
ISIS-II
USER'S GUIDE

Copyright © 1976,1977,1978,1979,1980,1981, 1983 Intel Corporation
Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051 Order Number: 9800306-08

\ .•<**".-
» "- v • t ,

<•-•**- **••

•ja«.

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation assumes
no responsibility for any errors that may appear in this document. Intel Corporation makes no commitment
to update nor to keep current the information contained in this document.

'
Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in
an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use, dupli-
cation or disclosure is subject to restrictions stated in Intel's software license, or as defined in ASPR
7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Intel Corporation. |

i
The following are trademarks of Intel Corporation and its affiliates and may be used to identify Intel
products:

AEDIT iMMX iPDS MULTIBUS
BXP Insite iRMX MULTICHANNEL
CREDIT intel iSBC MULTIMODULE
i mtelBOS iSBX Plug-A-Bubble
I2ICE Intelevision tSDM PROMPT
ICE inteligent Identifier iSXM Ripplemode
iCS intghgent Programming Library Manager RMX/80
iDBP Intellec MCS RUPI
iDIS Intellmk Megachassis System 2000
,LBX lOSP MICROMAINFRAME UPI

A1068 / 983 / 5K / DD / KH

REV.

-01

-02

-03

-04

-05

-06

-07

-08

REVISION HISTORY

Original issue.

Adds information to support ISIS V4.2; corrects techni-
cal and typographical errors.

Combines Change Package with manual.

DATE

76

77

78

79

9/79

5/81

11/81

1/83

iii

J

PREFACE

This manual describes, and defines the use of, the Intel Systems Implementation
Supervisor (ISIS-I1). ISIS-II is the operating system for the Intellec and Intellec
Series II microcomputer development systems.

a . The information in this manual supports the system designer who is using a
microprocessor or related Intel products in a program-controlled system.

» This manual contains seven chapters and five appendices: - *'» '-** / f ' " *

• "Chapter 1. Introduction," which describes the general capabilities of ISIS-II.

• "Chapter 2. Getting Started with ISIS-II," which describes some of the
programs of ISIS-II and the step-by-step procedures for loading and executing
ISIS-II on the Intellec development systems.

, • "Chapter 3. File Creation and Management," which describes and shows
examples of the ISIS-II commands for entering, storing, and managing program

^—' „ . and data files.
• "Chapter 4. Working with Program Modules," which describes and shows

examples of the ISIS-II commands for storing, identifying, and manipulating
user-written program modules.

• "Chapter 5. Use of ISIS-II and the Monitor by other Programs," which
describes and shows examples of ISIS-II system calls that can be included in
user-written programs to use ISIS-II and Monitor capabilities without direct
intervention by the user from the system console.

i s • "Chapter 6. The Intellec Monitor," which describes and shows examples of the
V / Monitor commands for program debugging.

• "Chapter 7. Interrupt Processing," which describes and shows examples of
using the Intellec interrupt functions.

• "Appendix A. Hexadecimal Paper Tape Format," which describes the paper
tape format used by the Monitor.

• "Appendix B. Hexadecimal-Decimal Conversion," which is an aid foi doing
hexadecimal to decimal and decimal to hexadecimal conversions.

• "Appendix C. Error Messages," which is a listing of the error messages issued
i-s by ISIS-II and the ISIS-II commands.

• "Appendix D. ISIS-II Sample Programs—TYPE," which lists two versions of
TYPE, in PL/M and in 8080/8085 Assembly Language.

• "Appendix E. ASCII Codes," which shows ASCII codes, their meanings, and
their values. •-... > >

, f!i ,' ' „ .1 J5), - ' J. J , *'», •• "< I

Related Publications<
For more information on the Intellec Series II microcomputer development system
see the following manuals:
• A Guide to Intellec Microcomputer Development Systems, 9800558, which

introduces microcomputer development systems in general and the Intellec
systems in particular. It presents an overview of the purpose and use of develop-
ment systems.

• Intellec Series II Installation Manual, 9800559, which contains the installation
\~^ information for all models.

""» ft "3
' U *

• Intellec Series II Hardware Interface Manual, 9800555, which describes the use
of peripheral I/O devices with the Intellec Series I I .

• Intellec Series II Schematic Drawing, 9800554, which contains the schematic
diagrams for Intellec Series II Microcomputer Development Systems.

For more information on the Intellec Microcomputer Development System see the
following manuals:
• MDS-DOS Hardware Reference Manual, 9800212, and the Intellec Double

Density Diskette Operating System Hardware Reference Manual, 9800422,
which describes the physical installation of the flexible disk drives supported by
ISIS-II for the Intellec Microcomputer Development System.

• MDS-740 Hard Disk Subsystem Operating and Checkout, 9800943, which
describes the day-to-day operation procedures for the hard disk drive.

For information on the text editor which runs on the Series II, see the following
manual:

• ISIS-II CREDIT (CRT-Based Text Editor) User's Guide, 9800902.

For the most complete and up-to-date list of software and hardware documentation,
refer to the current Literature Guide, 802800. This publication provides references
to such publications as PL/M80 and PL/M-86 manuals, ASM80 and ASM86
manuals, PASCAL-80 and PASCAL-86 manuals, and FORTRAN-80 and
FORTRAN-86 manuals. .JIK..-I , r > , > > q nyn #-!-.,-•

'1Notational Conventions
The following conventions are used to show syntax in this manual:

UPPERCASE

<lowercase>

punctuation

Information in uppercase must be entered as shown. It can be
entered in uppercase or lowercase.

Fields in lowercase indicate variable information. They are
enclosed in angle brackets (< >) to show field limitation
because some formats do not need a delimiting space or punc-
tuation. The angle brackets should not be entered.

Brackets indicate optional fields.
11 ,

Ellipses indicate that a field may be repeated.

Braces indicate a choice. One of the items within the braces
must be picked unless the field is also surrounded by brackets,
in which case it is optional.

A vertical bar indicates choice of syntactic elements on either
side.

Punctuation other than ellipses, braces and brackets must be
entered as shown. For example, the punctuation shown in the
following command must be entered: i. , < • • • d 3n

. SUBMIT PLM80(PROGA,SRC,'9 SEPT 78')

.u " . V '

VI

CONTENTS (Cont'd.)

PAGE PAGE

READ - Transfer Data from File to Memory 5-9
WRITE - Transfer Data from Memory to File.. . 5-10
SEEK - Position Disk File Marker 5-12
RESCAN - Position Marker to Beginning of

Line 5-14
CLOSE - Terminate Input/Output Operations

on a File 5-15
SPATH - Obtain File Information 5-16

Disk Directory Maintenance 5-18
DELETE - Delete a File from the Disk

Directory 5-18
RENAME - Change Disk Filename 5-19
ATTRIB - Change the Attribute

of a Disk File 5-20
GET ATT - Obtain Attribute Information 5-22
GETD - Obtain File Device Directory 5-23

Console Reassignment and Error Message Output . 5-25
CONSOL - Change Console Device 5-25
WHOCON - Determine File Assigned as

System Console 5-26
ERROR - Output Error Message on System

Console 5-27
Program Execution 5-28

LOAD - Load a File of Executable Code and
Transfer Control 5-28

EXIT - Terminate Program and Return
to ISIS-II 5-30

Monitor I/O Interface Routines 5-30
CI - Console Input Routine 5-31
CO - Console Output Routine 5-32
RI - Reader Input Routine 5-33
PO - Punch Output Routine 5-34
LO - List Output Routine 5-35
UI - Universal PROM Programmer Input

Routine 5-36
UO - Universal PROM Programmer Output

Routine 5-38
System Status Routines 5-40

CSTS - Console Input Status Routine 5-40
UPPS - Universal PROM Programmer Status

Routine 5-41
IOCHK - Check System I/O Configuration

Routine 5-42
IOSET - Set System I/O Configuration Routine. 5-44
MEMCHK - Check RAM Size Routine 5-44

CHAPTER 6
THE INTELLEC MONITOR
Command Entry 6-1

Entry Errors 6-2
Command Categories 6-3

Monitor I/O Configuration Commands 6-3

A - Assign Command 6-4
Q - Query Command 6-5

Memory Control Commands 6-6
D - Display Command 6-6
F - Fill Command 6-7
M - Move Command 6-7
S - Substitute Command 6-8

Register Command 6-9
X - Register Command (Display Form) 6-9
X - Register Command (Modify Form) 6-10

Paper Tape I/O Commands 6-11
R - Read Command 6-11
W - Write Command 6-12
E - End-of-File Command 6-12
N - Null Command 6-13

Execute Command 6-14
G - Execute Command 6-14

Utility Command 6-16
H - Hexadecimal Command 6-16

CHAPTER 7
INTERRUPT PROCESSING

Priority of Interrupts 7-1
The Interrupt Mask Register 7-1
Interrupt Mask Register Initialization 7-2
Interrupt Acceptance 7-2
Interrupt Removal 7-2

APPENDIX A
HEXADECIMAL PAPER TAPE FORMAT

APPENDIX B
HEXADECIMAL-DECIMAL
CONVERSION

APPENDIX C
ERROR MESSAGES
Numbered ISIS-II Error Messages C-l
Link Error Messages C-4

Fatal Error Messages C-4
Non-Fatal Error Messages C-5

Locate Error Messages C-5
Fatal Error Messages C-5
Non-Fatal Error Messages C-7

Lib Error Messages C-7
Editor Error Messages C-9

APPENDIX D
ISIS-II SAMPLE PROGRAMS8TYPE

APPENDIX E
ASCII CODES

INDEX

IX

CONTENTS (Cont'd.)

PAGE PAGE

I - Insert Command 3-47
I Command Examples 3-47

S - Substitute Text Command 3-48
S Command Examples 3-49

D - Delete Command 3-49
D Command Examples 3-49

K - Kill Line Command 3-49
K Command Examples 3-50

Typing a File 3-50
T - Type Command 3-50

T Command Examples 3-51
Terminating a Session and Saving Your File 3-51

E - Exit Command 3-5 1
E Command Example 3-52

Q - Quit Command 3-52
Q Command Example 3-52

W - Write Command 3-52
W Command Example 3-52

Reading Data from Disk 3-53
A - Append Command 3-53

A Command Examples 3-53
Determining Memory Space Available 3-53

M - Memory Command 3-53
M Command Examples 3-54

Command String Iterations 3-54

CHAPTER 4
WORKING WITH PROGRAM MODULES

Microprocessor Memory Allocation 4-1
Program Segments 4-2
Code Segment 4-2
Data Segment 4-2
Stack Segment 4-3
Memory Segment 4-3
Common Segments 4-3
Absolute Information 4-3

Modular Program Development 4-3
Faster Program Development 4-4
Use of Different Source Language 4-4

Shared Subprograms 4-4
Easier Debugging and Program Modification 4-4

Mechanics of Relocation and Linkage 4-4
Relative Addressing 4-4
Intrasegment References 4-5
Intersegment References 4-5
External References and Public Symbols 4-5
Use of Libraries 4-6

LINK Command 4-7
Link Map 4-8
Order of Modules in the Output File 4-9

LOCATE Command 4-10
LOCATE Control Descriptions 4-11

MAP 4-11
COLUMNS (number) 4-12
PRINT (file) 4-12
SYMBOLS 4-12
LINES 4-13
PUBLICS 4-13
PURGE 4-13
ORDER(segment sequence) 4-13
NAME(name) 4-14
RESTARTO 4-14
START(address) 4-15
STACKSIZE(value) 4-15

How LOCATE Locates Segments 4-15
Locating with the Default Order 4-15
Locating with the Default and ORDER Control . . . 4-16
Locating with the Default, ORDER Control, and

Specific Addresses 4-16
LIB Command 4-17

Continuation Lines 4-18
CREATE - Create a Library File 4-18
ADD - Add Modules to a Library File 4-18
DELETE - Delete Modules from a Library File ____ 4-18
LIST - List Library Modules and Their Public

Symbols 4-19
EXIT - Return to ISIS-II 4-19
Program Overlays and Linked Loading 4-20
Memory Pages and the H and L Registers 4-21

CHAPTERS
USE OF ISIS-II BY OTHER PROGRAMS

Memory Organization and Allocation 5-1
Line-Edited Input Files 5-3

Terminating a Line 5-3
Reading from the Line-Edit Buffer 5-3
Editing Characters 5-4
Reading a Command Line 5-4

Summary of System Calls 5-5
System Call Syntax and Usage 5-5

PL/M Calls 5-6
Assembler Language Calls 5-6
File Input/Output Calls 5-7
System Calls Cautions 5-7

OPEN - Initialize File for Input/Output
Operations 5-8

CHAPTER 1
INTRODUCTION

This chapter is for the user who has little or no prior programming and computer
system experience. However, the information is beneficial to anyone who wishes to
familiarize herself or himself with the terms and concepts pertinent to ISIS-II.

The Intellec Systems
ISIS-II is an operating system for the Intellec development systems:
• Intellec Series II Microcomputer Development Systems
• Intellec Microcomputer Development System
ISIS-II supports all models of Intellec systems with one or more single- or double-
density disk drives and at least 32K of RAM.

The Intellec systems support both software and hardware program development. In
conjunction with ISIS-II, they provide the environment for software development,
testing and debugging. You can execute your assembly language code on the
development system during the logic debugging phase (simulating any specialized
I/O used in your product).

When you add the appropriate In-Circuit Emulator you can execute and debug your
code for all In-Circuit Emulator supported processor families.

ISIS-II supports the following peripheral devices:
• Universal PROM programmer
• Line printer
• Paper tape reader
• Paper tape punch
• TTY
• CRT terminals
• Flexible disk drives
• Hard disk drives

The ISIS-II Disk Operating System
An operating system is a group of programs that manages the resources of a system
and frees you to concentrate on other tasks. It provides a simple command language
that allows you to state what you want done and what device or file you want it done
to. For example, a disk drive and a line printer have very little in common. The disk
drive is a random access input/output device and the line printer is a sequential
output-only device. The operating system lets you copy data to either one with the
same command.

The computer has to execute thousands of instructions to carry out each command.
It has to read the command, determine what it means, get the data from one loca-
tion, copy it to another, and tell you that it is done. All you have to specify is what
you want done; in this case, copying a file. You don't have to worry about the
details.

1-1

TABLES

TABLE

2-1
C-l

TITLE PAGE TABLE

1SIS-II Supported Configurations 2-1
Nonfatal Error Numbers Returned by

System Calls C-3

TITLE PAGE

C-2 Fatal Errors Issued by System Calls C-3
E-l ASCII Code List E-l
E-2 ASCII Code Definition E-2

ILLUSTRATIONS

FIGURE TITLE

A-l Paper Tape Record Format

PAGE

. . A-l

ISIS-II User's Guide Introduction

Any disk used by ISIS-II must be formatted by ISIS-II. Once this is done you can
select or create files on the disk. There are four basic types of files:
• Format files that contain information about the disk itself. The directory is a

format file. ISIS-II rejects disks that do not have the required format files.
• System files that contain the basic ISIS-II system programs and command

programs. A disk that contains the minimum files essential for ISIS-II operation
is called a system disk. A disk that does not have these files is called a non-
system disk.

• User-written program files
• Data files that are used by your programs or by ISIS-II

Modular Programming

A modular approach to program design with ISIS-II is similar to a modular
approach to designing a multifunction hardware system. In either case, you can
determine the functions required and draw a block-diagram of the proposed system.
Each block or module would then be handled as a discrete element whose inputs and
outputs are fully defined in a specification.

For example, to produce a program for a traffic light controller, you might want a
module to count vehicles approaching from a given direction, another module to
determine the time of day; another for the time of year; one or two more modules to
control the frequency and duration of the red, yellow, and green lights; and a final
module to detect and allow passage of emergency vehicles.

Each of these modules can be written, tested, debugged, and modified indepen-
dently with ISIS-II. You can also write different modules in different programming
languages. For example, you might write the routines that do the calculations in
FORTRAN because of its mathematical capabilities, input and output routines in
PL/M because of the ease with which it handles port input and output, and
assembly language for supervisor routines that handle the bit manipulation that may
be required.

Finally, when all the modules are tested and debugged, you can combine them into a
system with the ISIS-II LINK command. This LINK capability, combined with the
other ISIS-II functions, makes modular programming possible. You don't have to
write a single large program that is difficult to test and debug. You write small pro-
gram segments and combine them into a complete program after they are individ-
ually debugged.

While the hardware portion of the system is being designed, you may not know what
RAM and ROM addresses you will have for your code. You can write code that can
be assigned fixed addresses at a later time, using the relocatable assemblers and com-
pilers. The ISIS-II LOCATE command provides this facility. If testing of the final
product finds problems that require the programs and data to be moved, you can do
it with the LOCATE command rather than making extensive code changes.

The ISIS-II LIB command lets you create and change libraries of commonly used
programs and subroutines. You can then include these programs and subroutines in
your programs just by specifying their names. When you LINK your programs, you
specify the library along with your programs. Only those programs that you use are
included with your code.

During the development you can use the appropriate Intel In-Circuit Emulators to
test your programs and hardware and simulate hardware configurations.

The Intellec system also interfaces to your Universal PROM Programmer to load
your program in PROMs (Programmable Read Only Memory) or EPROMs
(Erasable Programmable Read Only Memory).

1-3

Introduction " " " ' ISIS-II User's Guide

The Intellec development systems contain a Monitor in ROM (Read Only Memory),
which provides basic system control facilities in the form of commands (that you
enter at the console) and system calls (that you code in your programs) to access
memory and I/O devices.

The ISIS-II operating system uses the Monitor also, rather than duplicate functions
that already exist there. In fact, all input and output operations, except for disk
operations, are handled by the Monitor.

ISIS-II Functions
*

ISIS-II provides the functions to manage your programs and data and assemble your
assembly language code. You can add the PL/M and FORTRAN compilers and
other assemblers to ISIS-II.

To manage your programs and data ISIS-II provides:

• A text editor to create and change files. The text editor automatically keeps a ^—S
copy of the unchanged version of a file when you make changes. The editor has
commands to handle single characters and large numbers of lines.

• A function to delete whole files that are no longer needed
• Functions to convert program object code to and from hexadecimal formats
• A function to copy files » " . t> ' <•
• A function to change the name of files --,
• A function to work with file attributes
• Functions to combine program parts into complete functional systems - — '
• A feature to list all files, their length, and their attributes
• A feature to invoke system calls under pseudo-batch operation

Disk Files
The programs that make up ISIS-II are contained in disk files, on hard disk drives or ^^
flexible disk drives. When the system is reset with an ISIS-II system disk in the ap-
propriate drive the operating system initializes and takes control of the system.
Unless your flexible or hard disk has been formatted previously, you must format it
for ISIS-II before it may be used.

•
Only the essential ISIS-II files are loaded. Programs to perform specific functions
remain on disk until you enter a command that calls them. Then the required pro-
gram or programs are loaded into memory and executed. This technique gives you ?.
the full capabilities of the operating system and lets you reserve the majority of
memory space for your work. After the command program has completed its func-
tions, the memory it was using is again available.

Your programs and data are also stored on disks. Each file on a disk has a name.
ISIS-II program files come with names assigned; you name each file you create.
ISIS-II keeps a directory of all the files on a disk. To access a file, you don't have to
know its position on the disk, only its name. If you forget the name, there is a direc- s j
tory command (DIR) that lists the names of all files on a specified disk.

1-2

ISIS-II User's Guide Getting Started With ISIS-II

Editing

Editing in the ISIS-II system is entering and modifying data. You can name a disk
file, enter program source code, and save it for future use. After the data is entered
and saved on disk, you can use it as input to the assemblers or compilers. If the pro-
gram has errors, you can correct them and assemble or compile again.

Editing in ISIS-II is done with the Text Editor described in Chapter 3, or the
optional editor CREDIT described in the ISIS-II CREDIT (CRT-Based Text Edi-
tor) User's Guide.

Code Format Translations ,

ISIS-II can convert object module format programs to or from the hexadecimal
object format. This capability is provided primarily for users of earlier versions
of ISIS.

Module Management

Under ISIS-II, management of software modules or routines that comprise your
program is module management. ISIS-II assigns absolute addresses to relocatable
modules, combines independently developed modules, and creates a library of
modules that are used by more than one program.

I/O Device Management
A primary function of ISIS-II is managing I/O devices. ISIS-II provides a number
of aids that greatly simplify your management tasks. The ISIS-II aids are:
• A simple but uniform method of identifying each device and each disk file.

• Preestablished names for devices.
• Specifying a device or file for a series of subsequent operations.

Device/File Name Format

ISIS-II identifies each possible I/O device by means of a unique name. With disks,
the name is expanded to identify the file that is to receive or provide data. The file
name may be further expanded to allow for those instances when the file is to exist in
several forms. For example, you may wish to retain a file in both its original and
modified forms. You may also wish to use the same basic name for a program after
it has been assembled.

The general format for naming devices and files is:

:device:filename. extension

\ U3 alphanumeric characters
L-1-6 alphanumeric characters

^ 2 preestablished alphanumeric characters within colons.

•.device: is a two character designation for a device. The valid device designations are
listed in the next section. The device designation is always enclosed in colons.
•.device: is used alone when an actual device is referenced instead of a file that resides
on a device.

2-3

...; .'(l/v

IK''!

.K - .v iq • : - . > ' • • .. , '..i

101 •

(. . . . , ! ' .(!

ISIS-II User's Guide Getting Started With ISIS-II

ISIS-II also assigns the following device name to a nonexistent device:

:BB: Byte bucket

The byte bucket is nonexistent, but is treated as a real device by ISIS-II commands.
The byte bucket receives data that you wish discarded.

Device/File Accessing

The assignment of names to devices and files saves time, since you gain access to
these system resources without concern over the addresses that would otherwise be
required. The system maintains a record of the device addresses established when the
system is configured and of the file addresses established when files are created.
Names are converted to true addresses during processing sequences.

Creating a file puts information about the file into system tables. When a file is
deleted, its entries are deleted from the system tables.

When a file is accessed by ISIS-II in response to a console command such as COPY,
ISIS-II opens and closes the file. When a file is accessed by a program, it must use
the OPEN and CLOSE system calls.

Important points to remember are: :

• ISIS-II commands are concerned with data transfers to or from a device.

• Accessing any device, file, or program involves a common I/O process.

• The name of the device, file, or program is included as a parameter of the
current command or a parameter of a previous command.

System Start-Up

The step-by-step procedure used to load the ISIS-II program from the system disk is
simple. However, before proceeding with this start-up procedure, you should be
aware of several factors that will affect your use of disks.

Flexible Disk Care

Flexible disks are a cost-effective and convenient medium for the storage of bulk
data. However, proper care of the flexible disks is required to ensure continued
trouble-free reading and writing of flexible disk files.

Physical handling of a flexible disk requires care to avoid damage to the recording
surface and to prevent flexible disk deformation. Specific precautions include:
• Return the flexible disk to its envelope when not in use.

• Do not touch the recording surface.

• Do not smoke when handling the flexible disk.

• Do not clean the recording surface.

• Do not bend the flexible disk or deform its edges by using paper clips or other
mechanical devices.

• Do not use pencil or ball point pen on the flexible disk label: use felt tip pen.

2-5

Getting Started with ISIS-II ' ' ISIS-II User's Guide

! ISIS-II Flexible Disks - -;^ ! v t

^The flexible disks used by ISIS-II contain 77 tracks each. A single-density flexible J
disk has 26 sectors per track, and a double-density flexible disk has 52 sectors per
track, each sector containing 128 bytes. Once a flexible disk has been formatted for
one density, it must be reformatted to be used in a drive of another density.

ISIS-II Hard Disk Platters

The hard disk platters used by ISIS-II contain 400 tracks on each of two surfaces.
Each track has 36 sectors of 128 bytes. This data format is translated into 200 logical
tracks, with 144 logical sectors per logical track. There are two platters per hard disk *
drive, one fixed, and one removable. The fixed hard disk platter resides in drive 0;
the removable hard disk cartridge resides in drive 1.

i i - • • • « , ,

Memory

ISIS-II requires a minimum of 32K of random access memory (RAM). The first 12K
(starting at location 0) is reserved for use by the portion of ISIS-II that must remain
in memory during operation. An additional 320 bytes at the top of contiguous RAM
is reserved for the Monitor. The remaining RAM is shared by the program being
developed, ISIS-II programs loaded from disk, and data you use or generate during
program development.

The Monitor . , „ _ _ . . ^

The Monitor handles the initiation of the system when you first start up. (The start-
up procedure is described at the end of this chapter.) _ . ,

In a system without hard disk drives, the Monitor checks drive :FO: to see if power is
on and if a system flexible disk is loaded. If ISIS-II is on the flexible disk, it is loaded
into memory and control is passed from the Monitor to ISIS-II. If there is no drive
:FO:, or if it isn't ready, or if ISIS-II isn't on the disk, control is retained by the
Monitor.

If you have a hard disk drive attached, the Monitor seeks a system flexible disk in
drive :F4:.

After ISIS-II is loaded, you can access the Monitor functions through the DEBUG
command (described in Chapter 3).

