MODEL 450 PROCESSOR AND 440 I/O BOARD

GENERAL

The Model 450 & 440 Processor-I/O Boards are the central processing unit of the Industrial Micro Systems Series 5000 and 8000 computer system. The Model 450 provides control and the 440 provides timing, and I/O interfacing for the system.

Control is accomplished by the NEC Z80 LSI (large Scale Integration) microprocessor device. This is a fully parallel, 8-bit, bi-directional, bus oriented processing unit with *a* 16-bit address capability, allowing up to 65 kbytes of directly addressable memory. The Z80 has a 1 usec instruction cycle time.

Timing is provided by the 8253 Programmable Interval Timer (PIT). The PIT is a timer/counter and functions as a general-purpose, multi-mode timing element that generates accurate time delays under software control.

The 6402 Universal Asynchronous Receiver/Transmitter (UART) interfaces the Z80 microprocessor to an asynchronous serial data channel. The UART I converts input serial data to parallel data to be acted upon by the system. Output data is converted from parallel to serial to be placed on the RS-232 PORT.

The 8255 Programmable Peripheral Interface circuit interfaces the Z80 microprocessor to three 8 bit parallel ports. These are located at the 50 pin I/O connector at the top of the 440 card. Each line is TTL buffered and has provision for termination network.

-1-

The Model 450 processor consists of a single printed circuit board that nominally occupies the first slot (slot 0) of 12 card slots in the Series 5000 or 8000 computer system. It interfaces with the rest of the system through the address, data, and control lines of the S-100 Bus system. i The 450 Processor board consists of the following functional divisions (see Figure 1).

- . 8-bit Microprocessor Device (CPU)
- . Priority Vectored Interrupt Circuitry

The 440 I/O Board consists of the following functions.

- . 1024 by 8-bit Ultraviolet Erasable Programmable Read-only Memory
- . Programmable Interval Timer/Real Time Clock
- · 2 Universal Asynchronous Receiver/Transmitters (UARTs)
- . RS-232 Interface Logic
- . 3 eight bit parallel ports

SPECIFICATIONS

•	Word Size: Address Data	16 bits 8 bits
е 1 п.	On-board ROM	1 kbyte
•	Directly Addressable Memory	64 kbytes
	Clock Frequency	4 MHz
•	I/O Ports (Serial)	2
	8 bit parallel ports	3
•	Baud Rate	75 to 9600 baud
	PCB Dimensions	5.25" x 10" (13.3 cm x 25.4 cm)
	Power Requirements	440 +16 @ 60 ma + 8 @ 500 ma
	그는 다 같은 것이 같을 수 있다.	450 + 8 @ 700 ma

Z80 MICROPROCESSOR

The Z80 processor is a bi-directional, bus-oriented, 8-bit parallel LSI device with a 16-bit address capability, allowing up to 64 kbytes of directly addressable memory. The Z80 contains six 8-bit, general purpose working registers and an accumulator. The six general purpose registers may be addressed individually or in pairs, providing both single and double precision operators. Arithmetic and logical instructions set or reset four testable flags. A fifth flag provides decimal arithmetic operation.

The Z80 has an external stack feature wherein any portion of memory may be used as a last-in/first-out stack to store/retrieve the contents of the accumulator, flags, program counter, and all of the six general-purpose registers. The 16-bit stack pointer contains the address of the next available location in the external memory. The program counter is a 16-bit register that contains the program address. The flag register contains six bits of condition code information which indicate the results of the ALU (Arithmetic Logic Unit) operation; Negative (N), Zero (Z), Overflow (V), Carry from Bit 7 (C), and Half-Carry from Bit 3 (H). These are used as testable conditions for the conditional branch instructions. This stack feature allows the ability to provide priority vectored interrupts.

The minimum instruction time for the Z80 microprocessor is 1 usec. Separate 16-bit address and 8-bit bi-directional data lines are used to facilitate easy interface to memory and I/O.

Memory and I/O interface control signals may be used to suspend processor operation and force the address and data lines to a high impedance state (Tri-state allowing Direct Memory Access (DMA) and multi-processor operation.

-3-

The Z80 provides 158 variable length instructions (see Z80 instruction set). In addition to performing basic processing functions, the processor is capable of responding to real-time program interrupts, automatic restart in response to the RESET/Power-On RESET signals, and Direct Memory Access operations.

