.
it

$EXTDT ,'TODAY,=10
*
* NOW CONVERT THE EXTERNAL DATE/TIME
* BACK TO THE INTERNAL FORMAT.

$INDTM !TODAY,,=15

* ADD IN ONE DAY.
*

ADD $R7,A_DAY+1
CAD =$R6
CAD =$R2
ADD $R6,A_DAY
CAD =$R2

*
* NOW STORE THE RESULT.
*

STR $R2,MORROW
SDI MORROW+1

TODAY TEXT 'YYYY/MM/DD 0800'
A_DAY DC 864000008(31,0)
MORROW RESV 3,0

2-290 CZ06-00

KILL (ABORT) TASK

KILL (ABORTS TASK (SKILLT)

Function Code: OC/11

Equivalent Command: Kill

Terminate the execution of the specified task and activate
its cleanup trap handling routine.

FORMAT:

[label] $KILLT [location of logical resource number]

ARGUMENT:

location of logical resource number

Any address form valid for a data register; provides the
logical resouce number (LRN), a value from 0 through 255
(decimal), of the task to be aborted.

DESCRIPTION:

This call causes trap condition 49 (Unwind) to be signalled
to the task specified by its LRN. The system assumes that
the specified task has enabled trap 49 (using $ENTRP) and
that it includes a cleanup trap handling routine that
releases any resources private to the task. If the task has
not enabled trap 49, it is terminated.

NOTES

1. The system places the LRN of the task to be
aborted, supplied by the argument, in $R2.
When the argument is omitted, the system
assumes that $R2 contains the correct LRN.

2. On return, $R1 contains one of the following
status codes:

0000 - No error
0802 - Invalid LRN.

2-291 CZ06-00

Example:

The issuing task issues a Kill (Abort) Task macro call to ^
abort another task (whose LRN is 34) in the same task group. \

ABT34 SKILLT =34

y

2-292 CZ06-00

MESSAGE GROUP, ACCEPT

MESSAGE GROUP, ACCEPT (SMACPT)

Function Code: 15/01

Equivalent Command: None

Start a process of receiving a message group from the pre-
viously created mailbox.

FORMAT:

[label] SMACPT [location of MGIRB address] -

ARGUMENT:

location of MGIRB address

Any address form valid for an address register; provides
the address of the message group initialization request
block (MGIRB), which must have been previously
generated.

DESCRIPTION:

The acceptor task group issues this macro call in order to
accept a message. The Message Group, Accept macro call
validates access to the mailbox. It returns a message id to
identify an accepted message. (See the System Concepts
manual for a discussion of the Message Facility.)

Deferred messages may be accepted on the following selection
criteria:

• First available message
• Sequence number
• Initiator (submitter) name
• Submitter name and sequence number.

Define selection criteria by supplying input arguments in
the following MGIRB fields:

• Message group id field (MI_MGI)
• Residual range field (MI_RSR)
• Initiator mailbox name (MI_MBI).

2-293 CZ06-00

To accept a message by sequence number, specify -1 in MI_MGI j
and a sequence number in MI__RSR. Local mail searches for a -̂̂
message from the specified sequence number. If no message
exists for the specified sequence number, the first
available message after the sequence number is received. If
no message exists, an error is returned.

To accept a message by initiator mailbox name, specify zero
in MI_MGI and the initiator name in MI_MBI. If MI_MBI con-
tains null bytes, the first available message is accepted.
If both a sequence number and an initiator mailbox name are
specified, local mail searches for a message with the speci-
fied initiator name from the specified sequence number.

A message can be accepted when the user has received access
(read access to the mailbox file ($MBX)) to the mailbox.
(See the System Concepts manual about access to the
mailbox.) However, if an acceptor specifies an initiator
name, send access (list access on mailbox directory) is ---v
enough to accept a message. j

Before the Message Group, Accept macro call is executed, the
user must generate a MGIRB with values in the following
fields:

MI_MAJ, bit 9 (wait bit)
MI_MPD
MI_MBI
MI_ADT
MI_MBA - \J

MGIRB fields are described in Appendix C. l

NOTES

1. A mailbox must have been created before the
macro call is issued. (See the Create Mailbox
(CMBX) command in the Commands manual.)
Reference to mailbox fields when no mailbox j
has been created results in an error return. ^/'

2. The system places the address of the MGIRB in
$B4. If the argument is omitted, the system
assumes that $B4 contains a pointer to the
MGIRB.

3. Local mail returns the maturity date/time of
deferred messages in the MI_DV2 field of the
acceptor's MGIRB in a standard 3-word
date/time format. A deferred message group
can be accepted before the specified maturity
date/time by using the sequence number.

2-294 CZ06-00

7. On return, $R1 contains the following status
codes:

0000 - No error "\

OC02 - Invalid message id

OC03 - Abnormal termination. This error is
returned when a user tries to accept a
message with an initiator name and no
message is available.

OC17 - Invalid message path description
identifier

OC19 - Acceptor mailbox may not be accessed by
initiator

OC1A - Acceptor mailbox not known.

)
8. On return, $B4 will point to the application's ^^

MGIRB, which is updated according to the
specifications in the macro call.

2-296 CZ06-00

MESSAGE GROUP,CANCEL
ENCLOSURE

MESSAGE GROUP. CANCEL ENCLOSURE (SMCME)

Function Code: 15/06

Equivalent Command: None

Delete the last record in the current incomplete quarantine
unit or the entire last incomplete quarantine unit.

FORMAT:

[label] $MCME [location of MGCRB address]

ARGUMENT:

location of MGCRB address

Any address form valid for an address register; provides
the address of the message group control request block
(MGCRB)r which must have been previously generated.

DESCRIPTION:

This macro call may be issued only by a sending task. It
allows editing (delete a record) of the last quarantine unit
before it becomes available to the receiving task. The
sender can delete a record or delete the entire last incom-
plete quarantine unit by specifying the appropriate values in
the MC_LVL field of the MGCRB.

Before the Message Group, Cancel Enclosure macro call is
executed, the user must generate the MGCRB (by means of the
$MGCRB macro calll) with values in the following fields

MC_MAJ, bit 9 (wait bit)
MC_MGI
MC_LVL

MGCRB fields are described in Appendix C.

NOTES
1. The system places the address of the MGCRB in

$B4. If the argument is omitted, the system
assumes that $B4 contains a pointer to the
MGCRB.

2-297 CZ06-00

On return, $R1 contains the following return
status codes:

0000 - No error

OC03 - Abnormal termination

OC17 - Invalid mesasge-path identifier

OC19 - Acceptor mailbox may not be
accessed by initiator

f
OC1A - Acceptor mailbox not known

OC22 through OC2C - User-coded reason for
abnormal message group.

2-298 CZ06-00

MESSAGE GROUP, CONTROL
REQUEST BLOCK

flESgAGE GROUP, CONTROL REQUEST BLOCK (SMGCRB)

Function Code: None

Equivalent Command: None

Depending on the arguments supplied in the call, perform one
of the following:

• Build a mesage group control request block (MGCRB) of 29
words that contains default values for all fields not
explicitly specified in the call. See Appendix C.

• Generate instructions to alter the partial contents of an
existing MGCRB.

FORMAT:

[label] $MGCRB, [arguments]

ARGUMENTS :

There are three types of arguments for this macro call:

• Keyword only (i.e., RESV)

• Keyword with expression (expression is a
user-selected variable whose literal value is used by
the system)

• Keyword with option (option is a prescribed ASCII
string that is interpreted by the system) .

The keyword-only argument RESV generates an MGCRB. When the
macro call is issued with RESV as its only argument, an MGCRB
is built with system-assigned default values. When RESV is
specified with other arguments, all entries in the MGCRB that
are not specifically changed by other arguments are
defaulted.

Omitting the RESV argument generates executable code to
modify an existing MGCRB, in which case the keyword with
expression argument ADR=address is used to specify the
address of the MGCRB to be changed. When ADR=address is
omitted, the system assumes that $B4 points to that MGCRB.
The argument ADR=address is not used in building a new MGCRB;
that is, when RESV is specified, the system ignores any
ADR=address argument.

2-299 CZ06-00

The other keyword-only arguments are WAIT and NWAIT, which
are described in Table 2-15.

The first argument position is reserved for system use, and
must be specified by the user as a comma. The second and
third arguments are positional, and when omitted, each must
be replaced by a comma.

Table 2-15 describes the arguments for the Mesage Group,
Control Request Block macro call and indicates the fields in
the MGCRB into which the system inserts the argument values.

Table 2-15. Argument Values for $MGCRB Macro Call

Argument
Position Keyword

Keyword
Value Argument Description

Field in
MGCRB

Keyword only

1

2

Any

None

WAIT*

NWAIT
(default)

RESV

None

None

None

None

Reserved by system;
must be a comma.

Issuing task suspension
option:

Suspend the issuing
task until the request
is completed (set W-
bit (wait) to zero) .

Do not suspend the
issuing task (set W-
bit to one) .

Generates MGCRB.

N/A

MC_MAJ

2-300 CZ06-00

Table 2-15 (cont). Argument Values for $MGCRB Macro Call

Argument
Position Keyword

Keyword
Value Argument Description

Field in
MGCRB

Keyword with expression

3**

SM=

RB=

aa

label

"

* -

Issuing task termina-
tion option:

When requested task is
completed, do not sus-
pend issuing task;
release the semaphore
identified by the two
ASCII characters aa.

When requested task is
complete, do not sus-
pend the issuing task;
issue a request for the
request block identi-
fied by label.

Note that the request-
ing task must be asyn-
chronous, may not wait
on the requested task
later on, and can only
point to a task request
block (TRB) . The
requested task must
have already been cre-
ated (not spawned) , be
asynchronous, and have
a valid LRN. When the
requesting task termi-
nates, the TRB pointed
to by "label" must be
inactive.

N/A

•

~ -"— •

*When WAIT is specified, argument 3 must be omitted.

**When this argument is omitted, or argument 2 is WAIT, the
generated MGCRB contains no termination option. In that case,
the user must issue a Wait, Wait On Request List, or Test
Completion Status macro call.

2-301 CZ06-00

Table 2-15 (cont). Argument Values for $MGCRB Macro Call

Argument
Position Keyword

Keyword
Value Argument Description

Field in
MGCRB

Keyword with expression (cont)

Any

Any

Any

ADR=

BUF=

RANGED

address

buffer
address

(default
is 0)

number
of bytes
(default
is 0)

When existing MGCRB is
to be changed (RESV
omitted) , specifies
address of MGCRB to be
changed.

Address of the buffer
location in the task
where sent or received
record is to be placed.

Length, in bytes, of
the buffer.

N/A

MC_BUF

MC_BSZ

Keyword with option

Any

Any

ALIGN=

WTI=

R

L
(default
value)

WAIT

DENY
(default
value)

Buffer byte alignment:

Buffer begins in right-
most byte of address
specified by BUF=
argument.

Buffer begins in left-
most byte of address
specified by BUF=
argument.

Wait test indicator
($MRECV only) :

Do not process request
until data is available.

Return error status when
there is no data
available.

MC_OPT

MC_WTI

J

2-302 CZ06-00

Table 2-15 (cont) . Argument Values for $MGCRB Macro Call

Argument
Position

Any

Keyword

ENO

Keyword
Value

EOR

EOQ
(default
value)

EOM

Argument Description

Enclosure level that
delimits send or
receive message unit.

End-of-record.

End-of -qua ran tine-unit.

End-of-message .

Field in
MGCRB

MC_LVL

.~

DESCRIPTION:

The message group control request block (MGCRB) is used for
communication between task groups, and is the means for pass-
ing arguments among task groups in connection with the Message
Group Send and Message Group Receive macro calls of the
message facility. This macro call makes it possible to modify
an existing MGCRB by generating executable instructions that
use registers R6, R7 , and B5 (as appropriate). The modifying
process always uses $B4 to point to the MGCRB.

2-303 CZ06-00

MESSAGE GROUP, COUNT

MESSAGE GROUP. COUNT (SMCMG)

Function Code: 15/07

Equivalent Command: None

Provide a count of the number of completed message groups not
yet "accepted" by previous Message Group, Accept macro calls,
including deferred message groups that are available for process-
ing by subsequent macro calls.

FORMAT:

[label] $MCMG [location of MGIRB address]

ARGUMENT: '•
••- ._r

location of MGIRB address

Any address form valid for an address register; provides
the address of the message group initialization request
block (MGIRB), which must have been previously created.

DESCRIPTION: <• • *\

The sending or receiving task group may issue this macro call
to ascertain the number of completed groups currently in the
mailbox not yet "accepted" by earlier Message Group, Accept
macro calls, and available to subsequent Message Group,
Accept macro calls. Note that a nonzero count may not neces-
sarily reflect messages presently available; the nonzero
count may indicate deferred messages.

Before execution of this call, the user must generate a MGIRB
(by means of the $MGIRB macro call) with values for the
following fields:

MI_MAJ, bit 9 (wait bit)
MI_MPD
MI_ADT, right byte
MI_MBA

MI_MBA specifies the name of the mailbox, which must have
been created before execution of this call by means of the
Create Mailbox (CMBX) command (see the Commands manual).

All fields of the MGIRB are described in Appendix C.

2-304 CZ06-00

NOTES

1. The system places the address of the MGIRB in
$B4. If this argument is omitted, the system
assumes that $B4 contains a pointer to the
MGIRB.

2. At successful macro execution, MI__CNT will
contain the count of "unaccepted" completed
message groups remaining in the mailbox.

3. On return, $R1 contains the following return
status codes:

0000 - No error

OC02 - Invalid messge group id

OC03 - Abnormal termination received

OC19 - Acceptor mailbox may not be
accessed by the initiator

OC1A - Acceptor mailbox or acceptor mail-
box node not known

OC22 through OC2C - User-coded reason for
abnormal message group termination.

6. On return, $B4 will point to the application's
MGIRB, which is updated according to the
specifications in the macro call.

2-305 CZ06-00

MESSAGE GROUP, INITIATE

MESSAGE GROUP . INITIATE (SMINIT)

Function Code: 15/02

Equivalent Command: None

Start the process of sending a mesasge group to a previously
created mailbox.

FORMAT:

[label] $MINIT [location of MGIRB address]

ARGUMENT: _
i

location of MGIRB address '

Any address form valid for an address register; provides
the address of the message group initialization request
block (MGIRB) , which must have been previously generated.

DESCRIPTION:

The sender task group issues this call in order to send a ^
message. The call is effective only for a one-way connection •
to another task group's mailbox. For the other task group to
send messages, it must create its own initiator mailbox and
issue its own Message Group, Initiate macro call.

The message may be deferred by specifying a maturity
date/time in MI_DV2 of the MGIRB.

Successful macro call execution requires send access to the
mailbox (list access on mailbox directory) . See the System
Concepts manual for a discussion of mailbox access. '

Before execution of this call, the user must generate a MGIRB
(by means of the $MGIRB macro call) with values in the
following fields:

MI_MAJr bit 9 (wait bit)
MI_MPD
MI_DV2 (optional)
MI_ADT, right byte
MI_MBI
MI_MBA

2-306 CZ06-00

MESSAGE GROUP, INITIALIZATION
REQUEST BLOCK

MESSAGE GROUP, INITIALIZATION REQUEST BLOCK (SMGIRB)

Function Code: None

Equivalent Command: None

Depending on the arguments supplied in the call, perform one
of the following:

• Build a message group initialization request block
(MGIRB) of 41 words that contains default values for all
fields not explicitly specified in the call. See
Appendix C.

• Generate instructions to alter the partial contents of an
existing MGIRB.

• When modifying an existing MGIRB, call and expand the
corresponding Message Group Initialization Request Block
Offsets macro call to provide labels for the MGIRB's
fields.

FORMAT:

[label] $MGIRB , [arguments]

ARGUMENTS:

There are three types of arguments for this macro call:

• Keyword only (i.e., RESV)

• Keyword with expression (expression is a
user-selected variable whose literal value is used by
the system)

• Keyword with option (option is a prescribed ASCII
string that is interpreted by the system).

The keyword-only argument RESV generates an MGIRB. When the
macro call is issued with RESV as its only argument, an MGIRB
is built with system-assigned default values. When RESV is
specified with other arguments, all entries in the MGIRB that
are not specifically changed by other arguments are
defaulted.

2-308 CZ06-00

Omitting the RESV argument generates executable code to
modify an existing MGIRB, in which case the keyword-with-
expression argument ADR=address is used to specify the
address of the MGIRB to be changed. When ADR=address is
omitted, the system assumes that $B4 points to that MGIRB.
The argument ADR=address is not used in building a new MGIRB;
that is, when RESV is specified, the system ignores any
ADR=address argument.

The other keyword-only arguments are WAIT and NWAIT, which
are described in Table 2-16 below.

The first argument position is reserved for system use, and
must be specified by the user as a comma. The second and
third arguments are positional, and when omitted, each must
be replaced by a comma.

Table 2-16 describes the arguments for the Message Group,
Initialization Request Block macro call and indicates the
fields in the MGIRB into which the system inserts the argu-
ment values.

DESCRIPTION:

The message group initialization request block (MGIRB) is
used for communication among task groups, and is the means
for passing arguments among task groups in connection with
the Message Group Accept, Message Group Initiate, and Message
Group Count macro calls of the Message facility. This macro
call makes it possible to modify an existing MGIRB by gener-
ating executable instructions that use registers R6, R7, and
B5 (as appropriate). The modifying process always uses $B4
to point to the MGIRB.

2-309 CZ06-00

Table 2-16. Argument Values for $MGIRB Macro Call

Argument
Position Keyword

Keyword
Value Argument Description

Field in
MGCRB

Keyword only

Any

None

WAIT*

NWAIT
(default)

RESV

None

None

None

None

Reserved by system;
must be a comma.

Issuing task suspen-
sion option;

Suspend the issuing
task until the request
is completed (set W-bit
(WAIT) to zero).

Do not suspend the
issuing task (set W-bit
to one).

Generates the MGIRB.

N/A

MI_MAJ

Keyword with expression

3**

SM=

RB=

aa

label

Issuing task termin-
ation option

When requested task is
completed, do not sus-
pend issuing task;
release the semaphore
identified by the two
ASCII characters aa.

When requested task is
completed, do not sus-
pend the issuing task;
issue a request for the
request block identi-
fied by label.

Note that the request-
ing task must be asyn-
chronous, may not wait
on the requested task
later on, and can only
point to a task request.

N/A

2-310 CZ06-00

Table 2-16 (cont). Argument Values for $MGIRB Macro Call

Argument
Position Keyword

Keyword
Value Argument Description

Field in
MGCRB

Keyword with expression

3
(cont)

Any

Any

Any

ADR=

MBI=

MBA=

address

block (TRB). The
requested task must
have already been cre-
ated (not spawned), be
asynchronous, and have
a valid LRN. When the
requesting task termi-
nates, the TRB pointed
to by "label" must be
inactive.

When existing MGIRB is
to be changed (RESV
omitted), specifies
address of MGIRB to be
changed.

Initiator mailbox name:

From 1 to 12 ASCII characters,
blank-filled, left-justified.
Default is 12 blanks.

Acceptor mailbox name.

From 1 to 12 ASCII characters,
blank-filled, left-justified.
Default is 12 blanks.

N/A

MI_MBI

MI_MBA

*When WAIT is specified, argument 3 must be omitted.

**When this argument is omitted, or argument 2 is WAIT, the
generated MGIRB contains no termination option. In that case,
the user must issue a Wait, Wait on Request List, or Test
Completion Status macro call.

2-311 CZ06-00

MESSAGE GROUP, RECEIEVE

MESSAGE GROUPf RECEIVE (SMRECV)

Function Code: 15/03

Equivalent Command: None

Request that this task group receive a message group through
a named mailbox, from another task group; specify how much mes-
sage data is to be received; detect when there is no more data to
be received.

FORMAT:

[label] $MRECV [location of MGCRB address] ' ̂

ARGUMENT: ^

location of MGCRB address

Any address form valid for an address register; provides
the address of the message group control request block
(MGCRB), which must have been previously generated.

-*•

DESCRIPTION: j

• The task group that issued the Message Group Accept macro
call to open the receive function of the Message Facility can
issue one or more Message Group, Receive macro calls to
receive message data, from the sending task group, through a
named mailbox. The message group id returned in the Message
Group Accept macro call is used by the Message Group, Receive
macro call to identify the message group of the receiving
task group. A receive message can be any unit, not neces-
sarily exactly as defined by the sender. A portion of a)
message group cannot be available to the receiving task group /̂
until designated as a quarantine unit by the sender. The
Message Group, Receive macro call can request that the mes-
sage be received in record sizes other than those with which
it was sent. It can specify how much data is to be received
in terms of numbers of bytes (range) and by "enclosure level"
(see below). Every receive unit is an enclosure. The
receiving task group can delimit the amount of received data
as end-of-record, end-of-quarantine-unit (see description of
quarantine unit under the Message Group, Send macro call) or
as end-of-message. Upon receipt of a quarantine unit, the
previous quarantine unit is deleted.

2-312 CZ06-00

Mailboxes must have been created before this macro call is
issued. (See the Create Mailbox (CMBX) command in the
Commands manual.)

Before issuing the macro callf the user must generate the
MGCRB (see the Message Group Control Request Block macro
call) with the argument values shown in Table 2-17.

At successful macro execution, the system returns the
following MGCRB output argument values:

text residual range

MC_RSR field reports the number of bytes of text not
transferred into the buffer area. When a record has
no text associated with it, the value will equal
buffer size.

text length

MC_LEN field reports the number of bytes of text
transferred into the buffer if the revision-1 id was
specified in the MC_REV field of the MGCRB.

detected user enclosure level:

MC_LVL field (bits 8-F) reports the enclosure level
detected at end of transfer. Possible values
(ASCII):

0 - No enclosure detected
1 - End-of-record
2 - End-of-quarantine-unit
5 - End-of-message

After successful receipt of a complete message (i.e., value
of detected enclosure level in bits 8-F in MC_LVL is ASCII
5), the receiving task group must issue a Message Group
Terminate macro call to terminate the message group. (See
Message Group, Terminate macro call for a discussion of
normal and abnormal termination.)

NOTES

1. The system places the address of the MGCRB in
$B4. If the argument is omitted, the system
assumes that $B4 contains a pointer to the
MGCRB.

2-313 CZ06-00

2. On return, $R1 contains the following status
codes: -

0000 - No error

OOOF - No data available

021A - Record length error

OC02 - Invalid message group id

OC03 - Abnormal termination received

OC09 - Invalid enclosure level specified

OC10 - Message quarantine unit exceeded
capacity

OC22 through OC2C - User-coded reason for
abnormal message group termination.

3. On return, $B4 will point to the application's
MGCRB, which is updated according to the
specifications in the macro call.

2-314 CZ06-00

Table 2-17. MGCRB Argument Values for $MRECV Macro Call

Argument Name
and Description

Field in
MGCRB Argument Value

message group id

Identifies the message
group within whose
enclosures the record
is to be received.

buffer area id

Defines the location
within the task where
the received record is
to be placed.

range

Defines the maximum
number of bytes to be
placed into the buffer
area in one execution
of the macro call.
When the specified
range is exceeded, the
transfer of message
text is terminated.

requested enclosure level

Amount of data, in text
units, that the receiv-
ing task group is to
receive. When the buf-
fer range is exceeded,
text transfer
terminates.

wait test indicator

Specifies whether user
waits for data, even if
none now available; or
whether request is ter-
minated when there is
no data.

MC_MGI

MCBUF

MC_BSZ

MC_LVR

(bits
0-7)

MC_WTI

(bits
8-F)

Value returned in $MACPT
macro call.

Buffer pointer.

User-specified.

ASCII values:

1 - End-of-record, but not
last record in quaran-
tine unit.

2 - End-of-quarantine-unit.

5 - End-of-message.

0 - Terminate the request.

1 - Wait for data to become
available.

2-315 CZ06-00

Table 2-17 (cont). MGCRB Argument Values for $MRECV Macro Call

Argument Name
and Description

Field in
MGIRB Argument Value

synchronous/asynchronous
indicator

Indicates whether macro
call execution is to be
synchronous or
asynchronous.

MC_MAJ
(bit 9)

0 - Synchronous; task waits
until all specified
message group condi-
tions are met before
the macro call is
executed.

1 - Asynchronous; task con-
tinues with other pro-
cessing while checking
whether the message
group conditions have
been met.

J

2-316 CZ06-00

MESSAGE GROUP, RECOVERY
REQUEST BLOCK

MESSAGE GROUP. RECOVERY REQUEST BLOCK (SMGRRB)

Function Code: None

Equivalent Command: None

Depending on the arguments supplied in the call, perform one
of the following:

• Build a message group recovery request block (MGRRB) of 27
words that contains default values for all fields not
explicitly specified in the call. MGRRB fields are
described in Appendix C.

• Generate instructions to alter the partial contents of an
existing MGRRB.

• When modifying an existing MGRRB, call and expand the cor-
responding Message Group, Recovery Request Block Offsets
macro call to provide labels for the MGRRB 's fields.

FORMAT:

[label] $MGRRB , [arguments]

ARGUMENTS :

There are three types of arguments for this macro call:

* Keyword only (i.e., RESV)
i

* Keyword with expression (expression is a
user-selected variable whose literal value is used by
the system)

* Keyword with option (option is a prescribed ASCII
string that is interpreted by the system) .

The keyword-only argument RESV generates an MGRRB. When the
macro call is issued with RESV as its only argument, an MGRRB
is built with system-assigned default values. When RESV is
specified with other arguments, all entries in the MGRRB that
are not specifically changed by other arguments are
defaulted.

Omitting the RESV argument generates executable code to
modify an existing MGRRB, in which case the keyword-winh-
expression argument ADR=addrass is ased to specify the
address of the MGRRB to be changed. When ADR=address is

2-317 CZ06-00

omittedf the system assumes that $B4 points to that MGRRB.
The argument ADR=address is not used in building a new MGRRB;
that is, when RESV is specified, the system ignores any
ADR=address argument.

The other keyword-only arguments are WAIT and NWAIT, which
are described in Table 2-18.

The first argument position is reserved for system use and
must be specified by the user as a comma. The second and
third arguments are positional, and when omitted, each must
be replaced by a comma.

Table 2-18 describes the arguments for the Message Group,
Recovery Request Block macro call, and indicates the fields
in the MGRRB into which the system inserts the argument
values.

DESCRIPTION:
V

The Message Group Recovery Request Block macro call is used
for communication between task groups and is the means for
passing arguments between task groups in connection with the
Message Group, Terminate macro call of the Message Facility.
This macro call makes it possible to modify an existing MGRRB
by generating executable instructions that use registers R7
and B5 (as appropriate). The modifying process always uses
$B4 to point to the MGRRB.

Table 2-18. Argument Values for $MGRRB Macro Call

Argument
Position Keyword

Keyword
Value Argument Description

Field in
MGCRB

Keyword only

None

WAIT*

None

None

Reserved by system;
must be a comma.

Issuing task suspension
option:

Suspend the issuing
task until the request
is completed (set W-bit
(wait) to zero).

N/A

MR__MAJ

2-318 CZ06-00

Table 2-18 (cont). Argument Values for $MGRRB Macro Call

Argument
Position Keyword

Keyword
Value Argument Description

Field in
MGCRB

Keyword only (cont) .

Any

NWAIT
(default)

RESV

None

None

Do not suspend the
issuing task. (Set W-
bit to one) .

Generates the MGRRB.

Keyword with expression

3**

Any

RB=

ADR=

aa

label

address

Issuing task termina-
tion option:

When requested task is
completed, do not sus-
pend issuing task;
release the semaphore
identified by the two
ASCII characters aa.

When requested task is
complete, do not sus-
pend the issuing task;
issue a request for the
request block identi-
fied by label.

When existing MGRRB is
to be changed (RESV
omitted) , specifies
address of MGRRB to be
changed.

N/A

N/A

*When WAIT is specified, argument 3 must be omitted.

**When this argument is omitted, or argument 2 is WAIT, the
generated MGRRB contains no termination option. In that case,
the user must issue a Wait, Wait on Request List, or Test
Completion Status macro call.

2-319 CZ06-00

Table 2-18 (cont). Argument Values for $MGRRB Macro Call

Argument
Position Keyword

Keyword
Value Argument Description

Field in
MGCRB

Keyword only (cont).

Any TERM= 0, or
22
through
2C

Message group termina-
tion code:

0 - Indicates normal
termination of this
message group.

22 through 2C - User-
coded reason for
abnormal
termination.

MR_RSN

v
J

2-320 CZ06-00

MESSAGE GROUP RECOVERY
REQUEST BLOCK OFFSETS

MESSAGE GROUP, RECOVERY REQUEST BLOCK OFFSETS (SMGRRT)

Generated Label Prefixes:

MR..MAJ
MR_OPT

MR^BSZ
MK.ITP
MR^RES
MR_RSN
MR_EXT

MR_MGI
MIUCNC
MR_FMT
MR^MRU

Appendix C describes the contents of the message group
recovery request block (MGRRB) .

2-321 CZ06-00

MESSAGE GROUP, SEND

MESSAGE GROUP, SEND (SMSEND)

Function Code: 15/05

Equivalent Command: None

Send a specified amount of message text from the initiator
task group. Optionally, make this record and any previously sent
records available to the receiver by declaring this message text
as a quarantine unit.

FORMAT:

[label] $MSEND [location of MGCRB address]

ARGUMENT:

location of MGCRB address

Any address form valid for an address register; provides
the address of the message group control request block
(MGCRB), which must have been previously generated.

DESCRIPTION:

The task group that issued a Message Group, Inititiate macro
call to initiate a message connection, issues one or more
Message Group, Send macro calls to send message data through
that connection. A task group sends a message through a named
mailbox, from which the receiving task group obtains the mes-
sage. The Message Group, Send macro call uses the same mes-
sage group id, returned in the Message Group, Initiate macro
call, to identify the message group.

Text units of information sent by the sending task group
(initiator) are in the form of records. A message is one or
more records. Each Message Group, Send call sends one
record, which is the basic unit of data exchange. Each Mes-
sage Group, Send transmission points to an MGCRB that
describes the buffer of message data.

Associated with each message group is the concept of a nested
set of enclosures. All message group text is contained
within a hierarchy of enclosures, which from the lowest to
the highest are:

• Record
• Quarantine unic
• Message.

2-322 CZ06-00

Intermediate or last records in the message have an enclosure
level that defines sent data as end-of-record,
end-of-quarantine unit, or end-of-message. Terminating any
of these enclosure levels forces termination of a lower level
enclosure; that is, end-of-message implies end-of-quarantine
unit, and end-of-quarantine unit implies end-of-record.

A record enclosure consists of all message text transferred
by one or more Message Group, Send macro calls. The Message
Facility accepts text sent by a Message Group, Send macro
call as part of the same record, until another Message Group,
Send includes an end-of-record indicator, signalling the end
of the record and beginning of a new one.

A quarantine unit enclosure, which is terminated by an
end-of-quarantine indicator, consists of all the records
transmitted since the last end-of-quarantine indicator was
sent. Not until an end-of-quarantine indicator is included
in the enclosure level (see Table 2-19) of a Message Group,
Send macro call, is the group of records, sent since the last
end-of-quarantine indicator, made available to the receiving
task group. The end-of-quarantine indicator also terminates
the current record enclosure. A quarantine unit is the
smallest amount of transmitted data that is available to the
receiver.

Before execution of this macro call, the user must have done
the following:

• Created mailboxes by means of the Create Mailbox
(CMBX) command (see the Commands manual)

• Generated a MGCRB by means of the $MGCRB macro call,
with the values shown in Table 2-19.

To complete sending a message group, the sending task group
must terminate the message group by either: ^ ,„ ̂ ..

1. Specifying an ASCII 5 (end-of-message) enclosure level
in MC_LVL of the MGCRB (see Table 2-19) supplied on a
Message Group, Send macro call

or

Issuing the macro call Message Group Terminate, with
the value zero in MR_CNC of the MGRRB. (See the
Message Group, Terminate macro call for a discussion
of normal and abnormal termination.)

2-323 CZ06-00

NOTES

1. The system places the address of the MGCRB in
$B4* If the argument is omitted, the system
assumes that $B4 contains a pointer to the
MGCRB.

2. On return, $R1 contains the following return
status codes:

0000 - No error

OC02 - Invalid message group id

OC03 - Abnormal termination received

OC09 - Invalid enclosure level specified

OC10 - Message/quarantine unit exceeded
capacity

OC22 - User-coded reason for abnormal
through message group termination.
OC3E

3. On return, $B4 will point to the application's
MGCRB, which is updated according to the
specification in the macro call.

Table 2-19. MGCRB Argument Values for $MSEND Macro Call

Argument Name
and Description

Field in
MGIRB Argument Value

synchronous/asynchronous
indicator

Indicates whether macro
call execution is to be
synchronous or
asynchronous.

MC__MAJ
(bit 9)

0 - Synchronous; task waits
until all specified
message group condi-
tions are met before
the macro call is
executed.

1 - Asynchronous; task con-
tinues with other pro-
cessing while checking
whether the message
group conditions have
been met.

2-324 CZ06-00

Table 2-19 (cont). MGCRB Argument Values for $MSEND Macro Call

Argument Name
and Description

Field in
MGIRB Argument Value

message group id

Identifies the message
group within whose
enclosure the record
is to be sent.

buffer area id

A pointer to the buffer
where message text is
located before it is
transmitted.

user-requested enclosure
level

Defines the unit of
text; that is, how much
data is contained in
an "enclosure level."

range

Indicates the number of
bytes of message text
to be sent from the buf-
fer area. A zero value
indicates no text is to
be sent? even then, the
other argument values
are examined and a rec-
ord enclosure is opened,
if not already open.

MC_MGI Value returned in Message
Group, Initiate macro call.

MC_BUF Buffer pointer.

MC_LVL

(bits
0-7)

MC_BSZ

ASCII values:

1 - End-of-record, but not
last record in a quar-
antine unit.

2 - End-of-quarantine unit.

5 - End-of-message.

User-specified.

2-325 CZ06-00

MESSAGE GROUP, TERMINATE

MESSAGE GROUP. TERMINATE (SMTMG)
' _.*

Function Code: 15/04

Equivalent Command: None

Terminate a message group, either normally or abnormally.

FORMAT:

[label] $MTMG [location of MGRRB address]

ARGUMENT:

location of MGRRB address

Any address form valid for an address register; provides
the address of the message group recovery request block
(MGRRB), which must have been previously generated.

DESCRIPTION:

This macro call, issued by a sending or receiving task group,
causes normal or abnormal termination of a message group. A
sending task group, after normal transmission of a message,
must terminate the message group with either a Message Group,
Send macro call that specifies an end-of-message enclosure
level (5 in MC_LVL of the MGCRB), or with a Message Group
Terminate macro call having a termination value of zero in
bits 0 through 7 of MR_RSN. The sending task group can
specify abnormal termination of the message group by
inserting a user-coded value from 22 through 2C in bits 0-7
of MR__RSN. This code informs the receiving task group of the
reason for abnormal termination.

Normal termination of the receive message process causes the
message to be deleted. Abnormal termination of the receive
message process terminates the message without destroying it.

When the message group is terminated, its message group id is
available for reuse.

2-326 CZ06-00

Before execution of this macro call, the user must generate a
MGRRB (by means of the $MGRRB macro call) with values in the
following fields:

MR_MAJ, bit 9 (wait bit)
MR_MGI
MR_RSN, left byte

MGRRB fields are described in Appendix C.

NOTES

1. The system places the address of the MGRRB in
$B4. If the argument is omitted, the system
assumes that $B4 contains a pointer to the
MGRRB.

2. On return, $R1 contains the following status
codes:

0000 - No error

OC02 - Invalid message group id

OC21 - Invalid user-coded abnormal
termination

OC22 - User-coded reason for abnormal mes-
through group termination.

OC2C

3. On return, $B4 will point to the application's
MGRRB, which is updated according to the
specifications in the macro call.

2-327 CZ06-00

MODE IDENTIFICATION

~*v

MODE IDENTIFICATION (SMODID)

Function Code: 14/03

Equivalent Command: None

Returns the mode component of the calling task group's user
id to a 3-character receiving field.

FORMAT:

[label] $MODID [location of mode id field address]

ARGUMENT: * -,

location of mode id field address x̂

Any address form valid for an address register; provides
the address of a 3-character, aligned, nonvarying field
into which the system places the mode component of the
user id associated with the issuing task group.

DESCRIPTION:
XN

This call returns the mode component of the task group's user ^J
id to a field in the issuing task. The mode id returned is
that entered as part of the Login command that established
the user as a primary or secondary user of this task group.
See the Commands manual for details.

The entire user id is returned by the User Identification
macro call.

NOTES

1. The system places in $B4 the address of the ^
receiving mode id field, supplied by argument
1. If this argument is omitted, the system
assumes that $B4 contains the address of the
receiving mode id field.

2. On return, $R1 contains one of the following
status codes:

0000 - No error
0817 - Memory access violation.

2-328 CZ06-00

3. On return, $B4 contains the address of the
receiving field.

Example:

In this exampler $B4 is loaded with the address (MODFL) of a
3-character field, and the Mode Identification macro call is
issued to place the mode id of the task group in that field.

MODFL RESV 2
LAB $B4fMODFL

$MODID

2-329 CZ06-00

MODIFY FILE "̂ /

" "

MODIFY FILE (SMDFIL)

Function Code: 10/41

Equivalent Command: Modify File Attributes (MFA)

Modify the attributes of a disk file.

FORMAT:

[label] $MDFIL [parameter structure address]

ARGUMENT:

parameter structure address

Any address form valid for an address register; provides
the location of the parameter structure defined below.
The parameter structure must contain the following
entries, in the order shown.

logical file number

A 2-byte logical file number (LFN) used to refer to V
the file. It must be a binary number in the range 0 s
through 255, ASCII blanks (X'20201) (an LFN is not
specified), or -1 (X'FFFF1) (the system should assign
an LFN from the pool of available LFNs).

pathname pointer

A 4-byte address of the pathname that may be any
address form valid for an address register; points to
a pathname (which must end with an ASCII space char-
acter) that, when expanded, identifies the file to be
modified. Binary zeros (null pointer) in this entry
indicate that a path is not specified; if the path
identified is a single ASCII space (20) character,
the file being created is a temporary file.

2-330 CZ06-00

file options

A 2-byte field that is used in conjunction with the
file options mask (see below) to turn on (1) or turn
off (0) the various disk file options:

git Meaning

0 Record lock option:

1 - Lock records allowing n readers or
one writer.

0 - Do not lock records.

1 Record format option:

1 - Support fixed- and variable-length
records.

0 - Support only fixed-length records.

2 Immediate update option:

1 - Immediately update the disk when a
record is updated.

0 - Delay updating the disk until the
buffers are full, a
"cleanpoint/checkpoint" is issued,
or the file is closed.

3 Recovery option:

1 - Journalize on disk the "before"
images of all updates. These images
can be used in the event of a pro-
gram or system failure to rollback
the file.

0 - Do not journalize "before" images.

4-5 Reserved; must be zero.

6 Damaged File Indicator:

1 - File is not damaged.

0 - The file's data content is in a
damaged or inconsistent state. The
file cannot be opened until either
this indicator is reset or the file
is restored.

2-331 CZ06-00

Bit Meaning

7 Write protect option:

1 - Place the disk file in "write pro-
tect", allowing only read access.

0 - Allow write operations to the disk
file.

8 Reserved; must be zero.

9 Restoration option:

1 - Journalize on tape the "after"
images of all updates. These images
can be used in the event of a disk
failure or corruption to restore or
roll forward the file to its latest
good state.

0 - Do not journalize "after" images.

A through F Reserved; must be zero,

file options mask

A 2-byte field that indicates which file options are
to be set or reset. If a bit in the mask is one, the
corresponding file option is set or reset according
to the value specified in the previous file options
field. If a bit in the mask is zero, the correspond-
ing file option is not modified.

Bit Meaning

0 Record lock
1 Record format
2 Immediate update
3 Recovery
4-5 Must be zero
6 Damaged file indicator
7 Write protect
8 Must be zero
9 Restoration

A through F Must be zero

2-332 CZ06-00

r

new attributes

A 2-byte field that is used in conjunction with the
attributes mask (see below) to specify new file
attributes.

Bit

0-3

4-7

8-11

12-14

15

Meaning

Data Code Attribute:

0000 - Undefined data
0001 - Binary (non-character) data
0010 - ASCII (character) data

Must be zero

Terminal control attribute:

0000 - Unknown terminal control
information

0001 - No terminal control information

0010 - GCOS 6 printer control
information

Must be zero

Foreign data attribute:

0 - GCOS file data
1 - Non-native (non-GCOS 6) file data

attributes mask

A 2-byte field that indicates which file attribute is
to be modified or left unchanged. If a bit in the
mask is one, the corresponding attribute is changed
according to the value specified in the previous new
attributes field. If the mask is zero, the corre-
sponding file attribute is not modified.

Bit Meaning

0-3 Data Code attribute
4-7 Must be zero
8-11 Terminal control attribute
12-14 Must be zero
15 Foreign data attribute

2-333 CZ06-00

free space per control interval

A 2-byte field that applies only to indexed files and
specifies the number of bytes to be left free in each
control interval at file loading time.

reserved

A 16-byte field that is reserved for future use.

DESCRIPTION:

This function is normally performed outside program execution
by means of the Modify File Attribute (MFA) command.

The file to be modified can be specified in the argument
structure by a logical file number (LFN) or a pathname. If
an LFN is specified, the file must have been previously
assigned to that LFN by means of the Get File or Create File
function or the equivalent command.

Modify File cannot be issued if the file is currently open or -̂̂
reserved by a task group other than the user's.

The function modifies only disk files; it does not apply to
directories or device files.

The record lock, file recovery, and file restoration options
apply only to disk files organized in the following UFAS —
formats: sequential, relative, indexed, dynamic, and random. - }

If an alternate index is modified with the write protect
option of this function, any future updates applied to the
data file will not be reflected in the index. This option,
together with the index only option of the Get File function,
can be used to build an index that refers only to a subset of
the data file.

A restorable file (i.e., one created or modified with the
-RESTORE attribute) can be modified only if the system's /
journal file is open. ^

J

2-334 CZ06-00

NOTE

On return, $R1 contains one of the following
status codes:

0000 No error
Olxx Physical I/O error
0201 Invalid pathname
0202 Pathname not specified
0205 Invalid argument
0206 Unknown or invalid logical file number (LFN)
0208 LFN or file open - - ~
0209 File or directory not found
0213 Cannot provide requested file concurrency
0217 Access violation
0220 File not empty *
0228 Invalid file type
022C Access control list (ACL) violation
0260 Journal file not open.

2-335 CZ06-00

MODIFY FILE PARAMETER
STRUCTURE BLOCK OFFSETS

MODIFY FILE PARAMETER STRUCTURE BLOCK OFFSETS (SMDPSB)

Associated Macro Call: Modify File

Structure:

Word

0

1
2

3

4

5

6

7

8
9
10
11
12
13
14
15

Fields

Logical File Number

Pathname Pointer

File Option

File Options Mask

New Attributes

Attributes Mask

Free Space Per Control Interval

Reserved

Generated Offset Tags:

Tag

M__LFN
M_PTHP
M_OPT
M_MSK
M_ATTR
M_MASK2
M_FPC
M_LOV
M_SZ

Corresponding
Offsets

(in Words)

0
+1
-1-3
+4
4-5
+6
+7
+8
18

Entry Name

Logical file number
Pathname pointer
File options
File options mask
Data attributes
Data attributes mask
Free space per control interval
Reserved
Size of structure (in words); not a
field in the block.

2-336 CZ06-00

MODIFY REBOOT PARAMETERS

MODIFY REBOOT PARAMETERS (SRBPRM)

Function Code: 20/05

Eqivalent Command: Modify Reboot Parameters (RBPRM)

Specify the reboot volume and/or configuration file to be
used by the Software Reboot Facility (SRF) when reinitializing
the system. Validate preconditions for a dump to be taken
immediately prior to reinitialization; alternatively, specify
that a dump is not desired.

FORMAT:

[label] $RBPRM [location of reboot volume identification],
[location of configuration file pathname],
[location of dump condition]

ARGUMENTS:

location of reboot volume identification

Identifies the volume to be used for reinitializing the
system; must begin with one of the following key words.

PN=

CH=

Signifies "pathname"; must be followed by an
address form valid for an address register;
provides the address of a volume name (e.g., ~ABC)
or of a device name (e g.f 1FCDOO). A null
address specifies that the current reboot
volume/device is to be used for reinitializing the
system. The current volume/device is that which
was used to initiate the current session, or one
subsequently specified by a $RBPRM call.

Signifies "channel number"; must be followed by an
address form valid for a data register; provides
the channel number of the device on which the
desired reboot volume is mounted. A value of zero
for the channel number specifies that the current
reboot volume is to be used.

2-337 CZ06-00

=$B2)

Signifies that $B2 already contains the address of N̂̂
a volume/device name.)

Signifies that $R2 already contains the channel
number of the device on which the desired reboot
volume is mounted.

location of configuration file pathname

Identifies the configuration file to be used when the
SRF reinitializes the system. This argument must take
one of the following two forms:

Any address form valid for an address register;
provides the address of the pathname of the
configuration file to be used. A blank pathname,
consisting of one or more spaces (e.g., ' ')/
specifies that the configuration file
>SID>CLM_USER is to be used. An invalid pathname
consisting of an asterisk followed by one or more
spaces (e.g., '* ') specifies one of two
configuration files supplied by the manufacturer:
If the operator's console is connected to a
Multiline Communications Processor (MLCP), an
invalid pathname specifies >SID>CLM__MCP; if the
operator's console is connected to a Multiple
Device Controller (MDC), an invalid pathname
specifies file >SID>CLM_MDC.

=B4

Specifies that $B4 already contains the
address of the pathname of the desired
configuration file.

Either form of argument 2 can supply a null address.
The significance of a null address depends on the value
of argument 1, as follows:

If argument 1 supplies a non-null address and argument
2 supplies a null address, the configuration file to be
used is >SID>CLM__CJSER. If argument 1 and argument 2
both supply null addresses, the configuration file to
be used is the current one. The current configuration
file is that which was used by the Configuration Load
Manager (CLM) when the current session was initialized,
or one subsequently specified by a $RBPRM call.

J

2-338 CZ06-00

location of dump condition

Specifies whether a dump is to taken immediately before
reinitialization; must be one of the following
keywords:

DUMP

Take a dump.

NDUMP

Do not take a dump.

= $R6

$R6 contains the value 0 or 1, indicating DUMP or
NDUMP, respectively.

NOTE

The PATH argument of the CLM directive REBOOT
implicity instructs the SRF to take a dump
before reinitializing the system; omitting the
PATH argument implicity instructs the SRF not
to take a dump. Specifying the DUMP keyword of
argument 3 does not override a REBOOT directive
whose PATH argument is omitted. A user who
omits the PATH argument can later direct the
SRF to take a dump only by modifying the REBOOT
directive so that it provides a value for the
PATH argument.

On the other hand, specifying the keyword NDUMP
of argument 3 does override a REBOOT directive
that provides a value for the PATH argument.

DESCRIPTION:

$RBPRM can modify parameters currently entered in the system
control block (SCB) fields SJ3TD1, S_CF, and S_DMP. These
fields identify respectively the reboot volume, configuration
file, and dumpfile (if any), to be used by the SRF.

The current values of S_BTD1 and S_CF are established in one
of two ways:

2-339 CZ06-00

• By the initialization of the current session. Assume
for example, that the operator initiated the current
session by mounting the reboot volume ~ZSYS71, and
that the Configuration Load Manager (CLM) used the
configuration file >SID>CLM_USER residing on this
volume. Assume further that after the current session
was initialized, a Modify Reboot Paramaters macro
call/command has not specified a different reboot
volume or configuration file. The SCB currently
indicates that volume ~ZSYS71 and configuration file
>SID>CLM_USER are to be used by the SRF for
reinitializing the system.

• By the last Modify Reboot Parameters macro
call/command issued in the current session.

$RBPRM modifies SCB entries S_BDT and S_CF only after
validating that:

• The reboot volume specified by argument 1 exists, is
mounted, and is a valid reboot volume.

• The configruation file specified by argument 2 resides
on the reboot volume specified by argument 1, and is
of the proper file type.

• The directory containing the configuration file
specified by argument 2 also contains a START_UP.EC
file.

After validating the values entered for arguments 1 and 2,
$RBPRM modifies the current reboot parameters in S_BDT and
S_CF.

As explained above, the current dumpfile parameter is
established by either a CLM REBOOT directive or a Modify
Reboot Parameters macro call/command. The REBOOT directive
initially establishes the dumpfile parameter; a Modify Reboot
Paramters macro call alters the inital dumpfile parameter
only if:

• The call is issued in the current session.
• The REBOOT directive specified that a dump be taken.
• Argument 3 of the call specifies NDUMP.

If the REBOOT directive specified that a dump be taken,
specifying DUMP for argument 3 validates that the conditions
necessary for a dump exist (i.e., that the dumpfile is
configured, is unlocked, and is not write-protected). If any
of these conditions do not exist, an error message is
returned in $R1.

2-340 CZ06-00

Argument 3 provides an easy way of determining whether or not
the CLM REBOOT directive specified that a dump be taken:
entering DUMP for argument 3 results in the error message
"Dumpfile not configured" if the REBOOT directive did not
specify a dump.

$RBPRM is a privileged call (i.e., it can be issued only by a
task running in a memory pool configured as privileged).

NOTES

1. If argument 1 specifies the keyword "PN=n
followed by the address of a pathname, the
system places the address in $B2 and sets $R2
to 0. Alternatively, if argument 1 specifies
the keyword "CH=" followed by a channel
number, the system places the channel number
in $R2. If argument 1 is omitted, the system:

• Assumes that $B2 contains the address
of a new volume/device name or a null
address (which signifies the current
volume/device name). Note that the
system does not generate a default
value in $B2; the user, if omitting
argument 1, is responsible for placing
the correct value in $B2.

• Sets $R2 to 0.

2. If argument 2 specifies the address of a
configuration pathname, the system places the
address in $B4. If argument 2 specifies =B4,
or if argument 2 is omitted, the system
assumes that $B4 contains the pathname of the
configuration file desired. The system does
not generate a default value in $B4; the user
is responsible for placing the correct value
in that register.

3. If argument 3 specifies the keyword "DUMP",
the system sets $R6 to 1; if "NDUMP" is
specified, the system sets $R6 to 0. If
argument 3 is omitted, the system assumes that
$R6 contains the correct value; the system
does not generate a default value in that
register.

4. On return, $R1 contains one of the following
status codes:

2-341 CZ06-00

0000 - Reboot parameters successfully modified

083A - Function illegal for unprivileged task
group

0865 - Dumpfile not configured

0866 - Cannot reserve reboot volume

0867 - Attributes of specified volume incorrect
for reboot volume

0868 - Cannot reserve configuration file

0869 - Error returned by file system when
attempting to reference dumpfile

086A - Attributes of specified file incorrect
for configuration file

086E - Dumpfile write-protected

086F - Cannot reserve START_UP. EC file.

Example:

In this example, $RBPRM is issued to modify the current
reboot volume and configuration file parameters, and to
validate the current dump parameter. On return, $R1 will
indicate whether the dumpfile, previously specified by the
CLM REBOOT directive, is ready to receive a dump. When next
activated, the SRF will reinitialize the system using the new
reboot volume ~MYVOL and the new configuration file
MYDIR>MYCLM.

$RBPRM PN=VOL , CF , DUMP

VOL DC '"MYVOLA1

CF DC 'MYDIR>MYCLM '

2-342 CZ06-00

On return, $R1, $R6, $R7, $B2, and $B4 contain
the following information:

"».

$R1 - Return status; contains the following:
/

0000 - No error

All file management get-file and
open-file error codes may also be
returned

$R6 - Record length of the redefined file

$R7 - File status/type of the redefined file

$B2 - Address of the argument list (if
supplied)

$B4 - Address of the pathname of the new
command-in file (if supplied).)

2-344 CZ06-00

NEW MESSAGE LIBRARY

NEW MESSAGE LIBRARY fSNMLF)

Function Code: 08/08
4.

Equivalent Command: None

Redefine or set the message library for the issuing task.

FORMAT:

[label] $NMLF [location of pathname address]

ARGUMENT:

location of pathname address

Any address form valid for an address register; provides
the address of the pathname of the new message library
file.