*

< ('

I/O Interface -. ^

The I/O interface to all standard peripheral devices except disk drives (console,
printer, paper-tape reader and punch) is handled by the Monitor. When an input or
output operation to these devices is needed, ISIS-II calls the appropriate Monitor
routine. When the operation is completed, the Monitor routine returns control to
ISIS-II. , , ,_

ISIS-II handles the disk I/O itself. The routines in the Monitor are for the slower
devices that accept or send data on a byte-by-byte basis. -• N J

2-2

ISIS-II User's Guide Getting Started With ISIS-II

Start-Up Procedure r ., • , . , . . , ,

ISIS-II can be run on the Intellec Series II Microcomputer Development Systems or
the Intellec Microcomputer Development Systems. The start-up procedures for the
two systems differ because of hardware differences, but the operating system func-
tions the same in both systems.

JCAUTIONJ

The following can damage or modify the contents of a disk:

Removal or application of power with the disk installed and the drive
engaged. ,

Pressing the top of the BOOT switch (selecting the Monitor bootstrap) dur-
ing a disk I/O operation.

Removal of a disk while not at the ISIS-II command level (last console out-
put is a hyphen).

Failing to wait for INTERRUPT 2 light to go on and then off before press-
ing the bottom of the BOOT switch during start-up. $

{.;. - < • .-iß H
NOTE

If the console indicates that the Monitor is in control after the ISIS-II start-
up procedure, check for a non-system disk in drive :FO:, an incorrectly '"'"
installed disk, or disconnected drive.

Flexible Disk Start-Up

Intellec Series II Microcomputer Development Systems - -

The following procedure defines system start-up from power application through
loading and execution of ISIS-II for the Intellec Series II Microcomputer Develop-
ment Systems:

1. Apply power to the system and external flexible disk drive unit (if attached).

2. Insert the ISIS-II system flexible disk in drive :FO: (write protect slot first). Push
the flexible disk into the slot until it latches.

'}»,
3. Close the drive door. , „ ,

V > t : > «< «

4. Press the RESET button. • ' •* • • '

5. Observe that the following appears on the console screen to indicate the
readiness of ISIS-II to accept commands: ISIS-II, Vm.n where Vm.n is the ver-
sion number.

2-7

Getting Started With ISIS-II ISIS-II User's Guide

filename is the one-to six-character name you create for a file. The characters can be
alphabetic or numeric. Files can be referenced by the file name alone only if they .
reside on a disk loaded in drive :FO:. That is, if .device: is not specified, :FO: is the i
default. , U M ^~/

.extension is a one-to three-character name you can create for files. An .extension is
not required when a file is created. But if .extension is specified, it must always be
used when referencing the file. A common use of .extension is to distinguish
between different files associated with a single program.

For example:

:F1:PROGA.SRC — for source code ^«flBlT t & - < r "~* fjbt "'•
:F1:PROGA.LST — for the listing of the assembly « - . > • • » « ~ ^
:F1:PROGA.OBJ — for the object code v / (, (? .,
:F1:PROGA.LNK — for the linked object code "•>-- -" . '° ! • ' • ' > • - ' f - '
:F1:PROGA — for the code located at absolute addresses for execution

Note that all these files have the same filename and are distinguished only by
.extension. .

^^^
If the disk that contains these files was moved to drive :F2:, the names would
become :F2:PROGA.SRC, :F2:PROGA.LST, etc. No matter where the disk is
loaded, filename and .extension stay the same but .-device: is dependent on the
physical location.

System Designated Device Names ; -, ,

Filenames and extensions are assigned by you. However, device names are estab-
lished by the system and include the following:

••FO; . ',, - . ' . . , ' . ' ; *
through
:F9: Disks (refer to Table 2-1 for supported configurations)
: T I : Teletypewriter keyboard ,. /. t ̂ f . .c<>j
_. -. . . » • * * ' * . * ' ' * • s .? -, * y ^t '•*

:TO: Teletypewriter printer
:TP: Teletypewriter punch : , _ ,,. , t . , .
:TR. Teletypewriter reader " ,
: V I : Video terminal keyboard ' " ' " r~,' (, _
:VO: Video terminal screen ' ' I '
:HP: High-speed paper tape punch * '. ' , t'
: H R: High speed paper tape reader
:LP: Line printer

In addition to the preceding, ISIS-II also assigns the following device names to cer-
tain generic devices that do not exist in their own right. These are device names
associated with whatever devices are being used as the system console: ,

!

: C 1 : Console input ,, . • , /• jn- r^nt^i'";1 ' ! !
:CO: Console output

iii-n- -> • v -'
System operations are directly tied to the console. You can establish any input device
as the console input device and any output device as the console output device. The
means for doing this is the CONSUL system call as defined in Chapter 5.

If you are using an Intellec Series II Microcomputer Development System, the
keyboard and screen of the terminal are :CI: and :CO: respectively. •.-%) f,- ,„,

2-4

CHAPTER 3
FILE CREATION AND MANAGEMENT

This chapter describes how to use ISIS-II to create, revise, and manage files. In most
cases the files will be program files generated through the use of an assembler or
compiler. However, ISIS-II can also create data or program files through the use of
Text Editor commands that are designed to add, delete and replace characters or
lines as displayed on the system console.

The chapter begins with an explanation of various aids that are available to the
console user. These aids are operating hints or simply descriptions of system
characteristics that should be understood before attempting more complex tasks.
The chapter then goes on to explain the use of ISIS-II commands that allow you to
create, revise, or delete files and/or references to files within a file directory. The
final subject matter explains use of the ISIS-II Text Editor. The CREDIT CRT- Bas-
ed Text Editor is described in the ISIS-II CREDIT (CRT-Based Text Editor) User's
Guide, 9800902.

Console User Aids

The explanation of console user aids is essentially an introduction to the use of ISIS-
II and its subordinate programs. Many of the items covered are delineated to the
extent necessary to fully define their impact on major ISIS-II functions. Other items
are introduced at this point and receive further coverage elsewhere.

Line Editing

There is no direct hardware data link between the console's keyboard and CRT;
rather, each keyboard input to the computer is echoed back, by software, to the con-
sole for display (or printing). This technique assures you that the intended character
has been entered without error. The entered (input) characters and the echoed (out-
put) characters are stored in separate buffers until a carriage return is typed or a
maximum of 122 characters have been entered. In either case, the input (line editing)
buffer content is forwarded to its intended destination via one or more system
generated READ commands. Prior to line termination, you can revise or delete the
buffer contents by using special non-printable 'editing' characters and character
combinations. These 'editing' characters are not normally stored in the line editing
buffer but rather provide control over the buffer contents. The editing characters
are:

RUBOUT Deletes the preceding character from the line editing buffer.
The deleted character also disappears from the CRT. On
systems using a teletypewriter, RUBOUT echoes the deleted
character to the teletypewriter. Repeated usage is allowed.

CONTROL/ P Used before another editing character (including
CONTROL/P) to allow entry of the editing character into the

*»• . line editing buffer.

CONTROL/ R Causes the display of the current contents of the line editing
buffer.

CONTROL/X Deletes the entire contents of the line editing buffer. Causes
the display of a number sign (#) followed by a carriage return
and line feed.

3-1

Getting Started With ISIS-II ISIS-II User's Guide

The operating and storage environment must be compatible with the materials of the
flexible disk. The environment of the flexible disk should meet the following
criteria: ^^
• No noticeable dirt, dust, or chemical fumes in the immediate area.
• Temperature between 50 F° (10 C°) and 125 F° (52 C°).
• Relative humidity between 8 and 80 percent.
• Wet bulb temperature of 85 F° (30 C°) maximum.
• No direct sunlight on flexible disk surface for prolonged periods. , <s.. .^,-
• No magnetic field.

Loading a flexible disk into a flexible disk drive and removing it from a drive M
requires a few precautions to avoid damage and to ensure proper operation. These
precautions include:
• Do not insert or remove a flexible disk unless power is applied to both the

system and the flexible disk drive.
• Do not open the flexible disk drive door unless the DRIVE light is off (push ^

Intellec RESET switch and hold down, if necessary, to disengage drive).
• Do not attempt loading of single-density flexible disks from double-density ^—'

drive or vice versa.
• Insert flexible disk with read/write access slot first. ' > ' / ' ' ' '
• Close door of the drive after flexible disk insertion.
• Do not remove flexible disk unless the last output to console was a hyphen

(ISIS-II is ready to receive a command).
• Do not attempt to write to a flexible disk unless it has been formatted as defined

in Chapter 3.

' - ^J
Hard Disk Care

The hard disk drive assembly (that is, the hard disk drive with removable cartridge
installed) is extremely sensitive to contaminants on the hard disk platter surface. The
head does not make contact with the disk platter, but rides about 1.14 microns
above it. An average human hair is about 100 microns in diameter, and a typical
smoke particle is about 6.35 microns. If either of these objects or such "invisible"
contaminants as fingerprints or dust particles comes between the disk drive head and
the disk platter surface, the contact will usually destroy both the head and the disk.

Follow these procedures and precautions when using a hard disk drive:
• The operating environment should meet the criteria listed above for flexible disk

care, with the following additions.
• Clean any dust or dirt from the cartridge cover and drive chassis. Use a lint-free

cloth. »
• Allow nothing to touch the disk surface.
• Inspect the disk surfaces periodically. If it is visibly dirty, or scratched, it must

be serviced. Contact your Intel service representative.
• Keep liquids away from the hard disk drive.
• Do not smoke in the hard disk drive area.
• Before using a disk cartridge that has just been brought into a new operating

environment, allow at least one hour to let the cartridge temperature stabilize.

For further information, refer to the MDS-740 Hard Disk Subsystem Operation and
Checkout Manual, 9800943. (In that manual the Intellec Microcomputer Develop- ^^,
ment System is referred to as the Intellec 800.)

2-6

ISIS-II User's Guide File Creation and Management

Disk Recording Characteristics » M O ' - , O " > y ^ - - - t v . ,->'

The following paragraphs contain information you need to properly use ISIS-II
commands and understand the prompts and error messages.

File Character Coding

Although all data in files is some sequence of binary zeros and ones, these bits are
interpreted in different ways according to the type of file. The editor creates files of
ASCII-coded text. The data in source programs is interpreted as ASCII-coded text
by ASM80, PLM80, or FORT80. When ASM80, PLM80, and FORT80 translate
source programs, they produce object programs containing the actual machine
instructions and auxiliary information used by the linker, locater, and loader.

The kind of data in a file determines what can be done with the file. An ASCII file
can be sent to the line printer; others will print, but the output won't be intelligible.
Object programs cannot be executed unless they have absolute addresses assigned by
the locater. Even then they may not execute properly if they refer to external loca-
tions not present in the object program (see Chapter 4).

It is important to know the kind of data in a file so you can know what can be done
with the file. You can use the extension of the filename to reflect the type of data in
the file. For example, source programs could have the extension .SRC (or .ASM,
.PLM, or .FOR to reflect the language used). The object code produced by the
translators could have the extension .OBJ; in fact, if you do not supply a name for
the output file, the translators use the name of the input file with the extension
.OBJ.

Many ISIS-II programs in addition to the translators assign a specific extension on
the input file if you do not supply it. One program, SUBMIT, assumes the extension
.CSD on the input file if you do not supply it. This saves you time entering com-
mands but can lead to misunderstandings if you are not aware of what the program
does. Other ISIS-II programs create temporary working files with the extension
TMP. Some examples of these are EDIT.TMP, LOCATE.TMP, LINK.TMP, and
LIB.TMP.

Disk Organization

Flexible disks contain 77 tracks. Tracks of single density flexible disks contain 26
blocks of 128 bytes each. Tracks of double density flexible disks contain 52 blocks of
128 bytes each. Hard disks have 800 tracks, each track having 36 sectors of 128 bytes
each. Disks can be either system or non-system.

A system disk contains ISIS-II software necessary for operating the system. A non-
system disk contains only the information necessary for maintaining the directory of
files on that disk, leaving more space for data than on a system disk. Disks must be
formatted before they can be used in the system. See the FORMAT and IDISK com-
mands described later in this chapter.

ISIS-II treats a file as a string of bytes. Space is allocated to a file in complete blocks
even though the last block in the file may be only partially used. In other words, a
block is not shared by two files. When a file is deleted, the blocks it occupied are
released for reassignment by ISIS-II.

3-5

Getting Started With ISIS-II ISIS-II User's Guide

Intellec Microcomputer Development System
The following procedure defines system start-up from power application through
loading and execution for the Intellec Microcomputer Development System.

1. Apply power to system, disk drive, and console. • ,;
2. Insert ISIS-II system disk in drive :FO: (write protect slot first).

3. Close drive door.

4. Press top of Intellec BOOT switch.
5. Press top of RESET switch.

6. Observe that INTERRUPT 2 light goes on to indicate loading of ISIS-II.

{CAUTION j

Be sure INTERRUPT 2 is on before proceeding. (((

7. Press space bar of video terminal or teletypewriter to select console.
8. Observe that INTERRUPT 2 light goes off to indicate receipt of space bar

entry. - ' _ ' ' ' '

9. Press bottom of BOOT switch to execute ISIS-II. s ^

10. Observe that the following appears at the selected console to indicate readiness
of ISIS-II to accept commands: ISIS-II,Vm.n where Vm.n is version number.

Hard Disk with Flexible Disk Start-Up < •

Hard Disk Startup
When you start up a system that includes a hard disk, or when you press the RESET ^
switch on an Intellec Series II Microcomputer Development System that includes a x ,/
hard disk, ISIS-II is loaded from a flexible disk in drive :F4:.

After the system is initialized with ISIS-II system files from :F4:, a fatal error, soft-
ware reboot, or interrupt 1 will cause the Intellec Series II Microcomputer Develop-
ment System to refer to the hard disk platter in drive :FO: for ISIS-II system files. If
the RESET switch is pressed, the processor refers to the system flexible disk in :F4:.
Therefore, after the system is initialized, you can remove the system disk from :F4:
until RESET is again pressed.

.'V >>*.« , > , U ; * . f

With a System Disk in :FO: ^
In an environment with both hard disk drives and flexible disk drives, and a system
hard disk in drive :FO:, follow these procedures:
1. Apply power to Intellec Series II Microcomputer Development System or

Intellec Microcomputer Development System.

2. Apply power to hard and flexible disk drives :FO: and :F4:, respectively.
3. Place a system flexible disk in :F4:.

Press START switch on hard disk drive; wait for READY light to come on. >
4. Press RESET on an Intellec Series II, or if using an Intellec Microcomputer

Development System:
a. Set BOOT to ON
b. Press RESET , . . <
c. Press space bar
d. Set BOOT to OFF ' '

5. The message ISIS-II, Vm.n is displayed, and the system is ready to accept ^~J
commands.

2-8

ISIS-II User's Guide File Creation and Management

When a file is created, all attributes are reset. That is, the file does not possess any of
the attributes listed above. This applies to a file created by the COPY command,
also. (Attributes can be copied with the COPY command by specifying the C
switch.)

s' A ; • ' , • '

Invisible: Files with the invisible attribute set are not listed by the DIR command
unless the I switch is used. Most system files possess the invisible attribute. It is
advisable to make invisible files write-protected also.

f. ' , ,

Write-protect: Files with the write-protect attribute set cannot be opened for
update or for output and cannot be deleted or renamed with ISIS-II commands from
the console. Write-protected files can be overwritten by the IDISK and FORMAT
commands. Write-protected files cannot be opened for output or update with the
OPEN system call (see Chapter 5).

• u ' ' •

Format: What applies to write-protected files also applies to files with the format
attribute set. In addition, files with the format attribute are created on a new disk
when it is formatted by the FORMAT or IDISK commands. The following files have
the format attribute: ISIS.DIR, ISIS.MAP, ISIS-TO, ISIS.LAB, ISIS.BIN, and
ISIS.CL1, plus ISIS-BAD if a hard disk. A system disk must have all of these files.
A non-system disk must have ISIS.DIR, ISIS.MAP, ISIS.TO, and ISIS.LAB, plus
ISIS.BAD if a hard disk. You should not assign the format attribute to any other
file, nor remove the format attribute from a file.

System: Files with the system attribute set are copied to the disk being formatted
when the S switch is specified with the FORMAT command. When you use the
IDISK command, you must copy the files with the COPY command. This gives you
the option of choosing the files for the new system disk. '<• • '

Wild Card File Names

Some ISIS-II commands allow you to specify filenames using a wild card construct.
This means you can use an asterisk (*) or a question mark (?) to replace some or all
of the characters in a name or extension. These special characters mean match
anything when searching a directory for a filename. For example, ,,

name.* - means match any filename with name and any extension or without an
extension.

*.extension - means match any filename with extension and any name.

.-means match any filename. j ^ _ . ,, < •

The asterisk can also specify a wild card match for the remainder of the name or
extension but not for initial characters. For example, , ,. . ., . „ , , . , , t

AB*.HEX - means match any filename with AB as first two characters of the name
and HEX as the extension. This example would match: ABC.HEX, ABXYZ.HEX,
AB.HEX.

*B.HEX is illegal, since * must follow initial alphanumeric characters.

*.BAK - means match any filename with a .BAK extension. This example would
match: A.BAK, AB.BAK, or ABC.BAK.

3-7

ISIS-II User's Guide File Creation and Management

ISIS-II console commands perform four basic tasks: " ' "*'2~

• Prepare a new disk for use by the system (i.e., format the disk).

• Execute programs.

• Create, delete, and revise files and directories. • .. ^y,\ \

• Convert object file formats.

The ISIS-II console commands associated with each of the preceding tasks is iden-
tified in the following list and is described in subsequent paragraphs.

Disk Maintenance

IDISK Format a new disk to a basic system or non-system disk.

FORMAT Format a new disk and copy files. . , : ,.,,,.., ,

FIXMAP Map bad sectors on a hard disk.

Program Execution

f i lename Execute the program named "filename"

DEBUG Load a program and give control to the Monitor

SUBMIT Enter the file that contains commands to be executed

File Maintenance ' " '"

DIR Output the names of and information about the files listed
within the disk directory

COPY Copy a file from one device to another , ,

HDCOPY Copy hard disk tracks to another hard disk

DELETE Remove references to a file from the directory and free disk
storage space associated with that file

R E N A M E Change the name of a disk file

ATTR1B Change and/or display the attribute(s) of a disk file

VERS Display ISIS utility version numbers

Code Conversion

HEXOBJ Convert a program from hexadecimal to object module
format

OBJ H EX Convert a program from object module to hexadecimal
format

File Editing . - - . . , - • t • •„, ;.,,< A-<-<-

EDIT Create and modify ISIS-II files. The Text Editor
subcommands are described in this chapter. -, •

3-9

File Creation and Management * *~ "" " ™ ~" """ ~™ " " "~~ ISIS-II User's Guide

CONTROL/Z Causes an end-of-file to be input to the system. There is no
change to the display. The contents of the line editing buffer
are deleted.

NOTE

The following characters are not editing characters, but they affect terminal
output: (. - • - i ' - - - - »

CONTROL/S Stops terminal output and delays program execution.

CONTROL/Q Resumes terminal output after the CONTROL/S command is
given. - , - , ,-•„ . f t .^qo . - . ^"v -

' > ' j , ' i f i ' i j 'it' '^' ,\
•-I '! ' . , ' ' f i f - ' / • • .•Sfj •

The line-editing facility can be applied to files other than the console input device.
There is a fuller description of line-editing in the section called Line-Edited Input
Files, in Chapter 5.

The System Console . „• • <>
t ~i ^ *

The device used as the console in the bootstrap procedure is known as the 'initial
system console.' The console can be changed to another device by a program exe-
cuting a CONSOL system call (see Chapter 5) or by using the SUBMIT command.
The 'current console' is the device currently serving as console, which may or may
not be the same as the initial system console.

The console, whatever device it is assigned to, is always the source of system com-
mands. The SUBMIT command directs ISIS-II to take commands from a disk file.
The SUBMIT file can return control to the initial system console by means of a
control/E. The console can also use control/E to return control to the SUBMIT file.

When control/E is input to ISIS-II as part of the command line either from the
SUBMIT file or the console keyboard, control/E is echoed but is not entered in the
input buffer. To enter a control/E into the input buffer and subsequently into a
SUBMIT file, the control/E must be preceded by control/P, in which case
control/E is entered as a literal.

3

Under ISIS-II the files :CI: and :CO: are pseudonyms for the devices serving as con-
sole input and output. The :CI: file is always the source of system commands. The
:CO: file receives console output such as the echo of a command. These two files are
always open. However, it is not an error for a program to issue an OPEN system call
for either of these files. Neither :CI: or :CO: count as one of the six files allowed
open simultaneously by ISIS-II.

• > . • • *•-•'*-
After system bootstrap in an Intellec Microcomputer Development System, the files
:CI: and :CO: correspond to either :VI: and :VO: or :TI: and :TO:, depending on
which device the space bar was typed during the bootstrap procedure. In the Intellec
Series II Microcomputer Development System, :CI: and :CO: are automatically
assigned to :VI: and :VO: (the integral console devices). The files :CI: and :CO: can
be reassigned to other files by programs issuing the CONSOL system call.

When an end-of-file is encountered in :CI:, :CI: and :CO: are closed, ISIS-II is
reloaded, and the initial system console is reopened as :CI: and :CO:.

3-2

ISIS-II User's Guide File Creation and Management

If any additional files such as command files are to be on the new disk, they must be
copied with the COPY command.

T.
IDISK can be used on single drive and multiple drive disk systems. On single drive
systems, you are prompted to remove the system disk and insert the blank disk.
When the formatting is completed, you are prompted to insert the original system
disk. In systems with only 32K of RAM, two swaps of disks are required.

• - > •"•

The syntax of the IDISK command is: . j
^ * T 4

IDISK <device> <label> [<switches>]

where

<device> is the name of the drive containing the disk to be formatted. If you
specify :FO:, and no FROM switch, the system assumes a single disk system and
prompts for disk swaps as needed. Disk swapping is not required if any drive
other than :FO: is specified. A hard disk in :FO: must be formatted as a system
disk. A^ .tr ..

<label> is the name to be given to the disk. The syntax of label is the same as for
filename with up to six characters for name and three for extension.

<device><label> must be entered with no intervening space or comma, as in
:F1:MYDISK. At least one space must be entered before and after <device>
<label>.

<switches> are one or more of the following:

S specifies that the new disk is formatted as a basic system disk. If S is not
specified, the disk is formatted as a basic non-system disk.

P specifies that IDISK operates in single drive mode and prompts for output
and system disks, pausing to display the prompt messages and to allow changing
of disks.

FROM n specifies the disk drive containing the disk files needed for formatting,
n is an integer 0-9, specifying drives :FO: through :F9:. If the FROM n switch is
not specified, the default is to :FO:. If n is not a valid integer 0-9, the following
error message appears on the :CO: device:

UNRECOGNIZED SWITCH

When used with a hard disk, IDISK verifies each sector. If IDISK cannot read a sec-
tor reserved for an ISIS-II file, the message

nioH *'e.-; ' ~ f .1. < •
FATAL BAD SPOT AT LOGICAL ADDRESS (ttt, sss), STATUS = nnnn

'* ' ' * ' '

appears on the console, and ISIS.CLI is reloaded, ttt is the logical track address (in
decimal); sss is the logical sector address (in decimal); and nnnn is the hard disk
error status (in hexadecimal). If the unreadable sector does not correspond to an
ISIS- II file, then the message

BAD SPOT AT LOGICAL ADDRESS (ttt, sss), STATUS = nnnn

is displayed. Since ISIS-II allocates hard disk sectors serially, if no mechanism
existed to "skip over" bad hard disk sectors, the remaining sectors would remain
unallocated and unusable. Instead, ISIS-II checks hard disk sectors for irregularities
during FORMAT and IDISK operations. If a bad sector is encountered, it is
allocated to ISIS.BAD and hard disk formatting continues.

3-11

File Creation and Management ISIS-II User's Guide

When error 24 occurs, the disk surface may be damaged, in which case you may wish
to retain as much of the disk data as possible. This may be done by copying the files
to a good disk with the COPY command. .. , , < ; • . - ,

The action taken in response to fatal errors depends on the setting of an internal
system switch called the debug toggle. That switch indicates whether control is to
return to ISIS-II (debug=0) or the Monitor (debug=l) when an error occurs.

Any of the following actions sets the debug toggle to one and transfers control to the
Monitor:

• Pressing interrupt switch 0 while a program is running.

• Executing a DEBUG command. ;

• Executing a LOAD system call with a transfer value of 2. , • , .

Any of the following actions sets the debug toggle to zero, performs the operation
listed, then transfers control to ISIS-II:

• Pressing interrupt switch 1 while a program is running. This action terminates
processing.

• Executing an EXIT system call. This action terminates a program.

• Executing a LOAD system call with a transfer value of 1 . This action loads an
absolute object file. , j

• Executing a Monitor G8 command. This action exits the Monitor.

N — ̂

If the debug toggle is zero when a fatal error occurs, the following occur: ^

• All open files are closed in their current state, including :CI: and :CO:.

• The initial system console device is opened as :CI: and :CO:.

• A fresh copy of ISIS-II is read in from the disk, and ISIS-II prompts for a
command with a hyphen (-).

,

If the debug toggle is set when a fatal error occurs, the following occur: ,
• All open files are left open. '< • ' ' • - ; > ,

• Control passes to the Monitor. '-i/..
1 , , , , ,

• Monitor prompts for a command with a period (.).

At this point Monitor commands can be used to examine registers and memory to
try to determine the cause of the error. However, the program should not be
restarted with a simple Monitor G command, because the ISIS-II restart address has
not been saved. DO NOT RESET THE SYSTEM AT THIS POINT. A G8 com-
mand should be used instead so all files are closed. Rebooting does not close files.

