
DPS 6 & LEVEL 6
GCOS 6 MOD 400
SYSTEM CONCEPTS

SOFTWARE

LEVEL 6 & DPS 6
GCOS6MOD400

SYSTEM CONCEPTS

SUBJECT

System concepts for GCOS 6 MOD 400

SPECIAL INSTRUCTIONS

This manual supersedes the GCOS 6 MOD 400 System Concepts manual,
Order No. CB20-01, dated February 1980, and its addendum CB20-01A, dated
October 1980.

SOFTWARE SUPPORTED

See the MOD 400 Guide to Software Documentation for information about
Executive releases supported by this manual.

ORDER NUMBER

CZ03-00 December 1982

Honeywell

PREFACE

This manual is written for all users of the MOD 400 system.

It will prove particularly informative to those responsible
for building MOD 400 systems and those who design application
programs and/or system functionality other than that supplied by
Honeywell.

This manual contains a general description of the way in
which processing is performed on MOD 400 systems. It presents a
discussion of the MOD 400 Executive in terms of its design
concepts and processing functionality. Not discussed are such
topics as equipment lists, available software, and supporting
manuals. No detailed procedural information is discussed;
several procedures are, however, outlined.

The major topics discussed are:

• File system, including file and pathname concepts, file
protection, and buffering operations.

• System access path including login, user registration, and
the command environment.

• Execution environment, including a description of tasks,
task groups, memory usage, and bound units.

• Task execution, including priority levels, logical
resource numbers, and intra/inter task communication.

• Deferred processing facilities, including deferred group
processing, deferred print/punch processing, and the
queuing and transacription of report files.

Honeywell disclaims the implied warranties of merchantability and fitness for a partic-
ular purpose and makes no express warranties except as may be stated in its written
agreement with and for its customer.
In no event is Honeywell liable to anyone for any indirect, special or consequential
damages. The information and specifications in this document are subject to change
without notice.

©Honeywell Information Systems Inc., 1982 File No.: 1R13, 1S13 CZ03-00

• Backup and recovery facilities, including the backup and
restoration of disk files, the preservation of the
execution environment during a power failure, the recovery
of files at the record level, and the recovery and restart
of task groups.

, Although no manual is prerequisite to this manual, you may
find it convient to have read the Software and Documentation
Directory.

The following symbols are used in this manual:

• Square brackets [] indicate an optional entry.

• Braces { } enclose information from which the user must
make a choice.

• Lowercase letters (e.g., id) indicate a symbolic variable
whose exact value must be supplied by the user.

• Uppercase letters (e.g., MEMPOOL) indicate commands or
directives that must be reproduced exactly as shown.

• The' character (delta) or the word "blank" indicates that
the entry so identified should be blank.

Each section/appendix of this document is structured
according to the heading hierarchy shown below. Each heading
indicates the relative level of the text that follows it.

Level Heading Format

1 (highest) ALL CAPITAL LETTERS. UNDERLINED

2 Initial Capital Letters, underlined

3 ALL CAPITAL LETTERS, NOT UNDERLINED

4 Initial Capital Letters, not underlined

iii CZ03-00

MANUAL DIRECTOR Y

The following publications constitute the GCOS 6 MOD 400
manual set. Refer to the "Software/Manual Directory" of the
Guide to Software Documentation for the current revision number
and addenda (if any) of relevant release-specific publications.

Manuals are obtained by submitting a Honeywell Publications
Order Form to the following address:

Honeywell Information Systems Inc.
47 Harvard Street
Westwood, MA 02090

Attn: Publications Services

Honeywell software reference manuals are periodically updated
to support enhancements and improvements to the software. Before
ordering any manuals/ you should refer to the Guide to Software
Documentation to obtain information concerning the specific
edition of the manual that supports the software currently in use
at your installation. If you use the four-character base
publication number to order a document, you will receive the
latest edition of the manual. The Publications Distribution
Center can provide specific editions of a publication only when
supplied with the seven- or eight-character order number listed
in the Guide to Software Documentation.

Honeywell applications software packages, such as INFO 6,
TOTAL 6, and TPS 6, provide specialized services. Contact your
Honeywell representative for information concerning the
availability of applications software and supporting
documentation.

iv CZ03-00

Base
Publication

Number

CZ01

CZ02

CZ03
CZ04
CZ05

CZ06

CZ07
CZ09

CZ10

CZ15
CZ16
CZ17
CZ18
CZ19
CZ20

CZ21
CZ34
CZ35
CZ36
CZ37
CZ38
CZ39
CZ40
CZ41
CZ47
CZ48

CZ52
CZ53
CZ54
CZ59

CZ60

CZ61

CZ62
CZ63
CZ64

Manual Title

GCOS 6 MOD 400 Guide to Software
Documentation

GCOS 6 MOD 400 System Building and
Administration

GCOS 6 MOD 400 System Concepts
GCOS 6 MOD 400 System User's Guide
GCOS 6 MOD 400 System Programmer's Guide -
Volume I

GCOS 6 MOD 400 System Programmer's Guide -
Volume II

GCOS 6 MOD 400 Programmer's Pocket Guide
GCOS 6 MOD 400 System Maintenance Facility
Administrator's Guide

GCOS 6 MOD 400 Menu Management/Maintenance
Guide

GCOS 6 MOD 400 Application Developer's Guide
GCOS 6 MOD 400 System Messages
GCOS 6 MOD 400 Commands
GCOS 6 Sort/Merge
GCOS 6 Data File Organizations and Formats
GCOS 6 MOD 400 Transaction Control Language

Facility
GCOS 6 MOD 400 Display Formatting and Control
GCOS 6 Advanced COBOL Reference
GCOS 6 Advanced COBOL Quick Reference Guide
GCOS 6 BASIC Reference
GCOS 6 BASIC Quick Reference Guide
GCOS 6 Assembly Language (MAP) Reference
GCOS 6 Advanced FORTRAN Reference
GCOS 6 Pascal User's Guide
GCOS 6 RPG-II Reference
Data Entry Facility-II User's Guide
Data Entry Facility-II Operator's Quick
Reference Guide

DM6 I-D-S/II Programmer's Guide
DM6 I-D-S/II Data Base Administrator's Guide
DM6 I-D-S/II Reference Card
Level 6 to Level 6 File Transmission Facility
User's Guide

Level 6 to Level 66 File Transmission
Facility User's Guide

Level 6 to Level 62 File Transmission
Facility User's Guide

BSC Transport Facility User's Guide
2780/3780 Workstation Facility User's Guide
HASP Workstation Facility User's Guide

v CZ03-00

Base
Publication

Number Manual Title

CZ65 Programmable Facility/3271 User's Guide
CZ66 Remote Batch Facility/66 User's Guide
CZ71 DM6 TP Development Reference
CZ72 DM6 TP Application User's Guide
CZ73 DM6 TP Forms Processing

In addition, the following publications provide supplementary
information:

AS22 Level 6 Models 6/34, 6/36, and 6/43
Minicomputer Handbook

AT97 Level 6 Communications Handbook
CC71 Level 6 Minicomputer Systems Handbook
CD18 Level 6 MOD 400/600 Online Test and

Verification Operator's Guide
FQ41 Writable Control Store User's Guide

Users should be aware that a Software Release Bulletin
accompanies each software product ordered from Honeywell. You
should consult the Software Release Bulletin before using the
software. Contact your Honeywell representative if a copy of the
Software Release Bulletin is not available.

vi CZ03-00

CONTENTS

Page

SECTION 1 SYSTEM CHARACTERISTICS 1-1

Operating Facilities. 1-1
Software Facilities. 1-2

System Control Software 1-2
File System Software. 1-3
Utility Software........... .. 1-3
Program Development Software 1-4
Data Communications Software 1-4
Distributed Systems Software 1-4

SECTION 2 FILE CONCEPTS 2-1

Disk File Conventions. 2-2
Directories. 2-2
Root Directory. 2-2
System Root Directory. 2-3
User Root Directory. 2-3
Intermediate Directories 2-3
Working Directory. 2-4
Locations of Disk Directories and Files 2-5
Naming Conventions. 2-5
Uniqueness of Names 2-6

Pathnames 2-6
Symbols Used in Pathnames 2-6
Absolute and Relative Pathnames 2-8

Absolute Pathname. 2-8
Relative Pathname 2-8

Disk Device Pathname Construction 2-9
Automatic Disk Volume Recognition 2-11
Disk File Organization 2-11

UFAS Sequential Disk File Organization 2-11
UFAS Relative Disk File Organization 2-11
UFAS Indexed Disk File Organization... 2-12
UFAS Random Disk File Organization. 2-12
UFAS Dynamic Disk File Organization 2-12

Alternate Indexes. 2-12
Disk File Protection. 2-13
Access Control 2-13

Access Types 2-14
Access Control/User_Id Relationship 2-14
Access Control Lists.. 2-15

vii CZ03-00

CONTENTS

Page

Checking Access Rights 2-15
File Concurrency Control 2-16
Access Control/Concurrency Control Relationship 2-17
Shared File Protection (Record Locking) 2-18

Multivolume Disk Files 2-18
Multivolume Sets 2-19
Online Multivolume Set 2-19
Online Multivolume File 2-19
Serial Multivolume Set 2-20
Serial Multivolume File . 2-20

Multivolume Disk File Overhead Requirements 2-21
Magnetic Tape File Conventions 2-21

Tape File Organization 2-22
Magnetic Tape File and Volume Names 2-22
Magnetic Tape Device Pathname Construction .. 2-23
Automatic Tape Volume Recognition 2-23

Unit Record Device File Conventions 2-23
File System Buffering Operations 2-24
Disk Buffered Operations (Buffer Pools) 2-24
Types of Buffer Pools 2-25
Public Buffer Pools 2-25
Private Buffer Pools 2-25
File-Specific Buffer Pools 2-25

Buffer Pool Statistics 2-26
Magnetic Tape Buffered Operations 2-26
Unit Record and Terminal Buffered Operations. 2-26

Buffered Read Operations 2-26
Buffered Write Operations 2-27

SECTION 3 SYSTEM ACCESS 3-1

System Configuration and Environment Definition 3-1
User Registration 3-2
Accessing the System 3-3
Ways to Access the System 3-3

Logging In . 3-3
Operator Assigned Access 3-4
User Designed Access 3-4

Activated Lead Task 3-4
Command Environment 3-5
User Productivity Facility 3-5
Command Processor 3-5
User-ln File 3-6
User-Out File 3-6
Error-Out File 3-7

Command Level 3-7
Achieving Command Level 3-7

viii CZ03-00

CONTENTS

Page

Functions Performed at Command Level................... 3-8
Command Line Format. 3-8
Arguments 3-9
Spaces in Command Lines . 3-9
Parameters 3-9
Protected Strings 3-10
Active Strings and Active Functions 3-11

EC and START_UP.EC Files 3-11

SECTION 4 EXECUTION ENVIRONMENT 4-1

Task Groups and Tasks. 4-1
Application Design Benefits of Task Group Use.......... 4-3

Intertask Communication. 4-3
System Control of Task Groups 4-4

Generating Task Groups and Tasks 4-4
Characteristics of Task Groups and Tasks 4-5
Task Group Identification 4-7

Memory Usage 4-7
Memory Management and Protection. 4-8

Swap Pools 4-8
Segments. 4-8
Segment/Bound Unit Relationship 4-9
Swappable Segments 4-9
Sharing Segments 4-10

Segment Ring Protection. 4-10
Segment Bound Units 4-11

Segmented Bound Unit Overlays 4-11
Segmented Reentrant Bound Units 4-11
Sharable Segmented Bound Units 4-12

Task Address Space 4-12
Bound Unit 4-12
User Stack Segment 4-13
Dynamically Created Segments 4-13
Group Work Space 4-13
Group System Space 4-13
System Global Space 4-13
System Representation of Task Address Space 4-14

Allocating and Deallocating Segments and Bound Units... 4-16
Allocating Segments and Bound Units. 4-16
Deallocating Segments and Bound Units 4-17

Online Pools. 4-17
Exclusive Online Pools 4-17
Nonexclusive Online Pools 4-19
Sharing Memory Pools 4-19

Fixed System Area 4-20
System Pool Area 4-21

System Task Group 4-21

ix CZ03-00

CONTENTS

Page

File Control Structures in the System Pool Area 4-21
Pool Attributes 4-21

Protected Memory Pools 4-22
Contained Memory Pools 4-22
Unprivileged Memory Pools 4-22
Serial-Usage Memory Pools 4-22
Multipool Memory Protection 4-23
Memory Layout . 4-23
Selecting Memory Pool Attributes for Task Group

Execution 4-24
Bound Units 4-24

Sharable Bound Units 4-25
Overlays 4-25
Nonfloatable Overlays 4-26
Floatable Overlays 4-27
Linker Associated Overlays 4-27
Floatable Overlays Controlled Through Overlay Areas.. 4-30
Unloading Overlays from Overlay Area Tables 4-32

Loading Bound Units (Search Rules) 4-32

SECTION 5 TASK EXECUTION 5-1

Interrupt Priority Levels 5-1
Processing Priority Levels 5-2
Timeslicing. ,, 5-3
Interrupt Save Area 5-3
Control of Priority Levels 5-4

Trap Handling 5-5
System Features Affecting Task Execution 5-6

Priority Level Assignments 5-6
Assigning Priority Levels to Devices and System

Tasks .. 5-6
Assigning Priorities to Application Tasks.... 5-9

Logical Resource Number .. 5-10
Device LRNs 5-10
Application Task LRNs 5-10

Logical File Numbers 5-11
Task- and Resource Coordination. 5-11
Task Requests 5-11
Semaphores 5-11

Task Handling 5-13
Example of System Interaction with User Tasks............ 5-15
Intertask and Intratask Group Communication. 5-15
Request Blocks 5-15
Common Files 5-17
Message Facility 5-17

Creating the Mailboxes 5-17

x CZ03-00

CONTENTS

Page

Activating the Message Facility Task.. 5-18
Message Facility Command Interface.... 5-18
Message Facility Macro Call Interface 5-19

SECTION 6 DEFERRED PROCESSING CAPBILITIES 6-1

Deferring Batch and Interactive Group Requests 6-1
Creating Group Request Queues 6-2
Queuing Group Requests. .' «. 6-2

Deferring Print and Punch Requests 6-2
Creating Print and Punch Request Mailboxes 6-2
Creating the Print and Punch Daemon 6-3
Queuing Print and Punch Requests 6-3

Queuing and Transcribing Reports..... 6-3
Creating Report Queues 6-3
Queuing Report Requests 6-4
Transcribing Reports 6-4

SECTION 7 BACKUP AND RECOVERY FACILITIES 7-1

Disk File Save and Restore 7-2
Power Resumption. 7-3

Implementing the Power Resumption Facility 7-3
Power Resumption Functions 7-4

File Recovery. 7-5
Designating Recoverable Files 7-5
Recovery File Creation. 7-5
File Recovery Process. 7-5
Taking Cleanpoints. 7-6
Requesting Rollback. 7-6
Recovering After System Failure 7-7

File Restoration. 7-7
Designating Restorable Files 7-7
Journal File Creation 7-7
File Restoration Process. 7-8

Checkpoint Restart 7-8
Checkpoint. 7-9
Checkpoint File Assignment 7-9
Taking a Checkpoint 7-9
Checkpoint Processing. 7-10

Restart. 7-11
Requesting a Restart. 7-11
Restart Processing 7-12

APPENDIX A GLOSSARY A-l

xi CZ03-00

ILLUSTRATIONS
Figure Page

2-1 Example of Disk File Directory Structure 2-3
2-2 Sample Directory Structure , 2-4
2-3 Sample Pathnames 2-10
2-4 Example of Online Multivolume Files 2-20
2-5 Example of Serial Multivolume Files 2-21

4-1 Task Address Space 4-15
4-2 Exclusive Memory Pools and Contents 4-18
4-3 Exclusive and Nonexclusive Pool Sets 4-19
4-4 Relative Location in Memory of Memory Pool AA 4-29
4-5 Overlays in Memory Pool AA 4-29
4-6 Sample Bound Unit Structure for Overlay Area Use... 4-30 —

5-1 Format of Level Activity Indicators 5-2
5-2 Order of Interrupt Vectors and Format of Interrupt

Save Areas 5-4
5-3 Example of LRN and Priority Level Assignments

to System Tasks and Devices 5-10
5-4 System Interaction with User Tasks 5-16

TABLES
Table Page

2-1 Disk File Concurrency Control 2-17
2-2 Access Control/Concurrency Control Relationship.... 2-17

4-1 Task Group and Task Functions Possible from
Interactive or Batch Modes 4-6

4-2 Comparison of Executive Extensions and
Sharable Bound Units 4-26

5-1 Priority Level Assignments for Tasks and Devices... 5-7

xii CZ03-00

Section 1
SYSTEM

CHARACTERISTICS

GCOS 6 MOD 400 software is a disk-based operating system that
supports multitasking, real-time, or data communications applica-
tions in one or more online streams. In addition, program devel-
opment or other batch-type applications can be performed concur-
rently in a single batch stream.

GCOS is a multifunctional system capable of supporting a
variety of processing functions. You can develop and execute
applications software, perform forms data entry, transmit files
to other DPS 6/Level 6 computers, and enter jobs for execution at
remote sites.

The system can be configured to process different functional
applications concurrently. For example, you can run your own
applications, utilize other system functionality such as the data
collection capability, and communicate with a host processor at
the same time.

OPERATING FACILITIES

MOD 400 supports multiprogramming, the concurrent execution
of multiple tasks running under one or more task groups. Each
task group owns the resources necessary for execution of an
application program (one or more related tasks). The task group
runs independently in its own operating environment while it
shares the resources of the system.

1-1 CZ03-00

If you define the environment to run more than one applica-
tion task group concurrently, you are utilizing multiprogram-
ming. In this environment you can execute each task in a task
group sequentially or concurrently, which is multitasking. You
can run multiple online task groups concurrently with a single
batch task group.

The number of task groups that can run is limited only by the
amount of memory available. Concurrently executing task groups
can occupy independent dedicated memory areas, or they can con-
tend for space within a memory pool. When one task group is
deleted, the released memory is available to other task groups in
the same pool. MOD 400 allocates memory dynamically from pools
and can relocate programs at load time. Once a task group
requests execution, its tasks are dispatched according to their
assigned priority levels. When more than one task shares a
priority level, tasks are serviced in a round-robin fashion.

Use of disk files by multiple independent users is facili-
tated by the arrangement of File System entries (directories and
files) in a tree-structured hierarchy. Each directory or file is
identified by a pathname that indicates the path from the root
directory of the hierarchical structure of the particular direc-
tory or file. File reference can be simplified through the use
of pathnames relative to a working directory that indicates a
user's current position in the File System hierarchy. Access to
sharable files and devices is controlled by file attributes and
concurrency procedures.

SOFTWARE FACILITIES

MOD 400 offers you a comprehensive set of software components
that perform a wide variety of functions. The following para-
graphs briefly describe these software components.

System Control Software

System control software includes:

• Task Manager; Handles the disposition of tasks within the
system and responds to requests placed against tasks. The
Task Manager processes requests to activate tasks; returns
control to interrupted tasks; and synchronizes, suspends,
and terminates tasks.

• Clock Manager: Handles all requests to control tasks
based on real-time considerations and responds to requests
for the time of day and date in ASCII format.

• Segment Manager/Swapper: Controls the allocation of swap
pool memory and swap file space. Swaps tasks out when
swap pool memory is required and swaps them back when the
memory is available.

1-2 CZ03-00

• Memory Manager; Controls dynamic requests for memory or
the return of memory to group work segments. Also
controls the allocation of all memory in non-swapped pools
and of tasks groups assigned to the swap pool.

• Trap Manager; Handles the transfer of execution control
from an executing program to a predefined trap location
when a trap (a special condition such as a hardware error)
occurs. The Trap Manager handles system traps and allows
a task group to connect its own trap routines for specific
traps.

• Operator Interface Manager; Manages all messages sent
simultaneously by multiple task groups to the operator
terminal or from the operator terminal to a task group.

• Loader; Loads the root and overlays of a bound unit
dynamically from a disk.

• Listener: Monitors a selected set of local and remote
terminals. If you enter a log-in command requesting
access to the system at one of the terminals, the Listener
causes a task to be spawned for you.

• Command Processor; Processes all commands. The Command
Processor is the lead task of the batch task group and can
be the lead task of an online task group.

• Message Facility; Provides a means for intertask and
intratask group communications. The Message Facility uses
mailboxes as structures for sending and receiving
messages.

• Menu Subsystem: Provides an alternative means to the
Command Processor for communicating with the Executive.

File System Software

MOD 400 provides software to handle Input/Output (I/O)
functions of each of the supported devices. The File System
software is designed to work in conjunction with the data
management conventions established for each device.. The File
System software is available through system commands or, for an
Assembly language program, through system service macro calls.

Utility Software

The system provides a comprehensive set of utility programs
for performing frequently used programming functions. The system
programs used by MOD 400 for the various utility functions are
invoked by system commands.

1-3 CZ03-00

Program Development Software

MOD 400 supports a large set of program preparation compo-
nents, utilities, and debugging aids for applications develop-
ment. Programming languages include Assembly language, PASCAL,
FORTRAN, COBOL, and BASIC. A display formatting and control
facility provides an effective method for developing, displaying,
maintaining, and utilizing terminal display forms.

Data Communications Software

MOD 400 supports four levels of communications interface;
terminals and/or remote host computers can be accessed through:

1. Sequential file interface of the File System software
2. Display formatting and control software
3. Physical I/O interface of the system
4. Various distributed systems facilities.

Specialized software components called Line Protocol Handlers
(LPHs) support the different device classes and the various con-
ventions established for data transfer.

Distributed Systems Software

MOD 400 supports various software packages that permit use of
DPS 6/Level 6 in a distributed processing environment. Using the
packages provided by the vendor, you can configure a DPS 6/
Level 6 as a host processor with specialized processing assigned
to remote terminals. Alternatively, you can develop links with a
remote host processor and distribute the total processing load
between the DPS 6/Level 6 and the host processor.

1-4 CZ03-00

Section 2
FILE CONCEPTS

A file is a logical unit of data composed of a collection of
records. The principal external devices available for storing
files ares

• Disk devices (diskettes, cartridge disks, cartridge module
disks, and mass storage units)

• Magnetic tape units.

These external devices are referred to as volumes (e.g.,
diskette volume, tape volume).

Various conventions have been established to identify and
locate files stored on disk and magnetic tape. The conventions
facilitate the orderly and efficient use of the stored data.

Unit record devices (such as card readers, card punches,
paper tape reader/punches, and printers) also use the file
concepts„ However, since unit record devices cannot be used to
store files, there is less need to establish conventions for
identification and location. A unit record file is simply the
data that is read or written at any one time.

2-1 CZ03-00

DISK FILE CONVENTIONS

You must be able to specify an access path to any given file
on a disk volume that contains multiple files. Files must there-
fore be organized on the volume in some predictable fashion.
MOD 400 provides a set of volume organization conventions by
which the system can locate any element that resides on the
volume.

The principal elements of this organization, aside from the
files themselves, are directories. The access path to any given
element on a volume is known as a pathname.

Directories

Files on disk devices reside within a tree-structured hierar-
chy. The basic elements of this hierarchy are special files
known as directories. The directories are used to point to the
location of data files, which are the endpoints of the tree
structure.

A directory on a disk volume is an index that contains the
names and starting locations (sectors on the volume) of files or
other directories (or both). The elements in the directory are
said to be "contained in" or "subordinate to" the directory.
Therefore, the organization of a disk volume is a multilevel
structure. The complexity of the access path to any given
element in the structure depends on the number of directories
between the root and the desired element.

A directory structure is illustrated in Figure 2-1. The base
directory on a volume is termed a root directory. In Figure 2-1
the root directory is VOL01. The root directory VOL01 points to
two subordinate directories DIR1 and DIR2. The directories DIRl
and DIR2, in turn, point to the data files (FILEA, FILEB, FILEC,
and FILED).

The root directory and other special types of directories are
described in the following paragraphs.

ROOT DIRECTORY

There is a tree structure for each disk mounted at any given
time. At the base of each tree structure is a directory known as
the root directory. This is the directory that ultimately con-
tains every element that resides on the volume either immediately
or indirectly subordinate to it. The root directory name is the
same as the volume identifier of the volume on which it resides.
The directory VOL01 in Figure 2-1 is a root directory.

2-2 CZ03-00

Figure 2-1. Example of Disk File Directory Structure

SYSTEM ROOT DIRECTORY

One or more disk root directories can be known to the system
at any time during its operation. One of these, the System Root
Directory (3RD) , is required at all times. Files in the 3RD all
have pathnames starting with two greater-than signs (») . The
volume used by the operator to initialize the system establishes
the 3RD; the boot volume must contain the 3RD. This volume also
normally contains system programs, commands, and other routinely
used elements. It must contain a number of directories and files
that the system needs to perform its functions, including
Z3EXECUTIVEL, SID, AID, HIS, and USER_REG. For more information,
see the GCQS 6 System Building and Administration manual (Order
No. CZ02) .

USER ROOT DIRECTORY

The File System can recognize one User Root Directory (URD) .
Files in the URD have pathnames that start with a single
greater-than character. The URD contains such items as UDD, LDD,
MOD, FORMS, PROGS, and TRANS. For more information, see the
Syg£em Building and Administration manual. The 3RD and the URD
can reside on different volumes or on the same volume. The
installation can also support several user volumes that were
created and used for the installation's own particular needs.
They may contain user application programs and their associated
data files, application program source and object code files,
listing files, or anything else that a user might want to store,
either temporarily or permanently.

INTERMEDIATE DIRECTORIES

When you first create a volume, it contains only a root
directory. Within this directory you can create any additional
directories required to satisfy the needs of your installation.
Consider, for example, a volume that is to contain data used by

2-3 CZ03-00

two application projects, each of which has several people asso-
ciated with it. Each person has one or more files of interest to
him/her. The volume has been initialized and contains a root
directory name. Two directories can be created subordinate to
the root directory, each identified by the project name. Then,
subordinate to these directories, a directory can be created for
each person associated with each project.

The data files are all contained within the personal direc-
tories. This sample directory structure is illustrated in
Figure 2-2.

Figure 2-2. Sample Directory Structure

When the need for a user-created directory no longer exists,
the directory can be deleted from the File System. The space it
occupied, as well as the space occupied by its attributes in the
immediately superior directory, is then available for reuse. A
directory must be empty before it can be deleted; all directories
and files subordinate to the one to be deleted must have been
previously deleted by explicit commands.

WORKING DIRECTORY

The File System always starts at a root directory when it
performs an operation on a disk file or a directory. At times
the search for an element residing on a disk volume may traverse
a number of intermediate directory levels before locating the
desired element, and the File System must be supplied with the
names of all of the branch points it must pass on the way. All
the files of interest to a user doing work on the system are
frequently contained in a single directory. This directory can
be three or four or more levels deep in the structure. It is

2-4 CZ03-00

convenient to be able to refer to files in relation to a
directory at some arbitrary level in the hierarchy rather than in
relation to the root directory. The File System allows this to
be done by recognizing a special kind of directory known as a
working directory.

A working directory establishes a reference point that
enables you to specify the name of a file or another directory in
terms of its position relative to the working directory. If the
access path of the working directory is made known to the File
System, and if the desired element is contained in that direc-
tory, then the element can be specified by just its name. The
File System then concatenates this name with the names of the
elements of the working directory's access path to form the com-
plete access path to the element.

LOCATIONS OF DISK DIRECTORIES AND FILES

The File System has total control over the physical location
of space allocated to directories and files; you need never be
concerned about where a directory or file resides on a volume.
When a volume is first initialized, space is allocated to ele-
ments in essentially the order in which they are created. But,
after the volume has been in use for some time, elements may have
been deleted and the space they occupied made reusable. Then,
when a new element is created, it is allocated the first avail-
able space. If more space is needed, it is obtained from the
next free area.

NAMING CONVENTIONS

Each disk file and directory name in the File System can con-
sist of the following American Standard Code for Information
Interchange (ASCII) characters:

Uppercase alphabetics (A through Z)
Digits (0 through 9)
Underscore (_)
Hyphen (-)
Period (.).

If lowercase alphabetic characters are used, they are converted
to their uppercase counterparts.

The first character of any name must be alphabetic. The
underscore character can be used to join two or more words that
are to be interpreted as a single name (e.g., DATE_TIME). The
period character followed by one or more alphabetic or numeric
characters is normally interpreted as a suffix to a file name.
This convention is followed, for example, by a compiler when it
generates a file that is to be subsequently listed; the compiler
identifies this file by creating a name of the form "FILE.L".

2-5 CZ03-00

The name of a root directory or a volume identifier can con-
sist of from one to six characters. The names of other direc-
tories and files can contain from 1 to 12 characters. The length
of a file name must be such that any system-supplied suffix does
not result in a name of more than 12 characters.

UNIQUENESS OF NAMES

Within the system at any given time, the access path to every
element must be unique. This leads to the following rules:

1. Only one volume with a given volume_id can be mounted at
any given time. (The system notifies you of an attempt
to mount a volume having the same name as one already
mounted.)

2. Within a given directory, every immediately subordinate
directory name must be unique. (The Create Directory
command notifies you of an attempt to add a duplicate
directory name.)

3. Within a given directory, every file name must be
unique. (The Create File command notifies you of an
attempt to add a duplicate file name.)

Pathnames

The access path to any File System entity (directory or file)
begins with a root directory name and proceeds through zero or
more subdirectory levels to the desired entity. The series of
directory names (and a file name if a file is the target entity)
is known as the entity's pathname. The total length of any path-
name, including all symbols, cannot exceed 57 characters. A
working directory pathname, however, cannot exceed 44 characters.

SYMBOLS USED IN PATHNAMES

The following symbols are used to construct pathnames:

• Circumflex ("); Used exclusively to identify the name of
a disk volume root directory. The circumflex is used in
two forms. In one form it directly precedes the root
directory name (e.g., "VOL011). In the other it directly
precedes a greater-than symbol (>) to refer to the root
directory of the current working directory (e.g.,
~>DIR1>FILEA becomes ~VOL011>DIR1>FILEA).

• Greater Than (» : Indicates movement in the hierarchy
away from the root directory. The symbol is used to con-
nect two directory names or a directory name and a file
name. It can also be the first character of a pathname,
in which case the element whose name follows the > symbol
is immediately subordinate to the root directory of the
user root volume (residing under the URD). Each

2-6 CZ03-00

occurrence of the > symbol denotes a change of one
hierarchical level; the name to the right of the symbol is
immediately subordinate to the name on the left. Reading
a pathname from left to right thus indicates movement
through the tree structure in a direction away from the
root directory,, If the root directory "VOL011 contains a
directory name DIR1, then the pathname of DIR1 is:

"VOL011>DIR1

If the directory named DIR1 in turn contains a file named
FILEA, then the pathname of FILEA-is:

"VOL011>DIR1>FILEA

• Two Consecutive Greater-Than Signs f»); Specifies
entities that are subordinate to the 3RD.