DESCRIPTION:

$NMLF allows a task to redefine or set its message library.
A task's message library is initially defined when its task
group is requested (or spawned). At that time, the requestor
may specify a message library file, which is assigned to the
lead task of the requested group. If the requestor does not
specify a message library, the lead task's message library
defaults to that of the requestor. If no message library is
defined for the requestor (e.g., because no system message
library is configured), none is assigned to the lead task.
All tasks created by the lead task share the lead task's
message library (if one exists). $NMLF allows a task to use
a message library other than one inherited from its parent
task. Alternatively, should no message library be defined
for the parent task, $NMLF allows the created task to
establish one.

$NMLF opens the file specified by the argument, and sets the
file's usage count to one. If a different message library
file was previously assigned to the calling task, $NMLF
decrements the usage count of that file. If the usage count
of the old file reaches zero, the old file is closed and
removed.

2-345 CZ06-00

NOTES

1. The address of the pathname of the new message .--̂
library file supplied by argument 1 is placed ' /
in $B4; if this argument is omitted, $B4 is - -x
assumed to contain the address of the
pathanme.

2. On return, $R1 and $B4 contain the following
information:

$R1 - Return status; one of the following:

0000 - No error
0602 - Memory unavailable for message

library file control structure

All file management Get File, Open File, Close
File, and Remove File error codes may also be
returned in $R1. These codes are listed in
the System Messages manual.

$B4 - Address of pathname string of new
message.

Example:

In this example, $NMFL defines the message library of the
issuing task as "V1124>UDD>JONES>MYERR. ^

J
INML $NMLF 1NEWML

NEWML DC '*V1124>UDD>JONES>MYERRA'

2-346 CZ06-00

NEW PROCESS

NEW PROCESS (SNPRQC)

Function Code: OD/OB

Equivalent Command: New Process (NEW_PROC)

Terminate the current task group request and restart the task
group request with the same parameters as the original invocation
of the task group for this request.

FORMAT:

[label] $NPROC

ARGUMENT:

There are no arguments for this macro call.

DESCRIPTION:

This macro call terminates the current request for the
issuing task group, then restarts the request using the same
parameters as in the original request.

Example:

In this example, the New Process macro call is used to termi-
nate and restart the task group request.

AGAIN $NPROC

2-347 CZ06-00

NEW USER INPUT

NEW USER INPUT (SNUIN)

Function Code: 08/04

Equivalent Command: None

Redefine, reset, or set the user-in file for the issuing
task. The user-in file can be redefined by a new pathname, reset
to the initial user-in file, or set to the file currently defined
as the command-in file. The action taken applies only to the
task that issues the macro call.

FORMAT:

[label] $NUIN [location of pathname address]

ARGUMENT:

location of pathname address

Any address form valid for an address register; provides
the pathname of the file that is to be used as the new
user-in file for the issuing task. If $CIN is specified
for this argument, the file currently defined as the
task's command-in file is also used as the new user-in
file. If this argument is omitted, the file defined by
the Reqeust Group macro call as the user-in file for
tasks in this task group is again used for this task.

DESCRIPTION:

This call allows the issuing task to use another file as the
user-in file.

If a pathname is specified in the macro call, input is read
from the file identified by the pathname.

If $CIN is specified for this argument, the file that is cur-
rently the task's command-in file is used as the source of
input for the task.

If the call is written without an argument, the user-in file
is identified as the initial user-in file for this task.
(The Request Group macro call identifies this user-in file.)

The New User Input call also performs a Close File and Remove
File of the existing user-inf if one exists, and a Get File
and Open File of the new user-in file.

2-348 CZ06-00

When the macro call has been executed, $R6 contains the
record length of the new user-in file, and $R7 contains the
file status.

NOTES

1. If argument 1 is a pathname address, $R2 is
set to zero and the pathname supplied by argu-
ment 1 is placed in $B4. If argument 1 is
$CIN, $R2 is set to two. If argument 1 is
omitted, $R2 is set to one.

2. On return, $R1, $R6, $R7, and $B4 contain the
following information:

c r- «- p.

$R1 - Return status; one of the following:

0000 - No error
0817 - Memory access violation

All file management get-file and
open-file error codes may also be
returned. See the System Messages
manual.

$R6 - Record length of redefined file

$R7 - File type of redefined file (see the
Command In macro call)

$B4 - Address of pathname string of new
user-in file (if pathname was supplied
in argument 1).

Example:

In this example, the issuing task is to read its input from a
new user-in file name, ~V1124>UDD>TEST>JONES.

INAA $NUIN 1NEWIN

NEWIN DC '"V1124>UDD>TEST>JONESA

2-349 CZ06-00

NEW USER OUTPUT

NEW USER OUTPUT (SNUQUT)

Function Code: 08/05

Equivalent Command: File Out (FO)

Redefine or reset the user-out file for the task group of the
issuing task. The user-out file can be redefined by a new path-
name or reset to the user-out file initially defined for the
issuing task group. The action taken applies to all tasks in the
task group from which the command is issued.

FORMAT:

[label] $NUOUT [location of pathname address] j

ARGUMENT: >~X

location of pathname address

Any address form valid for an address register; provides
the pathname of the file to be used as the new user-out
file for the issuing task group. If this argument is
omitted, the file defined by the Request Group macro call ~
is used as the user-out file for tasks in this task _J
group.

DESCRIPTION:

This call allows the issuing task group to use another file
as the user-out file.

If a pathname is specified in the macro call, the tasks in
this task group write their output to the file identified by
the pathname.

If the call is written without an argument, the user output
file identified as the initial output file for this task
group is used for task output. (The Request Group macro call
identifies the initial user-out file.)

$NUOUT also performs a Close File and Remove File for the
existing user-out file (if one exists) and a Create File, Get
File, and Open File for the new user-out file. If the
user-out file already exists, the Create File is ignored.

When the macro call has been executed, $R6 contains the
record length of the new user-out file, and $R7 contains its
file status.

2-350 CZ06-00

NOTES

1. The address of the pathname supplied by argu-
ment 1 is placed in $B4, and $R2 is set to
zero. If this argument is omitted, $R2 is set
to one.

2. On return, $R1, $R6, $R7, and $B4 contain the
following information:

$R1 - Return status; one of the following:

0000 - No error
0817 - Memory Access Violation

All file management get-file, create-file, and
open-file error codes may also be returned.
See the System Messages manual.

$R6 - Record length of redefined file

$R7 - File type of redefined file (see the
Command In macro call)

$B4 - Address of pathname string of new
user-out file (if a pathname was speci-
fied in argument 1).

Example:

In this example, the user-out file is reset to its initial
definition.

OUTBK $NUOUT

2-351 CZ06-00

OPEN FILE

r̂

OPEN FILE (SOPFIL)

Function Code: 10/50 (preserve), 10/51 (renew)

Equivalent Command: None

Initialize and establish addressability to a file (which can
be used by any task in the group). The file to be opened is
identified by supplying its logical file number (LFN).

FORMAT:

[label] $OPFIL [FIB address] H,PRESERVE)"
I),RENEW J

ARGUMENTS: '

fib address

Any address form valid for an address register; provides
the location of the file information block (FIB). The
FIB must contain a valid LFN and program view.

/PRESERVE) r
\PRE I J

Specifies that this is an existing data file, and that
labels and data already in the file are to be preserved.
Reading starts from the first logical record; writing
starts at the current logical end-of-file. PRESERVE is
the default value for this macro call.

For indexed files only, specifying PRESERVE means that a
file, when opened, cannot be opened by anyone else in]
RENEW mode. '

[RENEW)
\REN /

Specifies that this is a new file that is considered
empty until data is written to it.

For disk files, both writing and reading start from the
first logical record.

For tape files, RENEW is used to rewrite an existing file
or add a new file to a volume. Write permission must be
granted in the FIB program view word.

2-352 CZ06-00

For indexed files, RENEW requires that, after the file is
opened, the user write records in ascending sequence by
key value. This is a special "load mode" that generates
the index.

DESCRIPTION:

Before this macro call can be issued, the following actions
must have occurred:

1. The specified file must physically exist (i.e., it
must have been created through a Create File macro
call). '

2. The LFN must have been associated with the external
file through an Associate File, Get File, or Create
File macro call (or through an equivalent command).

If a file is currently opened elsewhere in the system (by any
LFN in the requesting task group or any other task group) ,
the following rules apply:

• Opening the file in RENEW mode is not allowed.

• Opening an indexed file in PRESERVE mode is not
allowed if the file is currently open in RENEW mode.

• Opening a tape file in any mode is not allowed.

If an Associate File macro call was executed, but a Get File
macro call was not, the Open File macro call will attempt to
reserve the file with exclusive concurrency control. (This
method of opening a file is not recommended.)

A file cannot be opened directly through its pathname. If
the user issues a Get File or Create File macro call with
only a pathname (no LFN specified), the system will assign an
LFN, which the user can then use to open the file.

If an indexed sequential file is empty (i.e., has been
created but never opened in RENEW mode), and this file is
opened in PRESERVE mode, the system converts the open to an
open in RENEW mode and provides no notification of this
change. Subsequent reads, writes, and rewrites will operate
as though the file were empty.

The following discussion and rules apply only to magnetic
tape files.

2-353 CZ06-00

Certain tape search rules are used when the file is
opened to locate the required tape file. These rules are
applied when the tape is opened for data management
(record-level) access, or when a file name is specified
and the tape is opened for storage management (block
level) access. Table 2-20 defines these rules.

Table 2-20. Tape File Search Rules for $OPFIL Macro Call

File Label Type and
Open Mode

FSN* Value
in $GTFIL

Call Result

Labeled tapes opened
in PRESERVE mode:

File name not
specified

File name is specified

0/FF

n

0

n

FF

Labeled tape opened in
RENEW mode

0

n

FF

Tape positioned to next file.

Tape positioned to nth file.

Tape positioned to next file;
file name in header label is
compared to specified file
name. t

Tape positioned to nth file/-
file name in header label is
compared to specified file
name.

Tape searched, in forward
direction only, for a header
label with a matching file
name.

Tape positioned to next file.

Tape positioned to nth file.

Tape positioned, in forward
direction only, to a file
with a matching file name.
If no match is found, the new
file is appended after the
end of all existing files on
the last tape volume.

2-354 CZ06-00

Table 2-20 (cont). Tape File Search Rules for $OPFIL Macro Call

File Label Type and
Open Mode

Unlabeled tapes opened
in PRESERVE mode (file
or volume name cannot
be specified)

Unlabeled tapes opened
in RENEW mode (file or
volume name cannot be
specified)

FSN Value
in $GTFIL

Call

0/FF

n

0

n

FF

*

Result

Tape positioned to the next
file (past the next tape
mark) .

Tape positioned to the nth
file (past the nth tape
mark) .

Tape positioned to the next
file (past the next tape
mark) .

Tape positioned to the nth
file (past the nth tape
mark) .

Tape positioned forward only
to the end of existing data;
the new file is appended
after the end of all existing
files on the tape.

*FSN = Tape file sequence number argument in $GTFIL macro call.

2. For tapes opened in PRESERVE mode, the position of data
within the file is determined as follows:

a. If only read permission is granted (FIB program view
word allows read but not write), the header label
group is processed and the file is positioned
directly in front of the first data record.

b. If only write permission is granted (FIB program view
word allows write but not read), the header label
group is processed and the file is positioned
directly after the last data record. This, in
effect, is "append" mode, a way for the user to add
records to the end of a file without having to read
past all the existing data records.

Trailer labels and an end-of-data tape mark are
written when the file is closed. Files following the
current file are lost.

2-355 CZ06-00

c. If read and write permissions are granted (FIB pro- ^
gram view word allows both read and write), the N /
header label group is processed and the file is posi-
tioned directly in front of the first data record. \ J-"
Any write request issued after the file is opened '-^
will cause all data records that were read to be pre-
served, and those records that were not read to be
lost. This procedure can be used to preserve part of
the file while renewing the rest.

If no write operations are done and the file is
closed, no trailer labels are written. Thus, files
located after the current file are preserved.

If write operations are done, trailer labels and an
end-of-data tape mark are written when the file is
closed. Files that follow the current file are lost.

3. For tapes opened in RENEW mode, the position of data
within the file is determined as follows: ^

a. Creation of the new file is initiated at the current
tape position. (If the tape is positioned at begin-
ning of tape (EOT), the volume header label is
bypassed.) The header label group is written as
specified in the preceding Get File macro call.
After these actions, the tape is positioned at the
end of the header label group.

" "V
b. Data and/or files following the current tape position)

are destroyed when the file is opened.

As part of the initialization process, this macro call veri-
fies that sufficient space is available for buffers and con-
trol structures.

This macro call must be issued before any of the data manage-
ment or storage management macro calls can be executed.

The file information block can be generated by a File Infor- /
mation Block macro call. Displacement tags for the FIB can
be defined through the File Information Block Offsets macro
call.

NOTES

1. If the first argument is coded, the system
loads the address of the FIB into $B4. If the
argument is omitted, the system assumes that
$B4 contains the address of the FIB.

2-356 CZ06-00

2. On return, $R1 contains one of the following
status codes:

0000 - No error

Olxx - Physical I/O error

0205 - Invalid argument

0206 - Unknown or invalid LFN

0208 - LFN or file already open

0209 - Named file or directory not found

020C - Named volume not found

0214 - Bad program view of file

0217 - Access violation

0218 - Damaged file

0225 - Not enough system memory for buffers or
structures

0226 - Not enough user memory for buffers or
structures

022C - Access control list (ACL) violation

0232 - Invalid tape file header or tape file
trailer label

0237 - Invalid record or control interval
format

0238 - Invalid file description information.

Example:

This Open File example opens a new file, in which records are
to be written through the data management macro call(s) that
follow this macro call.

Following is a sample sequence of macro calls and FIB used to
open FILE__A for processing.

2-357 CZ06-00

FILE_A DC

MYFIB DC

Z'00051

Z'0005

(See "Assumptions
for File System
Examples" in
Appendix A)

KEY DC Z'OOOOFFFF

IDX01 DC

WRTFIL DC

'"VOL03>SUBINDEX.A>FILE_AA' (See Create File
macro call)

Zf0005' (See Get File
, macro call)

$CRFIL !FILE_A or $GTFIL 1WRTFIL

$OPFIL IMYFIB,RENEW

$WRREC IMYFIB (See Write Record
macro call)

2-358 CZ06-00

OPERATOR INFORMATION MESSAGE

OPERATOR INFORMATION MESSAGE (SQPMSGV

Function Code: 09/00

Equivalent Command: Message (MSG)

Display an information message on the terminal designated as
the operator terminal.

FORMAT:

[label] $OPMSG [location of IORB address]

ARGUMENT:

location of IORB address

Any address form valid for an address register; provides
the address of the Input/Output Request Block (IORB) that
describes the location and range of the output informa-
tion message. See Appendix C for a description of the
IORB.

DESCRIPTION:

This macro call enables the issuing task to send a message to
the system operator. The location of the message and its
range are specified in the IORB (which is generated by the
Input/Output Request Block macro call or coded by the user).
The IORB also specifies whether control is to be returned to
the issuing task immediately or the task is to wait until the
message is displayed.

NOTES

1. The system places in $B4 the address of the
IORB supplied by argument 1. If this argument
is omitted, the system assumes that $B4 con-
tains the correct address.

2. On return, $Rl and $B4 contain the following
information:

$R1 - Return status; one of the following:

0000 - No error
0801 - IORB in use (T-bit on)

2-359 CZ06-00

0802 - Invalid LRN, or console message
suppression in effect

0803 - Invalid wait, or the R, S, D bit
in the IORB is still on

0817 - Memory access violation

The following could occur if the IORB
specified the issuing task was to wait
for the message to be displayed.

0104 - Invalid arguments

0105 - Device not ready

0106 - Device timeout

0107 - Hardware error (check IORB status
word)

0108 - Device disabled

0109 - File mark encountered

010A - Controller unavailable

010B - Device unavailable

010C - Inconsistent request

$B4 - Address of IORB.

Example:

In this example, the Operator Information Message macro call
is used to write the message labeled OP_MSG on the operator
terminal. The Wait macro call ($WAIT) is later used to block
the task until the message has been received by the accept
message facility in the operator's task group.

2-360 CZ06-00

$OPMSG 1IORB

$WAIT ! IORB

THIS CODE EXECUTES WHETHER OR NOT
OPERATOR'S MESSAGE WAS PHYSICALLY
WRITTEN TO THE TERMINAL.

THIS CODE EXECUTES ONLY AFTER THE
MESSAGE IS PHYSICALLY WRITTEN.

DEFINE THE IORB.

IORB RESV

TEXT

TEXT

DC
DC

TEXT

DC
DC

$AF, 0 RSU

Z ' O O ' ; RETURN STATUS \
B ' O
B' l
B ' O
B ' O
B ' O
B ' O
B ' O l

Z ' O O
B ' O 1

B ' O '
B ' O '
B ' O 1

T (IN USE) BIT
W (DON'T WAIT) BIT 1
U (USER) BIT \
MBZ /
MBZ 1
MBZ 1
MUST BE 1 /

LRN
MBZ
B (BYTE INDEX) BIT
MBZ
MBZ

Z ' l ' FUNCTION CODE

<OP__MSG BUFFER ADDRESS
OP_MLN RANGE (IN BYTES)

B ' O O O O O O O ' ; \
B'O ; B (BREAK) BIT]
B ' O ; D BIT (MBZ) J
B'O ; K BIT (M B Z) \
B ' O ; E (KEYBOARD ECHO) BIT /
B'l ; L (LF) BIT 1
B'O ; C (NO CR) BIT I
B ' O O O ' MODE /

0 RESIDUAL RANGE
0 STATUS WORD

I_CT1

I_CT2

I_DVS

END OF THE IORB

OP__MSG TEXT 'A MESSAGE TO THE OPERATOR.1

EQU 2*($-OP_MSG)

2-361 CZ06-00

OPERATOR RESPONSE MESSAGE

OPERATOR RESPONSE MESSAGE (SOPRSP)

Function Code: 09/01

Equivalent Command: None

Display a message on the operator terminal and place the
operator's response to that message in a buffer specified by the
input request block.

FORMAT:

[label] $OPRSP [location of IORB list address]

ARGUMENT:

location of IORB list address

Any address form valid for an address register; provides
the address of a list specifying the input/output request
blocks to be used. The format of the IORB list is as
follows:

entry 1 - Address of IORB describing output message (to
operator terminal)

entry 2 - Address of IORB describing input message (for
operator response).

DESCRIPTION:

This macro call enables the issuing task to send a message to
the system operator and to receive the operator's response to
that message.

Two lORBs are needed: an IORB describing the output message
and an IORB describing the input buffer for the response.
Both lORBs are generated through an Input/Output Request
Block macro call or are coded by the user.

The output message IORB describes the location and size of
the output message.

The input IORB describes the location of the input buffer for
the response, the size of the buffer, and whether control is
to be returned to the issuing task immediately or after the
response has been received (by setting the W-bit of the input
IORB).

2-362 CZ06-00

NOTES

1. The system places in $B4 the address of the
IORB list supplied by argument 1. If this
argument is omitted, the system assumes that
$B4 contains the correct address.

2. On return, $R1 and $B4 contain the following
information:

$R1 - Return status; one of the following:

0000 - No error

0801 - IORB in use (T-bit on)

0802 - Invalid logical resource number
(LRN), or console message sup-
pression in effect

0803 - Invalid wait, or the R, S, D bit
in the IORB is not zero

0817 - Memory access violation

The following could occur if the IORB
describing the input buffer specified
that the issuing task was to wait for
the response.

0104 - Invalid argument

0105 - Device not ready

0106 - Device timeout

0107 - Hardware error (check IORB status
word)

0108 - Device disabled

0109 - File mark encountered

010A - Controller unavailable

010B - Device unavailable

010C - Inconsistent request

010D - EOT on magnetic tape detected

$B4 - Address of input IORB.

2-363 CZ06-00

Example:

In this example, the Operator Response Message macro call
causes the message labeled OP__QRY to be written on the opera
tor terminal. A reply from the operator terminal is then
read into the buffer labeled OP_ANS. The issuing task
remains blocked until the above actions have been completed.

$OPRSP !IORB_L

*
* DEFINE THE IORB LIST.
*
IORB_L DC <OUT_RB,<IN_RB
*
* DEFINE THE IORBS.
* OUTPUT IORB:

*)OUT_RB RESV $AF, 0 /̂
TEXT Z'OO1, B'OOOOOOOl'
TEXT Z'OO 1, B'OOOO 1, Z'l1

DC <OP_QRY
DC OP_QLN
TEXT B'OOOOOO0000010000 '
DC 0, 0

*
* INPUT IORB: r

*
IN_RB RESV $AF, 0

TEXT Z'OO1, B'OOOOOOOl'
TEXT Z'OO ' , B'OOOO', Z'2'
DC <OP_ANS
DC OP_ALN
TEXT B'0000000000110000'
DC 0, 0

*
* END OF IORBS. \
*
OP_QRY TEXT 'A QUERY TO THE OPERATOR?1 ^
OP_QLN EQU 2*($-OP_QRY)
OP_ANS RESV 40, 0
OP_ALN EQU 2*($-OP_ANS)

2-364 CZ06-00

FILE_A DC

MYFIB DC

Z'00051

Z'0005

(See "Assumptions
for File System
Examples" in
Appendix A)

KEY DC Z'OOOOFFFF

IDX01 DC

WRTFIL DC

'"VOL03>SUBINDEX.A>FILE_AA' (See Create File
macro call)

Zf0005' (See Get File
, macro call)

$CRFIL !FILE_A or $GTFIL 1WRTFIL

$OPFIL IMYFIB,RENEW

$WRREC IMYFIB (See Write Record
macro call)

2-358 CZ06-00

OPERATOR INFORMATION MESSAGE

OPERATOR INFORMATION MESSAGE (SQPMSGV

Function Code: 09/00

Equivalent Command: Message (MSG)

Display an information message on the terminal designated as
the operator terminal.

FORMAT:

[label] $OPMSG [location of IORB address]

ARGUMENT:

location of IORB address

Any address form valid for an address register; provides
the address of the Input/Output Request Block (IORB) that
describes the location and range of the output informa-
tion message. See Appendix C for a description of the
IORB.

DESCRIPTION:

This macro call enables the issuing task to send a message to
the system operator. The location of the message and its
range are specified in the IORB (which is generated by the
Input/Output Request Block macro call or coded by the user).
The IORB also specifies whether control is to be returned to
the issuing task immediately or the task is to wait until the
message is displayed.

NOTES

1. The system places in $B4 the address of the
IORB supplied by argument 1. If this argument
is omitted, the system assumes that $B4 con-
tains the correct address.

2. On return, $Rl and $B4 contain the following
information:

$R1 - Return status; one of the following:

0000 - No error
0801 - IORB in use (T-bit on)

2-359 CZ06-00

0802 - Invalid LRN, or console message
suppression in effect

0803 - Invalid wait, or the R, S, D bit
in the IORB is still on

0817 - Memory access violation

The following could occur if the IORB
specified the issuing task was to wait
for the message to be displayed.

0104 - Invalid arguments

0105 - Device not ready

0106 - Device timeout

0107 - Hardware error (check IORB status
word)

0108 - Device disabled

0109 - File mark encountered

010A - Controller unavailable

010B - Device unavailable

010C - Inconsistent request

$B4 - Address of IORB.

Example:

In this example, the Operator Information Message macro call
is used to write the message labeled OP_MSG on the operator
terminal. The Wait macro call ($WAIT) is later used to block
the task until the message has been received by the accept
message facility in the operator's task group.

2-360 CZ06-00

$OPMSG 1IORB

$WAIT ! IORB

THIS CODE EXECUTES WHETHER OR NOT
OPERATOR'S MESSAGE WAS PHYSICALLY
WRITTEN TO THE TERMINAL.

THIS CODE EXECUTES ONLY AFTER THE
MESSAGE IS PHYSICALLY WRITTEN.

DEFINE THE IORB.

IORB RESV

TEXT

TEXT

DC
DC

TEXT

DC
DC

$AF, 0 RSU

Z ' O O ' ; RETURN STATUS \
B ' O
B' l
B ' O
B ' O
B ' O
B ' O
B ' O l

Z ' O O
B ' O 1

B ' O '
B ' O '
B ' O 1

T (IN USE) BIT
W (DON'T WAIT) BIT 1
U (USER) BIT \
MBZ /
MBZ 1
MBZ 1
MUST BE 1 /

LRN
MBZ
B (BYTE INDEX) BIT
MBZ
MBZ

Z ' l ' FUNCTION CODE

<OP__MSG BUFFER ADDRESS
OP_MLN RANGE (IN BYTES)

B ' O O O O O O O ' ; \
B'O ; B (BREAK) BIT]
B ' O ; D BIT (MBZ) J
B'O ; K BIT (M B Z) \
B ' O ; E (KEYBOARD ECHO) BIT /
B'l ; L (LF) BIT 1
B'O ; C (NO CR) BIT I
B ' O O O ' MODE /

0 RESIDUAL RANGE
0 STATUS WORD

I_CT1

I_CT2

I_DVS

END OF THE IORB

OP__MSG TEXT 'A MESSAGE TO THE OPERATOR.1

EQU 2*($-OP_MSG)

2-361 CZ06-00

OPERATOR RESPONSE MESSAGE

OPERATOR RESPONSE MESSAGE (SOPRSP)

Function Code: 09/01

Equivalent Command: None

Display a message on the operator terminal and place the
operator's response to that message in a buffer specified by the
input request block.

FORMAT:

[label] $OPRSP [location of IORB list address]

ARGUMENT:

location of IORB list address

Any address form valid for an address register; provides
the address of a list specifying the input/output request
blocks to be used. The format of the IORB list is as
follows:

entry 1 - Address of IORB describing output message (to
operator terminal)

entry 2 - Address of IORB describing input message (for
operator response).

DESCRIPTION:

This macro call enables the issuing task to send a message to
the system operator and to receive the operator's response to
that message.

Two lORBs are needed: an IORB describing the output message
and an IORB describing the input buffer for the response.
Both lORBs are generated through an Input/Output Request
Block macro call or are coded by the user.

The output message IORB describes the location and size of
the output message.

The input IORB describes the location of the input buffer for
the response, the size of the buffer, and whether control is
to be returned to the issuing task immediately or after the
response has been received (by setting the W-bit of the input
IORB).

2-362 CZ06-00

NOTES

1. The system places in $B4 the address of the
IORB list supplied by argument 1. If this
argument is omitted, the system assumes that
$B4 contains the correct address.

2. On return, $R1 and $B4 contain the following
information:

$R1 - Return status; one of the following:

0000 - No error

0801 - IORB in use (T-bit on)

0802 - Invalid logical resource number
(LRN), or console message sup-
pression in effect

0803 - Invalid wait, or the R, S, D bit
in the IORB is not zero

0817 - Memory access violation

The following could occur if the IORB
describing the input buffer specified
that the issuing task was to wait for
the response.

0104 - Invalid argument

0105 - Device not ready

0106 - Device timeout

0107 - Hardware error (check IORB status
word)

0108 - Device disabled

0109 - File mark encountered

010A - Controller unavailable

010B - Device unavailable

010C - Inconsistent request

010D - EOT on magnetic tape detected

$B4 - Address of input IORB.

2-363 CZ06-00

Example:

In this example, the Operator Response Message macro call
causes the message labeled OP__QRY to be written on the opera
tor terminal. A reply from the operator terminal is then
read into the buffer labeled OP_ANS. The issuing task
remains blocked until the above actions have been completed.

$OPRSP !IORB_L

*
* DEFINE THE IORB LIST.
*
IORB_L DC <OUT_RB,<IN_RB
*
* DEFINE THE IORBS.
* OUTPUT IORB:

*)OUT_RB RESV $AF, 0 /̂
TEXT Z'OO1, B'OOOOOOOl'
TEXT Z'OO 1, B'OOOO 1, Z'l1

DC <OP_QRY
DC OP_QLN
TEXT B'OOOOOO0000010000 '
DC 0, 0

*
* INPUT IORB: r

*
IN_RB RESV $AF, 0

TEXT Z'OO1, B'OOOOOOOl'
TEXT Z'OO ' , B'OOOO', Z'2'
DC <OP_ANS
DC OP_ALN
TEXT B'0000000000110000'
DC 0, 0

*
* END OF IORBS. \
*
OP_QRY TEXT 'A QUERY TO THE OPERATOR?1 ^
OP_QLN EQU 2*($-OP_QRY)
OP_ANS RESV 40, 0
OP_ALN EQU 2*($-OP_ANS)

2-364 CZ06-00

OVERLAY AREA, RELEASE

OVERLAY AREA, RELEASE (SOVRLS)

Function Code: 07/06

Equivalent Command: None

Exit from the calling floatable overlay, decrement the count
of users maintained for this overlay, and transfer control to the
supplied return point. (The overlay must have been requested
through an Overlay Area Reserve, and Execute Overlay macro call.)

FORMAT:

[label] $OVRLS [location of return point address]

ARGUMENT:

location of return point address

Any address form valid for an address register; provides
the address of the return point to which control is to be
transferred.

DESCRIPTION:

This macro call causes an exit from the calling overlay and a
return to a specified point. The identity of the overlay
area table (OAT) controlling the floatable overlay is
extracted from the task control block (TCB) of the issuing
task. The identity of the OAT is cleared from the TCB and
the count of the number of users of this overlay is decre-
mented in the defining OAT. When the count drops to zero
(i.e., the task is the last to use the reserved area), the
overlay area is marked as available (i.e., released) and can
be reused by an Overlay Area Reserve, and Execute function.
Control is transferred to the return point supplied by argu-
ment 1.

NOTES

1. The system places in $B5 the return point
address, supplied by argument 1. If this
argument is omitted, the system assumes that
$B5 contains the correct return point address.

2. No return is made to the caller; control is
returned to the address supplied in $35. All
registers except SRI are preserved as they
existed when the function was executed.

2-365 CZ06-00

Example:

In this example, the calling overlay uses the Overlay Areaf -̂
Release macro call to release its overlay area and return to • V
the caller at the return point named OV2_RA. The calling
overlay is assumed to be the overlay (OVLY2) that was loaded
and executed as shown in the example for the Overlay Area
Reserve, and Execute Overlay macro call.

XLOC OV2_RA
$OVRLS 1<OV2_RA

2-366 CZ06-00

OVERLAY AREA RESERVE, AND
EXECUTE OVERLAY

OVERLAY AREA RESERVE. AND EXECUTE OVERLAY (SOVRSV)

Function Code; 07/05

Equivalent Command? None

Reserve the overlay area defined by the specified overlay
area table (OAT), increment the user count for that overlay area,
load the specified floatable overlay, and transfer control to the
overlay at the specified or default entry point. (The overlay
area must have been previously created by a Create Overlay Area
Table ($CROAT) macro call.)

FORMAT:

[label] $OVSRV [location of overlay id],
[location of entry point offset],
[location of OAT address],
[location of bound unit index id]

location of overlay id

Any address form valid for a data register; provides the
overlay id of the floatable overlay to be loaded and
executed. (The overlay id is a binary value generated by
the Linker.)

location of entry point offset

Any address form valid for a- data register; provides the
offset (from the overlay load base) of the overlay entry
point to which control is to be transferred. If this
argument is omitted, control is transferred to the start
address declared to the language processor or the Linker.

location of OAT address

Any address form valid for an address register; provides
the address of the OAT that defines this overlay area.
This address was returned by the system when the OAT was
created through the Create Overlay Area Table ($CROAT)
macro call. If the issuing task is a multi-bound unit
task (see below), a null address specifies an OAT created
by the primary bound unit.

2-367 CZ06-00

location of bound unit index id ~̂ \

Any address form valid for a data register; provides the
index id (0-7) of the bound unit whose overlay is to be ;
loaded; required only if the issuing task is a multi-bound
unit task (i.e.,has previously executed a Bound Unit,
Attach ($BUAT) or Bound Unit, Load ($BULD) macro call).
These two calls return in $R6 the index id of the attached
bound unit. The index id of the intial bound unit is 0.

DESCRIPTION:

This macro call causes the system to perform the following:

1. Determine if the issuing task already has an area
reserved. If so, an illegal overlay nesting error code
(160B) is returned.

2. If the issuing task has no area reserved, determine
whether the specified overlay of the bound unit being \̂
executed by the issuing task is currently resident in any ^/J
entry of the overlay area defined by the OAT pointed to by
argument 3.

3. If the overlay is resident, increment the area's user
count and transfer control to the overlay at the specified
(or default) entry point.

4. If the overlay is not resident, attempt to reserve an
overlay area within the specified OAT. If the overlay
area is successfully reserved, increment the user count
for the area, load the specified overlay, and transfer
control to its specified (or default) entry point.

5. When control is transferred to the overlay, record the
identity of the defining OAT in the task control block of
the issuing task.

Argument 4 is applicable if the issuing task is a multi-bound ^
unit task (i.e., has previously executed a Bound Unit Attach ^/J
($BUAT) or Bound Unit, Load ($BULD) macro call) . Even if the
issuing task has detached (by means of the Bound Unit, Detach
macro call) all tasks previously attached, the issuing task
is still considered to be a multi-bound unit task, and a
value must be specified for this argument. Index id numbers
1-7 refer to attached bound units; the index id number of the
initial bound unit is 0. If not applicable, this argument is
bypassed.

2-368 CZ06-00

Generally, an OAT manages only the overlays belonging to the
bound unit that created the OAT (by means of the $CROAT macro
call). In the case of a multi-bound unit taskr however, the
OAT created by the primary bound unit can manage the overlays
of attached bound units. If the value specified for argument
4 is from 1 to 7, and argument 3 specifies a null address,
then the overlay to be loaded belongs to an attached bound
unit but will be managed by an OAT created by the primary
bound unit. If the user wishes an overlay belonging to an
attached bound unit to be managed by an OAT created by the
same atached bound unit, then argument 3 should specify the
address of that OAT. (The address is returned in $B4 by the
$CROAT call that created the OAT.)

NOTES

1. The overlay id supplied by argument 1 is
placed in $R2; if this argument is omitted,
$R2 is assumed to contain the overlay id.

2. The relative displacement of the entry point
from the overlay base, supplied by argument 2,
is placed in $R6; if this argument is omitted,
a value of -1 is placed in $R6 to indicate
that the default entry point established
through the language processor or the Linker
is to be used.

3. The address of the overlay area table (OAT),
supplied by argument 3, is placed in $B4; if
this argument is omitted, $B4 is assumed to
contain the address of the OAT to be used.
When $OVRSV is issued by a multi-bound unit
task, a null address signifies an OAT created
by the primary bound unit.

4. The bound unit index id supplied by argument 4
is placed in $R7; if this argument is omitted,
$R7 is assumed to contain the bound unit index
id.

5. On return, $R2, $B4, and $R1 contain the
following:

$R2 - Overlay id (as supplied)

$B4 - OAT address (as supplied)

$R1 - Return status; one of the following:

Olxx - Media error

2-369 CZ06-00

Example:

0602 - Memory unavailable

1601 - Invalid overlay id

1604 - Invalid start address
specification

1607 - Unrecoverable media error

1608 - Symbol resolution error

160A - Insufficient memory

160B - Invalid overlay nesting

160C - Invalid overlay size for area
managment

1610 - Named OAT cannot be found

1612 - Overlay not a user segment

1614 - Access violation:

• Root of sharable bound unit
• No access rights

1617 - Zero-length overlay.

In this example, the Create Overlay Area Table ($CROAT) macro
call is used to create an overlay area table of three
512-word entries. (It is assumed that no existing OAT
controls 512-word entries.) The address of the controlling
OAT is stored in the field OAT_A. Later, the Overlay Area
Reserve, and Execute Overlay macro call is used to cause the
floatable overlay named OVLY2 to be loaded into one of the
areas controlled by the OAT (if it is not already available
in one of the OAT areas) and then to be executed at its
default entry point.

XVAL OVLY2

CREATE AN OAT IF ONE DOES NOT ALREADY EXIST

$CROAT OAT_A, =512, =3

CHECK FOR ERRORS

BNEZ $R1, ERROR1

2-370 CZ06-00

LOAD OVLY2 (IF NECESSARY) AND EXECUTE IT

$OVRSV OVLY2,, OAT_A

CHECK FOR ERRORS

BNEZ $R1, ERROR2

* DEFINE NORMAL RETURN ADDRESS FOR OVERLAY
*

XDEF (OV2_RA, $)

OAT_A DC <$

2-371 CZ06-00

OVERLAY, EXECUTE

OVERLAY. EXECUTE (SQVEXC)

Function Code: 07/00

Equivalent Command: None

Load the specified overlay of the bound unit being executed
by the issuing task. Transfer control to the overlay at the
specified entry point or at the start address declared to the
language processor or Linker.

FORMAT:

[label] $OVEXC [location of overlay id],
[location of entry point offset] ,
[location of overlay base address],
[location of bound unit index id]

ARGUMENTS:

location of overlay id

Any address form valid for a data register; provides the
overlay id of the overlay to be executed. (The overlay id
is a binary value generated by the Linker.)

location of entry point offset

Any address form valid for a data register; provides the
offset (from the overlay load base) of the overlay entry
point to which control is to be transferred. If this
argument is omitted, control is transferred to the start
address declared to the language processor or the Linker.

location of overlay base address

Any address form valid for an address register; provides
the base address of the overlay to be loaded and executed;
used only for floatable overlays. (Fixed overlays are
loaded by $OVEXC at an address established at link time.)
A null address specifies that the floatable overlay is to
be loaded into a memory block dynamically allocated by the
loader.

2-372 CZ06-00

location of bound unit index id

Any address form valid for a data register; provides the
index id (0-7) of the bound unit whose overlay is to be
loaded and executed; required only if the issuing task has
previously executed a Bound Unit, Attach ($BUAT) or Bound
Unit, Load ($BULD) macro call. These two calls return in
$R6 the index id of the attached bound unit. The index id
of the initial bound unit is 0.

DESCRIPTION; f

This macro call causes the loading and execution of the
overlay specified by argument 1 at a base address returned in
$B4.

If the specified overlay is fixed, it is loaded at the base
address established at link time.

If the specified overlay is floatable, the user must use
argument 2 to specify either (1) the base address at which
the overlay is to be loaded, or (2) a null address, which
directs the loader to allocate memory for the overlay. In
the first case, the address specified is that of the first
word in a memory block or segment previously created by means
of the Get Memory or Create Segment macro calls,
respectively. (Both calls return the start address of the
memory obtained.) The user would have created a segment only
if running in a swap pool. In the second case, the loader
allocates a memory block from the user's memory pool or (in
an Improved Memory Manager environment) from the user's group
work segment (GWS).

Argument 3 is applicable if the issuing task is a multi-bound
unit task (i.e., has previously executed a Bound Unit Attach
($BUAT) or Bound Unit, Load ($BULD) macro call). Even if the
issuing task has detached (by means of the Bound Unit, Detach
macro call) all tasks previously attached, the issuing task
is still considered to be a multi-bound unit task, and a
value must be specified for this argument. Index id numbers
1-7 refer to attached bound units; the index id of the
initial bound unit is 0. If not applicable, this argument is
bypassed.

If the overlay to be loaded resides in a segment, that
segment must have proper access rights.

NOTES

1. The system places in $R2 the overlay id
supplied by argument 1. If this argument
is omitted, the system assumes that $R2
contains the overlay id.

2-373 CZ06-00

2. The system places in $R6 the relative
displacement of the entry point from the
overlay load base/ supplied by argument 2,
If this argument is omitted, the system
places a value of -1 in $R6 to designate
that the default entry point is to be used.

3. The system places in $B4 the overlay base
address supplied by argument 3. If this
argument is omitted, the system assumes
that $B4 contains the address.

4 The location of the bound unit index id,
supplied by argument 3, is placed in $R7;
if this argument is omitted, $R7 is assumed
to contain the bound unit index id.

5. On overlay entry, $R1, $R2, $R6, and $B4
contain the following:

$R1 - 000 (No error)
$R2 - Overlay id
$R6 - Entry point offset
$B4 - Overlay load address.

6. If an error is made in the calling
sequence, return is to the caller. $R1
contains one of the following status codes:

Olxx - Media error

0602 - Memory unavailable

0817 - Memory access violation

OE02 - No memory available for nonswappable
task

1601 - Invalid overlay id

1604 - Invalid start address (offset
greater than or equal to overlay
size)

160A - Insufficient memory

1611 - Zero-length overlay

1614 - Access violation:

• Root of sharable bound unit
• No access.

2-374 CZ06-00

Example:

In this example, the Overlay, Execute macro call causes the
overlay named DPOSIT (of the bound unit being executed) to be
loaded and started at the entry point whose offset is named
ENTRY2. The example assumes that ENTRY2 was defined as an
external value when the bound unit was linked (or, possibly,
when its source unit was assembled or compiled).

XVAL DPOSIT, ENTRY2
$OVEXC =DPOSIT, =ENTRY2

2-375 CZ06-00

OVERLAY, LOAD

QVERLAY. LOAD (SQVLD)

Function Code: 07/01

Equivalent Command: None

Load the specified overlay of the bound unit being executed
by the issuing task. Return control to the issuing task.

FORMAT:

[label] $OVLD [location of overlay id],
[location of overlay base address],
[location of bound unit index id]

ARGUMENTS:

location of overlay id

Any address form valid for a data register; provides the
overlay id of the overlay to be loaded. (The overlay id
is a binary value generated by the Linker.)

location of overlay base address

Any address form valid for an address register; provides
the base address of the overlay to be loaded; used only
for floatable overlays. (Fixed overlays are loaded by
$OVLD at an address established at link time.) A null
address specifies that the floatable overlay is to be
loaded into a memory block dynamically allocated by the
loader.

location of bound unit index id

Any address form valid for a data register; provides the
index id (0-7) of the bound unit whose overlay is to be
loaded; required only if the issuing task has previously
executed a Bound Unit, Attach ($BUAT) or Bound Unit, Load
($BULD) macro call. These two calls return in $R6 the
index id of the attached bound unit. The index id of the
initial bound unit is 0.

2-376 CZ06-00

DESCRIPTION:

This macro call causes the loading of the overlay specified
by argument 1 at a base address returned in $B4.

If the specified overlay is fixed, it is loaded at the base
address established at link time.

If the specified overlay is floatable, the user must use
argument 2 to specify either (1) the base address at which
the overlay is to be loaded, or (2) a null address, which
directs the loader to allocate memory for the overlay. In
the first case, the address specified is that of the first
word in a memory block or segment previously created by means
of the Get Memory or Create Segment macro calls,
respectively. (Both calls return the start address of the
memory obtained.) The user would have created a segment only
if running in a swap pool. In the second case, the loader
allocates a memory block from the user's memory pool or (in
an Improved Memory Manager environment) from the user's group
work segment (GWS).

Argument 3 is applicable if the issuing task is a multi-bound
unit task (i.e., has previously executed a Bound Unit Attach
($BUAT) or Bound Unit, Load ($BULD) macro call). Even if the
issuing task has detached (by means of the Bound Unit, Detach
macro call) all tasks previously attached, the issuing task
is still considered to be a multi-bound unit task, and a
value must be specified for this argument. Index id numbers
1-7 refer to attached bound units; the index id number of the
initial bound unit is 0. If not applicable, this argument is
bypassed.

If the overlay to be loaded resides in a segment, that
segment must have the proper access rights.

NOTES

1. The system places in $R2 the location of
the overlay id, supplied by argument 1. If
argument 1 is omitted, the system assumes
$R2 contains the overlay id.

2. The system places in $B4 the location of
the overlay base address, supplied by
argument 2. If this argument is omitted,
the system assumes that $B4 contains the
address.

3. The location of the bound unit index id,
supplied by argument 3, is placed in $R7;
if this argument is omitted, $R7 is assumed
to contain the bound unit index id.

2-377 CZ06-00

4. On return, $R2, $R2, $R6, and $B4 contain ~>
the following information: //

$R1 - Return status; one of the following: V

0000 - No error

0000 - Media error

0601 - Requested contiguous memory
exceeds defined pool size

1603 - Invalid load address -

1607 - Unrecoverable media error

160A - Insufficient memory

0602 - Insufficient system memory

^
0817 - Memory access violation * ,*

OE02 - No memory availble for
non-swappable task

1601 - Invalid overlay id

160A - Insufficient memory

1611 - Zero-length overlay

1612 - Overlay not a user segment

1614 - Access violation:

• Root of sharable bound
unit

• No access N
/

$R2 - Overlay id (on a successful return) ^^

$R6 - Overlay default start address offset
(on a successful return)

$B4 - Overlay base address.

2-378 CZ06-00

Example:

In this example, the Overlay, Load macro call causes the
floatable overlay named DPOSIT (of the bound unit being
executed) to be loaded, but not executed. This overlay
belongs to an attached bound unit whose bound unit index id
is 3. Upon return from the system, $B4 contains the overlay
base address. $R6 contains the offset from its base address
to its default start address. The overlay base address and
the offset to the default start address are saved in OVLY_A
and OVLY_E, respectively. Thus, the overlay can be entered
later, at is default start address, by an instruction
sequence such as that shown in the middle of the example.
When the overlay is no longer needed it is unloaded by the
Overlay, Unload macro call.

* LOAD THE DPOSIT OVERLAY
*

XVAL DPOSIT
$OVLD =DPOSIT,,=3

*
BNEZ $41, BAD_ID CHECK FOR LOAD ERRORS

* SAVE THE BASE ADDRESS AND ENTRY POINT OFFSET
*

STB $B4, OVLY_A
STR $R6, OVLY_E

*
* JUMP TO DPOSIT'S DEFAULT ENTRY POINT
*

LDB $B4, OVLY_A
LDR $R1, OVLY__E
JMP $B4.$R1

*
* UNLOAD THE OVERLAY
*

$OVUN =DPOSIT, OVLY_A,,=3

OVLY_A DC <$
OVLY_E DC 00

2-379 CZ06-00

OVERLAY RELEASE, WAIT,
AND RECALL

OVERLAY RELEASE, WAIT. AND RECALL (SOVRCL)

Function Code: 07/07

Equivalent Command: None

Exit from the calling overlay. When completion status has
been posted to the specified request block, perform an Overlay
Area Reserve, and Execute Overlay function for the specified
overlay. The calling overlay must have been loaded through the
Overlay Area Reserve, and Execute Overlay macro call.

FORMAT:

[label] $OVRCL [location of overlay id],
[location of entry point offset],
[location of request block address],
[location of bound unit index id]

ARGUMENTS:

location of overlay id

Any address form valid for a data register; provides the
overlay id of the overlay to be called when the specified
request block has been posted as complete. (The overlay
id is a binary value generated by the Linker.) If this
argument is omitted, the overlay that issued this macro
call is recalled.

location of entry point offset

Any address form valid for a data register; provides the
offset (from the overlay load base) of the overlay entry
point to which control is to be transferred. If this
argument is omitted, control is transferred to the start
address declared to the language processor or the Linker.

location of request block address

Any address form valid for an address reqister; provides
the address of the request block whose completion status
is to be awaited.

2-380 CZ06-00

location of bound unit index id

Any address form* valid for a data register; provides the
index id (0-7) of the bound unit whose overlay is to be
called; required only if the issuing task has previously
executed a Bound Unit, Attach ($BUAT) or Bound Unit, Load
($BULD) macro call. These two calls return in $R6 the
index id of the attached bound unit. The index id of the
initial bound unit is 0.

DESCRIPTION:

This macro call enables the issuing task to exit from the
currently executing overlay and then to load the same or
another overlay when the specified request block is posted as
complete.

After the issuing task exits from the executing overlay, the
call releases the area occupied by the overlay, if no other
task requests use of the overlay. The address of the OAT
controlling the overlay is extracted from a field in the
task's control block (TCB), and is saved.

The issuing task waits on the specified request block. When
the request block is posted as completed, an Overlay Area,
Reserve and Execute Overlay function attempts to call/recall
the overlay specified by argument 1, using the saved OAT
address. If this overlay is already resident in the overlay
area, the area's user count is incremented and control is
transferred to the overlay at the specified (or default)
entry point (argument 2). If this overlay is not resident
and space for it does not exist in the overlay area, the
issuing task is suspended until space becomes available.

The calling overlay, from which $OVRCL is issued, was loaded
into its overlay area by an Overlay Area Reserve, and Execute
Overlay ($OVRSV) call. This $OVRSV call, in turn, was
preceded by a Create Overlay Area ($CROAT) call that defined
and created the overlay area. The overlay specified by
argument 1 of $OVRCL is loaded into the same overaly area
vacated by the calling overlay. Thus, the overlay specified
by argument 1 must be no larger than the entry size specified
by the $CROAT call that created the overlay area.

Argument 4 is applicable if the issuing task is a multi-bound
unit task (i.e., has previously executed a Bound Unit Attach
($BUAT) or Bound Unit, Load ($BULD) macro call). Even if the
issuing task has detached (by means of the Bound Unit, Detach
macro call) all tasks previously attached, the issuing task
is still considered to be a multi-bound unit task, and a
value must be specified for this argument. Index id numbers
1-7 refer to attached bound units; the index id number of the
initial bound unit is 0. If not applicable, this argument is
bypassed.

2-381 CZ06-00

6. If the calling sequence is in errorr return
is made to the calling overlay. $R1, $R2,
and $B4 contain the following information:

$R1 - Return status; one of the following:

0802 - Invalid LRN
0803 - Invalid wait
1601 - Invalid overlay id
1617 - OAT has no overlay to release

$R2 - Overlay id value (as supplied)

$R6 - Overlay entry point offset (as
supplied)

$B4 - Request block address (as supplied),

Example:

In the following example, the task is to exit from the
current overlay and wait for the task request block named
TRB1 to be marked as complete before loading overlay OVLY2
and executing it at its default entry point. Note that the
overlay to be exited from and the overlay to be loaded and
executed are controlled by the OAT whose identity was stored
in the task control block of the issuing task by a previously
issued Overlay Area Reserve, and Execute Overlay macro call.

XVAL OVLY2

TRB1 $TRB 17

$OVRCL =OVLY2,r 1TRB1

2-383 CZ06-00

OVERLAY STATUS

OVERLAY STATUS (SOVST)

Function Code: 07/03

Equivalent Command: None

Return the current status of the specified overlay. Among
the items of status information returned are:

• Sharable or nonsharable bound unit
• Patched or nonpatched overlay.

FORMAT:

[label] $OVST [location of overlay id],
[location of bound unit index id]

ARGUMENT:

location of overlay id

Any address form valid for a data register; provides the
overlay id of the overlay whose status is desired. (The
overlay id is a binary value generated by the Linker.)

location of bound unit index id

Any address form valid for a data register; provides the
index id (0-7) of the bound unit whose status is to be
returned; required only if the issuing task has
previously executed a Bound Unit, Attach ($BUAT) or Bound
Unit, Load ($BULD) macro call. These two calls return in
$R6 the index id of the attached bound unit. The index
id of the initial bound unit is 0.

DESCRIPTION:

This macro call causes the system to return an overlay status
word in $R2. The contents of this word are described below.

2-384 CZ06-00

Argument 2 is applicable if the issuing task is a multi-bound
unit task (i.e., has previously executed a Bound Unit Attach
($BUAT) or Bound Unit, Load ($BULD) macro call). Even if the
issuing task has detached (by means of the Bound Unit, Detach
macro call) all tasks previously attached, the issuing task
is still considered to be a multi-bound unit task, and a
value must be specified for this argument. Index id numbers
1-7 refer to attached bound units; the index id of the
initial bound unit is 0. If not applicable, this argument is
bypassed.

When this call is executed, the overlay entry point is
returned in $R6, the overlay size in $R7, and the overlay
base address in $B4.

NOTES

1. The system places in $R2 the overlay id,
supplied by argument 1. If this argument
is omitted, $R2 is assumed to contain the
required overlay id.

2. The system places in $R7 the bound unit
index id, supplied by argumment 2. If this
argument; is omitted, $R7 is assumed to
contain the bound unit index id.

3. On return, $R1, $R2, $R6, $R7 , and $B4
contain the following information:

$R1 - Return status; one of the following:

0000 - No error
1601 - Invalid overlay id
1611 - Zero-length overlay.

$R2 - Overlay status indicator word:

Bit 0 - Set to one if bound unit
sharable; otherwise zero.

Bit 1 - Set to one if overlay
permanently loaded;
otherwise zero.

Bit 2 - Set to one if slow load
section present; otherwise
zero.

2-385 CZ06-00

Bit 3 - Set to one if overlay
floatable; otherwise zero.

Bit 4 - Set to one if bound unit can ,
be executed in system task -
group; otherwise zero.

Bit 5 - Set to one if overlay
resident in memory;
otherwise zero; meaningful
only to call/cancel/exit
controller.