NOTE
Although programs cannot be loaded in the ISIS-II area, the ISIS-II area is
not protected from a running program. If a program should happen to
destroy parts of ISIS-II, subsequent system calls may not operate correctly
and input/output may destroy areas on your disk. This would happen
mainly when an undebugged program is running. ISIS-II can always be
restored by bootstrapping from a good system disk. Vi,

3-4

ISIS-II User's Guide File Creation and Management

The syntax of the FORMAT command is: , i • , . •

FORMAT <device><label>[<switches>] ', " ' " . ' .~ <& ,
where - j > --• • .- ;/

<device> is the name of the drive containing the disk to be formatted. If you
specify :FO: and no FROM switch, or if you specify :FO: and FROM 0, then an
error will result. A hard disk in :FO: must be formatted as a system disk.

„vo • -..«

NOTE

In the previous versions of ISIS-II, <device> defaulted to :F1: in the
FORMAT command. This default has been removed. If you have SUB-
MIT files that use this default, you must change them. You will receive
an error message if you try to default <device>.

<label> is the name to be given to the disk. The syntax of <label> is the same as
for filename with up to six characters for name and three for extension.

<device><label> must be entered with no intervening space or comma, as in
:F1:MYDISK. At least one space must be entered before and after <device>
<label>.

<switches> are one or more of the following: ^:

A' ,

A copies all files to the specified drive. The new disk contains all the files that
were on the source disk. If the source disk is a system disk, the new disk
becomes a system disk.

S copies the basic format files and all files with the system attribute set. If the
source disk is a system disk, the new disk becomes a system disk. (The S switch
functions differently under FORMAT than it does under IDISK.)

FROM n specifies the disk drive containing the disk files needed for formatting.
n is an integer 0-9, specifying drives :FO: through :F9:. If the FROM n switch is
not specified, the default is to :FO:. If n is not a valid integer 0-9, the following
error message appears on the :CO: device:

UNRECOGNIZED SWITCH

When used with a hard disk, FORMAT verifies each sector. If FORMAT cannot
read a sector reserved for an ISIS-II file, the message

' - « . - (-
FATAL BAD SPOT AT LOGICAL ADDRESS (ttt, sss), STATUS = nnnn

appears on the console, and ISIS.CLI is reloaded, ttt is the logical track address (in
decimal); sss is the logical sector address (in decimal); and nnnn is the hard disk
error status (in hexadecimal). If the unreadable sector does not correspond to an
ISIS- II file, then the message

BAD SPOT AT LOGICAL ADDRESS (ttt, sss), STATUS = nnnn ,,

is displayed. Since ISIS-II allocates hard disk sectors serially, if no mechanism exited
to "skip over" bad hard disk sectors, the remaining sectors would remain
unallocated. Instead, ISIS-II checks hard disk sectors for irregularities during FOR-
MAT and IDISK operations. If a bad sector is encountered, it is allocated to
ISIS. BAD and hard disk formatting continues.

File Creation and Management ISIS-II User's Guide

Disk Directory Content teiufoMs,'. cr -ibio^ ^ ^riC

Each flexible disk directory has space for 200 entries. Each hard disk directory has "—-̂
space for 992 entries. This means that a flexible disk can contain 200 files, or a hard
disk 992, if the combined size of the files does not exceed the capacity of the disk.

A directory entry contains identifying information about a file. For example, it
includes the following items:
• Filename
• Number o f blocks allocated to the file 0,l(, , , , , < • , *
• Number o f bytes in the file (length) ' • ' • • •

. f . i „• • ' t• Attributes '

ISIS-II provides a DIR command that displays some of the information contained in
a disk directory. The DIR command is described later in this chapter.

Filename
Filename within the directory includes .extension. The .-device: is not stored in the ^—•/
directory as it only specifies which drive the disk is mounted in during the current
ISIS-II execution.

Blocks

The number of blocks required by a file includes blocks for data and blocks for
pointers that are used by the system to specify the location of files. For every 62
blocks of data, another block is required by the system for pointers. The total
number of data and pointer blocks required by a file of N bytes can be calculated by
the following formula (any result containing a decimal fraction is rounded to the v^x
next higher integer value).

i. . >- . l ' ! ••; V I

[63*]N/128[/62] ' ' - ' >
i > o * <

For example, a file of 9000 bytes requires > -

[63*]9000/128[/62]= **'
[63*]70.31[/62]=
[63*71/62]=
[72.15]= ^
73 blocks required

• .«•<?"- „ii* s£"»r- 4?<4?
Length
The number of bytes comprising a file is its length. Length increases as a file is writ- *
ten and can be affected by other programs containing the ISIS-II system calls OPEN
and SEEK. Refer to Chapter 5 for further information on these system calls.

Attributes
There are four attributes associated with each file that may be set or reset (turned on
or off) by the ATTRIB command or the ATTRIB system call. The attributes are:
• Invisible

. ' i '1, > ,'il • • il "Mi ^

• Write-protect ci - q

System
• Format , -•>' •'- * - j -u ' ' " ' • "•' ;

? f ' '" '

3-6

ISIS-II User's Guide File Creation and Management

If you know the name of the file, exit to ISIS-II and delete the file; then use
FIXMAP to mark the bad sector. If you do not know the name of the file, follow
this procedure:

1. Exit to ISIS-II, using either the Quit or the Exit command (described below).

2. Give the command
COPY.Fm.* *TO Fn: QC

where "Fm" is the device name of the disk being fixed, and "Fn" is the name of
another hard disk. Because of the Q switch, a list of copied files will be
generated. (See the description of Copy.)

3a. // the copy is successful, disk :Fn: contains a usable copy of disk :Fm:. Use
FIXMAP to get a list of bad sectors on :Fm:; then use IDISK or FORMAT to
reformat that disk, and use FIXMAP to mark any bad sectors missed by the for-
matting command.

3b. If an error occurs while the disk is being copied, write down the last filename
displayed by Copy, as well as the track and sector numbers appearing in the
error message. Use the Delete command to delete the bad file from disk :Fm:;
then use FIXMAP to mark the bad sector. If an error occurs and prevents you
from deleting the file, repeat step 2. The file you attempted to delete will not be
copied to the new disk. Repeat step 3a.

Example 1: The following example illustrates the use of the Mark command.

•MARK 27 83
SECTOR MARKED

*MARK2783
(27, 83) ALREADY MARKED

Free Command. The Free command changes the known state of a sector from bad
to good.

The syntax of the Free command is:

FREE<diskaddress> . -I • <• »,' ' •• :
: . * . - '• . : < 5... ' .<

where:

<disk address> is the track-and-sector address of the sector to be freed for
allocation.

If the T switch is present, a group of 36 sectors is freed. You might use this com-
mand if you had marked a sector by mistake.

If the sector specified in the Free command is known to be bad, it is freed for alloca-
tion. If the T switch is not present, the system displays:

SECTOR FREED

If the T switch is present, no message appears when a single sector is freed; instead,
when all 36 sectors have been processed, the system displays the message:

TRACK PROCESSED 0 ~ -

3-17

File Creation and Management ISIS-II User's Guide

The question mark specifies a single character for a wild card match. For example,
N

A7B.HEX - means match any filename with A and B as the first and third characters N j
of a three-character name and HEX as the extension. This example would match:
ACB.HEX, AXB.HEX, AMB.HEX.

A??.* - means match any filename with A as first character of a three-character
name and any extension.

' { '• f ' * ' *

:device: cannot include a wild card character.

File CopyingI-J 5» , . „, ^

Data can be transferred from one file or device to another by using ISIS-II com-
mands. For instance, if you want to transfer the contents of the high-speed paper
tape reader to a file on drive :FO:, you load the paper tape reader and use the COPY
command to transfer the contents of the paper tape to the disk file. •' ?< ;»,. .«

COPY :HR: TO PROG.SRC . , /. • ,,- 1 .1 u -

If you want to display a file on the console, use the COPY command in the follow-
ing way: ' •

COPYFILE.TXT TO :CO:

The HDCOPY command performs a track-by-track copy from one hard disk to
another hard disk. • • • >v> /'

The ISIS-II Text Editor transfers files in a special way. The method employed by the
Text Editor is defined later in this chapter. . ,

Using ISIS-II With A Single Drive System
l * ' e

On an Intellec Series II Microcomputer Development System containing a single
integrated disk drive, ISIS-II utility programs that have the P (Pause) switch allow
you to remove the system disk, insert another disk, and carry out an operation.

Since most programs (such as the ISIS-II Text Editor, BASIC-80, and CREDIT)
reload ISIS-II system files when you exit from them, be sure to format all disks used ^ .
on a single drive system as basic system disks, using the IDISK command with the S
switch.

Using ISIS-II Commands
X

The file management capabilities of ISIS-II can be controlled in one of three ways:
• Direct entry of ISIS-II commands at a console keyboard, - - . t , ' ; i*
• Issuance of ISIS-II system calls by a program.
• Entry of console commands into a file by using the Text Editor. Execution of

this file via the SUBMIT command causes ISIS-II to respond as if it were receiv-
ing commands directly from you. The advantages are that you need not be pre-
sent when the submitted job is performed, and the commands do not have to be
re-entered each time the job is submitted.

The following text defines only those commands input by you at the console. The
definitions include a summary of the preparation of the file created by the com- ,
mand. The use of system calls is described in Chapter 5. ^-s

3-8

ISIS-II User's Guide File Creation and Management

Example 3: The following example illustrates the use of the List command. The list
is written first to the console, then to a disk file.

•LIST
180,63
182,115
182,116
182,117

*LISTDISK.FIL
LIST WRITTEN

Count Command. The Count command reports the number of known bad sectors
on the disk.

The syntax of the Count command is:

COUNT

The command displays the following message on the console:

xxxxx BAD SECTORS

where "xxxxx" is a decimal number, the number of known bad sectors on the disk.
A sector that has not been marked, or a sector that has been marked and then freed,
is not a known bad sector.

Example 4: The following example illustrates the use of the Count command.

*LIST
180,63
182,115
182,116
182,117

'COUNT
4 BAD SECTORS

Record Command. The Record command records the changes specified by Mark
and Free.

The syntax of the Record command is:

RECORD

When this command is entered, changes specified by Mark and Free are recorded on
the disk.

If you intend to use the Exit command to leave the FIXMAP program, the Record
command is unnecessary. (Exit is described below.) If you intend to use the Quit
command, the Record command is required; otherwise, none of the marking and
freeing specified during the work session—or since the last Record command—will
actually take effect.

When the recording is complete, the system displays:

CHANGES RECORDED

3-19

File Creation and Management ISIS-II User's Guide

Program Control " ; " •

LIB Create and control program libraries (described in Chapter
4).

LINK Combine program files and resolve external addressing
(described in Chapter 4).

LOCATE Convert relocatable object to absolute addresses for
execution (described in Chapter 4).

Command Syntax

The general syntax of ISIS-II console commands is:

<command><parameters> •;.; - hr rf'5 y. r ,< , < • > < > •, TAWHf
fi s .<!'>'•< • n , ,r q A M X i -

where

<command> is the name of ISIS-II command program.

<parameters> are one or more data required by the command. When more than
one parameter is specified, they are separated by commas or blank spaces unless
otherwise noted under the individual commands.

A parameter may consist of one or more switches. Switches may be separated by
spaces but not by commas.

In some cases a parameter requires additional information. Such information
immediately follows the parameter and is enclosed in parentheses as shown in
the following example:

SUBMIT PLM80(PROGA, SRC, '9 SEPT 78')

In ISIS-I some commands required a dollar sign ($) before each parameter. In
ISIS-II those commands accept the dollar sign but treat it as a blank.

Brackets ([]) in the syntax indicate that a parameter is optional. If the option is
omitted, default actions are performed by ISIS-II as explained with each command.

In most cases a command is executed when the carriage return is encountered. Any
exceptions are noted under the individual commands.

Disk Maintenance Commands

IDISK - Disk Formatting Command

A blank disk must be formatted before it can be used by ISIS-II. There are two types
of ISIS-II disks: system and non-system. The type of disk to be formatted is
specified by the presence or absence of a switch with the command.

IDISK copies only the files needed for a basic disk (whether system or non-system).
A basic disk contains only the files needed to format the disk: ISIS.DIR, ISIS.MAP
ISIS.TO, and ISIS.LAB, plus ISIS.BAD if a hard disk. For a basic system disk,
IDISK copies two additional files: ISIS.BIN and ISIS.CLI.

3-10

ISIS-II User's Guide File Creation and Management

FIXMAP Errors

The following errors cause immediate termination of FIXMAP and a return to ISIS-
II. If execution terminates as a result of one of these errors, work done since the last
Record command is not recorded on the disk.

If no hard disk is present, the system displays:

USE ON HARD DISK SYSTEM ONLY

If no drive number is given in the FIXMAP command, or if an illegal switch is pre-
sent, the system displays:

INVALID SYNTAX

If this message appears in response to a command within FIXMAP, it means that
the command was typed incorrectly, and it does not terminate the session.

If the specified drive number is greater than 3, the system displays:

DRIVE N U M B E R OUT OF RANGE

(In the maximum configuration of the system, the hard disk drives are numbered 0
andl .)

If the disk does not exist in the system, is not on-line, or is not properly connected,
the system displays:

ERROR 30 USER PC xxxx

where "xxxx" is a hexadecimal number.

Example 8: The following example illustrates a typical work session with
FIXMAP. You invoke the command and begin by getting a list of all bad sectors on
the target drive (drive 1, as indicated in the FIXMAP command). The Count com-
mand reports that there are eight bad sectors, and the Record command shows that
no sectors have been marked or freed during this work session. You free the last 36
sectors on the track containing track 170, sector 113; all sectors except the eight
known bad sectors are reported already to be free. You mark track 170, sector 113 as
a bad sector, and again list and count the number of bad sectors. This time, the
Record command reports that changes have been made. You free the remaining bad
sector, list again, and return to ISIS-II.

-FIXMAP 1
ISIS-II MAP FIXER V1.0
*LIST
170,113
170,114
170,115 •.""' >• 5 * . - " * ''"'
170,116
170,117 • ' ' '!'-'
170,118
170,119
170,120

•COUNT
8 BAD SECTORS * '

•RECORD .
NO CHANGES

3-21

File Creation and Management ISIS-II User's Guide

Example 1: This example formats a new disk in drive :FO: as a basic system disk on a
single-drive system. IDISK prompts for the new (output) disk and for the system
disk. IDISK gives the disk the name SYS.VI. The COPY command should be used
to copy other files on the newly formatted disk. See the COPY command for single
drive systems later in this chapter.

—IDISK :FO:SYS.V1 S ' " ' ' < ' - -' -1 '
SYSTEM DISK
LOAD OUTPUT DISK, THEN TYPE (CR) ' ' >- '' • > ' . ' : /
LOAD SYSTEM DISK, THEN TYPE (CR)

Example2: This example formats a new disk in drive :F1: as a basic system disk, and
gives the disk the name NSYS.V1. The COPY command copies all other non-format
files from the disk in drive :FO: to the disk in drive :F1:.

—IDISK :F1:NSYS.V1S '' ' '' "
SYSTEM DISK
—COPY *.* TO :F1. C B
COPIED :FO:ASM80TO :F1:ASM80 '
COPIED :FO:ASM80.OVO TO :F1 :ASM80.OVO
COPIED :FO:ASM80.OV1 TO :F1:ASM80.OV1

COPIED :FO:FPAL.LIB TO :F1 'FPAL.LIB
COPIED :FO:PLM80. LIB TO :F1:PLM80. LIB ' ' '' d''
COPIED :FO:SYSTEM.LIBTO :F1:SYSTEM.LIB

Example 3: This example formats a hard disk platter in drive :FO: as a basic system
disk; the basic files needed to format the disk are copied from a system disk in drive
:F4:. The COPY command should then be used to copy other files onto the newly
formatted disk, as in the previous example.

-:F4:IDISK :FO:SYSTEM.DSK S FROM 4

FORMAT - Disk Formatting Command
A blank disk must be formatted before it can be used by ISIS-II. FORMAT cannot
be used on a single flexible disk drive system. IDISK should be used.

There are two types of ISIS-II disks: system and non-system. A disk is formatted as
a system or non-system disk depending on the type of source disk used and on the
switches specified in the FORMAT command.

When a system disk is formatted, FORMAT copies other files in addition to the
basic format files. When a non-system disk is formatted, however, FORMAT copies
only the basic format files: ISIS.DIR, ISIS.MAP, ISIS.TO, and ISIS.LAB, plus
ISIS.BAD if a hard disk. Any other files that are to be on the new disk must be
copied with the COPY command.

3-12

ISIS-II User's Guide File Creation and Management

Filename - Direct Program Execution
As ISIS-II commands except DEBUG are actually the names of disk files containing
executable programs. Thus the execution of any other program is accomplished in
the same manner—simply by entering the name of the file. You may also include
parameters with the filename to provide control over the program to be executed.
However, the program must be written to accept these parameters and must read the
parameters from the line editing buffer . Refer to Chapter 5 for more information on
line editing of command lines.

DEBUG - Program Execution Under Monitor
The DEBUG command loads an executable program and passes control to the
Monitor, which outputs the contents of the program counter and prompts for a
command with a period (.) on the system console. The Monitor G command can
then be entered to begin execution of the program. Any errors occurring during
execution are handled as described in Chapter 6 of this manual.

The syntax of the DEBUG command is:

DEBUGf <progname>[<parameters>]]

where

<progname> is any ISIS-II command or in broader terms the file name of an
executable program. The program must be an absolute object module. If
<progname> is omitted, control transfers to the Monitor, but no program is
loaded.

<parameters> are the normal parameters of the program to be executed.

A starting address (entry point address) and up to two breakpoint addresses can be
specified in the Monitor's G command (see chapter 6). When execution of your pro-
gram is suspended at the breakpoint address, you can use Monitor commands to
inspect and/or change the contents of memory and/or registers and then continue
program execution from the point of suspension with another G command.

If an ISIS-II error occurs after control has been passed to the Monitor, any attempt
to resume execution with a G command may cause unpredictable results, possibly
overwriting ISIS-II or causing spurious input/output to the disk. It is acceptable to
examine memory and/or registers to debug an error, but it is not wise to restart the
program until control has been returned to ISIS-II.

You can return to ISIS-II from the debug mode and reset the debug toggle in one of
the following ways:

• Enter Monitor command G8.
• Execute an EXIT system call in the program being debugged.
• Press Interrupt 1.

Example 1 : This example shows how to execute a program named LIST in debug
mode. The source of LIST is not shown, but its load address is 3680H.

—DEBUG LIST FILE.TXT
#3680 " • • '

.G
(The LIST program is executed.)

3-23

File Creation and Management ISIS-II User's Guide

Example 1: This example shows the creation of a duplicate system disk excluding
any non-system files on that disk.

-FORMAT F1ISOOASSYSS ' ' ''"
COPYING SYSTEM FILES '

ISIS TO
ISIS BIN "' ' ' • - '-' a!" J jlt,&. n :
ISIS CLI ' ' ' ' , - '* f/OM" ' t if •
ASM80 • > " < -n . M >i ̂ t>i

ASM80 OVO
ASM80 OV1
ASM80 OV2 j
ASM80 OV3
ASM800V4 — ' -"'••;' ' ' ?! ' i r " ^0"3«c
ASXREF • ' 01 J ->

ATTRIB ' -- ' ' . ' . . . >
BINOBJ ' . -Lair • OS«-'

COPY
DELETE

DIR ,1 '() => 1 , ilfi '. ;f
EDIT . , n. ; . . .
FIXMAP

FORMAT . , J (r. ,..lf,, - Ji.-i j<j -uir •.,, !>.'-
HDCOPY , / ,, , | t

HEXOBJ
IDISK

L'B
LINK
LINKOVL ^ ,. ' > T,^-, - ' . - ,' /Hill
LOCATE - • ir.

RENAME
SUBMIT t j

FPAL LIB ' , ,, ,
PLM80 LIB S, ,
SYSTEM LIB

Example2: This example formats a basic non-system disk on drive :F1:, giving it the
name of LIB.VI. System files are not copied.

-FORMAT F1LIBV1 «»j| ")»} * • . <jt "i >
NON-SYSTEM DISK

Example 3: This example formats a hard disk in drive :FO: as a system disk; the files
with the system or format attribute set are copied from a system disk in :F4:.

- F4 FORMAT FO SYSTEM DSK S FROM 4

FIXMAP - Map Bad Sectors on Hard Disk

Various hardware and software problems can cause a sector on a disk to become
bad, or unreliable The FORMAT and IDISK commands in ISIS-II recognize bad
sectors and record the numbers of those sectors to prevent their allocation to files
Fatal errors and disk errors arising during the HDCOPY procedure can also show
that sectors are bad; either of the following messages reports that track 137, sector
106 on drive 1 is bad:

STATUS=OOOF " •
D=1 T=137 S=106

DISK ERROR—UNABLE TO WRITE TO DESTINATION DISK ON DRIVE 1
LOGICAL ADDRESS (137,106), STATUS=OOOF

3-14

ISIS-II User's Guide File Creation and Management

There are two files that SUBMIT uses. One contains the command sequence defini-
tion and is created by you with formal parameters. The other contains the command
sequence to be executed and is created by SUBMIT with actual parameters instead
of formal parameters. The command sequence file has the same name as the com-
mand sequence definition file but with the extension CS. The command sequence
file should not be modified by the user.

SUBMIT reassigns the console input device to the command sequence file it has
created and returns control to ISIS-II, which then executes the commands in the
command sequence file. The last command in the command sequence file is a special
SUBMIT command (provided automatically by SUBMIT) that restores the console
input device to its former device assignment and deletes the command sequence file.

Formal parameters are specified in the command sequence definition by two
characters, %n, where n is a digit from 0 through 9. They may appear anywhere in
the command sequence definition. The literal character, control-P (tP), can precede
a percent sign (%) that is not to be interpreted as a formal parameter. , . <

Any program that reads its commands from :CI: can be executed noninteractively.
The command sequence definition file can also contain commands to the programs
being run. If a SUBMIT command is used in a command sequence definition file, it
causes another command sequence file to be created. This 'nesting' of SUBMIT
commands can be repeated to any depth.

A control/E in a SUBMIT Switches the console input from the command sequence
file to the initial system console, allowing interactive processing. A tE entered at the
initial system console returns control to the command sequence file. If control is
not returned to the command sequence file, or if an error occurs after a command
sequence has started processing, control returns to ISIS-II and the CS file is not
deleted.

Any program running under SUBMIT must allow for one buffer in addition to the
open files and buffers required by the program itself. See Chapter 4 for information
on how to determine the base address of your program.

Any program running under SUBMIT should not contain a CONSOL system call
which changes the name of the console input device.

Example 1 : The following examples show a PL/M compilation executed
noninteractively on a 4-drive system. The PLM80 command has only three items
that change. Using SUBMIT to enter the command automates the process, saving
you keystrokes at the console.

The command sequence definition is in tl.e file PLM80.CSD. See the compiler
operator's manual listed in the preface for an explanation of the controls in the
PLM80 command. The file PLM80.CSD contains the following:

PLM80:F1:%0 %1 DEBUG XREF PRINT (F3:%O.LST) DATE(%2)

This command sequence definition contains three formal parameters, indicated by
%0, %1, and %2. The SUBMIT command used to start the compilation is as
follows:

SUBMIT PLM80(PROGA,SRC,'9 SEPT 78')

The command sequence created by SUBMIT and then executed is as follows:

-PLM80 :F1 :PROGA.SRC DEBUG XREF PRINT (:F3:PROGA.LST) DATE(9 SEPT 78)

ISIS-II PL/M-80 COMPILER, V3.1 ' ' ' ••"• '" '
PL/M-80 COMPILATION COMPLETE 0 PROGRAM ERROR(S)

1 « * '

-:FO:SUBMIT RESTORE PLM80.CS(:VI:)

3-25

File Creation and Management ISIS-II User's Guide

If the T switch is present, the <sector> number specifies a group of 36 sectors on
<track>: • < ,"\ , •. • ~^-

If <sector> is in the range 1 -36, that group of sectors is processed. - • »

If <sector> is in the range 37-72, that group of sectors is processed. '' k *

If <sector> is in the range 73-108, that group of sectors is processed. --'

If <sector> is in the range 109-144, that group of sectors is processed.

Track and sector numbers, and the T switch, if present, should be separated by
spaces. The track and sector numbers should be those reported in the error message
that identified the bad sector.

Mark Command. The Mark command changes the known state of a sector from
good to bad.

The syntax of the Mark command is: , <- , p^
^—/

MARK<diskaddress>

' h
where: , . j , . .

<disk address> is the track-and-sector address of the sector to be marked as
bad.

If the T switch is present, a group of 36 sectors is marked as bad. A sector known to
be bad is not allocated to any file.

If the sector specified in the Mark command is not associated with an existing file,
the sector is marked as bad. If the T switch is not present, the system displays:

SECTOR MARKED \ "

If the T switch is present, no message appears when a single sector is marked;
instead, when all 36 sectors have been processed, the system displays the message:

TRACK PROCESSED ' ' ' " ' '

If the sector belongs to an existing file, it cannot be marked as bad. Under any of the
following conditions, the sector is not marked:

If the sector belongs to one of the required ISIS-II format files, the system displays:

(track, sector) REQUIRED BY ISIS-II *

The system will be unreliable when the questionable disk is in use. You should for-
mat a new hard disk and copy your program and data files onto it. a

If the sector is already known to be bad, marking the sector is redundant. The
system displays:

(track, sector) ALREADY MARKED

If the sector belongs to a file other than a required format file, the system displays:

(track, sector) IN USE ,, . J

3-16

ISIS-II User's Guide File Creation and Management

where

<file> is the file or group of files (specified with the wild card construction)
whose directory entry is to be listed. If FOR <file> is omitted, the entire direc-
tory is listed. If <file> is not a wild card name (that is, does not contain * or ?) it
is listed even if it has the invisible attribute.