FIGURE 1 280 CPU BLOCK DIAGRAM

FIGURE 2 440 I/O BOARD BLOCK DIAGRAM

440 I/O BOARD

1024 x 8 EPROM (Memory)

The Intel 2708 is a high-speed, bit-erasable, and electrically reprogrammable Read Only Memory (EPROM). It is packaged in a 24-pin, Dual In-line Package (DIP) with a transparent lid, allowing the user to expose the chip to ultraviolet light and erase the bit pattern. A new pattern can then be written into the device. ROM address space is Shunt selectable. The EPROM is used in the 440 Processor to contain the Bootstrap program or a special monitor.

PROGRAMMABLE INTERVAL TIMER

The Intel 8253 Programmable Interval Timer is a programmable counter/timer. Its function is that of a general-purpose, multi-mode timing element that can be treated as an array of I/O ports in the system software.

The 8253 allows the programmer to set up timing loops in the system software so as to generate accurate time delays under software control. The user may initialize one of the three counters with the desired quantity and, upon command, count out the delay and interrupt the CPU when it has completed its tasks. This minimizes software overhead and allows multiple delays that can be easily maintained by assignment of priority levels.

Other counter/timer functions provided by the 8253 are:

- . Real Time Clock
- · Programmable Rate Generator
- . Event Counter
- . Binary Rate Multiplier
 - Digital One-Shot

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)

The 440 has two on-board serial I/O ports. Each port consists of a 6402 UART. The UART is a programmable MOS/LSI device used for interfacing an asynchronous serial communication line to the parallel data lines of the microprocessor.

The UART is made up of two separate and independent sections:

- 1. The receiver
- 2. The transmitter

RECEIVER

The receiver accepts the serial data, converts it to parallel and decodes it. The decode function converts the serial Start, Data, Parity, and Stop bits to parallel information and verifies the proper code transmission by checking parity and the receipt of a valid stop bit.

i

TRANSMITTER

The transmitter section converts the parallel data into a serial word which • contains the data, along with the start, parity, and stop bits.

Both the receiver and transmitter are double-buffered. The UART may be programmed as follows:

- 1. The word length may be either 5, 6, 7, or 8 bits.
- 2. Parity generation and checking may be inhibited, and the parity may be odd or even.
- 3. The number of stop bits may be one or two (1.5 when transmitting a 5-bit code).
- 4. The baud rate may be set from 75 to 9600 baud.

-6-

RS-232C VOLTAGE INTERFACE

The two serial ports of the 340 processor go to the system peripherals through industry standard EIA RS-232C voltage interfaces.

HARDWIRE SUMMARY

The instruction set of the 450 is that of the Z80 microprocessor device. The processor has a 1 usec instruction cycle time, the ability to provide priority vectored interrupts, and the capacity for 256 bi-directional I/O ports.

FUNCTIONAL OVERVIEW (See Figure 1)

The S-100 bus interface consists of three separate sets of lines: 1) address lines, 2) data lines, and 3) control lines.

ADDRESS — The 16 address lines (AO-A15) allow each of 65,536 bytes of memory to be uniquely addressed.

The address lines are utilized by either the microprocessor or a direct memory access (DMA) device, such as the disk controller. These lines are decoded by each memory module so that only one memory location is addressed by an exclusive bit pattern.

DATA - The data lines are further sectioned into two sets of lines: 1) input data, and 2) output data.

The input data lines (DIO-DI7) carry the binary data in parallel from the memory to the 450 processor.

The output lines (DOO-DO7) carry the binary data in parallel from the 450 processor to memory.

-7-

CONTROL - The remaining bus lines perform various control functions: 1) timing, 2) synchronization, 3) data direction and 4) status.

TIMING and SYNCHRONIZATION - These control lines are:

0 0	LOCK	PSYNC
0 C	LOCK	READY1
С	LOCK-	READY2
S	IMI	WAIT

01 and 02 (phase 1 and phase 2) clocks, along with CLOCK-, are generated by the microprocessor clock circuit and are the main timing signals.

PSYNC, XRDY, and SYNC enable and initialize the clock circuit. The 16 MHz crystal provides the base frequency for the oscillator. From this circuit 02 clock is used by the microprocessor for control timing.