Honeywell-supplied programs make the following assumptions
about directory assignments to the 3RD and URD:

SEE

Z 3 EXECUTIVE!,
SID
AID
HIS
USER REG

IIBD.

UDD
LDD
FORMS
MOD
PROGS
TRANS

SYSLIB1 and SYSLIB2 can reside in either directory.

The correct way to refer to the directory SID, for
example, is »SID; the correct way to refer to UDD is
>UDD.

Less Than (O: Used at the beginning of a pathname to
indicate movement from the working directory in a direc-
tion toward the root directory. Consecutive symbols can
be used to indicate changes of more than one level; each
occurrence represents one level change. When followed by
elements of a relative pathname, those elements represent
changes of direction away from the root directory. One or
more of these symbols may precede only a relative
pathname.

ASCII Space Character; Used to indicate the end of a
pathname. When represented in memory, a pathname must end
with a space character.

2-7 CZ03-00

The last (or only) element in a pathname is the name of the
entity upon which action is to be taken. This element can be a
device name, directory name, or a file name, depending on the
function to be performed. For example, in the Create Directory
command, a pathname specifies the name of a directory to be
created. The last element of this pathname is interpreted by the
command as a directory name; any names preceding the final name
are names of superior directories leading to it. An analogous
situation occurs in the Create File command, except that in this
case the final pathname element is the name of a file to be
created.

ABSOLUTE AND RELATIVE PATHNAMES

A full pathname contains all necessary elements to describe a
unique access path to a File System entity, regardless of the
type and location of the device on which it resides. The File
System uses this form in referring to a directory or file. How-
ever, it is frequently unnecessary for you to specify all of
these elements; the File System can supply some of them when the
missing elements are known to it and the abbreviated pathnames
are used in the appropriate context. An understanding of these
conditions and contexts requires an understanding of absolute and
relative pathnames. These subjects are described in the follow-
ing paragraphs.

Absolute Pathname

An absolute pathname is one that begins with a circumflex (")
or one or more greater-than symbols (». A pathname that begins
with a circumflex is a full pathname. This form is used to
locate directories and files that reside on a device other than
that on which the system (the volume from which the system was
initialized) is mounted. When an absolute pathname begins with
one greater-than symbol, the first element named in the pathname
is assumed to be immediately subordinate to the URD. Thus, if
the user volume name is SYS01 and the pathname given is
>DIR1>FILEA, the full pathname becomes "SYS01>DIR1>FILEA. If the
pathname begins with two greater-than symbols, it is assumed to
be directly subordinate to the SRD.

Relative Pathname

A relative pathname is one that begins with a file or direc-
tory name or a less-than (<) symbol. When a relative pathname
begins with an element name, the first (or only) name in the
pathname identifies a directory or file immediately subordinate
to the working directory. When the relative pathname begins with
one (or more) less-than symbols, the first (or only) name in the
pathname identifies a directory or file immediately subordinate
to the directory reached by moving from the working directory
toward the root the number of levels indicated by the less-than
symbol(s).

2-8 CZ03-00

A relative pathname can consist of one or more elements. If
a relative pathname contains more than one element, each element
except the last must be a directory name? the first immediately
subordinate to the current working directory level, the second
immediately subordinate to the first, and so on. The last or
only element can be either a directory name or a file name,
depending on the function being performed, as described
previously.

A simple pathname is a special case of the relative
pathname. A simple pathname consists of only one element: the
name of the desired entry in the working directory.

You can refer to a file or directory that is on the same
volume but not subordinate to the working directory in two ways:
by using an absolute pathname, or by.using any of the forms of
relative pathname previously described.

Figure 2-3 shows some relative pathnames and the full path-
names they represent when the working directory pathname is:

>PROJ1>USERA

DISK DEVICE PATHNAME CONSTRUCTION

A special pathname convention is used to specify an entire
disk volume (e.g., during a volume copy or volume dump). The
special pathname consists of an exclamation point (!) followed by
the symbolic device name and, optionally, the name of the disk
volume. The general form of the disk device-level pathname is:

Idev_name[>vol_id]

where dev__name is the symbolic device name defined for the disk
device at system building, and vol_id is the name of the disk
volume.

If the vol_id is not supplied, reservation of the disk is
exclusive (i.e., the reserving task group has read and write
access but other users are not allowed to share the volume).
This pathname form is used when creating a new volume. If the
vol__id is specified, reservation is read/share (i.e., the reserv-
ing task group has read access only, other users may read and
write). This pathname form is used when dumping selected por-
tions of a volume without regard for the hierarchical Pile System
tree structure.

2-9 CZ03-00

RELATIVE PATHNAME

DELTA
OLD>DELTA
<USERB>ALPHA
«PROJ2>USERA>DELTA

FULL PATHNAME

-SYS01>PROJ1>USERA>DELTA
- SYS01 >PROJ1 >USERA>OLD>DELTA
- SYS01 >PROJ1 >USERB>ALPHA
- SYS01 >PROJ2>USER A>DELTA
-SYS01>PRQJ1

a Assume current working directory is "SYS01>PROJ1>USERA

Figure 2-3. Sample Pathnames

2-10 CZ03-00

Disk Volume Recognition

Automatic volume recognition dynamically notes the mounting
of a disk volume. This feature allows the File System to record
the volume identification and the root directory name in a device
table. All references to disk files and directories begin,
either explicitly or implicitlyf with a root directory name;
therefore, every mounted file is accessible to the File System
software.

PisK Fills. Organization

Since no one disk file organization can meet the needs of all
users at all times, MOD 400 supports several different organiza-
tions, each of which is well suited to a particular application.
Most of the supported organizations are based on the concept of a
control interval (a unit of transfer between main memory and
disk) and are referred to as Unified File Access System (UFAS)
files. UFAS file organizations provide a common level of file
processing compatibility across the GCOS Executives.

You establish the organization of a data file when you create
the file with the Create File (CR) command. You read and write
the file using statements and macro calls provided by the MOD 400
compilers and Assembler.

The following paragraphs summarize the MOD 400 disk file
organizations. Refer to the GCOS 6 Data File Organizations and
Formats manual (Order No. CZ19) for detailed descriptions of each
organization.

UFAS SEQUENTIAL DISK FILE ORGANIZATION

Logical records are normally read from or written to a
sequential file in consecutive order. Records must be written
sequentially although the file can be positioned for writing
through the use of a simple key. Records can be read, modified,
or deleted directly when you specify their exact control interval
and record address (simple key). Records cannot be inserted;
they can be appended to the end of a file. Fixed- or variable-
length records can be used. If a record is deleted, the position
it occupied cannot be reused.

UFAS RELATIVE DISK FILE ORGANIZATION

A relative disk file can contain fixed- or variable-length
records. If variable-length records are used, they occupy fixed-
length slots (and the size of the largest record must be speci-
fied) . Both sequential and direct access are supported; in
direct access, simple and relative keys can be used. A record
can be updated (i.e., rewritten), deleted, or appended to the
file. If a record is deleted, the position it occupied can be
used for a new record. A file can be created directly if you
specify relative record numbers in random sequence.

2-11 CZ03-00

UFAS INDEXED DISK FILE ORGANIZATION

Each logical record contains a fixed-size key field that
occupies a fixed position. Records are logically ordered by key
value; they can be accessed sequentially in key sequence or
directly by key value. Fixed- or variable-length records can be
used. Variable-length records are handled in variable-length
format. A record can be updated, deleted, or inserted in key
sequence into available free space. When no space is available
to insert a record in key sequence, the record is placed in an
overflow area. When the file is initially loaded, the records
must be supplied in sequence by key value.

UFAS RANDOM DISK FILE ORGANIZATION

Records are accessed directly or sequentially. Variable-
length records are handled in variable-length formats. Direct
access of records is performed through CALC keys, which are fixed
in size and located within each record. Records are positioned
according to a technique involving an arithmetic derivation of
their CALC keys; this derivation is called a hashing algorithm
(and is carried out by the system). Insertions, updates, and
deletions are handled according to key value.

UFAS DYNAMIC DISK FILE ORGANIZATION

A dynamic disk file can contain fixed- or variable-length
records and supports inventory information to describe available
space. The main purpose of this file organization is to provide
an efficient storage organization for records to be accessed
through alternate indexes.

Records are accessed sequentially or directly. Variable-
length records are handled in variable-length formats. Records
can be accessed indirectly through alternate indexes or directly
by specifying their exact control interval and record address
(simple key). Records are inserted into the file according to
inventory information on a "best fit" basis.

Alternate Indexes

Alternate indexes allow you to define any number of alternate
record keys to provide any number of different access paths to
data records on disk. In effect, alternate indexes provide dif-
ferent views of the same data. The same data file can be viewed
in many different ways by having more than one alternate index.
For example, an application could have a relative file (ordered
according to employee identification number) with alternate
indexes for employee names and social security numbers. You
could read such a file as a relative file ordered by employee
numbers, or as an indexed file ordered by employee names, or as
an indexed file ordered by social security numbers.

2-12 CZ03-00

The alternate index capability exists in addition to the
normal access mode based on type of file. You can establish an
alternate index for any UFAS relative, indexed, random, or
dynamic disk file., A file with more than one index can be
accessed in a number of ways. The manner in which the file is
reserved (through the Get File command) determines how the file
is accessed. If the data file itself is reserved, the file can
be accessed normally (i.e., based on file organization) or by a
key that is supported by one of the indexes. When the data file
is reserved through an alternate index, the contents of the file
can be accessed as a standard indexed file. Additionally, if
more than one index exists, the indexes can be used as alternate
keys to refer to the data. When an alternate index is used for
file reservation, that index is used as the primary key and the
remaining indexes can be used as alternate keys. Any index can
be selected as a primary index. When one index is used to access
the file, it and the other indexes are automatically updated as
the file is updated.

UFAS dynamic disk files contain inventory information to
manage available file space. Therefore, in highly volatile file
environments that include many insert and delete operations,
dynamic disk files are the ideal data files to be used with
alternate indexes.

Character string, signed binary, signed unpacked decimal, and
signed or unsigned decimal key types can be used. Single
component keys, ordered in ascending or descending sequence, are
supported. Duplicate keys (more than one record in a file with
the same key value) are supported on an index-by-index basis.

An alternate index is created with the Create Index (CX)
command. Arguments of this command specify the name of the index
and the name of the data file with which it is to be associated.
The system creates the index on the same directory as the data
file and with the same control interval size as that of the data
file.

Refer to the Data File Organizations and Formats manual for
further information.

Disk File Protection

The File System provides facilities that enable you to con-
trol the access to files and directories, to control the concur-
rent access to files, and to control the contention for records
within shared files.

ACCESS CONTROL

Access control is an optional File System feature that allows
the creator of a file or directory to specify which users (if
any) are to be granted access to the file or directory and what
types of access these users are to be granted.

2-13 CZ03-00

There are two general forms of access control: Access Con-
trol Lists (ACLs) and Common Access Control Lists (CACLs). ACLs
apply directly to a file or directory; CACLs apply equally to all
immediately subordinate entries in a directory. You manage
entries in the ACLs and CACLs by Set, Delete, and List Access
commands.

Access control is a file or directory attribute. The File
System maintains in each directory a list of users and the type
of access each user is allowed. If a directory does not contain
such a list, the items contained within it are not protected and
are accessible to all users. (Access control applies only to
disk files and directories. Tape files and other device-type
files such as terminals, card readers, and paper tape readers,
cannot be protected through the access control facility.)

Access Types

Access types for files are Read (R), Write (W), and Execute
(E); access types for directories are List (L), Modify (M), and
Create (C). A Null (N) access type applies to both files and
directories; null access indicates that no access is to be
granted.

Access Control/User_Id Relationship

The system builder can require that users of selected termi-
nals log in to the system. Users who log in must be identified
by a user_id consisting of three elements. Alternatively, the
elements of a user_id can be entered as arguments in a Spawn
Group, Enter Group Request, or Enter Batch Request command.
These elements are:

person.account.mode

person - Name of individual who may access the system,

account - Name of account to which work is charged.

mode - Name of mode in which user is working (e.g.,
interactive, batch, or operator).

The components are separated with periods (.). When
comparing user_id's, any or all of the components can be replaced
by an- asterisk (*) ; for example:

*.account.mode
per son.account.*
..*

2-14 CZ03-00

When an asterisk appears in a component position, it is
interpreted to mean any value that may exist. For example, if
two persons (SMITH and JONES) are registered in an account named
FILE__SYS, the user_id *.FILE_SYS.* matches either person in any
possible mode. *.FILE_SYS.* matches all individuals registered
to use FILE_SYS in any mode.

Access Control Lists

There are four kinds of access control lists: file ACLs,
directory ACLs, file CACLs, and directory CACLs.

• File ACL: An ACL that applies to a specific file and is
considered to be a file attribute. It contains a list of
those users who can access the file and their specific
access rights (i.e., read, write, execute).

• Directory ACL: An ACL that applies to a specific
directory and is considered to be a directory attribute.
It contains a list of those users who can access the
directory and their specific access rights (i.e., list,
modify, create).

• File CACL: A CACL that applies to all files immediately
subordinate to a directory. A file CACL is considered to
be a directory attribute that applies only to files
contained in that directory. A file CACL contains a list
of file users and their specific access rights (i.e.,
read, write, execute). Use of file CACLs can save disk
space and search time if all or most files in a dir-ectory
have the same access requirements. A file CACL does not
override individual file ACLs set on files in the
directory.

• Directory CACL; A CACL that applies to all directories
immediately subordinate to a directory. A directory CACL
is considered to be a directory attribute that applies
only to immediately subordinate directories. A directory
CACL contains a list of directory users and their specific
access rights (i.e., list, modify, create). Use of
directory CACLs can save disk space and search time when
all or most subdirectories have the same access
requirements. A directory CACL does not override
individual directory ACLs set on the subdirectories.

Checking Access Rights

When you reserve a file (through the $GTFIL system service
macro call or the Get command), the File System checks your right
to access that file. You are said to be on the access control
list if your user__id matches an entry on the ACL or CACL in any
of the forms noted below.

2-15 CZ03-00

Universal access (no access restriction) is implied if
neither an ACL nor a CACL exists for the file being reserved. If
either list is present, it is scanned by access control.

The checking priority is ACL first, CACL second. If a match
is found in the ACL for a fully specified user_id (all three com-
ponents explicitly stated), the CACL is not inspected. If a
match is found on a partially specified user_id (one or more
components specified as an asterisk), the CACL is inspected for a
more explicitly stated user_id. The following list indicates the
priority hierarchy of user_id formats in order of decreasing
priority.

1. person.account.mode
2. person.account.*
3. person.*.mode
4. person.*.*
5. *.account.mode
6. *.account.*
7. *.*.mode
R * * *o. . «

Access is checked only for the target file or directory; the
access rights set on directories that may be traversed in reach-
ing the target file are not checked. You may be denied access at
some intermediate directory level and still gain access to a sub-
ordinate directory or file.

FILE CONCURRENCY CONTROL

Concurrent read or write use of a file is established by the
task group that first reserves the file. Concurrency has two
aspects: (1) it establishes how tasks in the reserving task
group intend to access the file, and (2) it establishes what the
reserving task group allows other task groups to do with a file.
If the file is already reserved, a task group's concurrency
request is denied when its intended access conflicts with the
access permitted by another task group. The concurrency request
is also denied if what it allows pthers to do conflicts with the
access already established by another task group. For example,
if a task group reserves the file exclusively, other task groups
are denied any access. Or, if a task group permits read-only
access but does not permit write access, other readers are
allowed but writers are denied access.

Concurrency is controlled through the Get command or through
the $GTFIL system service macro call. .The possible combinations
of access intended for the reserving task group and the shara-
bility permitted other task groups are given in Table 2-1.

2-16 CZ03-00

Table 2-1. Disk File Concurrency Control

Reserving
Task Group Other Task Groups

Read only

Read or Write

Read only (Read share)
Read or Write (Read/Write share)

No Read, no Write (Exclusive use)
Read only (Read share)
Read or Write (Read/write share)

Compiler-generated programs, commands, sort operations, and
other system software always request exclusive concurrency for
files that they reserve for a user. The operator terminal must
be reserved with read/write shared concurrency to allow
concurrent access by many task groups. For this reason, the
command argument -GOUT specifying the list output file cannot be
the operator terminal. If the command-in and user-in files are
on disk, they are reserved with read-only shared concurrency; if
assigned to a user terminal, they are reserved with exclusive
concurrency. The user-out and error-out files are always
reserved for exclusive use.

ACCESS CONTROL/CONCURRENCY CONTROL RELATIONSHIP

In an environment that employs access control, users must
have certain minimum types of access privilege to obtain the spe-
cific type of concurrency control they indicate in their Get File
commands or $GTFIL system service macro calls.

Table 2-2 summarizes the relationship between access control
and concurrency control for disk files, disk directories, and
disk volumes. (Note that access control does not exist for other
types of devices.)

Table 2-2. Access Control/Concurrency Control Relationship

Object Desired Concurrency Minimum Access

Disk Files

Disk Directories

Disk Volumes

Read
Read/Write

Exclusive Use
Nonexclusive Use

Read or Read/Write

Read
Read/Write

List/Modify
List

Modify access to root
directory

2-17 CZ03-00

SHARED FILE PROTECTION (RECORD LOCKING)

Record locking can be set as a file attribute (when the file
is created or modified) or temporarily set at each file reserva-
tion. In MOD 400 record locking is performed when you read or
write a record. It involves locking the control interval con-
taining the record, making it inaccessible to other users until
it is explicitly unlocked. Record locking is performed on a
shared-read, exclusive-write basis.

• Shared-Read; If you are the first user who attempts to
access a given record and you are a "reader" (a declara-
tion of intent made at OPEN time), then other concurrent
readers of the file can also read the record, but it is
locked to any writers.

• Exclusive-Write: If you are the first user who attempts
to access a given record and you are a "writer" (as
declared at OPEN time), then, regardless of whether this
access is a read or a write, the record is locked to all
other concurrent users.

Even though a file is reserved or created with record locking
specified, a special file reservation option allows you to bypass
record locking for read-only access. Simply specify read-only
access with read/write sharing by others. Note that in this case
the integrity of the data being read is not guaranteed.

Locked records are released upon explicit request (through a
$CLPNT macro call), when the file is closed, or when the task
group terminates.

MULTIVOLUME DISK FILES

In most applications a disk file resides on a single volume.
However, there may be situations in which you want to extend a
file over more than one physical volume. The need for multi-
volume files could arise from any of the following:

• You want to have an endless sequential file capability
similar to that available with magnetic tape.

• You want to define a single file that is too large to be
contained on one volume.

• You want to improve access time to a file by spreading the
file data over several volumes, and/or separating the
index portion of an indexed file from the data portion and
placing the portions on separate volumes.

In producing a multivolume file, you treat your disk file as
a collection of file sections. A file section is that part of
the file that is contained on one volume. A file set is all of
the sections making up the multivolume file.

2-18 CZ03-00

Multivolume Sets

A multivolume set is a disk file that resides on more than
one volume. A volume is identified as being part of a multi-
volume set when the volume is created using the Create Volume
(CV) command.

Each multivolume set has a root volume and a number of addi-
tional volumes. All volumes that are part of the set are called
members. The root volume is always member number 1.

The name of a multivolume set is independent of the names of
the volumes it contains. (The set name has the same format as
the volume name.) You establish that a volume is a member of a
set by specifying the set name and a sequential member number at
volume creation.

There are two types of multivolume sets: online and serial.
Online multivolume sets are used for files that must extend over
several volumes because they are too large for one volume or
because you want to improve the access time to the files by
having the data (or data and index) spread over multiple
volumes. Serial multivolume sets are used for files that require
a sequential capability similar to that of magnetic tape.

When you create a volume, you specify whether the volume is
part of an online multivolume set or part of a serial multivolume
set. You designate an online multivolume file by creating it
under a directory in the root volume of an online multivolume
set. You designate a serial multivolume file by creating it
under the root directory of the volume in the serial multivolume
set on which the file is to start.

ONLINE MULTIVOLUME SET

An online multivolume set has the following characteristics:

• All members of the set must be mounted and available when
the set is in use.

• Member volumes, other than the root volume, can be used
independently of other members in the set to contain
single-volume files and directories.

ONLINE MULTIVOLUME FILE

A file is established as an online multivolume file when it
is created in some directory on the root volume of an online
multivolume set. An online multivolume file has the following
characteristics:

• Can have any UFAS file organization
• Can be located by any type of pathname
• Need not continue serially from one volume to the next.

2-19 CZ03-00

Figure 2-4 illustrates the combination of files and volumes
used by a sample online multivolume set. Multivolume files
FILEA, FILEB, and FILEC must begin on VOLl. FILEX, FILEY, and
FILEZ are single-volume files. The pathnames used to access the
files are shown at the bottom of the figure.

VOLl

ROOT VOLUME

VOL1>FILEA
VOL1>FILEB
VOL1>FILEC
VOL3>FILEX
VOL4»Fll_EY
VOL4>FILEZ

VOL2 VOL3 VOL4

/
[FILEC

f jS*

\ FILEA

V""*"""

| FILEB

'̂

[FILEA |

""̂

| FILEB |

*

FILEA

FILEX

^x
FILEC

FILEZ

FILEY

MEMBER MEMBER MEMBER

Figure 2-4. Example of Online Multivolume Files

SERIAL MULTIVOLUME SET

A serial multivolume set has the following characteristics:

• No member of the set need be mounted until it is required
for processing.

• Any member of the set, including the root volume, can be
used independently of other members of the set to contain
single-volume files and directories.

SERIAL MULTIVOLUME FILE

A file is established as a serial multivolume file when it is
created in the root directory of a volume in the serial multi-
volume set. A serial multivolume file has the following
characteristics:

• Must be a UFAS sequential file

• Must be cataloged in the root directory of the volume on
which it starts; more than one serial multivolume file can
belong to a set (each such file can begin on a different
volume if desired)

2-20 CZ03-00

• Must be located through a pathname of the form:
"volid>£ilename

• Must continue serially from one volume to the next.

Figure 2-5 illustrates the combination of files and volumes
used in a sample serial multivolume set. Serial multivolume file
A begins in VOL1. Serial multivolume file B begins in VOL2.
Both continue in other volumes of the set. Files C, D, and E are
single-volume files. The pathnames by which the files are
located are shown at the bottom of the figure.

VOL1

FIRST VOLUME
OF THE SET

VOL1>A
VOL2>B
VOL3>C
VOL4>0
VOL4>E

VOL.2 VOL3 VOL4

SECOND
MEMBER

THIRD
MEMBER

Figure 2-5. Example of Serial Multivolume Files

Multivolame, File Overhead Requirements

Serial multivolume disk files require no more overhead than
single- volume disk files. The extent field information for
online multivolume disk files is contained in the file direc-
tory. (An extent is a group of contiguous allocated disk
sectors.) An indirect extent holds the relative volume number
that contains the succeeding set of extents. The first extent
for each online multivolume file is an indirect extent if the
first set of extents is not located on the root volume. Each
time the volume changes, an indirect extent appears.

MAGNETIC TAPE FILE CONVENTIONS

The magnetic tape file conventions discussed in the following
paragraphs include tape file organization, tape file naming
conventions, and tape file pathnames.

2-21 CZ03-00

Tape File Organization

This information applies only to 9-track magnetic tape.

Magnetic tape supports only the sequential file organiza-
tion. Fixed- or variable-length records can be used. Records
cannot be inserted, deleted, or modified, but they can be
appended to the end of the file. The tape can be positioned
forward or backward any number of records.

The unit of transfer between memory and a tape file is a
block. Block size varies depending on the number of records and
whether the records are fixed or variable in length.

A block can be treated as one logical record called an
"undefined" record. An undefined record is read or written with-
out being blocked, unblocked, or otherwise altered by data
management. Spanned records (i.e., those that span across two or
more blocks) are supported. (No record positioning is allowed
with spanned records.)

A labeled tape is one that conforms to the current tape
standard for volume and file labels issued by the American
National Standard Institute (ANSI). The following types of
labeled tapes are supported:

• Single-volume, single-file
• Multivolume, single-file
• Single-volume, multifile
• Multivolume, multifile.

The following types of unlabeled tapes are supported:

• Single-volume, single-file
• Single-volume, multifile.

Magnetic Tape File and Volume Names

Each tape file and volume name in the File System can consist
of the following ASCII characters:

digits (0 through 9)
uppercase alphabetics (A through Z)
! (exclamation point)
" (double quotation marks)
$ (dollar sign)
% (percent sign)
& (ampersand)
1 (apostrophe)
((left parenthesis)
) (right parenthesis)
• (asterisk)
+ (plus sign)
, (comma)

2-22 CZ03-00

- (hyphen)
. (period)
/ (slash)
: (colon)
; (semicolon)
< (less-than sign)
= (equal sign)
? (question mark)
„ (underscore)

The underscore character (__) can be used as a substitute for
a space. If a lowercase alphabetic character is used, it is con
verted to its uppercase counterpart.

Any of the above characters can be used as the first charac-
ter of a file or volume name.

The name of a tape volume can be from 1 through 6 characters
in length; tape file names can be from 1 through 17 characters.

c Tae Device Pathname Cpnstruction

A magnetic tape volume must be dedicated to a single user.
For this reason, the device pathname convention must always be
used when referring to magnetic tape volumes or files. The
general form of a tape device file pathname is:

ldev_name [>vol_id [>f ilename]]

where dev_name is the symbolic name defined for the tape device
at system building, vol_id is the name of the tape volume, and
filename is the name of the file on the volume. Tape devices are
always reserved for exclusive use (i.e., the reserving task group
has read and write access; other users are not allowed to share
the file) .

ic Ta.e,, Volume Reconition

Automatic volume recognition dynamically notes the mounting
of a tape volume. This feature allows the File System to record
the volume identification in a device table, thus making every
tape volume accessible to the File System software.

UNIT RECORD DEVICE FILE CONVENTIONS

Unit record devices (e.g., card readers, card punches,
printers, paper tape readers, and paper tape reader/punches) are
used only for reading and writing data; they are not used for
data storage and thus do not require conventions for file
identification and location.

2-23 CZ03-00

Refer to a unit record device by entering a pathname consist-
ing of an exclamation point (!), followed by the symbolic device
name defined during system building. The format is as follows:

!dev_name

where dev_name is the symbolic device name of the unit record
device.

FILE SYSTEM BUFFERING OPERATIONS

A buffer is a storage area used to compensate for a differ-
ence in the rate of data flow, or time of occurrence of events,
during transmission of data from one device to another. As used
in I/O programming, the term "buffer" refers to an I/O area in
systems that provide the possibility of I/O overlap. Buffering
is the process of allocating and scheduling the use of buffers.
In sequential data processing, for example, overlap of input
operations and processing can be achieved by anticipatory
buffering where the next block is read into memory before it is
needed. The program can then process records from block n while
block n+1 is read into memory.

MOD 400 supports different types of buffered operations for
disk devices, magnetic tape devices, and unit record and terminal
devices.

Disk Buffered Operations (Buffer Pools)

Disk files can be accessed at the block or record level. In
block level access, data is transferred directly between the file
and a buffer in the user program; the user program must perform
all buffer management operations. In record level access, the
system assigns disk files to buffer pools when the user program
opens the files; the system buffering facilities are used to per-
form all buffer management operations.

When you open a file for read, write, rewrite, and delete
operations, the File System assigns that file to a particular
buffer pool. All buffers in a pool are the same size. Any
number of files with matching control interval sizes can be
assigned to the same buffer pool; however, a particular file can
be assigned to only one pool.

Each buffer in a buffer pool contains a disk control inter-
val. When an application program issues a read instruction and
the desired record is not in any buffer, the next empty buffer is
filled with the control interval containing the record. When all
buffers are filled, an active buffer is selected for the next
different control interval according to a least-recent-usage
algorithm.

2-24 CZ03-00

Buffer pools conserve memory when disk files are accessed,
and they eliminate the need for each user to define his/her own
buffer areas. One or more system-wide buffer pools should be
created at system startup (through a startup EC file). Users who
have special buffering requirements can create their own buffer
pools for files they reserve exclusively.

The paragraphs below describe the types of buffer pools and
the way in which files are assigned to the pools.

TYPES OF BUFFER POOLS

Each buffer pool is created as either a public or private
buffer pool and can be considered file-specific or general.
Buffer pools are created by the Create Buffer Pool (CBP) command
and are deleted by the Delete Buffer Pool (DBP) command. When
you create a buffer pool, specify its name (this is optional),
the number of buffers it is to contain, and the size of each
buffer.

Public Buffer Pools

Public buffer pools are those created by the operator or the
system startup EC file. Public buffer pools reside in system
memory and are available to all files and task groups. A disk
file is assigned to a public pool if its control interval size
(specified in the CR command that created the file) matches the
pool's buffer size.

In many environments, three or four public buffer pools
corresponding to the three or four different file control
interval sizes is sufficient for all performance/buffering needs.

Private Buffer Pools

Private buffer pools can be created by each user. Private
buffer pools reside in the task group's memory space and are
available only for disk files reserved exclusively by that task
group. A disk file is assigned to a private pool if the file is
reserved for exclusive use and its control interval size
(specified in the CR command that created the file) matches the
pool's buffer size. Private buffer pools should be created only
if necessary to meet specific buffering needs. Public buffer
pools should be sufficient in most cases.

File-Specific Buffer Pools

When you reserve a disk file with the Get File (GET) command,
you can specify the number of buffers (using the -NBF argument)
to be used when accessing the file. When the file is opened, a
buffer pool is automatically created for use only by that file.
This file-specific pool is created in the task group's memory if
the file is reserved exclusively, or in system memory if the file
is reserved as sharable. The -NBF argument of the CR command

2-25 CZ03-00

should be used carefully since it prevents a file from being
assigned to a public or private buffer pool.

BUFFER POOL STATISTICS

The File System collects a set of statistics on the use of
each buffer pool. The installation can use this information to
optimize disk I/O operations. The statistics are obtained
through the Buffer Pool Status (EPS) and Buffer Pool Information
(BPI) commands. The BPS command provides a summary of the public
or private buffer pool status. The BPI command provides a
detailed status report on a particular buffer pool.

Magnetic Tape Buffered Operations

The -NBF argument of the Get File (GET) command can be used
with magnetic tape files to reserve one or two buffers. If -NBF
is not specified, the File System attempts to allocate two
buffers. If two buffers are allocated, the File System does
"double buffering." When the tape file is being read, the File
System unblocks one buffer while an anticipatory read is done
into the other buffer. Similarly, when the tape file is being
written, the File System blocks records into one buffer while a
previously filled block is written out of the other buffer. This
allows application code to execute in parallel with I/O
transfers.