<listfile> is the name of the file to contain the directory listing. If TO <listfile>
is omitted, the listing is sent to the console output device. ,_ , , ,_

<switch> can be one or more of the following:

0-9 Lists the directory of the disk in :FO:, :F1:, :F2:, ... :F9:. If
omitted, the directory of the disk in :FO: is listed. More than one
drive number can be specified but only the rightmost one has
effect. The drive number also overrides any device specification in
FOR<file>.

I Lists all files, including files with the invisible attribute set. If
omitted, only files with invisible attribute not set are listed.

F Gives fast output, listing only name.ext of files.

O Prints directory in a single column format. The default is double
column format. y ,.. r > {|, , (t 4 ,, ,

Z Prints the number of sectors presently used on the specified disk as
a fraction of the number of available sectors.

P After loading the command, the system pauses with the message:

LOAD SOURCE DISK, TYPE (CR)

After the disk is loaded and CR pressed, the requested directory is
output to the console output device. The system will then request
that the system disk be replaced:

LOAD SYSTEM DISK, TYPE (CR) v " ' >r. '

', '
• r t . " . - i f - , - ' ' - ~i<> •-

The DIR default is the directory output in two columns with the following headings:

DIRECTORY OF name ext

NAME EXT BLKS LENGTH ATTR NAME EXT BLKS LENGTH ATTR

PROGA HEX 75 9263 W SUMS 51 6357

126

936/2002 BLOCKS USED ' •< '*• > •• ' >''" "

where

name.ext is the label of the disk volume that is assigned by the FORMAT or
IDISK command. It has the same syntax as a filename. Each item listed by
DIR is explained in the section "Disk Directory Content" in this chapter. The
directory listing shows the number of blocks in use and the total number of
blocks within the disk (2002, 4004, or 28800).

3-27

File Creation and Management ISIS-II User's Guide

Under either of the following conditions, the sector is not freed:

If a sector is already free for allocation, freeing the sector is redundant. The system
displays:

(track, sector) ALREADY FREE
i

If the sector is not free because it is in use by a file, the system displays:

(track, sector) NOT A BAD SECTOR _ .

There is no reason to free a good sector that is part of an existing file. J'

Example 2: The following example illustrates the use of the Free command. Note
that 8 5 T and 8 10 T identify the same group of 36 sectors, i.e., sectors 1-36 on
track 8.

'FREE 180 51
SECTOR FREED j ' .

" M A R K 8 5 T ^ ' ,
TRACK PROCESSED

"FREE810
SECTOR FREED

•FREE810T
(8, 10) ALREADY FREE
TRACK PROCESSED

List Command. The List command writes a list of all known bad sectors on the
named file.

The syntax of the List command is:

LIST[<filename>]
5

where:

[<filename>] is an optional parameter specifying the listing file.

The listing file may be either an output device or a disk file. It may not reside on the
disk being fixed. If no filename is given, the list is printed on the console.

The format of the output is one sector per line, with track and sector numbers
separated by a comma. The list includes all sectors marked by FIXMAP, as well as
bad sectors found by IDISK and Format.

If there are no known bad sectors, the system displays: '
1 t

NO BAD SECTORS

If output is directed to a device other than the console, the following message is
displayed after the list is written to the device:

LIST WRITTEN

If the named file resides on the disk being fixed, the system displays:

CANNOT LIST TO TARGET DRIVE

3-18

ISIS-II User's Guide File Creation and Management

results in prompts to swap disks in drive :FO:. But the commands: .,,

COPY ABC TO .F1 ABC

and
i

COPY ABC TO DEF

do not result in prompts for disk swapping. You can also copy files between dif-
ferent disks on the same drive by specifying the P (pause) switch in the command.

When you punch a file on paper tape, a string of nulls is added to the file. If the
punched file is then read back into the system and compared to the original, the nulls
will cause a false compare. These nulls may be stripped from the file with the ISIS-II
Text Editor or the CREDIT CRT-Based Text Editor. Object files should be con-
verted to hexadecimal format before punching on paper tape.

The syntax of the COPY command is: ' '

COPY <infilel>[,<infile2>,...,<infile/J>] TO <outfile>[<switches>]

where

<infile> is a file on any device capable of input. The contents of <infile> are not
affected by the copy. If more than one <infile> is specified, they are con-
catenated in the order specified when copied to <outfile>. When concatenating
files, you must specify the full name and extension of each file.

Wildcard designations may not be used when concatenating files. The following
example gives the error message that will be encountered if this is done.

COPY A, BC.* TO D J

WILDCARD DELIMITERS DURING CONCATENATE

When using the concatenate operation, the destination file name cannot be
equal to any source file name. The following example indicates trie error
message which results if this is attempted.

COPY A,B TO B
SOURCE FILE EQUALS OUTPUT FILE ERROR

<outfile> is the name of the file to be created or recreated or the name of an
output device. <outfile> is specified in the form :device:name.extension.
:device: is any system device. If :device: is omitted, and a filename is specified,
:device: defaults to :FO:. If :device: is not a disk drive, name and extension are
ignored. If <outfile> is an existing disk file and is not write protected, the
following message appears on the console:

<outfile> FILE ALREADY EXISTS
DELETE?

If you respond to the message with 'yes' or just 'y' (followed by a carriage
return), COPY deletes the existing file before making the copy. No action is per-
formed if any other response is given.

If <outfile> is write protected, then the following message is output:

<outfile>, WRITE PROTECTED , • v-

File Creation and Management ISIS-II User's Guide

If no sector has been marked or freed during the work session — or since the last
Record command — the system displays: • •

NOCHANGES

Example 5: The following example illustrates the use of the Record command.

•RECORD
CHANGES RECORDED ^ >

•RECORD
NOCHANGES

Quit Command. The Quit command stops the operation of FIXMAP and returns
to ISIS-II.

The syntax of the Quit command is:

QUIT i . ~. _

If the Record command has not been given, changes specified by Mark and Free are
not recorded on the disk.

Example 6: The following example illustrates the use of the Quit command. Note
that the freeing of sector 12, 86 is not recorded on the disk; therefore, upon reentry
to FIXMAP, that sector is still known as bad.

•FREE 12 86 . « "•> • -
SECTOR FREED

«QUIT ' >
-FIXMAP 1

ISIS-II MAP FIXER Vx.y
•LIST

12,86

Exit Command. The Exit command records changes and returns to ISIS-II.

The syntax of the Exit command is:

EXIT >'-'

The Exit command is equivalent to the Record command followed by the Quit com-
mand: changes specified by Mark and Free are recorded on the disk, and control
returns to ISIS-II.

' i . t - • - . f

Example 7: The following example illustrates the use of the Exit command. (Com-
pare this example with Example 6, above.)

• iv,; ' • - !

•FREE 12 86
SECTOR FREED • . . • .

•EXIT ' <-•?
CHANGES RECORDED ' .

-FIXMAP 1

ISIS-II MAP FIXER Vx.y . ' l
•LIST

NO BAD SECTORS ~ '"''

3-20

ISIS-II User's Guide File Creation and Management

P P is the pause switch, which allows files to be copied between two disks
on the same drive. The system prompts for disk swaps with the following
messages:

LOAD SOURCE DISK THEN TYPE (CR)
LOAD OUTPUT DISK THEN TYPE (CR)
LOAD SYSTEM DISK THEN TYPE (CR)

Q Q is the query switch, which causes the system to display the following
message before a copy is performed: COPY <mfile> TO <outfile>? A
yes or y response causes the copy to be performed Any other response
causes the copy not to be performed.

C C is the attribute switch, which causes <outfile> to be created with the
same attributes as <mfile> If this switch is not specified, <outfile> is
created with all attributes reset (off). This switch does not copy the for-
mat (F) attribute.

B B is the brief switch, which causes an existing file to be deleted without
displaying the "ALREADY EXISTS" prompt. The existing file is
deleted and recreated with new data unless the U switch is also specified,
in which case, the existing file is overwritten. This switch can signifi-
cantly improve performance, and should be used, even if it is known that
the destination file does not exist.

Example 1: This example copies three files to one, overwriting its contents.

—COPYCHAP1 CHAP2,CHAPS TO BOOK
FO BOOK FILE ALREADY EXISTS

DELETE?Y
APPENDED FO CHAP1 TO FO BOOK
APPENDED FOCHAP2TO FO BOOK
APPENDED FOCHAPS TO FO BOOK

Example 2: Example 1 could have been done in the following way.

—COPY CHAP1 ,CHAP2 CHAPS TO BOOK U
APPENDED FO CHAP1 TO FO BOOK
APPENDED FOCHAP2TO FO BOOK
APPENDED FOCHAP3TO FO BOOK

Example 3: This example lists a file on the line printer.

—COPY BOOK TO LP
COPIED FO BOOK TO LP

Example 4 • This example displays a file on the console output device.

-COPYCHAP1TO CO
(textofCHAPl)

COPIED FO CHAP1 TO CO

Example 5. This example copies a file from the disk in :FO: to the disk in :F1:

-COPYPROGATO F1 NEWPRG B
COPIED FOPROGATO F1 NEWPRG

3-31

File Creation and Management ISIS-II User's Guide

*FREE170113T '- S/,,-'' '
(170.109) ALREADY FREE
(170.110) ALREADY FREE . >
(170.111) ALREADY FREE '' x—^
(170.112) ALREADY FREE
(170.121) ALREADY FREE
(170.122) ALREADY FREE
(170.123) ALREADY FREE
(170 124) ALREADY FREE
(170 125) ALREADY FREE
(170 126) ALREADY FREE ' ^ *
(170 127) ALREADY FREE
(170 128) ALREADY FREE
(170 129) ALREADY FREE *
(170 130) ALREADY FREE
(170.131) ALREADY FREE
(170.132) ALREADY FREE
(170.133) ALREADY FREE
(170.134) ALREADY FREE
(170.135) ALREADY FREE
(170.136) ALREADY FREE /
(170.137) ALREADY FREE s

(170.138) ALREADY FREE
(170.139) ALREADY FREE
(170.140) ALREADY FREE
(170.141) ALREADY FREE ' ;
(170.142) ALREADY FREE
(170 143) ALREADY FREE
(170 144) ALREADY FREE
TRACK PROCESSED
•MARK170113
SECTOR MARKED -—'
*LIST
170,113
*COUNT * rv-lt
1 BAD SECTOR *'/
•RECORD
CHANGES RECORDED
•FREE170113 '•
SECTOR FREED
'LIST
NO BAD SECTORS , > ' > -^
'EXIT '.- >
CHANGES RECORDED

Program Execution Commands

You can call a program for direct execution m which case you must respond to any
queries from the program and to any errors encountered during program execution
You can also call for execution of the program under the Monitor in which case the
debugging provisions of the Monitor aid you in identifying and locating program
errors. A third method is to submit the program as a job to be handled by the system
without any interaction on your part. In this latter case you must prepare a file that
interacts witht he program in the same manner as you would during direct execution
of the program.

3-22

ISIS-II User's Guide File Creation and Management

If a disk error is detected while reading from the source hard disk, the message

DISK ERROR—UNABLE TO READ FROM SOURCE DISK ON DRIVE M
LOGICAL ADDRESS (ttt, sss), STATUS = nnnn

appears on the console device, and a sector of OFFH is written to the destination
disk. If an error is detected when reading from or writing to the destination disk, the
message

DISK ERROR—UNABLE TO WRITE TO DESTINATION DISK ON DRIVE N
LOGICAL ADDRESS (ttt, sss), STATUS = nnnn

appears on the console device. In both cases, processing continues. You must decide
whether or not to use the destination disk or to attempt to make a new copy.

In these error messages, ttt is the logical track address (in decimal); sss is the logical
sector address (in decimal); and nnnn is the hard disk error status (in hexadecimal)
as described in Appendix C.

As each track is copied to the destination disk, a "T" is printed on the console
device. If no errors have been detected during a copy operation, the message

VERIFICATION OK

appears on the console device when the operation concludes. If errors have been
detected, the message

BAD SECTORS ENCOUNTERED

appears on the console device.

Example 1: A sample HDCOPY command:

—HDCOPY1TOO

LOAD DISK(S), THEN TYPE (CR)

DRIVE 1 DISK NAME MYDISK.123 IS SOURCE DISK
DRIVE 0 DISK WILL BE OVER-WRITTEN
OK TO CONTINUE?

y
TT

TT

TT

DRIVE 1 DISK NAME MYDISK.123 COPIED TO DRIVE 0
VERIFICATION OK
HARD DISK COPY COMPLETED

3-33

File Creation and Management ISIS-II User's Guide

Example 2 : This example executes the same program in debug mode, suspends
execution at the specified breakpoint address and then returns to ISIS-II with a G8 s

command instead of letting the program issue an EXIT system call. i ^j

-DEBUG LIST FILE TXT

#3680
, j - - "

G,-36AO
(Use Monitor commands to examine registers and memory when the breakpoint
36AO is reached.) %
G8

ISIS-II, Vm n ?'' - • • < , , * • ' ' " • * , • - >: ,•
_ *

Example 3 : This example allows you to transfer to Monitor control with no pro-
gram loaded. Return to ISIS-II is by the Monitor G command with no address.

-DEBUG ' ' '
#0008 , , '

^~S

SUBMIT - Non-Interactive Program Execution

The SUBMIT command causes ISIS-II to take its commands from a disk file rather
than the console. Before using SUBMIT you create a command sequence definit ion v
file with optional formal (or symbolic) parameters. SUBMIT replaces these formal
parameters with actual values that you specify in the SUBMIT command. The com-
mand sequence definit ion file thus establishes the order in which the commands are
executed, whereas the SUBMIT command determines precisely what command syn- —J
tax and constants are to be employed.

The syntax of the SUBMIT command is: - ,i-.- . ,y. ••, , , -.

SUBMIT <name>[.<extension>][(<parameterO>,<parameterl>,...,<parameter9>)]

where ' " ' "'*'"

<name>[.<extension>] specifies the file containing the command sequence
definition. If extension is omitted, SUBMIT assumes the file <name>.CSD. ^^
The command sequence definition, which must be in a disk file, is the command
sequence with formal parameters, that are explained below.

<parameter/2> specifies the actual values that are to replace the formal
parameters in the command sequence definition. The maximum number of
parameters is 10. If a parameter is omitted from the SUBMIT list, its position
must be indicated by a comma. A parameter is a character string of 31
characters maximum. Any ASCII character from 20H to 7AH is legal, except a
comma, space, or right parenthesis. If a parameter contains a comma, space, or *
right parenthesis, the parameter must be enclosed in quotation marks. To use a
quotation mark inside a quoted parameter, use two quotation marks in its place.
For example:

'TITLE("QUOTE(") SEARCH ROUTINE")' .--., .

is used in the final command as:
-. ,- tJ. ?

TITLECQUOTE O SEARCH ROUTINE') " ' " ^

3-24

ISIS-II User's Guide File Creation and Management

If the file cannot be deleted because it has the write-protect or format attributes set,
the following message is sent to the console.

filename, WRITE PROTECTED

Each file name specified in the DELETE command may be followed by a space and
a Q in which case the user is asked to confirm the file deletion. This query mode
operation is most useful when the wild card construction is employed. You will then
receive the following message for each of the files where name conforms to the wild
card construct:

filename, DELETE?

Type a Y or y for a positive answer. Any other response causes DELETE to go on to
the next file in the group without deleting the specified file.

If you delete files from a disk other than the system disk in a single drive system, you
can specify the P (for pause) switch with the command. Before the deletion is per-
formed, the system displays:

LOAD SOURCE DISK, THEN TYPE (CR)

When the deletion is completed, the following message is displayed:

:Fn: <filename>, DELETED
LOAD SYSTEM DISK, THEN TYPE (CR)

Example I : This example deletes three files.

-DELETE CHAP?.*
:FO:CHAP1.TXT, DELETED
:FO:CHAP2.LST, DELETED
:FO:CHAP3.SRC, DELETED

Example2: This example shows an attempt to delete a write-protected file.

—DELETE PROGA.ASM

:FO:PROGA.ASM, WRITE PROTECTED

Example 3: This example shows the deletion of a file using the P switch.

—DELETE PROGB.ASM P
LOAD SOURCE DISK, THEN TYPE (CR)
:FO:PROGB.ASM, DELETED
LOAD SYSTEM DISK, THEN TYPE (CR)

3-35

File Creation and Management ISIS-II User's Guide

Example 2 : This example shows a PL/M compilation, a LINK, and a LOCATE
executed from a SUBMIT file on a 2 flexible disk drive system. A tE is entered in the
command sequence definition after the PL/M compilation so the compiler disk can
be removed. The operator enters a tE when the regular system disk (with LINK and
LOCATE) is mounted and processing can continue. The text editor does not echo
the tE; however, it is echoed when the SUBMIT file is executed.

The file CMPLNK.CSD in drive 1 contains the following command sequence
definition:

PLM80 %0.%1 DEBUG XREF DATE(%2)
tE
LINK %0.OBJ,SYSTEM.LIB TO %O.SAT& j
PRINT(%O.LNK)MAP t ' <, _ , M' *
LOCATE %0.SAT PRINT(%0.LOG) MAP '

The SUBMIT command entered to compile, link, and locate PROGA.SRC follows:

SUBMIT:F1:CMPLNK(:F1:PROGA,SRC, '3OCT78') ,• > '

The command sequence actually executed is shown as it would be echoed on the con- >
sole output device: > ^-^

—PLM80 :F1 :PROGA.SRC DEBUG XREF DATE(3 OCT 78) -"

ISIS-II PL/M-80 COMPILER V3.1 "> '
PL/M-80 COMPILATION COMPLETE 0 PROGRAM ERROR(S)

-tEtE
—LINK :F1:PROGA.OBJ,SYSTEM.LIBTO-FVPROGA.SAT& ,
**PRINT(:FVPROGA.LNK)MAP "', '"' ' ;

-LOCATE :F1:PRGGA.SAT PRINT(:F1:PROGA.LOG) MAP ''' - ^
—:FO:SUBMIT RESTORE :F1:CMPLNK CS(:VI:)

•j'l ' .'int

File Control Commands

The file control commands are those commands that work directly with files and are
not concerned with the type of information within the files. This is in contrast with
the other ISIS-II console commands that initialize new disks or deal with program
files specifically.

The file control commands provide for copying or deletion of files and revision or
display of file directory contents. Familiarization with the file control commands is
equivalent to learning a primary function of ISIS-II.

DIR - Disk Directory Listing
The DIR command lists one or more directory entries of the disk in a specific drive,
sending the list to the console output device or to a list file. The syntax of the DIR
command is:

DIR [FOR <file>][TO <listfile>][<switch>]

The positions of these fields are not fixed.

3-26

ISIS-II User's Guide File Creation and Management

ATTRIB - Change/Display Disk File Attributes
The ATTRIB command changes and/or displays the specified attributes of a disk
file. The syntax of the ATTRIB command is:

ATTRIB <file> [<attriblist>] [Q]

where

<file> is a disk file whose attributes are to be changed. The wild card construc-
tion can be used to change and/or display the attributes of a group of files.

<attriblist> is one or more of the following:

10 or II Reset or set the invisible at tr ibute. When set, the f i le is not
listed by the DIR command unless the I switch is specified
in the DIR command.

WO or Wl Reset or set the write-protect attribute. When set, the file
cannot be opened for output or update, and cannot be
deleted or renamed.

F O o r F l Reset or set the format attribute. When set, the fi le is
copied to the disk being formatted by the IDISK and FOR-
MAT commands. Removal of the format attribute from
system files will cause improper formatt ing of new system
disks. This at tr ibute is reserved for specific system files and
should not be assigned to any other file.

SO or SI Reset or set the system attribute. When set, the f i le is
copied to the disk being formatted by the FORMAT com-
mand when the S switch is used. This f i le is also copied by
the COPY command when the S switch and wild card
notation are used.

If two values of the same attribute are specified, for example both 10 and II , the one
rightmost in the command takes precedence.

Q requests query mode operation. Before changing the attributes of a file,
ATTRIB sends the following message to the console:

filename, MODIFY ATTRIBUTES?

Type a 'yes' or just 'y' if you want the file attributes modified. Any other
response causes ATTRIB to leave the attributes unchanged for the specified file
and to go on to the next file in the group.

If a nonexistent disk file is specified, ATTRIB responds with a message on the
console:

filename, NO SUCH FILE

If a non-disk file is specified, ATTRIB responds with a message on the console:

fi lename, NON-DISK DEVICE

where filename is that specified in the command. When attributes for a file have
been changed, the current attributes for the file are displayed on the console.

3-37

File Creation and Management ISIS-II User's Guide

Example 1 :

The following example lists two files of a flexible disk on a single density system. \ J
The system files, which have the invisible attribute set, are not listed.

—DIR '

DIRECTORY OF FO ISOOAB SYS ''

NAME EXT BLKS LENGTH ATTR NAME EXT BLKS LENGTH ATTR

PROGA HEX 75 9263 W SUMS 51 6357

126 " 4

936/2002 BLOCKS USED

Example! : This is the same as Example 1 except a fast listing is requested.

—DIRF
DIRECTORY OF-FO-ISOOAB.SYS
PROGA HEX SUMS
936/2002 BLOCKS USED

Example 3 : This example requests a directory listing of all format files be sent to the
line printer. The format files have the invisible attribute and ISIS.* is a wild card
filename, so the I switch must be specified.

—DIR I FOR ISIS *TO LP

Example 4 : A single-column fast directory listing of the double density flexible disk
in drive :F1: is requested by the following command.

—DIR1 F O
DIRECTORY OF DISK :F1 ISIS V10
TYPE M80
TYPE HEX
TYPE
1337/4004 BLOCKS USED

COPY - Copy a File
The COPY command copies the contents of a file into another file. The source and
destination can be disk files or physical devices. The file from which the copy is s—^
made must be an input device and file to which the copy is directed must be an out-
put device. For example, you can copy from the reader to the punch but not from
the punch to the reader.

When the source or target is a disk file, the filename must be specified or implied. >
When the source or target is a physical device, only the device designation need be
specified.

Wild card characters can be used in disk filenames. However, the wild card
characters cannot be used in device designations (you cannot specify :F*:).

The COPY command supports single disk drive systems. You can copy files from
one disk to another using only a single drive. The command prompts for the source,
output, and system disks as it needs them. If you specify a copy on a drive with no
change in file name, the command assumes you want to swap disks and prompts for
the swaps. For example, the command:

COPY ABC TO ABC • -, ,- ' ^—

3-28

ISIS-II User's Guide File Creation and Management

Code Conversion Commands

The code conversion commands exist for two reasons:

• To provide compatibility with systems employing hexadecimal object file
format.

• To convert programs created under previous versions of ISIS.

The programs called by the code conversion commands convert the character'coding
of these disk files but do not otherwise alter the information of the original pro-
grams. The program files of ISIS-I were created on single density disks and must
therefore be input via a single density drive.

HEXOBJ - Convert Hexadecimal Code to Absolute Object Code

The HEXOBJ command converts object code in hexadecimal format to an absolute
object module compatible with ISIS-II. The hexadecimal format is produced by
cross-product translators that run on large machines and by assemblers of earlier
versions of ISIS. The format of the HEXOBJ command is:

HEXOBJ <hexfile> TO <absfile>[START(addr)] 4

where * •
<hexfile> is a file of machine object code in hexadecimal format.

<absfile> is the output file from HEXOBJ containing the absolute object
module that can be loaded for execution under ISIS-II. The module name stored
with the object module is the same as the name part of the <absfile> filename.
The absolute object module produced by HEXOBJ contains a symbol table if
symbols were defined.

START(addr) is used to include a starting address (the address of the first
instruction to be executed) in the absolute object module. The address can be
specified by a hexadecimal, decimal, octal, or binary number followed by a let-
ter indicating the base. The letter is H for hexadecimal, O or Q for octal, B for
binary, D or omitted for decimal. Thus the address 4000 hexadecimal is
specified as START(4000H).

If START(addr) is omitted, the starting address is taken from the end-of-file
record of the hexadecimal format file, which is determined by the END
assembly language statement.

If no starting address is specified in any of the above ways, zero is assumed,
which is in the ISIS-II area and causes an error 15 on any attempt to load the
file.

Example 1 : In this example a hexadecimal format object file on paper tape is con-
verted to an absolute object file on disk.

— HEXOBJ :HR: TO SUMS

Example 2 : This example converts a hex file to absolute object format, recording a
starting address in the object module.

-HEXOBJ PRIME.HEX TO PRIME.OBJ START(3200H)

3-39

File Creation and Management ISIS-II User's Guide

Wildcard designations can be used in <outfile> only to the extent they are used
in <infile>. That is, they must follow these rules:

• Every position in the <infile> name that contains an * must have a
corresponding * in the <outfile> name.

• Every position in the <infile> name that contains a ? must have
corresponding ? or * in the <outfile> name.