STATUS - The status signals and the corresponding data bits are as follows:

BIT		STATUS TERM
DO		SMEMR+
Dl		SINP+
D2		SM1+
D3		SOUT+
D4		SHLTA+
D5		
DG	SV	-07
D7		SINTA+

The eight status lines are placed on the bus by the microprocessor to be selectively used by the memory and I/O boards to obtain information as to the nature of the cycle. INTERRUPTS - The vectored priority interrupt system consists of eight interrupt lines as follows:

INIERRUPTS	DESCRIPTION
VIO-VI5	User defined
V^BMkCommunication	interrupt V7RTC interrupt
77	RIC interrupt
The interrupts ¹ function is to	indicate to the CPU that there are peripheral
devices that need to be service	ed. When the priority requirements are ful-
filled, the CPU goes into the	Interrupt Service Routine and responds to the
device requesting the interrup	t morphe
PORTCONTROL. P	ort X8Hinterrupt mask, request — $t6 - \epsilon$
BIT	DESCRIPTION
0	ROM disabled = 1 $MARID + 1$
1	Real Time Clock interrupt enable = 1 glastachy
2	UART 1 transmit interrupt enable = 1 in holice
3	UART 1 receive interrupt enable = 1
4	UART 1 request-to-send
5	JJART 0 transmit interrupt enable = 1 1
б	UART 0 receive interrupt enable = 1
7	UART 0 request-to-send
The Real Time Clock (RIC) inte	rrupt (bit 1) is reset when out X9H is
executed.	

The ROM Enable/Disable (bit 0) shunt is located on JG 7-8.

UART CONTROL - Control for UART 0 is accomplished by the following line and bit assignments:

BIT	FUNCTION ,
Out XOH= Control	
0	Parity inhibit
1	Even parity enable
2	Stop bit select -
3	Word length - LSB
4	Word length - MSB
Out X1H = Transmitted data out	11.1/10:
In XOH = Status	IMX /FO
0	Receive data ready
1	Transmit holding register empty
2	Parity error
3	Framing error
4	Overrun error
7	Clear-to-send

In X1H = Received data in

Line and bit assignments for UART 1 are as follows:

Out X2H= Control

Out X3H= Transmitted data out

In X2H = Status

In X3H = Receive data in

(Bit assignments are the same as UART 0)

PIT CONTROL - The Programmable Interval Timer provides three independent counters for interrupt timing:

Counter	0	UART	0	Clo	ock
Counter	1	UART	1	Clo	, ock
Counter	2	Real	Ti	lme	Clock

-10-

Output X7H provides control for the PIT. An output to line (port) X7H must be accomplished before establishing the timing intervals for each counter. The division factor is loaded into each count register to establish the desired frequency output. The base clock frequency is 2MHz. The following values should be output to port X7H for each counter, as follows:

-	COUNTER		OUTPUT
1	0		36H - Butrate
1	1	••	76н
	2		B6H Mulha Choice

To load the count registers, the desired division rate should be output (least significant byte first) for the counters as follows:

COUNTER		OUTPUT
0		Port X4H
1		Port X5H
2		Port X6H

Sis

SIES

The algorithm for determining the baud rate for the UARTS is as follows, using baud 9600 for the example: i

Input frequency 2,000,000baud X 16 = $f^{0} GQ X 16$ ~ $13_{10} 000DH \times 9668'$ (1947) Note that the-UART requires an input frequency of 16 times the baud rate. So:1.Output 36H to port X7, then 2.Output ODH to port X4, then

-11-

3. Output OOH to port X4

The UART is now set to run at 9600 baud.

-12-

-13-

MODEL 450 Z80 CPU BOARD

SHUNT AND JUMPER OPTIONS

WAIT STATE SELECT

No Shunts

1 2 JA

0

0

0

JB

0 0

0 0

0 0

0 0

0 0

0 0

0 0

16

15

14

13

12

11

10

4

A15

A14

A13

A12

A11

A10

A 9

A 8

4MHZ

2MHZ

3

1

2

3

4

5

6

7

8

1

2

3

1

2

Shunt JA 1-2 =	Provides One Wait State	
Shunt JA 2-3 =	Provides Two Wait States	
POWER ON ADDRESS SE	ELECT LOC. 9.5A	
Shunt Off = 1	Shunt On $= 0$	

=

(A11	Shunts	Off		Power	On	Address	=	FF0016
(A11	Shunts	On	•	Power	On	Address	=	000016

LOC. 2.5A

No Memory Wait State

0	0		9	
J	C			
0	0		6	
0		•	5	

CPU CLOCK SELECT:LOC. 3.5BCut Etch Jumper to Change CPU Clock

JD P

9

0 0

ADDRESS MIRROR SELECT LOC. 3.5C

Cut Etch Jumper for No Address Mirror

MODEL 440 I/O BOARD

SHUNT AND JUMPER OPTIONS

4

3

PARALLEL PORT	A	SELECT	<u>uc.</u>	7.5A
No Shunts	=	Input Mode		
Shunt JA 1-4	1	Output Mode	K	
Shunt JA 2-3	=	Bidirectional	Мо	de