Bit 6 - Set to one if overlay has
been called, but has not
exited; otherwise zero;
meaningful only to
call/cancel/exit controller.

Bits 7 through 9 - Reserved for
system use.

Bit 10 - Set to one if overlay
contains initialized
relocatable pointers;
otherwise zero.

Bit 11 - Set to one if overlay
contains symbolic
references; otherwise zero.

Bit 12 - Set to one if overlay
defines symbolic names;
otherwise zero.

Bit 13 - Set to one if overlay is
patched; otherwise zero.

Bit 14 - Set to zero, indicating Long
Address Form (a memory
address takes up two words).

Bit 15 - Set to one, indicating Long
Address Form (a memory
address takes up two words).

$R6 - Overlay default entry point (as
specified by the language processor
or Linker); given as a word offset
from the overlay base address.

$R7 - Overlay size in words (0000 is
returned if the size is 64K words).

2-386 CZ06-00

$B4 - Base address of overlay if
permanently loaded or nonfloatable.

Example:

In this example, the Overlay Status macro call is used to
determine the status of the overlay named DPOSIT, which is an
overlay of the bound unit being executed. If the overlay is
floatable, the Get Memory macro call obtains memory for the
overlay. The Overlay, Execute macro call ($OVEXC) then loads
the overlay and starts it at its default entry point. To
simplify the example, the return status is not checked for
possible errors.

*
* NAME THE STATUS INDICATORS TO BE USED.
*
FLOAT EQU B'0001000000000000'
*
* DECLARE THE OVERLAY'S NAME.
*

XVAL DPOSIT
*
* GET THE OVERLAY'S STATUS.
*

$OVST DPOSIT
*
* GET MEMORY FOR IT IF IT IS FLOATABLE.
*

LB =$R2,FLOAT
BBF >LOAD
LDV $R6,0
$GMEM =$R7,WAIT

*
* LOAD AND EXECUTE THE OVERLAY.
*
LOAD $OVEXC DPOSIT

2-387 CZ06-00

OVERLAY, UNLOAD

OVERLAY. UNLOAD (SQVUN)

Function Code: 07/OC

Equivalent Command: None

Unload the specified overlay, which has previously been
loaded by an Overlay, Load ($OVLD) macro call.

FORMAT:

[label] $OVUN [location of overlay id],
[location of overlay base address],
[location of return point address],
[location of bound unit index id]

ARGUMENT:

location of overlay id

Any address form valid for a data register; provides the
overlay id of the overlay to be unloaded. (The overlay id
is a binary value generated by the Linker.)

location of overlay base address

Any address form valid for an address register; provides
the base address at which a floatable overlay specified by
argument 1 has been loaded. This is the address returned
by Overlay, Load ($OVLD) in $B4.

location of return point address

Any address form valid for an address register; provides
the address of the return point to which control will be
returned after the macro call is executed. If this
argument is omitted, the address of the first word
following the generated monitor call sequence is assumed
to be the return point address.

location of bound unit index id

Any address form valid for a data register; provides the
index id (0-7) of the bound unit whose overlay is to be
unloaded; required only if the issuing task has previously
executed a Bound Unit, Attach ($BUAT) or Bound Unit, Load
(SBULD) macro call. These two calls return in $R6 the
index id of the attached bound unit. The index id of the
initial bound unit is 0.

2-388 CZ06-00

DESCRIPTION:

This macro call causes an overlay to be unloaded from an area
not controlled by an overlay area table (OAT).

If the overlay to be unloaded is floatabler argument 2 must
be used to provide the overlay's location in memory. That
location is returned by Overlay, Load ($OVUN) in $B4. If the
overlay specified by argument 1 is not floatable, argument 2
is bypassed.

Argument 4 is applicable if the issuing task is a multi-bound
unit task (i.e., has previously executed a Bound Unit Attach
($BUAT) or Bound Unit, Load ($BULD) macro call). Even if the
issuing task has detached (by means of the Bound Unit, Detach
macro call) all tasks previously attached, the issuing task
is still considered to be a multi-bound unit task, and a
value must be specified for this argument. The index id
numbers 1-7 refer to attached bound units; the index id
number of the initial bound unit is 0. If not applicable,
this argument is bypassed.

NOTES

1. The overlay id supplied by argument 1 is placed
in $R2; if this argument is omitted, $R2 is
assumed to contain the overlay id.

2. The overlay base address supplied by argument 2
is placed in $B4? if this argument is omitted,
$B4 is assumed to contain the base address.

3. The return point address supplied by argument 3
is placed in $B5; if this argument is omitted,
the return point address is assumed to be the
address of the first word following the
generated monitor call sequence.

4. The bound unit index id supplied by argument 4
is placed in $R7; if this argument is omitted,
$R7 is assumed to contain the bound unit index
id.

5. On return, $R1 contains one of the following
status codes:

0000 - No error

0602 - Insufficient system memory

0603 - Block returned is not within its own
memory pool

2-389 CZ06-00

0817 - Memory access violation:

• System segment
• No access rights
• Root of sharable bound unit

0818 - No task group with specified id exists
(system software error) .

Example:

See the example given for the Overlay, Load ($OVLD) macro
call.

2-390 CZ06-00

PARAMETER BLOCK

PARAMETER BLOCK (SPRBLIO

Function Code: None

Equivalent Command: None

Generate a parameter block that is equivalent to the argument
list portion of the task request block.

FORMAT:

[label] $PRBLK [user argument 1],
[user argument 2],

[user argument n]

ARGUMENTS:

user argument 1 ... user argument n

User argument values; a parameter block is generated con-
taining the specified user argument values in the param-
eter positions that correspond to the argument positions
in the Parameter Block macro call. Pathname arguments
must include a trailing blank and must be enclosed in
single or double (' or ") quotation marks.

If an argument value of zero is specified before the last
argument, an argument pointer of zeros is generated in
the corresponding position in the argument list.

DESCRIPTION:

The parameter block generated by $PRBLK is equivalent in
format to the argument list portion of the task request
block. This format is explained in the Task Request Block
($TRB) description and is illustrated in Appendix C under
"Parameter Block Format."

$PRBLK is commonly used for entering requests against
previously created task groups or for spawning task groups.
The arguments listed by $PRBLK control execution of the
created or spawned group's lead task. The format of
arguments supplied by the user varies according to whether or
not the requested lead task is the Command Processor. See
the descriptions of the Request Batch Group, Request Group,
and Spawn Group macro calls for further details and for
examples.

2-391 CZ06-00

PERSON IDENTIFICATION

PERSON IDENTIFICATION (SPERIDl

Function Code: 14/01

Equivalent Command: None

Return the person component of the calling task group's user
id to a 12-character receiving field.

FORMAT:

[label] $PERID [location of person id field address]

ARGUMENT: \

location of person id field address

Any address form valid for an address register; provides
the address of a 12-character, aligned, nonvarying field
into which the system will place the person component of
the user id associated with the issuing task group.

DESCRIPTION:

This macro call returns the person component (i.e., the
user's personal id) of the task group's user id to a field in
the issuing task. The person id returned is that entered as
part of the LOGIN command that established the user as a
primary or secondary user of this task group. See the
Commands manual for details.

The entire user id is returned by the User Identification
macro call.

NOTES

1. The system places in $B4 the address of the
receiving person id field, supplied by argu-
ment 1. If this argument is omitted, the
system assumes that $B4 contains the address
of the field.

2. On return, $R1 contains one of the following
status codes:

0000 - No error
0817 - Memory access violation.

3. On return, $B4 contains the address of the
receiving field. ,/

2-392 CZ06-00

Example:

In the following example, a 12-character field is set up in
the issuing task, and the Person Identification macro call is
issued to place the person id of the task group in that
field.

ID02 $PERID IPRIDFL

PRIDFL RESV 6,0

2-393 CZ06-00

POSTPONE REQUEST ON TAIL

POSTPONE REQUEST ON TAIL (SPPNTL)

Function Code: 01/OE

Equivalent Command; None

Dequeue the currently dispatched task request and requeue it
at the end of the queue for those requests previously deferred at
the specified priority. Continue task execution at the instruc-
tion that immediately follows this call, without dispatching any
other request.

FORMAT:

[label] $PPNTL [location of defer priority] j

ARGUMENT:

location of defer priority

Any address form valid for a data register; specifies the
frame priority number at which the currently dispatched,
dequeued request is deferred. Must be a value between +1
and +32,767. Y

/
DESCRIPTION:

This macro call dequeues the currently dispatched request and
requeues it at the tail of those requests previously deferred
under the specified priority. Unlike the related function
Defer_Request_On_Tail, this function does not dispatch
another request.

NOTES ,

1. The system places in $R5 the defer priority
supplied by the argument. If the argument is
omitted, the system assumes that $R5 contains
the defer priority.

2. On return, $R1 contains one of the following:

0000 - Request was successfully dequeued and
requeued

0814 - No currently dispatched request exists.

2-394 CZ06-00

PROFILE RECORD, ACCOUNTING
UPDATE

PROFILE RECORD. ACCOUNTING UPDATE (SPRFAU)

Function Code: 24/42

Equivalent Command: None

Update the specified subsystem profile record with
information supplied by the caller.

[label] $PRFAU [location of address of upadate buffer],
[location of record type],
[location of user id],
[location of buffer size]

ARGUMENTS:

location of address of update buffer

Any address form valid for an address register; provides
the address of the buffer into which the caller places
information used for updating a subsystem profile
record. If the user to whom the profile record belongs
is not currently logged into the calling subsystem as a
primary or secondary user, the caller must supply in the
buffer the id of that user. The formats of the user id
and of the buffer are described below.

location of record type

Any address form valid for a data register; identifies,
by two ASCII characters, the record type of the record to
be updated. These two characters must be the same as
those used to designate the calling subsystem, as a
subsystem can access only its own records.

location of user id

Any address form valid for a data register; provides,
along with argument 2, the key for locating the record to
be updated. The value of this argument may be one of the
following:

Irn

Logical resource number of the terminal on which the
user whose id this argument specifies is currently
logged into the subystem as a secondary user. Must
be a binary number in the range 0 through 255.

2-395 CZ06-00

B

The ASCII character 'P1 (signifying "primary user")
indicates that the user id specified by this argument is
the same user id supplied by the caller when logging in
during the current session as a primary user.

The ASCII character 'B1 (signifying "buffer") indicates
that the user id specified by this argument is entered in
bytes 0 through 29 of the buffer whose address is
supplied by argument 1. The user id comprises three
subfields delimited by periods: name.account.mode. These
subfields must be blank-filled and aligned as follows:
bytes 0-11, name; byte 12, "."; bytes 13-24, account;
byte 25, "."; bytes 26-28, mode; byte 29, ASCII space
character.

= $R6

Indicates that the correct value has already been loaded
into register $R6.

Default: A null value for this argument defaults to
'P1.

location of buffer size

Any address valid for an address register; provides the
size, in bytes, of the buffer pointed to by argument 1.
The following diagram illustrates the buffer format.

user id #f ields FD1 ... FDn update fieldl ... update fieldn

The size and contents of each buffer entry illustrated
above are as follows:

user id

This 30-byte portion of the buffer exists only if
argument 1 specifies that the user id is provided in
the buffer. If this entry exists, it contains the id
of the user whose record is to be updated. The format
of the user id is described above under argument 3.

2-396 CZ06-00

ffields

FD

The number of field descriptors in this buffer. This
number does not necessarily correspond to the number
of fields to be updated, because the caller can
instruct the Update function to 'skip1 a field defined
by a field descriptor. The caller must place in this
2-byte entry a decimal value in the range 1-24.

Field descriptor; defines a field (in the specified
profile record) to be updated and and the mode of
updating. There must be one 2-byte field descriptor
(FD) for each record field to be updated by this
execution of $PRFAU. The field descriptor format is
shown below. The caller supplies values for all items
but the first.

Bit Content |

0 - Accumulator bit. Set to 1 by sytem
if update by accumulation causes
overflow.

I-
1-2 Update Code: jt -

00 SB Accumulate; i.e. add value in
update field to current value
in record field.

01 = Skip; i.e., do not update
field defined by this FD.

10 = Overwrite current value in
record field with value in
update field.

11 55 Overwrite only if value in
update field exceeds current
value in record field.

3-7 Field size. Size, in words, of
field defined by this FD.

8-F Offset, in words, from start of
record to start of defined field.

2-397 CZ06-00

update field

Information for updating the record field defined by
the corresponding FD (e.g./ information in update
fieldl is used for updating record field defined by
FD1). An update field must be the same size as the
record field to be updated, right justified, and
zero-filled.

DESCRIPTION:

This macro call can be issued only by bound units declared
by the system administrator to have access to profile
records. If the caller has not been so declared, or if the
specified record has not been declared as containing
statistics, the call returns a zero in $R1 without
performing an update.

$PRFUA updates a statistic in a profile record by means of
overwriting or accumlation. When overwriting, the function
replaces the profile record statistic with one supplied by
the caller in the buffer. When accumulating, the function
adds to the profile record statistic a value supplied by the
caller in the buffer. The update code in the field
descriptor (FD) allows the caller to specify which type of
update operation is to be performed. By the same code, the
caller can also limit overwriting to instances where the
value supplied in the update field is greater than the
current value in the corresponding record field.

$PRFUA is useful for updating a profile record after the
record has been created (by means of the Profile Record,
Create macro call) and initialized (by means of the Profile
Record, Update macro call). Although the Profile Record,
Update ($PRFUP) macro call can be used for all updating
operations, it is not as efficient in some respects as
Profile Record, Accounting Update ($PRFUA). $PRFUP writes
in the caller's buffer all fields of a profile record that
can be modified by the caller. The caller overwrites the
record image in the buffer, which is then written out to the
profile file. Thus, $PRFUP may require one more I/O
operation than does $PRFUA; also, when using $PRFUP, the
caller can increment a profile record statistic only by
extracting the statistic from the buffer, adding a value to
it, then storing the result back in the buffer.

The skip bit of the file descriptor (FD) allows the caller
to use the same buffer for multiple update operations
involving different record fields. The caller need not
rebuild the buffer when the number and position of target
fields change from one execution of $PRFUA to the next.

2-398 CZ06-00

NOTES

1. The buffer address specified by argument 1 is
placed in $B2; if the argument 1 is omitted,
$B2 is assumed to contain the buffer address.

2. The record type specified by argument 2 is
placed in $R2; if this argument is omitted,
$R2 is assumed to contain the record type.

3. The user id specified by argument 3 is placed
in $R6. If this argument is 'P'or omitted, $R6
is set to X'FF' indicating the user id of the
primary user. If this argument is 'B1, $R6 is
set to X'FE1, indicating that the user id is
provided in the buffer. r

4. The buffer size specified by argument 4 is
placed in $R7. If this argument is omitted,
$R7 is assumed to to contain the buffer size.

5. On return, $R1 contains one of the following
status codes:

0000 - No error

0817 - Memory access error

0602 - Memory unavailable

1709 - Invalid combination of arguments

0811 - User registration is not configured

020E - Record not found or not accessible to
caller

02xx - File system messages that may occur on
reading or re-writing a record.

6. If $R6 is set by the caller to FF (argument 3 =
'P1)/ it contains on return the caller's LRN.
Otherwise, return register remain unchanged.

2-399 CZ06-00

PROFILE RECORD, CREATE

PROFILE RECORD. CREATE (SPRFCR)

Function Code: 24/20

Equivalent Command: None

Create a skeletal subsystem profile record for a named user
who is currently logged into the calling subsystem.

FORMAT:

[label] $PRFCR [location of record type],
[location of user id]

ARGUMENTS:

location of record type

Any address form valid for a data register; identifies,
by two ASCII characters, the record type of the record to
be created. These two characters must be the same as
those used to designate the calling subsystem, since a
subsystem can create and access only its own records.

location of user id <
***s

Any address form valid for a data register; provides the
user id to be entered on the created record. The value
of this argument may be one of the following:

Irn

Logical resource number of the terminal on which the
user, whose id this argument specifies, is currently
logged into the subsystem as a secondary user. Must
be a binary number in the range 0 through 255.

The ASCII character 'P' (signifying "primary user")
indicates that the user id specified by this argument
is the same user id supplied by the caller when
logging in as a primary user during the current
session.

2-400 CZ06-00

Indicates that the correct value has already been
loaded into $R6.

Default: A null value for this argument defaults toI p l - , -
DESCRIPTION:

This function enables the calling subsystem to create a
record of its own type for a person currently logged into the
system as either a primary or a secondary user. The function
fills in three fields of the record: date/time updated (in
this case, date/time of creation), user id, and record type.
The rest of the 188-byte record is zero-filled. The function
then writes this record image from a buffer in system memory
to the profile file.

Before this function can be executed, the system administra-
tor must have declared the bound unit issuing this call to
have access to the subsystem profile record type. In the
absence of this declaration, the function returns a 020E
(record not found) error status. If the user is already
registered under the calling subsystem, the function returns
a 021B (duplicate record) error status.

NOTES

1. The system places in $R2 the record type
specified by argument 1. If this argument is
omitted, the system assumes that $R2 contains
the record type.

2. The system places in $R6 the user id specified
by argument 2. If this argument is omitted,
$R6 is set to X'FF1, indicating that the user
id specified by argument 2 is the same user id
supplied by the caller when logging in as a
primary user during the current session.

2-401 CZ06-00

3. On return, registers Rl, R2, and R6 contain ^
the following information: ^/-

$R1 - Return status; one of the following: V

0000 - No error

021B - Duplicate record

020E - Record not found

$R2 - Record type specified by argument 2

$R6 - LRN specified by argument 3; or, if the
value of argument 3 is ASCII 'P1, LRN of
the caller's terminal.

2-402 CZ06-00

PROFILE RECORD, DELETE

PROFILE RECORD, DELETE (SPRFDL)

Function Code: 24/30

Equivalent Command: None

Delete a subsystem profile record, thereby canceling a user's
registration under that subsystem.

FORMAT:

[label] $PRFDL [location of buffer address],
[location of record type],
[location of user id]

ARGUMENTS:

location of buffer address

This argument should be specified only if the value of
argument 3 (see below) is ASCII 'B1. It can take any
address form valid for an address register; provides the
address of a buffer that contains the 30-byte user id
appearing on the record to be deleted. The buffer must
be entirely within the caller's space.

location of record type <•

Any address form valid for a data register? identifies,
by two ASCII characters, the record type of the record to
be deleted. These two characters must be the same as
those used to designate the calling subsystem, since a
subsystem can access only its own records.

location of user id

Any address form valid for a data register; provides,
with argument 2, the key for locating the record to be
deleted. The value of this argument may be one of the
following:

Irn

Logical resource number of the terminal on which the
user, whose id this argument specifies, is currently
logged into the subsystem as a secondary user. Must
be a binary number in the range 0 through 255.

2-403 CZ06-00

B

The ASCII character 'P' (signifying "primary user")
indicates that the user id specified by this argument
is the same user id supplied by the caller when
logging in as a primary user during the current
session.

The ASCII character 'B1 (signifying "buffer") indi-
cates that the user id specified by this argument is
entered in bytes 6 through 35 of the buffer whose
address is supplied by argument 1. The user id com-
prises three subfields delimited by periods:
name.account.mode. These subfields must be blank-
filled and aligned as follows: bytes 6-17, name;
byte 18, "."; bytes 19-30, account; byte 31, ".";
bytes 32-34, mode; byte 35, ASCII space character.

=$R6

Indicates that the correct value has already been
loaded into $R6.

Default: A null value for this argument defaults to
'P1.

DESCRIPTION:
v F

This function allows a subsystem to delete a record of its ~"
own subsystem type. The person named by the user id field of
the record to be deleted need not be currently logged into
the calling subsystem when the call is made.

NOTES

1. The system places in $B2 the buffer address
specified by argument 1. If the value of \
argument 3 is ASCII 'B1 and argument 1 is ^/J
omitted, the system assumes that $B2 contains
the buffer address.

2. The system places in $R2 the record type
specified by argument 2. If this argument is
omitted, the system assumes that $R2 contains
the record type.

2-404 CZ06-00

3. The system places in $R6 the user id specified
by argument 3. If this argument is 'P1 or
omitted, $R6 is set to X'FF'f indicating the
user id of the primary user. If this argument
is 'B1, $R6 is set to X'FE', indicating that
the user id is provided in the buffer pointed
to by argument 1.

•* H

4. On return, registers Rl, R2, R6, and B2 con- .
tain the following information:

$R1 - Return status; one of the following:

0000 - No error * J*
020E - Record not found or not access-a

ible to caller *

0817 - Memory access error; buffer
address not in caller's space

$R2 - Record type specified by argument 2 |

$R6 - LRN specified by argument 3; or, if the
value of argument 3 is ASCII 'P1, LRN of
the caller's terminal

$B2 - Address of the buffer specified by
argument 1.

2-405 CZ06-00

PROFILE RECORD, GET

PROFILE RECORD, GET (SPRFGT)

Function Code: 24/10

Equivalent Command: None

Enable the issuing subsystem to read the profile record of a
person registered as a user of that subsystem.

FORMAT :

[label] $PRFGT [location of buffer address] ,
[location of record type] ,
[location of user id]

ARGUMENTS :

location of buffer address

Any address form valid for an address register; provides
the address of the buffer into which the function returns
the record specified by arguments 2 and 3. The buffer
must be entirely within the caller's space and no smaller
than 188 bytes (the length of a profile record) . _

location of record type ^

Any address form valid for a data register; identifies,
by two ASCII characters, the record type of the record to
be retrieved. These two characters must be the same as
those used to designate the calling subsystem, since a
subsystem can access only its own records.

location of user id \

Any address form valid for a data register; provides the
user id entered on the record to be retrieved. This user
id and the record type supplied by argument 2 index a
unique subsystem record in the profile record file. The
value of this argument may be one of the following:

Irn

Logical resource number of the terminal on which the
user, whose id this argument specifies, is currently
logged into the subsystem as a secondary user. Must
be a binary number in the range 0 through 255.

2-406 CZ06-00

B

The ASCII character 'P1 (signifying "primary user")
indicates that the user id specified by this argument
is the same user id supplied by the caller when
logging in during the current session as a primary
user.

The ASCII character 'B1 (signifying "buffer") indi-
cates that the user id specified by this argument is
entered in bytes 6 through 35 of the buffer whose
address is supplied by argument 1. The user id com-
prises three subfields delimited by periods:
name.account.mode. These subfields must be blank-
filled and aligned as follows: bytes 6-17, name;
byte 18, "."; bytes 19-30, account; byte 31, ".";
bytes 32-34, mode; byte 35, ASCII space character.

Indicates that the correct value has already been
loaded into $R6.

Default: A null value for this argument defaults to
'P1.

DESCRIPTION:

This macro call enables a subsystem to read a record of a
person who has been registered as a user of that subsystem.
The user need not be logged in when the call is issued. The
record to be retrieved must be of the same type as the sub-
system. If, for example, the calling subsystem is the Net-
work Terminal Manager (NT), the record-type field of the
record to be retrieved must show "NT".

The function locates the record to be retrieved by means of
the record type/user id key supplied by arguments 2 and 3.
The function validates the record type and buffer address
supplied and issues appropriate error messages, if any. It
returns the specified record in the buffer pointed to by
argument 1.

2-407 CZ06-00

NOTES ^
y

1. The system places in $B2 the buffer address
specified by argument 1. If this argument is "'""
omitted, the system assumes that $B2 contains ~'.J
the buffer address.

2. The system places in $R2 the record type
specified by argument 2. If this argument is
omitted, the system assumes that $R2 contains
the record type.

3. The system places in $R6 the user id specified
by argument 3. If this argument is 'P1 or
omitted, $R6 is set to X'FF1, indicating the
user id of the primary user. If this argument
is 'B1, $R6 is set to X'FE1, indicating that
the user id is provided in the buffer pointed
to by argument 1.

4. On return, registers Rl, R2, R6, and B2 con- /̂/
tain the following information:

$R1 - Return status; one of the following:

0000 - No error

020E - Record not found or not accessi-
ble to caller -

. i
0817 - Memory access error; buffer not -^

in caller's space

$R2 - Record type specified by argument 2

$R6 - LRN specified by argument 3; or, if the
value of argument 3 is 'P1, LRN of the
caller's terminal

$B2 - Buffer address specified by argument 1. }

2-408 CZ06-00

PROFILE RECORD, GET USER
INFORMATION

PROFILE RECORD, GET USER INFORMATION (SPRFIF)

Function Code: 24/12

Equivalent Command: None

Provide the calling subsystem selected information from a
specified registration profile record.

FORMAT: *

[label] $PRFRR [location of buffer address],
[location of buffer size],
[location of user id]

ARGUMENTS:

location of buffer address

Any address form valid for an address register; provides
the address of the buffer that may contain the user id
and into which information from the specified registra-
tion record is read. The buffer must be entirely within
the caller's space.

location of buffer size *

Any address form valid for a data register; specifies the
length, in bytes, of the buffer pointed to by argument
1. The size of the buffer determines the amount of
information returned by the function. The function does
not return part of the field if there is not space in the
buffer for the entire field; that is, the last field
cannot be truncated. The function places information
into the buffer according to the following format:

Bytes Contents

0-1 Logical resource number (LRN) of the
terminal at which the user is logged in, if
argument 3 specifies an LRN or ASCII 'P1
(i.e., if the caller is logged in as a
secondary or primary user); otherwise, if
argument 3 specifies ASCII 'B1, this field
shows X'FE1

2-13 Symbolic device name of terminal at which
user is logged in or was last logged in

2-409 CZ06-00

NOTES ^
y

1. The system places in $B2 the buffer address
specified by argument 1. If this argument is "'""
omitted, the system assumes that $B2 contains ~'.J
the buffer address.

2. The system places in $R2 the record type
specified by argument 2. If this argument is
omitted, the system assumes that $R2 contains
the record type.

3. The system places in $R6 the user id specified
by argument 3. If this argument is 'P1 or
omitted, $R6 is set to X'FF1, indicating the
user id of the primary user. If this argument
is 'B1, $R6 is set to X'FE1, indicating that
the user id is provided in the buffer pointed
to by argument 1.

4. On return, registers Rl, R2, R6, and B2 con- /̂/
tain the following information:

$R1 - Return status; one of the following:

0000 - No error

020E - Record not found or not accessi-
ble to caller -

. i
0817 - Memory access error; buffer not -^

in caller's space

$R2 - Record type specified by argument 2

$R6 - LRN specified by argument 3; or, if the
value of argument 3 is 'P1, LRN of the
caller's terminal

$B2 - Buffer address specified by argument 1. }

2-408 CZ06-00

PROFILE RECORD, GET USER
INFORMATION

PROFILE RECORD, GET USER INFORMATION (SPRFIF)

Function Code: 24/12

Equivalent Command: None

Provide the calling subsystem selected information from a
specified registration profile record.

FORMAT: *

[label] $PRFRR [location of buffer address],
[location of buffer size],
[location of user id]

ARGUMENTS:

location of buffer address

Any address form valid for an address register; provides
the address of the buffer that may contain the user id
and into which information from the specified registra-
tion record is read. The buffer must be entirely within
the caller's space.

location of buffer size *

Any address form valid for a data register; specifies the
length, in bytes, of the buffer pointed to by argument
1. The size of the buffer determines the amount of
information returned by the function. The function does
not return part of the field if there is not space in the
buffer for the entire field; that is, the last field
cannot be truncated. The function places information
into the buffer according to the following format:

Bytes Contents

0-1 Logical resource number (LRN) of the
terminal at which the user is logged in, if
argument 3 specifies an LRN or ASCII 'P1
(i.e., if the caller is logged in as a
secondary or primary user); otherwise, if
argument 3 specifies ASCII 'B1, this field
shows X'FE1

2-13 Symbolic device name of terminal at which
user is logged in or was last logged in

2-409 CZ06-00

Bytes Contents
^

14-25 Person field of user id
V

26-37 Account field of user id

38-45 Encrypted password if caller is running in
ring 0; otherwise, the field is filled with
'I1 bits

45-75 User id in person.account.mode format with
trailing spaces

76-133 Message library pathname last specified

As mentioned above, the size of the buffer determines the
amount of information returned. If, for example, the
size specified for the buffer is 13 bytes, the function
returns only the first two fields shown above.

location of user id /̂/

Any address form valid for a data register; identifies
the registration record to be read from. The value of
this argument may be one of the following:

Irn

B

Logical resource number of the terminal on which the
user, whose id this argument specifies, is currently j
logged into the subsystem as a secondary user. Must
be a binary number in the range 0 through 255.

The ASCII character 'P1 (signifying "primary user")
indicates that the user id specified by this argument
is the same user id supplied by the caller when
logging in as a primary user during the current
session.

The ASCII character 'B1 (signifying "buffer") indi-
cates that the user id specified by this argument is
entered in bytes 6 through 35 of the buffer whose
address is supplied by argument 1. The user id com-
prises three subfields delimited by periods:
name.account.mode. These subfields must be blank-
filled and aligned as follows: bytes 6-17, name;
byte 18, "."; bytes 19-30, account; byte 31, ".";
bytes 32-34, mode; byte 35, ASCII space character.

2-410 CZ06-00

= $R6

Indicates that the correct value has already been
loaded into $R6.

Default: A null value for this argument defaults to
'P1.

DESCRIPTION:

This call allows a subsystem to obtain information about a
user from a registration profile record whether or not that
user is currently logged into the calling subsystem. The
function returns the information in a buffer whose address
and size are specified by arguments 1 and 2, respectively.
In addition, the function returns the user's language key,
also obtained from the registration record, in $R6. (A lan-
guage key is a 2-character code used as a suffix in
designating a user's message library.)

NOTES

1. The system places in $B2 the buffer address
specified by argument 1. If this argument is
omitted, the system assumes that $B2 contains
the buffer address.

2. The system places in $R2 the buffer size
specified by argument 2. If argument 2 is
omitted, $R2 contains the buffer size.

3. The system places in $R6 the user id specified
by argument 3. If this argument is 'P' or
omitted, $R6 is set to X'FF', indicating the
user id of the primary user. If this argument
is 'B', $R6 is set to X'FE', indicating that
the user id is provided in the buffer pointed
to by argument 1.

4. On return, registers Rl, R6, and B2 contain
the following information:

$R1 - Return status; one of the following:

0000 - No error

020E - Record not found or inaccessible
to caller

0817 - Memory access error; buffer not
in caller's space

2-411 CZ06-00

$R6 - Language key of user specified by
argument.

'--x
$B2 - Address of buffer into which the func- ;

tion places information from the speci-
fied registration record.

2-412 CZ06-00

PROFILE RECORD, UPDATE

PROFILE RECORD, UPDATE (SPRFUP)

Function Code: 24/40

Equivalent Command: None

Modify the subsystem-defined portion of a record belonging to
the calling subsystem.

FORMAT:

[label] $PRFUP [location of buffer address],
[location of record type],
[location of user id]

ARGUMENTS:

location of buffer address

Any address form valid for an address register; provides
the address of a buffer that contains, in bytes 98-187,
that portion of a record defined by the subsystem. Addi-
tionally, if the value of argument 3 is ASCII 'B1, bytes
6-35 of the buffer contain a user id. The buffer must be
entirely within the caller's space and no smaller than
188 bytes (the length of a profile file record).

location of record type

Any address form valid for a data register; identifies,
by two ASCII characters, the record type of the record to
be modified. These two characters must be the same as
those used to designate the calling subsystem, since a
subsystem can access only its own records.

location of user id

Any address form valid for a data register; provides,
with argument 2, the key for locating the subsystem
record to be modified. The value of this argument may be
one of the following:

Irn

Logical resource number of the terminal on which the
user, whose id this argument specifies, is currently
logged into the subsystem as a secondary user. Must
be a binary number in the range 0 through 255.

2-413 CZ06-00

B

= $R6

The ASCII character 'P1 (signifying "primary user")
indicates that the user id specified by this argument
is the same user id supplied by the caller when
logging in as a primary user during the current
session.

The ASCII character 'B1 (signifying "buffer") indi-
cates that the user id specified by this argument is
entered in bytes 6 through 35 of the buffer whose
address is supplied by argument 1. The user id com-
prises three subfields delimited by periods:
name.account.mode. These subfields must be blank-
filled and aligned as follows: bytes 6-17, name;
byte 18, "."; bytes 19-30, account; byte 31, ".";
bytes 32-34, mode; byte 35, ASCII space character.

Indicates that the correct value has already been
loaded into $R6.

Default: A null value for this argument defaults
to 'P1.

DESCRIPTION:

This call enables the calling subsystem to modify bytes
98-187 of a record whose type matches the subsystem's. The
user named by the user id field of the modified record need
not be logged into the calling subsystem when the call is
made.

If the record type and buffer address specified are valid,
the function reads the record to be modified from the profile
file to a temporary buffer. The call performs this read
operation by means of the Get Profile Record function. The
call replaces bytes 98-187 of the record with data supplied
in the buffer pointed to by argument 1. After updating the
record's date field (bytes 0-5), the call rewrites the modi-
fied record into the profile file.

Note that neither this call nor the Create Profile Record
function allows a subsystem to set the access level field of
a subsystem record. Only the system administrator, using the
Edit Profile utility, can rewrite into this field.

2-414 CZ06-00

NOTES

1. The system places in $B2 the buffer address
specified by argument 1. If this argument is
omitted, the system assumes that $B2 contains
the buffer address.

2. The system places in $R2 the record type
specified by argument 2. If this argument is
omitted, the system assumes that $R2 contains
the record type.

3. The system places in $R6 the user id specified
by argument 3. If this argument is 'P1 or
omitted, $R6 is set to X'FF1, indicating the
user id of the primary user. If this argument
is 'B1, $R6 is set to X'FE1, indicating that
the user id is provided in the buffer pointed
to by argument 1.

4. On return, registers Rl, R2, and R6 contain
the following information:

$R1 - Return status; one of the following:

0000 - No error

020E - Record not found or not accessi-
ble to user

0817 - Memory access error; buffer not
in caller's space

$R2 - Record type was specified by argument 2

$R6 - LRN specified by argument 3; or, if the
value of argument 3 is 'P1, LRN of the
caller's terminal.

2-415 CZ06-00

READ BLOCK

, NORMAL
,TM
,BOT
, SPACE
,EOT

READ BLOCK (SRDBLK)

Function Codes: 12/00 (normal), 12/01 (tape mark), 12/02 begin-
ning of tape), 12/03 (space), 12/04 (end of
tape)

Equivalent Command: None

Read (i.e., transfer) a block from a file to a buffer in main
memory. The user must supply a buffer and specify both the size
of the block and its relative location in the file.

FORMAT:

[label] $RDBLK [FIB address]

ARGUMENTS:

FIB address

Any address form valid for an address register; provides
the location of the file information block (FIB). The
following FIB entries are required.

logical file number

program view

Should include buffer alignment and whether the next
read operation is synchronous or asynchronous.

user buffer pointer

transfer size

The maximum transfer size is 32,161 bytes,

block size

Must be a multiple of the physical sector size,

block number

2-416 CZ06-00

I NORMAL I
NOR)

EOT

For disk-resident files, this mode argument indicates
that the block identified in the block number entry in
the FIB is transferred from the file to the buffer area.

For nondisk files, this mode argument indicates that the
next block is to be transferred from the file to the
buffer.

NORMAL is the default value for this macro call.

(For tape-resident files only.) This mode argument indi-
cates that the tape is to be moved forward or backward,
the number of tape marks specified in the block number
entry in the FIB. Positioning is to a point immediately
following the nth tape mark. A positive value indicates
forward movement; a negative value indicates backward
movement.

(For tape-resident files only.) This mode argument
causes the tape to be positioned to its physical begin-
ning. A tape's physical beginning precedes (in the case
of labeled tapes) any labels or (in the case of unlabeled
tapes) any data.

(SPACE I
SPA (

EOT

(For tape-resident files only.) This mode argument indi-
cates that the tape is to be moved forward or backward
the number of blocks specified in the FIB block number
entry. Positioning is to a point immediately following
the nth block. A positive value in the block number
entry indicates forward movement; a negative value indi-
cates backward movement.

(For tape-resident files only.) This mode argument
causes the tape to be positioned to its logical end,
which is defined as the occurrence of two tape marks in
succession. Positioning is to a point immediately fol-
lowing the second tape mark.

2-417 CZ06-00

DESCRIPTION:

Before this macro call can be executed, the logical file
number (LFN) must be opened (see Open File macro call) with a
FIB program view word that allows access through storage
management (bit 0 is one and allows read operations (bit 1 is
one). In order to read the file sequentially, it is neces-
sary only to issue successive Read Block macro calls in
NORMAL mode, which causes the block-number entry to be incre-
mented by 1 after each transfer. If there is not sufficient
data in the block being transferred to fill the buffer, the
transfer size entry in the FIB is set by the system to the
number of bytes read and a return code of 0000 is delivered.

After completion of a TM, EOT, or EOT operation, the block-
number entry in the FIB is automatically reset to zero; how-
ever, a SPACE operation causes the system to specify the
actual relative number of the next block that would be read
by a Read Block macro call. If a tape mark is encountered
during a SPACE operation, the operation is terminated and a
return-status code of 021F is delivered. In addition, if the
end-of-reel is reached, a 0105 error code (device not ready)
is delivered; however, if the end-of-tape is reached, it is
treated like a normal operation and a return code of 0000 is
delivered on successful completion.

Only one asynchronous I/O operation per file can be outstand-
ing at any given time.

The file information block can be generated by a File Infor-
mation Block macro call. Displacement tags for the FIB can
be defined by the File Information Block Offsets (Storage
Management Access) macro call.

NOTES

1. If the first argument is coded, the system
loads the address of the FIB into $B4. If the
argument is omitted, the system assumes that
$B4 contains the address of the FIB.

2. Upon return, $R1 contains one of the following
return codes:

0000 - No error
Olxx - Physical I/O error
0203 - Invalid function
0205 - Invalid argument
0206 - Unknown or invalid LFN
0207 - LFN not open
020A - Address out of file

2-418 CZ06-00

020B - Invalid extent description information
0217 - Access violation
021F - End of file.

Example:

In this example the FIB is defined as follows:

BLKFIB DC Z'0005' LFN=5
DC Z'EOOO1 PROGRAM VIEW = ALLOW READ/WRITE

SYNCHRONOUS PROCESSING
DC <BLKBUF BUFFER POINTER
RESV 2-$AF
DC 256 TRANSFER SIZE = 256
DC 256 BLOCK SIZE = 256
DC Z'OOOOOOOO'

Based on the above FIB, block zero, which is 256 bytes long,
is transferred to a buffer, labeled BLKBUF, in main memory.

$RDBLK IBLKFIB,NORMAL

2-419 CZ06-00

READ EXTERNAL SWITCHES

"\.J
READ EXTERNAL SWITCHES fSRDSW)

Function Code: OB/00

Equivalent Command: None

Return the current value of the specified switches in the
task group's external switch word; return the inclusive logical
OR of the current settings.

FORMAT:
i

[label] $RDSW [external switch name],
[external switch name],

[external switch name]

ARGUMENT:

external switch name ... external switch name

A single hexadecimal digit specifying the external switch
in the task group's external switch word to be read. A
maximum of 16 external switch names (0 through F) can be
specified. If no arguments are supplied, $R2 is assumed
to contain the switches to be read. If ALL is specified,
all switches are read.

DESCRIPTION:

This macro call provides a mask by which the current setting
of selected switches in the task group's external switch word
can be read.

$R2 is the mask word. Each bit that is one in $R2 causes the
corresponding bit in the external switch word to be read.

When the Read External Switches macro call is executed, $R2
contains the current value of the external switch word. Bit
11 (bit-test indicator) of the I-register provides an indica-
tion of the setting of the switches, as follows:

• If bit 11 is zero, none of the switches read was on.

• If bit 11 is one, at least one of the switches read
was on.

2-420 CZ06-00

NOTES ,

1. The bits corresponding to the external
switches in the arguments are set on in $R2;
if no arguments are supplied, $R2 is assumed
to contain the mask to be used. If ALL is
specified for any argument, all bits are set
on in $R2.

2. On return, $R2 and the I-register contain the
following informations

$R2 - Current value of external switch word

I-register (Bit 11) - Inclusive OR of switches
read:

0 - No switch read was on
1 - At least one switch read was on.

Example:

In this example, the Read External Switches macro call is
used to read the specified switches in the external switch
word of the task group in which the issuing task is execut-
ing. The contents of $R2 (the mask word) are to be 2F4A so
that switches 2, 4, 5, 6, 7, 9, C, and E will be read, inclu-
sive ORed, and stored in the central processor's bit indica-
tor. To illustrate:

Word: 2 F 4 A

Bits: 0123 4567 89AB CDEF
0010 1111 0100 1010

Switches: 2 4567 9 C E

The BBT instruction is used to transfer control to the rou-
tine DO__IT if one or more of the switches is turned on.

RDSW_A $RDSW 2,4,5,6,7,9,C,E
BBT DO_IT

2-421 C206-00

READ RECORD

READ RECORD (SRDREC)

Function Code: 11/10 (next), 11/11 (key), 11/19 (duplicate),
11/12 (position equal), 11/13 (position greater
than), 11/14 (position greater than or equal),
11/15 (position forward), 11/16 (position
backward)

Equivalent Command: None

Retrieve one logical record from a file to your record area
or merely position the read pointer to a desired record. Whether
to retrieve or position is specified by the second (i.e., mode)
argument.

FORMAT:

[label] $RDREC [FIB address]

,NEXT
,KEY
,DUP
,POSEQ
,POSGR
,POSGREQ
,POSFWD
r

r C\JiJE n U

, POSBWD

ARGUMENTS:

FIB address

Any address form valid for an address register; provides
the location of the file information block (FIB).

)NEXT I
i

(For all files.) This mode argument indicates that the
record pointed to by the read pointer is to be read
next. The read pointer is set to the next logical record
in the file after the read is complete. Only active
records are read (i.e., deleted records are skipped
unless bit 11 in the program view FIB entry is set to
one). This is the default for this macro call. You must
code the following FIB entries:

logical file number
program view (record area alignment)
user record pointer
input record length.

2-422 CZ06-00

After the record is transferred to main memory, the
system updates the following FIB entries:

output record length
output record address. »

This mode is referred to as read next.

KEY

(For disk files accessed by key, only.) This mode argu-
ment indicates that the record identified by the key
value pointed to by the FIB is to be read. The read
pointer is set to the next logical record in the file
after the read is complete. Only active records are read
unless bit 11 in the program view FIB entry is set to
one. You must code the following FIB entries:

logical file number
program view (record and key area alignment)
user record pointer
input record length
input key pointer
input key format
input key length. ' ,

If the file type used is simple or relative, the input key
pointer points to the start of an input key area in which a
key value has been placed. If the file type used is indexed
or random, the input key pointer points to the start of a key
value placed in the user record area. The offset of that
value from the start of the user record area must be the same
offset as that specified by the "key component location"
field of the record descriptor. The record descriptor is an
entry of the Create File ($CRFIL) argument structure.

After the record is transferred to main memory, the
system updates the following FIB entries:

output record length
output record address.

This mode is referred to as read with key.

2-423 CZ06-00

DUP

(For CALC (random) files.) Reads a record whose CALC key „
is the same as the last record read. The FIB input key . Y

t pointer field must point to a CALC key value placed in
the user record area. The offset of that value from the
start of the user record area must be the same offset as
that specified by the "key component location" field of
the record descriptor. The record descriptor is an entry
of the Create File ($CRFIL) argument structure.

(POSEQ!
(PEQ)

(For disk files accessed by key, only.) This mode argu-
ment positions the read pointer to the first logical
record in the file whose key is equal to the one speci-
fied in the FIB. It is not necessary for the record
pointed to be active. The record can be read through the
read next mode argument of the Read Record macro call }
(see above). You must code the following FIB entries: ^*y

logical file number
program view
input key pointer
input key format
input key length.

If the file type used is simple or relative, the input key y
pointer points to the start of an input key area in which a
key value has been placed. If the file type used is indexed
or random, the input key pointer points to the start of a key
value placed in the user record area. The offset of that
value from the start of the user record area must be the same
offset as that specified by the "key component location"
field of the record descriptor. The record descriptor is an
entry of the Create File ($CRFIL) argument structure.

This mode is referred to as read position equal. \

(POSGR)

(For disk files accessed by key, only.) This mode argu-
ment positions the read pointer to the first logical
record in the file whose key is greater than the one
specified in the FIB. It is not necessary for the record
pointed to to be active. The record can be read through
the read next mode argument of the Read Record macro call
(see above) . The same FIB entries as for POSEQ, above,
must be coded. This mode is referred to as read position
greater than.

2-424 CZ06-00

POSGREQ I
PGE j

(For disk files accessed by key, only.) This mode argu-
ment positions the read pointer to the first logical
record in the file whose key is greater than or equal to
the one specified in the FIB. It is not necessary for
the record pointed to to be active. The record can be
read through the read next mode argument of the Read
Record macro call (see above) . The same FIB entries as
for POSEQ, above, must be coded. This mode is referred
to as read position greater than or equal.

POSFWD I
(PFD I

(For tape-resident, disk sequential, and relative files,
only.) This mode argument moves the read pointer forward
the number of record positions indicated by the FIB (but
not beyond the end-of-f ile) . The number of record
positions is specified in the input key area pointed to
by the FIB input key pointer. It is not necessary for
the record pointed to to be active. The record can be
read through the read next mode argument of the Read
Record macro call (see above) . The same FIB entries as
for POSEQ, above, must be coded. This mode is referred
to as read position forward.

(POSBWD I
\ PBD j

(For tape-resident, disk sequential, and relative files,
only.) This mode argument is the same as for POSFWD,
above, except that the pointer is moved backward the
number of record positions specified by the key value in
the FIB (but not before the first record) . This mode is
referred to as read position backward.

DESCRIPTION:

Before this macro call can be executed, the logical file
number (LFN) must have been opened (see the Open File macro
call) with a program view word that allows access through
data management (bit 0 is zero) and allows read operations
(bit 1 is one) . The read pointer is a logical pointer to the
next record to be read; it is maintained separately from the
write pointer. There is one read pointer per file, per
user. At open-file time, the pointer is set to the first
record in the file and is modified by each Read Record
operation.

2-425 CZ06-00

The FIB can be generated by a Pile Information Block macro
call. Displacement tags for the FIB can be defined by the
File Information Block Offsets (Data Management Access) macro
call.

The following illustrate the effects of read actions accord-
ing to file organizations.

File Organizations

Sequential

Relative

Indexed

CALC (random)

Fixed Relative

Device Files

Tape Files

Effects of Read Actions

Read next causes sequential read. Read with
key causes direct read.* A simple key is
used.

Read next causes a sequential read. Read
with key causes a direct read. A relative or
simple key can be used.

Read next causes a sequential read. The
records returned are in ascending sequence
according to primary key value. (This is not
necessarily in the same time-dependent or
physical sequence that the records were
loaded into the file.) Read with key causes
a direct read. A primary key or simple key
can be used.

Read next causes a sequential read. The
records are returned in physical sequence.
The file can be read directly with a CALC key
or a simple key.

Read next causes a sequential read. Read
with key causes a direct read. A relative
key is used.

Read next causes a sequential read, provided
the device can be read and was defined as a
readable device.

Read next causes a sequential read. The file
can also be positioned n records forward or
backward.

*A read, with any position mode, positions the read pointer to
the desired record, so that a subsequent read next will retrieve
that record.

2-426 CZ06-00

NOTES

1. If the first argument is coded, the system
loads the address of the FIB into $B4. If the
argument is omitted, the system assumes that
$B4 contains the address of the FIB.

2. On return, $R1 contains one of the following
status codes:

0000 - No error

Olxx - Physical I/O error

0203 - Invalid function

0205 - Invalid argument

0206 - Unknown or invalid LFN

0207 - LFN not open

020A - Address out of file

020B - Invalid extent description information

020E - Record not found

0217 - Access violation

0219 - No current record pointer

021A - Record length error

021E - Key length or location error

021F - End of file

022A - Record lock overflow

022B - Record deadlock occurred

022F - Unknown or invalid record type

0236 - Tape BSN or trailer label block count
error

0237 - Invalid record or control interval
format.

2-427 CZ06-00

Example:
X.

This example assumes that the address of the FIB (i.e.,
MYFIB) was loaded in $B4. In addition, the required entries
in the FIB are those defined in "Assumptions for File System
Examples" in Appendix A, with this exception: the value of
the second word (program view) is Z'4000' (indicating read
operation) rather than Z'20001 (indicating write operation).
Also, it is assumed that the file was reserved (see Get
File), and that the Open File macro call was coded with the
LFN and program-view entries as defined in the example for
the Open File macro call.

The macro call is then specified as follows:

$RDREC ,NEXT

After the record is read, the system updates the following
entries, which the user can interrogate using the FIB offset
tags: ""N

F_ORL (Output record length)
F_ORA (Output record address)

)

2-428 CZ06-00

REBOOT

REBOOT (SRBQQT)

Function Code: 20/06

Equivalent Command: Reboot (REBOOT)

Activate the Software Reboot Facility (SRF).

FORMAT:

[label] $RBOOT [location of dump condition],
[location of halt condition]

ARGUMENTS:

location of dump condition . ~

Any address form valid for a data register; specifies
whether or not the SRF is to take a dump of main memory
before reinitializing the system. The dump condition
desired is indicated by one of the following keywords:

DUMP

Take a dump.

NDUMP

Do not take a dump.

= $R6

$R6 contains the value 1 or 0, signifying DUMP or
NDUMP, respectively.

Default: Take a dump,

location of halt condition

Any address form valid for an data register; specifies
whether or not the SRF halts the system after taking a
dump and before reinitializing the system. The halt
condition desired is indicated by one of the following
keywords:

2-429 CZ06-00

HALT

Halt

$R2 contains the value 1 or 0, indicating that the
system is to halt or is not to halt, respectively.

Default: Do not halt.

DESCRIPTION:

$RBOOT explicitly activates the SRF. The SRF is activated
dynamically by exhaustion of trap save areas (TSAs) and of
indirect request blocks (IRBs) , or by the expiration of a
Watchdog Timer (WDT) timeout interval.

The PATH argument of the CLM directive REBOOT implicitly
instructs the SRF to take a dump before reinitializing the
system; omitting the PATH argument implicitly instructs the
SRF not to take a dump. Specifying the DUMP keyword in
argument 1 of $RBOOT does not override a REBOOT directive
whose PATH argument is omitted. A user who omits the PATH
argument can later direct the SRF to take a dump only by
modifying the REBOOT directive so that it provides a value
for the PATH argument.

On the other hand, specifying the keyword NDUMP in argument 1
of $RBOOT does override a REBOOT directive that provides a]
value for the PATH argument. , -^

Specifying DUMP in argument 1 of $RBOOT will cause a dump to
be taken if all of the following conditions exist:

• A REBOOT directive provides a value for its PATH
argument

• The dumpfile and reboot volumes reside on the same \
device J

• The device on which the dumpfile resides is available
when the $RBOOT call is issued.

Specifying HALT in argument 2 allows the operator to perform
some action before the system is reinitialized, such as
taking a dump of Multiline Communications Processor (MLCP)
memory. After a halt, the operator causes the SRF to
reinitialize the system by pressing fieady and .Execute on the
control panel.

J

2-430 CZ06-00

NOTES

1. Specifying DUMP or NDUMP for argument 1 sets
$R6 to 1 or 0, respectively. Omitting argument
1 sets $R6 to 1.

2. Specifying HALT for argument 2 sets $R2 to 1.
Omitting argument 2 sets $R2 to 0.

3. On return, $R1 contains one of the following
status codes:

083A - Function illegal for unprivileged task
group

086D - Illegal reboot options

1613 - Error trying to take dump

1614 - HALT option selected

1615 - Error trying to reboot.

Example:

In this example, a $RBOOT call (issued without arguments)
activates the SRF. The SRF takes a memory dump and
reinitializes the system.

$REBOOT

2-431 CZ06-00

RECALL FROM HEAD

RECALL FROM HEAD (SRCLHD)

Function Code: 01/OF

Equivalent Command: None

Dequeue any currently dispatched request and post the speci-
fied completion status. Recall task and dispatch the request at
the head of the queue of those requests previously deferred at
the specified priority.

FORMAT:

[label] $RCLHD [location of recall priority],
[location of completion status])

ARGUMENTS:

location of recall priority

Any address form valid for a data register; specifies the
priority number from which the request is to be
recalled. Must be a value between +1 and +32,767, or -1;
-1 specifies that the request is to be recalled from the ^ <-
highest priority (lowest number) in the list. '

location of completion status

Any address form valid for a data register; provides the
status of the dequeued request. The user may select any
status code as the value of this argument.