The COPY command provides a special case for convenience. When copying disk
files to a different disk, you can specify as <outfile> a device designation without a
filename. In this case, <outfile> will have the same name as <infile>. For example:

COPY .F1:ABC.XYZ TO F2: .,, . . .

is the same as specifying: '

COPY :F1:ABC.XYZ TO :F2:ABC.XYZ

This form can be used with wildcard designations in <infile>: . . ,.sjr; /,. •- '

COPY -F1 *.* TO :F2: , - . , ' • • „ "

At the end of the listing of files that were copied the message

WRITE PROTECTED FILE ENCOUNTERED

will be displayed if necessary.

If the rules governing wildcard designations are not followed, an error message will
be displayed as shown by the example below.

-COPY ABC.* TO D
FILE MASK ERROR

COPY command switches allow you to limit wild card copies to system files or non-
system files, copy attributes with the file, suppress messages when a file is to replace
an existing file, and to receive a prompt that requires a yes response before a copy is
performed. ,

<switches> are one or more of the following:

U U is the update switch, which if used causes the suppression of the
"ALREADY EXISTS" message described earlier. <outfile> is opened
for update instead of being deleted. The length is not changed unless the
copy causes an increase in the size of the file. <outfile> has attributes
unchanged unless C is specified, in which case the attributes of <outfile>
will be the attributes set before the copy plus the attributes set in the file
being copied from. For example, if file XYZ with the I attribute set is
copied to the file ABC which has the S attribute set, the final file ABC
will have the S and I attributes set.

S S is the system switch, which causes only files with the system attribute to
be copied. For example, the command:

COPY:FO:*.*TO:F1:*.* S

copies only files with the system attribute from drive :FO: to drive :F1:.

N N is the nonsystem switch and causes only files without the system or
format attribute to be copied.

3-30

ISIS-II User's Guide File Creation and Management

The type command lets you display your file on the Console output device.

The memory check command lets you determine how much space you have left in
memory to add data.

Command Entry

When you are using the Editor, an asterisk (*) is displayed at the left margin when
the Editor is ready to accept a command. If there is not an asterisk at the left margin
either of two conditions exist; 1) you are inserting data with the Insert command in
which case your command will be treated as data and entered into the file, or 2) the
Editor is still processing the last command you entered.

* *

The commands are all single letter commands and must be followed by two escape
(ESC) or alternate mode (ALT MODE) characters, depending on the terminal you
are using. In the command syntax statements, these characters are shown as two
dollar signs ($$). Thus, a simple Editor command will look like:

*B$$

(This particular command moves the text pointer to the top of the file.)

Command Parameters
There are two types of parameters that can be included with Editor commands,
iteration parameters and data parameters.

Iteration parameters specify how many times the command is to be performed. For
example, the Type command (which is t) types one line. To type 10 lines, the
command is:

*10T$$

The iteration parameter always comes before the command code. If it follows the
command, it is ignored or assumed to be part of the following command in a string.
(Command strings are described later.)

Data parameters specify the data on which the command is to operate. For example,
the Substitute command (which is s) replaces one data string with another. To
change the data string "CALL LP1" to "JMPERR1," the command is:

*SCALLLP1$JMPERR1$$

The data parameter always comes after the command code. If it precedes the com-
mand, the Editor does not know what to do with it and may treat it as a command if
the first letter is a valid command code.

The data parameter example also shows another use of the ESC or ALT MODE
character, as a separator. It will be used, as shown above, to separate multiple data
fields in a command and will be used to separate commands in a command string.

Aborting Commands

A command or command string can be aborted completely, before it is terminated
($$) by entering Control/C. Control/C is entered by pressing the letter c (upper or
lower case) while the CTRL key is depressed.

3-41

File Creation and Management ISIS-II User's Guide

Example 6: This example copies system files from one disk to another on drive :FO:

—COPY * * TO * * P S
LOAD SOURCE DISK, THEN TYPE (CR)
LOAD OUTPUT DISK, THEN TYPE (CR)
COPIED FOASM80TO FO ASM80 3 (i

LOAD SYSTEM DISK, THEN TYPE (CR)

If the files to be copied are quite large (exceeding the size of the available RAM) the
LOAD SOURCE and LOAD OUTPUT messages wil l be displayed more than once.
As each file is copied, a COPIED message is displayed. After the last file is copied,
the LOAD SYSTEM message is displayed.

Example 7: This example show valid uses of wildcard names with the COPY
command:

j i

COPY F1 * * TO F2: (copy all files except those with the
FORMAT attr ibute)

COPY F1 A^C TO FO D'^E
COPY Ft * * TO F3 N (copy all non-system and

non-format files)
COPY F1 A'"?'" TO FO B* CPY

HDCOPY - Copy Hard Disk Tracks

The HDCOPY command copies the contents of one hard disk to another hard disk
on a track-by-track basis. The data transformed are verified during reading of the
data into memory. HDCOPY formats the destination disk before writing data to it.
The BACKUP switch can be used to backup a removable hard disk platter. The syn-
tax of HDCOPY is:

HDCOPY <dnve1> TO <dnve2>|BACKUP ~

where ' ,

<drivel> is the number of the drive containing the source hard disk.

<drive2> is the number of the drive containing the destination hard disk.

The drive numbers must be 0 or 1. The source and destination cannot be the same
drive number, or a fatal error results, and an error message is displayed. If either
<drivel> or <drive2> is not a hard disk drive, an error message is displayed:

SPECIFIED DRIVES NOT HARD DISK ' "''

If you specify BACKUP, these actions occur:
*) V

• The contents of the disk in drive 1 are copied to the disk in drive 0 .= •"
• ISIS-II prompts for the backup disk to be placed in drive 1

• The contents of the disk in drive 0 are copied to the disk in drive 1 ,
• ISIS-II prompts for a system disk to be placed in drive 1

• The contents of the disk in drive 1 are copied to the disk in drive 0

If drives 0 and 1 are not hard disk platters, an error message appears.

3-32

ISIS-II user's Guide File Creation and Management

The syntax of the EDIT command is: , ,. .n . , ,,, ,

EDIT <filenamel> [TO <filename2>]

where
i . •'' i . : > *

<filenamel> is either the name of a new file to be created and edited or the
name of an existing file to be edited.

<filename2> is the name of the device or disk file to which the edited version of
<filenamel> is written.

If <filenamel> is a disk file and <filename2> is not specified, the action taken by
the Editor depends on whether <filenamel> is a new or existing file. If it is new, it is
created for output. If it exists and is not write-protected, it is opened for input. A
temporary file, EDIT.TMP, is created for the output. When the session is ended
with the Exit (E) command, the files are closed and <filenamel> is renamed
"name.BAK" and EDIT.TMP is renamed <filenamel>.

If <filenamel> is not a disk file, it must be an input file and <filename2> must be
specified and must be a disk file. For example,

EDIT:HR:TO:F1:ASSY.SRC ' " - • : ;

reads the text from the high speed paper tape reader into the system in response to
the Append (A) command. When the editing is complete, the contents of the file are
written to a disk in drive :F1: with the name ASSY.SRC. ,. . ,ri . ..

You can start entering data with the Insert (I) command or you can read an existing
file from disk with the Append (A) command. The commands are described in the
next section.

Editor Commands

The Editor commands are all single character commands. Many can have iterative
and/or data parameters. As you use the commands you will f ind that you often
enter a series of commands one after the other. This takes a lot of extra key strokes
(command terminators at the end of each command) and time.

You can enter multiple commands on the same line. When you do this the com-
mands are executed one at a time from left to right, exactly the same way they are
executed if you enter each on a separate line.

A single ESC or ALT MODE character can be used at any point between commands
as a separator character. When data is included with a command you must separate
the data from the next command with an ESC or ALT MODE character. If you
don't, the Editor has no way of knowing when the data stops and the next command
begins. Without the separator character, everything is considered data. The ESC or
ALT MODE character is also used a separator between multiple data fields in a
command.

The Text Pointer

The Editor keeps a pointer into the data in a file at all times. The pointer is always
pointing between characters. When many of the Editor commands are issued, the
action takes place from where the pointer is located. For example, the Type (T) com-
mand types the data from the pointer location to the end of a line. The Insert (I)
command inserts data into a file at the pointer location. - - . . - .

3-43

File Creation and Management ISIS-II User's Guide

Example2: A sample HDCOPY command with the BACKUP switch:

—HDCOPY BACKUP . -,

LOAD DISK IN DRIVE 1, THEN TYPE (CR)

DRIVE 1 DISK NAME MYDISK.123 IS SOURCE DISK , f ,,

DRIVE 0 DISK WILL BE OVER-WRITTEN , , ''. '* '
OKTOCONTINUE?

V
TT
TT
TT
DRIVE 1 DISK NAME MYDISK.123 COPIED TO DRIVE 0

LOAD BACKUP DISK IN DRIVE 1, THEN TYPE (CR)

DRIVE 0 DISK NAME MYDISK.123 IS SOURCE DISK
DRIVE 1 DISK WILL BE OVER-WRITTEN
OKTOCONTINUE?

y
TT

TT

TT

DRIVE 0 DISK NAME MYDISK.123 COPIED TO DRIVE 1

LOAD SYSTEM DISK IN DRIVE 1, THEN TYPE (CR)

DRIVE 1 DISK NAME ISOOAT.SYS IS SOURCE DISK
DRIVE 0 DISK WILL BE OVER-WRITTEN '
OKTOCONTINUE? .

y ^-/

TT

TT

TT

DRIVE 1 DISK NAME ISOOAT SYS COPIED TO DRIVE 0

VERIFICATION OK

HARD DISK COPY COMPLETED

DELETE - Delete a Disk File ^/
The DELETE command provides for erasure of specified directory entries. This
command effectively removes the specified file or group of files from a disk, making
the space it occupied available to ISIS-II for reassignment. A file with the write-
protect or format attribute set cannot be deleted. The syntax of the DELETE
command is: ,

DELETE <filename1>[Q][,<filename2>[Q]][,<filename3>[Q]][,...][P]

where ^

<filename> is the name of a file to be deleted. The wild card construction can be
used to delete a group of files.

If <filename> is a file with neither the write-protect nor format attribute set, the
file is deleted and a confirming message is sent to the console.

If <filename> does not exist, the following message is sent to the console where
<filename> is that specified in the DELETE command:

filename, NO SUCH FILE s J

3-34

ISIS-II User's Guide File Creation and Management

Z Command Examples: To move the pointer to the end of the file:

*z$$

When the pointer is at the end of the file, there is no data following it. If you issue a
command such as Type (T), nothing is typed because there is no data to type.

L - Line Command
The L command moves the pointer before the first character of the next line in the
file. You can specify an iterative parameter with the L command to move the pointer
several lines. The parameter must precede the command code. You can move the
pointer backwards, to the beginning of lines by entering a minus parameter. You can
move the pointer to the beginning of the current line by entering a parameter of
zero. If no parameter is included, 1 is assumed.

The format of the L command is:

[n]L$$

where:

n specifies the number of lines the pointer is to be moved. A positive n specifies
a forward movement and a negative n specifies a backward movement. 0
specifies that the pointer be moved to the beginning of the current line. If n is
omitted, 1 is assumed.

L is the command code.

L Command Examples: To move the pointer to the beginning of the next line:

*L$$

To move the pointer to the beginning of the line five lines back in the file:

*-5L$$

To move the pointer to the beginning of the current line:

*OL$$

To move the pointer ahead 12 lines:

*12L$$

C - Character Command
The C command moves the pointer a specified number of characters forward or
backward in the file. You can specify an iterative parameter with the C command.
The parameter must precede the command code. A positive number (an unsigned
number is assumed to be positive) moves the pointer forward the specified number
of characters. A minus number moves the pointer backward. If no parameter is
included, 1 is assumed. The parameter can be any number from -65,535 to +65,534.
If the beginning or end of the file is encountered before the specified number is
reached, the pointer stops at the beginning or end.

3-45

File Creation and Management ISIS-II User's Guide

RENAME - Rename a Disk File
The RENAME command changes the name of a disk file. Only the directory is
affected. The syntax of the RENAME command is:

RENAME <oldname> TO <newname>

where

<oldname> is the name of the existing file whose write-protect or format
attribute is not set. If a nonexistent file is specified, an error occurs.

<newname> is the new name to be assigned to the file with <oldname>. An
error occurs if the device part of the filename is not the same as that in
<oldname>. If a file with <newname> already exists, this message appears on
the console:

newname, ALREADY EXISTS, DELETE?

If you respond to the message with Y or y (followed by a carriage return), RENAME
deletes the existing file before renaming. (If the existing file is write-protected, it is
not deleted and the file to be renamed is not renamed.) No action is performed and
control returns to ISIS-II if a response other than Y or y is given.

RENAME cannot be used on nonsystem disks on a single drive system. To change
the name of a nonsystem disk file with only a single drive, use the COPY command
to copy the file to a file with the new name, then delete the old file with the DELETE
command.

Example 1: The following example changes the name of the file CHAP1.

—RENAME CHAP1 TO CHAP.ONE

Example 2: This example shows an attempt to rename a write-protected file.
(

—RENAME NEWPRG.TXTTO PROGA.TXT

NEWPRG TXT, WRITE PROTECTED

Example 3: In this example, the new name is the name of an existent file.

— R E N A M E TEXT BAK TO TEXT.OLD

TEXT.OLD, ALREADY EXISTS, DELETE? Y

3-36

ISIS-II User's Guide File Creation and Management

F Command Examples: To find the character string "LOOP1" starting from the
current location of the pointer:

*FLOOP1$$

To find the same character string but start the search from the beginning of the file:

*BFLOOP1$$

To find the same character string starting from the beginning of the file and then
move the pointer to the beginning of the line containing the string:

*BFLOOP1$OL$$ '

In the last example, if the ESC or ALT MODE character after the string had not
been entered, the Editor would have searched for the string "LOOP10L" and would
not have found it.

Text Commands

The Editor contains commands to enter new text into a file, change existing text,
delete an entire line, and delete a single character.

All of these commands affect the pointer. The effect on the pointer is described in
each command description. , . ,

I - Insert Command

The I command inserts text into the file immediately before the pointer. All data
following the I command is inserted into the file until a command terminator is
entered. This includes carriage returns and line feeds.

The pointer is always immediately following the inserted data.

During initial entry of data into a file, the I command normally goes on for many
lines, possibly for the entry of an entire program.

The format of the I command is:
' / J *" f :

Itext$$ ' , . . , . . .n-,. • , ,
i I

where:

I is the command code.

text is the data to be entered. Any amount of text can be entered, from a single
character to an entire file. The Editor keeps accepting data and inserting it into
the file until the $$ is encountered.

I Command Examples: To enter a single character into the file where the pointer is
located:

*IK$$
)

To enter a line to the beginning of the file:

*BIThisisthenewlme<CR> • - - -
$$ '

3-47

File Creation and Management ISIS-II User's Guide

Example 1 : This example changes the write-protect attribute of a group of files:

—ATTRIBPROGA * W1
FILE CURRENT ATTRIBUTES ' '

:FO:PROGA SRC W
FO-PROGA OBJ W >

Example 2 : This example sets the system attribute for the TYPE program so it will
be transferred onto new system disks (see FORMAT command).

—ATTRIBTYPE S1
FILE CURRENT ATTRIBUTES

•FO:TYPE S

VERS—Display ISIS Utility Version Numbers

The VERS command displays the version number of user-specified ISIS command
programs (e.g., DIR, ATTRIB, COPY, IDISK). The syntax of the VERS command
is:

VERS [:Fn:]<filename>
j r* t

where

<filename> is the name of the ISIS file on :Fn: whose version number is to be
displayed.

The VERS command should be used to ensure that the version numbers of the ISIS
command programs currently on your system are the same as (i.e., compatible with)
the version number of the ISIS you signed on under.

Example 1: This example lists the version number of a compatible ISIS command
program:

:•'..' -. '- , ' • :
-VERS DELETE
V4.2

Example 2: This example lists the version number of an incompatible ISIS com-
mand (the basic operating system version number is 4.2):

—VERS EDIT
V4.1 ' -. '

Example 3: This example shows an attempt to list the version number of a non-ISIS
file:

—VERSMYFILE EXT
FILE DOES NOT CONTAIN A PROGRAM VERSION NUMBER

Example 4: This example shows an attempt to list the version number of a file not in
the directory of the target device: - • • •

-VERSNONFIL
ERROR 13 USER PC 375B ' / , ; > ' -

3-38

ISIS-II User's Guide File Creation and Management

S Command Examples. To replace the string "JMP" with the string "CALL":

*SJMP$CALL$$

To make the same substitution but start the search from the beginning of the file:

*BSJMP$CALL$$,., '<

To make the same substitution, searching from the beginning and then typing the
entire line in which the change was make:

,'

*BSJMP$CALL$OLT$$

To delete the first occurance of the string "START" from a file:

*SSTART$$

In the above example, no replacement data was supplied with the command. Thus,
the command found the string and replaced it with nothing (deleted it).

' f; *.

D - Delete Command
The D command deletes the number of characters, starting at the pointer, specified
in the command. If the iterative parameter is positive (or unsigned) the deletions are
done from the pointer forward. If the parameter is negative, the deletions are done
from the pointer backward. If the deletion is performed in a forward direction in the
file, the pointer immediately precedes the first character not deleted. If the deletion
is performed in a backward direction, the pointer immediately follows the first
character not deleted. In other words, the pointer is between the remaining
characters on either side of the deletion.

The format of the D command is:

[n]D$$

where:

n specifies the number of characters to be deleted. If n is positive, the deletion is
performed in a forward direction and if n is negative the deletion is performed
in a backward direction from the pointer. If n is omitted, 1 is assumed.

D is the command code.

D Command Examples. To delete the next 10 characters following the current
pointer location:

*10D$$

To delete the 10 characters preceding the current pointer location: , - l

*-10D$$

K - Kill Line Command ''
The K command deletes all the characters in a line beginning at the current location
of the pointer. The characters in the line that precede the pointer are not deleted.
The K commands also deletes the carriage return and line feed at the end of the line.

3-49

File Creation and Management ISIS-II User's Guide

OBJHEX - Convert ISIS-II Absolute Object Code to Hexadecimal
N

The OBJHEX command converts an ISIS-II absolute object module to hexadecimal
format. ^—J

The format of the OBJHEX command is:

OBJHEX <absfile> TO <hexfile>

where
a

<absfile> is the file containing an ISIS-II absolute object module.

<hexfile> is the file to contain the hexadecimal object code converted from the e

ISIS- II format. The starting address (address of first instruction to be executed)
is taken from <absfile>. The hexadecimal object code produced by OBJHEX
does not contain a symbol table.

Using The Text Editor

The ISIS-II Text Editor enables you to create and update ASCII text files. The ^—^
Editor can be used to manipulate text on a line or character basis. One or more
characters can be inserted in, deleted from, or changed in a line of text. Insertions
and deletions can be made that cover one or more lines. The point of insertion or
deletion can be freely selected to be at the beginning or end of the file, beginning or
end of a line, or at any point within a line.

The ISIS text editor is a contextual editor. That is, it does not use line numbers but
uses the context of the file for editing. For example, to insert some text before a line
that contains "LXI QQ", you don't need a line number. You can find the line by
issuing a Find command specifying the content of the line. ^J

The usual procedure for creating a new text file is to call the editor, enter text from
the system console, perform whatever editing functions are desired, and then output
the file to a disk for storage. To edit an existing file, call the editor, input the file
from a disk, edit the file, and output the modified version to the disk.

The Editor Functions

The Editor has 16 commands that allow full control over your text file. The comr s /
mands are divided into the following categories:
• Commands to input and output data and terminate a session

• Commands to manipulate the text pointer

• Commands to modify the text

• Command to type the text
• Command to check available memory

9

The input, output, and session commands let you access a disk file, make changes,
and save the results. You can also terminate a session without saving the work.

The text pointer manipulation commands let you move around in the file to make
changes or insertions at the desired place. The text pointer is always pointing to
some location in the file. Before you can make a change or insertion, you must move
the pointer to where you want it. The text pointer is described in more detail later.

The text modification commands let you insert data, delete data, and change data. x—^

3-40

ISIS-II User's Guide File Creation and Management

where:

n specifies the number of lines to be displayed. If n is positive the display starts
at the line pointer and proceeds forward in the file. If n is negative, the display
starts n lines before the pointer and displays to the pointer. If n is zero, the
display starts from the beginning of the current line and proceeds to the pointer.
If n is omitted, 1 is assumed.

T is the command code.
' - i i i -1 ' ..j - x \ , m fitn'i - -

'1 ! 7

T Command Examples. To display a line from the pointer through the end of the
line:

T$, ,~ <•sO s-.i', v

To display from the beginning of a line to the location of the pointer: f , ,..,, , > \\

K.', , • f.'.bafi s . < • . '
*OT$$

To display the entire line no matter where the pointer is located within the line:

*OTT$$

In the preceding example, the "OT" displays from the beginning of the line to the
pointer and the second "T" displays from the pointer to the end of the line. , . ^

To move the pointer to the beginning of a line and then display the line:

*OLT$$

To display the previous line and move the pointer to the beginning of that line:

*-1LT$$orjust *-LT$$ r T(r t^ jj ;,

To display your entire file but you don't know how many lines are in it but know it
can't be more than 500:

*B500T$$

When the end of the file is reached the command stops. . .

Terminating a Session and Saving Your File

There are two commands to exit the Editor and return to ISIS-II. One command
saves your work from the editing session on disk and the other doesn't.

E - Exit Command
The E command saves the entire contents of the file in memory on disk. If the file
being edited is not completly read in from the disk, the E command saves the con-
tents of the file in memory and then reads the remainder of the file from the disk and
immediately writes it back to the disk. When the entire file is saved, the Editor
returns control to ISIS-II.

3-51

File Creation and Management ISIS-II User's Guide

Control/C can also be used to stop execution of a command in progress. For exam-
ple, if you entered a command to type 100 lines of the file when you meant to type 10
lines, you can stop the typing by entering Control/C. The typing will stop
immediately, and the Editor will prompt for the next command.

Correcting Typing Errors

You can correct typing errors in command strings or text by pressing the RUBOUT
key once for each character to be deleted and then retype the correct characters. As
you press the RUBOUT key, the character that is deleted is displayed on the screen.
You can only make corrections of this kind in commands before entering the com-
mand terminator ($$). - • •

A line with several corrections made with the RUBOUT key is unreadable. You can
type the line as really exists by entering Control/R. Control/R causes the system to
type the whole line with the corrections made. For example:

Tnhooisaaisa kkluumdde. . '

Control/R

This is a line. ' • <i

When a line has so many errors that you want to start over, you can enter Control/X
which cancels that entire line. When Control/X is entered, the system types a cross-
hatch character (#) and starts at the beginning of the next line.

Formatting Characters

To make your source code listings usable, carriage returns and line feeds are essen-
tial and horizonal TABs are helpful.

Carriage Return and Line Feed Characters

When entering data at the system console device, it is not necessary to insert line feed
characters. Each time the carriage return key is pressed, the system generates a line
feed character and stores it in memory following the carriage return character.

When you use the RUBOUT key to delete a carriage return, you must rubout the
carriage return and the line feed. That is, you must press the RUBOUT key twice.

•f- -• - .
TAB Characters

TAB characters make it easy to line up the columns of a source code listing. You can
enter a TAB with Control/I. The TABs defined in the system are every eight
character positions, 8, 16, 24, etc. When Control/I is entered the carriage advances
to the next TAB position.

(If you are coding in PL/M, please note that PL/M interprets a TAB character as
four spaces, not the eight shown on the screen during entry with the Editor.)

? -

Activating The Editor

•The Editor is activated with the ISIS-II EDIT command. The EDIT command can-
jiot be executed from a SUBMIT file.

3-42

ISIS-II User's Guide File Creation and Management

Reading Data from Disk '

The Editor provides a single command to read data from disk into memory.

iV

A - Append Command

The A command reads a maximum of 50 lines of text from disk into memory. The
text is appended to the bottom of the data already in memory (data that was read in
with the A command or entered via the Editor commands).

The A command reads 50 lines of text or until:
• The end of the file is reached.
• An end-of-file character (Control/Z) is read. The Control/Z is not read into

memory.
• The memory assigned to the Editor is full.
• A form feed character (Control/L) is read. The Control/L is read into memory.
If you have a large file to read into memory, you can issue repeated A comands. An
iterative parameter is ignored for the A command. - -•

The format of the A command is:

A$$

where: • ' i '<
i f i

A is the command code.

A Command Examples. To read 50 lines of text from disk into memory:

•A$$

To read 500 lines of text from disk into memory: , H ,

*AAAAAAAAAA$$,

Please note that the command "lOa" will only read 50 lines of text. The iterative
parameter is ignored. (See the section "Command String Iterations" later in this
chapter for an alternative way to specify multiple A commands.)

Determining Memory Space Available

The Editor has a command to determine how much memory space is still available
for text entry.

M - Memory Command
The M command computes and displays on the system Console output device, the
number of bytes of memory still available. The information is supplied in the
following message:

nnnn-CHARACTER(S) AVAILABLE IN WORKSPACE

where nnnn is a decimal integer.

3-53

File Creation and Management ISIS-II User's Guide

To update a file you must be able to move the pointer in the file. The Editor has five
pointer manipulation commands:
• Beginning of Text (B) which moves the pointer before the first character in the

file.
• End of Text (Z) which moves the pointer after the last character in the file.
• Line (L) which moves the pointer before the first character in a line.
• Character (C) which moves the pointer one character in the file.
• Find (F) which moves the pointer after the last character of a data string

supplied in the command.