PORT A DRIVER/RECEIVER LOC. 8A,10A

74LS243 Non Inverting 74LS242 Inverting

PORT A TERMINATION OPTIONS LOC. 9A

Open No Termination Beckman S99-1-R1.0K 1K Pull Up Termination Beckman 899-5-R2201330 2201330 Pull Up/Pull Down Termination

PARALLELPORT, PORTBSELECTLOC11.5B

No Shunt Input Mode Shunt JB 1-2 =

Output Mode

PORT B DRIVER/RECEIVER LOC. 10B, 11A

74LS243 Non Inverting 74LS242 Inverting

PORT B TERMINATION OPTION LOC. 11B

No Termination Open Beckman 899-1-RL.OK 1K Pull Up Termination Beckman 899-5-R2201330 2201330 Pull Up/Pull Down Termination

JB

0

0

2

1

	JC				PARALLEL PORT C SELECT LOC. 13.5A						
1	PC0	P	9	32	No Shunts = Bit Unused						
2	·	þ	9	31	Shunts = PCX o Input Receiver						
3	PC1	0	0	30							
4		0	•	29	shunts = PCX 0 0 Output Driver						
5	PC2	0	0	28							
6		-	•	27	PORT C DRIVER/RECEIVER LOC. 13A						
7	PC3	0	0	26	74LS244 Nan Inverting						
8		0	•	25	74LS240 Inverting						
AFE	PC4	0	٥	24							
10		0	•	23							
11	PC5	P	9	22	PORT C TERMINATION OPTION LOC. 12A						
12		6	•	21	Open No Termination						
13	PC6	ø	9	20	1K Pull Up Termination						
14	12	6	6	19	2201330 Pull Up/Pull Down Termination						
p=11-59	PC7	0	0	18	Note: For more detail regarding the programming of the 8255A see the INIEL Peripheral Design Handbook.						
16		0	•	17							
	•	JI)		ROM SELECT LOC. 6.5B						
×		<u> </u>	0	4	2708 1K X 8 Etch Jumper JD 1-3 VBB = -5						
	1	0),		3	JE 1-2 VDD = +12 JF 1-2 A10						
			0	2	JF 3-4 All						
		JI	 2		2716 2K X 8 Cut Etch Jumper						
	ſ	050	> 0]	JD 1-3 Add JD 3-4 +5 JE 1-2 JE 2-3 A10						
	1		2	3	JF 3-4						
		JE	7		2732 4K X 8 Cut Etch Jumper JD 1-3 Add JD 2-3 All						
	1	Q	9	4	JE 1-2 JE 2-3 A10 JF 1-2						
	2			(5)2	JF 3-4						
					그는 것 같은 것 같은 것을 같은 것 같은 것이 가지 않는 것을 없을 것을 했다.						

-2-

			J	G		ROM ADDRESS SELECT LOC. 9.5C
	1	A15	0	0	14	Shunt Off = 1 Shunt On = 0 (All Shunts Off = ROM Starting Address $FCOO_{16}$)
	2	A14	0	0	13	(All Shunts On = RDM Starting Address 0000_{16})
	3	A13	-0	0	12	지수는 것이 아니는 것이 가지 않는 것을 잘 들었다. 이렇게 말했다.
	4	A12	0	-0	11	
	5	All	0	0	10	
	6	A10	0	0	9	
	7	RE	0	-0	8	그는 것 같은 것 같은 것 같은 것 같은 것 같은 것 같이 많이
			J	H		<u>RE-ROM_ENABLE</u>
		1	0-	-0	4	Shunt Off ROM Disabled, Shunt on ROM Enabled
		2	0	0	3	
						Etch Jumper JH 1-4 = External 2MHZ Cut Etch Jumper JH 1-4 Add Jumper JH 2-3
						Add OSC at LSD and 74LS161 at 13C For Internal Timer Clock
			.T.T	TN	,	
	T	VI.7	9	×0. '	16	The installing of a shunt will attach the selected interrupt level to the function as defined below:
	2	VI6	0	-04	-15	JJ - Real Time Clock Interrupt
	3	VI5	0	0	14	JK - Line 0 Transmit/Receive Interrupt
	4.	VI4	0	0	13	JM - Parallel Port B Interrupt (PCD INTRB)
	5	V13	0	0	12	
	6	V12	0	ò	11	제도 사람이 다니는 것은 것을 하는 것을 하게 많아?
	7	VII	0	0	19	
	8	VIO	0	0	9	
			J	ΓP		I/O DEVICE ADDRESS SELECT LOC. 5.5D
	1	A 7	6	0	00 8	Shunt Off = 1 Shunt On = 0
	2	A 6	0	•	— 7	(All Shunts Of = $1/0$ Address $F0 - FF_{16}$) (All Shunts On = $1/0$ Address $00 - 0F_{16}$)
	3	A 5	0	0	00 6	T/1 ral
1		λ 1		~	30 e	XINXIX
	4	A 4	L	0	44 2	
/	4	A 4	L.	-	4.4.2	L'At .