Unit Record and Terminal Buffered Operations

All printers and most interactive terminals are provided with
one File System buffer. (The operator terminal (LRN 0) cannot be
buffered.) By providing a File System buffer, asynchronous I/O
can be done; that is, application code can execute in parallel
with I/O transfers.

All terminals (except the operator's) and printers have
tabbing capability through software that converts the tab into
spaces. Default tabulation stops are set at position 11 and
every 10th position thereafter for the line length of the device.

BUFFERED READ OPERATIONS

An application task issues a logical READ to a File System
buffered device. If the buffer is full from a prior anticipatory
read, the data in the buffer is transferred into the application
task's area; then a physical I/O transfer into the system buffer
(an anticipatory read) is performed in parallel with continued
task execution. If the buffer is not full, task execution stalls
until the anticipatory read is completed.

2-26 CZ03-00

The timing of the initial anticipatory read performed for the
card reader is different from that of the interactive terminals;
for other read actions it is the same. An application task
issues an OPEN call to the card reader. Immediately after the
OPEN is complete, the File System performs an asynchronous
anticipatory read into the system buffer while the application
continues execution. All OPEN calls are synchronous.

For interactive terminals, immediately after the OPEN is com-
plete an asynchronous physical connect is performed while the
application continues execution. Assembly or FORTRAN applica-
tions can check the status of the OPEN to see if a READ can be
issued without stalling application execution. The File System
issues an asynchronous anticipatory physical read when a status
check after the physical connect is complete. The file status
remains busy until the physical read is done and the system
buffer is full. At this point, the file status is "not busy"
(i.e., the anticipatory read is successfully completed), and the
application can issue a READ with the assurance of receiving data
immediately. If at any point after the OPEN is issued the
Assembly or FORTRAN application issues a READ before the physical
connect and anticipatory read have been completed, the READ is
synchronous and further central processor execution is stalled on
this application until the anticipatory read is complete. To
avoid status check looping to test the input buffer status or
stalling on a READ, both Assembly and FORTRAN applications can
put themselves into the Wait state, thus making the central pro-
cessor available for lower priority tasks. After the OPEN, a
COBOL application must issue READ requests. The COBOL applica-
tion will be put in the Wait state if it is executing its I/O
statements in synchronous mode. Otherwise, the COBOL run-time
package performs the status checks and returns a 91 status until
successful completion. The COBOL program can either loop on the
READ or continue other processing.

The anticipatory read allows an application to control input
from more than one interactive terminal, each of which represents
a data entry terminal. By testing the status of the system
buffer before a READ (FORTRAN, Assembly) or by checking for the
91 status return after a READ (COBOL) even if a terminal operator
is not present at the time of the READ request, the application
will not be stalled and it can continue to poll other terminals.

BUFFERED WRITE OPERATIONS

A buffered write operation to a device works on behalf of the
application program in the same logical manner as the read? the
program is permitted to execute in parallel with the physical I/O
transfer to the device. To achieve this parallel processing, no
special operation occurs on an OPEN call and no distinction is
made between interactive and noninteractive file types. Each
WRITE call is completed by moving data from the application
buffer to the File System's buffer (performing any detabbing, if
requested), initiating the transfer, and returning control to the

2-27 CZ03-00

application program. If the program performs a second WRITE
while the system buffer is still in use for a previous transfer,
the application is stalled until the buffer is available and new
data moved into it again. The application can avoid stalling
execution by checking the status of the system buffer before
issuing a WRITE to an interactive terminal to see if, in a spe-
cial mode, it is still in use or not (FORTRAN, Assembly) or by
testing for the 91 status return after the WRITE (COBOL, for
interactive devices only).

If a WRITE call is issued while data is being entered
(because of a read) into the system buffer, the read is allowed
to complete and input data is saved in the system buffer, a syn-
chronous write is reissued by File System, and output data is
transferred directly from the application buffer. However, tab
characters are not expanded into spaces by software.

Special considerations for buffered write operations arise
because, if a physical I/O error occurs while data is being
transferred from the system buffer to the device, the application
program must be aware that the error occurred on the previous
write operation. Furthermore, if any error does occur, the
application program may need to have saved (or be able to
retrieve) the data record so that it can be repeated.

2-28 CZ03-00

Section 3
SYSTEM ACCESS

SYSTEM CONFIGURATION AND ENVIRONMENT DEFINITION

At larger installations, a system programmer or administrator
might design the configuration files and the different operating
environments for his/her installation. The daily startup would
be done by an operator. At smaller installations, especially
those where programmers run dedicated applications, each
programmer might do the configuration and startup for his/her own
application.

Creation of a usable system consists of a two-step procedure:

1. Bootstrap a Honeywell-supplied system startup routine
that provides a limited operating environment for
building the files used in the second step.

2. Specialize the system startup procedure by configuring a
system to correspond to the installed hardware and by
defining the environment in which to prepare and execute
applications programs.

The bootstrap operation simply consists of turning on the
power supply to the hardware, mounting the disks containing the
MOD 400 System software, and pressing several control panel keys
(including Bootstrap Load) to execute a standard bootstrap rou-
tine. This procedure is described in the GCOS 6 MOD 400 System
User's Guide (Order No. CZ04). The bootstrap operation generates
the initial configuration and startup operations. Procedures are

3-1 CZ03-00

executed to provide a one-user online environment that can be
used to specialize system startup, perform program preparation,
or perform application program execution.

In the limited environment created as a result of the boot-
strap procedure, the user must build a file of directives that
describes the operating environment that will exist at the
installation. This file of directives (called a CLM_USER file)
is easily created using an interactive system definition program
called M4_SYSDEF. M4_SYSDEF conducts an interactive dialogue
with the system builder; M4_SYSDEF then creates a CLM_USER file
based on information supplied by the builder during the inter-
active session. If necessary, the CLM_USER file generated by
M4_SYSDEF can be modified using the line editor. Alternatively,
you can hand-build the entire CLM_USER file using the line
editor. Both methods are detailed in the System Building and
Administration manual.

Additionally, to define the desired environment further, you
can modify the vendor-supplied START_UP.EC file of operator com-
mands that is immediately subordinate to the root directory.
(STARTJUP.EC files are described later in this section.)

After these files are created, the system is again boot-
strapped. This time, however, directives in the CLM_USER file
control the configuration, and the operator commands in the
START_UP.EC file define the operating environment.

USER REGISTRATION

User registration is a process that protects the system from
unauthorized access. Once you configure user registration, you
cannot deconfigure it.

Using the interactive dialog invoked by the Edit Profile (EP)
command, the system administrator creates and modifies the
profiles file. The profiles file is the file that contains all
the user profiles for registered users.

User profiles are made up of sections. A user profile always
contains a Registration (RE) Section. The defaults section login
line defaults, login id, encrypted password, login traits,
date/time of current login, and the count of instances of invalid
password use.

A user profile can contain the following optional sections:

• Statistics Section: Contains date and time of last login
and logoff, elapsed time of last session, total time of
all sessions, number of sessions, name of last terminal
used, and date of initial registration.

• Comments Section: Contains any comments the system
administrator has about this user's registration.

3-2 CZ03-00

• SubsystejiLjgections (one or more)s Contains user-specific
subsystem information meaningful only to the individual
subsystems.

The Listener uses the user profile to monitor the privileges
and/or limitations of each user.

The List Profile (LP) command allows registered system users
to view the contents of their personal user profiles and allows a
system administrator to view any registered user's profile.

Refer to the System Building and Administration manual for
details on user registration, EP, and LP.

ACCESSING THE SYSTEM

The following paragraphs describe the methods of accessing
the system.

Ways to Access the System

An installation can simultaneously support several ways to
access a system, so you must determine the access available at
your terminal. For simplicity of discussion, three types of
access will be described. Access can be through a Login command,
operator control, or your own application design.

LOGGING IN

At system building time, the Listener component can be con-
figured to monitor a set of designated terminals. Once the
Listener has been activated by the operator, it determines which
terminals to monitor for system access from information in a
user-created terminals file. The terminals file is made up of
G-, T-, and A-records:

• G-record; There is one G-record in the terminals file.
This record specifies the number of concurrently logged in
users that will be allowed on the system.

• T-record: Each terminal that is to be used as a login
terminal must be identified in a T-record that gives the
symbolic device name (sympd) of the terminal. The record
for a direct login terminal must also contain the command
line image to be used when the terminal is turned on.

• A-record; Each abbreviation for a Login command must be
identified in an A-record that specifies the abbreviation
and the associated Login command line image to be used
when the abbreviation is entered from a terminal.

Refer to the System Building and Administration manual for
details about constructing a terminals file and activating the
Listener.

3-3 CZ03-00

You can gain access to the system through a Listener-
monitored terminal with either a Login command line or a
combination Login command line and password. You can log in by
doing one of the following:

1. Type in a Login command as described in the GCQS 6
MOD 400 Commands manual (Order No. CZ17) and then, if
required, type in your designated password.

2. Type in the abbreviation of a specific Login command line
and then, if required, type in your designated password'.

3. Turn on the terminal and be logged in through a direct
login.

OPERATOR ASSIGNED ACCESS

An application can be activated with a terminal designated
for input of its commands or user input required by the program
executing the command. Terminals that are used for logging in
cannot be assigned to an application. An installation can have a
mixture of terminals: some that may be used for logging in and
others that may be assigned directly to applications or another
user.

USER DESIGNED ACCESS

A user at an installation that allows use of the system for a
single dedicated application must:

• Configure and startup the system
• Act as the operator
• Determine what the application environment should be
• Decide how to access the system for that application.

The same terminal can be used both as an operator terminal
and user terminal (i.e., a dual-purpose operator terminal), as
described in the System User's Guide.

Activated Lead Task

When you successfully gain access to the system, the exe-
cutable code for the lead task (i.e., the controlling task of the
application) is loaded and activated. The lead task can be
designated to be either the Command Processor or an application.
When the Command Processor is the lead task, you have complete
flexibility to control execution by being able to execute any
user command in the Commands manual. When an application is the
lead task, the Command Processor is not part of the task group.

3-4 CZ03-00

COMMAND ENVIRONMENT

The command environment is that environment in which you
communicate with the Executive through the use of the command
lines entered at a terminal, read from a command file or through
the User Productivity Facility (UPF).

User, Pr.pd.u,ctJtY.iity,, Facility

The UPF provides an easy-to-use interface to MOD 400.
Instead of typing command lines, you use online menus and forms.
You select system commands by choosing options listed on menus
and then fill in fields on one or more forms. When you have
filled in all appropriate fields on the forms, the command is
executed. Menu selections are grouped by function types and by
use.

Each selection on a. menu and each field on a form that must
be filled in has an associated help message. If you need help in
selecting an option on a menu or in filling in a field on a form,
press the key designated as the help key for your terminal. A
three-line help message is displayed below the menu or form. The
help message tells you what to do next. If you make a mistake
when you fill in a field, the system provides expanded error
messages. These expanded messages list causes and corrective
actions to help resolve the problem.

You can modify the UPF menus, forms, help messages, and error
messages using the same tools that Honeywell used to create
them. You can add, delete, modify, and reword any of the UPF
elements using the following tools:

• Menu Builder to create, modify, or delete menus

• Forms Developer (VFORMS) to create, modify, or delete
forms

• Generalized Forms Processor to process standard forms

• Add Delete Message Utlity to build or change a message
library.

For detailed information about using and maintaining UPF,
refer to the GCOS 6 MOD 400 Menu Management/Maintenance Guide
(Order No. CZ10).

Command, Fr.QCte.sSQr.,

The essential parts of the command environment, from your
point of view, are the Command Processor and the command-in
file. The Command Processor is the system software component
that reads your command lines. It interprets them into
procedures that load and initiate execution of bound units, which
fulfill the requests represented by the command lines. The

3-5 CZ03-00

command-in file is the file from which the command lines are
read. It can be a terminal device, as in the case of an
interactive user, or a command file stored on disk or on cards,
as in the case of a noninteractive user.

Three other files are involved with, but not limited to, the
command environment. These are the user-in file, the user-out
file, and the error-out file.

USER-IN FILE

The user-in file is the file from which a command, during its
execution, reads it own input. When a task group request has
been processed, and as long as no alternate user-in file is
specifed as an argument in a subsequent command, the user-in file
remains the same as the command-in file. At the termination of a
command that names an alternate user-in file, the user-in file
reverts to its initial assignment.

The directives submitted to the line editor following the
entry of the line editor command, for example, are submitted
through user-in. No specific action is required on your part to
activate, or to connect to, user-in unless the directives are to
be read from a previously created disk file. You simply invoke
the line editor and begin entering line editor directives through
the same terminal; the attaching of the terminal to the user-in
file is invisible to you.

USER-OUT FILE

The user-out file is the file to which a task group normally
writes its output. However, certain system components
(compilers, etc.) also write to list files (path.L) or to the
output file defined in the -COUT argument. The user-out file is
initially established by the -OUT argument of the Enter Batch
Request (EBR), Enter Group Request (EGR), or Spawn Group (SG)
commands. (Thus, originally, it is the same device as the
error-out file device.) It can be reassigned to another device
by use of the File Out (FO) command or by the use of the New User
Out (5NUOUT) system service macro call. Such a reassignment
remains in effect for the task group until another reassignment
occurs.

Again using the line editor as an example, any responses from
the line editor, such as the printing of a line of the file being
edited, are issued through user-out. As in the case of user-in,
you need not perform any special action to attach your terminal
to the user-out file. The only time such action would be
required is if you wanted to direct the output from the command
to some device other than the terminal.

3-6 CZ03-00

ERROR-OUT FILE

The error-out file is used by system to communicate to you an
error condition that may be detected during the interpretation of
a command or its subsequent execution. Such a condition could be
a missing command argument, reported by the command processor f or
a file-not-found condition f reported by the invoked command. The
error-out file is the same as the initial user-out file. You
cannot reassign error-out.

COMMAND LEVEL

The rest of this section describes in detail the functions
available to you at the command level. When the system is in a
state capable of accepting a command from command-in, it is said
to be at command level.

Achievin Com,m.a.ncj.

You can achieve command level by creating or spawning a user
task group whose lead task is the Command Processor. (See the
Commands manual for details on the Create Group and Spawn Group
commands.) The Listener can also spawn task groups whose lead
task is the Command Processor. (See the System Building and
Administration manual for details on the Listener.) The system
is delivered with a Honeywell-supplied task group ($H) whose lead
task is the Command Processor.

Regardless of the way in which the system arrives at this
state, the system indicates that it is at command level by issu-
ing a "ready" prompter message at the user terminal. This
assumes that you have not disabled the ready message by issuing a
Ready Off (RDF) command; if you have, the system still comes to
command level but you are not informed. Note that if you are
working in the system task group ($S) at the operator terminal,
no ready prompt message appears to inform you that you are at
command level, unless you issue a Ready On (RDN) after an
EC ! CONSOLE command (see the System User's Guide for details) .

When executing a command function, you can return to command
level in one of two ways:

1. At normal termination of a command function, the task
group returns to command level and awaits the entry of
another command. It is not recommended that you enter
the Bye (BYE) command if your terminal is not monitored
by the Listener.

2. You can interrupt the execution of an invoked command by
pressing the Break key (this key may be labeled with
BREAK or BRK) on your terminal. The system then responds
with the break message **BREAK**. At this point you can
enter other commands, or the Start command to resume
processing where it was interrupted. (See the Commands
manual or the System User's Guide for details.)

3-7 CZ03-00

Functions Performed at. Command Level

When a command such as Copy (CP), Change Working Directory
(CWD), or EGR is read by the Command Processor, the system spawns
a task whose objective is to fulfill the requirements of the
command. This action consist? of the following steps:

1. A task is spawned naming the requested bound unit (i.e.,
command name). Task spawning implies task creation
(i.e., the allocation and initialization by the system of
any control structures and data areas required for task
control.)

2. The Loader is called to load the requested bound unit.

3. A request for the bound unit's execution is placed
against the created task and the Command Processor enters
the Wait state to await completion of the requested task
(command). At this point the system leaves command
level, which can be returned to only by completion of
execution of the command or by pressing the Break key on
the terminal, as described previously.

4. If the command is EGR, it places a group request against
an application task group and the EGR command
terminates. The request is queued if there are other
outstanding requests against the application task group
from previous EGRs.

5. When the command terminates, the spawned task is deleted
and a ready message is optionally issued to indicate that
the system has returned to command level and can accept
further commands.

COMMAND LINE FORMAT

Commands are read and interpreted by the Command Processor,
which executes as the lead task in the batch task group or as thf
lead task in an online task group. Each command spawns a task
that performs the requested function (e.g., create a task within
an existing group, enter a group request, dump a file). When the
execution of a command terminates, control is returned to the
Command Processor, which can then accept another command.

A command line to the Processor is a string of up to 127
characters in the form:

command_name_l[arg_l...arg_n][;command_name_2[arg_l...arg_m]]...

where command_name_l is the pathname of the bound unit that per-
forms the command function. Each subsequent arg entry is an
argument whose functions are described in the following sec-
tions. A command line can span one or more physical lines. A
line is concatenated with the next line by ending it with an

3-8 CZ03-00

ampersand (&) . A command line consisting of two or more concate-
nated lines can be canceled by entering a single ampersand on the
next physical line. More than one command can be included in a
command line by ending each command with a semicolon (;).

Arguments

An argument of a command is an individual item of data passed
to the task of the named command. Some commands require no argu-
ments; others accept one or more arguments as indicated in the
syntax of each command description. The types of arguments used
ares

• Positional Argument: An argument whose position in the
command line indicates to which variable the item of data
is applied. The argument can occur in a command line
immediately after the command name or as the last argument
following the control arguments, as in the List Names (LS)
command.

• Control Argument: A keyword whose value specifies a com-
mand option. A keyword is a fixed-form character string
preceded by a hyphen (e.g./ -ECL) . It can be aloner as in
-WAIT, or it can be followed by a value, as in -FROM xx.

Except for -ARC or when the last argument of a command line
is a positional argument, keywords of control arguments can be
entered in any order in the line, following the initial posi-
tional arguments. The keyword -ARC must be the last argument of
the SG, EBR, Enter Task Request (ETR) , or Spawn Task (ST) command
line. The arguments following -ARC are passed to activated
(application) task.

Spaces in Command Lines

Arguments in command lines are separated from each other by
spaces. Unless otherwise indicated, a space in a command line
syntax represents one or more space characters, or one or more
horizontal tab characters, or a combination of these. Spaces can
be embedded within an argument by enclosing the argument in
apostrophes (') or quotation mark (") characters. Note that a
file name supplied in an argument can be shown to have a trailing
space if the argument is bounded by quotation marks.

Arguments are the user-selected items of data passed to a
task. In the activated task, which is written in a generalized
manner to handle any set of data passed to it, these data items
are known as parameters. If the activated task expects
positional parameters, the order of the command line arguments
passed to it must be in the same order as the task's positional
parameters.

3-9 CZ03-00

Protected Strings

Special significance is attached to the following reserved
characters:

• Space (Blank)

• Horizontal Tab

• Quotatation Mark (")

• Apostrophe (')

• Semicolon (;)

• Ampersand (&)

• Vertical Bar (I)

• Left Bracket and Right Bracket ([]) (active function
delimiters)

It is occasionally necessary to use a reserved character
without its special meaning (e.g., a blank could be used in a
command argument) . The protected string designators (the
apostrophe and quotation mark) are reserved for this purpose.
Reserved characters within a protected string (one surrounded by
protected string designators) are treated as ordinary
characters. Thus, in an argument:

-ARC "ALPHA 2" ALPHA

the space in ALPHA 2 is treated as part of the name.

Another example is the & followed by a number in a command-in
file. If &1 does not represent a substitutable parameter, it
must be written as &'!' or &nl" (ao_£ "&1") . Substitutable
parameters are discussed in the Commands manual and in the System

s Guide.

Also, since protected string designators themselves are
reserved characters, it may be desirable to suppress their spe-
cial meaning. For this purpose, two adjacent protected string
designators of the same type within a protected string of that
type are treated as a single occurrence of that character. A
protected string designator within a string enclosed by the com-
plementary protected string designator is treated as an ordinary
character. The following arguments:

-ARC "AtinBn

-ARC ' A ' ' B •

result in the strings A"B and A'B being passed to a command.

3-10 CZ03-00

Active Strings and Active Functions

An active string is part of a command and is evaluated
(executed) immediately by the Command Processor. The resulting
value is then substituted for the active string characters in the
command line.

Active functions are commands explicitly designed for use in
active strings. The function in the string is evaluated and the
resulting value is substituted in the command line for those
active string characters that called the function. For example,
the function [EQUAL a b] returns TRUE if a=b, and returns FALSE
if a^b. Active strings and active functions are described in the
Commands manual and in the System User's Guide.

EC AND START,UP.EC FILES

The Command Processor is able to read commands from a source
other than an interactive user terminal. Such a source can be in
the form of an EC file. An EC file is one which you construct
(using a text editor) that is destined to be read by the Command
Processor invoked either by the Execute (EC) command or when a
task group is activated with the Command Processor as its lead
task and the EC file is specified as the task group's user-in
file. The EC file might contain a series of commands that you
execute on a frequent basis, such as commands to execute a set of
applications program that run at the end of the month to
summarize inventory, sales, and accounts receivable. EC files
are discussed in the System User's Guide and the GCOS 6 MOD 40Q
Application Developer's Guide (Order No. CZ15).

A special application of EC files is their use when activat-
ing a task group. After configuration (i.e., after the CLM_USER
file of configuration directives is executed) a user-written
command file, START_UP.EC, attached to the root directory is
executed if it is present. The START_UP.EC file might contain
operator commands used to establish an applications environment
for that installation.

Also, when a task group is activated whose lead task is the
Command Processor, the Command Processor first executes the EC
file named working_directory>START_UP.EC, if there is one. This
file could contain commands used to execute the tasks of the job
in sequence, without further user intervention.

3-11 CZ03-00

Section 4
EXECUTION

ENVIRONMENT

System control of user applications and system functions is
accomplished within the framework of the task group. A task
group consists of a set of related tasks. The simplest case of a
task is the execution of code produced by one compilation or
assembly of a source program (after the code is linked and
loaded).

TASK GROUPS AND TASKS

MOD 400 allows you to configure a system dedicated to inter-
active applications or to a combination of interactive and batch
applications. This flexibility of configuration is based on the
concept of the task group as the owner of the system resources it
requires for execution.

By defining more than one application task group to run con-
currently, you are utilizing multiprogramming. You can step
through an application in sequence by causing tasks in the group
to be executed one at a time? or you can multitask an application
by causing tasks within the group to be executed concurrently.

Since multiple applications can be loaded in memory at the
same time, contending for system resources, you must define an
environment for each application so that it knows the limits of
its resources. This defined environment is called a task group,
whose domain includes one or more tasks, a memory pool, files,
peripherals, and priority levels. By defining the total system

4-1 CZ03-00

environment to consist of more than one task group, you divide up
the resources so that more than one application can run concur-
rently. You divide memory into memory pools, and task code of a
task group is loaded only into that task group's pool and obtains
dynamic memory from that pool.

By using the resources of one task group repetitively, you
can run an application as a sequence of job or program steps. To
do this, create a task group by a Spawn Group (SG) command to use
the Command Processor, whose function is to process system-level
commands. You can enter commands only in the framework of a task
group whose lead task is the Command Processor. The Command Pro-
cessor is activated as the lead task of the task group. One
method of sequencing the steps of an application task group is to
submit a command to the Command Processor to read an application
command file containing a sequence of names of bound units (files
of executable code) , where each bound unit corresponds to a pro-
gram. When a bound unit name is encountered in the file, that
bound unit is loaded and executed before the next bound unit name
is read. The following is an example of bound unit names in a
command file:

REP_DATA (The name of a program that gathers report data)
PR_RPT (The name of a program that prints the report)

Another method of sequencing application steps is to issue a
Spawn Task (ST) command for each task to be executed. The ST
command causes the task to be loaded, executed, and then
deleted. Provided the Command Processor is instructed to wait
for completion of each spawned task, the tasks in the group can
be executed in sequence. For example:

ST 1 -EFN REP_DATA -WAIT (Spawn a task to gather report data)
ST 1 -EFN PR_RPT -WAIT (Spawn a task to print the report)

This procedure can be used to attain multitasking within one
task group. Consider the situation when the Command Processor is
the lead task and it reads a file containing ST commands. It
does not wait for the execution of the individual tasks, but
continues tt> spawn tasks until it reads an end-of-file or &Q
directive. All these spawned tasks are loaded and run con-
currently in this task group, contending among themselves for the
resources defined for the task group. For example:

ST 1 -EFN REP_DATA (Spawn a task to gather report data)
ST 1 -EFN PR_RPT (Spawn a task to print the report)

The Command Processor does not have to be the lead task of a
task group. An application consisting of one task could execute
in a task group whose lead task is the application task. If your
application requires step control or multitasking, but you do not
need the control through commands, you can generate a task group
whose lead task contains Assembly language system service macro
calls whose functions are analogous to the Create Group (CG),
Create Task (CT), Spawn Group (SG), and Spawn Task (ST) commands.

4-2 CZ03-00

These situations are illustrative and do not exhaust the var-
ious ways you can control program execution.

To summarize, a task group is both the owner of system
resources and the context in which system control of tasking is
accomplished* A task can be characterized as the execution of a
sequence of instructions that has a starting point and an ending
point, and performs some identifiable function. It is the unit
of execution of the Executive, and its execution must be
requested through the Executive software.

The source language from which task code is derived can be
any of the languages supported by the Executive. Source code is
compiled (or assembled) and linked to form bound units consisting
of a root and zero or more overlays.

Applic. a,tjon Design Benefits of Task Group Use

Designing an application around the task group provides
intertask communication and executive control of multiple
unrelated task groups.

INTERTASK COMMUNICATION

The tasks in a task group execute asynchronously in response
to the interrupt-driven nature of the Executive and to a linear
scan of priority levels assigned to each task group. Tasks com-
municate through the control structures supplied with each
request for task execution.

Asynchronous tasks provide effective software response to
information received from real-time external sources, such as
communications or process control systems. Usually, the task
that is activated to handle the interrupt from the external
source has a higher priority and a shorter execution time than
the task that processes the information. The task that responds
to the interrupt will use the Executive to request the execution
of the processing task, supplying along with the request the con-
trol structure containing a pointer to the new information to be
processed. The Executive responds to the request by activating
the requested task or by queueing the request if there are other
requests for the execution of this task still pending.

Communications applications use a high priority task to
respond to data interrupts and determine which processing task
should handle the data. This high priority task uses the system
to queue requests for the processing task, thereby accommodating
peak-load conditions in which data is received faster than it can
be processed.

4-3 CZ03-00

In a process control system, the real-time clock might pro-
vide the interrupt that causes the high priority task to scan and
update temperature, thickness, or raw material level sensors that
monitor the physical status of the process. This information is
passed to a processing task that determines the necessary adjust-
ments based on the new data. A third task, having a priority
between the other two, could be requested tc make whatever
changes are required (e.g., to change the flow rate of material
entering the process by closing a valve). These two brief
examples illustrate the value of priority assignments and
communication facilities between tasks.

SYSTEM CONTROL OF TASK GROUPS

System control of an application based on the use of multiple
task groups is important for several reasons. First, these
applications can be thought of as consisting of multiple
unrelated "jobs" (task groups) made up of one or more "job steps"
(tasks). The sequence of task execution can be controlled by the _^
system (Command Processor) as it processes synchronously supplied
commands instead of responding only to externally supplied
interrupts. The next "step" is started only when the previous
step terminates.

Furthermore, if any one set of tasks does not fully use the
available processing time, the system can make more efficient use
of resources by rotating their use on the basis of interrupts and
priority level assignments.

Finally, the use of independent task groups that are subject
to system control prevents one task group from adversely affect-
ing another. If an error occurs in one task group, it can be
aborted while others continue to execute.

To summarize, system control of multiple task groups provides
these advantages:

• Job and step execution sequencing —̂'
• Efficient system resource use
• Job independence.

Generating Task Groups and Tasks

The system provides tasking facilities regardless of the
source code in which the application is written. Once generated,
all tasks are subject to the same system controls whether written
in COBOL, FORTRAN, BASIC, PASCAL, or Assembly language. Because
COBOL and BASIC do not provide for tasking as part of the
language syntax, the generation of tasks consisting of code
written in those languages is done via commands. Although tasks
written in Assembly language or FORTRAN can be generated at the
control language level, these languages have a facility for
generating task groups and tasks (FORTRAN) without recourse to
commands. Assembly language programs use system service macro
calls; FORTRAN has tasking routines.

o

4-4 CZ03-00 -̂

From the overall system viewpoint, the actions of the control
language in the generation of task groups and tasks are much more
visible than the same capabilities in Assembly language and will
be considered next.

As shown in Table 4-1 , commands submitted by the operator and
commands submitted by other users share some of the task group
generation functions and also perform unique functions. The con-
trol commands are in three groups;

1. Commands that perform the same function whether submitted
by the operator or another user (an exception being the
group creation/deletion commands in the batch mode)

2. Commands entered only by the operator

3. Commands contained within the content of an existing task
group request.

tcs of Task Grous and Tasks

Task groups and individual tasks can be originated in either
of two ways; they can be created or spawned. The choice depends
on application design considerations as well as the intended
functions.

There are important differences between tasks (and task
groups) that are generated by a create function and those origi-
nated by a spawn function* Created task groups and tasks are
permanent; they remain available in memory until they are explic-
itly removed. Spawned task groups and tasks are transitory; they
perform a function and disappear.

Created task groups and tasks are passive; they must be
explicitly requested to execute in order to perform their
intended function. Spawned task groups and tasks cannot be
requested. The spawning of a task group or task is equivalent to
a create-request-delete sequence of control language commands:
the task group or task is defined, provided with system resources
and control structures, executes, terminates, and has its
resources deallocated, all in one continuous process.

FORTRAN or Assembly task code may cause extensive action in
its own behalf, as when application task code requests a system
service or the execution of another task while awaiting the com-
pletion of the requested task. Each task that requests another
supplies the address of a control structure through which the
issuing task and the requested task can communicate, and which
the Executive software uses to coordinate task processing.

4-5 CZ03-00

Table 4-1. Task Group and Task Functions Possible
From Interactive or Batch Modes3

Function

Create Group

Enter Group Request

Delete Group

Abort Group

Spawn Group

Bye

Enter Batch Request

Suspend Group

Activate Group

Abort Group Request

Suspend Batch Group

Activate Batch Group

Create Batch Group

Delete Batch Group

Abort Batch Request

Abort Batch Group

Create Task

Delete Task

Enter Task Request

Spawn Task

User Commands15

Interactive Batch

Yes No

Yes Yes

Yes No

Yes No

Yes No

Yes Yes

Yes Yes

Only operator
commands exist
for these
functions

Yes Yes

Yes Yes

Yes Yes

Yes Yes

Operator Commandsb

Interactive

Yes

Yes

Yes

Yes

Yes

No

NA

Yes

Yes

Yes

Yes

NA

NA

NA

NA

NA

Batch

Yes

Yes

Yes

Yes

Yes

NA

Yes

NA

NA

NA

Yes

Yes

Yes

Yes

Yes

No operator com-
mands exist for
these functions

aThe Command Processor executes in both interactive
batch modes.

bNA means Not Applicable.

and/or

4-6 CZ03-00

Task GrQUP,Identification

Each task group has a unique identifier. Vendor-supplied
system task group identifiers begin with a $ as shown below?