B - Beginning of Text Command

The B command moves the pointer before the first character in the file. When you
read a file, the pointer starts at this position.

The B command is useful to:

• Move the pointer to the beginning to type a whole file. j
• Establish a starting point when searching a whole file to find a certain character

string.
• Inserting text before the existing text.

The format of the B command is:

where:

B is the command code. 1 „

B Command Examples: To move the pointer to the beginning of a file:

*B$$

If you want to type the first line, you can add the Type (T) command (described
later) to the B command:

*BT$$

The pointer is moved to the beginning and the first line is typed on the Console out-
put device.

Z - End of Text Command

The Z command moves the pointer immediately following the last character in the
file. The Z command is useful to add text to the end of a file.

The format of the Z command is:

Z$$

where:

Z is the command code.

3-44

ISIS-II User's Guide File Creation and Management

Command string iterations can be nested. For example, the command:

*100<3C2>5CD<L>$$

will go through a 100 line file. On each line it will advance the pointer 3 characters
and then, twice, it will advance five more characters and delete a character. The
inner string advances the pointer five characters and deletes the sixth character. The
outer string advances the pointer three characters before executing the inner com-
mand string and then advances the pointer to the next line.

Iteration command strings can be nested eight deep. If more than eight strings are
nested, the following error message is issued and the command is not executed:

ITERATION STACK FAULT
•BREAK*

3-55

File Creation and Management ISIS-II User's Guide

The format of the C command is: , ^ f , • ,

[n]C$$

where:

n specifies the number of characters the pointer is to be moved. A positive n
specifies a forward movement and a negative n specifies a backward movement.
If n is omitted, 1 is assumed.

C is the command code.

C Command Examples: To move the pointer to the next character in the file: , .,

*C$$

To move the pointer ahead 10 characters:

*10C$$

To move the pointer backward 100 characters: s S

*-100C$$

, . (I *
F - Find Command • "* •

The F command searches the file for a character string specified in the command.
The search begins at the current location of the pointer and continues until the string
is found or the end of the file is encountered.

^If the character string is found, the pointer is moved immediately following the last
character of the string.

If the character string is not found, the pointer is not moved from its current loca-
tion and following message is typed:

CANNOT FIND "text"
•BREAK*

Where text is the character string specified in the command. j

All characters must match for a match, including printing and non-printing
characters (such as carriage return and line feed).

If the F command is included in a command string, an ESC or ALT MODE
character must be used to terminate the character string or the following command
will be used as part of the search argument.

The format of the F command is: , \

Ftext$$

where:

F is the command code.

text is the character string being searched for. The Editor only uses the first 16
characters in the string. Any characters beyond 16 are ignored.

3-46

CHAPTER 4
WORKING WITH

PROGRAM MODULES

The creation of a program module is a fairly straightforward process once you have
fully defined the module interfaces. However, the existence of modules would be of
little value if you did not have the software tools necessary for manipulation of the
modules to build your entire program. Three basic tools are required:
• A linking program that combines many modules into a single module.

• A locating program that assigns absolute memory addresses to a relocatable
module.

• A library management program that permits you to add modules to a library
whose contents may be accessed when linking.

These capabilities are provided by three commands LINK, LOCATE, and LIB; a
standard object code format; two resident compilers, PLM80 and FORT80; and a
resident assembler, ASM80.

NOTE
The location and linkage features defined in this chapter are not applicable
to the object code of the 8048 microprocessor. For information about
MCS-86 object module management, see 8086 Family Utilities User's Guide
for 8080/8085-Based Development Systems, 9800639.

The object code format supported by ISIS-II is a relocatable format produced by
PLM80, FORT80, and ASM80. ISIS-I formats must be converted to the new format
for use with ISIS-II. See the HEXOBJ and BINOBJ command descriptions in
Chapters.

The LINK program combines files containing object modules of a program into one
module in one pbject file, adjusting the relative addresses in the process. When the
modules to be combined reference each other, you must identify these references as
public symbols and external symbols thus allowing LINK to satisfy the external
references of each module.

The relative addresses assigned to relocatable modules are converted to absolute
addresses by the LOCATE program, which produces an absolute object file (or
module that can be loaded by ISIS-II for execution, debugging, or memory
mapping).

The LIB program creates and maintains libraries of object modules that can be used
as building blocks to create new programs via LINK.

The many reasons for relocating a program and for writing programs in modules are
discussed in the following text.

Microprocessor Memory Allocation

The microprocessor memory for any given application is generally not of uniform
composition. The memory is usually tailored, with RAM (read-write memory)
installed for variable data and ROM (read only memory) or PROM (programmable
read only memory) installed for program code. Memory chips can be installed in
such a way that some addresses have no corresponding physical memory.

4-1

File Creation and Management ISIS-II User's Guide

To enter extensive text at the end of an existing file: , • . •

*ZIThis is the start of the text<CR>
Moretext<CR>

Last line of text.<CR>
$$

S - Substitute Text Command
The S command finds a character string and substitutes another character string for
it. The substitution is made only if the search results in an exact match.

After a successful match, the pointer is located immediately following the inserted
data.

The S command starts its search from the current location of the pointer and con-
tinues through the file until an exact match is found or until the end of the file is
encountered.

If a match is not found in the search, the following message is displayed:

CANNOT FIND "text"
BREAK

Where text is the search argument.

There is no limit to the amount of data that can be inserted with the S command.
However, the search argument is limited to 16 characters. If more characters are
entered for the search argument, only the first 16 are used and only the first 16 are
replaced with the new text.

When using the S command, remember that it searches to the end of the file. If you
make a typing error in the search argument and that exact string exists in the file, it
will be changed by the S command. It is a good idea to type the line just changed
until you become experienced with the command.

The format of the S command is:

Sold-text[$new-text]$$

where: , .,

S is the command code.

old-text is the character string to be searched for and to be replaced if found.
Only the first 16 characters of old-text is used.

new-text is the character string that is to replace old-text. If new-text is omitted,
the character string specified by old-text is deleted. _

3-48

ISIS-II User's Guide Working With Program Modules

Stack Segment -*

The stack segment is for the program stack and must be in RAM. Usually only a
module that contains a main routine has a reference to a stack segment. Its length is
determined by the compiler for PL/M programs and by the STKLN statement in
assembly language. You can also specify the length when the program is made
absolute by LOCATE. References to the stack segment are made with STACK (a
reserved word in assembly language) and STACKPTR (an identifier in PL/M).

Memory Segment

The memory segment is assigned to RAM memory that is not allocated to code,
data, common, or stack segments. References to the memory segment are made with
MEMORY (a reserved word in assembly language and an identifier in PL/M).
Although the language translators create a memory segment for each relocatable
object module, its length is unknown until an absolute module is produced by
LOCATE, which uses the Monitor MEMCK routine and the base address of the
memory segment to calculate the length of available RAM.

Common Segments

The common segments are used for FORT80 named COMMON areas and the
BLANK COMMON area. Common segments usually contain variables, and
therefore, are usually placed in RAM.

Absolute Information • •

In addition to the relocatable code, data, stack, common, and memory segments, an
object module can contain information with absolute addresses already assigned.
There are three ways this can happen. The ASEG statement in assembly language
causes statements following it (until a CSEG or DSEG is encountered) to have
absolute addresses. Absolute modules produced by LOCATE can be linked with
relocatable modules. PL/M variables declared with the AT attribute produce
absolute references.

It is possible to write a self-contained program in assembly language using the ASEG
statement. This results in an absolute module that can be executed directly after
assembling because the assembler output is a memory image. This approach is possi-
ble only in cases where relocation is not needed.

Modular Program Development

Most programs are too lengthy or too complex to code as a straightline program.
You can make the job simpler by designing first a main routine that calls separate
functions in subprograms. The exchange of parameters with these subprograms can
be determined during the design of the main routine. However, the actual coding of
the subprograms can be left until later. The final complete program is built from the
main routine and the subprograms by the LINK program. The advantages of this
approach to program design are summarized in the following paragraphs. .,

4-3

File Creation and Management ISIS-II User's Guide

An iterative parameter can be specified with the command. If the parameter is
positive (or unsigned) the command deletes the remaining portion of the line con-
taining the pointer and and the following lines until the command parameter is met
or the end of the file is encountered. If the parameter is negative, the command
starts at the pointer and deletes backward for the number of lines specified. ' •

The format of the K command is: '' > '

[n]K$S • " , - , - , . ,
• : ' , - " • . 'i'

where:

n specifies the number of lines to be deleted. If n is positive the deletion is per-
formed in a forward direction, and if it is negative the deletion is performed in a
backward direction. If n is omitted, 1 is assumed.

K is the command code.

K Command Examples. To delete an entire line, you must make sure the pointer is ^ J
at the beginning of the line:

*OLK$$

To delete all the characters in a line from the pointer through the carriage return and
line feed characters:

*K$$

To delete the entire line in which the pointer is located and the following three lines: ,

*OL4K$$. . .

Typing a File

You can display your file with the Type command. If you have a teletypewriter ter-
minal, the command types the text.

T - Type Command

The T command displays a line on the Console output device. You can include an
iterative parameter to display multiple lines. The parameter can be positive or
negative. If the parameter is positive, the Editor starts displaying at the pointer and
continues for the specified number of lines. If the parameter is negative, the Editor
displays the required number of lines that precede the pointer. A parameter of zero
displays from the beginning of a line to the pointer location. The T command
without a parameter displays from the pointer through the carriage return and the
line feed.

The T command does not move the pointer. - t • i _ . •

The format of the T command is: • ' ' '

[n]T$$ • , • -

3-50

ISIS-II User's Guide Working With Program Modules

Relative Addressing

The relative addresses of instructions and data in the code and data segments are
assigned by ASM80 and PLM80 when a source module is translated. The addresses
are determined by a location counter starting with zero at the beginning and
incremented by the number of bytes in each instruction. The addresses are
"relative" to the beginning of the segment.

LINK combines input modules to form one output module by combining all code
segments into one code segment and all data segments into one data segment. The
relative addresses of the first segment remain unchanged, but LINK changes the
relative addresses of the segments that follow to reflect their relationship to the
beginning of the new segment. In general this means adding the length of the first
segment to the relative addresses of the second, adding the combined length of the
first two segments to the relative addresses of the third segment, and so on.

LOCATE produces an absolute module from a relocatable one by adding the base
address of each segment to each relative address in that segment to get the absolute
address. The base address of each segment can be specified in the LOCATE com-
mand or left for LOCATE to assign.

Intrasegment References

In addition to relocating load addresses, relative addresses contained in instructions
or data items must be adjusted. If the address refers to a location in the same seg-
ment, it is called an intrasegment reference. A jump instruction that refers back
several instructions to the beginning of a loop is this kind of reference. The value put
in the address field by the translator is simply the relative or absolute address of the
location referred to. If it is a relative address, it is adjusted by LINK when segments
are combined and finalized by LOCATE by adding the base address of the segment.

Intersegment References

When an address in an instruction refers to a location in another segment of the
same module, it is called an intersegment reference. An example is an instruction in
the code segment that refers to a variable in the data segment.

When LINK combines segments to produce a new object module, intersegment
references are changed to reflect the new relative addresses of the locations in the
other segments.

LOCATE converts the relative address of an intersegment reference to an absolute
address by adding it to the base address of the segment to which reference is made.

External References and Public Symbols

When an address field in an instruction refers to a location not contained in the same
module, it is called an external reference. This reference differs from those above
because the translator knows nothing about the relative location of this symbol.
Therefore, you must declare these symbols external. They then become known as
external symbols, which means they are defined in other modules. The instructions
that refer to them are external references.

4-5

File Creation and Management ISIS-II User's Guide

The format of the E command is:

E$$ • ' '

where:

E is the command code. 'j" •

E Command Example. To save the contents of the text file on disk and exit the
Editor:

*E$$ ' ' '

Q - Quit Command
The Q command causes an exit from the Editor and returns control to ISIS-II
without saving the data in memory.

The format of the Q command is:
1 i 1

Q$$

where:

Q is the command code. ' ' ' * (< ' < •

Q Command Example. To exit the Editor and return to ISIS-II:

*Q$$
> t«' *

W - Write Command
The W command takes n lines from the beginning of the memory buffer and writes
them onto the disk. The lines that are output are deleted from memory. This
prevents the duplication of these lines when an E command is issued.

A common usage of the W command is to store part of a very large program while
still entering the end portions. Once data has been written out to disk using the W
command, it can only be brought back into memory by issuing an EXIT command
and then an EDIT command for the file.

The format of the W command is:

[n]W$$ ' ' m" -"•"'">"•"» • ^
;

where: ..' ' '

n specifies the number of lines to be output and deleted from memory. If n
exceeds the number of lines in the file, the entire file is output. If n is omitted, 1
is assumed.

t. ~ f "t '

W is the command code. , '.

W Command Example. To save the first 25 lines of the file in memory on disk:

*25W$$

3-52

ISIS-II User's Guide Working With Program Modules

The library manager program can give you a list of the modules in a library file,
including the public symbols in each module. You may want to keep all the object
modules for one program in a library, or you may want to keep modules relating to a
specific function in one library file. For example, a system library supplied with
ISIS-II is called SYSTEM.LIB and contains the object modules for linking pro-
grams to ISIS-II system routines.

Link Command

The ISIS-II program LINK allows you to combine object modules from several
input files into one object module in one output file. In the process of combining
modules LINK adjusts all addresses so they are relative to the beginning of the
segments in the output module. LINK also searches libraries for modules that
resolve external references in the modules being combined and includes them in the
output module. If any unresolved external references remain in the output module,
LINK puts a message in the map that describes the structure of the new module.

The output module must be processed by LOCATE before it can be executed. The
LOCATE program assigns absolute memory locations to the object module. The
output module can also be used as input to LINK to be combined with other
modules into a new and expanded output module.

The LINK program is called into operation by the LINK command. The syntax of
the LINK command is:

LINK <inputlist> TO <outputfile> [<controls>]

where

<inputlist> can be either or both of the following two items:

<filename> [(<modname 1 >,<modname2>,... ,<modnamen >)]

PUBLICS(<f ilename>,<f ilename2>,... ,<f ilename/2 >)

In the first item <filename> specifies a file containing object modules or a file con-
taining a library of object modules. If <filename> is not a library file, it is included
in the output module. If <filename> is a library file and <modnames> are specified,
then only the specified modules are linked into the output module. If <modnames>
are omitted and <filename> is a library, only those library modules that satisfy
external references in modules already named in the <inputlist> or already included
from the library are linked into the output module. In other words, when <mod-
names> is omitted, only those library modules that satisfy an existing unresolved
reference are included.

The second item PUBLICS specifies modules whose absolute public declarations
only are to be included in the output module. This allows for linking modules
without combining them in the output file so they can be loaded separately. See the
section on overlays in this chapter for a description of this capability.

<outputfile> specifies the file to contain the object module resulting from linking
the input modules. This file must not also be specified in the input list.

<controls> are one or more keywords that control the operation of LINK. The con-
trols are:

MAP This control requests that a link map be produced. The
link map is sent to the console output device (:CO:) or to
the file specified in the PRINT control. The content of the
link map is described later in this chapter.

4-7

File Creation and Management ISIS-II User's Guide

If you are entering a large amount of data, you can check on the amount of storage
available and, if it runs short, save the first part of the file on diskette with the W
command. , , . , - . . ! < • > i (, ,-

The format of the M command is:

M$$ ^' •" "" ' | M "~
i , ' < *»

where: • • « i . o ' i - - '

M is the command code.

M Command Examples. To check on the amount of storage available:

*M$$

Command String Iterations ; • . - •

You can repeat a command string or a single command any number of times by
enclosing the command string in angle brackets (< >), preceded by a number that
specifies the number of times the command string is to be performed.

A typical use of this capability is to meet the need to change a character string that
exists throughout the file. For example, if you have a program that uses a data field
named "XI" and you want to change all occurances of the name to something more
meaningful to anyone else reading the code. To change "XI" to "LOOPCNT"
through out the file you can use the following: ,,. , { •-

*B100<SX1$LOOPCNT$>$$

In this example, note that a B command was used first to move the pointer to the top
of the file. Also note that an ESC or ALT MODE character was used to separate
LOOPCNT from the final angle bracket. This prevents the Editor from using the
angle bracket as part of LOOPCNT.

t. -f , • , (t .),i

In the description of the A command it was pointed out that an iterative parameter
cannot be used with A command. In an example there, we used a string of 10 A com-
mands to read 500 lines from paper tape. Using this facility, the 10 A commands can
be entered as follows:

•=> s fi^^^^t-'
*10<A>$$

This is equivalent to:

*AAAAAAAAAA$$

while:

*10A$$ ' ' '

is only equivalent to:

*A$$

3-54

ISIS-II User's Guide Working With Program Modules

The REL column in the LINK map specifies the segment relocation type. The
following abbreviations are used in the REL column: .- ' ' >

B byte relocatable

P page relocatable . " •

I in-page relocatable >!•/'

A absolute or non-relocatable ;U

ISIS-II OBJECT LINKER Vx y INVOKED BY:
-LINK FILNAM EXT,PROG.LIB(TRIG),PROG.LIB,&
*PUBLICS(TANSTA.AFL) TO SHIP WRK NAME(CELESTIGATION) MAP

(Non-fatal error messages appear here.)

LINK MAP OF MODULE CELESTIGATION
WRITTEN TO FILE :FO.SHIP.WRK
MODULE IS NOT A MAIN MODULE

SEGMENT INFORMATION:
START STOP LENGTH

10BCH
22FEH

0000 H
0040H
0700H

FDOOH

10FFH
22FFH

0002H
0711H
07FFH
FDOOH

2345 H
44 H
2H

107H
75H

10F2H
3H

6D2H
100H

1H

REL

P

B
B
B
A
A
A
A

NAME

CODE
CODE
CODE
DATA
/FRED/
//
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE

GAP
GAP

•OVERLAP*

INPUT MODULES INCLUDED
:FO:FILNAM.EXT (NAVPACK)
:FO:PROG .LIB (TRIG)
:FO:PROG .LIB(EXP)

:FO:TANSTA.AFL(MCBRIDE) (PUBLICS) "'

UNRESOLVED EXTERNAL NAMES:
COSIGN—REFERENCED IN .FO:FILNAM.EXT(NAVPACK)

(Other errors appear here.)

Order of Modules in the Output File

LINK combines modules from the input list by combining all the code segments
from the input modules into one code segment, all the data segments into one data
segment, and all the stack segments into one stack segment. The length of the
memory segment is computed by LOCATE. Any absolute information in the input
modules is transferred to the output module with absolute addresses unchanged. If
absolute information is in conflict for the same location, a message to that effect is
put in the link map.

4-9

ISIS-II User's Guide Working With Program Modules

<controls> specifies one or more keywords that control the operation of
LOCATE. The controls and their default values are explained in the following
descriptions. The LOCATE controls are:

MAP ,
COLUMNS(number)
PRINT(file)
SYMBOLS
LINES
PUBLICS
PURGE
ORDER(segment sequence)
CODE(address)
DATA(address)
STACK(address)
MEMORY(address)
/common name/(address)
//(address)
NAME(name)
RESTARTO
START(address)
STACKSIZE(value)

If a LOCATE command is longer than one line on your console, (which must not be
greater than 122 characters), you can continue it by entering an ampersand (&) as the
last non-blank character before the carriage return. The ampersand cannot appear
within a filename or control keyword. It can be placed between a keyword and the
associated parameter list, for example:

STACKSIZE&
(40)

WARNING

LOCATE uses a temporary file named LOCATE.TMP on the disk to which
the output is directed. If you have a file by this name on the output disk it
will be destroyed.

'Appendix C: Error Messages" lists the LOCATE error messages. j

LOCATE Control Descriptions

MAP
The MAP control specifies that a memory map be printed on the list device. Nor-
mally, the printing of the map is suppressed. The map lists the start address for the
module, the start and stop addresses for each segment along with their length, and
relocation type.

The REL column specifies the relocation type. The following abbreviations are used
in the REL column: f , ' . , ; • ',

B byte relocatable '
P page relocatable ' ' " ' ' "
I m-page relocatable "
A absolute or non-relocatable

4-11

Working With Program Modules ISIS-II User's Guide

This diversity in memory design (as well as programming considerations explained
later) requires you to tailor your program, specifying absolute addresses for the
actual ROM and RAM locations used for code and data. However, you may not
know the absolute addresses of the ROM or RAM in your final application at the
time you start to develop the program. At an early stage of development when you
are testing your program in the system, your only concern with locating the program
is that it doesn't overlap the resident routines of ISIS-II. The system memory is
simply a sequence of RAM locations from 0 to 32K, 48K, or 64K. However, as your
program development continues and debugging becomes a prime concern, address
requirements are much more specific. Code may be in PROM starting at location 0;
variable data may begin in the first location of a block of RAM.

The program that had a base address of 4000H for compatibility with ISIS-II resi-
dent software and had variable data immediately following code, may need new
addresses to meet the requirements of the memory in the final application. In a
system that deals only with absolute code, you would have to change the source pro-
gram to specify new addresses and translate again to get object code with correct
addresses. In the relocation and linkage system of ISIS-II, you simply produce a new
absolute memory image from the relocatable object modules by using the LOCATE
program. LOCATE assigns addresses to place code in ROM or PROM, variable
data in RAM, and the stack in another area of RAM.

Program Segments

The LOCATE program allows the user to preassign areas of memory because of the
way the language translators (PLM80, FORT80, and ASM80) divide a relocatable
object module into segments. The segments are:
• Code >

• Data
• Stack
• Memory
• Named and unnamed common segments (FORT80 only)

Each segment starts with a relative address of zero. A base address can be specified
for each segment when it is being LOCATEd. The base address is the actual address
of the first memory location the segment will occupy. LOCATE adds the base
address to each relative address and adjusts address references accordingly. ^J

Code Segment

The code segment is that part of the program destined for ROM because it contains
machine instructions and program constants that are never modified during execu-
tion. This segment can also be placed in RAM. In assembly language it consists of
statements following a CSEG directive.

Data Segment

The data segment is that part of the program that usually requires RAM. It contains
variable data and storage for I/O buffers. In assembly language it consists of
statements following a DSEG directive.

4-2

ISIS-II User's Guide Working With Program Modules

The following is a sample symbol table:

SYMBOL TABLE OF MODULE TRIG
READ FROM FILE TRIG REL
WRITTEN TO FILE TRIG

VALUE TYPE SYMBOL

MOD TRIG
3011H PUB SIN

3015H SYM SIO
3027H SYM SI1 '
3040H SYM TRIGEX

3063H PUB COS
3102H PUB TAN

3230H SYM TANO
3340H LIN 272

LINES

The LINES control specifies that a list of the line numbers and input module names
from the program is to be included in the symbol table in the list file Line numbers
have the type LIN and module names have the type MOD The VALUE field is
blank for module names in the symbol table. Normally, the printing of the symbol
table is suppressed.

PUBLICS l 'l

The PUBLICS control specifies that a list of symbols declared public is to be
included in the symbol table. Public symbols have the type PUB. Normally, the
printing of the symbol table is suppressed

PURGE
The PURGE control specifies that line numbers, local symbols, module names, and
public symbols be removed from the output module Public symbols could be used,
if present, to link the absolute module with other modules Line numbers, local sym-
bols, and module names could be used for debugging The PURGE control con-
denses the size of a module that is completely debugged This results in saving disk
space and decreasing load time

ORDER(segment sequence)
The ORDER control defines the order in which the various segments are assigned
memory locations. The list of segments in the segment sequence parameter must be
separated with spaces.

o«i-* ' i , * ri

If ORDER is not specified, the segments are located in the following order:

CODE
STACK
/commons/ (named and unnamed commons in an arbitrary order)
DATA • /j- i r j a
MEMORY

This default order can be changed with the ORDER control. LOCATE determines
the addresses at which the segments reside but it is done in the order specified by the
control.

4-13

Working With Program Modules ISIS-II User's Guide

Faster Program Development

Your program can be developed faster if the modular approach is used because
small modules are easier to understand and simpler to program. Breaking a program
up into functional modules makes it possible to assign the pieces to a team of
developers. With the specific tasks well defined, you can concentrate on program-
ming and testing a specific module. You can supply the input required by the module
and verify it by examining the output. As the modules are debugged, they can be put
in a library file using the LIB program. When all modules are ready, the LINK pro-
gram is used to combine the modules into one complete module, which can then be
assigned absolute memory addresses by LOCATE.

Use of Different Source Languages

The modules that make up the final program need not be translated from the same
language. PL/M, FORTRAN, or assembly language can be used, whichever suits
the task best. Relocatable modules produced by the compiler, the assembler, or both
can be input to LINK to build a program.

Shared Subprograms

When modules of one program have been tested they can be used by other pro-
grams. This means that part of the job of future programming is already done.
Because the module has relocatable addresses, it can be combined with different
programs, having different address requirements each time.

Easier Debugging and Program Modification

It is easier to narrow down the location of a bug when a program is divided into
modules. When you have identified the module containing the error, you can con-
centrate on debugging that module. When a program must be modified, it may
mean that only one or two modules must be changed or added. When the new or
changed modules have been translated and debugged, a new absolute memory image
can be created simply by using LINK and LOCATE rather than retranslating the
entire source program.