DESCRIPTION:

This function dequeues the currently dispatched request, if ^ '
any, and posts its completion status. The function then
recalls the request that is at the head of the specified
priority. Execution of the issuing task continues at the
next instruction after this call.

NOTES

1. The system places in $R5 the recall priority
supplied by argument 1. If argument 1 is
omitted, the system assumes that $R5 contains
the recall priority.

2-432 CZ06-00

The system places in $R2 the completion status
specified by argument 2. If argument 2 is
omitted, the system assumes that $R2 contains
the completion status.

On return, registers Rl, R5, and B4 contain
the following information:

$R1 - Return status code '0000'

$R5 - Priority of recalled request (if $B4 is
not null)

$B4 - Address of request block of recalled
request. A null address value means
that there is no dispatched request at
the specified priority.

2-433 CZ06-00

RELEASE SEMAPHORE

RELEASE SEMAPHORE (SRLSM)

Function Code: 06/03

Equivalent Command: None

Release a resource controlled by the specified semaphore, and
activate the first waiting task queued on that semaphore if the
value of the semaphore is negative (both actions are known col-
lectively as a V-op).

FORMAT:

[label] $RLSM [location of semaphore id]

ARGUMENT: —^ '

location of semaphore id

Any address form valid for a data register; provides the
two ASCII characters that identify the semaphore con-
trolling the resource to be released.

DESCRIPTION: \
y

A task issues a Release Semaphore macro call when it has
finished using the resource controlled by the semaphore indi-
cated in the call. The semaphore must have been previously
defined by a Define Semaphore macro call.

When the release function is executed, the counter whose ini-
tial value was set in the Define Semaphore macro call is
incremented.

If tasks are waiting for the resource to become available, >̂ '
the first task queued on this semaphore is awakened.

NOTES

1. The system places in $R6 the semaphore id sup-
plied by argument 1. If this argument is
omitted, the system assumes that $R6 contains
the correct id.

2-434 CZ06-00

2. On return, $R1 and $R6 contain the following
information;

$R1 - Return status; one of the following:

0000 - No error
0502 - Semaphore not defined

$R6 - Semaphore id (as supplied).

Example:

See the example given for the Define Semaphore macro call

2-435 CZ06-00

RELEASE TERMINAL
J

RELEASE TERMINAL (SRLTML)

Function Code: 17/04

Equivalent Command: None

Issued by a task group to release a secondary user's terminal
back to the Listener component after the terminal file has been
closed and removed.

FORMAT:

[label] $RLTML [location of terminal LRN],
[location of status code]

ARGUMENTS:

location of terminal LRN

Any address form valid for a data register; provides the
logical resource number (LRN) of the terminal to be
released.

location of status code r-

Any address form valid for a data register; provides a
one or two byte completion status code that is reported
to Listener when the terminal is released. If the
completion status is non-zero, Listener displays on the
terminal the status code, prefixed with the Listener
component code ("39"), and associated message library
text.

DESCRIPTION:

This macro call is used to return a secondary user's terminal
that was previously obtained by the calling task group
through a Request Specific Terminal or Request Terminal macro
call. Until this call is issued, the terminal is reserved
for the task group.

NOTES

1. The system places in $R6 the LRN of the
addressed terminal supplied by argument 1. If
this argument is omitted, the system assumes
that $R6 contains the terminal's LRN.

.2-436 CZ06-00

2. The system places in $R7 the status code sup-
plied by argument 2. If this argument is
omitted, the system assumes that $R7 contains
the status code.

3. On return, $R1 contains one of the following
status codes:

0000 - Terminal successfully released

3902 - Invalid LRN

3921 - Terminal not assigned to task group

3928 - Unable to release terminal; file not
removed.

Example:

In this example, the Release Terminal macro call is used to
release a terminal previously reserved through a Request
Terminal ($RQTML) call. $RQTML returned the terminal's LRN
in word 0 of the area that received the login parameters (see
the Request Terminal macro call). Subsequently, the LRN was
stored in the field LRN_STR. A status code of 0000 is to be
used; it will not be displayed.

REL_TA $RLTML =LRN_STR, =0

2-437 CZ06-00

REMOVE FILE

ftEMQVE FILE (SRMFIL)

Function Code: 10/25

Equivalent Command: Remove (REMOVE)

Cancel the file reservation previously established by a Get
File macro call. The user identifies the file to be removed by
supplying either a logical file number or a pathname. This func-
tion is usually done outside program execution.

FORMAT:

[label] $RMFIL [argument structure address]

ARGUMENT: ', ,_

argument structure address

Any address form valid for an address register; provides
the location of the argument structure defined below.
The argument structure must contain the following entries
in the order shown.

logical file number J)

A 2-byte logical file number (LFN) used to refer to
the file; must be a binary number from 0 through 255,
or ASCII blanks (2020), which indicate that an LFN is
not specified.

pathname pointer

A 4-byte address, which may be any address form valid
for an address register; it points to a pathname ^^
(which must end with an ASCII space character) that
identifies the directory in the file hierarchy in
which the file to be removed is found (as well as the
name of the file itself). Binary zeros in this entry
indicate that a pathname is not specified.

DESCRIPTION:

This macro call removes the file reservation established for
the specified file, provided it is not currently open (see
the Open File macro call) in the task group in which you are
executing. It does not dissociate the LFN from a pathname
(see the Dissociate File macro call).

2-438 CZ06-00

Also, if the file is a temporary file (see the Create File
macro call), this macro call has the same effect as the
Delete File macro call previously described.

The file to be removed can be specified only by an LFN or a
pathname. When only an LFN is specified, the file must have
been reserved previously with a Get File or Create File macro
call, or with an equivalent command.

A Remove File macro call does not remove a file that has been
reserved through the GET command; the REMOVE command must be
used.

Since the Remove File macro call removes all information
about the file from the system, subsequent Get File macro
calls may require that multiple directory levels be searched
to locate the file again. Thus, the Remove File macro call
should be used carefully and only after all references to the
file are complete.

NOTES

1. If the argument is coded, the system loads the
address of the parameter structure into $B4.
If the argument is omitted, the system assumes
that $B4 contains the address of the parameter
structure.

2. On return, $R1 contains one of the following
status codes:

.£

0000 - No error

Olxx - Physical I/O error

0201 - Invalid pathname

0202 - Pathname not specified

0205 - Invalid argument

0206 - Unknown or invalid LFN

0208 - LFN or file currently open in same task
group

0209 - Named file or directory not found

020C - Volume not found

0210 - LFN conflict

2-439 CZ06-00

~"\
0222 - Pathname cannot be expanded; no working)

directory ^^
N̂

0225 - Hot enough system memory for buffers or
structures

0226 - Not enough user memory for buffers or
structures

0229 - File not known to task group.

In the following examples, the macro call specifies an argu-
ment structure built by a previous Get File macro call; this
technique, as opposed to building a separate argument struc-
ture, results in using fewer bytes of memory while achieving
the cancellation. The macro call is coded as shown in the
two examples:

Example 1: ..—

WRTFIL DC 5 LFN = 5 ^S
DC 2,0
$RMFIL IWRTFIL

Example 2:

WRTFIL DC Z'20201 NO LFU
DC <FILE_A PATHNAME POINTER
RESV 2-$AF T

FILE_A DC '~VOL03>SUB>FILE_A ' J
$RMFIL iWRTFIL

2-440 CZ06-00

RENAME FILE/RENAME DIRECTORY

RENAME FILE/RENAME DIRECTORY (SRNFIL)
t-

Function Code: 10/40

Equivalent Command: Rename (RN)

Change the name of a disk file or directory to the name
specified by the macro call. The user identifies the disk file
or directory to be renamed by supplying either a logical file
number or a pathname. This function is usually done outside pro
gram execution.

FORMAT :

[label] $RNFIL [argument structure address]

ARGUMENT:

argument structure address

Any address form valid for an address register; provides
the location of the argument structure defined below,
which must contain the following entries in the order
shown.

logical file number

A 2-byte logical file number (LFN) used to refer to
the file; must be a binary number in the range 0
through 255, or ASCII blanks (X'20201), which
indicate that an LFN is not specified.

pathname pointer

A 4-byte address that may be any address form valid
for an address register; points to a pathname (which
must end with an ASCII space character) that identi-
fies the file or directory whose name is to be
changed. Binary zeros in this entry indicate that a
pathname is not specified.

new name

A 1- to 12-byte namef specifying the new name of the
file or directory; must be a simple name (i.e., must
not contain n~" , "<", ">", etc.).

2-441 CZ06-00

DESCRIPTION:

This call changes the name of the specified file or direc-
tory. However, the volume major directory cannot be renamed
(any attempt to do so will cause a status code of 0228 to be
returned in $R1). To rename the volume major directory, use
the Create Volume command (see the Commands manual).

The file can be renamed by specifying (1) an LFN only or (2)
a pathname only. If only an LFN is specified, the file must
have been reserved (through a Create File or Get File macro
call, or equivalent command) with that LFN. i

A restorable disk file (i.e., one created/modified with the
-RESTORE attribute) and its related files can be renamed only
if the system's journal file is open.

NOTES

1. If the argument is coded, the system loads the
address of the parameter structure into $B4.
If the argument is omitted, the system assumes
that $B4 contains the address of the parameter
structure.

2. On return, $R1 contains one of the following
status codes:

0000 - No error

Olxx - Physical I/O error

0201 - Invalid pathname

0202 - Pathname not specified

0205 - Invalid argument

0206 - Unknown or invalid LFN

0209 - Named file or directory not found

020C - Volume not found

0212 - Attempted creation of existing file or
directory

0213 - Cannot provide requested file
concurrency

2-442 CZ06-00

0222 - Pathname cannot be expanded; no working
directory

0225 - Not enough system memory for buffers or
structures

0226 - Not enough user memory for buffers or
structures

0228 - Invalid file type

022C - Access control list (ACL) violation

0260 - Journal file not open.

Example:

In this example, it is assumed that a file has been created
in the directory SUB.INDEX.A by the name of FILEA. Its full
pathname is ~VOL03>SUB.INDEX.A>FILEA. In addition, this file
is reserved with LFN=2. User executes this code:

ANEWAA $RNFIL 1NEWNM1

NEWNM1 DC 2 LFN = 2
RESV 2,0 NO PATHNAME POINTER
DC 'OLDF_1 '

The result is that FILEA in the directory SUB.INDEX.A is
renamed to OLDF_1.

2-443 CZ06-00

REPORT MESSAGE

REPORT MESSASGE (SRPMSG)

Function Code: OF/03

Equivalent Command: Display

Report a message contained in a message library, with
optional substitution of parameters, to the user's terminal.
Alternatively, return the message to the caller or display it on
the user-out file.

FORMAT:

[label] $RPMSG [location of component code],
[location of message id],
[location of indicators word],
[location of descriptor list],
[location of buffer to receive message]

ARGUMENTS:

location of component code

Any address form valid for a data register; provides the
4-digit hexadecimal code (OOxx) of the software component
that reports the message. The first pair of digits (00)
must be zero; the second pair (xx) identifies the
reporting component. Each pair of digits occupies one
byte.

location of message id

Any address form valid for a data register pair; provides
the 5-digit hexadecimal key value used to locate a message
in a message library. (Two hexadecimal digits occupy a
byte and 2 bytes form a word. A 5-digit value, therefore,
occupies 1 1/2 words, requiring two data registers.)

2-444 CZ06-00

Values for this argument can take one of the following two
forms:

1. A 4-byte string, whose format is shown below:

Byte Meaning

0 Must be zero.

1 Error/help identifier; one of the
following hexadecimal values:

0 = error message
1,2 = help message (first element in a

chain)
3-7 = any element following the first

in a chained message.

2-3 Message number; a 4-digit hexadecimal
number (xxyy)in range 0000-FFFF. The
first pair of digits (xx) identifies the
software component that owns the message;
the second pair (yy) identifies the
specific error or help number.

2. =$R7

The 4-byte message id is already in $R6,$R7.

NOTE

The expanded code of $RPMSG includes an LDI
instruction that loads the message id. Users who,
when specifying argument 2, index an address
register should note that the index register will
be aligned to count double words. Users who, when
specifiying argument 2, use immediate operand
addressing, should note that their string
constants must be exactly 32 bits.

location of indicators word

Any address form valid for a data register; provides 16
indicator-bits that specalize execution of this call. Bit
meanings are shown below. Bit 0 is the most significant
bit.

2-445 CZ06-00

Bit Meaning \

0 0 = Display message. -

1 = Return message to caller's buffer. ^

1 0 = Display message identifier (error/help
id and message number) and code of
component reporting message.

1 = Suppress message identifier and code of
component reporting message.

2 0 = Descriptor list not provided.

1 = Descriptor list provided.

3 0 = Display message to REGIONS of menu
screen or (if terminal in ECL mode)
to error-out file (normal option). ^

1 = Display message to user-out file;
suppress message chaining.

4 0 = Return error message to buffer if $R1 =
non-zero value.

1 = Return only good message to buffer
(i.e., return message only if $R1 = 0). T-

)
This bit is significant only if bit 0 is set
to 1 (return message to buffer).

5 0 - Provide slew character when returning
message to buffer.

1 = Do not provide slew character when
returning message to buffer.

This bit is significant only if bit 0 is set '
to 1 (return message to buffer).

6 0 = Display message to REGIONS of menu
screen (normal option).

1 = Display message to REGION2 of menu
screen; suppress message chaining.

7-14 Reserved for future use; must be zero.

15 Used internally; must be zero.

2-446 CZ06-00

NOTE

If value of indicators word bit 2 is zeror the next
argument (location of descriptor list) is ignored.

location of descriptor list

Any address form valid for an address register; provides
the location of the parameter descriptor list. This
argument is applicable only if the message to be displayed
or returned contains substitutable parameters and the
caller wishes to substitute arguments for those
parameters. If a descriptor list is provided and the
message to be reported contains no substitutable
parameters, the descriptor list is ignored.

The first item of a descriptor list is a word specifying
the number of descriptors in the list; the remaining items
are descriptors. Each descriptor corresponds to a
substitutable parameter in the message. Information
provided by the descriptor includes the address of the
argument to be substituted for a parameter and the
identifying number of that parameter. A parameter's
identifying number and its attributes (e.g., character
typer maximum length) are specified by a parameter
designator embedded in the preformatted message library
text. (Parameter designators are described in the System
Messages manual.)

Each descriptor is 4 words long; its format is shown
below.

Word Contents

0 Parameter number/byte indicator.

Parameter number. Two hexadecimal digits in the
range 1-99 (decimal); specifies the number of
the parameter for which an argument is being
supplied. The identifying number of each
parameter is established by the parameter's
designator.

Byte indicator. Two hexadecimal digits, the
first of which must be zero. The second digit
has these possible values:

0 = Parameter argument being supplied begins
in left byte of word pointed to by this
descriptor.

1 = Parameter argument being supplied begins
in right byte of word pointed to by this
descriptor.

2-447 CZ06-00

Word Contents
/

2 Parameter size. A hexadecimal value specifying
the size in bytes of the parameter argument
being supplied. The value specified here should
not exceed the length (field size) specified by
the parameter's designator. If the parameter
size is greater than the field sizef the
supplied argument is displayed as a string of
asterisks.

A value of zero instructs the system to pick up
the number of bytes necessary to fill the
parameter field, starting at the location
pointed to by this descriptor.

3-4 Pointer to parameter argument. A null pointer
signifies that the caller does not choose to
substitute an argument for this parameter. The
corresponding parameter designator and any
associated message text enclosed in brackets are
not displayed.

The number of descriptors in a list need not agree with
the number of substitutable parameters in the message to
be reported. Descriptors can be listed in any order
(i.e., the descriptor referring to parameter 1 need not be
the first in the list and need not precede the descriptor
for parameter 2). If this argument is specified, bit 2 of
the indicators word (argument 3) must be set on
(descriptor list provided).

Example of descriptor list:

In this example, the first descriptor is the descriptor
for parameter 1. The parameter argument is 5 units long
and begins in the left byte of location 21A76. Note that
the list omits a descriptor for parameter 2; the caller
can selectively supply arguments for the substitutable
parameters in a message.

0002 NUMBER OF DESCRIPTORS IN LIST
0100 PARAMETER NUMBER AND BYTE INDEX
0005 LENGTH OF ARGUMENT
0002 2-WORD POINTER TO ARGUMENT
1A76
0300 START OF DESCRIPTOR FOR THIRD PARAMETER

2-448 CZ06-00

location of buffer to receive message

Any address form valid for an address register; provides
the location of the buffer to receive the message. This
argument is supplied only if the message is to be returned
to the calling application rather than displayed at a
terminal. If this argument is supplied, bit zero of the
indicators word must be set on (return message; do not
display it) .

The word preceding the buffer must contain the buffer
size, in bytes. When $RPMSG returns the message in the
buffer, it also returns, in the word preceding the buffer,
the length of the returned message.

The recommended buffer size is 241 bytes — the maximum
allowable message length plus one slew byte. The maximum
message length accommodates all the elements of a fully
formatted message: the message id (described under
argument 1) and message text (including substituted
parameters) .

DESCRIPTION:

$RPMSG allows the caller to report a message to a terminal
running in menu or ECL mode. To report a message to a
terminal running in forms mode, use the Report Message,
Display Formatting and Control ($RPDFC) macro call.

If message chaining is enabled, $RPMSG supports chained
messages. To the first message in a chain, specified by
argument 2, the Message Reporter appends the "more help?"
prompt. A positive response causes the Message Reporter to to
display the next message in the chain; a negative response
returns control to the caller.

To the last message in a chain, the Message Reporter appends
the text "end of help". In menu mode, any response (except
one that breaks or interrupts program execution) returns
control to the caller. In ECL mode, the message reporter
returns control immediately after displaying the "end of
help" text, without waiting for the user's response.

The actions that return control to the caller, after $RPMSG
is issued, can be summarized as follows:

2-449 CZ06-00

1. Chaining is disabled. Message Reporter returns control
after displaying message; no response by the user is x
necessary for return of control. '

2. Chaining is enabled; message is not chained.
a. Terminal is in ECL mode. Message reporter returns

control after displaying message, as in 1. above.
b. Terminal in menu mode. Message reporter returns

control after user acknowledges message by hitting any key
(except one that breaks or interrupts program execution).

3. Chaining is enabled; message is chained.
a. Terminal is in ECL mode. Message reporter returns

control unconditionally after displaying "end of help
message" or after a negative response to "more help?" prompt.

b. Terminal is in menu mode. Message Reporter
returns control after any response to "end of help? message
or after a negative response to "more help?" prompt.

"A
& message displayed in REGION3 remains there for reference by)
the user after control is returned to the caller. ^/"

Argument 5 (location of buffer) allows the caller to receive
a message and then display it by a subsequent command. If
the receiving buffer is shorter than the messsage specified
by argument 2 (location of message id), the message is
truncated. If the buffer is shorter than the message id (5
bytes) no part of the message is returned to the buffer.

" r"

Argument 5 allows the caller to specialize a message before ^}
its display. The argument also allows the caller to take the
following precaution against faulty execution of the call.
Before requesting the return of a message, the caller can
place a backup message in the buffer and set on bit 4 of the
indicators word (return only good message to buffer). If
$RPMSG then fails to locate or read the requested message, it
leaves the buffer contents unchanged, only changing the
buffer size to zero. The caller can then display the
existing backup message in lieu of no message at all. - ' ^

/'
NOTES ^

1. The component code, supplied by argument 1, is
placed in $R3. If argument 1 is omitted, $R3
is assumed to contain the component code.

2. The message id, supplied by argument 2, is
placed in $R6,$R7. If =$R7 is specified for
argument 2, $R6,$R7 are assumed to contain the
message number. If argument 2 is omitted, the
message is assumed to be an error message, $R1
is assumed to contain the message number, $R7
is loaded with the value in $R1, and $R6 is
set to zero.

2-450 CZ06-00

3. The indicators word, supplied by argument 3,
is placed in $R4. If argument 4 is omitted,
$R4 is assumed to contain the indicators word.

4. The address of the descriptor list, if
supplied by argument 4, is placed in $B2.

5. The address of the buffer, supplied by
argument 5, is placed in $B3; if argument 5 is
omitted and bit 0 of the indicators word is
set off (display message), the message is
reported by the system.

6. No values are returned when the caller
requests $RPMSG to display a message. When
the caller requests $RPMSG to return a
message, $R6,$R7, $R2, and $R1 contain the
following information;

$R6,$R7 - Link to next message in chain. Zero
indicates end of chain.

$R2 - Byte offset from beginning of buffer to
beginning of message text returned to
buffer.

$R1 - Return status; one of the following:

0 - Good message returned.

1 - "ML ERROR" message returned to
buffer.

2 - Only the message identifier was
returned; no text.

3 - A truncated message was returned
(i.e., buffer was too small).

4 - No message was returned (i.e.,
indicator bit 4 set on or buffer
smaller than 5 bytes); size set to
zero.

2-451 CZ06-00

Example 1:

In this example, $RPMSG displays a message at the user's
terminal. The displayed message will include the code of the
reporting component (X'00171) and the category/specific error
code. The category/specific error code has already been
returned to $R1 by a preceding macro call. Because argument 2
is omitted, the system assumes that $R1 already contains a
category/specific error code (referred to above, under
"location of message id", as the "message number"). The
omission of argument 4 and the zero value of the indicators
word both indicate that the message text will be displayed
without substitution of parameters. Because the caller
wishes the message displayed rather than returned, argument 5
(buffer location) is omitted.

$RPMSG COMP,,INDIC
COMP DC X'00171

INDIC DC 0

Example 2:

In this example. $RPMSG displays text to the user's
terminal. The value of the indicators word indicates that
the component code and message number will not appear in the
displayed message. The omission of argument 4 and the value
of the indicators word both indicate that the message text
will be displayed without substitution of parameters.
Because the caller wishes the message to be displayed rather
than returned, argument 5 (buffer location) is omitted.

$RPMSG COMP, HELP, INDIC
COMP DC X'00171

HELP DC Z'00010201'
INDIC DC Z'40001

j

2-452 CZ06-00

REPORT MESSAGE, DISPLAY
FORMATTING AND CONTROL

REPORT MESSAGE, DISPLAY FORMATTING AND CONTROL (

Function Code: OF/04

Equivalent Command: Display

Report a message contained in a message library, with
optional substitution of parameters, to a terminal running in
forms mode. The message is displayed on the terminal's "25th
line".

FORMAT:

[label] $RPDFC [location of component code],
[location of message id]r
[location of indicators word]f
[location of descriptor list],
[location of VTCRB]

ARGUMENTS:

location of component code

Any address form valid for a data register; provides the
4-digit hexadecimal code (OOxx) of the software component
that reports the message. The first pair of digits (00)
must be zero? the second pair (xx) identifies the
reporting component. Each pair of digits occupies one
byte.

location of message id

Any address form valid for a data register pair; provides
the 5-digit hexadecimal key value used to locate a message
in a message library. (Two hexadecimal digits occupy a
byte and 2 bytes form a word. A 5-digit value, therefore,
occupies 1 1/2 words, requiring two data registers.)

2-453 CZ06-OQ

Values for this argument can take one of the following two
forms:

1. A 4-byte string, whose format is shown below: "̂ r

Byte Meaning

0 Must be zero

1 Error/help identifier; one of the
following hexadecimal values:

0 = error message
1,2 = help message (first element in a

chain)
3-7 = any element following the first

in a chained message

2-3 Message number; a 4-digit hexadecimal —v
number (xxyy)in range 0000-FFFF. The)
first pair of digits (xx) identifies the ^^
software component that owns the message;
the second pair (yy) identifies the
specific error or help number.

2. =$R7

The 4-byte message id is already in $R6,$R7. ^
\

NOTE ' J

The expanded code of $RPMSG includes an LDI
instruction that loads the message id. Users who,
when specifying argument 2, index an address
register should note that the index register will
be aligned to count double words. Users who, when
specifying argument 2, use immediate operand
addressing, should note that their string ,
constants must be exactly 32 bits.)

location of indicators word

Any address form valid for a data register; provides 16
indicator-bits that specalize execution of this call. Bit
meanings are shown below. Bit 0 is the most significant
bit.

2-454 CZ06-00

pj.t Meaning

0 Must be zero.

1 0 = Display message identifier (error/help
id and mesaage number) and code of
component reporting message.

1 = Suppress message identifier and code of
component reporting messaage.

2 0 = Descriptor list not provided.

1 = Descriptor list provided.

3-14 Reserved for future use; must be zero.

15 Used internally; must be zero.

NOTE

If value of indicators word is zero, the next
argument (location of descriptor list) is ignored.

location of descriptor list

Any address form valid for an address register; provides
the location of the parameter descriptor list. This
argument is applicable only if the message to be displayed
contains substitutable parameters and the caller wishes to
substitute arguments for those parameters.

The first item of a descriptor list is a word specifying
the number of descriptors in the list; the remaining items
are descriptors. Each descriptor corresponds to a
substitutable parameter in the message. Information
provided by the descriptor includes the address of the
argument to be substituted for a parameter and the
identifying number of that parameter. A parameter's
identifying number and its attributes (e.g., character
type, length) are specified by a parameter designator
embedded in the preformatted message library text.

Each descriptor is 4 words long; its format is explained
in the description of the Report Message ($RPMSG) macro
call.

location of VTCRB

Any address form valid for an address register; provides
the location of the address of the VDAM terminal control
request block (VTCRB).

2-455 CZ06-00

DESCRIPTION:

$RPDFC reports an error or help message to the ,,—.
message/response line ("25th line") of a terminal running in J
forms mode.

If the message is longer than one line (80 characters) the
Message Reporter displays up to 60 characters on line 25,
attempting to partition the message on a blank. The text
"message cont'd" is appended to the partial message. After
the terminal user acknowledges the partial message, the
Message Reporter displays the remaining portion(s) of the
message. If the message is chained and chaining is enabled,
the Message Reporter appends the "more help?" prompt to the
last portion of the message. To the last portion of the
final message in the chain, the Message Reporter appends the
text "end of help".

The actions that return control to the caller after $RPDFC is ~
issued can be summarized as follows: j

1. Chaining is disabled and/or message is unchained. The
message reporter returns control after the final portion of
the message is displayed and is acknowledged by the user.

2. Chaining is enabled: the message is chained. The Message
reporter returns control after the user responds to the "more
help?" prompt or "end of help" text by hitting a key other
than HELP. ' T

J
NOTES

1. The component code, supplied by argument 1, is
placed in $R3. If argument 1 is omitted, $R3
is assumed to contain the component code.

2. The message id, supplied by argument 2, is
placed in $R6,$R7. If =$R7 is specified for
argument 2, $R6,$R7 are assumed to contain the A
message number. If argument 2 is omitted, the /̂-
message is assumed to be an error message, $R1
is assumed to contain the message number, $R7
is loaded with the value in $R1, and $R6 is
set to zero.

3. The indicators word, supplied by argument 3,
is placed in $R4. If argument 4 is omitted,
$R4 is assumed to contain the indicators word.

2-456 CZ06-00

4. The address of the descriptor list, supplied
by argument 4, is placed in $B2? if argument 4
is omitted, $B2 is assumed to contain the
address of the descriptor list.

5. The address of the VTCRB, supplied by argument
5, is placed in $B3; if argument 5 is omitted,
$B3 is assumed to contain the VTCRB address.

2-457 CZ06-00

REQUEST BATCH

REQUEST BATCH ($RQBAT)

Function Code: OE/00

Equivalent Command: Enter Batch Request (EBR)

Add a request to the queue of files to be processed by the
Command Processor executing in the batch task group. If batch
requests are queued on disk, the request can be deferred to a
specified date/time (see argument 5).

FORMAT:

[label] $RQBAT [location of address of argument list],
[location of address of fixed parameter block]

ARGUMENTS:

location of address of argument list

Any address form valid for an address register; provides
the address of the argument list, which can be generated
by the Parameter Block macro call, to be used to build
the batch request block. The batch request block is
built in the system area of memory and is used by the
Command Processor to specialize commands read from the
command-in file.

The argument list provides the pathname of the command-in
file to be read by the Command Processor and, optionally,
arguments to be substituted for parameters in that file.
Items in the argument list (i.e., arguments supplied with
the $PRBLK call) must be the following:

Item Content

Argument 1 Ignored by system; null.

Argument 2 Pathname of command-in file read by
Command Processor; must be supplied.

Argument 3 Arguments to be substituted for
parameters in command-in file;
these arguments are optional.

.
argument n

2-458 CZ06-00

NOTE

All non-null arguments must be enclosed by single
or double quotation marks and must terminate with
a blank.

location of address of fixed parameter block

Any address form valid for an address register; provides
the address of a fixed parameter block, which can be
generated by the Parameter Block macro call. This param-
eter block has the following arguments:

Argument 1

A string specifying the user id to be associated with
this batch request (for system use). The user id
currently associated with the issuing task group will
be used when the call is executed from a user task
group.

Argument 2

A pathname string specifying the command-in and the
initial user-in files for the batch request. A non-
zero value is required.

Argument 3

A pathname string specifying the error-out and ini-
tial user-out files for this batch request. If this
entry is zero, one of the following assumptions is
made:

• If the pathname string specifying the command-in
and initial user-in files (in-path) specifies a
disk device, the pathname for the output files is
in-path.AO.

• If in-path specifies an interactive terminal, the
pathname for the output files is the same as
in-path.

• If in-path specifies an input-only device, the
pathname for the output files is null.

Argument 4

A pathname string specifying the initial value of the
working directory for this batch request.

Argument 5

The external date/time of the deferred request (disk-
queued batch requests only).

2-459 CZ06-00

Argument 6

A pathname string specifying the message library file
for this request. If this argument is not specified,
the message library pathname of the requestor is
used.

DESCRIPTION:

This macro call causes a request to execute the commands
contained in the file identified by the second item in the
fixed parameter block (argument 2) to be queued against the
batch task group. The batch task group has a
first-in/first-out queue of command processor files.

If the batch task group is dormant when the Request Batch
macro call is issued, execution begins immediately; other-
wise, the request is queued.

The Command Processor is executed as the lead task of the
batch task group. Since the Command Processor obtains its
commands from the file named in the second entry of the fixed
parameter block, the file must begin with a command.

Task group requests can be queued on disk, using the Message
Facility, if a group request queue was created for the target
group prior to the target group's creation. Group requests
queued on disk using the Message Facility can be deferred
until a specified date/time. ^

i
Batch requests cannot be waited upon.

Task group requests have message library definitions
associated with them. Each task within the request group
uses the supplied message library. If the message library
pathname is not supplied, the requestor's message library is
used.

NOTES N\
,y

1. The system places in $B4 the address of the x—'
argument list to be used to build the request
block, supplied by argument 1. If this argu-
ment is omitted, the system assumes that $B4
contains the correct address.

2. The system places in $B5 the address of the
fixed parameter block, supplied by argument
2. If this argument is omitted, the system
assumes that $B5 contains the correct address.

2-460 CZ06-00

3. On return, $R1 contains one of the following
status codes:

0000 - No error
0209 - Invalid pathname.

Example: - ^

In this example, the Request Batch macro call causes a
request to execute the command contained in the file
"V1124>UDD>TEST>JONES>ASM__TST to be queued against the batch
task group. This file will also be used as the user-in
file. Since argument 3 is null, the user-out and error-out
files will default to ~V1124>UDD>TEST>JONES>ASM_TST.AO. The
user id, initial working directory, and message library will
be JONES.TEST.B., ~V1124>UDD>TEST>JONES>MSGLIB,
respectively. The arguments -XREF and -PRINT will be passed
to the Command Processor to specialize the control file ASM
TST (&1 and &2 in the control file will be replaced by -XREF
and -PRINT, respectively). The Parameter Block ($PRBLK)
macro call used in this example is described earlier in this
section.

$RQBAT 1ARGS, !INFO

INFO $PRBLK 'JONES.TEST.BA',
'~V1124>UDD>TEST>JONES>ASM_TSTA',
, I / NV1124>UDD>TEST>JONESA' ,
,'~V1124>UDD>TEST>JONES>MSGLIBA'

ARCS $PRBLK , ' /SV1124>UDD>TEST>JONES>ASM_TSTAI ,
'-XREFA1

'-PRINT A'

2-461 CZ06-00

REQUEST BLOCK DISPLACEMENTS

o
REQUEST BLOCK DISPLACEMENTS (SRBD)

Generated Label Prefixes:

R_RRB
R_SEM
RJ&S
R_CT1
R_CT2
R_ADR

See Appendix C for the format of the request block.

N̂ -

J

2-462 CZ06-00

REQUEST CLOCK

REQUEST CLOCK (SROCL)

Function Code: 05/00

Equivalent Command: None

Request the Clock Manager to mark the specified clock request
block (CRB) as complete when the interval specified in that CRB
has elapsed.

FORMAT:

[label] $RQCL [location of CRB address]

ARGUMENT:

location of CRB address

Any address form valid for an address register; provides
the address of the clock rquest block to be posted when
its specified time interval has elapsed.

DESCRIPTION:

This macro call connects the specified CRB to the timer
queue.

If the clock request block is not cyclic (see the Clock
Request Block macro call), when the specified interval
elapses, the CRB is dequeued from the timer queue. Another
Request Clock macro call must be issued to requeue the CRB.
Note that a noncyclic CRB can specify an absolute time value
rather than an interval.

If the CRB is cyclic, when the specified interval elapses,
the CRB is posted and a new request for the originally speci-
fied interval is automatically initiated. The automatic
resetting continues until a Cancel Clock Request macro call
is issued. A cyclic CRB cannot have a time interval of zero
and cannot specify an absolute time value.

NOTES

1. The system places in $B4 the address of the
CRB to be connected, supplied by argument 1.
If this argument is omitted, the system
assumes that $B4 contains the correct address.

2-463 CZ06-00

2. On return, $R1 and $B4 contain the following
information:

$R1 - Return status; one of the following:

0000 - No error

0401 - Invalid time value (zero value
for cyclic CRB)

0402 - Invalid receiving field length

0403 - Invalid control interval unit
specified

$B4 - Address of CRB.]

Example:

See the example given for the Wait on Request List ($WAITL) ~N
macro call. /

2-464 CZ06-00

REQUEST GROUP

REQUEST GROUP ($RQGRP)

Function Code: OD/00

Equivalent Command: Enter Group Request (EGR)

Request the execution of the lead task of a specified task
group. The request is placed in the first-in/first-out request
queue maintained for that task. If group requests are queued on
disk, the request can be deferred to a specified date/time (see
Argument 5).

FORMAT:

[label] $RQGRP [location of group id],
[location of address of argument list],
[location of address of fixed parameter block]

ARGUMENTS:

location of group id

Any address form valid for a data register; provides the
group id of the task group to be requested. This task
group must have been previously defined by a Create Group
macro call.

location of address of argument list

Any address form valid for an address register; provides
the address of the argument list, which can be generated
by the Parameter Block macro call.

If the lead task is the Command Processor, the argument
list provides the pathname of the command-in file to be
read by the Command Processor and, optionally, arguments
to be substituted for parameters in that file. Items in
the argument list (i.e., arguments supplied with the
$PRBLK call) must be the following:

2-465 CZ06-OQ

Item Content

Argument 1 Ignored by system; null.

Argument 2 Pathname of command-in file read by
Command Processor; must be supplied.

Argument 3 Arguments to be substituted for
. parameters in command-in file;

these arguments are optional.
.

argument n

NOTE

All non-null arguments must be enclosed by single
or double quotation marks and must terminate with
a blank.

If the lead task activated by $RQGRP is not the Command
Processor, the argument list is optionally used to specialize
execution of the lead task. The order in which the arguments
are listed is the order expected by the lead task. Unless
the argument is a pathname, it is not necessarily enclosed in
quotation marks.

location of address of fixed parameter block

Any address form valid for an address register; provides
the address of a fixed parameter block, which can be gen-
erated by the Parameter Block macro call. This parameter
block has the following arguments:

Argument 1:

A string specifying the user id to be associated with
this request (for system use). If this entry is
zero, the user id currently associated with the issu-
ing task group is used at the time the call is exe-
cuted from a user task group.

Argument 2

A pathname string specifying the command-in and ini-
tial user-in files for this request for the lead task
of the referenced task group. If this entry is zero,
no command-in and initial user-in files will be
available to the group. However, the group can later
obtain a user-in file by means of the New User Input
macro call. A nonzero entry is required if the com-
mand processor is the lead task.

../

2-466 CZ06-00

Argument 3

A pathname string specifying the error-out and
initial user-out files for this request of the task
group. If this entry is zero, one of the following
assumptions is made when the call is executed:

• If the pathname string specifying the command-in
and initial user-in files (in-path) specifies a
disk device, the pathname for the output files is
in-path.AO,

• If in-path specifies an interactive terminal, the
pathname for the output files is the same as in-
path.

• If in-path specifies an input-only device, the
pathname for the output files is null.

Argument 4

A pathname string specifying the initial value of the
working directory for this request of the referenced
task group.

Argument 5:

A string specifying the external date/time of the
deferred request (disk-queued group requests only).

Argument 6:

A pathname string specifying the message library file
for this request. If this argument is not specified,
the message library pathname of the requestor is
used.

DESCRIPTION:
- r

This macro call initiates the execution of the lead task of a
task group previously created by a Create Group macro call.
If the task group is dormant at the time the Request Group
macro call is issued, execution begins immediately. If the
task group has been activated by a previous Request Group
function and has not yet terminated, execution of this
Request Group macro call begins when the group becomes
dormant.

2-467 CZ06-00

Task group requests can be queued on disk using the Message \
Facility if a group request queue was created for the target x

group prior to the target group's creation. Group requests 1̂
queued on disk using the Message Facility can be deferred . j
until a specified date/time. --'

Execution begins with the lead task specified in the Create
Group macro call. The second argument of the Request Group
macro call provides an argument list used to specialize a
request block that, in turn, is used to request the lead
task. (This request block is built in space taken from the
memory pool of the requested group.)

It is not possible to wait on the execution of a Request
Group macro call.

Task group requests have message library definitions
associated with them. Each task 'ithin the requested group
uses the supplied message library. If the message library
pathname is not supplied, the requestor's message library is
used.

NOTES
1. The system places in $R2 the group id supplied

by argument 1. If argument 2 is omitted, the
system assumes that $R2 contains the group id
to be used.

2. The system places in $B4 the address of the
argument list supplied by argument 2. If this
argument is omitted, the system assumes that
$B4 contains the address of the list.

3. The system places in $B5 the address of the
fixed parameter block supplied by argument 3.
If this argument is omitted, the system
assumes that $B5 contains the address of the
fixed parameter block to be used.

4. On return, $R1 contains one of the following
status codes:

0000 - No error
0601 - Invalid memory size or memory pool
0602 - Memory unavailable
0806 - Group id not currently defined
160A - Insufficient memory.

2-468 CZ06-00

Example 1:

In this example, the Request Group macro call causes a
request to execute the commands contained in the file
~V1124>UDD>TEST>JONES>ASM_TST to be queued against the Q2
task group. (It is assumed that task group Q2 has already
been created with the Command Processor as its lead task.
See the Create Group macro call for information on creating
task groups.) The ASM_TST file will also be used as the
user-in file. The file ~V1124>UDD>TEST>JONES>L>ASM_TST.AO
will be used as both the user-out file and the error-out
file. The user id, initial working directory, and message
library will be JONES.TEST.M, "V1124>UDD>TEST>JONES, and
~V1124>UDD>TEST>JONES>MSGLIB, respectively. The arguments
-XREF and -PRINT will be passed to the Command Processor
(group Q2's lead task) to specialize the control file ASM_TST
(&1 and &2, in the control file, will be replaced by -XREF
and -PRINT, respectively). Refer to Parameter Block macro
described previously.

$RQGRP ='Q2',1ARGS,1INFO

INFO $PRBLK

ARCS $PRBLK

Example 2:

JONES.TEST.B ',
~V1124>UDD>TEST>JONES>ASM_TSTA',
~V1121>UDD>TEST>JONES>ASM_TEST.AOA'
~V1124>UDD>TEST>JONESA',
1~V1124>UDD>TEST>JONES>MSGLIBA1
1~V1124>UDD>TEST>JONES>ASM_TSTA',
-XREFA1

-PRINTA1

In this example, the Request Group macro call activates task
group Q5, whose lead task is the Compare utility. (It is
assumed that the task group has already been created with
Compare as its lead task.) No command-in or user-in file is
initially required. The user id, initial working directory,
and message library are SMITH.TEST.B, "VOLA>TEST>SMITH, and
"VOLA>TEST>SMITH>MESSAGELIB, respectively. The files to be
compared are FILEA and >UDD>BOOKS>FILEA. The first 20
miscompared records are to be printed on the user-out file
LPTOO.

Note that because the lead task of the requested group is not
the Command Processor, the format of the argument list
differs from that shown in Example 1.

2-469 CZ06-00

$RQGRP = 'QSMARGS, ! INFO

INFO $PRBLK

ARCS $PRBLK

'SMITH.TEST.BA1 ,
, ' L P T O O A 1 ,
'VOLA>TEST>SMITHA',
,'"VOLA>TEST>SMITH>MESSAGELIBA'
'FILEAA' ,
•>UDD>BOOKS>FILEAA'f
-PR 20

2-470 CZ06-00

REQUEST I/O

REQUEST I/O

Function Code: 02/00

Equivalent Command: None

Request an I/O transfer in which the device involved in the
transfer and the parameters defining the transfer are identified
in the I/O request block (IORB) referred to in the call.

FORMAT:

[label] $RQIO [location of IORB address]

ARGUMENT:

location of IORB address

Any address form valid for an address register; provides
the address of the IORB containing the device designation
and all information about the nature of the I/O trans-
fer. The IORB can be hand-coded or constructed through
the Input/Output Request Block Offsets or Input/Output
Request Block macro calls.

DESCRIPTION:

This macro call requests an I/O transfer using a defining
IORB.

You should initially reserve the device named in the IORB.
Device reservation can be accomplished by the Get File macro
call using device-level access (i.e., the pathname is in the
form SPD dev_name [volid]) .

The IORB requires a logical resource number (LRN) to refer to
the device. The LRN can be obtained by issuing a Get File
Information macro call. The LRN returned by the Get File
Information call will be the LRN assigned to the device at
system building time.

NOTES

1. The system places in $B4 the address of the
IORB supplied by argument 1. If this argument
is omitted, the system assumes that $B4 con-
tains the address of the IORB to be used.

2-471 CZ06-00

2. On return, $R1 and $B4 contain the following j
information: —'•

$R1 - Return status; one of the following: ^

0000 - No error

0801 - IORB in use (t-bit on)

0802 - Invalid LRN

0803 - Invalid wait or the R/S/D bit in
the IORB is nonzero.

If the IORB specifies that the issuing task is
to wait for the completion of the request, one
of the following codes could be returned:

0104 - Invalid arguments

0105 - Device not ready x̂-x

0106 - Device timeout

0107 - Hardware error (check IORB status
word)

0108 - Device disabled
"\

0109 - File mark encountered

010A - Controller unavailable

010B - Device unavailable

010C - Inconsistent request

010D - Magnetic tape end-of-tape (EOT)
marker (reflective strip) j
detected ^/-

0817 - Memory access violation

$B4 - Address of IORB.

2-472 CZ06-00

Example:

In this example, the Request I/O macro call is used to
request an I/O transfer involving a device whose logical
resource number is 143. The device has been reserved by a
Get File macro call; its LRN has been obtained by a Get File
Information macro call. In addition to the LRN, the IORB
provides the following information about the I/O transfer:

• The issuing task is to be suspended until the request
is complete.

• The address of the buffer to be used in the I/O
transfer is BOFAD.

• The buffer begins in the left byte of BUFAD.

• The buffer is 326 bytes long.

AF001 $RQIO 1IORB21

IORB21 $IORB 143,WAIT,,BUFAD,L,326

2-473 CZ06-00

REQUEST SEMAPHORE

REQUEST SEMAPHORE (SRQSM)

Function Code: 06/00

Equivalent Command: None

Request reservation of a resource controlled by the semaphore
specified in the indicated semaphore request block (SRB). If it
is available, reserve the resource. If the resource is not
available, queue the SRB until the resource becomes available.

FORMAT:

[label] $RQSM [location of SRB address]

ARGUMENT:

location of SRB address

Any address form valid for an address register; provides
the address of the SRB to be queued if the resource is
not available. See the Semaphore Request Block macro
call later in this section.

DESCRIPTION:

This macro call is an asynchronous request for a resource
controlled by the semaphore identified in the SRB. The
semaphore itself must have been defined by a Define Semaphore
macro call. The SRB can be generated by a Semaphore Request
Block macro call.

When the Request Semaphore macro call is executed, the
counter, whose initial value was established by the Define
Semaphore macro call, is decremented by 1.

If the resource is available, it is reserved. If the
resource is not available, the SRB is queued until the
resource becomes available.

If WAIT was specified in argument 2 of the Semaphore Request
Block macro call, the issuing task is suspended until the
resource becomes available. The resource is then reserved,
the SRB is marked as terminated, and control is returned to
the issuing task.

2-474 CZ06-00

If argument 2 of the Semaphore Request Block macro call is
not WAIT, control is immediately returned to the issuing
task, which can then perform other processing. When the
resource becomes available, it is reserved and the SRB is
marked as terminated. The issuing task can then use the Test
Completion Status, Wait, or Wait on Request List macro calls
to check the completion status of the SRB. (Alternatively,
the task can use the request-task or post-semaphore termina-
tion options.)

NOTES

1. The system places in $B4 the address of the
SRB supplied in argument 1. If this argument
is omitted, the system assumes that $B4 con-
tains the SRB address.

2. On return, $R1 and $B4 contain the following
information:

$R1 - Return status; one of the following:

0000 - No error
0502 - Invalid SRB

$B4 - Address of SRB.

Example:

In this example, the Request Semaphore and Wait ($WAIT) macro
calls are used to replace the P-op on semaphore TH used in
the example given for the Define Semaphore macro call. This
technique allows the requesting task to start the process of
reserving a resource before it is actually needed and to con-
tinue concurrent processing until the resource is required
(at which time the requesting task will wait for the SRB).
Processing then continues as in the Define Semaphore example.

2-475 CZ06-00

* START THE PROCESS OF CAPTURING A RESOURCE BY ISSUING
* A REQUEST SEMAPHORE CALL TO RESERVE A RESOURCE

$RQSM !SRB
*
* NOW CONTINUE NORMAL PROCESSING
*

*
* ROUTINE TO FINISH GETTING A RESOURCE
*
* WAIT FOR THE REQUEST SEMAPHORE CALL TO FINISH
*

$WAIT ISRB
*
* NOW LOCK THE FREE RESOURCE LIST

)$RSVSM ='LK! ^-/
*
* NOW TAKE A RESOURCE FROM THE FREE RESOURCE LIST
*

* THEN UNLOCK THE FREE RESOURCE LIST r

, , ^$RLSM ^'LK1

* NOW THE RESOURCE IS RESERVED
*

SRB $SRB TH, WAIT

2-476 CZ06-00

REQUEST TASK

REQUEST TASK ($RQTSK)

Function Code: OC/00

Equivalent Command: Enter Task Request (ETRJ

Request the execution of a previously created task within the
same task group from which this request is issued.

FORMAT:

[label] $RQTSK [location of request block address]

ARGUMENT:

location of request block address

Any address form valid for an address register; provides
the address of the task request block that identifies the
requested task and specifies whether the issuing task is
to wait for the completion of the request.

DESCRIPTION:

This macro call activates a task that was previously defined
by a Create Task macro call. The Request Task macro call
allows a running task to request the execution of another
task. The issuing task must supply a task request block that
identifies the requested task and the characteristics of the
request.

A task request block is constructed through the Task Request
Block macro call. The first argument of the Task Request
Block macro call specifies the logical resource number (LRN)
of the requested task. The second and third arguments
specify whether or not the issuing task is to be suspended
until the request is complete. The fourth argument specifies
the start address of the task.

Using the LRN supplied in the request block, the Task Manager
ascertains the task control block of the requested task. The
Task Manager then places the request block in the request
queue of the requested task. If the request queue was pre-
viously empty, the task is queued to its priority level. If
the priority level was empty, it is activated. In addition,
if the newly activated priority level is higher than that of
the calling task, the Task Manager (operating at the priority
level of the calling task) is interrupted and the requested
task begins execution.

2-477 CZ06-00

When the priority level of the calling task again becomes the "\
highest active priority level, the Task Manager checks the ^/)
task request block to ascertain if the calling task is to
wait for the completion of this request (for the requested "*̂ \
task) before continuing. If the calling task is to wait (and - J
the requested task has not already signaled its completion
relative to the request), the Task Manager associates the
identity of the calling (and now waiting) task with the
request block for the requested task. The Task Manager then
removes the calling task from its priority level and acti-
vates the next task in the queue. If the calling task is not
to wait for completion of this request for the requested
task, the Task Manager returns control to the calling task.

The calling task can explicitly supply the address of the
requested task's entry point in the request block it uses.
If it does not, the requested task's entry point, derived
when the task was created or last terminated, is used.

When a requested task is entered, the Task Manager provides \̂
the address of the request block that is being honored. This ^_sj
address is that of the first request block in the request
queue for the priority level of the requested task.

If a calling task waits for the completion of its request for
a requested task, the Task Manager returns the completion
status of the request to the calling task when the latter
regains control. (See also the Wait and Wait on Request List
macro calls.) - -*-

NOTES ^

1. The system places in $B4 the address supplied
by argument 1. If this argument is omitted, the
system assumes that $B4 contains the address of
the task request block for the task. The
address of the task request block must be a
legal address in the space of both the requesting
and requested task. If the requested task is to N
be able to interrogate its own request block, ^ /J
that task request block must be in a memory
segment shared by both tasks.

2-478 CZ06-00

2. On return, $R1 and $B4 contain the following
information:

$R1 - Return status; one of the following:

0000 - No error

0801 - Request block in use

0802 - Invalid LRN used in request block

0803 - Invalid wait (a task cannot wait on
a request for itself)

If wait specified:

0000-FFFF - Completion status

$B4 - Address of task request block.

Example:

In this example, the Request Task macro call is used to
request the execution of the task created in the first
example for the Create Task macro call (assuming that both
macro calls are executed in the same task group). The task
request block used is generated so that (1) the issuing task
will not be suspended awaiting completion of the requested
task, (2) the semaphore named TD will be V-oped at completion
of the requested task, and (3) the requested task will be
started at entry point ENTRY3 instead of the address speci-
fied when the task was created. The task request block is
also to contain the argument -PRINT, and by default will con-
tain no additional space for use by the requested task.

$RQTSK ITRB

TRB $TRB 10,NWAIT,SM=TD;
ENTRY3,,-PRINT

2-479 CZ06-00

REQUEST SPECIFIC TERMINAL

REQUEST SPECIFIC TERMINAL (SRQSPT)

Function Code: 17/02

Equivalent Command: None

Request that a secondary login be made to the issuing task
group from the specified terminal.

FORMAT:

[label] $RQSPT [location of requested terminal's LRN],
[location of caller's IORB]

ARGUMENTS: -

location of requested terminal's LRN

Any address form valid for a data register; specifies the
LRN of the terminal from which a secondary login will be
accepted by the issuing task group. The specified
terminal must be monitored by Listener.

location of caller's IORB

Any address form valid for an address register; provides
the address of an input/output request block (IORB)
generated by the issuing task group. The IORB wait-bit
specifies whether control returns to the caller
immediately or after the request terminates. The IORB
buffer address field points to a buffer that holds a
prompt message to be displayed on the requested
terminal. When a secondary login satisfies this request,
$RQSPT returns login information to the buffer. The IORB
range field indicates the size of the buffer, which
determines both the length of the prompt message to be
displayed and the amount of login information to be
returned to the caller. In a user registration
environment, $RQSPT retrieves the language key from the
registration record of the secondary user and returns the
key to the device specific field of the caller's IORB.
The format of the information returned to caller's buffer
is shown below.

2-480 CZ06-00

Word Contents

0 LRN of requested terminal.

1-6 Symbolic device name of requested
terminal.

7-12 Person field of user id.

13-18 Account field of user id.

19-22 Unspecified; this field is not blank
filled.

23-xx Login line entered from requested
terminal. Maximum length of login line
is 32 words.

DESCRIPTION

Like the Request Terminal ($RQTML) macro call, this call is
made by a user group to announce that it will accept a
secondary login. However, while $RQTML is satisfied by any
secondary login to the issuing group, this call is satisfied
only by a secondary login to the issuing group from a
specified terminal.