Task
Group ID

$B
$D
$L
$P
$S

Function

Batch
Debug
Listener
Deferred Print/Punch
System

NOTE

The Multi-User Debugger does not
require the dedicated system
task group $D.

The identifier for a user task group in the.Create Group or Spawn
Group command is a two-character name that should not have the $
as its first character. The identifier (or group-id) can be
indicated or implied in commands to designate what task group is
to be acted upon. The operator can include the task group
identifier in responding to messages from the task group.

MEMORY USAGE

At system startup the Configuration Load Manager (CLM) reads
a file of directives, sets up memory pools from the specifica-
tions supplied, and indicates to the Loader what system and
user-written software is to be resident for the life of the
system. The file of CLM directives can be created by the system
builder with the Editor alone or with the help of the interactive
CLM directive generation program, M4_SYSDEF.

M4__SYSDEF automatically calculates the individual user memory
pools based on information supplied by the system builder during
the interactive session. After the system has been in operation,
it may be desirable to reconfigure the memory so that it meets
your requirements more precisely. This can be done by
hand-tailoring the file of CLM directives. Refer to the System
Building and Administratipp manual for details on the use of the
M4DSYSDEF utility.

The number of memory pools to be used and their character-
istics are specified by MEMPOOL and SWAPPOOL CLM directives.

4-7 CZ03-00

Memory Management and Protection

The system (hardware and software) provides a memory
management and protection facility. The memory management and
protection facility performs the following functions:

• Dynamically allocates memory to guarantee each task group
(user) its own address space

• Optionally protects multiple users from each other and the
system from the users.

MOD 400 offers two forms of memory management, depending on
the memory pool configured. Swap pools provide a segmented
memory management environment in which all users are protected
from each other and in which memory requirements of individual
users do not have to be predetermined. Online memory pools
provide a minimum overhead fixed-partition environment suitable
for real-time applications with well defined memory requirements.

SWAP POOLS

The Swap Pool Memory Manager uses the capabilities of the
Memory Management Unit (MMU) to assign objects to segments. It
may cause segments to be swapped out to a swap file on disk in
order to make physical memory available to competing users. Swap
pool memory management can move segments to real physical memory
in order to compact the utilization of physical memory and
eliminate fragmentation.

Segments

Swap pool memory management is based on the concept of a
segmented address space that is mapped onto real memory by the
firmware and hardware of the MMU. The unit of memory allocation
is a segment. A segment is a variably sized area of memory that
usually consists of a logical entity such as a procedure. The
memory management facility treats all addresses generated by the
central processor as segment-relative addresses; it maps them
through the MMU array to absolute physical addresses.

The MMU supports up to 31 segments, 16 of which can be up to
4K words (K = 1024) in size ("small" segments) and 15 of which
can be up to 64K words in size ("large" segments). Segments have
the following characteristics:

• The 16 small segments are numbered from 0.0 to O.F; the 15
large segments are numbered from 1 through F.

• No segment can be less than 256 words long; segment size
increases in increments of 256 words to a maximum of 4K
for small segments or 64K for large segments.

4-8 CZ03-00

• Although users can assign any of the large segments (1
through F) to a bound unit when it is linked? the
availablity of a segment depends on the system
configuration. All small segments and often some large
segments are reserved for system use? the actual number
reserved is established at system generation. The
identity of segments available to the user should be
obtained from the system administrator.

• Each segment is described by a two-word segment descriptor
that contains the segment's starting physical address, its
length (in units of 256 words), and its access rights for
each ring (refer to "Segment Ring Protection" later in
this section) .

Segment/Bound Unit Relationship

User programs are linked to form bound units that are loaded
into memory. At link time, the user can specify the segment(s)
to which the bound unit is assigned. The user's physical address
space is not necessarily contiguous; memory requirements are
satisfied on a segment basis rather than on a user basis.

Swappable Segments

The memory management facility acquires space for a given
segment from whatever portion of free memory is available.

If not enough space is available to obtain memory for the
needed segment, the system attempts to obtain memory by swapping
out lower priority tasks that are wating on an event. If this
action still does not produce enough memory, the requesting task
is swapped out until sufficient space becomes available.

A task is swapped out under one of the following conditions:

• It is waiting on an event that is of potentially long
duration and swap pool memory is required by any competing
task

• Memory is required to roll in a higher priority task

• It has been suspended by the operator.

A task is swapped back in when swap pool memory is available
either immediately or by swapping out tasks waiting on long
duration events, or by forcing lower priority tasks to be swapped
out. A task is swapped back in when any event on which it was
waiting has completed or when it is reactivated by an operator.

4-9 CZ03-00

Sharing Segments

If a bound unit is linked with the SHARE option, the root
segment of the bound unit is available to any user who has the
proper access to the bound unit file. The root segment should
contain reentrant code, and the the bound unit should have no
fixed overlays. Floatable overlays of the sharable bound unit
are shared only when an Overlay Area Table (OAT) is used. (Fixed
and floatable overlays and the OAT are described later in this
section.)

To permit intertask communication, certain group global
segments are shared by all the tasks in a task group. The group
work space and the group system space are both shared by all the
tasks in a task group.

Additionally, task "private" segments are shared if the task
forks. (A task forks if it issues a Create Task or Spawn Task
command with an entry point rather than a pathname definition.)
The forked tasks share the same segments. The forked tasks have
the same visibility of and copy of forked segments until either
task modifies its address space.

SEGMENT RING PROTECTION

Access to memory segments is controlled through a
hardware-supported protection mechanism that assigns each
executing task to a ring of privilege. During the linking of a
bound unit, the user can assign access attributes to each bound
unit that indicate whether a task executing in a particular ring
of privilege can read, write, and/or execute code in the code or
data segment of the bound unit.

System tasks execute in ring 0 (privileged state). User
tasks can execute in rings 1 (privileged state), 2, and 3
(unprivileged state). The ring in which a user task executes is
not a function of the linking of the bound unit; all user tasks
assigned to the swap pool are created in ring 3 automatically.
User tasks assigned to other online memory pools may be created
to run in ring 1 or 2 (default), depending on the configuration
of the memory pool.

Every attempted access to a segment is checked for access in
the executing task's ring of privilege. The system compares the
ring number of the executing task with the access attributes of
the segment to be accessed. An access violation trap occurs if a
user application attempts to access one of its own segments or a
segment outside its own address space, without having the proper
segment access rights.

4-10 CZ03-00

SEGMENTED BOUND UNITS

Task code is derived from programs written in some source
language that are compiled or assembled to form object units
(also called compilation units). One or more object units are
linked to form a bound unit.

A bound unit is composed of one or two segments. The code
segment is composed of one or more load elements. A load element
is composed of one or more compilation units. The initial load
element is called the root. The root must be resident when the
bound unit is being executed. A load element that replaces
another load element when loaded into memory is called an
overlay.

You can direct the Linker to perform the following actions on
bound units:

• Map the code and data into the same segment or into
separate segments t

• Optionally, associate a specific segment number or numbers
with a bound unit. If you do this, you must be careful to
avoid segment conflicts in the configuration and
application environment in which the bound unit is to run.

• Specify ring access rights.

You have a maximum of 11 large segments available when you
construct a task's address space. Frequently, you have fewer
large segements available, depending on the configured size of
system global space.

Segmented Bound Unit Overlays

To minimize the amount of memory required to execute a bound
unit containing application code, you can cause the bound unit to
be created as a series of overlays by specifying overlay
directives to the Linker. Each bound unit consists of a root
and, optionally, one or more related overlays. The maximum
number of overlays is 1024 (numbered 0 through 1023).

You can also use macro calls to create an OAT for a bound
unit. The overlays specified in the OAT can be shared among all
tasks'sharing the same bound unit. An OAT created for a task's
initial bound unit can be used by any attached bound units.

Segmented Reentrant Bound Units

The Linker produces bound units that can optionally be
reentrant. In a reentrant bound unit, the code and data are in
separate segments. At link time, you can specify that the bound
unit is to have separate code and data segments; you can
optionally specify the access attributes (read, write, and

4-11 CZ03-00

execute) of each segment. The default access attributes are ring
3 read and execute access for both code and data, ring 0 write
access for the code segment, and ring 3 write access for the data
segment.

Sharable Segmented Bound Units

Sharable bound units make reentrant code available to
multiple tasks executing in the same memory pool. The user
indicates that a bound unit is Sharable at link time. If a bound
unit is sharable, the descriptor for the root segment of the
bound unit is placed in a portion of memory where it is
accessible to all tasks in all groups.

Each task sharing the bound unit refers to a common copy of
the root segment. An example of a sharable bound unit is the
line editor. Multiple users share code in the root segment of
the line editor bound unit; each user has his own copy of the
data.

Sharable bound units are transient and are loaded into the
executing task's memory pool during processing. A counter is
incremented each time a request is made for the bound unit and is
decremented when the request has been satisfied. Once the
counter is decremented to zero, the space occupied by the bound
unit is released.

A bound unit can also be linked as globally sharable.
Globally sharable bound units are loaded in the system pool and
can be accessed by any task in any group. However, system pool
memory is a critical resource, and the use of globally sharable
bound units requires careful planning and control to prevent
exhaustion of that resource.

TASK ADDRESS SPACE

The task address space is used to define a task's boundaries;
i.e., its visibility within the collection of executing tasks.
The following elements constitute a task's address space:

Bound unit
User stack segment
Dynamically created segments
Group work space
Group system space
System global space.

Bound Unit

During its execution life, a task executes one or more bound
units. The initial bound unit to be executed is the one
specified when the task is created or spawned. Other bound units
(if any) are attached or loaded through the Bound Unit Attached
($BUAT) and Bound Unit Load ($BULD) macro calls. All segments

4-12 CZ03-00

included in the bound unit(s) executed by the task are within the
task's address space and are accessible to the task (consistent
with the ring protection specifications).

User Stack Segment

A user stack segment is provided for each task associated
with a bound unit having the stack option. The user stack area
is available to users as a work area through the hardware stack
instructions.

Dynamically Created Segments

During execution, a task can extend its address space by
creating segments using the Create Segment ($CRSEG) macro call.
These dynamically created segements become part of the issuing
task's address space.

Group Work Space

Included in the task's address space is up to two large
segments known as the Group Work Space (GWS). The GWS is common
to all tasks in a given task group. Tasks obtain blocks of
memory from the GWS in units of 32 words when they issue Get
Memory ($GMEM) macro calls. All tasks in the taks group have
read? write, and execute access to the GWS. The GWS grows
dynamically, as requests for memory are issued, up to a maximum
size of 128K words if the adjacent segment descriptor has not
been allocated for some other segment or 64K words if the
adjacent segment descriptor has been allocated.

Group System Space

Also included in a task's address space is the Group System
Space (GSS). One GSS is provided for each task group. The
system control structures used to support a task group and its
member tasks (e.g., file control blocks, bound unit descriptors
for nonsharable bound units, LFTs, and LRTs) are allocated from
the GSS. Access to the GSS is read and execute access from ring
3 and write access from ring 0. The GSS grows dynamically, as
requests for memory are issued, up to a maximum size of 128K
words if the adjacent segment descriptor has not been allocated
for some other segment or 64K words if the adjacent segment
descriptor has been allocated.

System Global Space

System Global Space (SGS) consists of the fixed system area
(permanently configured memory) and the system memory pool. A
task's address space includes the segments required for system
global space. System code and data are distributed in the task
address space. Note, however, that a user task can gain write
access to system space only through the system service macro call
interface. (A user task must be in ring 0 before it can modify
system data.)

4-13 CZ03-00

System Representation of Task Address Space

Figure 4-1 is an example of the mechanism used by the system
to represent a task's address space. The following points should
be noted:

1. The layout of memory is logical, not physical.

2. The layout applies only to this example; it is possible
to generate system whose layout is different from that
shown in Figure 4-1.

3. The segments available to the user for his/her bound
units are 6 through F. If the GSS segment requirements
are less than or equal to 64K, segment 3 can- be used. If
the GWS segment requirement is less than than or equal to
64K, segment 5 may be used.

4. One copy of segments 0.0 through 1 exists in the system
in this example. These segments contain the SGS. All
tasks in the system can access these segments. To modify
these segments, a task must be in ring 0.

5. Segments 6 through F are unique to the task, unless they
are being shared (because they contain a sharable bound
unit or the task has been forked). If one of these
segments is being shared, each task sharing the segment
accesses the same copy of the segment. When a segment
number is assigned by the Memory Manager (e.g., for a
bound unit that did not have a segment assignment
specified when it was linked), then the lowest available
segment (or segments for objects of size greater than
64K) begining with the GWS segment plus 2 (segment 6 in
this example) will be used. If all of segments from
GWS+2 through large segment F have been used, then the
segments GWS+1 (segment 5 in this example) and GSS+1
(segment 3 in this example) are allocated in that order.

6. Only one copy of the GWS segment (segment 4 in this
example) exists per task group. All tasks in the task
group have unlimited access to this segment, only one
copy of the segment that contains the GSS (segment 2 in
this example) exists per task group. All tasks in the
task group have read and execute access to this segment.
Both the GWS and GSS segments are dynamically expanded as
demands are made on them. Each can grow to a maximum of
128K if the adjacent ascending segment descriptor
(segment 3 for GSS and segment 5 for GWS in this example)
has not been previously allocated to contain a task
private segment.

4-14 " CZ03-00

SMALL
SEGMENTS
«4K)

LARGE
SEGMENTS
« 64K)

SEGMENT
NUMBER

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
O.A
O.B
O.C
0.0
O.E
O.F
1

2
3
4
5

7
8
9
A
B
C
0
E
F

MAIN MEMORY
(LOGICAL REPRESENTATION)

EXECUTIVE
CODE AND
DATA

PERMANENTLY

CONFIGURED
MEMORY

SYSTEM

POOL

GSS
RESERVED FOR GSS EXPANSION3

GWS
RESERVED FOR GWS EXPANSION3

APPLICATION BOUND UNIT DATA
SEGMENT

APPLICATION BOUND UNIT CODE
SEGMENT

SYSTEM
GLOBAL
SPACE

GROUP
GLOBAL
SEGMENTS

TASK
PRIVATE
SEGMENTS

aCAN BE USED BY USER TASKS IF GSS/GWS NEVER EXCEEDS 64K.

Figure 4-1. Task Address Space

4-15 CZ03-00

Allocating and Deallocating Segments and Bound Units

Each task is associated with at least one bound unit. The
initial bound unit with which a task is associated is specified
at the time the task is created or spawned. At this time, the
segment is created/allocated in memory, and the root is loaded in
this segment.

If the bound unit was designated as sharable at link time and
is currently residing in memory, no loading takes place. The
requesting task shares the bound unit already in memory and the
bound unit user count is increased by one. If the bound unit is
not in memory, it is loaded.

Execution of a task begins with the specified bound unit.
During the execution of this bound unit, the user uses system
service macro calls to load or attach another bound unit.
Loading or attaching a bound unit causes the allocation and
loading of the segment containing the root of the requested bound
unit. (The difference between loading and attaching is that
loading returns the entry point of the root segment to the
issuing task, while attaching starts the execution of the bound
unit root segment at the entry point.) Up to eight bound units
can be attached. The availability of segment descriptors may
limit the user to fewer than eight attached bound units.

During its execution, a task can issue a system service macro
call to request the creation of a segment to be associated with
the task's initial bound unit or any other attached/loaded bound
unit. The macro call can either specify a segment number or
allow the system to select the number in accordance with the
specified size.

ALLOCATING SEGMENTS AND BOUND UNITS

The allocation of memory for a bound unit depends on whether
the bound unit is nonsharable or sharable.

For a nonsharable bound unit, each logical segment is
uniquely mapped to a physical segment in memory. Unless the task
is replicated or the segment is in an OAT, two or more tasks
wishing to concurrently use a nonsharable bound unit each receive
a copy of the bound unit. If a segment assignment was not made
when the nonsharable bound unit was linked, the bound unit is
assigned the next available segment descriptor(s) at GWS+2 or
above in the issuing task's address space. Thus, each copy of
the bound unit may have a different segment assignment.

4-16 CZ03-00

If more than one task is executing a sharable bound unit,
only one copy of the segment containing the root is allocated in
memory. All tasks use this single copy. Overlays of the bound
unit can be shared if an OAT is used. If the root was separated
into a code segment and a data segment, only the code segment is
considered to be the root. Except for forked tasks, each user
has a separate copy of the data segment.

If a segment assignment was not made when the sharable bound
unit was linked, it is assigned a segment number or numbers based
on the segment descriptors available in the address space of the
task that initially loads the bound unit. The bound unit must be
accessed under the same segment numbers by any concurrent users
of that bound unit. If the segment utilization of the second and
subsequent tasks that attempt to load the sharable bound unit •
conflicts with its segment number or assignment, then an error is
return when the tasks attempt to load the bound unit; the tasks
are not given addressability to the sharable bound unit.

DEALLOCATING SEGMENTS AND BOUND UNITS

You can explicitly deallocate a user-created segment by
issuing a Delete Segement ($DLSEG) macro call. You can
deallocate bound unit segments by detaching any but the initially
assigned bound unit. A segment can implicitly be deallocated
from real memory as the result of the task being deleted or
swapped out. It is reallocated when the task is swapped back in.

All tasks that are assigned to the swap pool are eligible to
be swapped out. The swapper swaps out one or more tasks until
sufficient memory is freed to satisfy a request. When the task
is swapped back in, its segments are allocated wherever there is
free memory.

Online pools become part of the system resources owned by
task groups. There are two types of online pools: exclusive and
nonexclusive.

EXCLUSIVE ONLINE POOLS

An exclusive pool is one whose boundaries do not overlap
those of other pools. The lower part of Figure 4-2 shows a con-
figuration of five online exclusive pools. Each pool is to be
used for the task of one or more task groups. The pools are
shown empty as they would be at the end of the configuration
process.

4-17 CZ03-00

TASK
GROUP

LOW MEMORY

THIRD TASK

THIRD TASK CONTROL STRUCTURES

SECOND TASK

SECOND TASK CONTROL STRUCTURES

WORK SPACE

LEAD TASK CONTROL STRUCTURES

TASK GROUP CONTROL STRUCTURES

-OW MEMORY

/
POOL

7/AE

/

POOL
, AD

/

/

POOL

/AC

f

-POOL
/ AB

/

/

POOL
/AA

ONLINE POOLS

Figure 4-2. Exclusive Memory Pools and Contents

The upper part of the figure is an idealized picture of the
contents of Pool AA at some instant during processing and shows
the memory layout for three concurrent tasks. The figure does
not accurately reflect the fact that memory is allocated and
returned (in Assembly language programs) dynamically when needed,
and work space might not be contiguous to the task code that
requests it. Also, memory is allocated in contiguous blocks
according to an algorithm that uses multiples of 32-word blocks
to calculate the amount of space to assign to a pool. The
"holes" that would normally be present as a result of the opera-
tion of the algorithm are missing. The Memory Manager adds one
plus $AF words for control information to the requested amount of
space, divides this value by 32, rounds up to the next whole
number, and allocates this calculated amount of memory to a task
group.

4-18 CZ03-00

NONEXCLUSIVE ONLINE POOLS

A nonexclusive pool set is a set of pools whose boundaries
overlap those of other nonexclusive pool sets so that some memory
locations are common to both pool sets. Figure 4-2 shows two
pool sets that are alternative definitions of the same physical
memory area.

SHARING MEMORY POOLS

There are two ways of sharing memory pools. The first method
involves assigning two or more task groups to the same pool. As
these tasks execute, they contend for the same memory space.
They should, therefore, be designed so that they can be suspended
or take some alternative action when no additional memory is
available.

The second method of allowing task groups to share memory
involves the definition of nonexclusive pools sets. Figure 4-3
shows how this might be done.

MEIWOOL .szjooo_sv,

MEM»OOL E.AA.20W..AB.IOJ4.

MEMPOOL ,SX.10QO»SW.3SOO«SV,

Figure 4-3. Exclusive and Nonexclusive Pool Sets

4-19 CZ03-00

Pool sets SX/SW/SV and SZ/SY represent alternate definitions —
of the same physical area of memory. This method of memory use
has the advantage of providing flexible and efficient use of
resources at any one time. But it has the disadvantage thatf
unless task group requests are very carefully planned, software
deadlock (memory usage conflicts) can occur—the Executive does
not prevent it. If task groups using the SZ/SY pool set never
execute until those using the SX/SW/SV pool set have terminated,
there will never be a problem of deadlock, if only one task group
uses each pool.

However, assume that a task group assigned to pool SY is gen-
erated and acquires some of the pool space. Then, a task group
assigned to pool SW is generated and acquires some space. If
each group requested its remaining space and was willing to wait
until the space was available, a deadlock would occur—neither
task would ever complete.

The surest way to avoid potential memory usage conflicts is
to define all online pools as exclusive pools, and additionally ~~~^
to confine pool use to one task group.

If serial usage for a pool is specified, the Executive will
not allow a group that uses the pool to be created when another
group is already using the pool.

Fixed System Area

The following software components and data structures will be
located in the fixed system area after the configuration process
is complete:

• Basic Executive plus resident overlays (RESOLA directive)

• User-written or vendor-supplied extensions to the Execu-
tive (LDBU or DRIVER directive)

• Device drivers ,̂-

• Intermediate request blocks needed for task groups (SYS
directive)

• Trap save areas (SYS directive)

• Overlay area(s) for system software (SYS directive)

• File control structures (File Description Block (FOB) for
nondisk devices).

The Executive area is fixed—its structure remains the same
for the life of the system1—in contrast to other memory areas
whose usages can vary. Almost all code loaded into this area is
reentrant so that a single copy of the code is available to mul-
tiple users, thus minimizing memory requirements.

v.

4-20 CZ03-00

The area adjacent to the resident software area is called the
system pool. This area contains the system task group. In addi-
tion, the system pool accommodates the following elements?

• Current function invoked by an operator command

• Extended Trap Save Areas (TSAs) needed during processing

• Control blocks for all tasks and task groups (TCBs and
GCBs)

• Globally sharable bound units

• File System directory and file definition blocks

• Public buffer pools

• Memory control blocks for swap pool segments.

SYSTEM TASK GROUP

The system task group differs from other task groups in the
following wayss

• Cannot be aborted or suspended

• Always has read and write access to all of memory

• Handles all system dialog (including operator commands)
through the designated operator terminal

• Never terminates, so it cannot be requested.

FILE CONTROL STRUCTURES IN THE SYSTEM POOL AREA

The elements in the system pool area that are used for file
control consist of:

• File Description Block (FDB)
• Buffers for sharable files.

r b e

You can exercise more control over memory usage by providing
online memory pools with specialized attributes, as described in
the following paragraphs.

4-21 CZ03-00

PROTECTED MEMORY POOLS

A memory pool can be "protected" if it is so specified at
configuration (by a CLM directive). A protected pool is one into
which a task running in another pool cannot write. Through the
use of the MMU, the Executive prevents write intrusion by foreign
tasks. Such a task receives an error notice from the Executive
when an intrusion is attempted.

The special size constraints that apply to protected pools
are described in the System Building and Administration manual.

Protected pools require the MMU.

CONTAINED MEMORY POOLS

Any memory pool but the system memory pool can be "contained"
if it is so specified at configuration. Tasks running in a con-
tained pool are prevented from writing outside their own pool
area. The constraints that apply to the size of contained memory
pools are the same as those that apply to protected memory pools.

Contained pools require the MMU.

UNPRIVILEGED MEMORY POOLS

At configuration, any memory pool except the system pool,
swap pool, or batch pool can be declared "privileged." A task
running in an unprivileged pool cannot execute privileged
instructions and will trap if such an execution is attempted. A
memory pool can be declared unprivileged regardless of whether or
not the configuration has an MMU (i.e., the privileged function
is independent of the memory protection function).

The following Assembly language instructions are privileged:

ASD 10 LEV WDTF
CNFG IOH RTCF WDTN
HLT IOLD RTCN

The system pool is always privileged and the attribute cannot
be altered.

The swap and batch pools are always unprivileged and the
attribute cannot be altered.

Exclusive and nonexclusive pools are unprivileged unless
specified to be privileged.

SERIAL-USAGE MEMORY POOLS

An exclusive or nonexclusive memory pool can be declared
serial-usage. If so declared, such a pool can be used by only
one task group at a time.

4-22 CZ03-00

MULTIPOOL MEMORY PROTECTION

On a system having an MMU, the system builder can specify the
write protection and/or containment that the system is to
provide. At CLM time, the system builder selects one of the
following options; the option selected prevails until the system
is reconfigured.

1. No protection or containment (i.e., no utilization of the
MMU) .

2. Protection of the system memory pool and/or containment
of the batch memory pool.

3. Protection and/or containment of selected memory pools in
addition to those of option 2.

Protection applies to memory pools and not to task groups.
Groups sharing a memory pool are only protected from each other
in swap pools. Also any group in a memory pool is not secure
from intrusion if the pool is a nonexclusive pool.

If a task group is to be protected from all other groups, it
must be the only group using an exclusive memory pool, and the
system builder must specify option 3 software protection at
system configuration.

MEMORY LAYOUT

To obtain efficient use of memory and of the MMU, the CLM
sorts the memory pools in a configuration as follows:

1. The system pool is in the first available memory after
the system data structures.

2. Any online pools are configured next. Within the online
pools:

a. If a swap pool is configured, it follows the system
pool.

b. Nonprotected, noncontained pools are next, in order
of increasing size.

c. Protected and/or contained pools come last in order
of size; the smallest one comes first.

d. For purposes of memory allocation, all nonexclusive
pools are considered collectively to be a single
pool.

e. Independent pools are configured last.

4-23 CZ03-00

SELECTING MEMORY POOL ATTRIBUTES FOR TASK GROUP EXECUTION

The different types of memory pools provide you with the
means to respond to the unique demands of multiple application
programs. Through the use of memory pools, you can at once
exercise control over memory usage and at the same time provide
individual task groups with specialized protection attributes.

The degree to which the system can efficiently and effec-
tively handle the concurrent execution of multiple task groups
depends on the number and type of memory pools available for use.

Cases 1 and 2 examine the considerations involved in the
selection and use of memory pools:

Case 1:

Your program consists of a real-time data application pro-
gram. The program must coexist with other user applications.

The data application program accepts data based on unpredict-
able external stimuli. The application permits a
"saturation" effect to occur when data collection exceeds the
effective rate of processing. The occurrence of saturation
represents a signal to the application to initiate a data
selection strategy.

You should select an online pool of sufficient memory size to
control the maximum desired amount of data allowed to
accumulate.

Case 2:

Multiple applications with strict integrity requirements are
to coexist with programs under development test.

You can choose to load each of the applications with integ-
rity requirements into a memory pool that has been designated
as protected. This will ensure that the programs under test
do not accidentally modify data in the programs to be
protected.

BOUND UNITS

Task code is derived from the source language of programs
that are compiled or assembled to form object units. One or more
object units are linked to form a bound unit that is placed on a
file. The bound unit is an executable program that can be loaded
into memory. A task represents the execution of a bound unit.
Each bound unit consists of a root segment and any related over-
lay segments.

4-24 CZ03-00

Sharable Bound Units

Using sharable bound units is a way of minimizing applica-
tion task group memory requirements while making reentrant code
available to multiple tasks. Unlike permanently resident bound
units that are loaded during system configuration, sharable bound
units are transient in memory and are loaded during processing.
A counter is incremented each time a request is made for the
bound unit, and the unit remains in memory as long as a task is
using the code. As soon as the counter is decremented to zero,
the system pool space occupied by the bound unit is returned to
available status.

Operator commands can be used to load and then unload a
globally sharable bound unit.

To be recognized as sharable by the Loader and loaded into
the system memory pool, the bound unit must have been so marked
by the Linker in response to a GSHARE directive when the bound
unit was linked. To be recognized as sharable by the Loader and
loaded into a user memory pool, the bound unit must have been so
marked by the Linker SHARE directive at link time. As the system
pool memory is a critical resource, it is recommended that you
use the SHARE directive to indicate a sharable bound unit.

Sharable bound units and the Executive extensions that are
loaded when the system is configured using the LDBU CLM directive
differ in one major respect. Executive extensions can be
accessed symbolically by any task, but a sharable bound unit must
be accessed as a bound unit. When an Executive extension is
loaded during system configuration and it is made permanently
resident, its symbols are included in the system .symbol table.
Since a sharable bound unit is loaded after the system has been
configured and is transient, no entry for it is made in the
system symbol table and it must be accessed as a bound unit.

Table 4-2 compares permanently resident Executive extensions
and transient sharable bound units.

Overlays

To minimize the amount of memory required to execute a bound
unit containing application code, you can create the bound unit
as a root and one or more overlays at link time. The use of
overlays requires careful planning so that required code is-not
lost or repetitively loaded.

Overlays can be loaded at a fixed displacement from the base
of the root (nonfloatable overlay) or into a block of memory
allocated explicitly by you or implicitly by the system
(floatable overlay).

4-25 CZ03-00

Table 4-2. Comparison of Executive Extensions and
Sharable Bound Units

Characteristics

Multiple Users

Permanent Resident (Fixed area)

Temporary Resident (Dynamic area)

Symbols in System Table

Accessed Symbolically?

Can Have Overlays?

Called by Bound Unit Name

Executive
Extension

Yes

Yes

No

Yes

Yes

No

No

Sharable
Bound
Units

Yes

No

Yes

No

No

Yes

Yes

NOTES

If the extension is an Assembly language bound unit,
it may have within it sections of code or control
structures controlled by semaphores that would be
accessible to other Assembly language tasks.

Overlays are not sharable unless Overlay Area Tables
(DATs) are used.

The Executive does not "remember" extensions by their
names; a request for one by name results in another
copy being brought into memory.

You can create a set of overlay areas and have the system
load floatable overlays into them. The system will manage the
availability of free areas and locate available copies of the
requested overlays.

NONFLOATABLE OVERLAYS

A nonfloatable overlay is loaded into the same memory loca-
tion relative to the root each time it is requested. Object
units whose code is to be loaded as nonfloatable overlays must be
defined as fixed overlays by the Linker OVLY directive. When the
root of a bound unit having fixed overlays is loaded, the Loader
allocates a container (segment or memory block) large enough to
hold the root and any of its fixed overlays.

4-26 CZ03-00

Assembly language programs can use system service macro calls
to load and execute nonfloatable overlays. COBOL and BASIC
programs can use CALL/CANCEL statements to control nonfloatable
overlays. FORTRAN programs must link a user-written Assembly
language Overlay Manager with the application program.