Mechanics Of Relocation And Linkage

LINK is able to combine modules, adjusting relative addresses, and LOCATE is
able to convert relative addresses to absolute addresses because of information put
in the object modules by the translators, ASM80, PLM80, and FORT80. The
following types of information in the object module are used by LINK and
LOCATE:
• Relative addresses of instructions and data.
• A list of address fields in instructions or data that refer to a location in the same

segment (intra-segment references).
• A list of address fields in instructions or data that refer to locations in other

segments in the same module (inter-segment references).
• A list of address fields in instructions or data that refer to locations not

contained in the same module (external references).
• A list of symbols in the module that are declared public or external in the source

code.
You should understand external references and declaring symbols public and exter-
nal to successfully use LINK and LOCATE. However, an understanding of the
other topics in this section is not as important. It is provided here to give a complete
picture of the mechanics of relocation and linkage.

4-4

ISIS-II User's Guide Working With Program Modules

preparing an absolute module for execution in your prototype system, either the
standalone system or the system being emulated with the in-circuit emulator. When
the RESET signal is input to the CPU, the program counter is set to 0 and execution
begins with the jump to the beginning of your program. An absolute module
prepared with the RESTARTO control is not compatible with ISIS-II, which does
not allow user code to be loaded in locations 0, 1, or 2. The RESTARTO control is
ignored if the input module is not a main module.

START(address)

The START control specifies the address of the first instruction in the code segment
to be executed. This address overrides the address in the input module. If START is
omitted, the address is taken from the input module. The START control is ignored
if the input module is not a main module. _,

STACKSIZE(value)

The STACKSIZE control specifies a value (in bytes) for the size of the stack seg-
ment. This value overrides any calculated stack size encountered in the input
module.

When debugging a program in an Intellec microcomputer development system, 12
additional bytes of user stack are required beyond that computed by the language
translator or LINK. LOCATE adds these 12 bytes if the STACKSIZE parameter is
not specified.

How LOCATE Locates Segments

Module segments are normally located sequentially in memory in the order:

CODE segment
STACK segment
/commons/segments (in an arbitrary order) - ,
DATA segment , ,
MEMORY segment , ., .

You can change the order with an ORDER control and with the CODE, STACK,
/common/, //, DATA, and MEMORY controls. You can change the order by using
the default order in conjunction with the ORDER control and the segment controls
specifying an exact address.

Locating With The Default Order

When you use the default order, the CODE segment is located 680H bytes above the
top of ISIS-II and the rest of the segments immediately follow in order. Gaps are
generated only when required by the relocation type of the segment.
• Byte relocatable (BR) segments are located at the first available byte.
• Page relocatable (PR) segments are located at the first available byte that lies on

a page boundry (a multiple of 256 (100H) bytes).
• In-page relocatable (IP) segments are located at the first available byte such that

the segment is totally contained within a page. ' > " '

4-15

Working With Program Modules ISIS-II User's Guide

The module containing an external reference is said to be an "unsatisfied" module
or is said to contain an "unsatisfied" external reference. LINK combines this ~~>
module with the module that contains the proper "connector". This connector i s a ^ J
public symbol that matches the external symbol. A public symbol is a symbol
declared to be public in the source module and put in the object code with its address
by the translator. ,. ,

When LINK "connects" two modules by matching an external symbol to a public
symbol, the value of the public symbol (its relative or absolute address) goes in the
address field of the instruction that refers to it. Then LINK removes the external
references. It is replaced with an intersegment or intrasegment reference if the public
symbol has a relative address. If the public symbol has an absolute address, nothing
replaces the external reference because no further address adjustment is required.

*
If the module that LINK produces contains unsatisfied external names, L I N K issues
a warning message about each one. This module must be linked again wi th modules
containing the matching public symbols in order to produce a satisfied module. The
unsatisfied external name messages from LINK do not indicate that an error exists.
In intermediate steps of development before all modules of the program are com-
plete, you can expect LINK to produce these messages. Also, if you have declared a
name external but never make a reference to it in your program, L I N K produces an J
unsatisfied external name message even though no unsatisfied external reference
exists.

This points up the fact that you should have some way of identifying the state of the
object code in a file. Saving the memory maps from a LINK and LOCATE is one
way of keeping track; using an extension in the filename that reflects the type of con-
tents is another way. . • -

When a module contains no external references, it is said to be "satisfied". The
public symbols are not removed from the object module because they may be needed
later if a new module is added that has an external reference to one of the public ^—^
symbols.

If LOCATE finds an external reference in an object module it is processing, it issues
a warning message but continues to produce the absolute module. The absolute
module can be executed, perhaps in debug mode with a breakpoint specified to stop
processing before the instruction containing the unsatisfied external reference is
reached. If that instruction is executed, results are unpredictable because the address
in the instruction is undefined.

Use of Libraries

Libraries make your job of building programs from object modules via the LINK
program even easier. The library manager program LIB creates and maintains files
containing object modules. LIB creates a directory of the modules in each library
file to keep track of the modules it contains.

The LINK program treats library files in a special way. If you specify a library file as
input to LINK after specifying the modules to be included, LINK searches the
library for modules that contain public symbols to match the unresolved external
references in the preceding modules. If a module from the library is included but it
also has unresolved external references, LINK searches the library again trying to
find the module with the public symbols to satisfy the new external references. This
process is repeated until a search has been made to satisfy all external references.

4-6

ISIS-II User's Guide Working With Program Modules

The DATA segment is located 680H bytes above the top of ISIS-II and STACK is
located immediately following DATA. CODE is located next, but instead of being
placed immediately following STACK it is placed at address 6000H as specified by
the CODE control. The /commons/ (if any) immediately follow CODE and
MEMORY follows the /commons/. In other words, the segments are still located in
the sequence specified by the default order and the ORDER control but the locations
are modified by the individual segment location controls.

If you are going to locate some segments at specific addresses and let LOCATE
place the rest, you should use the ORDER control to modify the default sequence so
that segments are located in an order that corresponds with the specific addresses in
the controls. If you aren't careful, conflicts can occur. Be sure to specify the MAP
control, to verify that segments are placed as intended. Conflicts do not stop the
LOCATE function, because there are circumstances where you will want apparent
conflicts such as the location of an absolute segment in an internal gap in a segment.

When you want to locate FORTRAN common segments to specific addresses, you
should also locate the MEMORY segment to an address above the top of the highest
common segment. LOCATE handles the common segments in an arbitrary order.
You will not know ahead of time what order the common segments will be handled
by the command. If the common segment that you place at low memory is the last
one handled by LOCATE, the MEMORY segment will immediately follow it and
will conflict with all segments above it.

LIB Command

WARNING

LIB uses a temporary file named LIB.TMP on the disk to which the output
is directed. If you have a file by this name on the output disk it will be
destroyed.

The ISIS-II LIB program allows you to create specially formatted files to contain
libraries of object modules, to maintain these libraries by adding and deleting
modules, and to obtain a listing of the modules in a library file. Libraries can be
used as input to LINK, which may automatically link modules from the library that
satisfy external references in the modules being linked.

The library manager program is called into operation by the LIB command. The
syntax of the LIB command is:

LIB
f i~ ' . ' s :. !3£.< ,

The operation of LIB is controlled by entering commands to indicate which opera-
tion LIB is to perform. LIB prompts for commands with an asterisk (*). The com-
mands are:

CREATE • • • " ' ' ' i-
ADD
DELETE
LIST
EXIT ' • '

4-17

Working With Program Modules ISIS-II User's Guide

NAME(<modname>) This control specifies the name to be assigned to the output
module. The name can be from 1 through 31 characters,
each of which must be a letter (A through Z), a digit (0
through 9), a question mark (?), or a commercial at sign
(@). However, the first character of the name cannot be be
a digit. If NAME(modname) is not specified, the name
part of the output file specification is used as the module
name.

PRINT(<filename>) This control specifies the file to contain the link map. If
omitted, the link map goes to the console output device

If a LINK command is longer than one line on your console (which must not be
greater than 122 characters), you can continue it by entering an ampersand (&) as the
last non-blank character before the carriage return. The ampersand cannot appear
within a filename or control keyword. It can be placed between a keyword and the
associated parameter list, for example:

PRINT&
(:F1:PRTFIL)

is a valid use of the continuation character. LINK prompts for the continued line
with a double asterisk (**). If necessary, subsequent lines can be continued also.

WARNING

LINK uses a temporary file named LINK.TMP on the disk to which the output s—^
is directed. If you have a file by this name on the output disk, it will be
destroyed.

"Appendix C: Error Messages" lists the LINK error messages.

Link Map

The link map produced by LINK includes the following information:

• The LINK sign-on message.
• The command used to call LINK (unless map is output to :CO:).
• The length of the relocatable segments in the output module.
• The addresses of absolute information in the output module.
• The names of the input modules.
• Unresolved external names.
• Non-fatal error messages.

The following example shows a link map for the output module contained in the file
SHIP.WRK, which was produced from two modules explicitly listed in the input
list, a module included from searching a library to resolve external references, and
the public symbols of a fourth module.

4-8

ISIS-II User's Guide Working With Program Modules

LIST-List Library Modules and Their Public Symbols . • !"

The LIST command lists the module directory of the library file. The syntax of the
LIST command is:

LIST <libfile>[(<modname>,...)][,...] [TO <listfile>] [PUBLICS]

where

<libfile> is the name of the library file whose entire module directory is to be
listed unless <modname> is also specified. In that case, only information about
the specified modules is listed.

<listfile> is the name of the file to contain the library listing. If omitted, the
directory is listed on the current console output device (:CO:).

PUBLICS specifies that public names in each module are to be listed. If omit-
ted, only the module names are listed.

>c -
The format of the listing when public names are requested is:

*LISTTEST.LIB PUBLICS

TEST LIB
OPEN

NOREX
ABEX

REDUCE
HEX
OCT
DATUM

CLOCK
TIME
LAPSE
CYC

public names
•module names
• library name

EXIT-Return to ISIS-II

The EXIT command returns control to ISIS-II. When finished with LIB, enter the
EXIT command, followed by a carriage return. This terminates the LIB program
and returns control to ISIS-II, which prompts for a command with a hyphen (-).

Example : The following example shows the creation of a library file and the entry
in the library of two modules. The directory of the library is listed before exiting to
ISIS-II.

-LIB
ISIS-II LIBRARIAN Vx y
•CREATE FOO LIB
•ADD SIN OBJ,COS OBJ TO FOO LIB
•LISTFOO LIB

SINE !

COSINE
•EXIT

"Appendix C: Error Messages" lists the LIB error messages.

4-19

Working With Program Modules ISIS-II User's Guide

The order of combining follows the order in which modules are specified in the input
list. The first module specified is the first in order in combining. The segments of the
second module follow the segments of the first module at the first available location.

Example : The following LINK command and explanation shows how modules are
combined.

LINK A,B TO C •' ' i , • . , n -

Module A contains code, data, and stack segments. Module B contains code and
data segment. They are all byte relocatable. The resulting module C has the follow-
ing structure

CODE
SEGMENT

DATA
SEGMENT

STACK
SEGMENT

MEMORY
SEGMENT

FROM
MODULE A

FROM
MODULE B

FROM
MODULE A

FROM
MODULE B

FROM
MODULE A

LENGTH
DETERMINED

BY
LOCATE

AT»
306-1

In the process of linking the input modules, external references are satisfied. For
instance, if module A has a branch to a point in module B, it is no longer external
when A and B are combined into C. If A or B has an external reference to a module
in a library file, the library must be specified in the input list after the module that
refers to it. Suppose the library file RTNS.LIB contained a module that satisfied an
external reference in A. Then the input list could be specified A,RTNS.LIB,B or
A,B,RTNS.LIB. "Appendix C: Error Messages" lists the LINK error messages.

Locate Command

The LOCATE program takes an input file containing a relocatable object module
and produces an output file containing the object module with the relative addresses
fixed to absolute locations. The LOCATE program is activated by the LOCATE
command. The syntax of the LOCATE command is:

•M ' ' ' i?

LOCATE <inputfile> [TO <outputfile>] [<controls>]

where:

<inputfile> is the name of the file containing the relocatable object code.

<outputfile> is the name of the file that is to contain the absolute object
module. If TO <outputfile> is omitted, it uses the filename portion of
<inputfile>. If a file already exists with the same name as specified by
<outputfile> (or the defaulted name), it is overwritten with the new data. If
<outputfile> is not specified, <inputfile> must consist of a filename and exten-
sion because the default name for the output file is the filename (without exten-
sion) from <inputfile>. •:„.-: .:-< •

4-10

ISIS-II User's Guide Working With Program Modules

All the pieces of this overlay structure must be in separate files because they are
loaded separately. The root calls A and B; A calls AA and AAA. If you locate the
root first, you can use the memory map produced by LOCATE to determine the
base address of A and B. Then locate A and B. Use the memory map produced by
LOCATE for A to determine the base address of AA, AAA. The modules produced
by LOCATE have absolute memory addresses assigned but external references are
unsatisfied. These modules cannot be loaded into memory for execution but can be
used with the PUBLICS keyword in the linking process. , [V

Suppose the modules produced by LOCATE were given the extension of TMP. Sup-
pose the root has external references to public symbols in A and B; A has external
references to public symbols in the root, AA, and AAA; AA and AAA have external
references to public symbols in A; B has external references to public symbols in the
root. Then the following LINK commands would produce the satisfied modules
ready to execute.

LINK ROOT.TMP,PUBLICS(A.TMP,B.TMP) TO ROOT
LINK A TMP,PUBLICS(ROOT TMP,AA TMP,AAA TMP) TO A
LINKAATMP,PUBLICS(A.TMP)TOAA
LINK AAA TMP.PUBLICS(A.TMP) TO AAA
LINK B TMP,PUBLICS(ROOT TMP) TO B

The modules ROOT, A, AA, AAA, and B are absolute because of the previous
LOCATE operation and fully satisfied because of the above LINK operation. They
are connected but not combined.

To verify that all external references are satisfied in the modules produced by LINK,
you can LOCATE them again. This time LOCATE should produce no message
about unsatisfied external differences.

When you link without combining to produce overlays, you must provide
overlay management in the design of your system. That is, before your pro-
gram makes a reference to an overlay segment, it must make sure that seg-
ment is in memory. If not, the segment must be read into memory. When a
segment in memory contains new data that must be saved, it must be written
out before it is overlaid with another segment. The ability to link without
combining provides the hooks for an overlay scheme. The runtime manage-
ment of overlays must be designed into your software.

Memory Pages and the H and L Registers

Relocation types are provided for programs that reference memory by manipulating
the H and L registers independently. (See the 8080/8085 Assembly Language Pro-
gramming Manual 9800301, for a description of the HIGH and LOW operators.)
You can store data on a page boundary and address elements in it by changing only
the L register. If the data does not cross a page boundary, you do not have to change
the H register at all.

However caution must be used if the HIGH operator is used on an arbitrary address
in relocatable code, you may get an incorrect address because LOCATE assumes the
unused portion of the address to be zero. If the unused portion of the address is not

4-21

Working With Program Modules ISIS-II User's Guide

When a segment overlaps another segment, a warning, (OVERLAP) is printed in the
map. This does not stop the locate function This may be intentional, as in the sam-
ple map. The three byte absolute segment is designated to fit into the data segment.

The following is an example of a memory map:

ISIS-II OBJECT LOCATERVxy INVOKED BY
-LOCATE TRIG REL MAP PRINT(CO) NAME(TRIG)

MEMORY MAP OF MODULE TRIG
READ FROM FILE FO TRIG REL
WRITTEN TO FILE FO TRIG " ' '' (

 > r< '
MODULE START ADDRESS 3000H t . ' ' •

START STOP LENGTH REL NAME

0008H
3000 H
3440 H
3630H
472 F H
4760H

OOOAH
343FH
472EH
3632 H
475FH
F6BFH

3H
440H

12EFH
3H

31H

AF60H

A
B

B
A
B

B

ABSOLUTE
CODE
DATA
ABSOLUTE (MEMORY OVERLAP)
STACK
MEMORY

WARNING

The length of the MEMORY segment is always computed to be the amount
of available memory on the host Intellec development system. If the module
is executed on the Intellec system, the MEMORY segment length is correct
as specified. If the module is executed on a different system the actual
amount of memory depends on the configuration of that system. LOCATE
has no knowledge of the configuration of the target system

COLUMNS(number) ' ' •>•. • > u/

The COLUMNS control specifies whether the symbol table in the list file is to be
printed m 1, 2, or 3 columns. The default is 1 This control is ignored unless SYM-
BOLS, LINES, or PUBLICS is specified.

PRINT(file)
The PRINT control specifies a list file for the LOCATE program output. If the
PRINT control is not specified, the output goes to the console output device (:CO:).

SYMBOLS 3 '
The SYMBOLS control specifies that a list of local symbols (within a module) and
input module names is to be included in the symbol table in the list file. Normally,
the printing of the symbol table is suppressed. Local symbols are listed in the table
with a type of SYM and module names have the type MOD. , ^,3 •>

4-12

CHAPTER 5
USE OF ISIS-II AND THE MONITOR

BY OTHER PROGRAMS

Writing programs that make use of ISIS-II and Monitor capabilities is the same as
writing any other program except that the program includes ISIS-II or Monitor
system calls. The placement of your program in memory must take into considera-
tion how memory is organized under ISIS-II.

Line-editing is available to ISIS-II programs. It allows you to correct errors at the
keyboard so that an error free line can be transmitted to the requesting program.

Memory Organization And Allocation

The organization of Intellec memory under ISIS-II is shown below. Interrupts 0
through 2 are reserved for ISIS-II and the Monitor. Interrupts 3 through 7 are
available for use within your program. These locations, 24-63, are the only locations
below 12K (3000H) that can be loaded with user code. Loading other locations below
12K is not allowed.

The ISIS-II resident area is reserved for the part of ISIS-II that is always resident in
RAM memory. Although the ISIS-II resident area is protected from a program load
operation, it is not protected from an executing program, which may accidentally
destroy the integrity of ISIS-II by writing in this area, causing subsequent errors
when system services are requested.

The buffer area is used by ISIS-II for input/output buffers of 128 bytes each. One
permanent buffer is used by ISIS-II for console input/output. Other buffers are
allocated and deallocated dynamically for you by ISIS-II according to the input/
output requirements of your program. The minimum size of the buffer area allows
for three buffers, including the ISIS-II permanent buffer. If more than two buffers
are required by your program, the buffer area increases at the expense of the vacant
area.

t
MONITOR

64K (FFFFH)

62K (F800H)

PROGRAM AREA
AND ISIS

NONRESIDENT AREA

VACANT AREA

BUFFER AREA

ISIS RESIDENT AREA

USER INTERRUPTS 37

ISIS INTERRUPTS 0,1,2

PROGRAM BASE ADDRESS > - 3180H

TOP OF BUFFER AREA > = 3180H

BUFFER BASE ADDRESS = 3000H

LOCATIONS 24-63 (18H-3FH)

306-3

5-1

Working With Program Modules ISIS-II User's Guide

A partial list can be specified in the ORDER control. When a partial list is specified,
the segments specified are located first in the order specified. The remaining
(unspecified) segments follow in the default sequence. For example, the control:

ORDER(DATA)

results in the sequence: DATA, CODE, STACK, /commons/, MEMORY (assum-
ing all segment types exist in the module.)

The first segment is located 680H bytes above the top of the ISIS-II code (3680H).
This allows room for 13 input and output buffers (six open files and :CO: and :CI:).
You can also change the order with the CODE, STACK, /name/, //, DATA, and
MEMORY controls by specifying a specific address at which each will reside. The
section "How LOCATE Locates Segments," following the control descriptions
describes how the default order, ORDER control, and specific address controls
interact to locate segments.

j

CODE(address)
DATA(address)
STACK(address) '•*-'* !

/common name/(address) i , „ -- ' >
//(address) , , , , „ , T
MEMORY(address)) f _ ' " " ' ''}[''

The segment locations can be specified explicitly with the segment controls. The con-
trols are specified with the address. The address can be in decimal, hexadecimal,
octal, or binary. The address must begin with a digit and may be followed by a letter
specifying the base of number: ^ - , •,

Decimal - D or omitted • • • . i •>•'! ' ' '
Hexadecimal - H -1. r . n
Octal -O or Q , - ,
Binary - B

The specified addresses of some segments may be changed by LOCATE. If because
of the addressing within a segment, it must reside at or between 256 byte multiples of
memory, the Locate program will make the adjustment.

The section "How LOCATE Locates Segments," following the control descriptions
describes how the default order, ORDER control, and specific address controls
interact to locate segments.

NAME(name)
The NAME control specifies a name for the output module. The name can be from 1
through 31 characters, each of which must be a letter (A through Z), a digit (0
through 9), a question mark (?), or a commercial at sign (@). However, the first
character of the name cannot be a digit. If NAME is not specified, the name in the
header record of the input file is used.

•3* T •

RESTARTO
The RESTARTO control places a jump instruction at locations 0, 1, and 2 in the
absolute module. The address in the jump instruction is the programs starting
address (the address of the first instruction to be executed) taken from the input
module or from the START control. You would use the RESTARTO control when

4-14

ISIS-II User's Guide Use of ISIS-II and the Monitor by Other Programs

If you want to cover the possibility of the program being called from a SUBMIT file
where the console output device is also a disk file, four more buffers are needed,
requiring an address of 3480H:

3000H + (128*9) = 3480H.] \ , ,x ,

Example 2: Suppose a program opens a line-edited disk file (3 buffers), an echo file
on disk (2 buffers), and also changes the attributes of a disk file with the ATTRIB
system call while the files are open (2 buffers). The program origin point is
calculated as follows:

3000H + (128*8) = 3400H.

NOTE
If you want to write a program independent of the type of device used for

data transfers and independent of how it is called (from the console or from
a SUBMIT file), you should allow for the maximum number of buffers it
might need. This means that for any open file you would allow two buffers
whether or not it is a disk file. You would also allow five buffers for the
console input and output files, whether or not they are disk files.

Line-Edited Input Files > . • • . . • •
ISIS-II provides a special way of reading ASCII files called line-editing. Line-editing
was designed for (but not restricted to) the case of a human user, prone to err, typing
characters at a keyboard. The rubout key and control characters allow him to cor-
rect his mistakes and then transmit a perfect line by typing a carriage return to which
a line feed is appended automatically.

ISIS-II is notified that a file is to be line-edited by a parameter in the OPEN system
call. Associated with every line-edited file is a file to which ISIS-II sends an echo of
the input. The echo file must be opened before the line-edited file. If no echo is
desired, the byte bucket file :BB: can be specified as the echo file.

Terminating a Line

While a line is being physically entered from an input device, it is accumulated by
ISIS-II in a 122-character line-editing buffer. The contents of the buffer are altered
by ISIS-II when an editing character is entered. See explanation of editing characters
below. No data is transferred to the requesting program until the line is terminated
in one of three ways:
• A line feed is entered (automatically appended to every carriage return).

• An escape is entered. ^v""-??
• A non-editing character is entered as the 122nd character.

•*' *4

Reading from the Line-Edit Buffer

When the line has been terminated, a READ system call transfers data from the line-
editing buffer to the requesting program's buffer. ISIS-II maintains a pointer to
keep track of what characters have been read from the line-editing buffer . For exam-
ple, if the line-editing buffer contains 100 characters and a READ system call with
COUNT=50 is issued, the first 50 characters are transferred to the program's buffer
and the buffer pointer is moved to the 51st character. The next READ system call
transfers characters starting at the 51st character. •-

5-3

Working With Program Modules ISIS-II User's Guide

Locating With the Default and ORDER Control

You can change the order totally with the ORDER control. When you specify all
segments in the ORDER control the first segment is located 680H bytes above the
top of ISIS-II and the rest of the segments immediately follow in the order specified.
Gaps are generated only when required by the relocation type of the segement.

If you don't specify all the segments in the ORDER control:

• First, the segments specified in the ORDER control are located in the order
specified.

• Next, the segments not specified in the ORDER control are located immediately
following the last segment specified, in the default order.

If you submit the following ORDER control with the LOCATE command:

ORDEFUDATA STACK,

the segments will be located in the following order:

DATA
STACK
CODE
/commons/ (if FORTRAN)
MEMORY

Locating With the Default, ORDER Control,
and Specific Addresses

? t 4 ' '

You can change the order with a combination of the default order, an ORDER con-
trol, and specific segment location controls. You should not specify a segment in the
ORDER control and with a segment location control. When all three forms of
locating are used, segments are located according to the following:

• Segments are selected for placement in the order specified by the ORDER N—J
control and the default sequence as described in the preceding section.

• The starting address of a segment is either the address following the preceding
segment (680H above ISIS-II for the first segment) or the address specified in a
location control. v

If the LOCATE command is submitted with the following controls: «'"-

*ORDER(DATA STACK) CODE(6000H)

the segments are placed in the sequence:
*,

DATA
STACK s •• '
CODE •' A- ; < - • - .
/commons/ , , , « - , •
MEMORY * - x_y

4-16

ISIS-II User's Guide Use of ISIS-II and the Monitor by Other Programs

For example, suppose the following command has been entered:

-TYPE F1 PROGA SRC(CR-LF) . < ! •

The line-editing buffer for :CI: contains 20 characters as follows (the CR means car-
riage return, LF means line feed):

T

1

Y

2

P

3

E

4 5 6 7

1

8 9

P

10

R

11

0

12

G

13

A

14 15

S

16

C

17

R

18

CR

19

LF

20

When the TYPE program is loaded, the buffer pointer is at the fifth character (the
space following TYPE). A READ call starts transferring characters at the f i f th
character. New input from :CI: to the line-edit buffer does not happen until the buf-
fer pointer is moved to the end of the buffer (after the 20th character) and a READ
call is issued.