If, when $RQSPT is issued, the specified terminal is not
monitored by Listener, or is associated with with a group
other than the caller, or already has a specif ic__terminal_
request against it, the present request is posted back with
an error status. Otherwise, $RQSPT displays at the specified
terminal the prompt supplied by the caller.

If, as is usually the case, a read is pending on the
requested terminal, Listener cancels the read, writes the
prompt message, then issues another read to obtain a login
line.

When writing the prompt message to the terminal, Listener
turns off the device specific word bit that causes the first
word of the message to be treated as a control character.
The message displayed, therefore, is identical to the message
supplied in the buffer.

If the next login at the terminal is a secondary login to the
calling group, the request is satisfied. A primary login or
a secondary login to another group causes the request to be
posted back with an error status, and is processed normally.

2-481 CZ06-00

NOTES "~>
/

1. The requested terminal's LRN provided by
argument 1 is placed in the right byte of $R6. ~̂ \
If argument 1 is omitted, the right byte of $R6 J
is assumed to contain the LRN.

2. The address of the IORB provided by argument 2
is placed in $B4. If this argument is omitted,
$B4 is assumed to conain the IORB address.

3. On return, all registers are preserved except
$R1, which contains the following information:

0000 - If no wait was specified: request was
issued successfully. If wait was
specified: a secondary login has
occurred; the buffer pointed to by the
IORB contains information about the
login. """N

393D - Terminal is not monitored by listener.

393E - Terminal not available for specific
request.

2-482 CZ06-00

REQUEST TERMINAL

REQUEST TERMINAL (SRQTMLl

Function Code: 17/03

Equivalent Command: None

Permit the issuing task group to accept a user who is logging
into that task group through the Listener component.

FORMAT:

[label]

ARGUMENT:

$RQTML [location of request IORB]

location of request IORB

Any address form valid for an address register; provides
the address of the input/output request block (IORB)
associated with this request. c

DESCRIPTION:

This macro call enables the task group of the issuing task to
be notified when a terminal user logs in as a secondary user
of the task group. [

If a secondary user logs in to the calling group after this
call has been issued, the terminal from which the user logs
in is passed to that task group. The task group can use the
Release Terminal macro call to release the terminal. The
task group can cancel the request by a Cancel Request macro
call.

The buffer address field of the request IORB specifies an
area that is to receive some or all of the login parameters
in the format specified below. (The actual amount of data
transferred is determined by the IORB buffer range field.)

2-483 CZ06-00

Word(s) Contents

0 Terminal LRN (in right byte)

1-6 Terminal symbolic peripheral device name
(e.g., TTYO)

7-12 Person identification from login line

13-18 Account name from login line, if any

19-22 Not used

23-xx Entire login line as entered from terminal

The setting of the lORB's W-bit determines whether control is
returned immediately or is returned after a login has
occurred.

The lORB's I/O bit must be set; the D-bit is reset. The S-
and R-bits specify how the task group is to be notified when
the request is satisfied. The requesting task group must
issue a Get File macro call to the terminal file to reserve
the file.

On return, the device specific information field of the
request IORB contains the secondary user's language key, or
X'2020' if no key was specified. -

NOTES

1. The system places in $B4 the address of the
terminal IORB supplied by argument 1. If this
argument is omitted, the system assumes that
$B4 contains the current address.

2. On return, $R1 contains one of the following
return status codes: \

0000 - If no wait specified, request was
issued successfully; if wait specified,
successful login

0817 - Memory access violation

0824 - Request canceled

082E - Parameter error (invalid control bits
in IORB).

2-484 CZ06-00

3. On return, $B4 contains the request block
address.

4. This macro call modifies item I_CT2 of the
IORB.

Example:

In this example, the Request Terminal macro call is used to
ensure that the issuing task group is notified when a termi-
nal user logs in as a secondary user of the task group. The
information returned to the task group consists only of the
terminal LRN, terminal symbolic peripheral device name,
person identification, and account name. Note that control
is returned immediately to the issuing task group; the group
does not wait for a login to occur.

CHK_1
*
*
*
IORB

$RQTML

DEFINE IORB

RESV
TEXT

TEXT

DC
DC
DC
DC
DC

END IORB

SEC_USR
IN_LNG
*

RESV
EQU

1IORB

$AF,0
Z'OO';
B'O';
B'l1;
B' 0 ' ;
Z ' 0 ' ;
B'l1;
Z'03 ';
B' 0 ' ;
B' 0 ' ;
B'OO';
Z ' 1' ;
<SEC_USR
IN_LNG
0
0
0

RSU
RETURN STATUS
T BIT (IN USE)
W BIT (DON'T WAIT)
U BIT (USER)
MBZ
MUST BE ONE
LRN
MBZ
B BIT (BYTE INDEX)
MBZ
FUNCTION CODE
BUFFER ADDRESS
RANGE

RESIDUAL RANGE
STATUS WORD

18,0
2*($-SEC_USR)

2-485 CZ06-00

RESERVE SEMAPHORE

RESERVE SEMAPHORE (SRSVSM)

Function Code: 06/02 i

Equivalent Command: None .- _,

Reserve a resource controlled by the specified semaphore, if
the resource is available (i.e., do a P-op or P-test). If the
resource is not available, perform one of the following actions,
depending on the value of argument 2:

• Return immediately to the issuing task (do a P-test).

• Suspend the issuing task until the resource becomes avail-
able. Then, reserve the resource and return to the issu-
ing task (these three actions are known collectively as a
P-op).

FORMAT:

(DENY)
[label] $RSVSM [location of semaphore id], jWAITt

ARGUMENTS: ~~T

location of semaphore id

Any address form valid for a data register; provides the
two ASCII characters that identify the semaphore associ-
ated with the resource to be reserved.

DENY

Specifies that if the resource is not available for
reservation, an immediate return to the issuing task is
to be made (i.e., a P-test is to be done).

WAIT

Specifies that if the resource is not available for
reservation, the issuing task is to be suspended until
the resource becomes available; then the resource is to
be reserved and a return to the issuing program is to be
made (i.e., a P-op is to be done).

WAIT is assumed if the argument is omitted.

2-486 CZ06-00

DESCRIPTION:

This macro call is a synchronous request for a resource
controlled by the semaphore identified in argument 1. This
semaphore must have been defined by a Define Semaphore macro
call.

When a P-op is performed, the counter, whose initial value
was established by the Define Semaphore macro call, is decre-
mented by 1.

Since the reserve function does not queue a semaphore request
block (see Request Semaphore macro call), the Reserve Sema-
phore macro call must be reissued when DENY is specified for
argument 2.

NOTES

1. The system places in $R6 the sempahore id sup-
plied by argument 1. If this argument is
omitted, the system assumes that $R6 contains
the id of the semaphore to be tested.

2. If DENY was specified for argument 2, $R2 is
set to 0 (P-test to be done); if WAIT is
specified for argument 2, or if the argument
is omitted, $R2 is set to -1 (P-op to be
done).

3. On return, $R1 and $R6 contain the following
information:

$R1 - Return status; one of the following:

0000 - No error ^ -

0501 - Unsuccessful reservation (only if
DENY specified)

0502 - Semaphore not defined

0507 - Invalid return condition
indicator

$R6 - Semaphore id (as supplied).

Example:

For an example of the Reserve Semaphore macro call, see the
example given for the Define Semaphore ($DFSM) macro call.

2-487 CZ06-00

RESTART

RESTART f$RS)

Function Code: OD/10
J

Equivalent Command: Restart Initiation (RESTART)

Perform a restart of the most recent valid checkpoint on the
currently assigned checkpoint file. If no checkpoint file is
currently assigned, perform a restart on the most recent valid
checkpoint on the checkpoint file designated by argument 1.

FORMAT:

$RS [location of pathname of checkpoint file],
[location of group id] ,
(WTMBMi
\NWMBM }

ARGUMENTS:

[location of pathname of checkpoint file]

Any address form valid for an address register; provides
the pathname of the checkpoint file to be assigned if ^
there is no currently assigned checkpoint file.)

[location of group id]

Any address form valid for a data register; provides the
group identification of the task group to be restarted.
If this argument is omitted, the task group issuing the
macro call is restarted. If a group id is specified, it
must be the same as that used in the Create Group macro
call that initialized that task group. \

j
(WTMBM \ -̂X"
\NWMBMI

WTMBM causes the restart procedure to wait for specific
memory blocks required to effect the restart. NWMBM
causes the restart to fail if the required memory blocks
are not available.

2-488 CZ06-00

DESCRIPTION:

This macro call aborts the specified task group and then per-
forms a restart to the most valid checkpoint on the currently
assigned checkpoint file. If there is no currently assigned
checkpoint file, the pathname of the file to be assigned is
specified in argument 1.

NOTES

1. The system places in $B4 the address of the
pathname supplied by argument 1 in $B4.

2. The system places in $R2 the location of the
group id supplied by argument 2. If this
argument is omitted, $R2 is set to zero to
indicate the issuing task group is to be
restarted.

3. $R4 and $R7 contain the following information:
$R4 is set to one if the pathname of the
checkpoint file was supplied in argument 1, or
set to zero if the currently assigned check-
point files were used.

$R7 is set to one if argument 3 was set for a
wait (WTMBM) for required memory block avail-
ability, or is set to zero if waiting for
memory block availability was not specified.

Example:

This example illustrates the use of the Restart macro to
restart a session. The Validate Checkpoint call ($VLCKP) is
used to determine whether some previous session has termi-
nated abnormally. If so, a valid checkpoint still exists on
the checkpoint files, and a Restart is performed back to that
checkpoint. The Restart waits for availability of any user
memory required. If the previous session has terminated
normally, the current session proceeds.

2-489 CZ06-00

$VLCKP IPath

bnez

$RS

$rl ,>skiprs

IPath, , wtmem

Validate specific
checkpoint file

Restart to previous
checkpoint

skiprs equ

Path text '"myprog>ckptf ile '

2-490 CZ06-00

RETURN

RETURN (SRETRN)

Function Code: None

Equivalent Command: None

Issue a standard return sequence for tasks or called
subroutines.

FORMAT:

[label] $RETRN [location of completion status],
[location of return address]

ARGUMENTS:

location of completion status

Any address form valid for a data register; provides the
user-selected status code to be returned when the subrou-
tine or system service routine finishes processing. Any
code can be selected.

location of return address

Any address form valid for an address register; provides
the address in the calling task to which the subroutine
or system service routine returns when it has finished
processing.

DESCRIPTION:

This macro call allows a procedure (which can be called as a
subroutine or invoked to service a task request) to have a
common return interface to the calling task.

If the procedure was statically linked with its caller, the
return address supplied in argument 2 is placed in $B5, and a
JMP $B5 instruction is issued. The completion status is
placed in $R1.

If the procedure was invoked as a subtask, the procedure's
task is terminated and its request block is marked as com-
plete. (See the Terminate Request macro call for further
information about task termination.)

Note that $B5 is set to the address of a system-supplied ter-
mination routine when either of the following occurs:

2-491 CZ06-00

• A task is initially activated to service a request
• A return request block macro call is issued.

NOTES

1. The system places in $R2 the status code
specified by argument 1. If this argument is
omitted, the system assumes that $R2 contains
the intended status code.

2. The system places in $B5 the address supplied
by argument 2 and executes a JMP $B5 instruc-
tion. If this argument is omitted, the system
assumes that $B5 contains the return address.

Example:

In this example, the Return macro call is used by a semaphore
to return to its caller with a completion status of zero.
The example assumes that the procedure was entered at the
entry point named BEGIN and that the contents of SAV__B5 are
not altered within the procedure other than at its entry
point. If the procedure was statically linked with its
caller, the macro call causes a JMP $B5 return to the caller,
with the completion status in $R1. If the procedure was
invoked as a subtask, the macro call causes the procedure's
task to be terminated and its request block marked as
complete.

EDEF BEGIN
BEGIN STB $B5,SAV_B5

$RETRN =0,SAV_B5

SAV_B5 RESV

2-492 CZ06-00

RETURN MEMORY/RETURN PARTIAL
BLOCK OF MEMORY

RETURN MEMORY/RETURN PARTIAL BLOCK OF MEMORY (SRMEM)

Function Code: 04/04 (Return Memory)
04/05 (Return Partial Block)

Equivalent Commands None

Return all or part of the previously allocated memory block
to the memory pool of the task group of the issuing task. If
argument 2 is omitted, return all of the memory block; if argu-
ment 2 is specified, return the number of words it indicates.

FORMAT:

[label] $RMEM [location of memory block address],
[location of number of words to be returned]

ARGUMENTS:

location of memory block address

Any address form valid for an address register; provides
the location of the address of the leftmost word
(excluding the block header) of the memory block to be
returned (either partially or totally).

location of number of words to be returned

Any address form valid for a data register; provides the
number of words to be returned (starting at the rightmost
part of the block). If this parameter is omitted, the
entire memory block is returned.

DESCRIPTION:

The Return Memory and Return Partial Block of Memory macro
calls are the means by which a task returns a previously
allocated memory block to the task group's memory area. If
the entire block is to be returned, argument 2 is omitted.
If a part of the block is to be returned, argument 2
specifies the number of words to be returned.

2-493 CZ06-00

When a partial block of memory is returned, the return is
done in 32-word increments of memory; the actual amount of
memory returned is the specified amount rounded down to the
next lower 32-word increment.

The memory block address referred to by argument 1 is the
same address as that returned in $B4 when the task issued a
Get Memory or Get Available Memory macro call and was allo-
cated this block.

NOTES

1. The system places in $B4 the memory block
address derived from argument 1. If this
argument is omitted, the system assumes that
$B4 contains the address of the memory block
to be returned.

2. The system places in $R6 and $R7 the number of
words to be returned (partial return only)
derived from argument 2. If argument 2 is
=$R7, the system assumes that $R6 and $R7 con-
tain the number of words to be returned. If
argument 2 is omitted, the system returns the
entire memory block.

3. On return, $R1, $R6, $R7, and $B4 contain the
following information:

3
$R1 - Return status? one of the following:

0000 - No error

0603 - Block returned is not within its
own memory pool

0604 - Size of memory to be returned is
greater than size of memory block
(partial return only)

0818 - No task group with specified
group id exists (system software
error)

081B - Rollout of online task group
attempted (system software error)

2-494 CZ06-00

~̂ 081C - Rollin attempted when batch group
not rolled out (system software
error)

~~\
081E - Unrecoverable media error during

rollin
**

081F - Group not suspended when rollin
attempted (system software error)

$R6, $R7 - Partial return only; remaining size
of block still allocated

$B4 - Partial return only; address of first
(leftmost) word of allocated memory
block (excluding header word).

Example:

~-\ In this example, the Return Memory/Return Partial Block of
Memory macro call is used to return all of the memory

^ obtained in the first example for the Get Memory/Get Avail-
able Memory macro calls. The Return Memory/Return Partial
Block of Memory macro call is contained in the same procedure
as the coding shown in that example.

$RMEM M__PTR

In this example, the Return Memory/Return Partial Block of
Memory macro call is used to return 100 words of the memory
obtained in the first example for the Get Memory/Get Avail-
able Memory Macro calls. Upon return from the system, $B4
contains the address of the first usable word of the memory
area, and $R6 and $R7 specify the number of words still
remaining in the memory area. The Return Memory/Return
Partial Block of Memory macro call is assumed to be in the
same procedure as the coding shown in the Get Memory example.

$RMEM M__PTR,=100

2-495 CZ06-00

RETURN REQUEST BLOCK ADDRESS

RETURN REQUEST BLOCK ADDRESS fSRBADD)

Function Code: 01/07

Equivalent Command: None

Return the address of the request block currently at the head
(top) of the issuing task's request queue.

FORMAT:

[label] $RBADD

ARGUMENTS:

None

DESCRIPTION:

This macro call returns the address of the first request
block in the request queue for the task. The request block
is not removed or altered.

The system places the address of the request block in $B4. ^
The system places the address of the argument list (if any) * j
associated with the request block in $B7 (see Appendix C).

Upon return to the issuing task, $B5 contains the address of
the system-supplied termination routine.

NOTES

On return, $R1, $B4, $B5, and $B7 contain the fol-
lowing information: \

IS

$R1 - Return status; one of the following: -̂̂

0000 - No error

0801 - Specified request block already in
use

2-496 CZ06-00

$B4 - Address of current request block (if $R1 is
0000)

$B5 - Address of system-supplied termination
routine

$B7 - Address of request block argument list (if
$R1 is 0000) .

Example:

In this example, the Return Request Block Address macro call
returns the address of the issuing task's request block in
$B4. When the lead task of a user task group is started, a
Request Block argument list and a Request Block parameter
block are created. The Return Request Block Address call
initially causes the address of the argument list to be
placed in $B7. When the task is actually executed, the
starting address of the parameter block is placed in $B7.
The address of a system-supplied termination routine is
returned in $B5.

CHEK_L $RBADD

2-497 CZ06-00

REVERIFY PASSWORD

REVERIFY PASSWORD (SRVFPW)

Function Code: 24/01

Equivalent Command: None

Request password from a terminal (attached to the calling
group) that has experienced physical disconnnection. This call
ensures that the person who resumes use of the terminal is the
same user who logged in before the disconnection.

FORMAT:

[label] $RVFPW [location of terminal id]

ARGUMENT: ^̂

location of terminal id

Any address form valid for a data register; provides in
the right byte the identity of the terminal from which
reverification is requested. The value of this argument
may be one of the following:

Irn J

Logical resource number (LRN) of a terminal used for
primary or secondary login to the calling group. Must
be a binary number in the range 0 through 255.

X'FF1

Signifies that the terminal is one used for primary
login to the calling group. ^

DESCRIPTION:

This macro call should be used when a 010B (device
unavailable) error is returned on a terminal I/O order and
user registration is in effect.

Before issuing this call, the caller must place a (logical)
disconnect request against the terminal from which
reverification is to be requested.

The call causes to be displayed at the specified terminal a
message requesting the aser's password if all of the
following conditions exist:

y

2-498 CZ06-00

1. User registration is active.

2. The specified terminal is monitored by Listener.

3. The user logged in at the specified terminal submitted
a valid password.

The password submitted in response to this call is compared
with the password of the user logged in at the terminal (see
the third condition listed above). If the two passwords do
not match, the call returns a X'39381 (password cioes not
verify) error. The terminal remains attached to the caller
in a (logically) disconnected state whether or not the
passwords match.

If any of the conditions listed above is not present, the
call returns a zero (successful) status, without having
initiated any dialogue with the user.

NOTES

1. The system places in $R6 the terminal id
supplied by the argument. If this argument is
omitted, the system assumes that $R6 contains
the terminal id.

2. On return, $R1 and $R6 contain the following
information:

$R1 - Return status; one of the following:

0000 - No error

010C - Inconsistent request (e.g.,
request for a disconnect when
connect has not been made)

3938 - Password did not verify

$R6 - LRN of terminal specified by either form
of the argument.

2-499 CZ06-00

REWRITE RECORD

REWRITE RECORD (SRWREC)

Function Code: 11/40 (current), 11/41 (key)

Equivalent Command: None

Change the contents of the specified logical record in the
file. This macro call is valid for all file organizations
except tape-resident sequential files and device files.

FORMAT:

[label] $RWREC [FIB address]
I,CURRENT I
|, KEY)

ARGUMENTS:

FIB address

Any address form valid for an address register; provides
the location of the file information block (FIB).

j
CURRENT
CUR

This mode argument indicates that the last record read
is to be rewritten by the record defined in the FIB.
The previous data management call must have been a read
next or read with key; otherwise, a "no current record
pointer" error will result. CURRENT is the default
value for this macro call. You must code the following
FIB entries:

logical file number
user record pointer
output record length.

This mode is referred to as rewrite current record.

KEY

This mode argument indicates that the position in the
file associated with the key value specified in the FIB
is to be written over by the record identified by the
FIB. You must code the following FIB entries:

2-500 CZ06-00

logical file number

user record pointer

output record length

input key pointer (unless this is an indexed file
that contains the key embedded in the logical
record)

input key format

This mode is referred to as rewrite with key.

DESCRIPTION:

Before this macro call can be executed, the file must be
opened (see the Open File macro call) with a program view
word that allows access through data management (bit 0 is
zero) and allows rewrite operations (bit 3 is one). The
file must be reserved (see the Get File call) with write
access concurrency control (type 3, 4, or 5). The Rewrite
Record macro call has no effect on the read or write
pointer. If the file is an indexed file, the embedded key
must not be altered.

The file information block can be generated by a File Infor-
mation Block macro call. Displacement tags for the FIB can
be defined by the File Information Block Offsets (Data Man-
agement Access) macro call.

NOTES

1. If the first argument is coded, the system
loads the address of the FIB into $B4. If
this argument is omitted, the system assumes
that $B4 contains the address of the FIB.

2. On return, $R1 contains one of the following
status codes:

0000 - No error

Olxx - Physical I/O error

0203 - Invalid function

0205 - Invalid argument

0206 - Unknown or invalid LFN

0207 - LFN not open

2-501 CZ06-00

020A - Address out of file

020B - Invalid extent description information

020E - Record not found

0217 - Access violation

0219 - No current record pointer

021A - Record length error

021D - Attempt to change the symbolic key
value

021E - Key length or location error

022A - Record lock area overflow or not
defined

022B - Requested record is locked or causes
deadlock

022F - Unknown or invalid record type

0237 - Invalid control interval or record
format

023A - Recovery file I/O error

0263 - Journal file I/O error.

Example:

In this example, it is assumed that the file is reserved with
write access concurrency control and opened. The FIB identi-
fied in the first parameter is defined in "Assumptions for
File System Examples" in Appendix A. The macro call is
specified as follows:

BACREC SRWREC 1MYFIB,CURRENT

2-502 CZ06-00

^ ROLL BACK (RECOVER) FILES

ROLL BACK (RECOVER) FILES (SRQLBK)

Function Code: OC/14

Equivalent Command: None

Write out onto the media all "before" images recorded in the
recovery file by the issuing group; that is, roll back (recover)
all files updated since execution of the last Clean Point macro
call. Reset the recovery file.

FORMAT:

[label] $ROLBK

ARGUMENTS:

None

DESCRIPTION:

The macro call rolls back (or recovers) all files updated
since the last execution of the Clean Point macro call,
erasing all updates done by the issuing task group.

File recovery is the ability to save and retrieve parts of a
file (its "before" images) before that file is updated by a
Clean Point macro call. When a record on a recoverable file
is to be altered, the system writes the record as it exists
before the alteration ("before" image) to the recovery file.

A phase, or interval between Clean Point executions, is the
time during which all I/O activity takes place. During this
time, data is in an inconsistent or alterable condition. A
phase change, when data is declared to be consistent, is
accomplished by the Clean Point macro call. File recovery is
done on a phase basis; i.e., a phase roll back (recovery) to
the last Clean Point execution, with the Roll Back (Recover)
Files macro call. The call also resets the recovery file.

2-503 CZ06-00

File recovery is done on a task group basis. Therefore, when)
a file is accessed by more than one task group, and one of ^̂
the groups performs a roll back, the file may be left in an
inconsistent state. To prevent this, either the file should ' j
be reserved exclusively or, if reserved as sharable, should - -^
be reserved with record locking in effect. When a recover-
able file is reserved as sharable without record locking in
effect, the user should provide some other controls to pre-
vent more than one task group from updating the same control
interval.

NOTES

1. If no recovery file exists or the recovery
file does not contain any before images, the
Roll Back (Recover) Files macro call performs
no function.

2. When record contention occurs (see the Get
File macro call), resulting in a 022B return
code, the user can respond with a Roll Back
(Recover) Files macro call to roll back
(recover) updates done since the last Clean
Point execution, and start over again.

3. On return, $R1 contains one of the following:

0000 - No error

Olxx - Physical I/O error y

023A - Recovery file I/O error \

2063 - Journal file I/O error.

2-504 CZ06-00

SEMAPHORE REQUEST BLOCK

SEMAPHORE REQUEST BLOCK ($SRB)

Function Code: None

Equivalent Command: None

Generate a 5-word semaphore request block.

FORMAT:

[label] $SRB [semaphore id],
[issuing task suspension option],

or
[termination action]

ARGUMENTS:

semaphore id

A 2-character (ASCII) identifier that must have been
defined by the task issuing the semaphore request. If
this argument is omitted, the semaphore id is set to an
initial value of zero.

issuing task suspension option

One of the following values is specified to indicate
whether the requesting task is to be suspended until the
resource associated with the semaphore becomes available

WAIT

Suspend the issuing task until the resource becomes
available (see W-bit to zero).

NWAIT

Do not suspend the issuing task (set W-bit to one).
If this argument is omitted, the value NWAIT is
assumed. If WAIT is specified, argument 3 must be
omitted.

2-505 CZ06-00

termination action

One of the following values is specified to indicate the
action to be taken when the resource becomes available to
the issuing task:

SM=aa

Do not suspend the issuing task; release (V-op) the
semaphore identified by aa (two ASCII characters),
when requested task is completed.

RB=label
f-

Do not suspend the issuing task; issue a request for
the request block identified by label, when requested
task is completed.

Note that the requesting task must be asynchronous, may
not wait on the requested task later on, and can only
point to a task request block (TRB). The requested task
must already have been created (not spawned), be asyn-
chronous, and have a valid LRN. When the requesting task
terminates, the TRB pointed to by "label" must be
inactive.

If this argument is omitted (or argument 2 is WAIT), the
generated Semaphore Request Block (SRB) contains no ter-
mination option.

DESCRIPTION:

The SRB is used to request asynchronously the reservation of
a resource controlled by the specified semaphore. The SRB
contains a semaphore id that identifies the (previously
defined) semaphore being requested.

Example:

In this example, the Semaphore Request Block macro call gen-
erates a semaphore request block with identifier AA. The
W-bit is set to zero to indicate the requesting task is to be
suspended until the resource becomes available. No suspen-
sion action is given.

GTRAA $SRB AA,WAIT

2-506 CZ06-00

SEMAPHORE REQUEST
BLOCK OFFSETS

SEMAPHORE REQUEST BLOCK OFFSETS (SSRBD)

Counterpart: $SRB (see the Semaphore Request Block macro call)

Generated Label Prefixes

S_RRB/S_SEM
SRB label offset 0

S_CT1
S_CT2
S_ADR

See Appendix C for the format of the semaphore request block.

2-507 CZ06-00

SET DIAL

SET DIAL (SSDL)

Function Code: IB/00

Equivalent Command: Set Autodial Telephone Number (SDL)

Insert the specified telephone number into the first entry in
the Auto Call Unit (ACU) telephone number list for the specified
line. This telephone number will be used first when the Auto
Call Unit Facility attempts to establish a connection on the
switched circuit line, which is identified either by channel
number or by the name of a device on the line.

FORMAT 1: ~

[label] $SDL [location of address of telephone number], —s^
[location of channel number],
[location of address of device name]/

ARGUMENTS:

location of address of telephone number

Any address form valid for an address register; provides
the address of the telephone number to be inserted in the ^>
ACU list. The telephone number must be stored as a
character string containing at least one trailing space
and no embedded spaces. The telephone number can contain
from 5 through 16 ASCII characters chosen from the set 0,
1, 2, 3, 4, 5, 6, 7, 8, 9, -, *.

location of channel number

Any address form valid for a data register. If the user
chooses to identify the line by channel number, this /̂̂
argument provides the four hexadecimal digits that define
the 10-bit channel number. The channel number must be
stored left-justified and zero-filled. If, alterna-
tively, the user chooses to identify the data line by the
name of a device on the line, the value of this argument
must be zero.

2-508 CZ06-00

location of address of device name

Any address form valid for an address register; provides
the name assigned to the device at configuration time by
means of the optional DEVICE directive (described in
MOD 400 System Building and Administration (CZ02-00)).
If the device is not configured with the DEVICE directive
(i.e., is not accessible through the File System), then
the user must identify the line by channel number
(argument 2).

The device name must be stored as a string of ASCII
characters starting with an exclamation point and ending
with a space character (e.g., '1TTY01 ')•

If the line is identified by channel number (i.e., if
argument 2 has a non-zero value), this argument is
ignored.

DESCRIPTION:

During system building, the user can specify that the commu-
nications Auto Call Unit be applied to one or more communica-
tions lines. For each line supported by auto-dialing, the
user supplies one or more telephone numbers. The system
constructs a list of these numbers, leaving the first entry
of the list empty.

The Set Dial macro call allows you to dynamically insert a
telephone number into the empty entry in the list for a
particular line. When the Auto Call Unit handler is invoked,
this telephone number is dialed first in the attempt to
establish a connection with the terminal(s) on the line. If
no successful connection is established, the next telephone
number in the list is dialed, and so on until a successful
connection is made or every number in the list has been
dialed. (Each telephone number is dialed three times at
40-second intervals.)

When using this macro call, the user supplies either a
channel number or a device name to identify the line. If a
device name is supplied, the value of argument 2 must be
zero.

NOTES

The system places in $B4 the address of the
telephone number supplied by argument 1. if
argument 1 is omitted, the system assumes that
$B4 contains the address of the telephone
number.

2-509 CZ06-00

2. The system places in $R6 the channel number or)
zero value supplied by argument 2. If "̂
argument 2 is omitted, the system assumes that --\
$R6 contains zeros and that argument 3 sup- ' ̂)
plies a device pathname.

3. The system places in $B2 the device pathname,
if any, supplied by argument 3. If argument 3
is omitted, the system assumes that $B2
contains the device pathname.

4. On return, $R1 contains one of the following
status codes:

0000 - No error

0201 - Invalid pathname

0701 - Channel not configured -x̂

0702 - Auto Call Unit (ACU) control unit not —^
configured on this channel

0703 - ACU in progress

1704 - Invalid argument length

170F - Invalid digit in telephone number.
V

Example 1: - ^}

In this example, a terminal assigned to channel number
X'FFSO1 is to be connected by dialing the number
1-617-555-4444.

DIALAA $SDL !NUM_12, =CHAN

NUM_12 TEST '1617555444 '
CHAN EQU X'FFSO'

2-510 CZ06-00

Example 2:

In this example, the terminal whose pathname is TTY01 is to
be connected by dialing the number 1-617-555-4444.

DIALAA $SDL !NUM_12, CHAN, 1PATH

NUM_12 TEXT '16175554444
CHAN DC 0
PATH TEXT '1TTY01 '

2-511 CZ06-00

SET EXTERNAL SWITCHES

SET EXTERNAL SWITCHES fSSETSW)

Function Code: OB/01

Equivalent Command: Modify External Switches (MSW)

Set the specified external switches in the task group's
external switch word to on; return the inclusive logical OR of
the previous settings.

FORMAT :

[label] $SETSW external switch name,
[external switch name] ,

[external switch name]

ARGUMENTS :

external switch name . . . external switch name

A single hexadecimal digit (0 through F) specifying the
external switch in the task group's external switch word.
A maximum of 16 external switches (0 through F) can be
specified. If no arguments are supplied, $R2 is assumed
to contain a mask word specifying the switches to be set
on. If ALL is specified, all external swiches are set
on.

DESCRIPTION:

This call provides a mask by which switches can be set in the
external switch word of the issuing task's task group. It
also provides an indication of the previous settings of these
switches.

$R2 is the mask word. Each bit in $R2 that is one causes the
corresponding bit in the external switch word to be set on;
each bit that is zero causes the corresponding bit to remain
unchanged.

2-512 CZ06-00

When the Set External Switches macro call is executed, $R2
contains the new settings of the external switch word. Bit
11 (bit-test indicator) of the I-register provides an indica-
tion of the previous setting of the switches in the switch
word, as follows:

• If bit 11 is zero, no switch set on had previously
been set on.

• If bit 11 is one, at least one switch of these set on
had previously been set on.

NOTES ' • *
« - •"

1. The bits corresponding to the external
switches in the arguments are set on in $R2;
if no arguments are supplied, $R2 is assumed
to contain the mask to be used. If ALL is
specified, all bits are set on in $R2.

2. On return, $R2 and the I-register contain the
following information:

$R2 - External switch word after modification

I-register (Bit 11) - Inclusive OR of previous
settings of switches set on:

0 - No switch set on was on

1 - At least one switch of those set was
on.

Example:

In this example, the Set External Switches macro call is used
to turn on external switches 2, 4, and B of the task group in
which the issuing task is executing.

SET_AA $SETSW 2,4,B

2-513 CZ06-00

SET GROUP ATTRIBUTES

SET GROUP ATTRIBUTES (SSGRPA)

Function Code: OD/13

Equivalent Command: None

Set/Reset one of the following attributes for the issuing
task group: message chaining on/off, ready prompt on/off, break
key on/off, memory clear on/off.

FORMAT:

[label] $SGRPA [attribute code]

ARGUMENT:

attribute code

One of the following alphabetic strings or numeric codes;
specifies which attribute is to be set/reset.

Alphabetic Numeric
string code Significance

MHOFF 0 Message chaining off J
MHON 1 Message chaining on
RDF 2 Ready prompt off
RDN 3 Ready prompt on
BRKN 4 Break key on
BRKF 5 Break key off
MCF 6 Memory clear off
MCN 7 Memory clear on

DESCRIPTION: '\

This macro call establishes the requested attribute in the
issuing task's Group Control Block (GCB).

2-514 CZ06-00

The message chaining attribute of a task group is used to
govern the extent to which messages (e.g., errors) are
reported by any task within the task group. When message
chaining is on and the particular message being reported is
designated as having chained elements, a "more help?" prompt
is displayed after the first message element. A positive
response to the prompt causes the next message element to be
displayed. If message chaining is disabled, only the first
message element is displayed. The default for all task
groups is to have message chaining on. Equivalent commands
are MHON and MHOFF. See the System Messages Manual for a
detailed description of message chaining.

The ready attribute governs the display of the RDY: prompt
that signals to the user the completion of the previous
command. Equivalent commands are RDN and RDF.

The break key attribute governs the usage of the break key
within the caller's task group. The break key is enabled
when the task group is started up. It can be disabled and
and then re-enabled any number of times during the user
session by means of this macro call. The break off call
takes effect immediately, whereas break on takes effect only
when the next command is processed.

The memory clear attribute governs action taken by the Memory
Manager when any task in the task group returns a block of
memory. When memory clear is on, the contents of the memory
block are cleared (set to FFFF) before the block is returned
to the user pool. This is primarily a means to achieve data
privacy among task groups at the expense of the additional
overhead required to perform the clear operation.

NOTES

1. The numeric attribute code supplied (or
derived from the supplied alphabetic string)
is placed in $R2. If this argument is
omitted, $R2 is assumed to contain the numeric
attribute code.

2. On return, $R1 contains one of the following
status codes:

0000 - No error
082E - Invalid attribute code supplied.

2-515 CZ06-00

Example: • J

In this example, the Set Group Attributes macro call is used
to disable message chaining for the issuing task group.

MCOFF equ $
$SGRPA MHOFF

2-516 CZ06-00

SET TERMINAL FILE
CHARACTERISTICS

SET TERMINAL FILE CHARACTERISTICS (SSTTY)

Function Code: 10/45

Equivalent Command: Set Terminal Characteristics (STTY)

Set the file characteristics of a terminal.

FORMAT:

[label] $STTY [location of parameter structure address]

ARGUMENT:

location of parameter structure address

Any address form valid for an address register; provides
the location of the parameter structure defined below.
The parameter structure must contain the following
entries in the order shown.

device name

A left-justified 6-byte field that contains the
device name of the terminal

line length

A 2-byte binary integer specifying the line length of
the terminal. If this word is zero, the terminal's
line length is not changed.

reserved

A 2-byte field that must be zero if you are using
either of the device-specific words described below.
For compatibility with other releases, this may
contain a device-specific word.

2-517 CZ06-00

file indicator

A 2-byte field that details the following specific termi
nal characterisitcs (0 means do not change the character
istics; 1 means change the characteristics) :

Bit Meaning

0 Input-only device type

1 Output-only device type

2 Bidirectional device type

3 Tab simulation required

4 Tab simulation not required

5 Asynchronous input

£ Asynchronous output

7 Synchronous input

8 Synchronous output

9 Use system buffer

10 Do not use system buffer

11 Field transfer

12 Block transfer

13 Restart on power fail

14 No restart on power fail

15 Reset device-specific word to value
specified at system generation.

NOTE

Consistency checks are not made on the above fields.

2-518 CZ06-00

device-specific word 1

A 2-byte field that is used in conjunction with the
device-specific mask 1 (see below) to set or reset the
terminal's device-specific word that is used at open
(connect) and close (disconnect) time. The meaning of
bit values in device specific word 1 depends on the type
of line protocol handler (LPH) supporting the terminal.
For details, see the System Programmer's Guide, Vol. I,
which describes each LPH and its interpretation of
device-specific-word bit settings.

device-specific word 2

A 2-byte field that is used in conjunction with
device-specific mask 2 (see below) to set or reset the
terminal's device-specific word that is used during read
and write operations. The meaning of bit values in
device specific word 2 depends on the type of line
protocol handler (LPH) supporting the terminal. For
details, see the System Programmer's Guide. Vol. I, which
describes each LPH and its interpretation of
device-specific-word bit settings.

Device-specific Mask 1

A 2-byte field that indicates which bits of device
specific word 1 are to be used to set or reset the speci-
fied option.

Device-Specific Mask 2

A 2-byte field that indicates which bits of
device-specific word 2 are to be used to set or resert
the specified option.

DESCRIPTION:

This macro call allows the issuing task to dynamically alter
terminal file characteristics. The original file
characteristics, established at system generation, can be
altered to reflect the needs of the issuing task.

2-519 CZ06-00

NOTES /̂

1. The system places in $B4 the address of the
parameter structure supplied by argument 1. \
If this argument is omitted, the system
assumes that $B4 contains the address.

2. On return, $R1 contains one of the following
status codes:

0000 - No error
0201 - Invalid pathname
0203 - Invalid function code
0205 - Invalid argument
0209 - Named file not found.

Example:

In this example, the terminal whose symbolic peripheral
device name is TTY4 is changed to an output-only device for
asynchronous output. Neither the line length nor the x_
device-specific word is changed. (It is assumed that the
file is not open.)

TER_AA DC 'TTY4 '
RESV 2,0
DC B,0100001000000000 '
DC (10) Z'OOOO1

SETAA $STTY 1TER_AA

2-520 CZ06-00

SHRINK FILE

SHRINK FILE (SSHFIL)

Function Code: 10/37

Equivalent Command: SHRINK_FILE
SHRINK

Release, for reallocation, the disk space that has been allo-
cated to the specified file but contains no data.

FORMAT:

[label] $SHFIL [argument structure location]

ARGUMENT: \

argument structure location

Any address form valid for an address register; provides
the location of the argument structure defined below.
The argument structure must contain the following entries
in the order shown.

logical file number

A 2-byte logical file number (LFN) that refers to the
file to be shrunk; must be a binary number from 0 to
255, or ASCII blanks (2020), which indicate that an
LFN is not specified. If this entry contains blanks,
the pathname pointer (below) must point to a
pathname.

pathname pointer «

A 4-byte address that may be any address form valid
for an address register; points to a pathname (which
must end in an ASCII space character) identifying the
file to be shrunk. Binary zeros in this entry indi-
cate that a pathname is not specified. A pathname
must be specified if an LFN (see above) is not.

new size

A 4-byte field that currently must contain binary
zeros. Zeros indicate that the file's new size will
extend to the logical sector that contains the last
data control interval.

2-521 CZ06-00

DESCRIPTION:

This macro call releases disk space that was allocated to a
file at the time of file creation, but was not subsequently
loaded with data. The function is for situations in which
users cannot accurately predict the size of the file they are
creating. Such users should specify a high value for the
(initial) size or growth__size arguments of the Create File
function/command. Then, the file system loads the file into
a single, continuous extent; the Shrink File function
releases any unused space between the last physical sector
containing file data (EOD) and the end of the extent (EOF).
An alternative procedure would be to create a file without
specifying initial size or growth size, letting the system
dynamically allocate space as needed. This procedure is not
recommended because it may fragment the file into multiple
extents that cannot be efficiently accessed.

The Shrink File function/command is normally performed out-
side program execution. It can be performed at any time; the
file need not be opened or reserved.

The function does not apply to directories or temporary
files. The user must have modify access to the immediately
superior directory, into which the function rewrites.

The disk file to be shrunk can be specified in the argument
structure by either an LFN or pathname. If an LFN is speci-
fied, the file must have been previously reserved through
that LFN by means of the Create File or Get File
function/command. : , ' • - .

A restorable disk file (i.e., one with the -RESTORE attri-
bute) cannot be shrunk unless the system's journal file has
been opened by the Open Journal command (described in the
Commands manual).

If an indexed file is specified, both the data and index por-
tions are shrunk. Before shrinking an indexed file, the user
should consider that when an indexed file is closed, any
unused space allocated for data is designated as a general
overflow area. If this overflow area is desired, the user
should shrink the file after closing it; if this overflow
area is not desired, the user should shrink the file before
closing it. The index portion is shrunk in both cases.

If an alternate index is specified, only that index is
shrunk, not the associated data portion of the file.

2-522 CZ06-00

The Shrink File function does not apply to files that are
non-expandable (i.e., files whose specified initial size is
the same as the specified maximum size).

NOTES

1. If the argument structure address is coded,
the system loads that address into $B4. If
the argument is omitted, the system assumes
that $B4 contains the address of the argument
structure.

2. On return, $R1 contains one of the following
status codes:

Olxx - Media error

0201 - Invalid pathname

0202 - Pathname not specified

0205 - Invalid argument

0206 - Unknown or invalid logical file number
(LFN)

0208 - LFN or file already open (in the same
task group)

0209 - Named file or some superior directory
not found

020C - Volume not found

0210 - LFN conflict

0213 - Cannot provide requested file
concurrency

0222 - Pathname cannot be expanded; no working
directory

0225 - Not enough system memory for buffers or
structures

0226 - Not enough user memory for buffers or
structures

2-523 CZ06-00

0228 - Invalid file type (i.e., a directory)

022C - Access control list (ACL) violation
/"""V

0260 - Journal file not open. --.J

"Y
•J

2-524 CZ06-00

SHRINK FILE PARAMETER
STRUCTURE BLOCK OFFSETS

SHRINK FILE PARAMETER STRUCTURE BLOCK OFFSETS (SSHPSB)

Associated Macro Call: $SHFIL

Structure:

Word

5
6
7
8
9
10
11
12
13
14
15

Fields

Logical File Number (LFN)

Pathname Pointer

New Size of File; must be zero

Reserved; Must be Zero

Generated Offset Tags:

Corresponding
Offsets

Tag

S_LFN

S_PTHP

S_NSZ

S_SZ

(in Words)

0

-Hi

+3

16

Entry Name

Logical File Number (LFN)

Pathname pointer

New size of file; must be zero

Size of structure (not a field in the
block)

2-525 CZ06-00

SIGNAL TRAP

SIGNAL TRAP (SSGTRP)

Function Code: OA/03

Transmit a software-generated trap condition to a specified
task.

FORMAT:

[label] $SGTRP [location of LRN] ,
[trap condition]

ARGUMENTS :

location of LRN "\

Any address form valid for a data register; provides the
logical resource number (LRN) , a value from 0 through
255, of the task to be signaled. An LRN value of -1
specifies that the task is signaling itself.

trap condition

Can be either (1) location of a trap number or (2) a
keyword described below. ,̂

1. location of trap number

Any address form valid for an address register; pro-
vides the trap number for the trap condition to be
signaled to the task, and can be only one of the fol-
lowing trap numbers:

0 - Cleanup " x
1 - Program interrupt J
48 - Quit

2. keyword

One of the following, to indicate the trap condition
to the issuing task:

CLEANUP
PI (for program interrupt)
QUIT

2-526 CZ06-00

DESCRIPTION:

This macro call transmits a cleanup, program interrupt, or
quit trap condition to a specified task. If the appropriate
trap is enabled for the task, the task processes as indicated
in the user-written trap-handling routine. The keywords
CLEANUP, PI, and QUIT specify trap numbers 0, 1, and 48,
respectively (see Appendix A).

The system transforms trap 0 (cleanup) into trap 49 (cleanup
due to external termination). Internal system-generated
cleanup conditions are received as trap 0 by the task's gen-
eralized trap handler.

When trap 1 is signaled to a task without that trap enabled,
the unclaimed signal causes the system to signal trap 0 to
the task.

When trap 48 is signaled to a task without that trap enabled,
the unclaimed signal causes the system to suspend the task.

NOTES

1. The system places in $R2 the LRN of the task
to be signaled, supplied by argument 1. When
the argument is omitted, the system assumes
that $R2 contains the correct LRN. A value of
-1 indicates that the task is signaling
itself.

2. The system places in $R6 the trap number to be
signaled, supplied by argument 2. When this
argument is omitted, the system assumes that
$R6 contains the correct trap number.

3. On return, $R1 contains one of the following
status codes:

0000 - No error
0342 - Invalid trap number
0802 - Invalid LRN.

Example:

The macro call is used to transmit a quit condition to the
task (within the issuing task's task group) whose LRN is 40.
If trap 48 is not enabled, the task will be suspended.

ALRN $SGTRP =40,QUIT

2-527 CZ06-00

SPAWN GROUP

SPAWN GROUP (SSPGRP)

Function Code: OD/05

Equivalent Command: Spawn Group (SG)

Define a new task group within the system. Request the
execution of the group's lead task. Delete the group from the
system when the group request terminates. If the request for
this group is to be queued on disk, task group activation can be
deferred to a specified date/time.

FORMAT:
! t

[label] $SPGRP [location of group id] ,
[location of address of argument list],
[location of address of fixed parameter block],
[location of memory pool id],
[location of base level] ,
[location of high logical resource number],
[location of high logical file number],
[location of root entry name address]

ARGUMENTS:

location of group id ,

Any address form valid for a data register; provides the
group identification of the task group to be spawned.
The group id must be a 2-character (ASCII) name that does
not have the $ character as its first character.

location of address of argument list

Any address form valid for an address register; provides
the address of the argument list, which can be generated
by the Parameter Block macro call.

If the lead task is the Command Processor, the argument
list provides the pathname of the command-in file to be
read by the Command Processor and, optionally, arguments
to be substituted for parameters in that file. Items in
the argument list (i.e., arguments supplied with the
$PRBLK call) must be the following:

y

2-528 CZ06-00

Item Content

Argument 1 Ignored by system; null.

Argument 2 Pathname of command-in file read by
Command Processor; must be supplied.

Argument 3 Arguments to be substituted for
parameters in command-in file;

* these arguments are optional.
•

argument n

NOTE

All non-null arguments must be enclosed by single
or double quotation marks and must terminate with
a blank.

If the lead task activated by $SPGRP is not the Command
Processorr the argument list is optionally used to specialize
execution of the lead task. The order in which the arguments
are listed is the order expected by the lead task. Unless
the argument is a pathname, it is not necessarily enclosed in
quotation marks. For an example of an argument list used to
specialize the execution of a lead task that is not the
Command Processor, see Example 2 of Request Group ($RQGRP).

location of address of fixed parameter block

Any address form valid for an address register; provides
the address of a fixed parameter block, which can be gen-
erated by the Parameter Block macro call. This parameter
block has the following arguments:

Argument 1

A string specifying the user id to be associated with
the spawned task group (for system use). If this
entry is zero, the user id currently associated with
the issuing task group is used when the call is exe-
cuted from a user task group.

2-529 CZ06-00

Argument 2

A pathname string specifying the command-in and
initial user-in files for this request of the lead ~̂ \
task of the spawned task group. If this entry is *J
zero, no command-in or initial user-in files are
available to the spawned group. However, the spawned
group can later obtain a user-in file by means of the
New User Input macro call. A nonzero entry is
required if the command processor is the lead task.

Argument 3

A pathname string specifying the error-out and
initial user-out files of the spawned task group. If
this entry is zero, one of the following assumptions
is made when the call is executed:

• If the pathname string specifying the command-in
and initial user-in files (in-path) specifies a '~\
disk device, the pathname for the output files is)
in-path. AO .

• If in-path specifies an interactive terminal, the
pathname for the output files is the same as
in-path.

• If in-path specifies an input-only device, the
pathname for the output files is null. ^_-

Argument 4 -^

A pathname string specifying the initial value of the
working directory to be used by the spawned task
group.

Argument 5

External date/time of deferred task. {Disk-queued
group requests only) . ''

Argument 6

A pathname string specifying the message library file
for this request. If this argument is not specified,
the message library pathanme of the requestor is
used.

2-530 CZ06-00

location of memory pool id

Any address form valid for a data register; provides the
id of the memory pool used to service all memory requests
emanating from the spawned task group. The memory pool
id consists of two ASCII characters that name a pool
defined at system generation. If this argument is
omitted, the spawned task group uses the memory pool
associated with the issuing task group.

location of base level

Any address form valid for a data register; provides the
base priority level, relative to the system level, at
which the lead task executes.

A base level of zero, if specified, is the next higher
level above the last system priority level. The sum of
the highest system physical level plus 1, and the base
level of a group, and the relative level of a task within
that group, must not exceed 62.

location of high logical resource number

Any address form valid for a data register; specifies the
highest logical resource number (LRN) that will be used
by any task in the spawned task group. The LRN can be a
value from 0 through FF (hexadecimal). If this argument
is omitted, or if the value specified is less than the
highest LRN used by the system task group, the system
task group's LRN is used.

location of high logical file number

Any address form valid for a data register; specifies the
highest LFN to be used by any task in the spawned task
group. The LFN can be a value from 0 through FF
(hexadecimal). If this argument is omitted, the value 15
is assumed. (Refer to the Associate File macro call.)

2-531 CZ06-00

location of root entry name address

Any address form valid for an address register; provides
the address of the root entry name string that specifies
the pathname of the bound unit to be executed as the lead
task of the spawned group. The bound unit pathname can
have an optional suffix in the form of ?entryf where
entry is the symbolic start address within the root seg-
ment. If this suffix is not given, the default start
address (established at assembly or link time) is used.
For example, to specify the command processor as the lead
task, use the pathname EC7ECL.

DESCRIPTION:

This call combines the Create Group, Enter Group Request, and
Delete Group macro calls. Spawn group implicitly causes the
execution of these calls in sequence (i.e., it (1) allocates
and creates the data structures required to define and con-
trol the execution of the task group, (2) places a request
against the group, thereby activating it, and (3) when execu-
tion terminates, removes all controlling data structures and
returns memory used by the task group to the appropriate
memory pool).

To queue a task group request on disk using the Message
Facility, create a mailbox for the task group through the
Create Group Request command (CGRQ) prior to spawning the
group (see the Commands manual). Note that only one group
request can be queued on disk using the Message Facility when
using the Spawn Group macro call.

Spawned task groups cannot be requested, nor can they be
waited upon.

Task group requests have message library definitions
associated with them. Each task within the request group
will use the supplied message library. If the message
library pathname is not supplied, the requestor's message
library is used.

The request block generated according to the second argument
in the macro call is constructed in space taken from the
memory pool of the spawned task group.

A Spawn Group macro call can be issued from a task group that
was itself spawned.

2-532 CZ06-00

NOTES

1. The system places in $R2 the group identifier
specified by argument 1. If this argument is
omitted, the system assumes that $R2 contains
the group id to be used.

2. The system places in $B4 the address of the
argument list supplied by argument 2. If this
argument is omitted, the system assumes that
$B4 contains the address of the argument list
used to build the request block.

3. The system places in $B5 the address of the
fixed parameter block supplied by argument 3.
If this argument is omitted, the system
assumes that $B5 contains the address of the
block to be used.

4. The system places in $R4 the memory pool id
specified by argument 4. If this argument is
omitted, $R4 is set to zero to indicate that
the memory pool of the issuing task group is
to be used by the spawned task group.

5. The system places in $R5 the base priority
level specified by argument 5. If this argu-
ment is omitted, the system assumes that $R5
contains the base priority level to be used.

6. The system places in $R6 the high LRN value
specified by argument 6. If argument 6 is
omitted, $R6 is set to zero to indicate that
the value of the highest LRN created for the
system task group will be used.

7. The system places in $R7 the high LFN value
specified by argument 7. If this argument is
omitted, $R7 is set to 15.

8. The system places in $B2 the address of the
root entry name supplied by argument 8. If
this argument is omitted, the system assumes
that $B2 contains the address of the root
entry name of the bound unit to be executed as
the lead task of the spawned group.