FLOATABLE OVERLAYS

A floatable overlay is linked at relative Location 0 and can
be loaded into any available memory location. Floatable overlays
must meet the following criteria:

1. The overlay must not contain external definitions refer-
enced by the root or another overlay.

2. The overlay can have Immediate Memory Addressing (IMA)
references either to itself or to the root and/or any
nonfloatable overlay. The two options are mutually
exclusive.

3. The overlay must not make displacement references to the
root or any other overlay.

4. The overlay must not contain external displacement refer-
ences that are not resolved by the Linker.

The application program can use one or more areas of
available memory for the placement of floatable overlays. The
program can deal with memory management in the following ways:

1. Allow the system to place the overlay in an available
memory block (allocated from the users fixed partition
pool or from this GWS segment if loaded in a swap pool).

2. Create a set of overlay areas (using system service macro
calls) and allow the system to manage the areas and
locate the requested overlays. Such overlay areas are
created in a memory block from the same fixed-partition
memory pool in which the root segment was loaded or, if
loaded in a swap pool, the segment(s) allocated from the
root is expanded to contain the created overlay area.

3. Perform its own memory management by linking a
user-written Assembly language Overlay Manager with the
root of the bound unit. In this instance, the user may
choose to have a floatable overlay occupy a part of or an
entire memory block (or segment if in a swap pool).

LINKER ASSOCIATED OVERLAYS

Floatable and nonfloatable overlays are defined through the
Linker. When using the Linker, forward references can be made to
symbols defined in object units to be linked later. Backward
references can be made to symbols previously defined, provided

4-27 CZ03-00

that the defined symbols were not purged from the Linker symbol
table by a Linker Base or Purge directive. Since the specifica-
tion of the Base directive removes from the Linker symbol table
all previously defined and unprotected symbols that are at
locations equal to or greater than the location designated in the
Base directive, you must either define all symbols that you want
to preserve in a nonoverlaid part of the root or protect these
symbols by using the Linker Protect directive.

Floatable overlays can refer to fixed addresses in the root
or nonfloatable overlay, but cannot refer to addresses in another
floatable overlay.

When a root or an overlay of a bound unit is loaded, the
Loader examines the attribute tables associated with the bound
unit if an alternate entry point is specified. The Loader tries
to resolve any references to symbols that remain unresolved by
searching the system symbol table (i.e., the resident bound unit
attribute table); it cannot resolve any references to symbols
that do not exist in that table (Linker symbol tables do not
exist at load time).

Figure 4-4 shows the relative location in memory of Memory
Pool AA. Figure 4-5 is the layout of overlays in Memory Pool
AA. The Linker directives to create and specify the location of
these overlays are described in the Application Developer's
Guide.

Overlay areas are fixed size areas of memory; their use is
controlled through an Overlay Area Table (OAT). Overlay areas
(and DATs) are part of the bound unit. If the bound unit is
sharable, the overlays can be shared with other tasks in the task
group or with other tasks in other task groups. Overlays can
also be shared if the bound unit is replicated through the -SHARE
argument of the Create Task command.

You create an OAT through a $CROAT system service macro call.
You reserve an overlay area and execute the overlay by means of a
$OVRSV macro call. You exit from the overlay through a $OVRSL
macro call.

As an example of overlay area use, assume that you desire to
share both the root and overlays of a sharable unit whose struc-
ture is shown in Figure 4-5.

When the root is loaded, the largest contiguous amount of
memory necessary to accommodate the root and all nonfloatable
overlays is allocated. Except for space for any floatable over-
lays, no other memory requests need be made. In Figure 4-5, this
memory area begins at relative Location 0 of the root and con-
tinues to the end of object unit OBJD. The root consists of
object units OBJ1 and OBJ2. When loaded, OBJ5 of overlay ABLE
will replace the previously loaded OBJ2 code of the root.
Similarly, the overlay locations were specified so that OBJC of
overlay ZEBRA will replace part of OBJB.

4-28 CZ03-00

RELATIVE 0 FOB ROOT

RELATIVE 0 OF ROOT

HIGH MEMORY

ADDITIONAL TASK
GROUP INFORMATION

ROOT AND OVERLAY AREA

TASK GROUP CONTROL
STRUCTURES

ADDITIONAL TASK
GROUP INFORMATION

ROOT AND OVERLAY AREA

TASK GROUP CONTROL
STRUCTURES

SYSTEM POOL

OPERATING SYSTEM

LOW MEMORY

MEMORY POOL
AB (TASK
GROUP A2
WILL USE
THIS AREA)

MEMORY POOL
AA (TASK
GROUP A1
WILL USE
THIS AREA)

Figure 4-4. Relative Location in Memory of Memory Pool AA

SOOT <

REMOTE I
Of ROOT-*

ADDITIONAL
TASK GROUP
INFORMATION

O&BO

OBJtO

TASK GROUP
CONTROL
STRUCTURES

OVERLAY
FOX

OVERLAY
ABLE

OVERLAY 1
ZEBRA <

LOCATION I

ADDITIONAL
TASK GROUP
INFORMATION

OBJDO

OBXO

OBJAO

OBJ60

OBJ50

OBJ10

TASK GROUP
CONTROL
STRUCTURES

OVERLAY
FLOAT

ADDITIONAL
TASK GROUP
INFORMATION

'ASK GROUP
CONTROL
STRUCTURES

Figure 4-5. Overlays in Memory Pool AA

4-29 CZ03-00

FLOATABLE OVERLAYS CONTROLLED THROUGH OVERLAY AREAS

Only floatable overlays can be associated with overlay
areas. Overlay areas are a mechanism that allows you to control
the placement of floatable overlays without being required to
write your own Overlay Manager.

As an example of overlay area use, assume that you desire to
share both the root and overlays of a sharable unit whose struc-
ture is shown in Figure 4-6.

ROOT

OVERLAY OVERLAY
D

Figure 4-6. Sample Bound Unit Structure for Overlay Area Use

Assume further that Tasks 1, 2, and 3 (of the same or another
task group) are executing the sharable bound unit and that Task 1
has encountered a create OAT function while executing the root.

When the create OAT function is encountered, an overlay area
(controlled by the OAT) is created for the task group. In this
example, the overlay area has three entries, each entry being 256
words long. There is no direct relationship between the number
of overlays to be shared and the number of entries in the overlay
area. The entries in an overlay area are of equal size. You
must create overlay areas large enough to contain the largest
overlay (overlay D in this example). The overlay area reserved
is depicted below.

ENTRY 1 ENTRY 2 ENTRY 3

256
WORDS

256
WORDS

256
WORDS

4-30 CZ03-00

When Task 2 (or Task 3) executes the same create OAT request
(iee» f when it executes the root), the task is given the address
of the OAT already existing in memory.

Assume that Task 1 issues a $OVRSV macrocall to reserve an
overlay area defined by the OAT and to load overlay A in that
area. The code and/or data composing Overlay A will be loaded in
the first free overlay area; Task 1 will be given access to this
area. At this instant the status of the overlay area is as
follows?

ENTRY 1 ENTRY 2 ENTRY 3

OVERLAY A
USAGE = 1 USAGE = 0 USAGE = 0

TASK 1

When Tasks 2 and 3 now perform the request for Overlay A,
they will be given access to the existing copy of the overlay.
At this instant, the status of the overlay area is as follows:

ENTRY 1 ENTRY 2 ENTRY 3

OVERLAY A
USAGE - 3 USAGE = 0 USAGE = 0

TASKS 1,2,3

Task 2 now requests Overlay D. Since a task cannot have more
than one overlay in an overlay area at any time, Task 2 must
explicitly release Overlay A before requesting the loading of
Overlay D. The result of releasing Overlay A and requesting
Overlay D is as follows:

ENTRY 1 ENTRY 2 ENTRY 3

OVERLAY A
USAGE a 2

OVERLAY D
USAGE = 1 USAGE = 0

TASKS 1,3 TASK 2

A request by Task 3 for Overlay C will result in the follow-
ing situation:

4-31 CZ03-00

ENTRY 1 ENTRY 2 ENTRY 3

OVERLAY A
USAGE = 1

OVERLAY D
USAGE = 1

OVERLAY C
USAGE = 1

TASK 1 TASK 2 TASK 3

If there were another task in the group (e.g., Task 4) and
the task were to request Overlay B, it would have to wait until
one of the overlay areas was freed (by a Release Overlay macro
call). If Task 4 requested Overlay A, C, or D, the task would be
given access to the loaded copy of the overlay.

Note that at any given instant several DATs, controlling
several different overlay areas, may exist. Even if a task is
sharing overlays in different overlay areas, it cannot reference
more than one overlay area at any given time. The task must
release an overlay in an OAT prior to requesting an area for
another.

UNLOADING OVERLAYS FROM OVERLAY AREA TABLES

You use a Release Overlay Area ($OVRLS) macro call to exit
from an overlay. When this call is executed, the count of the
number of users of the overlay is decremented in the defining
OAT. When the count drops to zero, the overlay area is marked as
available and can be reused by a Reserve Area and Execute Overlay
function.

Overlay areas and defining DATs are deallocated when the last
usage of a sharable bound unit has terminated.

LOADING BOUND UNITS (SEARCH RULES)

The Loader uses search rules to locate a bound unit to be
loaded. The Loader starts the search in response to a command
containing an argument naming the bound unit to be loaded.

Search rules that regulate the search process define three
directory pathnames and the sequence in which they are used
during a search. They are:

1. User task group working directory.

2. System directory -LIB1 argument of the Change System
Directory (CSD) command.

3. System directory -LIB2 argument of the Change System
Directory (CSD) command.

4-32 CZ03-00

The operator command CSD can be used to change pathnames
associated with system directory arguments -LIB1 and -LIB2. The
pathname of a user task group's working directory is established
through a CWD command or through the -WD argument in the Enter
Batch Request (EBR), Enter Group Request (EGR), or SG commands.

4-33 CZ03-00

Section 5
TASK EXECUTION

A task can be characterized as the execution of a sequence of
instructions that has a starting point and an ending point and
performs some identifiable function. In an Assembly language
program, a task can initiate another task for execution or termi-
nate itself by calling the task management functions. Multiple
tasks can operate independently of and asynchronously to each
other.

Each application, system, or device driver task operates at
an interrupt priority level, one of the 64 priority levels pro-
vided by the hardware and firmware. This section describes the
processing of priority levels, including context saving of inter-
rupted tasks, and the assignment of priority levels and logical
resource numbers to tasks. Communication between tasks, task
coordination, and task handling by the system are also summarized
in this section.

INTERRUPT PRIOmyY LEVELS

All system tasks, device drivers, and application tasks are
assigned interrupt priority levels that indicate the order of
their execution. Control of the central processor is given to
the highest active interrupt level. An overview of the priority
levels, a description of how the hardware and firmware process
priority levels, and information on controlling levels (the
latter of interest primarily to the Assembly language programmer)
are given below.

5-1 CZ03-00

Processing Priority Levels

A DPS 6/Level 6 central processor provides 64 potential
interrupt priority levels that are used by the hardware to order
the processing of events. These levels are numbered from the
highest priority (Level 0) to the lowest priority (Level 63).
Levels 0 through 4 are reserved; Level 63 is the "system idle"
level; the intervening levels (5 through 62) are assigned to
logical resources (i.e., devices and tasks).

The determination of which priority level is to receive cen-
tral processor time is based on a linear scan of the level activ-
ity indicators. The level activity indicators are maintained by
the hardware in four contiguous dedicated memory locations (see
Figure 5-1). Each bit that is "on" denotes an active priority
level; each bit that is "off" denotes an inactive level.

MEMORY
LOCATION
(HEXADECIMAL)

0020

0021

0022

0023

BIT

V , 2 , 3 . 4 i 6 , 6 , 7 , 8 , 9 , 1 0 , 1 1

1 1 1 1 1 I I 1 t 1

16 <
i i i i i i l i i i

3° -+
(i i i i i t i i i

48-*-; . — . _ — _ — . — . .

, 1 2 , 1 3 , 1 4 , 1 5

i i i

» 31

. . . • 63

INTERRUPT PRIORITY
LEVEL NUMBER

NOTE IF THE BIT CORRESPONDING TO AN INDIVIDUAL
LEVEL IS "ON THAT LEVEL IS ACTIVE IF THE
BIT IS "OFF' THE LEVEL IS SUSPENDED

Figure 5-1. Format of Level Activity Indicators
*,

When a given priority level is the highest active level, it
receives all available central processor time until it is inter-
rupted by a higher priority level or until it relinquishes con-
trol by suspending itself (setting its level activity indicator
off). If a priority level is interrupted by a higher priority
level, its level activity indicator remains on and it will resume
execution of the interrupted logical resource when it again
becomes the highest priority level. Each time a priority level
change occurs, the hardware/firmware saves the content of the
previously highest active level and restores the context of the
new highest active level. Interrupting a task, saving the
context of a task, selecting and starting the highest priority
level task, and restoring the context of a task are done without
software involvement.

5-2 CZ03-00

When more than one task is assigned the same priority level ,
software determines in round-robin fashion the next active
logical resource to resume execution at this level. Thus a task
does not block a level when the task is put in a Wait state after
a request to waitf wait on list, request semaphore, terminate, or
after a system service macro call that does a wait for a data
transfer . Another task on the same level that is ready will be
activated.

T, Jlmes3-ic j-n

An optional timeslicing facility can be configured. The
timeslicing minimizes the ability of tasks that use large amounts
of central processor time to interfere with interactive users of
the system. Timeslicing is implemented as an extension of the
real-time clock interrupt servicing task which executes at
level 4. At each clock interrupt, it examines the tasks at the
highest active user level . If the execution of that task exceeds
a configured timeslice value without waiting for some event, then
it is removed from the front of its level queue and placed at the
end of the queue. If a separately configured number of such
timeslices occur without the task's waiting on any event, then
the task is demoted one priority level (i.e., the task's priority
level is increased by one) . The task can be demoted again and
again until it has been demoted to priority level 62 or until a
congifured maximum level is reached. Each time that a task that
was demoted by the timeslicer waits for some event, it is
elevated one level (i»e., its priority level is decreased by one)
until the task reaches its assigned priority level. The
timeslicing facility can be configured to perform timeslicing at
a specified user level and below. Configuration of time slicing
is discussed in the System Building and Administration .manual.

Interrupt Save Area

The context of a level can include the contents of the pro-
gram counter, the S-register, all B-registers, the I-register,
all R-registers, all M-registers and all SIP and CIP registers.
The context is stored in a block of memory known as an Interrupt
Save Area (ISA) . The hardware/firmware context save/restore
function finds the appropriate ISA through a pointer supplied in
the interrupt vector for that level. The interrupt vectors are a
set of contiguous memory locations containing an entry for each
potentially active priority level and ordered by ascending
priority level number. Figure 5-2 illustrates the order of the
priority levels, their corresponding interrupt vectors, and the
format of an ISA.

5-3 CZ03-00

PRIORITY
LEVEL

POWER FAILURE
WATCHDOG TIMER RUNOUT
TRAP SAVE AREA OVERFLOW
INHIBIT LEVEL
REAL TIME CLOCK
OPERATOR S TERMINAL DEVICE
SYSTEM BOOTSTRAP DEVICE

RESERVED
RESERVED

APPLICATION TASKS

11-WORD)
SAP
INTERRUPT
VECTORS

ADDRESS I S A O
ADDRESS ISA 1
ADDRESS ISA 2
SEE NOTE
ADDRESS ISA 4
ADDRESS ISA 5
ADDRESS ISA 6

ADDRESS ISA 63

SAF
INTERRUPT
SAVE AREA
FOR PRIORITY
LEVELS

TSA POINTER
INTERRUPT DEVICE ID
INTERRUPT SAVE MSK

INTERRUPT SAVE MSK
INTERRUPT SAVE MSK
PROGRAM COUNTER

B7 REGISTER
B6 REGISTER

B1 REGISTER

R7-REGISTER

REREGISTER

MI-REGISTER

M7 REGISTER

SIP CONTEXT

CIP CONTEXT

NOTE The inhibti level (priority level 3) does not have its own ISA it points to the ISA
of the priority level from which n was entered

(2-WORD)
LAF
INTERRUPT
VECTORS

LAF
INTERRUPT
SAVE AREA
FOR PRIORITY
LEVELS

ADDESS ISA 0

ADDRESS ISA 1

ADDRESS ISA 2
SEE NOTE
ADDRESS ISA 6
ADDRESS ISA 5
ADDRESS ISA 6

ADDRESS ISA 63

TSA POINTER
INTERRUPT DEVICE ID

INTERRUPT SAVE MSK
INTERRUPT SAVE MSK
INTERRUPT SAVE MSK
PROGRAM COUNTER

B7-REGISTER
B6-REGISTER

Bl-REGISTER

R7-REGISTER

REREGISTER
M1 REGISTER

M7-REGISTER

SIP CONTEXT

CIP CONTEXT

Figure 5-2 Order of Interrupt Vectors and Format of
Interrupt Save Areas

The three highest priority levels have dedicated assignments
of special hardware/firmware functions such as incipient power
failure, watchdog timer runout, and trap save area overflow.
Priority Level 3 is reserved as an inhibit level and Level 4 is
dedicated to the real-time clock. Succeeding levels are con-
figured as device levels. Following these are two levels that
are reserved for system use. Except for Level 63, the remaining
levels can be used for application tasks. Level 63 is reserved
for an always active software idle loop.

Control of Priority Levels

MOD 400 controls multiple levels through the use of the LEV
(Level Change) instruction, which provides the following
functions:

• Resume: Ascertain the highest active priority level by
examining the level activity indicators. Restore the con-
text of this priority level and continue on this level.

5-4 CZ03-00

Mark the cur-rent priority level as inactive
(reset the level's activity indicator), save the context
of the current priority level, go into Resume state.
Except for this description of a firmware state, in this
documentation set the term "suspend" indicates the logical
state of a task as described in the paragraph "Task
Handling. "

• Activate a Level; Mark the target priority level as
active (set the level's activity indicator), save the con-
text of the current priority level, go into Resume state.,

• Inhibit: Mark dedicated, high-priority level as active
and immediately assume this level. Continue execution on
this priority level with no context save or restore.

Return to the highest active normal priority
level from the inhibit level. If the highest priority
level is the same one from which the inhibit level was
entered, do not perform a context save or restore.

The number of the highest active priority level can be ascer-
tained by looking at the contents of the S-register.

The availability of an inhibit level allows critical sections
of code to be executed without danger of interruption (e.g., it
may be necessary to temporarily assume the inhibit level in order
to protect short sequences of instructions that modify data
structures shared between levels) .

A standard feature of DPS 6/Level 6 central processors is a
real-time clock, which interrupts at a preassigned priority level
(Level 4) each time its specified scan cycle has elapsed.

TRAP HANDLING

The hardware provides a means by which certain events that
occur during the execution of a task can be "trapped" with con-
trol passed to software routines that are designed specifically
to cover the condition causing the trap. Events such as the
detection of a program error, hardware error, arithmetic over-
flow, or uninstalled optional instruction cause traps (i.e., con-
trol transfers to designated software routines) to occur.

Traps fall into two classes: (1) standard system traps, for
which routines are supplied with the system, and (2)
user-specific traps, for which you can supply your own handler.

An application program can designate which traps are to be
handled through specification of the enable/disable user trap
macro calls (refer to the GCQS 6 MOD 400 System Programmer's
Guide Volume II for details) . If an enabled trap occurs in the
user program, the Trap Manager transfers control to the connected
trap handler for the condition causing the trap. A trap that is

5-5 CZ03-00

enabled is local to a task; such a trap neither affects nor is
affected by the handling of the same trap in another task, even
within the same task group.

Any trap that occurs when its handler is not enabled, or that
does not have a handler to process it, causes the executing task
to be aborted.

SYSTEM FEATURES AFFECTING TASK EXECUTION

MOD 400 does not monitor resource use either within a task
group or among task groups using the online pools. Task and task
groups must cooperate in their use of system resources to ensure
smooth operation of the application.

Priority Level Assignments

Priority Levels 5 through 62 are available for assignment to
system, device driver, and application tasks. The priorities of
system tasks and driver tasks are established during configura-
tion. The priorities of application tasks are assigned during
task group creation. Priority levels with a low numeric value
have a higher priority than those with a high numeric value. The
procedures for establishing priorities are described below.

ASSIGNING PRIORITY LEVELS TO DEVICES AND SYSTEM TASKS

Priority levels for devices are established automatically as
part of the interactive system building process (M4_SYSDEF). If
you wish, you can directly specify priority levels through an
argument of the Configuration Load Manager (CLM) DEVICE or DRIVER
directive. When a particular type of device is specified in the
M4_SYSDEF dialog or through a CLM DEVICE directive, the
appropriate vendor-written device driver is loaded as part of the
system. A CLM DRIVER directive is required only for a
user-written driver. The two priority levels following the last
one assigned to a configured device are used by system tasks and
cannot be assigned to application tasks.

An example of priority level assignment is shown in
Table 5-1. Levels 0 through 4 are assigned by the system and are
not available to any user. The operator terminal is assigned
Level 5 by M4_SYSDEF; you can assign any appropriate level to the
operator terminal through a CLM DEVICE directive. At
initialization, the system bootstrap device is assigned level 6.
This assignment remains in effect unless it is changed by a CLM
DEVICE directive. The $D Debug system program requires two
priority levels. These must be higher than any task the $D Debug
program is to debug. Thus for the assignments shown in
Table 5-1, the $D Debug program must be assigned levels 7 and 8
if it is to be able to operate on the communications supervisor.

5-6 CZ03-00

Table 5-1. Priority Level Assignments for Tasks and Devices

Physical
Priority
Level

0
1
2
3
4

5

6

7
8

9

10
10
10

11
11

12
13
14

Base
Priority
Level

N/A
N/A
N/A
N/A
N/A

N/A

N/A

N/A

N/A

N/A
N/A
N/A

N/A
N/A

N/A
N/A
N/A

Use

Power Failure Handler
Watchdog Timer Runout
TSA Overflow
Inhibit Interrupts
System Clock

Operator Terminal

System Bootstrap Device

$D Debug Program

Communications
Supervisor

TTY Device
TTY Device
TTY Device

Removable Cartridge Disk
Fixed Cartridge Disk

Diskette
Diskette
Diskette

Comments

Levels 0 through 4
are automatically
assigned by the
system.

Conventionally
assigned Level 5,
but can be
assigned any
available level.

Set to Level 6 at
system initializa-
tion but can be
changed.

Requires two
levels. Can
debug only those
programs or
drivers that have
a lower priority
(higher numeric
value) .

Must be a higher
level than any
communications
device.

Communications
devices can share
priority levels.

The priority level
for a pair of
fixed/ removable
disks must be the
same.

5-7 CZ03-00

Table 5-1 (cont). Priority Level Assignments for
Tasks and Devices

Physical
Priority
Level

15
16

17
18
19

•

•

•

63

Base
Priority
Level

N/A
N/A

N/A
N/A
N/A

0
1
»

•

10

N/A

Use

Line Printer
Card Reader

Reserved by System
Reserved by System
Reserved by System

Task Group A
Task Group B

•

•

•

Task Group n

System Idle Loop

Comments

The next three
levels following
the last used for
a configured
device are used by
the system.

•».

Always active.

Table 5-1 indicates Input/Output (I/O) devices, and not
device drivers, to stress that each peripheral device must have
at least one level assigned to it; peripherals (other than
communication devices) cannot share a level. If there are two
printers, each must be assigned a unique level even though there
is only one copy of a reentrant I/O driver. Communications
configurations require at least one nonsharable level dedicated
to processing communications interrupts; it must be at a higher
level than any communications device. Communications devices can
share a level. For example, four Teleprinters (TTYs) and one
Visual Information Projection (VIP) can be configured to share
one level or to use up to five levels. The priorities in
Table 5-1 provide maximum throughput because high-transfer-rate
devices are assigned a higher priority than low-transfer-rate
devices.

5-8 CZ03-00

Theoretically, you could assign a level number as high as 59
to a device. In which case, Levels 60 and 61 would be used by
the system and Level 62 would be assigned to a user task group.
In practice, however, you would want to reserve levels for more
than one user task group, especially for a system with a large
number of devices. If priority Levels 5 and 6 are assigned as
shown in Table 5-1, the theoretical range of levels assignable
through CLM COMM directives is 7 through 58. For a device asso-
ciated with a COMM directive, the range is 8 through 59.

ASSIGNING PRIORITIES TO APPLICATION TASKS

Priorities are assigned to user task groups and tasks when
they are created or spawned. The command to generate a task
group contains an argument that specifies the base priority level
for the task group. The base priority level is relative to the
highest number of the priority level that has been assigned a
configured device. When a task group is assigned a base priority
level of zero, the lead task of the group executes at the phys-
ical interrupt priority level that is three level numbers above
the highest level number assigned to a configured device. When
other tasks in the same task group are created or spawned, they
are given level numbers relative to the base priority level
assigned to the task group. The physical interrupt level at
which a task executes is the sum of the following:

1. The highest level number assigned to a configured device
plus 3

2. The base priority level number of the task group.

3. The relative priority level of the task within that
group.

This sum must not exceed 62. Tasks that have the same base
priority level are processed on a round-robin basis.

User tasks that execute online are usually given higher
priorities (lower level numbers) than those executing in batch.
Tasks that are I/O bound should be run at a higher priority than
tasks that are central-processor bound. This permits I/0-bound
tasks, which run in short bursts, to issue I/O data transfer
orders as needed, wait for I/O completion, and, while in the Wait
state, relinquish control of the central processor to the
central-processor-bound tasks. Otherwise, if the central-
processor-bound tasks have a higher priority, the I/O devices
would be idle while I/0-bound tasks waited to receive central
processor time. The optional timeslicer can be used to minimize
the ability of central-processor-bound tasks to interfere with
interactive and I/0-bound tasks.

5-9 CZ03-00

Logical Resource Number

A Logical Resource Number (LRN) is an internal identifier
used to refer to task code and devices independent of their
physical priority levels. Use of LRNs makes Assembly language
application task code independent of priority levels so that, if
circumstances require a change in priority levels, the task code
does not have to be reassembled.

DEVICE LRNs

LRNs are automatically assigned to devices when the system is
configured through the interactive system generation process. If
desired, you can use the CLM DEVICE directives to assign your own
LRN values.

Figure 5-3 is an example of priority level assignments for
devices and system tasks and the related device LRNs.

LRN

0
1
3
4
5

LEVEL

0

3
4
5
6
7
8
9
10
11

INT
CLOCK
OPERATOR'S TERMINAL
DISK
LINE PRINTER
SERIAL PRINTER
CARD READER
OPERATOR INTERFACE MANAGER INTERRUPT
SYSTEM TASK

Figure 5-3. Example of LRN and Priority Level Assignments
to System Tasks and Devices

APPLICATION TASK LRNs

LRN assignments to application program tasks are not depend-
ent on the system configuration on which the application task
group is running. You can either assign LRNs or have the system
select the highest numbered LRN available at task creation. LRNs
are assigned to task code within an Assembly language application
program through specification of the Create Group and Create Task
macro-calls, as well as the macro calls that build data
structures ($IORB, $TRB, etc.). LRNs can be assigned at the
control Ian- guage level through the use of the commands
(including operator commands) for creation of tasks groups and
tasks. An LRN for an application task can have any value from 0
through 252. Within a task group, the LRN for each task must be
unique. More than one LRN can be associated with the same level
(i.e., two tasks at Level 23 can be assigned LRNs of 28 and 29,
respectively).

5-10 CZ03-00

Two kinds of tasks do not have LRNs:

• The lead task of any task group
• Any spawned task.

File Numbers

Logical File Numbers (LFNs) are internal file identifiers
that are associated with file pathnames at the Assembly language
level or at the command level f through Create File (CR) , Get File
(GET) , or Associate (ASSOC) commands. LFNs can be used to reduce
program dependence on actual file pathnames, which are likely to
vary.

Task and Resource (Coordination

Tasks can be coordinated in either of two ways:

• Through the use of tasking requests
• Through the use of semaphores.

TASK REQUESTS

One task can request another to execute asynchronously with
it, or the requesting task can later wait for the completion of
the requested task. Both tasks have access to the request block
provided by the requesting task and thus can pass arguments
between them.

SEMAPHORES

Semaphores support an application-designed agreement among
tasks to coordinate the use of a resource such as task code or a
file. A semaphore is defined by a task within a task group and
is available only to the tasks within that group.

For each resource to be controlled, a semaphore is defined
and given a two-character American Standard for Information
Interchange (ASCII) semaphore name. This name is a system symbol
recognized by the system control software, not a program symbol
that needs Linker resolution. The agreement is that each
requestor of a resource whose use must be coordinated issues
appropriate system service macro calls to the named semaphore to
request or release the resource. The task that defines the
semaphore assigns the semaphore's initial value. The system
control software maintains its current value to coordinate
requestors of the resource being controlled. A requestor obtains
use of a resource if the semaphore value is greater than zero at
the time of the request. A requestor is either suspended
(waiting for the resource) or notified that no resource is
available if the value is zero or negative.

5-11 CZ03-00

System service macro calls are used to:

• Define a semaphore and give an initial value ($DFSM).

• Reserve a semaphore-controlled resource ($RSVSM); this
macro call subtracts a resource or queues a waiter for the
resource (i.e., it decrements the current-value counter).

• Release a semaphore-controlled resource ($RLSM); this
macro call adds a resource or activates the first waiter
on the semaphore queue (i.e.f it increments the
current-value counter).

• Request the reservation of a semaphore-controlled resource
($RQSM); this macro call queues a request block (SRB) if
the resource is not available. This macro call decrements
the current-value counter.

• Delete a semaphore ($DLSM).

A semaphore is a gating mechanism, and the initial value
given to it depends upon the type of control you want to
exercise.

For example, assume that you want to restrict access to a
particular resource to a one-user-at-a-time order. The mechanism
would work in the following way:

1. Task A defines a semaphore by issuing the macro call:

$DFSM ZZ

Omission of the value argument causes the initial value
to be set at 1.

2. Task B now issues a $RSVSM call; the counter is decre-
mented to 0. Task B gets the resource for itself, know-
ing that no other task using the semaphore mechanism is
using or can obtain the resource.

3. Task C issues a $RSVSM call; the counter is decremented
to -1. Task C is suspended and put on the semaphore
queue in First-In/First-Out (FIFO) order (Task B is still
using the resource).

4. Task B issues a $RLSM call when it finishes with the
resource; the counter is incremented to 0. Task C now
gets the resource. After the $RLSM call for Task C, the
value is 1 again.

Use of resources by more than one user at a time can be
arranged by adjusting the initial value of the semaphore (e.g.,
an initial value of 2 allows two users, a value of 4 allows four
users, and so on, depending on the nature of the resource and its
intended use).