I/O DEVICE ADDRESS

XO	COMM	0	R/W	CTRL						•)
XI	COMM	0	R/W	DATA)))T 6402
X2	COMM	1	R/W	CTRL	· .))
X3	COMW	1	R/W	DATA				×)
X4	TIMER	0	R/W	DATA	(BAUD	CLOCK	Х	16	COMM	0	2
X5	TIMER	1	R/W	DATA	(BAUD	CLOCK	Х	16	COMM	1) 8253
X6	TIMER	2	R/W	DATA	(RIC)		۰.	,			}
Х7	TIMER	COI	VIROL	WRITE	e .						
X8	INTERR	ÚPT	ENAE	BLE / R	EQUEST	TO SE	ND	CIR	L		
X9	TIMER	2	INTE	RRUPT I	RESET	(RIC)					
XA											
XB.						, ,					
XC	PARALL	EL	PORT	A R/I	W DATA)
XD	PARALL	EL	PORT	'BR/	W DATA				1. x X)
XE	PARALL	EL	PORT	CR/	W DATA	1) 8255
XF	PARALI	EL	CONI	ROL WR	ITE)

-4-

MODEL 440 I/O BOARD

1. +5VDC 3. PA7 5. PA6 7. PA5 9. PA4 11. PA3 13. PA2 15. PA1 17. PA0 19. PB7 21. PB6 23. PB7 21. PB6 23. PB5 25. PB4 27. PB3 29. PB2 31. PB1 33. PB0 35. PC7 37. PCS 39. PC5 41. PC4 43. PC3 45. PC2 47. PC1 49. PCD0	2. $+5$ VDC 4. GND 6. GND 8. GND 10. GND 12. GND 12. GND 14. GND 14. GND 16. GND 18. GND 20. GND 22. GND 24. GND 26. GND 28. GND 30. \cdot GND 32. GND 34. GND 34. GND 34. GND 34. GND 34. GND 34. GND 34. GND 35. GND 36. GND 38. GND 30. GND 30. GND 30. GND 31. GND 32. GND 34. GND 35. GND 36. GND 37. GND 38. GND 38. GND 40. GND 41. GND

•

PARALLEL PORT CONNECTOR PIN LISTING

PAX	PARALLEL	PORT A	BITS
PBX	PARALLEL	PORT B	BITS
PCX	PARALLEL	PORT C	BITS

STANDARD ASSIGNMENTS

INTERRUPTS

VIO	00	POWER ON
VI1	08	
VI2	10	
VI3	18 .	PRINTER
VI4	20	EXTERNAL COMMUNICATION
VI5	28	EXTERNAL RTC
VI6	30	COMMUNICATION
VI7	38	RTC

I/O DEVICE ADDRESS

10	COMM 0	R/W CTRL
11	COMM 0	R/W DATA
12	COMM 1	R/W CIRL
13	COMM 1	R/W DATA
14	TIMER 0	R/W
15	TIMER 1	R/W
16	TIMER 2	R/W
17	TIMER CIRL	
18	INTERRUPT N	ASK / CA CTRL

-6-

-8-

PCX BIT SET/RESET FORMAT FOR CENTRONICS PRINTER

PCX SHUNTS FOR CENTRONICS PRINTER

1.	SHUNT	PC3	(INIR)	TO INT	ERRUP	T VI3	LOCA	TION	18	JN	5-12	
2.	SHUNT	PAI	TO GNE	SO PA	- X	OUTP	UT J	JA 1-4	1			
3.	INSTAL	L 74L	S244 F0	OR PC DE	RIVER							
4.	SHUNT	PCO	JC	1-2		DSTA						
			JC	31-32								
		PC4	JC	9–10)	IP						
			JC	23-24								
		PC6	JC]	_3-20)	ACK						
			JC	14–19								

-9-

INDUSTRIAL MICRO SYSTEMS