2-533 CZ06-00

9. On return, $R1 and $R2 contain the following ""̂
information: / -

1

$R1 - Return status; one of the following: tf^\

0000 - No error

0601 - Invalid memory size or memory
pool

0602 - Memory unavailable

0804 - Group id in use

0806 - Invalid group id

0807 - Invalid memory pool id

0808 - Invalid base level

0809 - Invalid high LRN r ^

080A - Invalid high LFN

080C - Unresolved start address

1609 - Bound unit not found

160B - Invalid overlay nesting
;

$R2 - Group id of spawned task group.

2-534 CZ06-00

Example:

In this example, the Spawn Group macro call is used to create
a task group, execute a task in that group, and then delete
the group. The task group is created with a group id of Q2,
use of memory pool P2, and a relative base level of 5
(decimal). Both the high LRN and the high LFN are defaulted
(only system logical resources will be available, and the
highest logical file number available will be 15, decimal).
The task group's lead task will be the Command Processor.
The request part of the spawn is the same as the request
given in the example for the Request Group macro call.

$SPGRP ='Q2',!ARGS,1INFO;
='P2',=5,,,1ROOT

INFO $PRBLK 'JONES.TEST.BA1,
'"V1124>UDD>TEST>JONES>ASH_TSTA',
1 "V1121>UDD>TEST>JONES>ASM_TEST.AOA'
1 ~VH24>UDD>TEST>JONESA' ,
,'~V1124>UDD>TEST>JONES>MSGLIBA'

ARCS $PRBLK ,'"V1124>UDD>TEST>JONES>ASM_TSTAI,
'-XREFA'
'-PRINTA1

ROOT TEXT 'EC7ZXECLA'

2-535 CZ06-00

SPAWN TASK

SPAWN TASK (SSPTSK)

Function Code: OC/05 (different bound unit)
OC/06 (same bound unit)
OC/15 (deferred spawn task)

Equivalent Command: Spawn Task (ST)

Create, request execution of, and then cause a task to be
deleted within the task group of the issuing task.

FORMAT:

[label] $SPTSK [location of task request block address],
[location of relative priority level],
[location of start address] ,
[location of root entry name address],
[loction of clock request block]

ARGUMENTS:

location of task request block address

Any address form valid for an address register; provides
the location of the address of the request block for the
spawned task. The request block indicates whether the
issuing task is to wait for the execution of the spawned
task; the request block may contain parameters to be
passed to the spawned task.

location of relative priority level

Any address form valid for a data register; provides the
location of the priority level, relative to the task
group's priority level, at which the spawned task is to
execute. If this argument is omitted, the priority level
used is that of the issuing task.

location of start address

Any address form valid for an address register; provides
the location of the task start address to be used when the
spawned task is to execute the same bound unit as the
issuing task (function code OC/06).

2-536 CZ06-00

location of root entry name address

Any address form valid for an address register; provides
the location of the address of the pathname of the bound
unit root segment to be loaded for execution by the newly
created task. The bound unit pathname can have an
optional suffix in the form ?entryf where entry is the
symbolic start address within the root segment. If no
suffix is given, the default start address (established at
link time) is used (function code OC/05).

location of clock request block

Any address form valid for an address register; provides
the address of the clock request block (CRB), which
specifies when the task will be spawned. Used to create a
deferred spawn task (function code OC/15).

DESCRIPTION:

This macro call combines the functions of the Create Task,
Request Task, and Delete Task macro calls in that it
constructs the requisite structures for the execution of the
task; activates the task; and, when the task becomes
inactive, deletes the task. When the spawned task is
deleted, its associated data structures are removed. The
memory they occupied is returned to the task group's memory
pool.

A spawned task is not assigned a logical resource number
(LRN); therefore, the spawned task is local to the spawning
task (i.e., is visible only to the spawning task). A spawned
task cannot be requested or referred to by any other task;
nor can its memory space or code be shared. However, a
spawned task can share the memory space and code of another
task that was assigned an LRN by a previously issued Create
Task macro call. This sharing is indicated by the presence
of argument 3.

Either the location of the start address or the location of
the root entry name address, but not both, can be specified.

Multiple task requests can be made to execute concurrently
within a given task's bound unit; this is accomplished by
issuing multiple Spawn Task macro calls.

2-537 CZ06-00

NOTES ~\

The system places in $B4 the address of the —̂'
request block supplied by argument 1. If this ~x
argument is omitted, the system assumes that ' :y
$B4 contains the address of the request block.

The system places in $R6 the relative priority
level supplied by argument 2. If this argu-
ment is omitted, $R6 is set to -1 to indicate
that the priority level of the issuing task is
to be used.

Arguments 3 and 4 are mutually exclusive; if
both are supplied, argument 3 is used and a
diagnostic is issued. The system places
information derived from either argument in
$B2. If these arguments are omitted, the
system assumes that $B2 contains the start v-
address within the bound unit. -~\

If an address of a CRB was supplied by argu- —'
ment 5, it is placed in $B3, and an MCL of
OC/15 is issued; otherwise an MCL OC/05 is
issued.

On return, $B1 contains the address of the CRB
in system space used to achieve the deferred
spawn task. —

On return, $R1 contains one of the following -~s
status codes:

0000 - Task successfully spawned (if no wait
condition was indicated in the request
block)

0000-FFFF - Posted completion status of •
spawned task (if wait condition - x
specified))

Olxx - Media error

0209 - File or directory not found • *

0602 - Memory unavailable

0801 - Request block in use (T-bit on)

0817 - Memory access violation on request
block

2-538 CZ06-00

0827 - Invalid file type for bound unit

082D - Group available memory quota exceeded

OE02 - No memory available for nonswappable
task

1604 - Unresolved symbolic start address

160A - Insufficient memory

1613 - Invalid pathname format

1614 - Access violation (root segment not
user segment)

1615 - Invalid bound unit file (header
incorrect or number of overlays plus
the root is equal to zero).

Example:

In this example, the Spawn Task macro call creates a task,
requests its execution, and then deletes the task. The task
creation part of the spawn is the same as that given in the
first example for the Create Task macro call, except that
there is no LRN. The request part of the spawn is the same
as that given in the example for the Request Task macro call,
except that a synchronous request is made instead of an asyn-
chronous request, and no semaphore is V-oped (see "Semaphore
Functions" in Section 2, Vol. I). The delete part of the
spawn is the same as given in the example for the Delete Task
macro call.

$SPTSK !TRB,=2,,1ROOT

TRB $TRB
ROOT TEXT

,,,ENTRY3,,-PRINT
'PROG10 '

2-539 CZ06-00

STATUS MEMORY POOL

STATUS MEMORY POOL (SSTMP)

Function Code: 04/06

Equivalent Command: None

Determine the amount of memory available in a specified
memory pool.

FORMAT:

[label] $STMP [location of memory pool id]

ARGUMENT:

^
location of memory pool id ;

Any address form valid for a data register; provides the
memory pool id of the memory pool to be examined. If
this argument is omitted, the memory pool examined is
that associated with the task group of the issuing task.

DESCRIPTION:

This macro call allows the issuing task to determine the J
amount of memory currently available in a specified memory
pool. The amount of available memory is returned to the
issuing task, both as the actual number of words now
available in the pool and as the percentage of the pool's
total memory now available. The total available memory may
not be contiguous.

If the memory pool being examined has the preempt batch
option, the statistics returned are for the specified memory
pool combined with the batch task group's memory pool.)

NOTES

1. The system places in $R2 the memory pool id of
the memory pool to be examined, supplied by
argument 1. If this argument is omitted, $R2
is set to -1 to indicate that the memory pool
of the task group of the issuing task is to be
examined.

2-540 CZ06-00

2. On return, $R1, $R2, $R6f and $R7 contain the
following information:

$R1 - Return status; one of the following:

0000 - No error
0606 - Invalid or undefined memory

pool id

$R2 - If $R1 is 0000f percentage of the memory
pool's total memory that is currently
available. The percentage is returned
as an integer with the fractional value
truncated.

$R6, $R7 - If $R1 is 0000, the number of words
of memory currently available in the
memory pool.

Example:

In this example, the Status Memory Pool macro call is used to
determine the amount of memory available in the memory pool
of the issuing task's task group. The number of words of
memory available in the pool is returned in $R6 and $R7. A
double-word 2500 is subtracted from the double-word size, and
the high-order word of the result is checked if the result is
still positive.

POOLCT $STMP
SUB $R7 = 2500
BCT +SA
ADV $R6 -1

$A BGEZ $R6,SOMMEM

SOMMEM $GMEM =2500

2-541 CZ06-00

SUSPEND GROUP

SUSPEND GROUP (SSUSPG)

Function Code: OD/08

Equivalent Command: Suspend Group (SSPG)

Suspend the specified task group.

FORMAT:

[label] $SUSPG [location of group id]

ARGUMENT:

location of group id j

Any address form valid for a data register; provides the
group id of the task group to be suspended. This task
group must have been previously defined by a Create Group
macro call.

DESCRIPTION:

This macro call causes the system to suspend the specified "~
task group. The task group is marked as suspended when: _/'

• All tasks of the group have exited from critical areas
of the Monitor.

• All active task control blocks have been removed from
their level queue.

• All external requests (system driver, clock,
memory, semaphore) have been satisfied. ^

A suspended task group can be activated through the Activate
Group macro call.

When the suspended task group is aborted, or no other task
group issues a Activate Group macro call to enable the sus-
pended group, the operator must issue an Activate Batch or
Activate Group command to allow the suspended group to
continue.

2-542 CZ06-00

NOTES

1. The system places in $R2 the group id of the
task group to be suspended, supplied by argu-
ment 1. If this argument is omitted, the
system assumes that $R2 contains the correct
group id.

2. On return, $R1 and $R2 contain the following
information:

$R1 - Return status; one of the following:

0000 - No error

0806 - Specified group id not currently
defined

$R2 - Group id as supplied.

Example:

In this example, the Suspend Group macro call is used to sus-
pend the task group whose group id is Gl. Task group Gl will
not be suspended until all its tasks have exited from criti-
cal areas of the Monitor and all external requests have been
satisfied.

SUSGAA $SUSPG =G1

2-543 CZ06-00

SUSPEND FOR INTERVAL

SUSPEND FOR INTERVAL (SSUSPN)

Function Code: 05/02

Equivalent Command: None

Remove the issuing task from the active queue for its prior-
ity level until the specified interval has elapsed.

FORMAT:

[label] $SUSPN [interval unit designator],
[location of interval value]

ARGUMENTS:

interval unit designator

One of the following codes must be specified to indicate
the manner in which the interval is to be measured.

Code Interval Measurement

MS Milliseconds
T Tenths of a second
S Seconds
M Minutes
C Clock resolution units

location of interval value

Provides the interval for which the issuing task is to be
suspended; can be one of the following:

= $R7

Interval value is in $R6 and $R7

=hexadecimal string

String specifies the interval value

fieldname

Fieldname represents the first word of a 2-word field
containing the interval value

2-544 CZ06-00

DESCRIPTION:

This call causes the issuing task to be suspended for the
period of time specified in the call arguments.

The Suspend Until Time macro call also suspends the issuing
task, but the suspension exists until a particular date/time
is reached.

NOTES:

1. The system places in $R2 the interval unit
designator supplied by argument 1. The con-
tents of $R2 depend on the interval designator
chosen, as follows:

Interval
Unit Contents

Designator of $R2

MS 1
T 2
S 3
M 4
C 5

2. The system places in $R6 and $R7 the interval
value supplied by argument 2. If this argu-
ment is omitted or is = $R7, the system assumes
that $R6 and $R7 contain the correct interval
value.

3. On return, $R1 contains one of the following
return status codes:

0000 - Specified time has elapsed
0401 - Invalid time interval specified.

4. Periodic use of this call by central processor
bound tasks will allow other tasks with the
same or numerically higher hardware priority
level to obtain CPU time more often.

Example:

In this example, the Suspend for Interval macro call suspends
the issuing task for one unit of time measured in units of
clock resulution.

ASTPA $SUSPN C,=l

2-545 CZ06-00

SUSPEND UNTIL TIME

SUSPEND UNTIL TIME (SSUSPN)

Function Code: 05/03

Equivalent Command: None

Remove the issuing task from the active queue for its prior-
ity level until the date/time specified in the call.

FORMAT:

[label] $SUSPN [TIME],
[location of internal date/time value]

ARGUMENTS:

TIME

Optional keyword; explicitly notes that a date/time value
will be used to govern the suspension of the issuing
task.

location of internal date/time value

Any address form valid for a data register; provides the
address of a 3-word internal date/time value that, when
reached, causes the task to be activated. The value is a
binary count of milliseconds since January 1, 1901.

DESCRIPTION:

This macro call causes the issuing task to be suspended until
the date/time value indicated by argument 2 is reached.

The Suspend For Interval macro call also suspends the issuing
task, but for a particular interval of time.

NOTES

1. If argument 1 is omitted, date/time format is
assumed.

2. The system places in $R2, $R6, and $R7 the
internal date/time value supplied by argument
2. If this argument is omitted or is either
= $R2 or =$R7, the system assumes that these
registers contain the correct internal
date/time value.

2-546 CZ06-00

3. On return, $Rl contains one of the following
status codes:

0000 - Specified date/time has been reached

0401 - Invalid internal date/time, or interval
value.

Example:

The Get Date/Time ($GDTM) macro call is used to get the cur-
rent date/time (in internal format), leaving it in registers
R2, R6, and R7. The External Date/Time, Convert To ($EXDTM)
macro call is then used to convert this internal format to an
external format, replacing the date portion (first 10
characters) of the field labeled TODAY. The External Time,
Convert To ($EXTIM) macro call is then used to convert the
internal format date/time to an external format, storing the
hour of the date in the field labeled HOUR. The Internal
Date/Time, Convert To ($INDTM) macro call converts the
contents of the field TODAY back to the internal format
contained in $R2, $R6, and $R7. The field HOUR is then com-
pared to the constant 08. If HOUR is greater than or equal
to 08, one day (86,400,000 milliseconds) is added to $R2,
$R6, and $R7. Thus, $R2, $R6, and $R7 now contain the inter-
nal format date/time value for the next time, either today or
tomorrow, that 0800 hours occurs. The Suspend Until Time
($SUSPN) macro call then suspends the issuing task until the
next time the clock reads 0800 hours. The addition of one
day to $R2, $R6, and $R7 is programmed, assuming a central
processor that has the add integer double (AID) instruction.
(See the example given for the Internal Date/Time, Convert To
macro call for the same addition performed without the use of
the AID instruction.)

2-547 CZ06-00

GET THE CURRENT DATE/TIME VALUE.

$GDTM

CONVERT IT TO AN EXTERNAL FORMAT DATE.

$EXTDT ,1TODAY,=10

CONVERT IT TO AN EXTERNAL FORMAT HOUR OF DAY.

$EXTIM ,1HOUR, = 2 - -

NOW CONVERT THE EXTERNAL FORMAT DATE/TIME
BACK TO THE INTERNAL FORMAT.

SINDTM !TODAY,,=15

IF IT'S BEFORE 0800 HOURS THE INTERNAL FORMAT
DATE/TIME IS CORRECT ELSE IT'S ONE DAY TOO SMALL,

SUSPND

LDR
CMR
BL
AID
CAD
$SUSPN

$R1,HOUR
$R1,= '08'
>SUSPND
A^DAY
= $R2
TIME

TODAY
HOUR
A_DAY

TEXT 'YYYY/MM/DD 0800'
TEXT 'HH1

DC 86400000B(31,0)

2-548 CZ06-00

SWAP FILE

SWAP FILE (SSWFIL)

Function Code: 10/5A

Equivalent Command: None

Close the tape or disk file on the current volume (writing
end-of-volume labels as required); force a swap to the next
volume in the set; open the file on that volume.

FORMAT:

[label] $SWFIL [FIB address]

ARGUMENT:

FIB address

Any address form valid for an address register; provides
the location of the 16-word file information block used
in data and storage management calls.

DESCRIPTION:

This function is meaningful only for labeled tape files and
sequential disk files on a serial, multivolume set. It
returns an "end of file" error (021F) if applied to other
types of files.

This call enables the user to finish a magnetic tape file as
though an end-of-tape signal (output mode) or an
end-of-volume trailer (input mode) had been encountered. If
a continuation reel is online, it is selected; otherwise a
mount request occurs.

The FIB used for data management and storage management calls
can also be used for the Swap File call. Swap File clears
the Out Record Address field (in which the system places the
relative record number of the last record transferred by the
last data management call). After subsequent read record
operations, this field specifies a record number that is
relative to the beginning of the current file section.

The file must be opened for either data management or storage
management. If the file is opened in output mode for data
management, end-of-volume trailer records (EOV1/EOV2) are
written, followed by two tape marks at the current tape
position.

2-549 CZ06-00

If the tape file is opened in input mode for data management
access, the tape is rewound and unloaded, and a normal reel
swap is required. The reel with the next subsequent file
section is expected.

If the tape file is opened for storage management access, the
tape is rewound and cycled down.

Since there is no way of knowing that a file section is the
last one in a set until the trailer records are read, it is
the user's responsibility to identify the last file section
and issue a Close File call rather than a Swap File call.

The user is responsible for writing any trailer records and
tape marks for output files reserved for device (volume)
level access.

s~

NOTES

1. On return, $R1 contains the following status
codes:

01XX - Media error

0205 - Invalid argument

0206 - Unknown or invalid logical file number
(LFN)

0207 - LFN or file not open J

021F - end of file.

j

2-550 CZ06-00

SYSTEM ATTRIBUTE INFORMATION,
GET

SYSTEM ATTRIBUTE INFORMATION, GET (SSYSAT)

Function Code: 14/11

Equivalent Command: None

Provides the user with attribute information about the
software/hardware execution environment.

FORMAT:

[label] $SYSAT [location of marketing identifier string]

ARGUMENT:

location of marketing identifier string

Any address form valid for an address register; provides
the address of a 5-word field that is to receive the
marketing identifier string.

DESCRIPTION:

This macro call provides the user with the operating system
identify and software/hardware attribute information.

NOTES

1. The system places in $B4 the address of the
receiving field for the marketing identifier,
supplied by argument 1. If argument 1 con-
tains = $B4, the system assumes that $B4 con-
tains the address of the receiving field. If
argument 1 is omitted, $R2 is set to zero. If
any argument is present in argument 1, $R2 is
set to -1.

2. On return, $R1, $R2, $R6, and $R7 contain the
following:

$R1 - 0

$R2 - Provides operating system identity 4.
This value identifies the operating
system as MOD 400.

2-551 CZ06-00

$R6 - Provides hardware information as
follows:

• 3 for Model 3x
• 4 for Model 4x and Model 5x -- *

$R7 - Indicates the presence/absence of either
a SIP or CIP context. Bit positions 12
and 13 of $R7 have the following
significance:

00 - No SIP context present; instruc-
tions not executable

XI - SIP simulator specified on system
generation card

IX - SIP hardware present

Bit positions 14 and 15 of $R7 have the
following significance:

00 - No CIP context present

XI - CIP simulator specified on system
generation card

IX - CIP hardware present.

2-552 CZ06-00

SYSTEM IDENTIFICATION

SYSTEM IDENTIFICATION (SSYSID)

Function Code; 14/04

Equivalent Command: None

Return the identification of the system under which this task
is running to a receiving field. The format of the receiving
field is one word containing the number of characters in the
system id, followed by 15 words containing the system id itself.

FORMAT:

[label] $SYSID [location of system id field address]

ARGUMENT:

location of system id field address

Any address form valid for an address register; provides
the address of a 30-character, aligned, varying receiving
field into which the system will place the system
identification.

DESCRIPTION:

This macro call returns the system id to a field in the
issuing task. The system id is in the form:

GCOS6/MOD4 0 0-r rr r-mm/dd/hh/mm

where rrrr is the system software release number and
mm/dd/hh/mm are the date and time that the Monitor was
linked.

NOTES

1. The system places in $B4 the address of the
receiving system id field supplied by argument
1. If this argument is omitted, the system
assumes that $B4 contains the address of the
field.

2. On return, $R1 contains the following status
code:

0000 - No error
0817 - Memory access violation.

2-553 CZ06-00

J>Example:

In this example, the System Identification macro call is used - "\
to return the identification of the currently executing ' ./
system to a field whose address is SYIDFL.

ASYSID $SYSID ISYIDFL

SYIDFL RESV 15,A1

2-554 CZ06-00

TASK GROUP INPUT

TASK GROUP INPUT (STGIN)

Function Code: 14/OC

Equivalent Command: None

Returns the pathname of the initial command-in file of the
calling task group.

FORMAT:

[label] $TGIN [location of task group input address]

ARGUMENT:

location of task group input address

Any address form valid for an address register; provides
the address of a 58-character, aligned, nonvarying field
into which the system will place the pathname.

DESCRIPTION:

This macro call returns the pathname of the initial
command-in file of the calling task group into a
58-character, aligned, nonvarying field whose address is
provided by the argument.

NOTES

1. When the argument is entered, the system loads
the task group input address into $B4. When
the argument is omitted, the system assumes
that $B4 contains the address of the receiving
home directory field.

2. On return, $R1 and $B4 contain the following
information:

$R1 - Return status; one of the following:

0000 - No error
080F - System file undefined
0817 - Memory access violation

$B4 - Address of the receiving task group.

2-555 CZ06-00

TASK REQUEST BLOCK

,. , = o
TASK REQUEST BLOCK f STRB)

Function Code: None

Equivalent Command: None

Generate a task request block (TRB) whose length is variable.

FORMAT:

[label] $TRB [logical resource number],

-] WAIT, > ,
(NWAIT, [termination action])
[task start address] r -x
[size of request block argument] , ^^
[user argument 1] ,
[user argument 2] ,

• j
•
• *

[user argument n]

ARGUMENTS :
, \

logical resource number * -J

A value from 0 through 252 specifying the LRN for this
task. If this argument is omitted, the task request
block does not have an LRN.

(WAIT) ,
\ NWAIT/

One of the following values is specified to indicate)
whether the requesting task is to be suspended until the ^*
completion of the request:

WAIT

Suspend the issuing task until the request is com-
plete (set W-bit to zero) .

NWAIT

Do not suspend the issuing task (set W-bit to one) .

2-556 CZ06-00

If this argument is omitted, the value NWAIT is assumed.

If WAIT is specified, argument 3 (termination action)
must be omitted.

termination action

One of the following values is specified to indicate the
action to be taken upon completion of the request.

SM=aa

Release (V-op) the semaphore identified by aa (two
ASCII characters), when requested task is completed.

RB=label

Issue a request for the request block identified by
label, when requested task is completed.

The requesting task must be asynchronous, cannot wait on
the requested task later on, and can only point to a
TRB. The requested task must have already been created
(not spawned), be asynchronous, and have a valid logical
resource number (LRN). When the requesting task
terminates, the TRB pointed to by "label" must be
inactive.

If this argument is omitted (or argument 2 is WAIT), the
generated task request block contains no termination
option.

task start address

Any address form valid for an address register; provides
the start address to be used when the requested task is
turned on to service the request. If this argument is
omitted, the implicit task start address is to be used
(bit 15 of the T_CT1 word is set to one; see Appendix C).

size of request block argument

Value specifying the number of words in the added portion
of the task request block. If this argument is omitted,
the generated request block will be large enough to con-
tain only the user arguments specified in the macro
call. If no user arguments are specified, the request
block will be generated to contain only the standard
fixed format request block fields (arguments 1 through
4). If this argument is specified in addition to user
arguments, an area is reserved following those arguments.

2-557 CZ06-00

user argument 1 ... user argument n

Begins the optional, variable-sized area containing user
arguments to be passed to the requested task in response •')
to a Spawn Task or Request Task macro call or command. --^
This variable portion of the task request block is built
in the following standard format.

entry 1 - One-word count of number of argument pointers

entry 2 - Address of first argument length field

entry 3 - Address of second argument length field
•
•
.

entry r - Address of nth argument length field

entry z - Length (in bytes) of first argument (one word)

entry y - First argument value (of specified size) ^.'

entry x - Length (in bytes) of second argument (one word)

entry w - Second argument value (of specified size)
•

•

•

entry p - Length (in bytes) of nth argument (one word) y

entry o - nth argument value (of specified size) ~

DESCRIPTION:

The task request block is used to communicate between tasks.
It serves to pass arguments between the requested and
requesting tasks within a task group. When a previously
created task is requested, the task request block contains
the LRN that identifies the requested task. When a task is \
spawned, the TRB does not require an LRN. /

The task request block may contain the start address to be
used when the requested task is turned on to service the
request.

2-558 CZ06-00

The task request block may contain a variable-size portion
that contains optional information to be passed to the
requested task, and has a fixed size protion that contains
standard control information.

When a task is activated, its $B4 register points to offset
zero of the request block, and its $B7 register points to a
parameter list (if one is expected by the task). The proper
$B7 address is established by the Task Request Block macro
call, when it has a parameter list pointer, or by placing
that pointer at the Task Request Block Offsets macro call's
T_PRM offset.

Any task-specific arguments are permitted (as if the TRB had
been constructed by the command processor).

Example:

In this example, the Task Request Block macro call is used to
create a task request block that has a 10-word argument (in
addition to space added) to accommodate the parameters passed
to the task in control arguments when the task is requested.
The generated request block is 18 words long, has an LRN of
30, and when its task terminates, releases semaphore AA.

ATRBA $TRB 30,,SM=AA,,5,XR643MX77B

2-559 CZ06-00

TASK REQUEST BLOCK OFFSETS

TASK REQUEST BLOCK OFFSETS (STRBD)

Generated Label Prefixes:

T_RRB/T__SEM
TRB label offset 0

T_CT1
T_CT2
T_ADR
T_PRM

See Appendix C for the format of the task request block.

DESCRIPTION:

See the Task Request Block macro call.

Y

2-560 CZ06-00

TERMINATE REQUEST

TERMINATE REQUEST (STRMRQ)

Function Code: 01/04, 01/03

Equivalent Command: None

Terminate the current request being processed by the issuing
task. End the current request for the execution of the task and
mark its associated request block as terminated.

FORMAT:

[label] $TRMRQ [location of completion status],
[location of new task start address]

ARGUMENTS:

location of completion status

Any address form valid for a data register; provides the
user-selected status code that is to be returned when the
current request and its associated request block are ter-
minated. Completion status codes 0801, 0802r and 0803
should not be used; they are indistinguishable from error
codes with the same values.

location of new task start address

Any address form valid for an address register; provides
the new task start address for the terminating task.
This address is subsequently requested by a request block
that does not explicitly specify a start address.

DESCRIPTION:

This macro call is used to end a request for the execution of
a task. The Terminate Request function marks a current
request block as terminated and removes it from the
appropriate request queue.

2-561 CZ06-00

If there are no other request blocks on the request queue
affected by the Terminate Request function, the Task Manager
places the task in a dormant state. If there are one or more
request blocks in the affected queue, the Task Manager imme-
diately uses the next request block to begin execution of the
task at the indicated start address. If the task is
requested for deletion and there is no other request for it,
the task is deleted; if this is a spawned task, it is
deleted.

The Task Manager will do one of the following:

1. Activate a task, if that task is awaiting completion
of the current request block being terminated.

2. Release (V-op) the semaphore indicated by the current
request block.

3. Schedule the task request block indicated by the
current request block being terminated. *"N

If the terminating task will subsequently be requested by a ^^
request block that does not explicitly specify a task start
address, the terminating task can specify the new task
address through argument 2.

NOTES . . . /

1. The system places in $R2 the completion status
code supplied through argument 1. If this \
argument is omitted, the system assumes that -̂
$R2 contains the completion status code.

2. If argument 2 contains the location of the new
task start address, the system places that
address in $B4 and issues and MCL 01/04. If
argument 2 specifies =$B4, the system assumes
that $B4 contains the new start address and
issues an MCL 01/04. If argument 2 is
omitted, the system does not modify $B4 and
issues an MCL 01/03 (no new task start
address) .

2-562 CZ06-00

f~\ 3. On return, $B4, $B5, and $B7 contain the
following information:

r

-̂̂

$B4 - Address of request block for new request

$B5 - Address of system supplied termination
routine

$B7 - Address of the request block parameter
list.

Example:

In this example, the Terminate Request macro call labeled
TRM^_NM terminates the issuing task with a completion status
of zero without changing the task's start address. The Ter-
minate Request macro call labeled TRM__AB terminates the issu-
ing task with a completion status of one and changes the
task's start address to RETRY.

$TRMRQ =0

TRM_AB $TRMRQ =1,!RETRY

2-563 CZ06-00

TEST COMPLETION STATUS

TEST COMPLETION STATUS (STEST)

Function Code: 01/02

Equivalent Command: None

Return the completion status of any type of specified request
block (e.g., task, clock, I/O, or semaphore).

FORMAT:

[label] $TEST [location of request block address]

ARGUMENT:

location of request block address

Any address form valid for an address register; provides
the address of the request block whose completion status
is to be tested.

DESCRIPTION:

This macro call permits a running task to ascertain whether a
specified request block has been marked as terminated by
another task. When the call is executed, control is returned
to the issuing task; $R1 contains a return status that shows
whether the request block has been terminated and $B4 con-
tains the address of the tested request block.

The Test Completion Status macro call does not cause a wait
for the request block to be terminated; that function is per-
formed by the Wait macro call.

A given request block can be tested by any number of tasks.

NOTES

1. The system places in $B4 the request block
address supplied by argument 1. If this argu-
ment is omitted, the system assumes that $B4
contains the address of the request block to
be tested.

2-564 CZ06-00

/ * N

2. On return, $R1 and $B4 contain the following
information:

$R1 - Return status; one of the following:

yyzz - Where yy can be 00, or 00 through
EE for user status, or as defined
for other yy values in the System
Messages manual.

$B4 - Address of tested request block.

Example:

In this example, the Test Completion Status macro call is
used to determine the status of a task that was requested
using a request block labeled TRB. If the requested task has
not run to completion yet, a status of 0801 (hexadecimal)
will be returned in $R1 and the T-bit in the request block
will be on. If the requested task has run to completion, or
has so indicated by posting the request block through a Ter-
minate Request macro call, the posted completion status is
returned in $R1 and the T-bit in the request block is off.

$TEST 1TRB

2-565 CZ06-00

TEST FILE ($TIHL (INPUT),
$TOFIL (OUTPUT))

TEST FILE (STIFIL (input) . STQFIL (output))

Function Codes: 10/62 ($TIFIL), 10/63 ($TOFIL)

Equivalent Command: None

Test the status of any outstanding I/O activity. These macro
calls are used in conjunction with I/O operations where the
device to/from which the data transferred is a terminal. The
user identifies the file by supplying its logical file number
(LFN) in the file information block (FIB).

FORMAT:

[label] ($TIFIL) [FIB address] "")
J$TOFIL| * -̂

ARGUMENT:

FIB address

Any address form valid for an address register; provides
the location of the FIB. The FIB must contain a valid
LFN.

DESCRIPTION:

The FIB logical file number (LFN) must be set up prior to a
Test File call. The file must be open.

Test File is used in conjunction with Read Record and Write
Record functions. Test File does not, in itself, force I/O
completion.

\i
Test file is meaningful only for terminals configured as ^̂ x'
buffered and allowing asynchronous I/O. Terminals not so
configured can be dynamically changed by means of the STTY
ECL command.

$TIFIL tests the status of a file system input buffer to see
whether or not data has been read in and is ready to be
transferred to the user record area (by means of Read Record
macro call). A 0204 (file busy) return code indicates that
I/O is still in progress for the file. A 0000 (normal)
return code means that input has been received and is ready
to be transferred to the user record area for processing.

2-566 CZ06-00

$TOFIL tests the status of a file system output buffer, to
see whether or not data in that buffer has been written to
the terminal. A 0204 (file busy) return code indicates that
output to the terminal is still in progress. A 0000 (normal)
return code means that no output is currently in progress and
that therefore the buffer is ready to receive more data from
the user record area (by means of a Write Record macro call).

When a terminal file is opened (by means of the Open File
macro call), a connect is issued asynchronously. That is, a
wait-until-complete (i.e., until the line is physically
connnected) is not done. Test File monitor calls issued
after an Open File return a busy code until the connect is
physically complete. If the standard time for having a
connect raised (i.e., five minutes) expires, any function
(e.g., Test File, Read Record, Write Record) returns a 0110
(connect timeout) code. The file is not closed; thus, any
attempt to re-raise the connect must be preceded by a Close
File function.

After the connect is satisfied, the first Test File issued to
an input-only or bidirectional LFN will cause an anticipatory
read to be issued. Once a Read Record function has
successfully moved data from the file system buffer to the
the user record area, a read order will be requeued.

When a terminal file is closed, the file system waits for the
completion of any outstanding write orders, dequeues any
anticipatory read orders, and optionally issues a disconnect.

The description of the Wait File macro call explains how that
call can be used in conjunction with Test File.

NOTES

1. If the argument is coded, the system loads the
address of the FIB into $B4; if the argument
is omitted, the system assumes that $B4 con-
tains the address of the FIB.

2. On return, $R1 contains one of the following
status codes:

0000 - No error
0110 - Timeout occurred on connect
0204 - File busy
0205 - Invalid argument
0206 - Unknown or invalid LFN
0207 - LFN not open
0217 - Access violation.

2-567 CZ06-00

Example:

In this example, a terminal file, FILE_T, associated
with LFN 0006, has been reserved (see the Get File
macro call) and opened (see the Open File macro
call). The following macro calls function as shown
in the flowchart below. The FIB for FILE_T is
defined as:

FILE_T DC Z'0006'

(Remainder is the FIB)

,—>v

2-568 CZ06-00

RETURN
(NOT BUSY)

RETURN
(BUSY)

RETURN
(NOT BUSY)

RETURN
(BUSY)

RETURN
(NOT BUSY)

RETURN
(BUSY)

Figure 2-5. Flowchart for Test File
($TIFIL and $TOFIL) Macro Calls

2-569 CZ06-00

TRANSFER AND RETURN USER

TRANSFER AND RETURN USER (SXRETU)

Function Code 17/07

Equivalent Command: None

Pass a secondary user's terminal from the calling task group
back to the Listener component along with the user's next login
line arguments. Request that when the next login terminates, the
user be returned as a secondary user to the calling group.

FORMAT:

[label] $XRETU [location of terminal LRN],
[location of buffer address],
[location of buffer length]

ARGUMENTS:

location of terminal LRN

Any address form valid for a data register; provides, in
the right byte, the LRN of the terminal to be transfered.

location of buffer address

Any address form valid for an address register; provides
the address of a buffer that contains login line
arguments.

The text supplied in the buffer must consist only of
control arguments for the Login command; the text must
not include the Login command itself (L) or the user id,
which is not a control argument.

location of buffer length

Any address form valid for a data register; provides the
length in bytes of the buffer containing the login line
arguments.

DESCRIPTION:

This macro call enables a task group to release a terminal
user who has logged in to it as a secondary user, to specify
to Listener the user's next login line arguments, and to
generate a secondary login from the terminal to the calling
group when that next login terminates.

2-570 CZ06-00

Thus, by means of this call, the user can be transferred from
one subsystem to another and back without having to sign off
or enter a login line. There is no limit to the number of
times a user can be transferred.

The call terminates the user's secondary login as if a
Release Terminal macro call had been made. Listener then
uses the login line arguments in the specified buffer to
define the next login line from the terminal, while retaining
the user__id of the current user. If user registration is in
effect, the language key value most recently supplied is also
retained.

When the next login terminates, Listener acts as if the user
then makes a secondary login back to the group that issued
the Transfer and Return. For this login to be successful,
the group must have a Request Terminal or Request Specific
Terminal call outstanding. If no request is found, the user
is logged out.

Listener reports at the terminal any error in the supplied
login line arguments, and also stores any error code in the
device status field of the Request Terminal IORB when it
returns the user to the calling group.

NOTES

1. The system places in $R6 the terminal id supplied by
the first argument. If this argument is omitted, the
system assumes that $R6 contains the terminal id.

2. The system places in $B2 the address of the buffer
supplied by the second argument. If this argument is
omitted, the system assumes that $B2 contains the
address of the buffer.

3. The system places in $R2 the buffer length supplied by
the third argument. If this argument is omitted, the
system assumes that $R2 contains the buffer length.

4. On return, $R1 contains one of the following status
codes:

0000- Terminal satisfactorily transferred
3921- Terminal not assigned to task group
3928- Unable to release terminal; file not removed.

2-571 CZ06-00

Example: t ' j

By means of Transfer and Return User, the calling task ^
releases a terminal to print 10 lines of the file CLM_USER. T
When the print operation completes, the terminal will be ^
returned to Listener (rather than to the caller), because the
caller does not have an outstanding request for a secondary
terminal.

The caller previously reserved the terminal as a secondary
user by means of the Request Terminal macro call ($RQTML).
$RQMTL returned the terminal's LRN in word 0 of the area that
received the terminal's login parameters (see the description
of Request Terminal). Subsequently, the LRN was stored in
the field TRMLRN.

The login line supplied with Transfer and Return User
specifies PRINT (PR) as the lead task of the group to be
spawned by the login procedure. The -ARC control arguments
specialize the execution of PRINT.

$XRETU =TRMLRN, IARGBUF, =BUFSIZ

ARGBUF DC a'-PO PR -ARC >SID>CLM_USER -FROM 10
-LIMIT 10'

BUFSIZ DC ($-ARGBUF)*2

2-572 CZ06-00

TRANSFER USER

TRANSFER USER (SXFERU)

Function Code: 17/06

Equivalent Command: None

Pass a primary or secondary user's terminal from the calling
task group to the Listener component, along with the user's next
login line arguments.

FORMAT:

[label] $XFERU [location of terminal id],
[location of buffer address],
[location of buffer length]

ARGUMENTS

location of terminal id

Any address form valid for a data register; provides in
the right byte the identity of the terminal to be
transferred. The value of this argument may be one of
the following:

Irn

Logical resource number (LRN) of a terminal used
for primary or secondary login to the calling
group. Must be a binary number in the range 0
through 255.

X'FF'

Signifies that the terminal is one used for primary
login to the calling group.

location of buffer address

Any address form valid for an address register; provides
the length in bytes of the buffer containing the login
line arguments.

The text supplied in the buffer must consist only of
control arguments for the Login command; the text must
not include the Login command itself (L) or the user id,
which is not a control argument.

2-573 CZ06-00

location of buffer length \

Any address form valid for a data register; provides the ^
length in bytes of the buffer containing the login line ;"~*N
arguments. .J

DESCRIPTION

This macro call enables a task group to release a terminal
user who has logged into it as a primary or secondary user,
and to specify to Listener the user's next login line
arguments. Thus, by means of this call, the user can be
transferred from one subsystem to another without having to
sign off and enter another login line. There is no limit to
the number of times a user can be transferred.

The call terminates the user's primary or secondary login as
if an Abort Group or Release Terminal macro call had been
issued. Listener then uses the login line arguments in the
specified buffer to define the next login from the terminal,
while retaining the user id of the current user. If user
registration is in effect, the language key value most
recently supplied is also retained through subsequent
transfers.

If the supplied buffer contains the single login line
argument BYE, the user's login session terminates. Listener
logs out the user and physically disconnects the terminal.

Listener reports at the terminal any error in the supplied - \
login line arguments, and logs the user out. °-^

NOTES

1. The system places in $R6 the terminal id
supplied by the first argument. If this
argument is omitted, the system assumes that
$R6 contains the terminal id.

2. The system places in $B2 the address of the
buffer supplied by the second argument. If "
this argument is omitted, the system assumes
that $B2 contains the address of the buffer.

3. The system places in $R2 the buffer length
supplied by the third argument. If this
argument is omitted, the system assumes that
$R2 contains the buffer length.

2-574 CZ06-00

4. On return, $R1 contains one of the following
status codes:

0000 - Terminal satisfactorily transferred
3921 - Terminal not assigned to task group
3928 - Unable to release terminal; file not

removed.

Example:

See example for Transfer and Return User ($XRETU)

2-575 CZ06-00

TRAP HANDLER CONNECT >
TRAP HANDLER CONNECT (STRPHD)

Function Code: OA/00

Equivalent Command: None

Connect a user-written trap handling routine entry point to
the issuing task.

FORMAT:

[label] $TRPHD [location of trap handling routine address]

ARGUMENT:

location of trap handling routine address

Any address form valid for an address register; provides
the address of the user-written trap handling routine.
This address (entry point) is entered at each occurrence
of a user trap that has been enabled for that task.

DESCRIPTION:

This macro call identifies a user-written routine that)
provides an alternative to the system default trap handler's
response to user trap conditions. If user trap conditions
are handled by the system default trap handler, the task in
which the condition occurs is aborted.

Since trap conditions are handled in a task context, each
task must identify the trap handler and enable the particular
trap numbers to be serviced on behalf of the task (see Enable
user Trap macro call). When an enabled user trap condition
occurs, control is transferred to the user-written trap
handling routine rather than the system default routine.
(See Appendix A, Volume I for more information about trap
handling.)

2-576 CZ06-00

NOTES

1. The system places in $B4 the address of the
user-written trap handling routine supplied by
argument 1. If this argument is omitted, the
system assumes that $B4 contains the correct
address.

2. On return, $R1 contains one of the following
status codess

0000 - No error
0341 - Invalid trap handling routine address.

3. This macro call is required to enable a soft-
ware simulated trap in a task that the user
interrupts with the break function, and for
which a PI or UW break response is entered.

/' \ Example:

In this example, the Trap Handler Connect macro call connects
the routine labeled TRAPS as the issuing task's trap handler.
The Enable User Trap macro call ($ENTRP) enables the program
interrupt and unwind traps for the task. All program inter-
rupt and unwind traps for the issuing task will be directed
to the routine labeled TRAPS. The Disable User Trap macro
call ($DSTRP) disables all user traps for the issuing task.

The remaining code illustrates the basic techniques used to
write a user traphandler. The example is not meant to be
typical.

2-577 CZ06-00

*
*
*
PI_T
UW_T
*
*
*
TSA^W

*
*

*
*
*

NAME THE

EQU
EQU

NAME THE

EQU

CONNECT

$TRPHD

PROGRAM TRAPS.

1
49

PERTINENT TSA FIELDS

$B3.4

"TRAPS" AS THE TRAP HANDLER.

! TRAPS

ENABLE PROGRAM INTERRUPT AND UNWIND.

*
*
*
GETLIN

J

$ENTRP =PI_T
$ENTRP =UW_T

READ A NEW DIRECTIVE FROM USER INPUT.

$USIN ILINE,=80

DISABLE ALL TRAPS.

$DSTRP =-1

r

FINISH
*

*
*
TRAPS

$A

$TRMRQ =$R2

TRAP HANDLER FOR THIS TASK:
SEND PROGRAM INTERRUPT TO "GETLIN
SEND UNWIND TO "FINISH".

CMN
STB
LAB
CMV
BE
LAB
STB
LDB
RTT

+ $B3
$B4,TSAU_W
$B4,GETLIN
$R3,PIJT
> + $A
$B4,FINISH
SB3 , $B3
$B4, TSA_W

INCREMENT B3 BY POINTER SIZE
SAVE B4

RESTORE B4

2-578 CZ06-00

UNLOCK DUMPFILE

UNLOCK DUMPFILE (SRLDMP)

Function Code: 20/04

Equivalent Command: Unlock Dumpfile (RLDMP)

Unlock the dump file configured for use by the Software Re-
boot Facility (SRF).

FORMAT:

[label] $RLDMP

ARGUMENT: None

DESCRIPTION:

The dumpfile unlocked is that used by the Software Reboot
Facility (SRF) to take a memory dump before reinitializing
the system. When activated, the SRF attempts to take a dump
if instructed to do so by an argument of the REBOOT CLM di-
rective. The dumpfile is locked after a successful dump has
been taken. Once locked, the dumpfile is unavailable for a
later dump until unlocked by the Unlock Dumpfile macro call
or command. To ensure a successful dump, an application
should issue $RLDMP before activating the SRF.

$RLDMP is a privileged call; it can be issued only by a task
running in a privileged memory pool.

NOTE

1. On return $R1 contains one of the following
status codes:

0000 - Dumpfile successfully unlocked

083A - Function invalid for unprivileged task
group

0865 - Dumpfile not configured

0869 - Error reported by file system when
attempting to reference dumpfile

086C - WARNING: Dumpfile too small for current
system.

2-579 CZ06-00

Example:

In this example, $RLDMP is issued to ensure that the dumpfile
is available
is executed.

$RLDMP

is available when the subsequent Reboot ($RBOOT) macro call '~̂ \

$RBOOT

2-580 CZ06-00

USER IDENTIFICATION

USER IDENTIFICATION (SUSRID1

Function Code: 14/00

Equivalent Command: None

Returns the user id of the calling task group to a
29-character blank-filled receiving field.

FORMAT:

[label] $USRID [location of user id field address]

ARGUMENT:

location of user id field address

Any address form valid for an address register; provides
the address of a 29-character, aligned, nonvarying
blank-filled field, into which the system will place the
user id associated with the issuing task group.

DESCRIPTION:

This macro call returns the task group's user id to a field
in the issuing task. The user id will consist of
person.account.mode. The unused portion of the field is
blank-filled.

NOTES

1. The system places in $B4 the address of the
receiving user id field, supplied by argument
1. If this argument is omitted, the system
assumes that $B4 contains the address of the
receiving field for the user id.

2. On return, $R1 contains the following status
code:

0000 - No error
0817 - Memory access violation.

2-581 CZ06-00

Example:

In the following example, a 16-word field is set up in the
issuing task, and the User Identification macro call is
issued to place the user id of the task group in that field.

ID01 $USRID IUSIDFL

USIDFL RESV 16, A1

2-582 CZ06-00

USER INPUT

USER INPUT (SUSIN)

Function Code: 08/00

Equivalent Command: None

Read the next record from the current input file for the
issuing task.

FORMAT:

[label] $USIN [location of record area address],
[location of record size],
[byte offset of beginning of record area]

ARGUMENTS:

location of record area address

Any address form valid for an address register; provides
the address of a record area in the issuing task into
which the next record read from the current user-in file
will be placed.

location of record size

Any address form valid for a data register; provides the
size (in bytes) of the input record area whose address is
given in argument 1.

byte offset of beginning of record area

Any address form valid for a data register; provides the
byte offset of the beginning of the record area (from the
address provided in argument 1). If argument 3 is L, the
record area begins at the left byte of the address speci-
fied in argument 1. If argument 3 is R, the record area
begins at the right byte of this address. Any other
value is taken to be the location of the byte offset of
the beginning of the record area from the address speci-
fied in argument 1. If argument 3 is omitted, the record
area is assumed to begin at the left byte of the address
specified in argument 1.

2-583 CZ06-00

DESCRIPTION: ' }

This macro call allows a task to read the next record from "̂̂
the current user-in file. Unless it has been changed by a ' >
New User-Input macro call, the user-in file is that file '
identified in the Request Group or Enter Batch Request macro
call.

NOTES

1. The system places in $B4 the address of the
record area supplied by argument 1. If this
argument is omitted, the system assumes that
$B4 contains the record area address.

2. The system places in $R6 the record size sup-
plied by argument 2. If argument 2 is
omitted, the system assumes that $R6 contains
the record size.

3. If argument 3 is L, $R7 is set to zero to '
designate that the record area begins in the ^~^
left byte of the specified address. If argu-
ment 3 is R, $R7 is set to one to designate
that the record area begins in the right byte
of the specified address. Any other argument
3 value is assumed to designate the location
of the byte offset from the address specified
by argument 1 and is placed in $R7. If argu- -v
ment 3 is omitted, the record area is assumed)
to begin in the left byte of the specified
address, and $R7 is set to zero.

4. On return, $R1, $R6, $R7, and $B4 contain the
following information:

$R1 - Return status; one of the following:

0000 - No error \
0817 - Memory access violation

All data management read-next-record
error codes may also be returned to $R1.
See the System Messages manual.

$R6 - Residual range (number of bytes not
filled in input record area)

$R7 - File status/type (see the Command In
macro call)

$B4 - Address of input record area.

2-584 CZ06-00

Example:

In this example, the issuing task is to read the next record
of the current user-in file into a 128-byte record area whose
address is in RECAD. The record area begins at the left byte
of the indicated address.

INAA $USIN 1RECAD,=128

RECAD RESV 64,0

2-585 • CZ06-00

USER OUTPUT

*"*N

USER OUTPUT fSUSQUT)

Function Code: 08/01

Equivalent Command: None

Write the next output record to the current user-out file for
the task group of the issuing task.

FORMAT:

[label] $USOUT [location of record area address],
[location of record size],
[byte offset of beginning of record area] ^

ARGUMENTS: ^

location of record area address

Any address form valid for an address register; provides
the address of the output record area containing the
record to be written to the user-out file. The first
byte of the record must be a slew byte (print file format
control byte; see "Printer Driver" in Section 6, "v
Vol. I). The record text begins in the second byte. _)

location of record size

Any address form valid for a data register; provides the
size (in bytes) of the record area whose address is given
in argument 1. The size value must include the slew
byte.

byte offset of beginning of record area

Any address form valid for a data register; provides the "̂
byte offset of the beginning of the record area (from the
address provided in argument 1). If argument 3 is L, the
record area begins in the left byte of the address speci-
fied in argument 1; if argument 3 is R, the record area
begins in the right byte of this address. Any other
value is taken to be the location of the byte offset of
the beginning of the record area from the address speci-
fied in argument 1. If argument 3 is omitted, the record
size is assumed to begin at the left byte of the address
specified in argument 1, the $R7 is set to zero.

2-586 CZ06-00

DESCRIPTION:

This macro call allows a task to write the next record to the
current user-out file. Unless it has been changed by a New
User Output macro call, the user-out file is as identified by
the Request Group or Enter Batch Request macro call.

NOTES

1. The system places in $B4 the address of the
record to be written, supplied by argument 1.
If this argument is omitted, the system
assumes that $B4 contains the address of the
output record.

2. The system places in $R6 the output record
size, supplied by argument 2. If this argu-
ment is omitted, the system assumes that $R6
contains the size of the output record.

3. If argument 3 is L, $R7 is set to zero to
designate that the record area beings in the
left byte of the specified address. If argu-
ment 3 is R, $R7 is set to one to designate
that the record area beings in the right byte
of the specified address. Any other value is
assumed to be the location of the byte offset
to be used, and is placed in $R7. If argument
3 is omitted, the record area is assumed to
begin in the left byte of the specified
address, and $R7 is set to zero.

4. On return, $R1, $R6, and $B4 contain the fol-
lowing information:

$R1 - Return status; one of the following:

0000 - No error

All data management write-next-record
error codes may also be returned. See
the System Messages manual.

$R6 - Residual range (number of bytes not
transferred from record area).

$B4 - Address of record area containing output
record.

2-587 CZ06-00

Example: ^^

In this example, the issuing task is to write the next record J
to the current user-out file for its task group. The record
length is 137 bytes (including the slew byte). The output
record begins at the right byte of the word labeled REC_AR.

$USOUT !REC_AR,=137,R

REC_AR TEXT ' A 1, (136)' '

2-588 CZ06-00

VALIDATE CHECKPOINT

VALIDATE CHECKPOINT (SVLCKP)

Function Code: OD/12

Equivalent Command: Validate Checkpoint (VALIDCKPT)

Determine the availability of a valid, restartable
checkpoint.

FORMAT:

[label] $VLCKP [location of pathname of checkpoint files]

ARGUMENT:

location of pathname of checkpoint files

Any address form valid for an address register; provides
the pathname of the checkpoint files to be validated. If
this argument is omitted, the currently assigned check-
point files are checked to determine if a valid, restart-
able checkpoint is accessible.

DESCRIPTION:

This macro call determines the availability of a valid,
restartable checkpoint. If argument 1 is specified, the pair
of checkpoint files specified by the pathname supplied are
checked to determine whether a valid, restartable checkpoint
is accessible. If argument 1 is omitted, the currently
assigned checkpoint files are checked.

The macro calls associated with the Checkpoint/Restart
Facility are: Validate Checkpoint, Checkpoint, Restart,
Defer Checkpoint, Checkpoint File.

NOTES

1. The system places in $B4 the address of the
pathname supplied by argument 1. $R2 is set
to one if a pathname was specified, or is set
to zero if no pathname was specified.

2-589 CZ06-00

2. On return, $R1 contains one of the following
return codes:

0000
084C
0209
0213
0849

No error
No valid checkpoint exists
File or directory not found
Exclusive access not available
No checkpoint/restart file assigned

Example:

This example illustrates the use of the Validate Checkpoint
macro in a check of the current checkpoint session. If a
checkpoint has been previously taken, a restart is performed
that goes back to that checkpoint. If not, the current ses-
sion continues. This sequence can be performed when an error
is detected by the program and a restart is desired.

skiprs

$VLCKP

bnez

$RS

equ

$rl,>skiprs

Check current files

Restart to previous
checkpoint

2-590 CZ06-00

WAIT

WAIT (SWAIT)

Function Code: 01/00

Equivalent Command: None

Wait for the completion of the operation that uses the speci-
fied request block (task, I/O, semaphore, clock, or overlay).