5-12 CZ03-00

If it is undesirable for a task to be suspended while a
resource is in use, the $RQSM macro call can be used instead of
$RSVSM to reserve a resource. $RQSM is an asynchronous reserva-
tion request ($RSVSM is a synchronous request) which causes a
request block to be queued for the resource, so that the issuing
task can do other processing before the needed resource is
available.

TASK HANDLING

More than one task can be concurrently active under MOD 400.
In a multiprogramming environment, a task in each of several task
groups can be active and compete for system resources. Another
possibility is a multitasking application where several tasks
executing under one task group can be active to compete for
system resources among themselves and with tasks from other task
groups. A COBOL, BASIC, or RPG program executes as a single
task. A FORTRAN or Assembly language program can include
requests to activate several tasks and synchronize their
execution; these requested tasks can execute concurrently.

In order for the system to sequence the execution of tasks,
each task must be assigned to a priority level. Task competition
for the central processor resource is governed by the hardware/
firmware linear priority scan of level activity indicators.
Tasks on the same priority level execute serially in the order in
which they are requested. The highest priority active task
receives all available central processor time until it is inter-
rupted by a higher priority task or until it waits, terminates,
or is placed in hold. As a result of this linear ordering of
task priority, care must be taken that high-priority tasks do not
consume an excessive amount of central processor time at the
expense of lower priority tasks. A task that has a built-in pro-
gram loop to wait for an event occurrence prevents other tasks at
the same or lower priority levels from executing.

In an Assembly, COBOL, or FORTRAN language program, program
loops might not be necessary, since a Wait function can be
invoked by a task (at some point after a related request has been
made) to suspend itself and to be reactivated later (at the time
of event completion).

It should be noted that all device drivers are considered to
be tasks in the above sense; using the File System, buffered
device drivers can execute concurrently with tasks. Drivers
execute on the priority levels assigned to individual devices and
thus have their own contexts. The device drivers provided in the
system are written in reentrant code and are therefore capable of
servicing multiple devices.

5-13 CZ03-00

A user task becomes active when a Spawn Task (ST) or Enter
Task Request (ETR) command is issued for it. The ST command can
request that the invocation of the task be delayed until a speci-
fied time interval has elapsed. FORTRAN programs can cause a
task to become active through the START and TRNON statements.
Assembly language programs can issue a $RQTSK or $SPTSK macro
call to activate a user task. The $SPTSK macro call can specify
that the task be invoked only after a certain period of time has
elapsed.

Tasks can exists in any of the following logical states:

• Dormant: There is no current request for the task. A
task enters the Dormant state if it is created but never
requested, or a terminate request is issued against it. A
task remains Dormant until a request is placed against it
or it is deleted. If deleted, it is erased, memory is
deleted, and it cannot be reactivated.

• Active: A task is executing or ready to execute when its
priority level becomes the highest active level in the
central processor. A task remains active until it waits,
terminates, or is suspended. In the Active state, task
execution might stall by not having task code executed
(e.g., the task issues a synchronous I/O order).

• Wait; A task is not executing because it may have caused
its own execution to be interrupted until the completion
of an event such as the completion of a requested task, or
until a timer request is satisfied, or until a task
releases a semaphore. A waiting task loses its position
in the priority level round-robin queue. An I/O order to
disk, magnetic tape, operator terminal, or unbuffered card
reader always results in a Wait condition. Task code
written in FORTRAN or Assembly language will also wait in
the following circumstances: a write to an interactive
terminal or to a printer when a previous write has not
completed; a read order issues before the transfer of the
current message from an interactive terminal is complete
(i.e., RETURN key not pressed). In COBOL, the latter two
circumstances result in a Wait if the program is executing
its I/O statements in synchronous mode; otherwise, if in
asynchronous mode, the result is a status return code
value of 91 with no waiting.

• Suspend; A task is removed from execution by an external
human action (e.g., the operator enters a Suspend Group
(SSPG) command or a user interrupts a program with a
Break). The task is activated through another human
action (e.g., the operator enters an Activate Group (ACTG)
command or a user enters a command after a Break).

5-14 CZ03-00

To terminate, tasks of Assembly language programs must con-
tain a Request to Terminate ($TRMRQ) call. Compilers provide
this call in the object text. $TRMRQ is executed after the user
completes execution.

When you desire the concurrent execution of more than one
taskr each task is specified in a Create Task (CT) or ST command
or system service macro call.

The procedural code for a requested task is either in a
unique bound unit or shared with a bound unit of a task that was
previously created. When a task is requested, the system control
software searches the table of LRNs of the current task group
under which the task is executing for the identifying LRN and
activates the task if it is not already active.

EXAMPLE QF SYSTEM INTERACTION WITH USER TASKS

The following sequence of events illustrates a typical inter-
action between the system control software and two tasks within a
group* For the purpose of this example, Task A has an absolute
priority level of 13 and Task B an absolute priority level of
12. The absolute priority level is obtained by adding a task's
relative priority level, the task group's base priority level,
and the highest system physical priority level plus three.

Figure 5-4 indicates the priority levels at which the central
processor runs as the sequence of events occurs. The diagram
also indicates the consecutive activity of user tasks, the system
control software, and the hardware and firmware. The numbers in
the diagram correspond to the numbers in the sequence of events
and are explained in order in the text.

INTERTASK AND INTRATASK GROUP COMMUNICATION

Information can be passed among task groups and tasks by
means of request blocks, common files, and the message facility.

Task code written in Assembly language can pass information
to other Assembly language tasks in the same task group by using
variable-length request blocks. The request blocks can contain
data or pointers to information structures. All request blocks
must be in common address space so that they can be shared by the
tasks. (Refer to the System Programmer's Guide for details on
building request blocks.) Higher level languages cannot use
request blocks directly; they require called subroutines written
in Assembly language.

5-15 CZ03-00

HARDWARE
PRIORITY LEVEL
PRIORITY LEVEL 4
(CLOCK MANAGER)

LEVEL OF HARDWARE OPERATION

PRIORITY LEVEL 12
(TASK B)

PRIORITY LEVEL 13
(TASK A)

PRIORITY LEVEL 63
(IDLE LEVEL)

7

9 10

J 12 13 14 15 16 17

-INDICATES USER TASK EXECUTION
. INDICATES SYSTEM CONTROL SOFTWARE EXECUTION
• INDICATES HARDWARE/FIRMWARE ACTION

User Task Execution System Control Software Execution

1. Task A is running; task B is requested by task
A, 01 entered or spawned through a command.

2. Task A does not issue a wait.

3.

4.

5. Task B begins execution because its priority
level is higher than that of task A.

6. Task B issues a call to the clock manager and
issues a wait function to wait for clock time-
out. Task B is suspended.

8. Task A resumes execution.

9. Task B's clock-related wait times out. The clock
manager interrupts task A. Task B's priority
level is activated. Task B resumes execution
and continues to completion.

10. Task B issues a terminate call.

12. Task A resumes execution because its priority
level is now the highest active level.

13. In a multitasking program, task A could issue
a wait call to wait for completion of task B.

15. Task A continues to completion.

16. Task A issues a terminate call.

7.

11.

14.

Places the request in the request queue for task
B. (Assume that there are no other requests in
this request queue.) Activates priority level 12.

Examines the request and ascertains task B's
starting address from start address data ac-
companying the request.

Now operating at the priority level of task A, the
highest active priority level, returns control to
task A.

Removes the request from the request queue
for task B. Suspends priority level 12.

Detects that task B's request is marked as
terminated. Control is immediately returned
to task A.

17. Removes the first request from the request
queue for task A. If there are no additional
requests in this request queue, suspends priority
level 13. If there are no remaining active priority
levels, idles at priority level 63.

Figure 5-4. System Interaction with User Tasks

5-16 CZ03-00

Common Files

Tasks within the same task group and tasks within different
task groups can communicate via disk files. The concurrency
status must be the same for all tasks using the files. The
requesting tasks must have access rights to the files.

Message Facility

The message facility allows two or more task groups (users)
or two or more tasks within a task group to communicate with one
another. This communication is done through containers called
"mailboxes." Messages (requests) sent to a task or task group
are queued in a mailbox and are dequeued when received.

To control the sending and receiving of messages, the message
facility provides a number of macro calls and commands. One set
of macro calls (Initiate, Send, and Terminate Message Group)
allows a message (a request) to be sent to a mailbox; another set
of macro calls (Accept, Receive, and Terminate Message Group)
allows a message to be received from a mailbox. Commands are
provided to send, receive, list, and cancel messages (requests).
A set of Send/Receive Message commands allows you to send mes-
sages (mail) to another user's mailbox and to display mail in
your own mailbox.

Deferred processing of print, punch, and task group requests
is carried out through the use of the message facility. Deferred
processing is described in Section 6.

Before the message facility commands or macro calls can be
used, and before the deferred processing of print, punch, and
task group requests can be initiated, you must create the
mailboxes and activate the message facility task.

The paragraphs below describe mailbox creation, the activa-
tion of the message facility task, and the command and macro call
interfaces. Section 6 describes the deferred processing
facilities.

CREATING THE MAILBOXES

Three steps must be performed to construct a mailbox. The
user (or operator) must create the mailbox root directory on the
local volume, create the mailboxes, and set access controls on
the created mailboxes. (Refer to the Commands manual for
details.)

The mailbox root directory is the directory that is to con-
tain the simple names of the mailboxes.

5-17 CZ03-00

The system assumes that the mailbox root directory is in the
MDD directory. (An HDD directory is supplied by the vendor on
the system root volume). You, however, are free to create your
own mailbox root directory through the standard Create Directory
command.

Each mailbox is created through the Create Mailbox command.
This command creates a directory corresponding to the mailbox
name and a file ($MBX) within that directory defining the mailbox
attributes.

To prevent unauthorized use of the message queues, the user
or operator should set access controls as follows:

• Senders must .be given list access on the directory defin-
ing the mailbox.

• Receivers must be given read access on the $MBX file for a
given mailbox.

Individual mailboxes can be deleted through Delete Mailbox
commands.

ACTIVATING THE MESSAGE FACILITY TASK

The Start Mail operator command activates the message facil-
ity. The Start Mail command contains an optional argument used
to set the name of the mailbox root directory to other than the
default directory pathname (MDD).

MESSAGE FACILITY COMMAND INTERFACE

The commands that can be used to send/receive messages (mail)
are Mail (MAIL), Send Message Mailbox (SMM), and Accept Message
Mailbox (AMM). Commands are also provided to list and delete
messages.

The MAIL command is used to send and receive multiline
messages to/from the mailbox whose name (id) is the same as the
person id of the receiving user. A message sent by a MAIL
command is queued in the mailbox and displayed only if the
receiving user issues a MAIL command.

To send messages, issue the MAIL command, specifying the
mailbox id (person id) of the user to receive the messages. The
messages to be sent can be located in a file (named by an argu-
ment of the command) or they can be entered after the MAIL com-
mand has been executed. You can use the -TIME argument in the
MAIL command to defer the displaying of messages until a speci-
fied date and time.

5-18 CZ03-00

To receive messages, issue the MAIL command without argu-
ments. The contents of your mailbox are displayed when the com-
mand is executed. If you request deletion of the messages, they
are deleted from the mailbox after being displayed. Otherwise,
the messages remain in the mailbox. Messages whose date and time
for display have not been reached are not displayed.

The SMM and AMM commands are used for short messages that
must be viewed immediately or at a specified time. The AMM
command is used to specify that messages sent by the SMM command
be displayed when received or at the designated time.

To send messages, issue the SMM command, specifying the
person id (mailbox) to which the messages are to be sent. The
message is included in the command line. You can use the -TIME
argument to specify a delivery time for the message.

To receive messages, issue the AMM command, specifying the
mailbox from which you wish to receive messages. Once this
command is issued, messages are displayed when they are placed on
the named mailbox by the SMM command. The messages are deleted
from the mailbox as soon as they are displayed. Messages whose
date and time for display have not been reached are not
displayed.

You can send alternate MAIL and SMM commands. A receiving
user who issues a MAIL command receives both types of messages.
A user who issues the AMM command receives only messages sent by
the SMM command.

The -IMBX argument of the AMM command allows you to specify
by name the sending user from whom you will accept messages for
immediate display. Messages sent to you by other senders are
stored in your mailbox. The -AMBX argument of the AMM command
allows you to specify the name of a mailbox (other than your own)
whose messages you wish to be displayed to you. By using the
-AMBX argument, you receive someone else's mail and have it
displayed when it is sent.

Through the proper combination of SMM and AMM commands, you
can achieve a broadcasting facility.

MESSAGE FACILITY MACRO CALL INTERFACE

You can use the message facility on an Assembly language
level by using the macro call interface. For Send and Receive
messages, the message facility provides the following macro
calls: Initiate Message Group ($MINIT), Send ($MSEND), Accept
Message Group ($MACPT), Receive ($MRECV), Terminate Message Group
(§MTMG), Count Message Group ($MCMG), and Cancel Enclosure Level
($MCME). The information associated with these macro calls can
be passed by using the appropriate request blocks.

5-19 CZ03-00

A task group that wishes to send a message to the mailbox
must issue an $MINIT macro call to open the Send message
session. The mailbox is identified by a name entered in the
request block. As a result of this macro call, the message
facility returns a message id, unique to the task group, to
identify the message to the other macro calls (i.e., send). The
task group then issues one or more $MSEND macro calls to send
message data. The Send message session is closed by the $MTMG
macro call or alternatively, by the $MSEND macro call. The
sending task group can issue the $MCME macro call to delete the
last record of an incomplete quarantine unit or the entire
incomplete quarantine unit. Receipt of the message can be
deferred by the sender.

A task group wishing to receive a message from a mailbox
issues an $MACPT macro call to open the Receive Message session.
The mailbox is identified as described above for the $MINIT macro
call, and the message facility returns a message id to be used by
the $MRECV and $MTMG macro calls.

The task group then issues one or more $MRECV macro calls to
receive message data. The Receive Message session must be closed
with a $MTMG macro call.

The message may be accepted on the following selection
criteria: first available, sequence number, submitter name, or
submitter name and sequence number.

The receiving task group can request the message in record
sizes other than those in which the message was sent. The
receiving task group delimits the amount of received data by
range or enclosure level.

The message facility can be used most effectively by two task
groups wishing to communicate if they both simultaneously send
and receive a message. To accomplish this, each of the task
groups should issue the $MINIT macro call to open the Send
Message session and the $MACPT macro call to open the Receive
Message session. In this case the quarantine unit is a subject
to exchange data between the two task groups.

5-20 CZ03-00

Section 6
DEFERRED PROCESSING

CAPABILITIES

MOD 400 supports various facilities to defer processing.
These deferred processing facilities are supported by the Message
Facility (refer to Section 5). In deferred processing, the
messages are requests.

Deferring the execution of group and batch processing
requests makes it possible for you to gain greater control over
the processing sequence. Deferring print and punch requests
allows you to obtain program independence from the availability
of print and punch devices. Queueing and later transcribing
reports provides a spooling capability that places printing and
punching outside of program context.

DEFERRING BATCH AND INTERACTIVE GROUP REQUESTS

When placing a batch or interactive task group request, you
can have the request entered in a disk queue and can postpone any
action being taken on the request until a specified time. When
the request queue structures are on disk, memory space is con-
served and the data in the queues can be recovered in the event
of a system failure (refer to Section 7).

Two steps are required to defer group requests. The operator
must create the request queues (mailboxes), and you must issue
batch or interactive group requests with an argument specifying
the time the request is to be activated.

6-1 CZ03-00

Creating Group Request: Queues

The operator must use the Create Group Request Queue command
to create queue structures in which the group requests will be
stored. The operator must also issue a Start Mail command if one
had not been previously issued. These procedures are described
in the System User's Guide.

Queuing Group Requests

You queue batch or interactive group requests by issuing an
Enter Batch Request or Enter Group Request command, respec-
tively. You can postpone action being taken on the request by
specifying the -DFR (defer for interval) or -TIME (defer until
date/time) arguments.

Once the operator has issued a Create Group Request Queue
command for the task group, all further group requests are queued
whether or not the requests are being deferred.

If the operator does not issue a Create Group Request Queue
command, you can still submit group requests but will not be able
to defer the requests.

DEFERRING PRINT AND PUNCH REQUESTS

The system provides a deferred printing and punching capabil-
ity under which your requests for printing or punching specified
files are queued in memory or disk mailboxes. The actual trans-
cription of the files is done at a later time Under the control
of a system task group called a Daemon.

After you submit a deferred print or punch request, you can
resume normal activities, log off, or rebootstrap the system
without losing the request.

The three steps involved in deferred print and punch
processing are creating the mailboxes, activating the daemon, and
queuing the print or punch requests. The information in the
following paragraphs is conceptual. Procedures for deferred
printing and punching are in the System User's Guide.

Creating Print and Punch Request Mailboxes

The operator establishes the mailboxes that are to contain
the queued print or punch requests. The mailboxes can be in
memory or on disk. The mailbox names must be in the form $PR.Qn
for mailboxes used to contain print requests and $PU.Qn for
mailboxes used to contain punch requests (n is an integer from 0
through 9 that identifies the relative priority of the queue,
with 0 being the highest priority and 9 the lowest).

6-2 CZ03-00

Creating the Print and Punch Daemon

The operator is responsible for defining and activating the
Daemon to process the print and/or punch requests. A print
Daemon, a punch Daemon r or a print/punch Daemon can be created.
(The supplied START-UP. EC file creates a standard Daemon task
group at system startup. The operator can accept this Daemon,
modify it, or create his/her own.)

To create a Daemon task group, the operator issues a Start
Mail command (if one was not already issued) , a Create Group com
mand naming the Daemon to be created, and an Enter Group Request
command identifying the mailboxes to be used for queuing the
requests and the devices to be used for printing or punching.

Multiple Daemon task groups can be run concurrently using
common or separate sets of mailboxes, printers, and punches.

Print and Punch Reuests

Once the Daemon task group is active, you can queue print or
punch requests by issuing Deferred Print and Deferred Punch com-
mands. You can employ the -TIME argument in these commands to
defer the printing or punching of a file until a specified date
and time.

QUEUING AND TRANSCRIBING REPORTS

Any file in print or punch format (i.e., any report file) can
be queued and subsequently transcribed to an available printer or
card punch. Report queuing and transcription is a spooling capa-
bility that provides automatic and manual report transcription,
time-of-day printing or punching, and an automatic setup function
that includes a sample transcription file (template) .

The report queuing and transcription facilities control
report transcription outside the context of the program. Report-
ing procedures for identical software can be totally different in
different situations without requiring reprogramming.

Report queuing and transcription have three major aspects:
creating a report queue, queuing a transcription request, and
transcribing a report.

Creating Report Queues

A report queue is a directory that allows you to place a
report in a queue and subsequently transcribe the report. Report
queues are created, modified, and deleted through Report Queue
Maintenance (RQM) commands. The characteristics of the report
queues are determined when the queue is created; the contents are
determined when a report is placed in the queue for later
transcription.

6-3 CZ03-00

When the report queue is created, a report queue profile file
is built. The report queue profile file designates the charac-
teristics of reports that will be entered in the report queue and
printed or punched at a later time. The report characteristics
include:

Name of form descriptor
Format of reports to be queued (print or punch)
Transcription mode (automatic or manual)
Column number at which printing is to begin
Line at which printing is to begin (head of form)
Number of print lines per inch
Number of copies of report
Time at which report is to be transcribed
Heading line
Destination line.

The report queue profile file is complete when the report
queue is created; however, various aspects of the profile can be
overridden when the report is queued.

Queuing Report Requests

The name of a report to be subsequently printed or punched is
placed in a report queue through the Queue Report (QRPT) com-
mand. This command also associates with the report a specialized
report queue profile file that governs the details of the report
transcription. Once a request has been queued, it remains queued
until the file has been transcribed or the request pathname has
been deleted through a report queue maintenance renew or delete
function.

Transcribing Reports

Previously queued reports are written to a printer or card
punch through the Unspool (UNSP) command. A single UNSP command
can unspool all current and future reports. The printing or
punching characteristics are determined by the report queue
profile file created through the RQM command, the specialized
report queue profile file created by the QRPT command, the user's
activities, and the arguments specified in the UNSP command.

The UNSP command defines the report queue and the hard copy
device to be used. After the command is executed, the spe-
cialized report file (if any) is deleted from the report queue.
All reports whose profile matches the specified profile are
unspooled in a single invocation of UNSP.

The report queue profile file can specify that the report is
to be transcribed automatically or manually.

6-4 • CZ03-00

Automatic transcription is used when constant monitoring of a
report queue is desired. When there is no transcription activity
in progress, the unspool routine suspends itself for 1-minute
intervals. When transcription of the queue is activated, each
report in the queue is printed immediately unless one of the fol-
lowing is true:

• Manual mode was specified in the controlling profile.

• The specified time of day for report transcription has not
been reached (or exceeded).

Manual mode is used to print reports in a nonautomated
fashion. When the reports are required, the UNSP command is
issued. All reports on the queue are transcribed immediately,
regardless of time or mode. When the print queue is empty, UNSP
terminates.

6-5 CZ03-00

Section 7
BACKUP AND

RECOVERY FACILITIES

MOD 400 supports facilities that enable you to save and
restore disk files, preserve the execution environment during a
power failure, perform file recovery at the record level, and
restart a program from a previously established point.

The Save/Restore facility provides you with the capability to
preserve selected disk files and directories on magnetic tape or
another disk volume and, when later required for processing, to
restore the files, directories, and associated structures to
disk.

The Power Resumption facility uses the memory save and auto-
restart unit to preserve the memory image through a power failure
lasting up to 2 hours. If power is restored during this time,
the Power Resumption facility reconnects the previously online
peripheral and communication devices and restarts the tasks that
were running when the power failure occurred. If the power fail-
ure lasts more than 2 hours, the memory image is destroyed and
the Power Resumption facility disabled. When power is restored,
you can reinitialize the system and use the File Recovery and
Checkpoint facilities to restart- the system from a previously
established restart point*

File Recovery enables you to dynamically save record images
before they are updated and, if necessary, later write the images
back to the file, thereby returning the file to its unaltered
state. It provides file integrity in the event of a system
failure and is provided through three distinct functions:

7-1 CZ03-00

• Before-Image recording: Preserves a record prior to its
being updated.

• Cleanpoint or Checkpoint declarations: Issued in the
user's program and define a point at which all updates are
complete. When the updates are complete, the associated
before images are destroyed.

• Rollback, Recovery, or Restart functions: Return the
files to their unaltered state by applying all before
images that have been recorded since the last cleanpoint.

File restoration procedures enable you to reconstruct disk
files and/or volumes that are damaged as a result of a device
failure. File restoration is provided through two distinct
functions:

• After-image recording: Preserves a record of the updates
made to files.

• Roll-Forward Utility: Reapplies updates (after images) to
files to bring them up to their most recent consistent
state before the device failure.

After images are used in conjunction with the Save, Restore,
and Roll-Forward utilities to return files to a known state if
data in the files is destroyed as a result of a device failure.

The cleanpoint, rollback, and recovery functions should be
used to provide file recovery in a transaction-oriented environ-
ment. They are best suited for applications in which a single
transaction causes a number of record updates. In a batch pro-
cessing environment, the checkpoint and restart procedures should
be used for file recovery and program restart.

The Checkpoint Restart facility enables you to establish a
point in your program to which you can return at a later time and
continue processing. The return point (checkpoint) is used to
save the current status of the task group. You issue a check-
point call in your program when you reach a point in your pro-
cessing at which the program could be restarted. A restart can
be performed at the most recently completed checkpoint at any
time during processing. If the task group is abnormally termi-
nated for any reason, it can be restarted at the most recent
valid checkpoint.

DISK FILE SAVE AND RESTORE

The Save and Restore commands allow you to save and restore
disk files and directories. Save is used to save disk files and
directories on a disk or magnetic tape volume for later restora-
tion by the Restore command.

7-2 CZ03-00

The Restore command reconstructs the file structures copied
by the Save command. If a file being restored already exists on
the volume (or volumes), the Restore command replaces the current
file contents with the file data saved by the Save command. (The
access control list is not altered.) If a file being restored
does not exist on the volumer the Restore command creates the
file and loads the saved data. (Access is set as defined in the
saved file.)

POWER RESUMPTION

Power Resumption is an optional facility that allows the
system execution environment to be automatically restarted after
a power interruption. The DPS 6/Level 6 central processor must
have the memory save and autorestart unit. This unit can
preserve the memory image through a power failure lasting up to 2
hours. (It cannot, however, preserve the state of the I/O
controllers nor ensure that no operational changes have been made
to the mounted volumes.)

If fewer than 2 hours have elapsed when power is returned to
the central processor, the Power Resumption facility will per-
form the following functions:

• Reinitialize the system software.

• Reconnect peripheral devices.

• Reconnect communication devices serviced by the Asynchro-
nous Terminal Driver (ATD) line protocol handler or the
Teleprinter (TTY*) line protocol handler. (Refer to the
System Building and Administration manual and the System
Programmer's Guide for information about these line proto-
col handlers.)

• Restart application tasks that were active at the time of
the failure, if these are display formatting and control
facility tasks or are tasks containing user-written code
to handle power failure and power resumption.

Implementing the Power Resumption Facility

The Power Resumption facility must be included in the MOD 400
Executive at system building. The DPS 6/Level 6 central
processor must contain a memory save and autorestart unit that
has been activated by the operator (refer to the System User's
Guides for activation procedures).

When Power Resumption is specified in the system building
dialogue, all peripheral devices and all communication devices
associated with the ATD and TTY line protocol handlers are desig-
nated as reconnectable and will be automatically reconnected when
power is restored. If any ADT or TTY* associated device is not
to be automatically reconnected, the system builder must edit the

7-3 CZ03-00

CLM file to remove the -RECONNECT argument from the Set Terminal
Characteristics (STTY) directive generated for the device.

Power Resumption Functions

The Power Resumption facility automatically performs the
following functions:

• Restarts the device drivers, clock, communications subsys-
tem, and display formatting and control facility.

• Reconnects all peripheral devices that were online at the
time of the failure.

• Reconnects ATD or TTY*-associated communication devices
that were online at the time of the failure, except for
those devices designated as not reconnectable.

• Restores the screen forms on reconnected terminals con-
trolled by the display formatting and control facility.

• Resets the system date and time if the date/time clock has
a separate battery backup unit.

• Reloads the Memory Management Unit (MMU), if any is
present.

• Reestablishes the integrity of mounted volumes.

• Restarts application tasks that were active when the power
failure occurred, if they are display formatting and con-
trol facility tasks or tasks containing user-written code
to handle power failure and power resumption.

If an application task is to be notified when a power resump-
tion has occurred, it must be written to check Trap 53 when the
task becomes active and is issuing its own instructions (not exe-
cuting Executive instructions). (Refer to "Trap Handling" in
Section 5.)

After a power resumption has occurred, peripheral devices and
reconnectable ATD or TTY* associated devices that were online at
the time of the failure are again brought online. The operator
may be required to initialize certain peripheral devices. A
terminal user may be required to reenter the input line if he/she
had not pressed the RETURN or XMIT key when the failure
occurred. (Refer to the System User's Guide for details.)

7-4 CZ03-00

FILE RECOVERY

The File Recovery facility enables you to save record images
from a file before it is updated and to later write these images
back to the file, eliminating the alterations made during the
updating. Every time a record is updated, a copy of the record,
as it exists before the update, is written to a system-created
file. The system-created file is called a recovery file; the
records it contains are called before images. The system uses
the recovery files to bring your data files to a consistent state
following a software failure or a system failure such as that
caused by a loss of power. When the before images are applied in
reverse chronological order to your data files, the data files
are rolled back to a previously established state.

Designating, Recoverable Fj,,Ie,s

File recovery is optional. You designate a file as recover-
able through the -RECOVER argument of the Create File (CR) com-
mand. Files not created as recoverable can be made recoverable
by specification of the -RECOVER argument of the Modify File
Attribute (MFA) command. Recoverable files can be made nonre-
coverable through the specification of the -NORECOVER argument in
the MFA command.

Recovery File Creation

Each task group (or task in some cases) having a data file
designated as recoverable has associated with it a recovery
file. The recovery file is created by the system when the first
before image for a recoverable file is about to be written.

All recovery files are created subordinate to your working
directory, unless you specified otherwise by the Assign Recovery
File (ARF) command. (The names of the files are recorded in the
RECOVERY directory, which is positioned under the root directory
of the system volume. This directory is maintained by the
system.) Each recovery file is assigned a name of the form:

$$RECOV.ggtt

where gg is the group identifier and tt the task identifier.

Fi^e Recovery Process

The system recovers a data file (i.e., erases the updates
made to it) by writing the before images back to the file.

You declare points in your processing (called cleanpoints) at
which all file updates are considered valid. When a cleanpoint
is declared, all before images taken up to that point are invali-
dated. New before images are written when you again begin to
update the file.

7-5 CZ03-00

You can perform a rollback at any time during processing.
When a rollback is requested, the before images are written to
the file, wiping out updates made since the last cleanpoint.

Use of the cleanpoint and rollback functions is recommended
in a transaction-oriented environment.

TAKING CLEANPOINTS

When you consider the data in your file to be consistent and
valid, declare a cleanpoint in your program. Cleanpoints are
established by CALL "ZCLEAN" statements in COBOL programs or
$CLPNT macro calls in Assembly language programs. When a clean-
point is declared, the system performs the following actions:

• Writes all modified buffers to disk.

• Updates all directory records.

• Invalidates the recovery file before images that have been
taken for the data file.

• Unlocks all records previously locked by the user. (Tasks
waiting for these records are activated.)

The File System automatically performs a cleanpoint when a
recoverable file is closed.

REQUESTING ROLLBACK

Rollback initiates the recovery of a file to the condition in
which it was at the last cleanpoint. If programming in COBOL,
request a rollback by coding a CALL "ZCROLL" statement. If pro-
gramming in Assembly language, request a rollback by coding a
$ROLBK macro call. When you request a rollback, the system per-
forms the following actions:

• Takes before images from the recovery file and writes them
to the data file, thereby wiping out updates made since
the last cleanpoint.

• Invalidates the before images on the recovery file.

• Unlocks all records previously locked by the user. (Tasks
waiting for these records are activated.)

The File System performs a rollback when a task group termi-
nates abnormally.

7-6 CZ03-00

RECOVERING AFTER SYSTEM FAILURE

If recovery files exist, the operator should issue the
Recover command so that the system will perform a rollback of all
recoverable data files. (Refer to the System User's Guide for
details.)

FILE RESTORATION

File restoration provides the ability to preserve updates
that have been made to files and to apply these updates to saved
versions of the files if the original versions become corrupted.
You cause images of records that have been modified (after
images) to be recorded in a journal (after image) file. You can
then use the journal file in conjunction with the Save, Restore,
and Roll Forward commands to restore files to a known state if
data in the files is destroyed as a result of a device failure
(e.g., if I/O errors indicate any damaged files and/or volumes,
file restoration procedures are recommended) .