FORMAT:

[label] $WAIT [location of request block address]

ARGUMENT:

location of request block address

Any address form valid for an address register; provides
the address of the request block whose termination is to
be awaited by the issuing task.

DESCRIPTION:

This macro call permits a running task to indicate, as a
separate action, that it wishes to wait for the completion of
a particular request for the execution of another task. (The
capability of the synchronous Wait function is available
through the Request Task function.)

When a Wait macro call is issued, the issuing task must
supply the address of the request block to be waited upon.
If the Task Manager discovers that this request block is
marked as terminated, it immediately returns control to the
calling task, supplying the completion status code of the
terminated request. If the requst block is not marked as
terminated, the Task Manager stores the identity of the call-
ing (and now waiting) task in the request block and then sus-
pends the calling task. Another task can run at this task's
level. Later, when the Task Manager is notified of the com-
pletion of the request being waited upon, it activates the
waiting task and reports the completion status code of the
terminated request.

2-591 CZ06-00

NOTES ~>j

1. The system places in $B4 the request block
address derived from argument 1. If this """N
argument is omitted, the system assumes that *J
$B4 contains the address of the request block.

2. On return, $R1 and $B4 contain the following
information:

$R1 - Return status; one of the following:

yyzz - Where yy can be 00 or 80 through
EE for user status, or as defined
for other yy values in the System
Messages manual.

0000-FFFF - Posted completion status

0802 - Invalid LRN

0803 - Invalid wait (request block
already waited on, waiting on
self, or request block not pend-
ing for this task)

$B4 - Address of request block being waited
upon.

Example: J

In this example the Wait macro call is used to block the
issuing task until a task that was requested using the
request block labeled TRB posts its completion to that
request block. See the Terminate Request ($TRMRQ) macro call
for information about task termination. When the issuing
task is returned to the ready state, the task's posted com-
pletion status will be in $R1.

WAIT_1 $WAIT 1TRB

y

2-592 CZ06-00

WAIT ANY

WAIT ANY (SWAITA)

Function Code: 01/01

Equivalent Command: None

Check the completion status of all marked request blocks
generated by the calling task.

FORMAT:

[label] $WAITA

ARGUMENT:

None

DESCRIPTION:

This macro call permits a task to indicate that it wishes to
wait for request blocks (of any type) to be marked as
terminated. All requests waited on must have been issued by
the calling task.

Unlike the Wait on Request List ($WAITL) macro call, this
call does not require the caller to supply labels locating
the request blocks to be waited on. Instead, the caller must
set the P-bit of each request block to be waited on.
(Request block formats are shown in Appendix C.) If, after
the call is issued, no request block with its P-bit set is
marked as terminated, the Task Manager suspends the calling
task. Upon termination of a marked request block, the Task
Manager activates the waiting task, supplies in $B4 the
address of the terminated request block, and reports the
completion code of the terminated request.

2-593 CZ06-00

NOTE

1. Upon return, $Rl and $B4 contain the following
information:

$R1 - 0000-FFFF: Posted completion status of
first completed request
block

0803 - Invalid wait (no request block
generated with P-bit set is
outstanding)

$B4 - Address of terminated request block.

2-594 CZ06-00

WAIT BLOCK

WAIT BLOCK fSWTBLK)

Function Code: 12/20

Equivalent Command: None

Wait for the completion of the I/O operation associated with
the specified buffer. This macro call is used only when the
asynchronous bit is set in the program view entry in the file
information block (FIB) for the preceding Read Block or Write
Block macro call.

FORMAT:

[label] $WTBLK [FIB address]

ARGUMENT:

FIB address

Any address form valid for an address register; provides
the location of the FIB. The following FIB entry is
required:

logical file number

DESCRIPTION:

This macro call immediately follows a Read Block or Write
Block macro call. The buffer identified by the user buffer
pointer entry in the FIB must not be accessed between the
Read block or Write Block macro call and the Wait block macro
call, as shown below:

$RDBLK (block 0)
$WTBLK (block 0)
$RDBLK (block 1)
(process block 0)
$WTBLK (block 1)
$RDBLK (block 2)
(process block 1)

2-595 CZ06-00

Furthermore, only one asynchronous operation per file can be
outstanding at any given time.

The FIB can be generated by a File Information Block macro
call. Displacement tags for the FIB can be defined by the
File Information Block Offsets (Storage Management Access)
macro call.

NOTES

1. If the argument is coded, the system loads the
address of the FIB into $B4. If the argument
is omitted, the system assumes that $B4 con-
tains the address of the FIB.

2. On return, $Rl contains one of the following 1

status codes:

0000 - No error
Olxx - Physical I/O error
0203 - Invalid function
0205 - Invalid argument
0206 - Unknown or invalid LFN
0207 - LFN not open
020A - Address out of file
020B - Invalid extent description information
0217 - Access violation
021F - End of file.

Example:

In this example, it is assumed that the Read Block macro call
was coded as described above, except that the program view
entry was specified as z'EOOl1. Therefore, the Wait Block
macro call is coded as follows:

WAITAA $WTBLK 1BLKFIB

2-596 CZ06-00

WAIT FILE ($WIFIL (INPUT),
$WOFIL (OUTPUT))

WAIT FILE (SWIFIL (input). SWQFIL (output))

Function Codes: 10/64 ($WIFIL)r 10/65 ($WOFIL)

Equivalent Command: None

Wait for the completion of an asynchronous I/O activity. The
Wait File (input) and Wait File (output) macro calls are used in
conjunction with I/O operations in which the device to or from
which data is transferred is a terminal. The user specifies a
list of logical file numbers (LFNs) identifying the files to be
checked by the Wait function. If the $WIFIL macro call is used,
the function waits until at least one anticipatory read to one of
the specified files is complete. If the $WOFIL call is used, the
function waits until at least one write to one of the specified
files is complete. The first LFN for which an anticipatory read
($WIFIL) or an asynchronous write ($WOFIL) is complete is placed
in the field that the user specifies.

FORMAT:

($WIFIL1
[label] \$WOFILj [parameter structure address]

ARGUMENT:

parameter structure address

Any address form valid for an address register; provides
the location of the argument structure defined below,
which must contain the following entries in the order
shown.

out-LFN

A 2-byte field into which file management places the
LFN that was the first LFN in the list for which I/O
was complete.

list length

A 2-byte field containing a binary number that speci-
fies the number of LFNs in the list. If this field
is zero (meaning no list of LFNs is specified), file
management assumes a list of LFNs consisting of all
LFNs in the task group that are currently associated
with opened, interactive devices.

2-597 CZ06-00

LFN entries ")

A series of 2-byte fields, each containing the 2-byte ^^
LFN used to refer to the file. The LFN is a binary ~V
number in the range 0 through 255. Each referenced J
file must have been reserved (see the Get File macro
call) and opened (see the Open File macro call)
through this LFN. The LFNs in the list are con-
sidered to be in order of priority; the first LFN
specified for which I/O has completed is returned in
the out-LFN field.

DESCRIPTION:

A Wait File (input) function (SWIFIL) is meaningful only for
interactive device files that allow asynchronous input; this
function gives up control of the central processor until at
least one anticipatory read to any of the specified files is
complete. A Wait File (output) function ($WOFIL) is meaning-
ful only for interactive device files that allow asynchronous *"̂ \
output; this function gives up control of the central pro- '
cessor until output to one of the specified files is
complete.

When a Wait File (input) function is executed, the out-LFN
field is set to identify the first LFN in the list for which
an anticipatory read is complete. Since more than one read
may be completed at the same time, a Test File (input) macro
call can be used after the $WIFIL call to ascertain those r
LFNs for which input is complete. Note that the first $WIFIL)
call issued after the file has been opened waits for the
connect termination (initiated at the time of the open) in
addition to waiting for the completion of the first read.

When a Wait File (output) function is executed, the out-LFN
field is set to identify the first LFN in the list for which
an asynchronous write operation is complete. This function
returns the status of the write operation. If the write ter-
minated normally, the file can be considered available for \
output.

The LFNs in the list are ordered by priority; thus, the first
LFN for which I/O has completed will be returned in the
out-LFN field. The user can ignore the output LFN and estab-
lish his own priority by using the Test File (input) and Test
File (output) functions (see the Test File macro call). For
example, the user could:

2-598 CZ06-00

1. Issue a $WIFIL for LFNs 1, 2, and 3.

2. Issue a Test File ($TIFIL) for LFN 2; read and process if
not busy.

3. Do the same for LFN 1 and LFN 3.

4. Return to 1.

NOTES

1. If the argument is coded, the system loads the
address of the argument structure into $B4.
If the argument is omitted, the system assumes
that $B4 contains the address of the argument
structure.

2. On return, $R1 contains one of the following
status codes:

0000 - No error
Olxx - Media error
0205 - Invalid argument (duplicate LFN)
0206 - Unknown or invalid LFN
0207 - LFN not open
0217 - Access violation.

Example:

In this example, a Wait File (input) function is executed to
wait for the completion of a write operation on any of three
interactive files whose LFNs are 1, 2, and 3. The completion
of a write operation on the file associated with LFN 3 is
checked first; if the write is complete, LFN 3 is placed in
the out-LFN field. If the write is not complete, LFN 1's
file is checked; if not complete, the file associated with
LFN 2 is checked. If none of the write operations are com-
pleted, the task is placed in the wait state.

IWTLST DC 0
DC 3
DC 1
DC 2

ONWTBB $WIFIL !IWTLST

2-599 CZ06-00

WAIT LIST, GENERATE

WAIT LIST. GENERATE fSWLIST)

Function Code: None

Equivalent Command: None

Generate a wait list consisting of a count field followed by
the specified number of request block pointers.

FORMAT:

[label] $WLIST [request block label 1],
[request block label 2],

[request block label n]

ARGUMENTS:

request block label 1 ... request block label n

Label of the request block to be placed in the wait list.
v

If a label having a value of zero is specified before the)
last label is supplied, an address of zero is generated
for the wait list entry that corresponds to that argument
position. See Appendix C for the format of the wait
list.

DESCRIPTION:

A wait list consists of a count of the number of request
blocks to be waited on, followed by the specified number of ",
request block pointers. ^_^'

When any request block referenced in the wait list provided
in the Wait on Request List macro call has been posted as
complete, the issuing task is awakened.

A wait list can refer to any mixture of request blocks.

If any pointer in the wait list is zero, it is ignored by the
Wait on Request List macro call.

The count field format is Olnn (where nn is the number of
request block pointers specified in the macro call).

2-600 CZ06-00

Example:

In this example, a Wait List, Generate macro call is used to
generate a list of three request block addresses (following
the count field of 0103).

ALSTA $WLIST TSKBO1,TSKBO 2,TSKBO 3

2-601 CZ06-00

WAIT ON REQUEST LIST

WAIT ON REQUEST LIST (SWAITL)

Function Code: 01/01

Equivalent Command: None

Check the completion status of request blocks. The request
blocks specified in the list can be a mixture of types (task,
clock, I/O, semaphore, or overlay).

FORMAT:

[label] $WAITL [request block label 1],
[request block label 2],

[request block label n]

ARGUMENTS:

request block label 1 ... request block label n

Label of the request block to be placed in the wait list.

If a label having a value of zero is specified before the
last label is supplied, an address of zero is generated
for the wait list entry that corresponds to that argument
position. See Appendix C for the format of the wait
list.

DESCRIPTION:

This macro call permits a running task to indicate that it
wishes to wait for any one of up to 255 request blocks (of
any type) to be marked as terminated.

The Task Manager scans the wait list and checks the status of
the specified request blocks. If it finds any request block
marked as terminated, the task manager returns immediately to
the calling task. If it finds that no request block in the
list is marked as terminated, the Task Manager suspends the
calling task until at least one of the blocks is marked as
terminated. When the- Task Manager is notified of the termi-
nation of a request block specified in the list, it activates
the waiting task and reports the completion code of the ter-
minated request.

2-602 CZ06-00

NOTES

1. If arguments are specified, a wait list is
generated. The address of the wait list is
placed in $B2; if the arguments are omitted,
$B2 is assumed to contain the address of the
wait list.

2. Upon return to the issuing task, $R1, $B2, and
$B4 contain the following information:

$Rl - Return status; one of the following:

yyzz - Where yy can be 00 or 00
through EE for user status, or
as defined for other yy values
in the System Messages manual.

0000-FFFF - Posted completion status
of first completed request
block detection.

0802 - Invalid LRN.

0803 - Invalid wait (request block
already waited on or not pend-
ing for this task; or all
pointers on this wait list
were null).

$B2 - Address of wait list

$B4 - Address of request block that caused
return (i.e., first completed request
block found); if null, all pointers in
the wait list were null.

Example:

In this example, the Request Clock macro call ($RQCL) is
issued to start a 5-second timer using the clock request
block labeled TIMER. Then the Wait on Request List macro
call is used to block the issuing task until either the task
that was requested using a request block labeled TRB posts
its completion or the Clock Manager posts completion of the
5-second interval on the clock request block labeled TIMER.
If the task goes to completion first, the Cancel Clock
Request macro call ($CNCRQ) will cancel the request on TIMER,
thus freeing it for later reuse. To simplify the example,
the return status will not be checked for errors that might
occur.

2-603 CZ06-00

$RQCL 1TIMER
$WAITL TRB,TIMER
CMB $B4,=TIMER
BE T_OUT o

* THE SUBTASK COMPLETED FIRST

$CNCRQ 1TIMER

* THE CLOCK TIMED OUT FIRST
*
T_OUT EQU S

TIMER $CRB R, NWAIT,,MS=5000
'*Jr*>v

2-604 CZ06-00

WAIT ON MULTIPLE REQUESTS

WAIT ON MULTIPLE REQUESTS (SWAITM)

Function Code: 01/01

Equivalent Command: None

Check the completion status of a list of specified request
blocks. The request blocks specified in the list can be a
mixture of types (task, clock, I/O, semaphore, or overlay).

FORMAT:

[label] $WAITM [number of requests to be waited on],
[request block label 1],
[request block label 2],

[request block label n]

ARGUMENTS:

number of requests to be waited on

Any address valid for an address register. Specifies the
number of requests to be waited on. If the total number
of requests completed exceeds the value specified, con-
trol is returned to the issuing task.

request block label 1 ... request block label n

Label(s) of the request block(s) to be placed in the wait
list.

If a label having a value of zero is specified before the
last label is supplied, an address of zero is generated
for the wait list entry that corresponds to that argument
position. See Appendix C for the format of the wait
list.

2-605 CZ06-00

DESCRIPTION:

This macro call checks the completion status of each of a
list of specified request blocks. If the total number of
completed requests equals or exceeds the number specified in
argument 1, control is returned to the issuing task.
Otherwise, the issuing task is suspended until the requisite
number has completed.

1. If arguments are specified, a wait list is
generated. The address of the wait list is
placed in $B2; if the arguments are omitted,
$B2 is assumed to contain the address of the - • -
wait list.

2. Upon return to the issuing task, $R1, $B2, and
$B4 contain the following information:

$R1 - Return status; one of the following:

0000-FFFF - Posted completion status of
first completed request block
detection.

0802 - Invalid LRN.

0803 - Invalid wait (request block
already waited on; or not pending
for this task; or all pointers on
this wait list were null).

$B2 - Address of wait list

$B4 - Address of request block that caused
return (i.e., first completed request
block found); if null, all pointers in
the wait list were null.

2-606 CZ06-00

WAIT LIST, GENERATE MULTIPLE

WAIT LIST. GENERATE MULTIPLE (SV^STM)

Function Code: None

Equivalent Commands None

Generate a wait list in which one or more of the requests
waited on must complete before the issuing task is reactivated.

FORMAT:

[label] $WLSTM [number of requests required to reactivate],
[request block label 1],
[request block label 2],

[request block label n]

ARGUMENTS:

number of requests required to reactivate

Specifies the number of completed request blocks neces-
sary for issuing task reactivation.

request block label 1 ... request block label n

Label of the request block to be placed in the wait list

DESCRIPTION:

The wait list consists of a count of the number of request
blocks in the list and a quota of those blocks required to
reach completion before issuing task is to be activated, fol-
lowed by the specified number of request block pointers.
When the requisite number of request blocks in the list have
completed, the issuing task is activated.

2-607 CZ06-00

WRITE BLOCK

WRITE BLOCK fSWRBLK)

Function Code: 12/10 (normal), 12/11 (tape mark)

Equivalent Command: None

Write (i.e., transfer) a block from a buffer in main memory
to a file. The user must supply a buffer and specify both the
size of the block and its relative location in the file.

FORMAT:

[label] $WRBLK [FIB address] ,NORMAL I
rTM (

/

ARGUMENTS:

FIB address

Any address form valid for an address register; provides
the location of the file information block (FIB). The
following FIB entries are required.

logical file number

Program view (should include buffer alignment and
whether the next write operation is synchronous or
asynchronous).

user buffer pointer

transfer size

Block size (must be a multiple of the physical sector
size).

block number

NORMAL
NOR (

For disk-resident files, this mode argument indicates
that the contents of the buffer are to be written in a
control interval whose block number is specified in the
block number entry in the FIB.

2-608 CZ06-00

For nondisk-resident files, this mode argument indicates
that the block is to be transferred from the buffer to
the next sequential position on the file.

NORMAL is the default value for this macro call.

TM

(For tape-resident files only.) This mode argument indi-
cates that a tape mark is to be written at the next
sequential position on the tape.

DESCRIPTION:

Before this macro call can be executed, the Logical File
Number (LFN) must have been opened (see Open File macro call)
with a FIB program view word that allows access through
storage management (bit 0 is one) and allows write operations
(bit 2 is one). To write a file sequentially, it is neces-
sary only to issue successive Write Block macro calls in
NORMAL mode, which causes the block number entry to be incre-
mented by one after each transfer. The system extends the
file space up to the limit specified in the Create File macro
call when required to do so as a result of a Write Block
macro call. In addition, the system updates the logical
end-of-file as the file is extended.

The following end-of-file/end-of-tape considerations must be
noted:

• Tape-resident files. If logical end-of-tape (i.e., EOT
reflector) is detected during a Write Block macro call,
all data is written and status code 0231 is returned. If
physical end-of-tape is reached before all data is
written, a code of 0231 is also returned.

• Disk-resident files. If there is insufficient space to
contain the data defined by the transfer size entry in the
FIB (i.e., the file has reached its maximum size), a
status code of 0223 is returned. If the file has not
reached its maximum size but no more sectors are available
for allocation to it, a code of 0215 is returned. No data
is written.

• All files. Partial blocks are not written.

2-609 CZ06-00

Only one asynchronous I/O operation per LFN can be outstand- j
ing at any given time. —̂̂ '

' "**NThe FIB can be generated by a File Information Block macro j
call. Displacement tags for the FIB can be defined by the --'
File Information Block Offsets (Storage Management Access)
macro call.

NOTES

1. If the first argument is coded, the system
loads the address of the FIB into $B4; if the
argument is omitted, the system assumes that
$B4 contains the address of the FIB.

2. On return, $Rl contains one of the following
status codes :

0000 - No error •

Olxx - Physical I/O error ^t'

0203 - Invalid function

0205 - Invalid argument

0206 - Unknown or invalid LFN

0207 - LFN not open -x

020A - Address out of file

020B - Invalid extent description information

0215 - Not enough contiguous logical sectors
available

0217 - Access violation
\

0223 - File space limit reached or file not >̂̂
expandable.

0224 - Directory space limit reached or not
expandable.

0231 - Unexpected tape EOT encountered.

2-610 CZ06-00

Example:

This example assumes that the FIB was defined as follows:

BLKFIB DC Z'0005* LFN = 5
DC Z'EOOO1 PROGRAM VIEW = ALLOW READ/WRITE;

SYNCHRONOUS PROCESSING
DC <BLKBUF BUFFER POINTER
RESV 2-$AF
DC 256 TRANSFER SIZE = 256
DC 256 BLOCK SIZE = 256
DC Z100000000' BLOCK NUMBER

Where the above FIB is defined (assuming the appropriate Open
File and Get File macro calls are specified), the following
macro call can be executed to write the contents of the
buffer into the first block (i.e., block 0) in the file:

$WRBLK !BLKFIB,NORMAL

2-611 ' CZ06-00

WRITE RECORD

WRITE RECORD (SWRREC)

Function Code:
11/20 (next), 11/21 (key), 11/22 (position equal), 11/23
(position greater than), 11/24 (position greater than or
equal) , 11/25 (position forward), 11/26 (position backward)

Equivalent Command: None

Transfer logical records to a file from the user's record
area, or merely position the write pointer to a desired record.
Whether to transfer or position is specified by the second (i.e.,
mode) parameter.

FORMAT:

[label] $WRREC [FIB address]

,NEXT
,KEY
,POSEQ
,POSGR
,POSGREQ
,POSFWD
,POSBWD

ARGUMENTS

FIB address

Any address form valid for an address register; provides
the location of the file information block (FIB).

NEXT)
NXT J

(For all files.) This
record is to be written
identified by the write
set to the next logical
write is complete. The
pointed to is unused or
Records are written in
File Organizations and
default for this macro
lowing FIB entries:

mode argument indicates that the
into the position in the file
pointer. The write pointer is
record in the file after the
system ensures that the position
contains a deleted record,
the file as described in the Data
Formats manual. This is the
call. The user must code the fol-

logical file number (LFN)
program view {record area alignment
user record pointer
output record length

2-612 CZ06-00

After the record is transferred to the file, the system
updates the following FIB entry:

output record address (serial sequence number if
device file; BSN if tape file; relative key for rela-
tive files and simple key for other disk files).

This mode is referred to as write next.

KEY

(For disk files accessed by key, only.) This mode argu-
ment indicates that the record is to be written into a
position in the file, based upon the key value. The
write pointer is set to the next logical record in the
file after the write is complete. Records are written as
described in the Data File Organizations and Formats
manual. The user must code the following FIB entries:

logical file number
program view (record and key area alignment)
user record pointer
output record length
input key pointer
input key format
input key length

After the record is transferred to the file, the system
updates the following FIB entry:

output record address

This mode is referred to as write with key.

(POSEQ\
\PEQ /

(For disk files accessed by key, only.) This mode argu-
ment positions the write pointer to the first position in
the file whose key value is equal to the one specified in
the FIB. It is normally followed by Write Next macro
calls to load the file starting from that position. The
user must code the following FIB entries:

logical file number
program view
input key pointer
input key format
input key length

This mode is referred to as read position equal.

2-613 CZ06-00

(POSGRl , '*""")
(PGR J ŷ

(For disk files accessed by key, only.) This mode argu- ' "̂
ment positions the write pointer to the first position in
the file whose key value is greater than the one speci-
fied in the FIB. It is normally followed by Write Next
macro calls to load the file starting from that posi-
tion. The same FIB entries as for POSEQ, above, must be
coded. This mode is referred to as write position
greater than.

(POSGREQ)
\PGE J

(For disk files accessed by key, only.) This mode argu-
ment positions the write pointer to the first position in
the file whose key value is greater than or equal to the
one specified in the FIB. It is normally followed by
Write Next macro calls to load the file starting from)
that position. The same FIB entries as for POSEQ, above, '
must be coded. This mode is referred to as write posi-
tion greater than or equal.

(POSFWD)
\PFD {

(For tape-resident, disk sequential, and relative files,
only.) This mode argument moves the write pointer -»Y
forward the number of record positions specified by the J
key value identified in the FIB (but not beyond the end
of file). The same FIB entries as for POSEQ, above, must
be coded. This mode is referred to as write position
forward.

JPOSBWD*
iPBD f

(For tape-resident, disk sequential, and relative files, \
only.) This mode argument is the same as for POSFWD, '
above, except that the pointer is moved backward the -̂̂
number of record positions specified by the key value in
the FIB (but not before the first record). This mode is
referred to as write position backward.

2-614 CZ06-00

DESCRIPTION:

Before this macro call can be executed, the LFN must be
opened (see the Open File macro call) with a program view
word that allows access through data management (bit 0 is
zero) and allows write operations (bit 2 is one). The file
must be reserved (see the Get File macro call) with write
access concurrency control (type 3, 4, or 5). The write
pointer is a logical pointer to where the next record is to
be written; it is maintained separately from the read
pointer. There is one write pointer per LFN per user. At
open file time, the write pointer is set to the first record
(if RENEW is specified) or logical end of file (if PRESERVE
is specified). The write pointer is modified by each write
record operation.

The file information block can be generated by a File Infor-
mation Block macro call. Displacement tags for the FIB can
be defined by the File Information Block Offsets (Data
Management Access) macro call.

The following illustrates the effect of write actions accord-
ing to file organizations.

File Organization

Sequential

Effects of Write Action

Write next: If the file is being created
(i.e., opened in RENEW mode), the records
start at the beginning of the file. If the
file is not being created, the records are
appended to the end of the existing file.

The position modes POSEQ, POSGR, POSGREQ,
POSFWD, and POSBWD may be specified to do a
"partial file renewal" or a "file shrink".
These modes use a simple key to address (set
write concurrency) an active record. The
resulting new end-of-data must lie within the
file limits that existed before the write
operation.

Write next and write with key produce identi-
cal results when dealing with random files. A
write with key verifies that the key length
and key pointer references are in the proper
position in the user record area. These
checks are not done in the write next
operation.

2-615 CZ06-00

File Organization

Relative

Indexed

Fixed Relative

Effects of Write Action

Write next, issued immediately after an open
file, appends a record to the end of an exist-
ing file. In RENEW mode, this action can be
used to create the file sequentially. Write
next issued after a write next, write with
key, or with any position mode, inserts a
record in the next available (unused or
deleted) space. A write next searches for the
next available spaces in which to place the
record.

Write with key uses a relative or simple key
that must address a deleted record or an
unused space.

All position modes use a relative or simple
key to address (set write currency to) an
active record, deleted record, or unused
space.

Write next and write with key (using a key
format that indicates a primary key) produce
identical results. A write with key operation
verifies that the key lengths and key format
information in the FIB are correct and that
the key pointer refers to the proper position
in the user record area. The write next oper-
ation does not perform these checks.

If the file is being initially loaded, it
should be opened in RENEW mode, with the data
to be written sequenced in ascending order by
primary key. Data management will verify that
the supplied keys are in order, and will gen-
erate a key-out-of-sequence error if they are
not. When inserts are to be made, the exist-
ing file should be opened in PRESERVE mode.

Fixed relative with nondeletable records:
Write next, issued immediately after an open
file, appends a record to the end of an exist-
ing file. In RENEW mode, this action can be
used to create the file sequentially. When
issued after a write next, write with key, or
any position mode, it inserts a record in the
next logical record position.

2-616 CZ06-00

File Organization

Fixed Relative
(cont)

Device Files

Tape Files

Effects of Write Action

Write with key inserts a record in the space
addressed by the relative key. All position
modes set write currency to the specified
record.

Fixed relative with deletable records: Write
next, issued immediately after an open file,
appends a record to the end of an existing
file. In RENEW mode, this action can be used
to create the file sequentially. Issued after
a write next, write with key, or any position
mode, write next inserts a new record in the
next available (unused or deleted) space.
This write next operation searches for the
next available space in which to place the
record.

Write with key uses a relative key that must
address a deleted record or an unused space.

All position modes can address (set write con-
currency to) an active record, deleted record,
or an unused record.

Write next allows sequential writing, provided
the device can be written to and has been so
defined.

If the file was opened in RENEW mode, records
start at the beginning of the file. If the
file was opened in PRESERVE mode with only
write permission granted, records are appended
to the end of the existing file.

In PRESERVE mode with both read and write
permission, write next inserts a record fol-
lowing the last record just read or written.
If write is the first function after the open,
data is written at the beginning of the file.

A tape file can be positioned n records
forward or backward.

2-617 CZ06-00

NOTES

If the first argument is coded, the system
loads the address of the FIB into $B4. If
this argument is omitted, the system assumes
that $B4 contains the address of the FIB.

On return, $R1 contains one of the following
status codes:

0000 - No error

Olxx - Physical I/O error

0203 - Invalid function

0205 - Invalid argument

0206 - Unknown or invalid LFN

0207 - LFN not open

020A - Address out of file

020B - Invalid extent description information

0217 - Access violation

0219 - No current record pointer

021A - Record length error

021B - Duplicate key

021C - Key out of sequence

021E - Key length or location error

0223 - Disk space limit reached

0224 - Directory space limit reached

0227 - Index limit exceeded while loading an
indexed file

022A - Record lock area overflow

022B - Record deadlock occurred

2-618 CZ06-00

022F - Unknown or invalid record type

0231 - Unexpected end-of-tape encountered

0237 - Invalid record or control interval
format

023A - Recovery file I/O error

0263 - Journal file I/O error.

Example:

In this example, the FIB (i.e., MYFIB) described under
"Assumptions for File System Examples" in Appendix A is iden-
tified by the first argument. Assuming that the fils has
been reserved with write-access concurrency control, and that
it has been opened as defined in the Open File example, the
macro call is specified as follows:

$WRREC !MYFIB,NEXT

After the record is written in the file, the system updates
the following entry, which you can interrogate with the FIB
offset tag:

F_ORA (output record address)

2-619 CZ06-00

Appendix A
ASSUMPTIONS FOR FILE

SYSTEM EXAMPLES

The examples shown in file system macro call descriptions are
based on the following assumptions.

1. All the following displacement definition macros were
specified:

SCRPSB
$GTPSB
$GIPSB
$GIFAB
$GIKDB
$TFIB
$MDPSB
$STPSB

2. The following argument structures were defined:

a. Argument structure for Create File Parameter
Structure Block Offsets ($CRPSB)

A-l CZ06-00

FILE_A DC Z'00051

DC IDX01
RESV 2-$AF
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC

Z'49001

80
512
5
5
10
320
2
1
KEY

RESV 2-$AF
RESV 4,0

LFN 5
PATHNAME PTR.

FILE ORG = I (INDEXED)
LOG. RCD. SZ. = 80
C.I. SZ. = 512
INIT. ALLOC. SZ. = 5
ALLOC. INCR. SZ. = 5
MAX. ALLOC. SZ. = 10
FREE SPACE =320
LOCAL OVERFLOW ALLOCATION
NO. OF KEY DESCR. = 1
KEY DESCRIPTOR PTR.

RESERVED

INCREMENT=2

b. The pathname addressed by the previous structure
(FILE_A)

IDX01 DC '~VOL03>SUBINDEX.A>FILE_A '

c. File information block ($FIB)

MYFIB DC
DC
DC
RESV
DC
DC
DC
DC
DC
RESV
DC
RESV
RESV

Z'00051

Z'20001

INBUF
2-$AF
256
256
Z'OOOOFFFF1

Z'OOOO 1

MYKEY
2-$AF
Z'OIOA1

2,0
2,0

LFN 5
PROG. VIEW = ALLOW WRITE
USER RECORD PTR.

MAX. INPUT RCD. SZ. = 256
OUTPUT RCD. SZ. = 256
RESERVED
RESERVED
INPUT KEY PTR.

INPUT KEY=PRIMARY; KEY LENGTH=10
RECORD ADDRESS
RESERVED

\

When necessary, other structures are defined in the file
system macro call examples.

A-2 CZ06-00

Appendix B
SUMMARY OF REGISTER
CONTENTS FOR SYSTEM

SERVICE MACRO CALLS

Table B-l lists the register contents before and after
execution of the system service macro calls. Since data
structure macro calls do not affect registers, these are not
listed. For a discussion of the registers that are altered or
preserved, refer to "Register Conventions and Contents" in
Section 1. r k

The table is arranged in function code sequence.

B-l CZ06-00

CO
-U
c
0)
4J
C
o
CJ

03

a;

ca
a>
T!
o
cj
c
o
•i-i
4-1
U
C

CQ
rH

rH

(0
CJ

o
Ul
o
fa
S

I
CQ

?
&
in

§.u
c
o

c

I
g

£

CC

CO

CC

r.

CC

ae.

ce

CM
X

CC

«

<N
ce

c?

o

13

o
^JJ5
c

2:
•*-
c
ITJ

J

Ul
U)
41

«3J 2

Ul

TJ

-a

01
01
4>

< 2

o

o

1

0)

HI

•8 a
< 2

Ul
3

ITJ

cn

•v.
0

I

i
Ul
4)

lg
Ul

-« 01 TJ•o -H t;
^ — < TJ

3

IT!

ir

Ul
01
u>

~ j> s
^ — TJ

O

o

rH

Ul

lg

0)
U]

-* 01 T3

2 -< T§

Ul
3

TJ

cr

)
1
^

T £ 5

^ - -

=

0

W
LIV

f-IS

Ul
Ul
41

lg

Ul
3

ITJ

C/l

01

Is

o

o

1

4

T
e
n
ri
n
a
t

ro
u

ti
n

e
ad

dr
es

s

U]

TJ

V

"S

N
H

IJH
S

U]

u 4> Ul 'Q
§51 .u -< "O

ti oj — i m

IV

IQ 41 Ul

5 S S
£ 3 3
41 O -t5
6- " ITJ

Ul

lg

U]
3

0
J

O

O

0

I

Ul

CC Qj 4> i— » TJ

41

m 41 ui
c c: in

E 4J 1̂
3 T5

OJ O t3

Ul

lg

3

ti

1/1

UJ
Ul

j^ 41

TI TJ

S "°

3

O
\
o

I

Ul
1 T

fc °
[Q 1-t -*J VJ
u 0.* Ul T3

§ ftj JJ -H ^C
£i QJ '-n tl

O

a as
-l -i 41

C 3 T3
41 O T5
E-i u ITJ

Ul
41

< CC

Ul
3

C3

=

O

1

<u
c

Ul

g
co

c
^

3

X

01

o
OJ

Ul

c

S
_)

£

CO

CO

CQ

CC

2

2

da

CG

CC

CC

*

S

01

o

5̂
Cb

c
3

IT

C
TJ

O
2.
^

Ul
3

TJ
-U
CO

— <

§ " 2 3
U *J j

ca
o

0

1

Ul (T>
41 *-« *J
^ (TJ C 4J

41
Ul 1 O
Ul C C
41 -< C 41
u E O 3

"O 4l -*-* 4J
< U ITJ W

ui ca
01 CC
41

TJ 4)
< C

U]
3

ITJ

CO

Ul
•3

12
Z 01

4_l
•̂

41 O

a a

o
o

o

£

B-2 CZ06-00

03
(U

•O
O

C CQ
O 4J

•r-l C

-P (U
O -U
c c
3 O
b O

CO (U
i— 1 4J
rH CQ
(0 -H
CJ OT»

CU
O «
u
O ^3
(0 C

-P
C
O
o

I
CQ

1
L4

3

£
01V
gJ-l

E
xe

cu
t i
o
n

4*
w
O
>w

£

ul
.u
c
4J

U

£

tr
02

2

£̂

CC

£

2

ce

£

£

r-
X

s

2

t£

G

13

s

n
e
t i

o
n
s

(c

(

3
U_
Cw
3
4-1
•J
f£
•0

R
eq

ue
st

 c
u

M i
w cr>
4) u U
W 10 C 4J

A
dd

re
ss

n
e
xt

 R
B

in

(0

/l

-*'JJ U]
<0 J)

2 2 ?
Z U) TJ

D
ef

er
p

ri
o

r
it
y

3

o

8 i

in

n3
U3

D
tf

e
r

p
ri

o
ri

ty

\
o

fe

A
dd

re
ss

re
c
a
lle

d
RB

01
3

TJ

<f>

R
ec

al
 1

p
r
lo

r
it
'j

i
i>
Z. C J

§ H 3
^J -U J

3

o

s
8

05
C
O

Ci.

g

P
h
ys

ic
a
l

A
dd

re
ss

1O
RE

in
3

<C

tn

01
01
01

ll

o
o

ô

O

1

U]
3

tj

Uj

o in
—i ji

<!> 4J

3Ji?
^J ±i (T3

1/1
K UI
U OJ

> ^ 3v g -a
Q C <O

LO

0

^J
o

u>

in
3

<O

<A

O u)
rl 01

CD 11

W ITJ •§
3 .w as

01
0) Jl
U IU

> i 2
ju 53 -O
U C IT]

o
?5
o

a
d

in
3

O

to

yO in
r-< Ul

i) <U

o -Q 3in nj "O
O w rtJ

Ul
01 -0
U 4)

> i 2jb fl -O
Q C 10

20

^
O

1

0]
3

it!

UJ

C1

O «
-• in

•il 01

ui us •§
=> 4J m

U)
0) U}
U 01

> ?j g
1) (O 'Oa c t i

!̂
o

ô

SE
LE

ND

ne
t i

o
n
s

lo
c
a
ti
o
n

 F
u

'-d
>.

in
£ £^^ o

01

U]

01
N

w

Ul
3

<O

CO

o/
N

w

Ol
N

CO

R
e

tu
rn

c
o
n
d
it
io

n

fM
O
-^-

O

i

Ui
in X.4) u
ui O

Ol
N

w

01
t4

W

Ul
3

13

CO

Ol
KJ

CO

Oi
N

CO

o
X.

o

I

(0
3

19

ft

01

Ol M

si

TJ-
0•\
o

I

Ul

8 >1w
W4 O

< B

01
N

CO

Ol
N

CO

01
3

•o
vO

01
Ul ,-1
01 li

ii

a.
CO

u
N

Jl

Ô
-v.

O

I

"uT-o
w

|

>t
u

>i Z
u U
O w

5 P-

01
3

rtj

CO

S T3

vo
O

0

1

£

B-3 CZ06-00

CO
<L>

0
CJ

C W
O 4J

•H C

O 4J
C Ca o
fa CJ

V l_|

CO CD
rH 4J
rH C/l
(Tj -H
CJ cn

CD
O 0£

O T3
f%5 C
IS ttj

--
4J
C
o
o

rH
1

CQ

CD

*

"S
U

4J

0)

§J-p

§

'
E

xe
cu

tl

o

10

c
OII

s

in
CQ

a

<x

a:

a

2

s

CM

r—a.

S

2

2

o

m
et

 io
ns

Cu

|

Ul

01

ae

S
ta

tu
s

A
dd

re
ss

CR
B

oo

o

8i

Ui

<8

'ie

S
ta

tu
s

A
dd

re
ss

CR
B

0

ino

g

S

S
ta

tu
s

1
ID

IT!

In
te

rv

Oi

"8
CJ

0

in
o

£w
si

S
ta

tu
s

S>»u
-3

In
te

rn
al

o
ino

1

i

Ul

S

I
V

D
a
te

/1
 im

c?

-« T
0) -

**

i

J-I

3

n
Ui

2
C

S
ta

tu
s

<y

-< t
OI -
U 0

1:

g
^
>
4J
10

T3

In
te

rn
al

•«•o
m
0

p

S

Ul

3 41

-> ID

dd
dr

es
s

to

-i

CJ

S1

R
5

=
R

ec
ei

\

H

-t T

G£ U

2
*J

1

"3
Ol

c

|
 S

ta
tu

s

T

R
ec

ei
vi

r
F

>
^

1
^

^r-44J

>
4J

•3

In
te

rn
al

m

m
o

£

£

Ul

n S

:'«

ad
dr

es
s

0,

Ul

T3

I
II

m
Of

i

vOo
ino

g

»

•a !
C i

OI
o-l .a^

Ĵr
3
HJc
Ol

c

S
ta

tu
s

S

E
xt

er
na

l
^

1
,1

-
c
/t

-
ln

4̂J

9?4_i

-§

In
te

rn
al

o
m
o

|

I/V

y
5 ui

3 fl

V
5
J

£

\

T3

01

CO

o
Oi
N

II
in
K

Ul

%
4-1

Ct4

OI

Se
m

ap
ho

r

Ul

'$%

S
ta

tu
s

A
dd

re
ss

SR
B

o
0

o

Jj
£

U)
Ul
01

T^ yn
"U CL,
< O)

S
ta

tu
s

A
dd

re
ss

SR
B

o

0

8S

Ol
•H

S
ta

tu
s

^

Id
en

t i

|

O

0

1
S

S
IM

1

S
ta

tu
s

5

I

0

o

»i
£

41

t2

1

S
ta

tu
s

i

I
OI
3

fl

T
O

S
S£

01

1
h-t

S
ta

tu
s

S

t-4

s
o

5a

Ul

C

c
d.

4a
nd

li
ng

O
ve

rl
ay

S
ta

tu
s

B
d

b
t

ad
dr

es
s

-o

3

O
ff

se
t

o>
8*2

0
0

o

Uffi

Ul

3 T3
(T3

4J
4-

i-

X ^

Ul
3

CO

Ul

O "
Ul T3

g

o!

o

o

gi

B-4 CZ06-00

^
CQ
0)

o
CJ

C CQ
O 4J
•H C
.u Q>
0 -P
c c
3 0
fa CJ

CQ <D
rH 4J
rH CQ
fCJ 'rH
cj en

O OS

OT3

S rtJ

4J
C
o
o

rH

CQ

0)
rH

<T3

^

I

t:

3

S

C
on

te
nt

s
i

c
jj

*Q
41

O

Q)

Ul
JJ

s

£

in
03

S

CO

C6

as

CN
ac.

m

20

as

(X

X.

g

O

z J

.

0

Ul

s
4J

?

1
jC

>,
-
41

Ul

41
N

JJ

<M

8

1O Ul

S 2O ui

Ul
3

fl

Jl

-o

a

>,
*^
41

8-2

o

o

1
s

•o
>0 U]

S-o

nj

4!

3
10s

T3

o TJ

'O

B

41

IM
O

>,

•̂

41

82

o

0

->

1
<»

1

O VO
TJ 0
O 0o o

T3

as

Ul
Ul
41

w S
JJ (O

C£ JJ

g§,

\
0

y.

1

^

R
fl

ad
dr

es
s

jj

Hs

3?
01

8 "2

Ul
3
JJ
IO

03

Ul
41

CQ 'O

"2
35

jj
41
Ulu_

u-l
O

;,,
fl

W
<Uz?

r~
o

o

,is

>1 Ul

% 41 8
k« JO *-* W

O <0 JJ rtJ

«-i ui u 4)
-H O 41 0> u

JJ N JJ >i
u -» c c <o
< Ul 41 •» --1

^^ o In
fl ^-t
3 4) 1-. (O
JJ N 41 41
U i > w
<< Ul O lO

Ul

10

Ul

O 1 10
Ul i- 41

<y 2 > """

z 53 -i — i

•" >io <o-> >,
41 u |Q u
N 4) 41 jj

U3 O S 41

O

0

J^
I
s

Ul
3

S
41 w
Ul 'D

CQ 10

T3

m ui
Ul

fl

JJ

a,
c

>» 3

— (4)

4, II> 13 in
O -• co

o

o

1

^

Ul

(/I

"O
iO Ul

o 'S

a
o

o
,,

g
Q

Ul

§

1

O
^H

_

5jjji
c/i
t3

•o

W

A
dd

re
ss

re
co

rd
ar

ea

41 U

tu fV

4>

f
2£

Ul
3

fl
JJ
C/3

A
dd

re
ss

re
co

rd
ar

ea

01ji

o

T3

O CJ

CC Ul

0
o
X.

o

z

p

A
dd

re
ss

re
co

rd
ar

ea

I

Ul
3

JJ
A

dd
re

ss
re

co
rd

a
re

a

S
o

"O

O 41

$2
<£ ul

O

O

§
p

A
dd

re
ss

re
co

rd
ar

ea

4) cy

b. K

O1

I/I
3

jj

A
dd

re
ss

re
co

rd
ar

ea

S
o

•a
O 41

an ui

o

o

z
o(rt-

A
dd

re
ss

re
co

rd
ar

ea

4,

Ul
3

U
JJ

A
dd

re
ss

re
co

rd
ar

ea

jj

0

T5

O 41
U N35 -.
Oi Ul

0

o

1s
v>

A
dd

re
ss

pa
th

na
m

e

55-
c>. ^"

TJ J=

ct — .

3

10

W

A
dd

re
ss

pa
th

na
m

0 0

o

o

5
p

A
dd

re
ss

pa
th

na
m

e

•58-
Cu ?

t) —

O CT1

J C
£ 4J
a: —i

Ul
3

3

A
dd

re
ss

pa
th

na
m

^*
o
o

>n
o

o

1
M

ui 3
41 g

•g 3< a.

Ji q
<U I

< u -.

4> y

* ?

T3 -=
^ JJ

i) 5j

Ul
3

iO
jj

ui id
8 1

Ul C
Ul w
^ S
TJ Ol Ul

5 CJ -H

*~^

o
o

o

0

Z

•J;

B-5 CZ06-00

&.

w
rn
O

C Ul
O .U
•H C
4J <U
O -u)
c c
3 0
Cu CJ

» s-i
CO 0)
•H -U
rH W
fTj -H

01
O C£

O TJ
fO C
S (T3

•

U

c
o
o
• '

rH
1

CQ

Qj

^2

EH

-o
S
3

01
04

Ul

g
§

c
o
4J
3

w

o

a

0":

o

r—
ffl

in
03

cc

£1

r-
04

a:

CM

a:

a

i

ĉt

0.

2

2

o

13

4J

Ou

Ul
co
4-t
u

,2
o
"

CK

S
u>

"2

1
4J
CO

mi
Ul 4J
Oi id
k4 Qj Oj

Ul
3
4J
"3
4->
CO

1
J] 4-1
0) on
3J £

< 2 c

as
o
o

I

§

V
&

A
d
d
re

ss
JO

R
B

S
ta

tu
s

01
Ul<u

3 ̂^y

0

o-\
0

CJ

Si

U]
U]

Ul

4J

01
Ul
01

''p ex Ji
S2^I

o
en
o

a,

S

(Nl
O
o
o

a
en
o

0.

1

0
0
0

3
<n
o

a.

1

01

U

CL.

^

C

a<nk-i
E-

S
ta

tu
s

Ul u
ui o>

5 c
^ 5

o
o

^
0

Q

I

aJj
1-4 3

E- C

S
ta

tu
s

10 "H
£-• C

0

0̂

s

I

a.JS

E- C

Ul

4->

a.£
2 5

E-> C

'Nl

0

ô

s

I

S
ta

tu
s

CuJJi
<o §
£ C

Ul Z
in 2

0

^>o

&

I

c
o
4-J

u.

"u
4-1

ui

C.

•IP
4-1

U

Ol O

fl "f O
> w J

U)

o
o
ffl
o

1

3 u n

5 g §

Jl
z:

0

tirT
o

»

CO</v

01 u
3 4J T;
"3 i O> ffi a

CO
fl

o
fT?
O

.,

§

Ul

S

o

1

o

§
U]

Ul
Ul
01

Ul

4J

4J

Ul
Ul
01

T3 04

^p

o
o
J >

0

j,;

1

R
B

a
d
d
re

s
s

V $i> o
•U -J

cu 2

Ul
3
4J
«J
4->

Ul
Ul
01

'O
§ T3

tj

O

^S.
o

0

1

^

B-6 CZ06-00

w

O
CJ

C CO
O -p £•3

U 4->
C C
3 O
CM CJ

03 <U
•H 4J
rH CO
<0 -H
cj en
O P£

O T3
fl3 C
2 <0

4J
C
O
o

es t

A
dd

r
ro

o
t

A
dd

r
ro

o

CO 4-1 -

I
CQ

y •-• 5
< u. U

"2?
(M

X CO

•O >w

S

B-7 CZ06-00

03
flj

'D
O

C CO
0 4J
•H C

O 4J
C C
3 O
fc* CJ

CQ 0>
rH 4-1
rH CQ
fO -H

O
0 OS
v-i

«s c
S 03

C
O
O

,__,

CQ

0)

.a
rij

2
_^
j'

j
-
g

c

'z

16
Xa.

o

to

4-1

^

2

a

2

^

.

•*-

-

CM

r

^

-

£

2 u

§

os
"o
4-1

a

u

1

01
3

rtj
4-1

03

01 C

<u s

5 13 -.

"S
2 8

01 w

W 4J

2 1

s a

a
2^

0
o\
o

&

a

3

rfl
4J

UJ

U)
U]

is I«Z u. c

g
J

1

u ̂

-, 5,

"o **
a >,
,-. -«
0 0

£ a!
ii uv ina. ce

0

o

I

a

0 ~

01

•o
01

a

3^
o -•

o

o

I

a
o
i- -O
0 -<

3

C/j

ui 5

5 ?!2

i-i

s a l

&j

s

1

3
j

01

u

a
T3 —i

J> >
X ^H 1)

01 ,-, -.

" 0 0

II 1 1
in -^ in
CD a. on

in
o

0

1

3
u. 13
O -i

01

<TJ

01

9 "5Is

a

3-2

0

0

I

a

o -.

01
3

0
75

a

0 ~

OJ
o

c

SS
U

SP
G

a
o
0 -

01
3

0̂1

a

o

o

S
A

C
TV

G

3
o -

0]
3

T3

72

•Jj fc

SI

a

o

0

1

3
4-*
Itl

01

XI
o

o

s

0
II </)

— « 3
o: 4-

•o

" -n

o
ii vi

CN 3

nj
" 01

a

o

fe
S

o
o
II

^
0

0

4-1

c
oi O
01 a

1^-3
< U '4-1

a
§,

o

o

c/v

3

nj

-0

C
u] Oj) a
0) J£

U L d)

< 0 x-i

-,

c

!

01
3

"3

W

^01 Q

w J O

< 0 14-1

IN

0

1

~)

B-8 CZ06-00

CO
cu

C U)
O 4J
•H C
4J (1)
O JJ
C C
3 O

CO (U
rH 4J
rH CO

O TJ
<0 G
2 (T!

4J
C
o
o

I
CQ

(U

OS

-o
41

4Jc

u

e
n
ts

B

e
fo

re

E

xe
cu

tio
n

4J

r-
aa

S

OQ

CM
23

r-
Cfc

vO

iX

IX

s

fN
21

£

£

CNo:

o

s3

^^

s
o

Ul

-u

§

'o

a
3
o
Ul<o

3

A
tt

ri
b

u
te

co
de

-j

o

#

s

(w
itc

h
F

u
n
ct

io
n
s

Ul
3

a
C/J

.w
01 C

4i 1

33 2* 2
2 TJ-,

3
Ui

<U

a
X

Ul
Ul
41

II
m
IX

Oo

o

fe

g

Ulco
4-1

1
nj
X

w
O

C

J
41
IT

U]

•u O
X

IS

41 41

33 O

Jl
3

«J

O

O, I.
-< t

y .̂ >
Ul ui ^

S^ -

T3

M
es

sa
ge

3
ô

•§

R
3=

C
om

po
ne

nt

e
rr

o
r

c

B
5

=
B

u
ff

e
r

a
d
d
re

ss

R
4

=
In

d
ic

a
to

rs
 w

or
d

1

c
1 •]
41
CP

Ul

•U O
X

Z 0

3

a

co

o
a. ui

y .u u
ui ui T3

u *-̂ <o

"

M
es

sa
ge

o

o

O/

"8

R
3=

C
om

po
ne

nt

e
rr

o
r

c

B3
=V

TC
R

B

ad
dr

es
s

P
4

=
In

d
ic

a
to

rs
 w

or
d

I

U"

<=

F
il
e

 M
an

ag
em

en
t

F
un

Ul
3

C

CO

41

Ul C 3
Jl 4J JJ
41 E U

a Z'i«i m «i

0

Ĵ
iL.

3

ĈO

If

Ul C 3
Ul 11 4J4> e o

< 13 Ul

J1

=?
J

1

T

•3

^ -1

5J

v C 3

^ i —- 1 3

< nj ui

c

-̂3

1

3
ti

L^
w

Ul S 3

J s s
< •a ji

^

2

^

1

5
•̂
-0

w

v. C 3
1 (U 4J

O E ^

<l ^ tr

0

0

j

1

B-9 CZ06-00

(U
HD
O
U

C CQ
0 -U
•H C
4J 0)
O 4J
C C
3 0
t, CJ

«• s-i
CO 0)
rH 4J
rH CO
<0 *H

0)
O PH

OT3

JS ft3

.
-P
C
o
o

rH
1

CQ

<U
rH

flj
E~*

-o
c
3

§
§

0

3

tt
X
-J

3

031

CO
JJ

3

3

a

a

S

a:

s

CN

,,

03

£

vO
a

rsi
ce

a:

0

13

_
->
o

§

c

CT>

a;

in
3

tj

CO

U1 C 3
to g JJ

3 «J M

in

0

J

^

CO
3

4-t
co

Ul C 3

CU g O

2 3 M

r-
C?
0

_l

1

to

TJ

to

id
re

ss
gu

m
en

t
ru

ct
u

re

< nj in

CO

\
o

J

1

Ul
3

CO

.u w
CO C 3
to ij -u
w 3 3

< 13 Ul

U

O

J

1

3

O
*->

Jd
re

&
s

gu
m

en
t

ru
c
tu

re

< BJ Ul

o
^f
o

J

I

CO
3

aj

co

Ul C 3

2 1 B
< 3 w

^4

O

u
a.