Designating Restorable Files

You designate files as restorable by specifying the -RESTORE
argument of the CR command. Files not created as restorable can
be made restorable by specifying the -RESTORE.- argument of the MFA
command. (Restorable files can be made nonrestorable by
specifying the -NORESTORE argument of the MFA command.)

It is recommended that files designated as restorable also be
designated as recoverable (having the -RECOVER attribute) to pro-
vide for complete file integrity if a device or system failure
occurs.

File Creation

The journal file is created and maintained by the operator
through the Open Journal, Close Journal, Display Journal, and
Swap Journal commands. One system-wide journal file records
updates made to all restorable disk files. The journal file can
be a tape or disk file.

Each time a record in a restorable file is updated, the
system records on the journal file the image of the record as it
exists before modification (the before image) and after the modi-
fication (the after image) . The after image of the updated
record is written to the journal file at the time the record in
the file is physically updated.

The journal file contains a running summary of all changes
made to restorable files (e.g., if a restorable file is renamed
or modified, appropriate entries are added to the journal file to
reflect these changes) . Restorable disk files cannot be modified
in any way unless the journal file has been previously opened by
the operator.

7-7 CZ03-00

File Restoration Process

For each file that is corrupted, the restoration process
involves mounting a known valid version of the file, recon-
structed from data preserved during a previous save operation.
The save operation involves preserving the data contents and
selected attributes of the uncorrupted file (by means of the Save
command) before any catastrophe occurs, then restoring the file
structures of the saved file (using the Restore command) after
the file has been corrupted. Following these actions, you cause
after images from the journal file to be applied to the restored
file (using the Roll Forward command). The restored file now
incorporates the changes or updates stored in the journal file
since you last invoked the Save command.

File restoration offers more extensive procedures if files
are corrupted following a device failure and file recovery proce-
dures fail to return files to a consistent state.

For example, the operator opens the journal file and enters
the Recover command. If the Recover command executes success-
fully, you can log in and continue processing. If the Recover
command fails to execute successfully, the operator must close
the journal file, mount saved versions of all files, and enter
the Restore command. The Roll Forward command is then speci-
fied. This command applies journal file images to all restored
files, thereby updating the files to reflect modifications made
after save commands were entered for those files. File restora-
tion is then complete and users can log in and continue
processing.

CHECKPOINT RESTART

The Checkpoint Restart facility allows you to provide a file
recovery and program restart capability in a batch processing
environment. Through Checkpoint Restart, you can establish a
point in your program to which you can return at any time and
continue processing. This return point (called a checkpoint) is
used to save the current status of the task group request. You
can perform a restart to the most recently completed checkpoint
after the abnormal termination of the task group request or at
any point during the processing of the task group request. A
restart cannot be performed from an earlier checkpoint, nor can
it be performed after the normal termination of a task group
request. •

Checkpoint Restart does not support the use of the Listener
secondary login facility.

7-8 CZ03-00

Checkpoint

When a task requests a checkpoint, the system records the
current contents of user memory and the current state of tasks,
files, and screen forms onto a checkpoint file the user has pre-
viously assigned. The system then takes a cleanpoint so that
recoverable files are synchronized with that checkpoint. (Refer
to "File Recovery" earlier in this section for a description of
recoverable files and cleanpoints.)

The system supports one checkpoint task and any number of
other tasks that are dormant or waiting on requests placed
against other tasks in the task group. (Thus, a single active
command executing under the Command Processor and/or any number
of nested EC files can be checkpointed.)

CHECKPOINT FILE ASSIGNMENT

You enable the Checkpoint Restart facility for your task
group and designate where its checkpoint images are to be
recorded by issuing the Checkpoint File Assignment (CKPTFILE)
command.

Checkpoints are written alternately to each of a pair of
checkpoint files. This technique ensures the availability of the
previous valid checkpoint if a failure occurs during the process
of taking a checkpoint. The system locates and uses only the
most recently completed successful checkpoint from the pair of
checkpoint files that you specified.

When designating the checkpoint file, specify a single path-
name (the last element of which can be a maximum of 10 charac-
ters) . The system appends the suffixes .1 and .2 as appropri-
ate. If the system cannot find one or both of the specified
checkpoint files, it creates it (them).

TAKING A CHECKPOINT

When a checkpoint is taken, the system writes a checkpoint
image and performs a cleanpoint for all recoverable files. If
programming in Advanced COBOL, request a checkpoint by coding a
CALL "ZXCKPT" statement or using the RERUN clause in the
I-0-CONTROL paragraph. If programming in Assembly•language,
request a checkpoint by coding a $CKPT macro call.

Your task group must be in a checkpointable state when it
requests a checkpoint. A task group is in a checkpointable state
when each task that is part of the group has requested a check-
point, is waiting on a request issued to another task in the task
group, or is dormant (i.e., there are no current requests for the
task) .

7-9 CZ03-00

Once a checkpoint is recorded by a task group, it remains
available as a restart point until the next checkpoint request is
completed, the current checkpoint file is disassigned (by the
-DISASSIGN argument of the CKPTFILE command), or the task group
request is terminated normally.

The lead task of the group may be waiting on both another
task that is a member of the group and a "break" request.

CHECKPOINT PROCESSING

When a task group takes a valid checkpoint, the system
records the following information on the checkpoint file estab-
lished for that group:

1. Executive information including data structures, user
pool memory blocks, data segments of bound units linked
with separate code and data, and floatable overlays.

2. Status and pathnames of the standard I/O files and
nonsharable bound units.

3. Memory locations and pathnames of sharable bound units.

4. Current state of screen forms for terminals operating
under the display formatting and control facility.

5. Status and position of all active user files (i.e., files
that have been associated, reserved, or opened).

When your file information has been recorded, the checkpoint
image is completed and a cleanpoint is taken. You must ensure
that files to be synchronized with the checkpoint restart process
have been designated as recoverable. Since the File System per-
forms a cleanpoint when a recoverable file is closed, you may
have to take a checkpoint prior to closing the file to keep
checkpoint restart synchronized with the state of the recoverable
file. (Temporary files cannot be designated as recoverable.)

Checkpoints cannot be taken while an active local mail mes-
sage group exists (i.e., a checkpoint cannot be taken in the
period between message initiation or acceptance and message
termination).

Checkpoints are not made automatically obsolete by the normal
termination of the task under which they were issued. To invali-
date a previous checkpoint (taken during the execution of one
command) before processing a new command, you must take a check-
point immediately prior to the termination of that command.

V.

7-10 CZ03-00 ̂

You can perform a restart at the following times:

• During the processing of the task group request that
issued the checkpoint request.

• During the processing of a task group request that was
scheduled after the abnormal termination of the task group
request in which the checkpoint was taken.

• When the system is reinitialized following a system
failure.

When a restart request is issued, the task group issuing the
request is terminated abnormally and the task group request
recorded on the checkpoint file is again put into effect.

The system locates the most recently completed checkpoint and
reads the checkpoint image from the file, rebuilding the Execu-
tive data structures and memory blocks, reloading bound units,
and repositioning active user files*

Procedural code and workspace must occupy the same physical
memory locations that were used when the checkpoint was taken.
In general, task groups that are to be restarted must be the sole
users of exclusive memory pools. Sharable bound units referred
to by these groups must be permanently loaded (through the Load
command in the system startup EC file). The configuration under
which the restart is performed must be identical to that which
existed when the checkpoint was taken.

REQUESTING A RESTART

To restart from the last completed checkpoint (and to abort
the current task group request if restarting during the session),
issue the Restart command. The operator can restart an existing
task group that has a valid checkpoint by using the -GROUP argu-
ment of the Restart command. If the memory blocks required to
effect the restart are not available, the restart is aborted.
Specification of the -WTMEM argument of the Restart command
causes the system to wait until the specific memory blocks
required to perform the restart become available.

If this is a restart following a system failure, the Recover
command must have been issued by the operator or through an EC
file to perform a system-wide rollback of all recoverable files.

If a restart is performed during a session, the abort
(termination) of the group request causes a rollback of all
recoverable files in your task group. The abnormal termination
of the group request causes the last completed checkpoint image
to be retained as a valid checkpoint. The Abort Group and Abort
Group Request commands force an abnormal termination; the Bye

7-11 CZ03-00

command causes a normal termination. (The normal termination of
the Command Processor with a nonzero value in the $R2 register is
treated as an abnormal termination for checkpoint file purposes.)

The Validate Checkpoint command or active function can be
used to ascertain whether the specified checkpoint file pair con-
tains a valid restartable checkpoint.

RESTART PROCESSING

When you issue the Restart command, the system performs the
following steps:

1. Locates the most recently completed checkpoint.

2. Validates that the restart is being performed under the
same user id as that used when the checkpoint was taken.

3. Rebuilds Executive .data structures.

4. Reads nonsharable bound units, data segments, floatable
overlays, and memory blocks that were obtained by get-
memory operations from the checkpoint image into the same
memory locations they occupied at the time the checkpoint
was taken.

5. Reloads sharable bound units in the system memory pool.
Only the code segment is reloaded if the bound unit was
linked with separate code and data. Unless it was linked
with the restart relocatable attribute (Linker RR direc-
tive) , the code segment is reloaded at the same system
pool memory locations occupied when the checkpoint was
taken.

6. Associates, gets, opens, and positions active user files
recorded on the checkpoint image. Rollback should have
been performed already (refer to the previous paragraph
"Requesting a Restart").

7. Restores the screen content of terminals that were opera-
ting under the display formatting and control facility
and were active at the time of the checkpoint.

8. Reissues the break request if such a request had been
issued by the lead task at the time of the checkpoint.

9. Turns on the task that issued the checkpoint request at
the next sequential instruction after the checkpoint.

7-12 CZ03-00

The checkpointed state of the standard I/O files is reestab-
lished at restart time. Modifications made to files (e.g., EC
files) between the checkpoint and the restart must be restricted
to those that do not invalidate the repositioning of the files.
A command being restarted must remain in the same position in the
file; only those commands that follow the restarted command have
any effect on the restarted task group request.

Sharable bound units being used by a checkpointed task group
are reloaded and not restored from a checkpointed memory image
(except for the data segments of bound units linked with separate
code and data). Thus, all such bound units should contain only
code. All sharable bound units in use by a restarting task group
must be identical to the versions that existed at the
checkpoint. They cannot be relinked. If an Overlay Area Table
(OAT) is in use for such a bound unit, no overlay area can be
reserved at the time the checkpoint is taken.

If you have application programs that issue physical I/O
orders for communication devices, you must reissue connects to
those devices before issuing read and write orders to them.

7-13 CZ03-00

Appendix A
GLOSSARY

HT (Horizontal Tab)

Command Processor; Reserved character.

A (space or blank)

Command Processor and Utilities: Reserved character; sepa-
rates arguments and commands. Operator Interface Manager:
At the beginning of a line, interrupts output.

1 (exclamation point)

File. System; A prefix indicating a physical device (sympd)
name (e.g., ILPTOO) . Line Editor: Escape character (e.g.,
IP).

(quotation mark)

i Reserved character delimiting strings
that contain embedded blanks (e.g., "D. COOK"). See '
(apostrophe) .

(number sign)

Line Editor; Signifies condition in If Data, If Range, and
If Line directives. Linker; Specifies the current address,

A-l CZ03-00

$ (dollar sign)

Line Editor; In an address expression, represents the last
line of the buffer (e.g., $P). In any other Line Editor
expression, represents the end of a line (e.g.,
/DIVISION.$/). Linker: Specifies the next location (e.g.,
BASE $). File System: First character of a macro call name
or mailbox (e.g., $GTFIL).

% (percent sign)

Linker; Address argument representing the location one word
greater than the highest address previously used in a linked
root or overlay (e.g., LDEF XTAG,%). Copy. Compare. Compare
ASCII, and Rename Commands; Represents the character in the
corresponding component and letter position of the entry name
(e.g., START_U%.EC).

& (ampersand)

Line Editor: Used in the string expression of the Substitute
directive to indicate that the current expression is to be
repeated (e.g., S/TO BE/& OR NOT &/). Multi-User Debugger
(numeric) and $D Debug: Address symbol, representing the
next address beyond the address used in the previous debug
directive. Command Processor: Reserved character.
Indicates continuation of a command on more than one line.
Execute Command: Indicates EC directives and comment lines
(e.g., &P BEGIN LINK). TCL Compiler: Indicates continuation
of a statement on more than one line.

1 (apostrophe)

Command Processor: Reserved character. See " (quotation
mark).

() (parentheses)

Command Processor; Delimits components of an iteration set
(e.g., PRINT (FILEA FILEB)). Multi-User Debugger (Numeric)
and $D Debug: Delimits action lines to be stored for later
use. Line Editor: Delimits multicharacter buffer name;
optionally, delimits single-character buffer name (e.g.,
B(EXEC)). TCL Compiler: Indicates insertion of field value.

* (asterisk)

Line Editor. CLM. TCL Compiler: Designates an expression.
Patch: Comment directive. File System; Represents one com-
ponent of a file name (e.g., COBPRG.*). In relation to
Access Control Lists (ACLs) and Common Access Control Lists
(CACLs), represents any user, account, and/or mode (e.g.,
COOK.*.INT). List Profile Utility. Multi-User Debugger
(Numeric) and $D Debug: Signifies "all."

A-2 CZ03-00

+ (plus sign)

Line Editor; Indicates unary addition of an address (e.g.,
+2P, 2+3) . Multi-User Debugger (Numeric) and Sp Pftbug;
Performs addition.

, (comma)

Line Editors Separates two addresses to be referenced
inclusively (e.g., 1,5P). CLM. Linker. Sort, and Merge:
Separates arguments within directives.

- (minus sign)

Command Processor; Immediately precedes an argument (e.g.,
-ECL) . Line Editor; Indicates unary subtraction of an
address (e.g., -2P) . Multi-User Debugger (Numeric) and $D

Performs subtraction.

. (period, decimal point)

File System; (1) Separates an entry name into components
(e.g., COBPRG.C) . (2) Used as a single element at the
beginning of a pathname to indicate the working directory
(e.g., . >FILE_DUMP) . Line Editor; (1) In an address,
represents the current line of the buffer (e.g., .P) . (2) In
an expression, requests a string containing any character
(e.g., /PROG.AM/) . Multi-User Debugger and $D Debug;
Address symbol, representing the same starting address used
in the previous debug directive. TCL Compiler: Indicates
the end of a statement.

/ (slash)

File System; If first character of a star name, negates the
meaning of the star name (e.g., /*.WORK) . See * (asterisk).
Lin.e Editor; Delimits strings in Expressions and Substitute
directive (e.g., S/OLD/NEW/) . Patch and File Change:
Immediately precedes a relative location or offset.
Multi-User Debugger: Separates location from repetition
value. $D Debug; Separates directive from the LRN of the
output device and the location from the repetition value.
Linker; Precedes a comment in a Linker directive file (e.g.,
/SECOND OVERLAY) .

: (colon)

Editor: Indicates label definition (e.g., :7) .

A-3 CZ03-00

; (semicolon) -̂

Line Editor; Separates two addresses; the first address
becomes the current line/ after which the value of the second
address is calculated (e.g., 2;.3P). £at£h.: Separates
arguments in Patch directives. Sort and Merge: Separates
directives. Linker: Separates Linker directives on one
line. Command Processor: Reserved character. Separates
commands. Multi-User Debugger and $D Debug; Separates
directives.

< (less-than)

File System: Indicates movement in the storage hierarchy
toward the root and a change in one level in that direction
(e.g., <LIBRARY). Assembler and Patch; Immediately precedes
a relocatable address. Multi-User Debugger and $D Debug:
Specifies the condition to be satisfied in an IF directive
for conditional processing of the directive line.

.̂«>

= (equal)

Line Editor: Print Line Number directive. Multi-User
Debugger (Numeric) and $D Debug; Expresses equality for an
IF directive. Linker: Address argument, specifying the base
address associated with the object unit identified by an
associated label (e.g., BASE =OPNCRD). Copy. Compare,
Compare ASCII, and Rename commands; Represents the
corresponding component of a file name (e.g., COPY FILE.A
= .B).

> (greater-than)

File System: (1) Used at the beginning of a pathname to
indicate a file or directory under the User Root Directory
(URD) (e.g., >SYSLIB2) and (2) Within a pathname, indicates
movement in the storage hierarchy away from the root;
connects two directory names or a directory name and a file
name (e.g., "MYVOL>MYDIR>MYFILE). Line Editor: Go To —
directive (e.g., >1) . Multi-User Debugger and $D Debug:
Specifies the. condition to be satisfied in an IF directive
for conditional processing of the directive line. Assembler
and Patch; Indicates short displacement'address.

» (two consecutive greater-than signs)

File System: Used at the beginning of a pathname to indicate
a file or directory under the System Root Directory (SRD)
(e.g. , »SID) .

A-4 CZ03-00

? (question mark)

Line Editor: Address prefix directive. Copy. Compare.
Compare ASCII, and Rename Commands: Represents any character
appearing in the corresponding component and letter position
of a file name (e.g., START_?P.EC) . (See %.) File System
and Command Processor; Immediately precedes a symbolic start
address (entry point) in a bound unit name (e.g., NOW7TIME) .
In some commands, requests help (e.g., EP (Edit Profile)).

@ (at-sign)

Command Processor;
(e.g. , TIMM@E) .

[] (brackets)

Delete the previously typed character

Command Processor and TCL Compiler: Delimits active func-
tions (e.g., (&P THE TIME IS [TIME]). Multi-User Debugger
(Numeric) and $D Debug; Signifies the contents of the
location defined by the expression within the brackets.

(circumflex)

File System: (1) Indicates a root directory, and must imme-
diately precede a root directory name (e.g., "SYSRES) and (2)
Used as a single element at the beginning of a pathname to
indicate the root of the working directory (e.g., ~>MYDIR) .
Line Editor: (1) When designated as the first character of a
string, requests lines beginning with the string, excluding
the circumflex (e.g., /"IDENTIFICATION/) and (2) Indicates
negation in certain directives. Multi-User Debugger
(Numeric) and $D Debug; Indicates negation as part of an IF
directive.

_ (underscore)

File System: Joins two or more words in a file or directory
name that the system is to interpret as one word (e.g.,
LIST_PROG) .

I (vertical bar)

Command Processor; Suppresses rescanning for returned active
strings.

abbrev, login

See login abbreviation

abbreviation, login

See login abbreviation.

A-5 CZ03-00

abort

An operator action resulting in the immediate cessation of
operation of a task group or the operation of the currently
executing request in a task group. All resources are
returned to the Executive. The bound unit of the lead task
of an aborted request may be retained.

absentee

A processing mode characterized by the absence of interaction
between the user and the system during execution of a user's
program. The terms "absentee" and "batch" are used
synonymously.

Access Control List (ACL)

A list specifying which user(s) can use the resource with
which the list is associated.

ACL

See Access Control List,

activate

An operator action resulting in the resumption of a pre-
viously suspended task group. (See Suspend.)

Active

A task is in the Active state when it is executing or ready
to execute, when its priority level becomes the highest
active one in the central processor.

active function

A form of a command whose output string is placed in the com-
mand line before the rest of the line is processed,

active level

The priority level currently in effect,

address, absolute

A reference to a storage location that has a fixed displace-
ment from absolute memory location zero.

address, relocatable

A reference to a storage location that has a fixed displace-
ment from the program origin, but whose displacement from
absolute memory location zero depends upon the loading
address of the program. (See relocation factor.)

A-6 CZ03-00

administrator, system

Person responsible for authorizing and registering users in
the user profile, assigning passwords, and controlling the
resources available to specific user profiles.

after image

The image of a record in a restorable disk file as it exists
after alteration. Written to a system journal file.

algorithm

A set of well defined rules for the solution of a problem,

alternate index organization

Alternate indexes are used to view a file ordered with a
different key. The same data file can be ordered in many
different ways by having more than one alternate index.

application program

A user-written program for the solution of a business/ indus-
trial, or scientific problem.

area

A DM6 I-D-S/II integrated file,

argument

User-selected items of data that are passed to a procedure
(e.g., system service macro call arguments that are passed to
the called system service, or command arguments passed to the
invoked task). Synonymous with arg. (See parameter.)

argument, control

A keyword whose value specifies a command option. (See
keyword.)

argument, positional

An argument whose position in the command line indicates to
which variable the item of data is applied.

ASCII (American Standard Code for Information Interchange)

The interchange code established as standard by the American
Standards Association.

A-7 CZ03-00

asynchronous

Without regular time relationships. As applied to program
execution, unpredictable with respect to time or instruction
sequence.

attribute, file

Any of a set of disk file characteristics established when
the file is created or modified to include such integrity
features as recovery, restoration, and record locking.

base level

(See priority level, base.)

batch

An execution environment used primarily for non-real-time
activities such as program development. (See absentee.)

batch pool

The memory pool from which the batch task group is supplied
memory segments.

batch task group

The single task group that executes in absentee mode. It
owns a set of resources: the batch memory pool, and the
peripheral devices currently available to it.

BCB

(See Buffer Control Block.)

BCD

Binary-Coded Decimal notation,

before image

A copy of a record from a recoverable disk file, as it exists
just prior to updating, written to a system recovery file.

Binary Synchronous Communications (BSC)

A communications procedure, using a standardized set of con-
trol characters and control character sequences, for the syn-
chronous transmission of binary-coded data.

A-8 CZ03-00

block

The logical unit of transfer between main memory and a tape
file. The size of a block may be variable depending on the
number of records and whether they are fixed or variable in
length.

bootstrap loader

(See loader, bootstrap.)

bootstrap routine

A routinef contained in a single record that is read into
memory by a Read-Only Memory (ROM) bootstrap loader, which
reads the operating system into memory. (See ROM bootstrap
loader.)

bound unit

The output of one Linker execution that is placed in one
file. A bound unit is an executable program consisting of a
root segment and zero or more related overlay segments.

Bound Unit Descriptor (BUD) block

A system control structure containing information provided by
the Linker to describe a bound unit.

break

A user action, initiated by pressing the break or interrupt
keyr that interrupts a running task so that commands can be
entered. After the break, the interrupted task can be
restarted or terminated.

breakpoint, bound unit

A point set in a debugging program where instructions are
inserted to monitor the Executive loading process.

breakpoint, quick

A point in a program where a 02 instruction is inserted to
monitor time-dependent tasks.

breakpoint, true

A point in a program where a 02 instruction is inserted to
interrupt execution and- activate a debugging program to moni-
tor task execution.

A-9 CZ03-00

broadcast

A message sent to all logged-on users through the Send
Message Mailbox (SMM) command.

BSC

(See Binary Synchronous Communications.)

BUD

(See Bound Unit Descriptor (BUD) block).

Buffer Control Block (BCB)

A control structure, contained in the system pool areaf which
describes the characteristics of the buffer.

buffer, Input/Output (I/O)

A storage area used to compensate for the differences in the
flow rates of data transmitted between peripheral devices and
memory.

buffer pool

A collection of storage areas to which the File System
assigns disk files when they are opened. Shared files are
assigned to public pools in system memory. Exclusive files
are assigned to private pools in task group memory (or to
public pools if no private pools exist) .

building, system

(See system building.)

bus

(See Megabus.)

byte

A sequence of eight consecutive binary digits operated upon
as a unit.

CACL

(See Common Access Control List.)

calling sequence

A standard code sequence by which system services or external
procedures are invoked.

A-10 CZ03-00

CCP

(See Channel Control Program.)

channel

A path along which communications can be sent.

Channel Control Program (CCP)

A microcoded program that resides in the Multiline
Communications Processor (MLCP); the CCP processes data
characters, protocol headers, and framing characters.

checkpoint

A point in the user's program to which control can be
returned and processing resumed following a task group
abort. When the user takes a checkpointr the system records
the current contents of user memory and the current status of
tasks, files, and screen forms on a checkpoint file. (See
restart.)

checkpoint file

A user-named file on which the system records the current
status of the task group request when a checkpoint is taken.
Checkpoint files are created in pairs and checkpoints are
written alternately to each file.

CI

(See Control Interval.)

cleanpoint

A point in the user's processing at which all file updates
are considered to be valid. (See also rollback.)

CLM

(See Configuration Load Manager.)

clock frequency

The line frequency, in cycles per second, that is the basis
(coupled with the scan cycle) for calculating the interval
between real-time clock-generated interrupts.

Clock Manager

A monitor component that handles all requests to control
tasks based on real-time considerations, and requests for the
time of day and date in American Standard Code for
Information Interchange (ASCII) format.

A-ll CZ03-00

clock request block

A control structure supplied by a task to request a service
from the Clock Manager.

clock scan cycle

The time in milliseconds between clock-generated interrupts,

clock timer block

The control structure used by the Clock Manager to control
the clock-related processing of tasks.

code, object

The code produced by a compiler or the Assembler. The object
code requires further processing by the Linker to produce a
bound unit. (See also object unit.)

code, source

The code or language used by the programmer when the program
was written. Code that must be processed by a compiler or
the Assembler and the Linker before it can be executed.

cold restart

Restart after system failure,

command

An order that is processed by the Command Processor,

command-in

Any file or device from which commands to the Command Pro-
cessor are read.

command language

The set of commands that can be issued by a user to control
the execution of the user's online or batch task.

command level

The state of the Command Processor, when it is capable of
accepting commands, optionally indicated by the display of
the RDY (ready) message.

A-12 CZ03-00

command line

A string of up to 127 ASCII characters in the form:
command_name._l [arg_l.. .arg_n] ;command_name_2 [arg_l.. .arg_k]
.,., where command_name_i is the pathname(s) of the bound
unit(s) that performs the command's function. (See argument
for a description of "arg."; see &«)

Command Processor

A software component that interprets commands issued by the
operator or a user, and invokes the required function.

Commercial Processor

A central processor that includes an enhanced instruction set
providing native commercial mode instructions.

commercial simulator

A software component that executes a set of business-oriented
instructions.

Common Access Control List (CACL)

A list specifying the access rights to all files or direc-
tories subordinate to the directory in which the list is
established.

communications device

A device that transfers data over communications lines and is
connected through the MLCP.

Compile Unit (CU)

A program unit, produced by a single execution of a compiler
or the Assembler, that requires further processing by the
Linker to produce a bound unit. (See object unit.)

concurrency

The read or write file access that the reserving task group
intends for its tasks and the read or write file access that
the reserving task group allows to other task groups.

configuration

The procedure that involves the use of configuration direc-
tives to define a system that corresponds to actual installa-
tion hardware.

A-13 CZ03-00

Configuration Load Manager (CLM)

A system component that reads a file of user-supplied direc-
tives and causes the system to be configured according to the
contents of the directives.

control argument

(See argument, control.)

control character

An ASCII character intepreted by a device (such as a VIP) as
having a keyboard control function.

Control Interval (CI)

The unit of transfer between main memory and the storage
medium (primarily disk devices) and is comparable to a
"block" for tapes. The size is specified by the user and
remains constant for a file. For disk files, the size of the
CI must be a multiple of 256 bytes. A Unified File Access
System (UFAS) file is composed of CIs that are numbered,
starting at one. The CI also determines the buffer size.

CRB

(See Clock Request Block.)

CRT

Cathode Ray Tube. (See Visual Information Projection.)

CTB

(See Clock Timer Block.)

CU

(See Compile Unit.)

cumulative file

A third disk file utilized by Level 4 error logging. (See
hold file and raw file.) Statistics contained in the raw
file can be analyzed by examining the contents of the cumula-
tive file. The cumulative file contains performance histo-
ries for each monitored device or for memory. The cumulative
file must be created before issuing any error logging com-
mands that reference it. When you issue a UPD_CUM command,
records are removed from the raw file and added to the cumu-
lative file. The user can print the statistics for each
device, all devices, and/or memory using the PR_CUM command.
After the information is printed, the user can delete the

A-14 CZ03-00

information in the cumulative file by issuing the DEL_CUM
command.

Daemon

A system task group that manages queued print and punch
requests.

Data Base Control Block (DBCB)

DM6 I-D-S/II working storage associated with a particular run
unit containing record buffers, currencies, and other control
information.

Data Base Control System (DBCS)

The DM6 I-D-S/II run-time package, which interprets Data
Manipulation Language verbs, accesses the data base, and
returns results to the user work area.

Data Description Language (DDL)

A nonprocedural language used to describe a data base (the
schema description) or a portion of a data base (the sub-
schema description).

data management

A File System component that handles the transfer of logical
records.

DBCB

(See Data Base Control Block.)

DBCS

(See Data Base Control System.)

DDL

(See Data Description Language.)

device driver

A software component that controls all data transfers to or
from a peripheral or communications device. (See line proto-
col handler.)

Device Media Control Language (DMCL)

A nonprocedural language that describes the physical charac-
teristics of a DM6 I-D-S/II data base including CI size, area
size, data base size, and CALC header frequency.

A-15 CZ03-00

device-pac

The adapter between a Mass Storage Controller (MSC) or
Multiple Device Controller (MDC) and peripheral device (e.g.,
printer, diskette drive).

direct access

The method for reading or writing a record in a file by sup-
plying its key value.

direct address

The method for reading or writing a record in any Unified
File Access System (UPAS) file by supplying its simple key
(control interval and line number).

directive

A secondary level order read through the user-in file to a
secondary processor (e.g., Line Editor, Linker, Patch, Debug,
and CLM (configuration) directives.)

directory

A special file containing a description of other files and/or
subordinate directories.

disk

A generic name for mass storage devices such as diskette,
cartridge disk, and storage module.

display processing

A method for developing, displaying, maintaining, and utiliz-
ing terminal display forms.

DM6 I-D-S/II

DM 6 Integrated-Data-Store/II. A CODASYL-based data base
management system. (See also integrated file.)

DMCL

(See Device Media Control Language.)

dope vector

A structure for passing data items not aligned on word bound-
aries between programs.

A-16 , CZ03-00

Dormant state

The state of a task when there is no current request for that
task.

Dual-Line Communications Processor (DLCP)

A programmable interface between a central processor and com-
munications device(s) consisting of two lines.

EBCDIC

Extended Binary-Coded Decimal Interchange Code.

EC file

A file containing commands and (optionally) directives. In
interactive mode, an EC file typically contains frequently
used command sequences. In absentee mode, an EC file must
contain all commands, directives, and anticipated user
responses to program messages that will be needed for a
session.

Edit Profile utility

An interactive program that allows the system administrator
to register new users and/or to delete, list, enhance, and
change the profiles of registered users.

EFN

(See External File Name.)

entry point

A start address within the root segment of a bound unit. By
default, an entry point is the beginning of a procedure; the
user can specify alternate entry point by symbolic address
when he/she invokes a bound unit.

equal name convention

A special pathname convention that can be used with certain
commands to automatically construct the output pathname entry
name when the input pathname entry name has been resolved.

error logging

The collecting of memory and/or hardware-related error sta-
tistics for selected peripheral devices.