Ul
3

nj
to

dr
es

s
gu

m
en

t
ru

ct
u

re

< «J Ul

fNJ

O

£.

[5

Ul
3

CO

<u
-i-f M

10 C 3
to <y *j

«C ITJ Ul

-n

o

1

to
3

5
to

ui
CO
CU

TJ CQ

2E

o *-\
u^ in

0 O

J

1

CO
3

CO

n
to
cu

3 DQ

< u.

in vo r-
in in in
0 O 0

j

5

to

Ul
3

CO

Ul
U]
0)

SC

«£

Ul

O

j

1

U!
3

CO

d
re

ss
gu

m
en

t
ru

ct
u

re
T3 w iJ
<. ITJ Ul

O

i— 1

j

Ct,

Ul
3

UJ

co

to
Ul
O)

'O 1-4

••N
-O

2
j
Cb
M

fe

Ul
3

HI

CO

to
CO
<u
'O QQ

^C

-V>

vO

£
j
M

t/J-

B-10 CZ06-00

CO
CU

o
cj
G CO
0 JJ
•H C
4J <l)
O -4J
C C
3 0
fc* CJ

CO 0)

r-H CO
(TJ -H
CJ CT>

0)
O OH

O T3
fO c
S (0

1 1

c
o
0

rH
1

CQ

.Q
03

EH

c
u
3

£
en

s
§

5
4J
3

£
01

O
UH

$
Ul
4J

CO

m
m

5

2

a

a:

2

2

03

2

£

£

ffl

a
o
Ut rH

U rH

—

Oo

c
ti
o
n
s

S
4J

Z

rH

Cu

S
ta

tu
s

Ol

in c 3
Ul 01 4J
01 g CJ

«e ITS ui

S

5W
IF

IL

<o

01

Ul C 3

01 g tj
u 3 3

T3 CP w

-5 <o ui

m

rH

I
it)
4J

CO

01

Ul C 3
Ul Ol 4-1

w § 3
TJ 0> W'q u 4J
< IT) Ul

r-

»-i

in
3

4->
CO

01

Ul C 3
Ul 0> 4J
01 g O

<. 03 in

s
rH

as
rH

Ul
3

10

Ol

Ul C 3
Ul Ol 4-1
oi 1 o

<c nj ui

I
X

Ul

4J

Ol

Ul C 3

Ol g O
1 - 9 3

« nj ui

o

(X
rH

Ul
3

lO
w
CO

0>

Ul -H

«J «
W O) rH

TJ y oi
S w,^,

8

rH

Ul
3

O>

Ul C 3
ui 4J 4J

3 <a ui

S

5X
PA

TO

Ul
3

<0

to

01

Ul C 3

«. 10 Ul

o

1

I
iTJ

01

Ul C 3
Ul 01 4J
Ol g U
wi 3 3

<C (TJ Ul

^

r-l

Ul

§

!
o>
c
S
in

ci!

S
ta

tu
s

Ul
Ul
01

3 Cw

o 5 us

1

U]
3
4J

4J
CO

Ul
U]
Ol
w

So.

O 5 vo
fM O <N

1

Ul
3

4J

CO

in
Ul
Oi

3S

O rH

ss
-H rH

1

B-ll CZ06-00

W
(U
'U
0
CJ

c w
O JJ
•H C
I) <D
U 4J
C C
a o
&4 CJ

01 (U
rH JJ
rH W
<TJ -H
cj en
o a:
o -a
nj c
2 ca

4J
C
o
o

rH
1

CQ

(1JW

rH
.Q
aj

L4

B

O
4J
C

U

c
0

§

"CL
a
Ul

s
g

£

in
en

S

en

IX

CN
a.

2

S

CN

IX

U?

CN

-

O

-u

S
O

w
c

4J

y
*
c

8
z
«j

3

U]a

2

A
d

d
re

ss
F
IB

O '-i

^^

1
5M

-/R
EC

Ul

O

Uc
(2
JJ
g

1
a>
m
o

CO

Jl
3

tJ

CO

A
d
d
re

ss
H

B

_,-
o 3 «r
0 O O
CN .C C-l

X
TfK

TlS

Ul

ti

CO

A
d
d
re

ss
F
IB

22
CN CN

1
SW

KB
LK

Ul
3

•3
4J

CO

A
d
d
re

ss
F
IB

o
CN

CN

1

Jl
Co

o

co
JJ

o

T3

fl

§

4J

JJ

§

2

Ul

•3

1/1

A
d

d
re

ss
re

c
e
iv

in
g

fi
e

ld

o
o

Q

55

2
w >
4) t "O

01
3

•c
Ul

A
d
d
re

ss
re

c
e

iv
in

g
fi
e

ld

0

Q

s
vv

«
4J
C

CO

A
d
d
re

ss
re

c
e
iv

in
g

fi
e

ld

CN
0

^

S
ftC

IlD

2
4) -H -O
1-1 Of ̂

Ul
3

fl

CO

A
d
d
re

ss
re

c
e
iv

in
g

fi
e
ld

o

*

a

Ul
3

r
CO

A
d
d
re

ss
re

c
e
iv

in
g

fi
e

ld

o

3
a
CO

£

%
ji *>
<U ~i T3

3

T3

CO

CP

Ul S
Ul _.
<u -i -a
u OJ ^H

0

2

a

I

Ul
Ul
01 >,4J
v-> U C

•g c g
4. aj CU

3

«3

CO

01
Ul
41 >-,.»

•a
^
-ên

__

Ilil

o

Q

a.

lv

U,

4J
IT!

CO

Ul T)
Ul -1
41

CD
O

S
a

g1

Ul >

U 41 — (
TJ u CU

S 1-1 '*-

Ul
3
4J

its
CO

S1

Ul —Ul >
cu ** TJ
•I 11 r-1

CO
o

IX

\

B-12 CZ06-00

cn

o
CJ

c w
O 4J
•H C
4J (U
U -U
G C
3 O
Cn CJ

cn
•H

03 -H
CJ CP

0)
O OJ
u
O T3

4J
C
O
O

I
CQ

03

3

ro
n

te
n

ts

R
et

§
t-t
3
U
JJ
X
CJ

t-
nt

t
B

ef
or

e

co

r^
CQ

>n
CQ

•«r
CQ

CQ

r~
(£

-Co.

CL

CC

cc

tN
Oj

r^

ad

X.

Ci,

Q

13

§
o1
U3

d
ti

cn

o

§
1

'jj
3

(TJ

CO

A
dd

re
ss

te
le

p
h

o
n

e
nu

nl
ie

r
1

A
dd

re
ss

d
ev

ic
e

pa
th

na
m

e

"& ^
C. u

CJ C 0

o
o
ĈO

3J5

a)§
o

*

;
<

f t
w

ar
e

in
3
<o
in

o\
oCNI

a,

tn
3
KJ

CO

I
.c
4-< u;
3 ji
a. <u

^ w

d c «j

§
jj

CL-a
§8
Q 0

R
et

xD
ot

vo
lu

m
e

id

LTl
o
O

5

01
3

(0

01

§
-U

^"3
!§

H
al

t
co

n
d

it
io

n

^0
o

r5

|

ic
ti

o
n

s

1
co

IXJ

cr>
c^
^
OJw

T
er

m
in

al
LR

N

tn
3

^3

1

ID -a
e-1 *

p

CNl

X"

r1

B
uf

fe
r

ad
d

re
ss

s
T)
kd

8 &
Si-

U3
3

itj

'-"

B
uf

fe
r

ad
d

re
ss

«;

3^

T3
^
O 01
U Qd
OJ >,
OC 4J

O

*x

&

B
uf

fe
r

ad
d

re
ss

L
an

gu
ag

e
ke

y

ni
3

TJ

C.

B
uf

fe
r

ad
d

re
ss

a>y t3

B
uf

fe
r

si
z
e

CN

\
T

Cu

1

s

T3

§£o: -u

j)
3

it!

11in :̂

T3
M

^s

0

<r
CJ

1

B
uf

fe
r

ad
d

re
ss

s

T3

O u*s!
2
<n

B
uf

fe
r

ad
d

re
ss

Ul 'U

T3

O io cL1) s
QC 4J

O

CM

p

s

T3
L4
O -Ju a
01 >,
K ^t

U}

n

w ro

13

O Jj

0 £
X u

c

(N

Q

j

•at~i
O gju a,u S
!X 4J

ji

"3

t/j

B
uf

fe
r

ad
d

re
ss

OJ J-u, y,

£Z

•u
A Tj

'O

O CU
CJ p.

.-V ^j

<NI

~X
^T
(N

<.

1

B-14 CZ06-00

Appendix C
DATA STRUCTURE

FORMATS

This appendix describes the following data structures:

Clock request block (CRB) .
File information block (FIB)
Input/output request block (IORB)
Task request block (TRB)
Parameter block
Wait list
Semaphore request block (SRB)
Message group request blocks (MGCRB, MGIRB, MGRRB).

Any of the structures can be hand coded or generated by macro
calls. All structures but the parameter block and wait list can
be defined by macro call templates.

The first four items of the request blocks have an identical
format (but slightly different contents, depending on the block
type) as shown in Figure C-l. Later diagrams show the format of
each block type; tables show the contents of the block entries.

The offset symbol $AF signifies that number of words required
to specify a memory address. In this system, $AF is equivalent
to two words.

The first field (-$AF or -1) of a request block need be pres-
ent only when the request block pointer/semaphore name is needed.

C-l CZ06-00

,-SAF.
| >R RRB/R SEM

0 R-LNK

SAF R CTl

14$AF R CT2

1

0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 8 9 A

REQUEST BLOCK POINTER/SEMAPHORE

B C

NAME

D E F

RESERVED FOR SYSTEM USE AS A POINTER

RETURN STATUS T

LRN/ 1 0

.

W

B

U

0

S

E

P R D 1

FUNCTION

Figure Ol. First Four Items of Request Blocks

CLOCK REQUEST BLOCK FORMAT

Figure C-2 shows the format of the clock request block; Table
C-l shows its contents.

-SAF

-1 1 -

0 C-LNK

RRB/C SEM

$AF C_CT1

1->-$AF C_CT2

2+SAF C TM

0 1 1 , 2 , 3 1 4 , 5 , 6 , 7 8 9 I A B C , D | E , F

REQUEST BLOCK POINTER/SEMAPHORE NAME

RESERVED FOR SYSTEM USE

RETURN STATUS T

1 C

W U S P R D 1

M 0 0 0 0

IF M=0, NEXT 3 WORDS ARE A DATE/TIME VALUE

OTHERWISE NEXT 2 WORDS ARE AN INTERVAL
IN UNITS SPECIFIED BY M.ISEE TABLE C 1)

Figure C-2. Format of Clock Request Block

C-2 CZ06-00

Table C-l. Contents of Clock Request Block

Item Label Bit(s) Contents

-$AF

0

$AF

C_RRB/

C_SEM

C_LNK

C_CT1

0-31

0-15

0-15

0-7

8(T)

9(W)

A(U)

B(S)

C(P)

D(R)

E(D)

Depending on the condition of the S- or
R-bits of C_CT1, this field contains a
2-word task request block pointer (R-bit
on)f or a 1-word semaphore name (S-bit
on) .

Reserved for system use.

Return status.

This bit is set on while the request
using this block is executing; it is
reset when the request terminates. The
system controls this bit; user should not
change it.

Wait bit. Set if the requesting task is
not to be suspended pending the comple-
tion of the request that uses this block.

User bit. User may or may not use this
bit; the system does not change it. In a
user-built CRB, must be 0 initially.

Release semaphore indicator.

0 = No release; 1 = Release, on comple-
tion of this request, semaphore item
named in C_SEM.

Must be set by user if CRB is to be
referenced by a Wait Any ($WAITA) macro
call. If set, CRB can be referenced only
by $WAIT or $WAITA issued by the
requesting task.

Return clock RB indicator.

0 = No dispatch; 1 = Dispatch task
request block named in C_RRB after com-
pletion of this request.

Delete clock RB indicator, used usually
with the B(S) and D(R) bits.

0 = No delete; 1 = Delete and, when task
terminates, return memory to pool where
CRB is first entry of its memory block.

C-3 CZ06-00

Table C-l (cont). Contents of Clock Request Block

Item Label Bit(s) Contents

$AF
(cont)

1+$AF

C_CT1

C CT2

2+$AF C_TM

0-7

8(C)

9-B(M)

Implicit task start address. Must
always be 1 for CRB.

Value is -1.

When set, indicates this block is asso-
ciated with a cyclic clock function.

When set, last two words contain an
interval in units specified by M. Each
interval value is as follows: 001 - in
milliseconds; 010 - in tenths of a
second; Oil - in seconds; 100 - in
minutes; 101 - in units of clock
resolution.

When reset (off), the last three words
contain a date/time interval.

Contents depend on M bit of C_CT2.

FILE INFORMATION BLOCK (FIB) FORMAT AND CONTENTS

Tables C-2 and C-3 show the format, and Tables C-4 and C-5
show the contents, of the file information block (FIB) for data
management (record level) access, and for storage management
(block level) access, respectively.

Table C-2. Format of FIB for Data Management

Word

0

1

2

3

4

5

Label (s)

F_LFN

F_PROV

F_URP

F_IRL

F__ORL

0 1 2 3 4 5 6 7 8 9 A B C D E F

Logical file number (LFN)

Program view

User record area pointer

Input record length

Output record length

C-4 CZ06-00

f \ Table C-2 (cont). Format of FIB for Data Management

Word

6

7

8

9

10

11

12

13

14

15

Label (s)

F_IRS/F_ORS

F_XRT

F^ORT

F^IKP

F_IKF/F_IKL

F_ORA

F_RFU2

0 1 2 3 4 5 6 7 8 9 A B C D E F

Input record status Output record status

Input record type

Output record type

Input key pointer

Input key format Input key length

Output record address

Reserved

Table O3. Format of FIB for Storage Management

Word

0

1

2

3

4

5

6

7

Label (s)

F_LFN

F_PROV

F_UBP

F_BFSZ

F_BKSZ

F__BKN1

F_BKN2

0 1 2 3 4 5 6 7 8 9 A B C D E F

Logical file number (LFN)

Program view

User buffer pointer

Buffer size

Block size

Block number

05 CZ06-00

Table C-3 (cont). Format of FIB for Storage Management

Word Label(s) 0 1 2 3 4 5 6 7 8 9 A B C D E F

F_RFU3 Reserved

10

11

12

13

14

15

Table C-4. Contents of FIB for Data Management

Word Label Bit(s) Contents

ID
i

F_LFN

F_PROV

0-15

0

1-4

5-9

10

11

12

Logical file number (LFN)

Access level. Set off for data
management.

Process rules. Bit 1 for $RDREC, bit 2
for $WRREC, bit 3 for $RWREC, bit 4 for
$DLREC.

Key type. Bit 5 for primary keys, bit 8
for relative keys, bit 9 for simple keys
(bits 6 and 7 must be 00).

Record class. Set on for fixed-length
records only; off for fixed- and
variable-length records.

Record visibility. Set on if deleted
records are to be visible; off if
invisible.

Key storage alignment. Set on if storage
area begins at odd-byte boundary; off if
even-byre boundary.

C-6 CZ06-00

Table C-4 (cont). Contents of FIB for Data Management

Word

1
(cont)

2,3

4

5

6

7

8

9,10

11

Label

F_PROV
(cont)

F_URP

F_IRL

F_ORL

F_IRS

F_ORS

F_IRT

F_ORT

F_IKP

F_IKF

Bit(s)

13

14

15

0-31

0-15

0-15

0-3

4-7

8

9

10-15

0-15

0-15

0-31

0-7

Contents

Record storage area. Set on if record
storage area begins on odd-byte boundary ,c

off if even-byte boundary.

Transcription mode. Set on if data
transferred in binary transcription mode;
off if ASCII mode.

Must be 0.

Start address of user record area.

Input record length (in bytes).

Output record length (in bytes) .

0000 - Unknown terminal control informa-
tion; 0001 - Records contain no terminal
control information; 0010 - Records con-
tain standard GCOS 6 printer control
characters.

Must be zero.

Read operations. Set on if the key of
the record just read duplicates the key
of the record previously read.

Write/rewrite operations. Set on if the
key of the record just written is a
duplicate.

Read operations. Set on if the key of
the record just read duplicates a record
that is yet to be read.

Must be zero.

Must be set to X'FFFF1 (all bits set on).

Must be set to X'OOOO' (all bits set
off).

Start address of user key area.

Input key format. 0 for none specified;
1 for primary key; 2 for simple key.

C-7 CZ06-00

Table C-4 (cont). Contents of FIB for Data Management

Word

12,13

14,15

Label

F_IKL

F_ORA

F_RFU2

Bit(s)

8-15

0-31

0-31

Contents

Input key length (in bytes).

Output record address.

Reserved for later use; must be
X'OOOOOOOO 1.

Table C-5. Contents of FIB for Storage Management

Word

0

1

2,3

4

5

6,7

8-15

Label

F_LFN

F_PROV

F_UBP

F_BFSZ

F_BKSZ

F_BKNO

F_RFU3

Bit(s)

0-15

0

1-2

4-12

13

14

15

0-31

0-15

0-15

0-31

All

Contents

Logical file number (LFN) .

Access level. Set on for storage
management.

Process rules. Bit 1 for $RDBLK; bit 2
for $WRBLK.

MUST: be X'OOOOOOOO 1 .

Buffer alignment. Set on when buffer
begins on odd-byte boundary; off when
even-byte boundary.

Transcription mode. Set on when data
transferred in binary transcription mode;
off when transfer is in ASCII mode.

Synchronous/asynchronous indicator. Set
on when $RDBLK and $WRBLK calls executed
asynchronously; off when synchronously.

Start address of user buffer area.

Buffer transfer size (in bytes).

Block size (in bytes).

Block number.

Reserved for later use; must be all
zeros .

i

C-8 CZ06-00

INPUT/OUTPUT REQUEST BLOCK (IQRB) FORMAT

Figure C-3 shows the format of a nonextended input/output
request block (IORB) (see Vol. I, Section 7 for descriptions of
IORB extensions). Table O5 defines the specific fields for a
non- extended IORB. Table C-6 summarizes the IORB fields for
operator interface functions.

-SAF,
\\ RRB/I SEM

_1 > -

0 I-LNK

$AF I_CT1

1+SAF I_CT2

2+SAF I_ADR

2+2*$AF I_RNG

3+2'$AF I_DVS

4 + 2 '$AF I_RSR

5+2 'SAF I_ST

6+2*$AF I-EXT

I 5 I

REQUEST BLOCK POINTER/SEMAPHORE NAME

RESERVED FOR SYSTEM USE AS A POINTER

RETURN STATUS

LRN IBM B

W

FUNCTION

BUFFER ADDRESS

RANGE

DEVICE SPECIFIC WORD

RESIDUAL RANGE

STATUS WORD/HIGH-ORDER BITS OF WORD? FOR STORAGE MODULE

TOTAL EXTENSION LENGTH PIO EXTENSION LENGTH

Figure C-3. Format of I/O Request Block

Table C-6. Contents of I/O Request Block

Item

-$AF

-1

0

$AF

Label

I_RRB/

I_SEM

I_CT1

Bit(s)

0-31

0-15

0-31

0-7

8(T)

Contents

Depending on the S- or R-bits of I__CT1 ,
this field contains a 2-word task
request block pointer (R-bit on) , or a
1-word semaphore name (S-bit on) . Set
by user; used by system at termination
of request.

Reserved for system use. 2-word pointer
to indirect request block.

Return status

This bit is set (on) while the request
using this block is executing; it is
reset when the request terminates. The
system controls this bit; user should
not change it.

C-9 CZ06-00

Table C-6 (cont). Contents of I/O Request Block

Item Label Bit(s) Contents

$AF
(cont)

I_CT1
(cont)

9(W)

A(U)

B(S)

C(P)

D(R)

E(D)

1 + $AF I_CT2 0-7

8 (IBM;

Wait bit. Set by user if the requesting
task is not to be suspended pending com-
pletion of the request that uses this
IORB.

User bit. User may or may not use this
bit; the system does not change it.

0 = No release; 1 = Release, on comple-
tion, semaphore item named in
I_SEM.

Release semaphore indicator.

Must be set by user if IORB is to be
referenced by a Wait Any ($WAITA) macro
call. If set, IORB can be referenced
only by $WAIT or $WAITA issued by the
requesting task.

Return IORB indicator.

0 = No dispatch; 1 = Dispatch task
request block named in I__RRB after com-
pletion of this request. If 1, system
executes $RQTSK, using I_RRB, when the
task terminates.

Delete IORB indicator. Used usually
with the B(S) and D(R) bits.

0 = No delete; 1 = Delete and when task
terminates, return memory to pool where
IORB is first entry of its memory block.

Implicit task start address. Must
always be 1 for IORB.

Logical resource number (LRN). Identi-
fies device to be used.

IBM-type request. Changes interpreta-
tion of I_JDVS to task word, and of I_RSR
and I__ST to configuration words A and B,
respectively.

C-10 CZ06-00

Table C-6 (cont). Contents of I/O Request Block

Item Label Bit(s) Contents

1 + $AF
(cont)

2 + $AF

2+2*$AF

3+2*$AF

4+2*$AF

5+2*$AF

6+2*$AF

I_CT2
(cont)

I_ADR

I_RNG

I_DVS

I RSR

I_ST

I_EXT

9(B)

A(P)

B(E)

C-F

0-31

0-15

0-15

0-15

0-15

0-7

8-15

Byte index. 0 = buffer begins in left-
most byte of word; 1 = buffer begins in
rightmost byte.

Private space; reserved for system use.

Extended IORB indicator. 0 = Standard
(nonextended) IORB; 1 = IORB extended to
at least 6+2*$AF items. Set by user.
(See I_EXT below.)

Function code. Driver or LPH function,
see Vol. I, Table 6-1.

Buffer address. 2-word pointer.

Range. Number of bytes to be transfer-
red. Used as input field for cartridge
disk or mass storage unit.

Device-specific information.

Residual range. Indicates the number of
bytes not transferred. Filled in by the
system on completion of the order. Used
by the cartridge disk and mass storage
unit drivers as a data offset value.

Modified device status. Shows mapping
of hardware status into software status
format. See Vol. I, Table 9-4. Set by
user as input field high-order bits of
sector number of mass storage unit. Set
by system after I/O completion.

Left byte. Number of words, in binary,
in the IORB extension, not including
this I_EXT word.

Right byte. Number of words, in binary,
in physical I/O part of IORB extension,
not including this I_EXT word. This
count must be less than or equal to the
total extension length specified in the
left byte (0-7). This word is present
only when the B(E) bit in I_CT2 is 1.
(See Vol. I, Section 7 for a description
of ICRB extensions.)

C-ll CZ06-00

Table C-7. Summary of IORB Fields for Operator Interface

Item

$AF

1 + $AF

2+$AF

2+2*$AF

Label

I_CT1

I_CT2

I ADR

I_RNG

Bit(s)

9(W)

0-7

9(B)

0-15

0-15

Contents

For a $OPMSG call, the setting of the
W-bit in the output IORB controls return
to the caller. For a $OPRSP call, the
setting of the W-bit in the input IORB
controls return to the caller; the set-
ting of the W-bit in the output IORB has
no significance. For either call, return
to the caller is immediate if the signi-
ficant W-bit is on. If the significant
W-bit is off, return to the caller occurs
after the order is completed.

LRN = 0.

Must be off if the input/output buffer
begins at the left byte of the word whose
address is contained in word 3 (I__ADR) of
this IORB. Must be on if the
input/output buffer begins at the right
byte.

The word address of the message buffer
(which contains an output message or is
to receive an input message).

The buffer size in bytes. This is the
length of an output message or the maxi-
mum length allowed for an input message.

J

SEMAPHORE REQUEST BLOCK FORMAT

Figure C-4 shows the format of the semaphore request block;
Table C-8 shows its content.

C-12 CZ06-00

(-$AFi
\ }S RRB/S SEM
(_1) -

0 T-LNK

3AF S CT1

1+$AF S_CT2

2+$AF S_ADR

Q ^ I 2 ^ 3 ^ 4 I S ^ B ^ 7 8 9 A B C f D , E (F

REQUEST BLOCK POINTER/SEMAPHORE NAME

RESERVED FOR SYSTEM USE

RETURN STATUS T W U S P R D 1

- 1 0 0 0 0 0 0 0 1

SEMAPHORE IDENTIFIER

Figure C-4. Format of Semaphore Request Block

Table C-8. Contents of Semaphore Request Block

Item Label Bit(s) Contents

-$AF

-1

S_RRB

S_SEM

0-31 Depending on the S- or R-bits of S_CT1,
this field contains a 2-word task request
block pointer (R-bit on), or a 1-word
semaphore name (S-bit on). Set by user;
used by system when request terminates.

S_LNK 0-15 Reserved for system use.

$AF S_CT1 0-7

8(T)

9(W)

A(U)

B(S)

Return status

This bit is set (on) while the request
using the block is executing; it is reset
when the request terminates. The system
controls this bit; user should not change
it.

Wait bit. Set if the requesting task is
not to be suspended pending the completion
of the request that uses this block.

User bit. User may or may not use this
bit; the system does not change it.

Release semaphore indicator.

0 = No release; 1 = Release, on completion,
semaphore item named in S_SEM.

C-13 CZ06-00

Table C-8 (cont). Contents of Semaphore Request Block

Item Label Bit(s) Contents

$AF
(cont)

S_CT1

1+$AF S_CT2

C(P)

D(R)

E(D)

2 + $AF S_ADR

0-7

8-14

15

0-15

Must be set by user if SRB is to be
referenced by a Wait Any ($WAITA) macro
call. If set, SRB can be referenced only
by $WAIT or $WAITA issued by the requesting
task.

Return semaphore RB indicator.

0 = No dispatch; 1 = Dispatch task request
block named in S_RRB after completion of
this request.

Delete SRB indicator. Used usually with
the B(S) and D(R) bits.

0 = No delete; -1 = Delete and, when task
terminates, return memory to pool where SRB
is first entry of its memory block.

Implicit task start address. Must always
be 1 for SRB.

Value is -1.

Must be zero.
-<

Must be one.

Semaphore identifier - two ASCII
characters.

C-14 CZ06-00

TASK REQUEST BLOCK FORMAT

Figure C-5 shows the format of the task request block; Table
C-9 shows its contents.

- SAP)
It RR8/T SEM

1) -

0 T.LNK

1 T_CT1

1+SAF T CT2

2+SAF T ADR

2+2*$AFT PRM

0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 8 9 A 8 C D E F

REQUEST BLOCK POINTER/SEMAPHORE NAME

RESERVED FOR SYSTEM USE AS A POINTER

RETURN STATUS

LRN

T

0

W

0

U

0

S

0

P

0

R

0

D

0

1

0

START ADDRESS IF i 0

BEGINNING OF ARGUMENT LIST

Figure C-5. Format of Task Request Block

Table C-9. Contents of Task Request Block

Item Label Bit(s) Contents

-$AF

-1

0

$AF

T_RRB/

T_SEM

T_LNK

T_CT1

0-31

0-15

0-31

0-7

8(T)

9(W)

A(U)

Depending on the condition of the S- or
R-bits of T_CT1, this field contains a
2-word task request block pointer (R-bit
on), or a 1-word semaphore name (S-bit
on). Set by user, used by system when
request terminates.

Reserved for system use.

Return status.

This bit is set (on) while the request
using this block is executing; it is
reset when the request terminates. The
system controls this bit; the user
should not change it.

Wait bit. Set by user if the requesting
task is n££ to be suspended pending the
completion of the request that uses this
block.

User bit. User may or may not use this
bit; the system does not change it.

C-15 CZ06-00

Table C-9 (cont). Contents of Task Request Block

Item Label Bit(s) Contents

$AF
(cont)

T_CT1
(cont)

1 + $AF

2 + $AF

2+2*$AF

T_CT2

T_ADR

T_PRM

B(S)

C(P)

D(R)

E(D)

0-7

8-15

0-15

Release semaphore indicator.

0 = No release; 1 = Release, on comple-
tion, semaphore item named in
T_SEM.

Must be set by user if TRB is to be
referenced by a Wait Any ($WAITA) macro
call. If set, TRB can be referenced
only by $WAIT or $WAITA issued by the
requesting task.

Return task RB indicator.

0 = No dispatch; 1 = Dispatch task
request block named in T_RRB after com-
pletion of this request.

Delete TRB indicator. Used usually with
the B(S) and D(R) bits.

0 = No delete; 1 = Delete and when task
terminates, return memory to pool where
TRB is first entry of its memory block.

Implicit task start address. Must
always be 1 for TRB.

Logical resource number (LRN).

Must be zero.

Start address if the I-bit of T_CT1 is
reset (zero).

Beginning of argument list.

C-16 CZ06-00

PARAMETER BLOCK FORMAT

Figure O6 shows the format of the parameter block

X1

X*

NUMBER OF PARAMETERS

ADDRESS OF PARAMETER 1

ADDRESS OF PARAMETER 2

s /*
' >•

ADDRESS OF PARAMETER n

NUMBER OF BYTES

I
ASCII CHARACTER | ASCII CHARACTER

1

ASCII CHARACTER 1 A
1

NUMBER OF BYTES

ASCII CHARACTER | ASCII CHARACTER

I
A | UNSPECIFIED

Figure C-6. Format of Parameter Block

NOTE

The parameter value strings need not be contiguous
with the address portion of the parameter block;
if the block is system-generated, each parameter
will have a trailing blank that is not included in
the byte count.

017 CZ06-00

WAIT LIST FORMAT

Figure C-7 shows the format of the wait list.

NUMBER/ITEMS TO WAIT FOR TOTAL ITEMS IN LIST

ADDRESS OF FIRST REQUEST BLOCK

ADDRESS OF EIGHTH REQUEST BLOCK

Figure C-7. Format of Wait List

MESSAGE GROUP REQUEST BLOCKS

Tables C-10, C-ll, and C-12, respectively, show the content
of the following message group request blocks:

• Message group control request block (MGCRB) "*
• Message group initialization request block (MGIRB)
• Message group recovery request block (MGRRB).

Templates for these request blocks are generated by the
$MGCRT, SMGIRT, and $MGRRT macro calls, respectively.

The request blocks can be generated by the $MGCRB, $MGIRB,
and $MGRRB macro calls, respectively.

Message group request blocks are used by the message facil-
ity for sending requests between task groups or tasks.

C-18 CZ06-00

Table C-10. Message Group Control Request Block (MGCRB)

Item

0

$AF

$AF

Label

MC_OS

MC_MAJ

MC_MAJ

Bit(s)

0-31

0-7

8(T)

9(W)

A(U)

B(S)

C(P)

D(R)

E(D)

F

Contents

Pointer; reserved for system use.

Major status.

Reserved for system use.

This bit is set (on) while the request
using this block is executing; it is
reset when the request terminates.
The system controls this bit; user
should not change it.

Wait bit. Set if the requesting task
is not to be suspended pending the
completion of the request that uses
this block.

User bit. User may or may not use
this bit; the system does not change
it. Display processing uses this bit
during a write.

Release semaphore indicator. Values:
0 = No release; 1 = Release (on close- :
out) of semaphore, which must be in
MQJDS -1.

Must be set by user if MGCRB is to be
referenced by a Wait Any ($WAITA) |
macro call. If set, MGCRB can be !
referenced only by $WAIT or $WAITA
issued by the requesting task.

Return request block indicator.
Values: 0 = No dispatch; 1 = Dis-
patch request block whose address must
be contained in MC_OS -$AF, after
closeout of this request.

Delete request block. Values: 0 = No
delete; 1 = Delete, and return memory
to the pool where MGCRB is the first
entry of its memory block.

I/O bit. Must be set.

C-19 CZ06-00

Table O10 (cont). Message Group Control Request Block (MGCRB)

Item Label Bit(s) Contents

1 + $AF

2 + $AF

2+2*$AF

3+2*$AF

4+2*$AF

5+2*$AF

6+2*$AF

7+2*$AF

MC_OPT

MC_BUF

MC_BSZ

MC_DVS

MC_REC

MC_RSR

MC_MRU

MC_WTI

MC_EXT

Next 7
words

0-7

8

9

A

B

C-F

0-31

0-F

0-F

0-F

0-7

8-F

0-7

8-F

General options:

Reserved for system use.

Must be 0.

Byte index. 0 = Buffer begins in
leftmost byte of the word; 1 = Buffer
begins in rightmost byte.

Must be 0.

Must be 1 (extended MGCRB).

Must be 0.

Buffer pointer.

Buffer range (in bytes).

Record-type code.

On send, insert record-type code; on
receive, return assigned record-type
code.

Residual range (in bytes).

End message recovery unit (MRU).
Reserved for system use.

Wait test indicator.
00 = Return null value to application.
01 = Wait.

Extension mechanism.

Binary value of 13+2*$AF, i.e., number
of words in MGCRB following the
extension word.

Must be hexadecimal '7'.

Reserved for system physical I/O use.

C-20 CZ06-00

Table C-10 (cont). Message Group Control Request Block (MGCRB)

v-- Item

14+2*$AF

15+2*$AF

16-l-2*$AF

17+2*$AF

18+2*$AF

18+3*$AF

19+3*$AF

1 9-1-4 *$AF

22+3 *$AF

Label

MC_FNC

MC_REV

MQjyiGI

MC_LVL

MC_LVR

MC_LVD

MC_PCI

MC_VDP

MC_TGI

MQJTSK

MC_NPI

MC_LEN

Bit(s)

0-7

8-F

0-F

0-7

8-F

0-F

0-31

0-F

0-31

0-F

0-F

Contents

Function. Reserved for system use.

Revision. Must be hexadecimal '2'.

Message group id.

Returned in the $MINIT and $MACPT
macro calls.

Enclosure level.

Enclosure level requested.

Enclosure level detected according to
the following ASCII values? 0 = Not
end of record; 1 = End of record? 2 s
End of quarantine unit; 5 = End of
message.

Must be 0.

Must be zero.

Reserved for system use.

Pointer. Reserved for system use.

Must be 0.

Length of text received.

C-21 CZ06-00

Table Oil. Message Group Initialization Request Block (MGIRB)

Item

0

$AF

Label

MI_OS

MI_MAJ

•

Bit(s)

0-31

0-7

8(T)

9(W)

A(U)

B(S)

C(P)

D(R)

Contents

Pointer. Reserved for system
use.

Major status.

Reserved for system use.

This bit is set (on) while the
request using this block is exe-
cuting; it is reset when the
request terminates. The system
controls this bit; user should
not change it.

Wait bit. Set if the requesting
task is not suspended pending the
completion of the request that
uses this block.

User bit. User may or may not
use this bit; the system does not
change it.

Release semaphore indicator.
Values: 0 = No release; 1 =
Release, on termination of this
request, semaphore whose name
must be in MI_OS -1 .

Must be set by user if MGIRB is
to be referenced by a Wait Any
($WAITA) macro call. If set,
MGIRB can be referenced only by
$WAIT or $WAITA issued by the
requesting task.

Return request block indicator.
Values: 0 = No dispatch. 1 =
Dispatch,, after termination of
this request, request block whose
address must be contained in
MI_OS -$AF.

C-22 CZ06-00

Table Oil (cont). Message Group Initialization
Request Block (MGIRB)

Item

1 + $AF

2+$AF

2+2*$AF

3+2*$AF

4+2*$AF

5+2*$AF

6+2*$AF

7+2*$AF

14+2*$AF

Label

MI__OPT

MI_BUF

MI_BSZ

MI_MPD

MI_RSR

MI_MDE
MI_IOP

MI_EXT

MI_DV2
(three
words)

MI_FNC

MI_REV

Bit(s)

E(D)

F

0-7
8-A
B
C-F

0-31

0-F

0-F

0-F

0-7
8-F

0-7

8-F

0-F
0-F
0-F

0-7

8-F

Contents

Delete I/O request block.
Values: 0 = No delete? 1 =
Delete, and return memory to the
pool where this MGIRB is the
first entry of its memory block.

I/O bit. Must be set.

General options.

Reserved for system use.
Must be 0.
Must be 1 (extended MGIRB) .
Must be 0.

Must be zero.

Buffer range (in bytes) .
Must be 0 .

Message path description
identifier. Must be hexadecimal
'01'.

Residual range (in bytes).

Must be 0.
Must be 0.

Extension mechanism.

Binary value of 31+2*$AFf i.e.,
number of words in MGIRB
following the extension word.

Must be hexadecimal '7'.

Maturity date/time in standard
internal date/time format (see
$INDTM) .

Function. Reserved for system
use.

Revision. Must be hexadecimal
'2'.

C-23 CZ06-00

Table Oil (cont) . Message Group Initialization
Request Block (MGIRB)

Item

15+2*$AF

16+2*$AF

18+2*$AF

19+2*$AF

20+2*$AF

21+2*$AF

27+2*$AF

28+2*$AF

29+2*$AF

Label

MI_MGI

MI_PCM
(Two words)

MI_ADT

MI_NWI

MI_NDI

MI_MBI

(Six words)

MI_NWA

MI_NDA

MI_MBA

(Six words)

Bit(s)

0-F

0-F
0-F

0-7

8-F

0-F

0-F

0-F
0-F
0-F
0-F
0-F
0-F

0-F

0-F

0-F
0-F
0-F
0-F
0-F
0-F

Contents

Message group id.

Returned in the $MINIT and $MACPT
macro calls.

Must be 0.
Must be 0.

Address type.

Address type (initiator); must be
hexadecimal '1 ' .

Address type (acceptor); must be
hexadecimal '1 ' .

Must be 0.

Must be 0 .

Initiator mailbox name.

Must be from 1 to 12 ASCII char-
acters, blank-filled, left justi-
fied as specified when the mail-
box was created, indicating that
only messages with this identi-
fier will be accepted; or six
words of zeros, indicating that
messages with any identifier will
be accepted.

Must be 0 .

Must be 0.

Acceptor mailbox name.

Must be from 1 to 12 ASCII char-
acters specifying the acceptor
mailbox id, blank-filled, left-
justified.

C-24 CZ06-00

Table C-ll (cont). Message Group Initialization
Request Block (MGIRB)

Item

36+2*$AF

37-i-2*$AF

38+2*$AF

38+3*$AF

Label

MI_CNT

MI_JTGI

MI_TSK

MI_SIP

Bit(s)

0-F

0-F

0-3i

0-31

Contents

Count of number of active mes-
sages in the mailbox. Returned
with $MCMG macro call.

Reserved for system use.

Pointer. Reserved for system
use.

Security information pointer.

Points to the security informa-
tion block (SIB) that points to
the logical submitter block con-
taining the user id (SI_PER) , the
account id (SI_ACC) , and the mode
(SI_MOD) .

C-25 CZ06-00

Table C-12. Message Group Recovery
Request Block (MGRRB)

Item

0

$AF

*

Label

MR_OS

MR_MAJ

Bit(s)

0-31

0-7

8(T)

9(W)

A(U)

B(S)

C(P)

D(R)

Contents

Pointer. Reserved for system
use. i

Major status. !

Reserved for system use.

This bit is set (on) while the
request using this block is exe-
cuting; it is reset when the
request terminates. The system
controls this bit; user should
not change it.

Wait bit. Set if the requesting
task is not to be suspended pend-
ing the completion of the request
that uses this block.

User bit. User may or may not
use this bit; the system does not
change it.

Release semaphore indicator.
Values: 0 = No release; 1 =
Release, on closeout, of sema-
phore which must be in MC_OS -1.

Must be set by user if MGRRB is
to be referenced by a Wait Any
($WAITA) macro call. If set,
MGRRB can be referenced only by
$WAIT or $WAITA issued by the
requesting task.

Return request block indicator.
Values: 0 = No dispatch; 1 =
Dispatch request block, whose
address must be in MC_OS -$AF,
after closeout of this request.

C-26 CZ06-00

Table C-12 (cont) Message Group Recovery
Request Block (MGRRB)

Item

$AF
(cont)

1 + $AF

2 + $AF

2+2*$AF

3+2*$AF

4+2*$AF

5+2*$AF

14+2*$AF

15+2*$AF

Label

MR_MAJ
(cont)

MR_OPT

MR_BUF

MR_BSZ

MR__ITP

MR_RES

MR_RSN

MR_FNC

MR_REV

MR_MGI

Bit(s)

E(D)

F

0-7

8-A

B

C-F

0-31

0-F

0-F

0-F

0-7

8-F

0-7

8-F

0-F

Contents

Delete I/O request block.
Values: 0 = No delete; 1 =
Delete, and return memory to the
pool where MGRRB is the first
entry of its memory block.

I/O bit. Must be set.

General options.

Reserved for system use.

Must be 0.

Must be 1 (extended MGRRB) .

Must be 0.

Pointer. Must be 0.

Buffer range. Must be 0.

Must be 0.

Residual range.
Reserved for system use.

Reason-for-terminate code.
0 = Normal message group termina-
tion; 22-26 = User-defined
abnormal termination of message
group.

Reserved for system use.

Function. Reserved for system
use.

Revision. Must be hexadecimal
'02'.

Message group id. Returned in
the $MINIT and $MACPT macro
calls.

C-27 CZ06-00

Table C-12 (cont). Message Group Recovery
Request Block (MGRRB)

Item

17+2*$AF

16+2*$AF

18+3*$AF

19+3*$AF

Label

MR..CNC

MR_FMT

MR_MRU
(Two words)

MR_AMU
(Two words)

Bit(s)

0-P

0-31

0-F
0-F

0-F
0-F

Contents

Reserved for system use.

Pointer. Must be 0.

Reserved for system use.
Reserved for system use.

Reserved for system use.
Reserved for system use.

C-28 CZ06-00
J

INDEX

ADDRESS FORMS, 1-4

ALTERNATE INDEXES, 2-266

BEFORE IMAGES, 2-503

BOUND UNIT ID DEFINED, 2-27

BUFFER POOL ALLOCATION, 2-202

CHECKPOINT, DISABLING, 2-104

CHECKPOINT, ENABLING, 2-104

CHECKPOINT FILES, 2-44

CLEAN POINTS, 2-47, 2-503

CLOCK REQUEST BLOCK
CYCLIC, 2-54
FORMAT, C-2
REGULAR (NON CYCLIC), 2-54

CODE SEGMENT ACCESS RIGHTS,
2-15

CONCURRENCY CONTROL
FILE, 2-206
DIRECTORY, 2-207

DATA SEGMENT ACCESS RIGHTS,
2-15

ERROR LOGGING TABLE, USER,
2-148

FILE CONCURRENCY, 2-206

FILE INFORMATION BLOCK (FIB)
CALLS USED WITH, 2-175
CLEARING, 2-184
FORMAT, C-4
GENERATING, 2-170

FILE SYSTEM HIERARCHY, 2-41

FILES
CLOSING, 2-56
COMPACTING, 2-521
CREATING, 2-71
DELETING, 2-117
EXPANDING, 2-275
MODIFYING ATTRIBUTES OF,
2-330

OPENING, 2-352
RESERVING, 2-196
RETRIEVING ATTRIBUTES OF,
2-228

FUNCTION CODES (TABLE), 1-9

INPUT/OUTPUT REQUEST BLOCK
FORMAT, C-9

INTERNAL DATE/TIME, 2-187

LOGICAL FILE NUMBER (LFN),
ASSIGNING, 2-205

LOGICAL RESOURCE TABLE (LRT),
2-101

MACRO CALL
$ABGRP,
$ABGRQ,
$ACTID,
$ACTVG,
$ASFIL,
$BUAT, 2
$BUDT, 2
$BUID, 2
$BULD, 2
$BUXFR,
$CANRQ,
$CIN, 2-
$CKPFL,
$CKPT, 2
$CLFIL,
$CLPNT,
SCLRSW,
$CMDLN,
$CMSUP,
5CNCRQ,
$CNSRQ,
$CRB, 2-
$CRBD, 2
$CRDIRf
$CRFIL,

ACRONYMS
2-3
2-5
2-7
2-9
2-11
-14
-19
-22
-24
2-30
2-35
60
2-44
-42
2-56
2-47
2-50
2-63
2-66
2-33
2-37
52
-55
2-68
2-71

CZ06-00

INDEX

MACRO CALL
$CRGRP,
$CRKDB,
$CROAT,
$CRPSBf
$CRRDB,
$CRSEG,
$CRTSK,
$CWDIR,
$DFCKP,
$DFRTL,
$DFSMf
$DIPSB,
$DLDIR,
$DLFIL,
$DLGRP,
$DLOAT,
$DLREC,
$DLSEG,
$DLSM,
$DLTSK,
$DQPST,
$DSFIL,
$DSTRP,
$ELEND,
$ELEX,
$ELGT,
$ELOG,
$ELST,
$ENTIDf
$ENTRP,
$EROUT,
$EXTDT,
$EXTIM,
$FIBf 2
$FIBDM,
$FIBSM,
$GAFIL,
$GAPSB,
$GDTM,
$GIDEV,
$GIFAB,
$GIFIL,
$GIKDB,
$GIPSBr
$GIRDB,
$GMEM,
$GNFIL,
$GNPSB/
$GRFILf
$GRPID,
$GRPSB,

ACRONYMS (CONT)
2-89
2-82
2-93
2-84
2-87
2-96
2-100
2-39
2-104
2-108
2-110
2-194
2-114
2-117
2-120
2-122
2-123
2-126
2-128
2-130
2-132
2-135
2-133
2-142

2-144
2-146
2-157
2-148

2-139
2-137
2-158
2-164
2-167

-170
2-182
2-185
2-217
2-220

2-187
2-190
2-248
2-228
2-253
2-255
2-259

2-261
2-266
2-269
2-275
2-273
2-280

MACRO CALL
$GTACTf
$GTFILf
$GTPSB,
$GWDIR,
$HDIR,
$INDTM,
$IORB,
$IORBD,
$KILLT,
SMACPT,
$MCMEf
$MCMG,
$MDFIL,
$MDPSBf
$MGCRBf
$MGIRBf
$MGRRB,
$MGRRTf
$MINIT,
$MODID,
$MRECV,
$MSENDf
$MTMGf
$NCINf
$NMLF,
$NPROCf
$NUINf
$NUOUT,
$OPFILf
$OPMSG,
$OPRSPf
$OVEXCf
$OVLD,
$OVRCL,
SOVRLS,
$OVRSV,
$OVSTf
$OVUN,
$PERID,
$PPNTL,
$PRBLKf
$PRFAUf
$PRFCRf
$PRFDL,
$PRFGT,
$PRFIFf
$PRFUP,
$RBADDf
$RBD, 2
$RBOOT,
$RBPRMf

ACRONYMS (CONT)
2-222
2-196
2-257
2-271
2-282
2-288
2-284
2-287
2-291
2-293
2-297
2-304
2-330
2-336
2-299
2-308
2-317
2-321
2-306
2-328
2-312
2-322
2-326
2-343
2-345 !

2-347
2-348
2-350
2-352
2-359
2-362
2-372

2-376
2-380
2-365
2-367

2-384
2-388
2-392
2-394
2-391
2-395
2-400
2-403
2-406
2-409
2-413
2-496

-462
2-429
2-337

i-2 CZ06-00

INDEX

MACRO CALL
$RCLHDf
$RDBLK,
$RDREC,
$RDSWf
$RETRN,
$RLDMP,
$RLSM,
$RLTML,
$RMEM,
$RMFIL,
$RNFIL,
$ROLBK,
$RPDFCr
$RPMSG,
$RQBAT,
$RQCL,
$RQGRP,
$RQIO,
$RQSMr
$RQSPT,
$RQTML,
$RQTSK,
$RS, 2-
$RSVSM,
SRWREC,
$RVFPWr
$SDL, 2
$SETSW,
$SGRPA,
$SGTRP,
$SHFIL,
$SHPSB,
$SPGRP,
SSPTSK,
$SRBf 2
$SRBD,
$STMP,
$STTYf
$SUSPG,
$SUSPN,
$SWFIL,
$SYSAT,
$SYSIDf
$TEST,
$TFIBr
$TGIN,
$TIFIL,
$TOFIL,
$TRB, 2
$TRBDr
$TRMRQ f

ACRONYMS (CONT)
2-432
2-416
2-422

2-420
2-491
2-579

2-434
2-436

2-493
2-438
2-441
2-503 •
2-453
2-444
2-458

2-463
2-465

2-471
2-474

2-480
2-483
2-477

488
2-486
2-500
2-498

-508 "
2-512
2-514
2-526 *-
2-521 ;

2-525
2-528
2-536

-505
2-507
2-540
2-517

2-542
2-546
2-549
2-551
2-553

2-564
2-178
2-555

2-566
2-566

-556
2-560

2-561

MACRO CALL ACRONYMS (CONT)
$TRPHD, 2-576
$USIN, 2-583
$USOUT, 2-586
$USRID, 2-581
$VLCKP, 2-589
$WAITf 2-591
$WAITA, 2-593
$WAITL, 2-602
$WAITM, 2-605
$WIFIL, 2-597
$WLIST, 2-600
$WLSTM, 2-607 -
$WOFIL, 2-597
$WRBLKr 2-608
$WRRECf 2-612
$WTBLKf 2-595
$XFERUf 2-573
$XPATHf 2-161
$XRETUf 2-570

MACRO CALLS
ADDRESS FORMS, 1-4
DEFINED, 1-2
NOTATIONAL SYMBOLS, 2-2
PRESERVED REGISTERS, 1-3,
B-l
SYNTAX, 1-2 -i^ftfmcT*-

MEMORY ALLOCATION, 2-261

MEMORY DEALLOCATION, 2-493

MEMORY POOL STATUS, 2-265,
2-540

MESSAGE GROUP, 2-322

MESSAGE GROUP CONTROL REQUEST
BLOCK FORMAT, C-19

MESSAGE GROUP INITIALIZATION
REQUEST BLOCK FORMAT, C-22

MESSAGE GROUP RECOVERY REQUEST
BLOCK FORMAT, C-26

MESSAGE LIBRARY, 2-345

MONITOR CALLS DEFINED, 1-2

i-3 CZ06-00

INDEX

MULTI-BOUND UNIT, DEFINED
2-140

NOTATIONAL SYBMBOLS, 2-2

OVERLAY AREA, 2-94

OVERLAY AREA TABLE (OAT), 2-94

P-BIT, 2-593

PARAMETER BLOCK FORMAT, C-17

QUARANTINE UNIT, 2-322

RCT (RESOURCE CONTROL TABLE),
2-101

READING RECORDS, 2-422

RECORD ENCLOSURE, 2-322

RECORD LOCKING, 2-48, 2-207

RECOVERY FILE, 2-503

REGISTERS
AT TASK ACTIVATION, 1-6
PRESERVED BY MACRO CALLS,
1-3

REQUEST BLOCK
DEFER, 2-106, 2-108
DEQUE, 2-132
FORMATS, APPENDIX C
POSTPONE, 2-394
RETURN ADDRESS OF, 2-496

RESOURCE CONTROL TABLE (RCT),
2-101

SEGMENT NUMBER, 2-26

SEMAPHORES
DEFINING, 2-110
RELEASING, 2-434
REQUEST BLOCK, 2-505
REQUESTING, 2-474
RESERVING, 2-486

SEMAPHORE REQUEST BLOCK
FORMAT, C-13

SOFTWARE DEVICE ID, 2-187

SOFTWARE REBOOT FACILITY,
2-337, 2-579

TASK MANAGER, 2-477

TASK REQUEST BLOCK
FORMAT, C-15
USE OF 2-477

TERMINALS
AWAITING I/O, 2-597
CONFIGURING, 2-517
RELEASING, 2-436
REQUESTING, 2-483
TESTING FOR COMPLETION OF
I/O, 2-566

TRAP 49, 2-291

TRAPS
CONNECTING, 2-576
DISABLING, 2-133
ENABLING, 2-137

USER ID FORMAT, 2-218

WAIT LIST
FORMAT, C-18
GENERATING, 2-600

WAIT LIST FORMAT, C-18

WRITING RECORDS, 2-612

i-4 CZ06-00

o

Honeywell
Honeywell Information Systems

CZ06-00