A-17 CZ03-00

error-out

The file or directive by which the system communicates error
information to the user or operator; established when a group
request is entered.

exclusive memory pool

A fixed-partition memory pool whose boundaries do not overlap
those of other pools. All of the tasks executing in
exclusive memory pools share a common virtual view consisting
of the memory assigned to all exclusive and nonexclusive
memory pools and system global memory.

extent

A group of contiguous allocated sectors on a disk.

External File Name (EFN)

The absolute pathname of any file within the system. It must
start with the or > character. It has the form ~vol_,id>
dir_l>...>dir_n>filename for files on logically dismountable
volumes and the form (>)>dir_l>...>dir_n>filename for files
on the system volume. Devices can be referred to by the
sequence Isympd. (See sympd.)

external procedure

A routine that is assembled or compiled separately from the
program that calls it.

FCB

(See File Control Block.)

FDB

(See File Description Block.)

FIB

(See File Information Block.)

field

A specific area of a record used for a particular category of
data.

file

A named collection of one or more records.

A-18 CZ03-00

File Control Block (FCB)

A File System data structure that controls a user's access to
a file. An FCB is pointed to by an entry in the logical file
table and, in turn, points to an FCB. There is one FCB per
user Logical File Number (LFN) associated with a file.

File Description Block (FDB)

A File System data structure that describes a file or direc-
tory. An FDB is pointed to by an FCB for a particular file.
There is one FDB per file or directory currently known
(reserved) in the File System.

File Information Block (FIB)

A user-created data structure containing required information
for file processing.

file management

A File System component that handles the creation, deletion,
reservation, opening, and closing of files.

file name

A 1- to 12-character name assigned to a collection of related
data records, or to a peripheral or communications device.
For a file on disk, this name is assigned when the file is
created. For devices, the name is assigned at system config-
uration. (See pathname.)

file organization

A method that establishes a relationship between a record and
its location in a file. (See indexed, relative, random,
dynamic disk, or sequential file organization.)

file recovery

Ability to bring an uncorrupted disk file to a consistent
condition after a software malfunction or system failure.

file restoration

Ability to reconstruct a disk file that has been corrupted
due to device fault.

file set

A number of tape volumes used to contain one or more files.
There are four types of tape volumes:

1. Monofile Volume - Contains only one file

A-19 CZ03-00

2. Multivolume File - Contains one file on two or more tape
volumes

3. Multifile Volume - Contains more than one file on one
volume

4. Multivolume Multifile - Contains more than one file with
any file spanning more than one volume.

File System

System software consisting of file, data, and storage manage-
ment components that handles Input/Output (I/O) functions of
the supported I/O devices.

First-In/First-Out (FIFO)

An execution or scheduling algorithm in which the first item
received is the first item processed.

fixed-length record

A record stored in a file in which all of the records are the
same length.

floatable overlay

An overlay that can be loaded into any available memory loca-
tion within a task group's memory pool.

full duplex

Simultaneous independent transmission of data in both
directions.

full pathname

An absolute pathname which, when specified, begins with a
circumflex (") (e.g., the root directory.)

function

A procedure that returns a single value to its caller. (See
subroutine.)

globally sharable bound unit

A bound unit containing reentrant code and linked with the
Gshare directive. A globally sharable bound unit is loaded
in the system pool and can be used by any task in the system.

group control block

A system structure describing attributes of a task group.

A-20 CZ03-00

group_id

(See task group identification.)

CRTS

General Remote Terminal Supervisor,

half duplex

Transmission of data in one direction at a time.

High Memory Address (HMA)

The address of the highest physical memory location in the
central processor.

HMA

See High Memory Address,

hold file

A file that contains a copy of the Level 2 or Level 4 error
logging statistics that are stored in memory. The hold file
can be retrieved after system shutdown or crash. The hold
file is automatically created when the operator specifies a
SET__ELOG command with a logging Level of 2 or 4. The system
assigns the hold file the name EL_HOLD. The hold file is
automatically updated at intervals as specified in the SET
ELOG command. Error logging need not be active to print
statistics in the hold file using the PR_HOLD command. The
statistics maintained'in the hold file represent only the
most recent memory or peripheral device statistics.

home directory

The user's initial working directory after logging in.

hot restart

Restart during a session.

IMA

(See Immediate Memory Addressing.)

Immediate Memory Addressing (IMA)

A form of addressing a location in main memory by referencing
the location directly, indirectly, or through direct or
indirect indexing.

A-21 CZ03-00

independent memory pool

A fixed partition memory pool. All tasks executing in a
specific independent memory pool share a common virtual view
consisting of all memory assigned to that pool and system
global memory.

indexed file organization

A disk file whose records are organized to be accessed
sequentially in key sequence or directly by key value.

indirect extent

The group of contiguous allocated disk sectors that holds the
relative volume number that contains the succeeding set of
extents.

Input/Output (I/O) device

A peripheral or communications device.

Input/Output Request Block (IORB)

A control structure used for communication between a program
and an I/O driver outside of the File System.

integrated file

A data base disk file whose records are accessed directly or
sequentially using CALC keys and key values.

interactive

A processing mode characterized by a dialog between the user
and the system during execution of a user's program.

interactive task

A task, which, when invoked, is under real-time control of
user-specified directives.

interrupt

The initiation, by hardware, of a routine intended to respond
to an external (device-originated) or internal
(software-originated) event that is either unrelated, or
asynchronous with, the executing program.

Interrupt Save Area (ISA)

An area used to store the context of an interrupted task.
There is one ISA for each task in memory.

A-22 CZ03-00

.interrupt vector

A pointer to a priority-level-specific memory area called an
ISA. There is one vector for each priority level, each
having a dedicated memory location.

Intersystem Link (ISL)

A hardware element interconnecting two buses, thereby permit-
ting the same functions between two units on different buses
as between two units on the same bus.

I ORB

(See Input/Output Request Block.)

ISA

(See Interrupt Save Area.)

ISL

(See Intersystem Link.)

journal file

A system file that contains a running summary of all changes
made to all disk files designated as restorable.

key

An identifier for a specific record within a disk file,

keyword

A fixed-form character string preceded by a hyphen (e.g.,
-ECL). It can stand alone (e.g., -WAIT) or can be followed
by a value (e.g., -FROM n).

KSR

A Keyboard Send-Receive teleprinter.

KSR-like terminal

A KSR teleprinter, CRT keyboard, or Visual Information
Projection (VIP) terminal, which supports the Teleprinter
(TTY*) protocol and is connected to the MDC, MLCP, or DLCP.

A-23 CZ03-00

language key

A two-ASCII-character identifier used as a file name suffix
to provide multiple national language support. The system
default language key is specified at CLM time with the system
default message library pathname. If the default message
library pathname is defaulted, the language key is EN
(English). At a primary login, the user is given the system
default language key unless otherwise specified in the user's
profile login default arguments with the -LK argument or (for
single user profiles) directly in the login line.

lead task

The controlling task of a task group. The lead task can
invoke other tasks to perform functions on its behalf (i.e.,
system services).

LFN

(See Logical File Number.)

LFT

(See Logical File Table.)

line

A record stored in a Series 60-compatible file,

line number

The relative position of a logical record within a control
interval (CI). Line numbers start at zero for each CI.

Line Protocol Handler (LPH)

A communications program that processes messages, interrupts,
and timeouts; handles protocol acknowledgement and error
recovery; initializes the channel control program.

link

A process by which the Linker program combines separately
compiled object units to produce a bound unit. Also, a com-
munications channel between two modems.

Linker

A utility program that links one or more object programs into
a single machine language relocatable program.

A-24 CZ03-00

Listener

A system control component that allows a user to access the
system through a selected set of terminals by means of Login
commands.

load unit

A discrete program unit that has been compiled or assembled
and linked. It is in machine language and is directly
executable by the Executive. See bound unit.

Loader

A system control software component that dynamically loads
from disk the root and overlays of a bound unit.

Loader, bootstrap

A utility program, usually permanently resident in main
memory, that enables other programs to load themselves.

Logical File Number (LFN)

An internal identifier that becomes associated with a file
when it is reserved. LFNs are used in all file references
until the file is removed.

Logical File Table (LFT)

A data structure for use by the File System. It contains an
entry for each LFT.

Logical Resource Number (LRN)

An internal identifier used to refer to tasks or devices.

Logical Resource Table (LRT)

A data structure within a task group containing an entry for
each LRN used in an application, or a data structure within a
system task group containing an entry for each LRN
representing a device. Each entry is a pointer to the
Resource Control Table (RCT).

Login

A command entered at a terminal monitored by Listener that is
used to gain access to the system. The Login command spawns
a task group to be associated with the user's terminal for a
primary login or passes the user to an existing task group
for a secondary login*

A-25 CZ03-00

login abbreviation

A one-character type-in that is defined in the terminals file
as an abbreviation for a complete login line. A login abbre-
viation may apply only to a specific terminal or may be used
at all terminals in the system.

login parameters, default

Login line parameters stored in a user's profile. When a
user logs in, these parameters are combined with arguments
from the terminals file and/or arguments entered manually at
login time to form the actual login line.

LPH

(See Line Protocol Handler.)

LRN

(See Logical Resource Number.)

LRT

(See Logical Resource Table.)

mail

Data contained in a mailbox directory,

mailbox

A special directory and a file within that directory that may
contain data to be communicated to another task group (user).

MBZ

Must Be Zero.

MDC

Multiple Device Controller for peripheral devices other than
cartridge disk, storage module/ and magnetic tape.

Megabus

A set of parallel conducting paths connecting various hard-
ware units of a computer.

memory dump

The representation of the contents of memory.

A-26 CZ03-00

Memory Management Unit (MMU)

A hardware feature that intercepts all addresses generated by
the Central Processor Unit (CPU) (virtual addresses) and
transforms them to real memory addresses via its mapping
array.

Memory Manager

A system control software component that controls dynamic
requests to obtain/return memory from/to a memory pool.

memory pool

A block of central processor memory from which a task group
obtains memory as required for executable code, control
structures, and I/O buffers. (See swap, online, or system
pool.)

memory save and autorestart unit

A hardware feature that can preserve the memory image through
a power failure lasting up to 2 hours.

message

A communication of text that is to be displayed immediately
at the receiving user's terminal.

M4_SYSDEF program

An interactive CLM directive generation program.

MLCP

(See Multiline Communications Processor.)

MMU

(See Memory Management Unit.)

MSC

Mass Storage Controller for cartridge disks or storage
modules.

MTC

Magnetic Tape Controller for magnetic tapes.

A-27 CZ03-00

Multiline Communications Processor (MLCP)

A programmable interface between a central processor and one
or more communications devices. Can be programmed to handle
specific communications devices.

multiprogramming

An operating system capability that allows the concurrent
execution of tasks from more than one task group.

multitasking

An operating system capability that allows the concurrent
execution of more than one task in one or more task groups.

multivolume set

A number of disk volumes that contain one or more files. An
online multivolume set allows data for a single file to be
distributed over many volumes. It requires that all volumes
be mounted and available for the file to be used. A serial
multivolume set permits sequential files to extend onto other
volumes. The volumes can be mounted one at a time and can be
used for very large sequential files.

NATSAP

Next Available Trap Save Area Pointer,

nonexclusive memory pool

A fixed-partition memory pool whose boundaries can overlap
those of other nonexclusive memory pools. All tasks
executing in nonexclusive memory pools share a common virtual
view consisting of the memory assigned to all exclusive and
nonexclusive poools and system global memory.

nonfloatable overlay

An overlay that is loaded into the same memory location rela-
tive to the root each time that it is loaded.

non-time-shared

An operating mode in which the task is active for the entire
interval of time it requires to execute (unless interupted by
a task of higher priority). (See time-shared.)

OAT

(See Overlay Area Table.)

A-28 CZ03-00

object unit

A relocatable program unit produced by a single execution of
a language compiler, or by the Assembler, and requiring fur-
ther processing by the Linker to produce a bound unit.

DIM

(See Operator Interface Manager.)

online

An execution environment intended for use by application pro-
grams , including those operating in real time.

online pool

A fixed-partition memory pool from which an online task group
is supplied memory. An online pool can be shared by more
than one task group. (See exclusive, nonexclusive, or
independent memory pools.)

online task group

A task group that executes in the online dimension; its
resources are an online memory pool and the peripheral
devices it requests.

operating system area

The memory area containing operating system software,
user-written extensions to the operating system, and device
drivers.

operator

Person who starts up the system each day, controls process-
ing, manages peripheral devices, monitors system states, and
regulates absentee jobs.

operator commands

The set of commands that can be issued by the operator to
control online and batch execution.

Operator Interface Manager (OIM)

A system control software component that manages all messages
sent simultaneously by multiple task groups to the operator
terminal or from the operator terminal to a task group.

A-29 CZ03-00

operator-out

The file or device by which an interactive command communi-
cates with the system operator; established at system ini-
tialization or when a File Out command is issued.

operator terminal

A Keyboard Send/Receive (KSR)-like terminal specified for use
in interactive communications between the operator and
vendor-supplied and user-written application programs.

overlay

A section of a program that can be loaded during execution to
overlay another section of the program. Used when there is
insufficient memory to accommodate all the code of a pro-
gram. (See floatable overlay and nonfloatable overlay.)

overlay area

An area of specified size into which floatable overlays are
loaded.

Overlay Area Table (OAT)

A data structure containing parameters that control the use
of overlay areas.

pacing rate

The frequency at which each new output line appears on an
output display.

parameter

The data received by a procedure that is written in a gen-
eralized form to handle any data passed to it. See argument.

password

A unique combination of characters, initially established at
registration, that identifies a user. A system control com-
ponent verifies the password before granting access to the
system.

patch

A portion of code used to modify an existing object or load
unit on disk or in memory.

A-30 CZ03-00

pathname

A character string by which a file, directory, or device is
known in the File System.

pathname, absolute

A pathname that begins with a greater-than sign (>) or a cir-
cumflex (~). In the former case, it is a partial pathname
and is appended to the root directory name of the system
volume to form a full pathname; in the latter case, it is a
full pathname and is used without modification.

pathname, device

A pathname by which reference is made to a peripheral
device. Device pathnames have the general form !device_id.

pathname, relative

A pathname that does not begin with a greater-than sign (>)
or a circumflex ("). It is a partial pathname consisting of
one or more directory names and/or a file name, and is
appended to the working directory pathname to form a full
pathname.

pathname, simple

A special form of a relative pathname consisting of a single
directory name or file name. It is appended to the working
directory name to form the full pathname.

peripheral device

A device connected through the MDC, MSC, or MTC (e.g., a card
reader, disk, or tape).

Physical Input/Output (PIO)

Physical Input/Output, or physical I/O, that is initiated
through a request I/O macro call, outside of the File System,
using lORBs.

PIO

(See Physical Input/Output.)

pool identifier

A two-character name, established a system configuration, by
which a memory pool is identified, and by which a task group
is assigned a memory pool when the task group is created.

A-31 CZ03-00

positional argument

(See argument, positional.)

power resumption

A system facility that controls the restarting of the execu-
tion environment following a power failure.

primary login

The form of login that requests Listener to spawn a task
group that has the terminal from which the login originated
as its primary system file (i.e., the terminal will be the
initial user-in, command-in, error-out, and user-out files).

priority level

A numeric value that can be assigned to a task or device for
purposes of controlling processing. Values range from 0 to
63. The lowest values (highest priorities) are reserved for
system tasks; Level 63 is the system idle level. Intermedi-
ate levels are available for user assignment to tasks and
devices. The physical level at which a task executes is the
sum of the highest level number assigned to a configured
device plus three, the base level of the task group, and the
relative level of the task within the group.

priority level, base

The priority level, relative to the system priority level, at
which all tasks in a task group execute. A base level of 0
is the next higher level above the last (highest) system
priority level.

priority level, hardware

A numeric value from 0 through 63 that can be assigned to a
task or device to control processing. The lowest values
(highest priorities) are reserved for certain system tasks.
Level 62 is reserved for user tasks. Level 63 is the system
halt level.

priority level, physical

(See priority level.)

priority level, relative

The priority level, relative to the base level, at which a
user task within a task group executes. Relative Level 0 is
the base level.

A-32 CZ03-00

priority level, system

The priority level assigned to system devices and tasks,

profile

(See report queue profile file or user profile.)

program name suffixes

A "point-letter" character string such as ".0" for object
units or ".A" for Assembly language source units appended to
a file name to identify it as a source, object, or list unit,

protected string

A character string containing reserved characters that is
enclosed by protected string designators. (See reserved
character and protected string designator.)

protected string designator

A pair of quotation marks or apostrophes that enclose a char-
acter string containing reserved characters. (See reserved
character.)

PVE

Polled Visual Information Projection (VIP) Emulator,

quarantine unit

A unit of message text; the smallest amount of transmitted
data that is available to the receiver.

random file organization

A disk file whose records are accessed directly or sequen-
tially through CALC keys and key values.

range

The number of bytes transferred during an I/O operation.

A-33 CZ03-00

raw file

A second disk file utilized by Level 4 error logging. The
raw file is automatically created when the operator specifies
a SET_ELOG command with a logging level of 4. The system
assigns the raw file the name "EL_RAW. The raw file main-
tains a cumulative performance record for memory and/or each
device being monitored. Information from residual records in
the hold file is written to the raw file whenever error
logging for a device is disabled or when error logging is
reestablished at Level 4 after the system has shut down or
crashed.

Memory error logging information is written to the raw file
only if the operator specified a STOP_ELOG MEMORY command
prior to the shutdown or crash. Since the raw file is a
relative file whose size increases if records are not
deleted, the operator should delete these records periodi-
cally. (See hold file.)

record

A user-created collection of logically related data fields.
Records are treated as a unit by the user and can be fixed or
variable in length.

record locking

A file access feature that controls contention for records
within disk files shared by two or more task groups.

recoverable file

A disk file that has been identified as one that can be
brought back to a previously established state in the event
of a software malfunction or system failure. (See before
image and file recovery.)

recovery file

A system-created file used to contain before images. (See
before image.)

reentrant routine

A routine that does not alter itself during execution; a
reentrant routine can be entered and reused at any time by
any number of callers.

registration

Process,by which the system administrator introduces users
and accounts into the system.

A-34 CZ03-00

relative file organization

A file whose records are organized to be accessed sequen-
tially or directly by their record position relative to the
beginning of the file.

relative level

(See priority level, relative.)

relative record number

A number representing the position of a record relative to
the beginning of the file. The initial record is relative
record number 1.

report queue

A directory used to contain the pathnames of files queued for
later transcription.

report queue profile file

A file that designates the characteristics of reports that
will be entered in a report queue and printed or punched at a
later time.

report spooling

The queuing and subsequent transcription of reports,

request block

(See XORB, Task Request Block (TRB), CRB, Semaphore Request
Block (SRB).)

request I/O

The macro call, issued to a driver, that performs Physical
I/O (PIO).

request queue

A threaded list of request blocks,

reserved character

An ASCII character to which special significance is
attached. These characters are: space (blank), horizontal
tab, quotation mark ("), apostrophe ('), semicolon (;),
ampersand (&), vertical bar (I), left bracket ([), and right
bracket (]).

A-35 CZ03-00

resident bound unit

A bound unit that is permanently configured in memory as an
extension to the operating system.

residual range

The difference between the number of bytes requested and the
number of bytes transferred during an I/O operation.

restart

A user-initiated process in which the system locates the most
recently completed checkpoint on the checkpoint file and
reads the checkpoint image, rebuilding the Executive data
structures and memory blocks, reloading bound units, and
repositioning active user files. (See checkpoint.)

restorable file

A disk file that has been identified as one that can be
reconstructed to its latest state following a device fault.
(See after image and file restoration.)

return address

The address of the instruction in a program to which control
is returned after a call to a subroutine. By convention,
this address is usually stored in register B5.

RFU

Reserved for Future Use.

rollback

The process by which before images stored on a recovery file
are written to a recoverable file, negating updates made
since the last cleanpoint. This action restores the file to
the state it was in when the cleanpoint was taken. Also see
cleanpoint, before image, file recovery, and recoverable
file.

ROM bootstrap loader

A firmware routine (activated by pushing the Load key on the
control panel) that reads the first record from a designated
disk into memory.

A-36 CZ03-00

root directory

The primary directory on a mass storage volume? it is pointed
to by the root directory pointer in the volume label. The
name of the root directory is the same as the vol_,id. MOD
400 supports a User Root Directory (URD) and a System Root
Directory (SRD), which may reside on different volumes.

root segment

The controlling segment of a program. It is resident in
memory during the entire execution of the program and can
call overlay segments.

ROP

Receive-Only Printer.

RSD

Reserved for System Use.

Scientific Instruction Processor (SIP)

A hardware option on central processor models that executes a
set of scientific instructions.

search rules

An ordered list of directories that are searched by the
system when a bound unit is to be located and loaded or
executed.

secondary login

The form of login that requests the Listener to transfer
control of the user terminal to a specified task group. The
specified task group must already exist and have an
outstanding Request Terminal monitor call ($RQTML) for the
secondary login to satisfy.

secondary user

A user whose login line contains a destination, the identifi-
cation (usually by group-id) of a subsystem which has
requested a secondary terminal. The user is attached to the
subsystem until released by it.

sector

A 128-byte portion of a diskette track, or a 256-byte portion
of a cartridge disk, cartridge module disk, or storage module
track.

A-37 CZ03-00

security

Limitation and control of the type of access a user has to
directories, files, and the system itself.

semaphore

A software counter mechanism, available to Assembly language
programs, and used to coordinate the use of task code or
other resources such as files.

Semaphore Request Block (SRB)

A data structure used to control semaphore processing,

sequence number

The internal identification number assigned to a request in a
task group request queue.

sequential access

The method of reading or writing a record in a file by
requesting the next record in sequence.

sequential file organization

A file on disk or magnetic tape whose records are organized
to be accessed in consecutive order.

sharable bound unit

A transient bound unit consisting of reentrant code linked
with the share directive. A sharable bound unit is available
for execution by any task assigned to the same memory pool.

sharable file

Any file that is usable by more than one task concurrently.

SIP

(See Scientific Instruction Processor.)

SIP Simulator

A software component that provides the same functionality as
the SIP.

source unit

A program written in source language for processing by a com-
piler or an assembler. Source units are stored as variable
sequential data files.

A-38 CZ03-00

spanned record

A record that spans a control interval or block,

spawn

To create, request the execution of, and then delete a task
or task group.

spooling

The technique for storing output on disk files for subsequent
printing.

SRB

(See Semaphore Request Block.)

standard I/O files

The command-in, user-in, user-out, operator-out, and
error-out files.

star name convention

A special pathname convention that can be used with certain
commands to perform an operation on a group of files, thereby
eliminating the need for separate commands for each file.

startup

The procedure that bootstraps a vendor-supplied, precon-
figured system from disk to provide a minimum operating
environment.

startup EC file

An EC file whose commands are executed at system startup or
when a task group is activated.

states (task)

A task can be in the following states: Dormant, Active,
Wait, and Suspend.

storage management

The File System component that handles the transfer of blocks
and control intervals between main memory and secondary
storage (e.g., disks, tapes, etc.).

A-39 CZ03-00

subroutine

Any procedure that alters data in an area common to both the
subroutine and its caller. Contrast with "function".

subsystem

A general purpose application-oriented facility that provides
interactive users with their interactive capabilities and
view of the system. A subsystem is generally identified
directly with the lead task of a task group. A subsystem can
either be primary-user oriented (supporting one interactive
user per task group) or secondary-user oriented (supporting
multiple interactive secondary users per task group).

subsystem switcher

A menu-oriented component of the User Productivity facility
that allows a logged in user to switch from one subsystem to
another without having to log out and back in again.

Suspend

An operator action resulting in the temporary cessation of
execution of a task group; all resources are retained by the
task group. (See activate.)

swap pool

A memory pool in which segmented memory management is used.
Tasks assigned to a swap pool can be swapped to backing
storage in order to make memory available to competing
tasks. Each task executing- in a swap pool has its own
virtual view.

symbolic start address

Bound unit entry point,

sympd

A name assigned to each peripheral device when the system is
built. The acronym sympd stands for "symbolic peripheral
device."

system building

The process of specifying system variables, identifying the
peripheral devices and (optional) communications environment
to the system, and tailoring main memory to suit system and
user needs.

A-40 CZ03-00 v

system console

(See operator terminal.)

system directory

One of the directories that the system uses in its search for
a bound unit to be loaded for execution.

system global memory

The memory of the fixed system area and the system. This
memory is in the virtual view of all tasks, regardless of
their specific memory pool assignments.

system pool

The memory area from which the system task group (GCB and
TCB) and system global structures (e.g., BCB and FDB) are
allocated, and the area where globally sharable bound units
reside*

system service macro calls

Macro calls available to Assembly language programs to per-
form a wide variety of system control and File System service
functions.

system task group

The task group in which all drivers, the clock, the Command
Processor, and OIM execute.

task

A sequence of instructions that has a starting point, an
ending point, and performs some identifiable function.

Task Control Block (TCB)

The system control structure that describes the task's char-
acteristics, including the contents of the hardware Interrupt
Save Area (ISA).

task group

A named set of one or more tasks with a common set of
resources; the framework within which every user and system
function operates.

*

task group identification

A two-character name by which a task group is known to the
system.

A-41 CZ03-00

task group resource

One of a set of elements associated with a task group that
enables it to perform its function. A resource can be a
task, a central processor priority level, central processor
memory, or a peripheral or communications device.

Task Manager

A system component that handles task requests to activate,
wait, or terminate tasks.

Task Request Block (TRB)

A data structure used by one task to request another task and
communicate with it.

TCB

(See Task Control Block.)

terminal

An I/O device,

terminals file

A sequential file that names the terminals monitored by
Listener, defines terminal-specific access constraints, and
defines system-wide and terminal-specific abbreviations for
login lines.

terminate

A system service macro call request issued by the currently
executing task at the end of its normal processing.

terminated

A task state in which there is no current request for the
task.

timeslicing

An optional feature that minimizes the ability of tasks that
use large amounts of central processor time to interfere with
interactive users.

transaction

An event that is entered, recorded, and processed by the
system.

A-42 CZ03-00

transaction processing

Online data processing in which individual transactions are
entered from terminals, validated, and processed through all
relevant procedures.

transient bound unit

A bound unit that resides in memory as long as there is a
request for it.

transparent mode transmission

A data transmision mode that allows data consisting of bytes
having any bit configuration to be transmitted over communi-
cations lines. Thus, control characters can be transmitted
as data.

trap

A control transfer caused by an executing program. The
transfer is made to a predefined location in response to an
event that occurs during processing.

trap handler

A routine designed to take a particular action in response to
a specific trap condition.

Trap Manager

A system control software component that handles an executing
program's transfer of execution control to a predefined trap
location.

Trap Save Area (TSA)

An area in memory in which certain information is stored when
a trap occurs.

trap vector

A pointer to a trap handler. There is one vector for each
possible trap condition, in dedicated memory locations.

TRB

(See Task Request Block.)

TSA

(See Trap Save Area.)

A-43 CZ03-00

UFAS

(See Unified File Access System.)

Unified File Access System (UFAS)

A file organization developed to provide a predictable rela-
tionship between records and their location in the file.
UFAS files are transportable across all levels of Series 60
software.

unit control character

(See control character.)

user

An entity that can make demands upon the system; can be a
logged-in person, a system routine such as a Daemon, etc. A
person logged in under two accounts is considered to be two
users for system loading purposes.

user identification (user_id)

A field that identifies the current user of a task group,

user-in

The file or device from which a command function requiring
directives (e.g., the Line Editor) reads its input; it is
established when the group request is made. User programs
can also read from this file.

user-out

The file or device by which an interactive command communi-
cates with the user; established when a group request is
made, or a File Out (FO) command is issued. User programs
can also write to this file.

user profile

The user's registration information as maintained by the
system administrator using the Edit Profile utility. The
user profile establishes a login id and a unique password
capability for each user, as well as other privileges and/or
limitations granted to specific users.

A-44 CZ03-00

user registration

A mode of MOD 400 operation that maintains a file of
registered users which specifies their login defaults and
individual access rights. For definitions of terms related
to user registration, see the Glossary in the System guilding

Admini § tPS.tii.QP manual «

variable-length record

A record stored in a file in which records have different
lengths.

VIP

(See Visual Information Projection.)

virtual view

A virtual view consists of all of the memory pools to which a
task executing within the view has access. A virtual view
consists of one of the following combinations of memory
pools s

• The system pool and none or more exclusive pools and
none or more nonexclusive pools and none or one batch
pool. This virtual view is also called a "regular,
release 2.1 style pool set."

• The system pool and one independent (I-type) pool.

• The system pool and the swap pool.

Visual Information Projection (VIP)

VIP devices consist of a screen (CRT) and keyboard.
Hard-copy receive-only printers can be added to some models.

vol_id

(See volume identifier.)

volume

A fixed or removable storage unit (e.g., storage modules,
diskettes, cartridges, tapes) that may contain one or more
files.

volume header

A unique record at the beginning of every disk or magnetic
tape volume that carries information about the volume.

A-45 CZ03-00

volume identifier (vol_id)

The unique name for a disk or magnetic tape volume that is
contained in the volume header.

volume name

(See root directory.)

volume set

A number of disk volumes that contain one or more files.
Online volume sets require that all volumes are mounted and
are available for use. Serial volume sets can be mounted one
volume at a time.

Wait

A task is in the Wait state when it causes its own execution
to be interrupted until a time request is satisfied, until
another task releases a semaphore, until another task termi-
nates, or until an I/O operation terminates.

word

A sequence of 16 consecutive binary digits operated upon as a
unit; two consecutive bytes.

working directory

A disk directory pathname associated with a task group. It
begins with a root directory name and contains zero or more
intermediate directory names. It is used by the File System
software to construct a full pathname whenever a task group
refers to a relative or simple pathname.

A-46 CZ03-00

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

TITLE DPS 6 & LEVEL 6

GCOS 6 MOD 400 SYSTEM CONCEPTS

a
2j
o

D
O

ORDER NO.

DATED

CZ03-00

December 1982

ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Your comments will be investigated by appropriate technical personnel
and action will be taken as required. Receipt of all forms will be .—.
acknowledged; however, if you require a detailed reply, check here. I I

FROM: NAME

TITLE

DATE

COMPANY -

ADDRESS ._

LU
Z

O

O

(J

PLEASE FOLD AND TAPE-
NOTE U. S. Postal Service will not deliver stapled forms

c
z
c

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 39531 WALTHAM, MA021 54

POSTAGE WILL BE PAID BY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA02154

ATTN: PUBLICATIONS, MS486

2
' O1

O
_J
O

Honeywell

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

TITLE DPS 6 & LEVEL 6

GCOS 6 MOD 400 SYSTEM CONCEPTS

ORDER NO,

DATED

CZ03-00

December 1982

ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Your comments will be investigated by appropriate technical personnel
and action will be taken as required. Receipt of all forms will be .—.
acknowledged; however, if you require a detailed reply, check here. I I

FROM: NAME -

TITLE _

DATE

COMPANY

ADDRESS .