' " J!.' ' y ^' • ! i. ' » tu l'

Remember that when control is passed to the loaded program, the buffer pointer is
positioned after the command name, not at the end of the buffer . This means that if
no parameters are passed, the first READ from :CI: returns the carriage return-line
feed left from the command line. For example, suppose the following command has
been entered:

—PROGA BIN(CR—LF) ' ' '
1*. . (f*

and the line-editing buffer contains 11 characters as follows: * " ' "

p

1

R

2

O

3

G

4

A

5 6

B

7

I

8

N

9

CR

10

LF

11

When PROGA.BIN is loaded, the pointer is at the carnage return. If subsequent
input is expected from the console input device, a READ must first be issued to clear
the buffer of the carriage return-line feed. •' • '

If the program does not read from :CI:, the remaining carriage return-line feed is
cleared by ISIS-II from the buffer before a new command is read by the command
interpreter.

Summary Of System Calls

The ISIS-II and Monitor services that can be called by your program include the
following:

• Input/output operations for the disk and the standard Intellec peripherals,
except the Universal PROM Programmer (OPEN, CLOSE, READ, WRITE
SEEK, RESCAN, SPATH).

• Disk directory maintenance (ATTRIB, DELETE, RENAME, GETATT,
GETD).

• Console device assignment and error message output (CONSOL, WHOCON,
ERROR).

• Program loading and execution and return to the supervisor (LOAD, EXIT).

5-5

Working With Program Modules ISIS-II User's Guide

Continuation Lines ' '

If a command to LIB is longer than one line on your console (which must not be
greater than 122 characters), you can continue it by entering an ampersand (&) as the
last non-blank character before the carriage return. The ampersand cannot appear
within a filename or control keyword. It can be placed between a keyword and a
parameter, for example:

DELETE PVT.LIB& ' '" ' '"L ''
(MOD1) '

LIB prompts for the continued line with a double asterisk (**). If necessary, subse-
quent lines can be continued also.

CREATE - Create a Library File

The CREATE command creates an empty library file. You must use the ADD com-
mand to add modules to the library file. The syntax of the CREATE command is:

CREATE <filename>

where

<filename> specifies the name to be assigned to the new library file. If a file
with that name already exists, an error message is sent to the console and LIB
prompts for another command.

ADD - Add Modules to a Library File

The ADD command adds object modules to a library file. The syntax of the ADD
command is:

ADD <filename>[(<modname>,...)] [,...] TO <libfile>

where

<filename> can be the name of a library file or the name of a file containing an
object module. If a library file is specified, all the object modules contained in it
are added to <libfile> unless <modnames> are specified. ,j, (• ? . , * ' • ;

<modnames> can be specified only if <filename> is a library file. Only the
object modules specified by <modnames> are added to <libfile>. , , . . , .

<libfile> is the library file being modified by the addition of modules in
<filename>.

DELETE - Delete Modules from a Library File

The DELETE command deletes modules from a library file. The syntax of the
DELETE command is:

DELETE <libfile> (<modname>,...)

where •

<modname> specifies the object module to be deleted from <libfile>. , , -

4-18

ISIS-II User's Guide Use of ISIS-II and the Monitor by Other Programs

The ISIS entry point is defined in a routine in SYSTEM.LIB that must be included
in your program. Use LINK, specifying the name of your program followed by the
name SYSTEM.LIB. See Chapter 4 for more information on LINK. '

System call identifying numbers can be defined in EQUATE statements before they
are referenced in your program. This allows you to reference these calls symbol-
ically. Only the specific system calls needed by your program need be defined. The
following table lists the identifying numbers for the system calls.

SYSTEM CALL IDENTIFIER

OPEN 0 '"
CLOSE 1 ' 1 '

DELETE 2
READ 3

WRITE -4,
SEEK 5 .
LOAD / « 6

RENAME „ 7
CONSOL 8
EXIT 9

ATTRIB 10

RESCAN . 11« , , .
ERROR 12
WHOCON 13 ^ ,
SPATH 14

File Input/Output Calls

Six system calls are available to your program for controlling file input/output.
These subroutines let you open files for read or write operations, move the pointer in
an open file, and close the files when you're finished. These data transferring ser-
vices of the supervisor transfer variable-length blocks of data between standard
peripheral devices and a memory buffer area in your program. In addition to the
data transfer buffer in your program area, the disk supervisor requires two 128- byte
buffers for each open disk file. This buffer is located in the buffer area described in
the memory layout in Memory Organization and Allocation. These calls establish
and maintain the MARKER and LENGTH quantities associated with the file being
operated upon.

System Calls Cautions

Since some ISIS-II system calls reference monitor routines, you should not mix
monitor routine calls with system routine calls, or unpredictable results may occur.

When an interrupt occurs, the location of program execution is saved. If you issue a
system call as part of an interrupt service routine, this location information will be
lost, with unpredictable results.

ISIS-II references files by number (AFTN, or active file table number). Be careful
not to confuse the AFTN with the PL/M construction .AFTN. The period (.)
specifies the address where AFTN is stored.

Good programming practice suggests frequent STATUS checks when making
frequent system calls. Refer to the TYPE program in Appendix D for an example of
how status checks are used.

5-7

Working With Program Modules ISIS-II User's Guide

Program Overlays And Linked Loading >, ''.« • •« - " 2 .

When a program is larger than the available memory space, it is necessary to link
modules without combining them into one module. Thus during execution when
part of the program is no longer needed, another part can be loaded in the same area
of memory, overlaying the part not needed. Under ISIS-II, programs or parts of
programs to be loaded separately must be in separate files. The first load can be
done by entering the name of the file as a command. The subsequent loads are done
from a program with the LOAD system call or an I/O routine.

In the typical use of LINK and LOCATE, modules with external references are com-
bined with modules that have matching public symbols to produce a module with no
unsatisfied external references. In linking without combining, the external
references must still be satisfied; that is, they must know the addresses of their mat-
ching public symbols. Using the keyword PUBLICS before a list of modules tells
LINK that the modules are not to be combined in the output module but used only
to supply the addresses of their public symbols.

In this way the external references of modules listed earlier in the input list are
satisfied. For example,

LINK A,PUBLICS(B,C) TO A.SAT

results in a module A.SAT whose external references to symbols contained in B and
C are satisfied. However, modules B and C must be absolute modules because LINK
must know the absolute addresses of the public symbols. Therefore the typical use of
LINK before LOCATE is reversed. You must LOCATE modules B and C first ,
creating modules with absolute addresses but perhaps with unsatisfied external
references. The module created in this way can be considered a temporary module
used only to supply addresses of public symbols needed by other modules.

Consider the following example. A root segment calls segment A and later calls seg-
ment AA, then segment AAA overlays AA. A diagram of this overlay structure
follows where the vertical lines indicate a division in time (segments A and B are not
in memory at the same time) and the horizontal lines indicate a division in memory
space. '

AAA

ROOT

306 2

4-20

ISIS-II User's Guide Use of ISIS-II and the Monitor by Other Programs

Assembly Language OPEN Call Example

OPEN
EXTRN
EQU

ISIS
0

;LINK TO ISIS ENTRY POINT
;SYSTEM CALL IDENTIFIER

MVI
LXI

CALL
LDA
ORA
JNZ

C.OPEN
D,OBLK

ISIS
OSTAT
A
EXCEPT

;LOAD IDENTIFIER
;ADDRESS OF PARAMETERS
.BLOCK

;TEST ERROR STATUS

;BRANCH TO EXCEPTION .
;ROUTINE

OBLK: ;PARAMETER BLOCK FOR OPEN
DW OAFT ;POINTERTOAFTN
DW OFILE ;POINTER TO FILENAME

ACCESS: DW 1 ;ACCESS, READ = 1, WRITE = 2,
;UPDATE = 3

ECHO: DW 0 ;IFECHO<>0,
;ECHO = AFTNOF
;ECHO OUTPUT FILE

DW OSTAT ;POINTER TO STATUS

)

OAFT: DS 2 ;AFTN (RETURNED)
OSTAT: DS 2 .STATUS (RETURNED)
OFILE: DB ':FO:FILE.EXT ' ;FILE TO BE OPENED

READ - Transfer Data From File to Memory
The READ call transfers data from an open file to a specified memory location
specified by the calling program. See "Line-Edited Input Files" for information
concerning reading of line-edited files.

A parameter list of five variables must be passed with the READ call:
• The AFTN of a file that is open for input or update. The AFTN is returned by a

preceding OPEN call or is 1 for :CI:.
• The address of a buffer to contain the data read from the open file. The buffer

must be at least as long as the count described below. If the buffer is too short,
the memory locations that follow the buffer will be overwritten.

• The number of bytes (count) to be transferred from the file to the buffer .
• The address of a memory location in which ISIS will store the actual number of

bytes successfully transferred. The same number is added to MARKER. The
actual number of bytes transferred is never more than the number specified in
the count parameter, above. For line-edited files, the actual number of bytes is
never more than the number of bytes in the line-edit buffer. When a file is not
line edited, the number of bytes is equal either to count or to LENGTH minus
MARKER, whichever is fewer. If COUNT = 0, then ACTUAL = 0 may or may
not indicate end-of-file. End-of-file is best indicated, in the case of line-edited
files and COUNT greater than 0, by ACTUAL = 0; in the case of lined files and
COUNT greater than 0, it is indicated by ACTUAL less than COUNT.

• The address of a memory location in which ISIS will store nonfatal error
numbers. The error numbers returned by the READ call are listed in Appendix
C. .

5-9

Working With Program Modules ISIS-II User's Guide

zero and the addition of the low order portion of the segment base address causes a
carry into the high order portion, that carry will not be detected when the HIGH
operator is used. For example, if HIGH is used on the relocatable address 1234H:

HIGH(1234H)=12H l . - < , , '

and LOCATE adds a segment base address of 10FOH:

WITH HIGH OPERATOR WITHOUT HIGH OPERATOR
i

1200H ' 1234H ,
+ 1QFOH ' +10FOH , , .;>f

22FOH , . 2324H ' < •
r

THE HIGH PART OF THE HIGH PART OF
WHICH IS 22H WHICH IS 23H

Because LOCATE has no knowledge of the low order portion of the address there is
a chance that the located HIGH address will be off by one. The located address wil l
be correct if there is no carry from the low order portion.

s—'You can avoid this situation by only using the HIGH operator on addresses in
segments that you have defined as page relocatable .

This circumstance does not exist with the LOW operator. Addresses on which LOW
has been used will always be correct.

Savings in memory space and execution time can result from this method, but access
to some areas of memory may be lost because of the way LINK and LOCATE act to
preserve relocation types.

When LINK combines segments having different relocation types, it follows these
rules:

• Byte relocatable segments follow the preceding segment at the next byte. The
output segment is byte relocatable only if all input segments are byte
relocatable. Otherwise, it is page relocatable.

• Page relocatable segments follow the preceding segment at the first available
page boundary. The bytes from the end of the preceding segment to the page
boundary, if any, are unused. The output segment is page relocatable.

• Inpage relocatable segments are located at the first location following the „ /
preceding segment if they fit within the page. Otherwise, they are located at the
next page boundary and the bytes at the end of the previous page are unused.
The output segment is inpage relocatable only if it is not more than 256 bytes
and all input segments are inpage relocatable. Otherwise, the output segment is
page relocatable.

B

The bytes that are unused in the process of preserving the relocation type of
segments are flagged in the LINK memory map by the word 'gap.' These gaps are
unused portions of the program; in a sense they are lost. t

' i
If LOCATE assigns the base addresses of segments, it does so in a way that
preserves the relocation type of the segment. It also issues a message if an inpage
relocatable segment is changed to page relocatable. If you specify a base address for
a segment with a segment location control that violates the relocation type of the
segment, LOCATE places the segment on the next higher page boundary and issues
a message. . „ . , . , , - < , -

4-22

ISIS-II User's Guide Use of ISIS-II and the Monitor by Other Programs

• The number of bytes (count) to be transferred from the buffer to the output file.
The value of the count is added to MARKER. If this results in MARKER being
greater than LENGTH, then LENGTH is set equal to MARKER. The number
of bytes actually transferred by WRITE is exactly equal to count. Thus if the
buffer length is less than count, memory locations following buf fe r are wri t ten
to the file.

• The address of the memory location for the return of nonfatal error numbers.
The error numbers returned by WRITE are listed in Appendix C.

PL/M WRITE Call Example

WRITE:
PROCEDURE (AFTN,BUFFER,COUNT,STATUS) EXTERNAL;

DECLARE (AFTN,BUFFER,COUNT,STATUS) ADDRESS;
END WRITE;

DECLARE AFTSIN ADDRESS;
DECLARE BUFFER(128) BYTE;
DECLARE STATUS ADDRESS;

CALL WRITE (0, ('this is an example of string literal', ODH,OAH),38, .STATUS);
CALL WRITE (AFTSIN,.BUFFER,128,.STATUS);
IF STATUS 00 THEN...

Assembly Language WRITE Call Example

WRITE
EXTRN
EQU

ISIS
4

;LINK TO ISIS ENTRY POINT
;SYSTEM CALL IDENTIFIER

MVI
LXI

CALL
LDA
ORA
JNZ

C,WRITE
D.WBLK

ISIS
WSTAT
A
EXCEPT

;LOAD IDENTIFIER
;ADDRESS OF PARAMETER
; BLOCK

rj '

;TEST ERROR STATUS

;BRANCH TO EXCEPTION
;ROUTINE

WBLK:

WAFT:

WCNT:

DS
DW
DW
DW

2
OBUF
128
WSTAT

PARAMETER BLOCK FOR 'J

;WRITE
;FILE AFTN
;ADDRESS OF OUTPUT BUFFER

;POINTER TO STATUS ,-

WSTAT:
OBUF:

DS
DS

2
128

;STATUS (RETURNED)
;OUTPUTBUFFER

5-11

Use of ISIS-II and the Monitor by Other Programs "" ISIS-II User's Guide

The program area is above the buffer area. The program base address is determined
by the programmer and assigned by LOCATE or entered in an ORG statement of
8080/8085 assembly language absolute programs.

The command interpreter (ISIS.CLI) of ISIS-II, other nonresident ISIS-II routines
(all commands except DEBUG), the editor, assembler, compiler, linker, locater, and
library manager run in the program area. Whenever you communicate with ISIS-II
via console commands, you communicate with the nonresident command interpreter
running in the program area.

Nonresident routines of ISIS-II may use all available RAM for buffers. Therefore,
user programs that must be permanently resident should be placed in ROM or in
RAM that is physically discontiguous from the first contiguous block of RAM.

The first 32K of memory must be RAM. Above 32K memory can be any combina-
tion of ROM and RAM. The Monitor MEMCK routine can be called if a program
needs to know the highest location of contiguous RAM.

The Monitor occupies the top 2K of memory. If your memory configuration
encompasses addresses F800H to FFFFH those addresses are shadowed by the
Monitor ROM and cannot be written. The Monitor also uses the top 320 bytes of
contiguous RAM for its workspace; this area is above the address returned by a call
to the MEMCK routine. . •<*„ .

The maximum area required for buffers under ISIS-II must be determined before
deciding the base address of your program (see Chapter 4). The number of buffers
varies dynamically, but the buffer area must be as large as the maximum number of
buffers allocated simultaneously.

/

If you locate the base address of your program below 3180H (or allocate less than 3
buffers), an error message is generated.

The program base address can be calculated using the following formula: '•

12,288+ (128*N) >*, — —

where N is the maximum number of buffers required simultaneously by the pro-
gram. Use the following rules to determine N: ,

1. Each open disk file requires two buffers until the file is closed.
2. An open line-edited file including :CI: requires one buffer until the file is closed.

For a disk file, this buffer is in addition to the two required in rule 1.
3. A system call that accesses a disk directory (LOAD, DELETE, RENAME,

ATTRIB, CONSOL when it specifies a disk file) requires two buffers during the
processing of the call. The buffers are released on return to the calling program.

4. When the CONSOL system call assigns the console input or output device to a
disk file, three buffers are required for the console input file and two buffers are
required for the console output file. These buffers are required until end-of-file.
A program called by a system command in a SUBMIT file must also allow for
these buffers in determining its origin point.

Example I: A program that has no system calls, does not assign the console to a
disk file, and is not called by a command in a disk file, needs three buffers.
Therefore it can have a base address of 3180H. If the program is changed to open
one disk file, it needs five buffers; the base address must be 3280H:

3000H +(128*5) = 3280H _ „ ., _.;

5-2

ISIS-II User's Guide Use of ISIS-II and the Monitor by Other Programs

If the file is open for update and the specified action would place the marker
beyond the end of the file, ASCII nulls (OOHH) are added to the file to extend
the file to the marker. (Thus, LENGTH becomes equal to MARKER.)

If the extension of a file by the SEEK operation causes an overflow on the disk,
a fatal error is reported, either during the execution of the SEEK call or when a
program tries to write into the extended area of the file. This error can become
evident at any time in the life of the file.

If an attempt is made to extend a file that is open only for input, the marker is
set to the former end-of-file, and a non-fatal error occurs.

Move Marker to End of File
If the mode value is 4, the marker is moved to the end of the file. Block and byte
parameters are ignored.

The other three variables that must be passed with the SEEK call are:
• The address of a memory location containing a 2-byte value used for the block

number. A block is equivalent to 128 bytes, the same as a sector on the disk.
• The address of a memory location containing a 2-byte value used for the byte

number. The byte number may be greater than 128.
• The address of a memory location in which ISIS will store nonfatal error

numbers. The error numbers returned by the SEEK call are listed in
AppendixC. •• _ < H o, Ü J / H A ? . " > • • .<;>,><' ' Kt\ „>••' j'-.

: Hl , '

, 'A >
' - ' NOTE ' i "

If MARKER has allocated more memory than LENGTH requires, a DIR
will show the allocated location as in use. You can actually allocate more
storage than exists on disk in this way. Data can still be written to these
locations. ., „ . , , , , . > ,

PL/M Seek Call Example

SEEK
PROCEDURE (AFTN,MODE,BLOCKNO,BYTENO,STATUS) EXTERNAL; ''

DECLARE (AFTN,MODE,BLOCKNO,BYTENO,STATUS) ADDRESS, ,/lfi
END SEEK, x _ - , t ,-^<1F'.-r,

: ' • ,,*vnA '«.I' G

DECLARE AFT$IN ADDRESS,
DECLARE BLOCKNO ADDRESS,
DECLARE BYTENO ADDRESS,
DECLARE STATUS ADDRESS,

CALL SEEK (AFT$IN,0, BLOCKNO, BYTENO, STATUS),
IF STATUS 00 THEN

5-13

Use of ISIS-II and the Monitor by Other Programs ISIS-II User's Guide

If the READ system call requests 100 bytes and the line-editing buffer contains 50,
only 50 bytes are transferred. >

When all the characters in the line-editing buffer have been read, the buffer pointer
is positioned after the last character. However, the buffer is not cleared yet. In fact,
the RESCAN system call can be used to reposition the buffer pointer to the begin-
ning of the line-editing buffer so subsequent READ system calls can reread the con-
tents of the buffer.

r< K • > ' . , • / • „ m'->•>,• '

When the contents of the line-editing buffer have been completely read (the pointer
is after the last character), a READ system call transfers new input from the line-
edited file into the line-editing buffer. When the line is terminated, the number of
characters requested by READ are transferred to the program.

Editing Characters !

The following characters are used to edit the input of a line-edited file. Control
characters are entered by holding down the control key (CTRL) while the character
is typed. ^ ^ ., | , ,

RUBOUT Pressing RUBOUT deletes the preceding character from the
buffer.

CONTROL/P A CONTROL/P causes the next character typed to be entered
literally in the line-editing buffer. Use control-P when you

j want an editing character or terminating character entered in
the buffer rather than causing its usual editing or terminating
function.

CONTROL/R A CONTROL/R has no effect except its echo, which is
carriage return-line feed, followed by the current undeleted
contents of the buffer.

; ' i ' 'i.Lv ., '

CONTROL/X CONTROL/X causes the entire contents of the buffer to be
deleted, including itself. It is echoed as a #, carriage return, line
feed. |

CONTROL/Z CONTROL/Z is the only way to indicate end-of-file from a
keyboard input device. It acts like control-X except that it has
no echo and it causes the READ system call to return
immediately without transferring any characters, thus
simulating an end-of-file. If more characters are entered after

i, the control-Z, they are entered in the line-editing buffer and
can be read by a subsequent READ system call. ;

Reading a Command Line

Reading a command line from the console input device is a special case of reading a
line-edited file.

When a command is entered at the console, it is collected by ISIS-II in the line-
editing buffer for :CI: and is not available to the command interpreter (a nonresi-
dent ISIS-II routine) until it is terminated. The command interpreter reads only the
command name and then calls the program with that name, leaving the line-editing
buffer pointer positioned after the command name. The loaded program can issue a
READ, which transfers data starting with the first parameter, or the program can
issue a RESCAN to position the pointer to the beginning of the buffer so it can read
the command name. • • >.

5-4

ISIS-II User's Guide Use of ISIS-II and the Monitor by Other Programs

Assembly Language RESCAN Call Example

RESCAN
EXTRN
EQU

MVI
LXI

CALL
LDA
ORA
JNZ

ISIS
11

C,RESCAN
D.IBLK

ISIS
ISTAT
A
EXCEPT

;LINK TO ISIS ENTRY POINT
;SYSTEM CALL IDENTIFIER

,LOAD IDENTIFIER
;ADDRESS OF PARAMETER
.BLOCK

;TESTERROR STATUS

.BRANCH TO EXCEPTION

.ROUTINE

IBLK:

IAFT: DS
DW

2
ISTAT

.PARAMETER BLOCK FOR
;RESCAN
,AFTN FROM OPEN
;POINTER TO STATUS

ISTAT: DS ;STATUS (RETURNED)

CLOSE - Terminate Input/Output Operations on a File

The CLOSE call removes a file from the system input/output tables and releases the
buffers allocated for it by OPEN. All files should be closed when input/output pro-
cessing is complete. If the file closed is a paper tape punch device (:HP: or :TP:) 12
inches of trailer (ASCII null characters) are punched.

*\ f f

A parameter list of two variables must be passed with the CLOSE call:
• The AFTN of the file to be closed. The AFTN was returned by a preceding

OPEN call.
• The address of a memory location for the return of nonfatal error numbers. The

nonfatal error numbers issued by CLOSE are listed in Appendix C.

PL/M CLOSE Call Example

CLOSE:
PROCEDURE (AFTN,STATUS) EXTERNAL;

DECLARE (AFTN,STATUS) ADDRESS;
END CLOSE;

DECLARE AFT$IN ADDRESS;
DECLARE STATUS ADDRESS;

CALL CLOSE (AFT$IN,.STATUS);
IF STATUS 00 THEN

5-15

Use of ISIS-II and the Monitor by Other Programs ISIS-II User's Guide

• Monitor I/O routines for control of peripheral devices (CI, CO, RI, PO,
LO, UI,UO).

• Monitor status routines for peripheral devices (CSTS, UPPS, IOCHK,
IOSET, MEMCHK).

f V

The interface to these services is a call to ISIS-II that specifies the services desired
and the address of the parameter list the supervisor is to access. The specific calling
sequences are described with the call descriptions. Note that an ISIS-II call uses your
stack. Your stack must have the depth necessary to handle the call. A call to ISIS-II
destroys the contents of the CPU registers.

The system calls are described in terms of their operation and the parameters your
program must supply. (

To clarify the effect of certain system calls on your files, two integer quantities,
LENGTH and MARKER, are associated with each file in this description.
LENGTH is the number of bytes in the file. MARKER is the number of bytes
already read or written in the file (that is, it acts as a file pointer).

System Call Syntax and Usage
Many of the ISIS-II system calls have names and functions similar to those of the
ISIS-II commands previously discussed. This is true because use of ISIS-II by
another program is essentially the same as your use of ISIS-II when seated at the
console.

The ISIS-II system calls can be called from your PL/M or Assembler Language pro-
grams. If your program does make an ISIS-II system call, you must remember to
link your object program with SYSTEM.LIB using the LINK program.

SYSTEM.LIB is a library file supplied with your system disk. It contains the pro-
cedures necessary to interface your programs containing ISIS-II system calls with
the ISIS-II system.

PL/M Calls

Your PL/M program can interface to ISIS by performing calls to procedures in
SYSTEM.LIB. Your program must include external procedure declarations so the
proper procedures in SYSTEM.LIB will be included with your program by LINK.
These external procedure declarations may be declared as type address, but may also
be values as well as addresses of values.

Assembler Language Calls ' '

The interface between the 8080/8085 Assembler Language program and ISIS is
accomplished by calling a single ISIS entry point (labeled ISIS) and passing two
parameters. The first parameter is a number that identifies the system call; the
second is the address of a control block that contains the additional parameters
required by the system call. The first parameter is passed in register C and the
address of the control block is passed in the register pair DE. The entry point must
be defined in your program as an external:

EXTRN ISIS

5-6

ISIS-II User's Guide Use of ISIS-II and the Monitor by Other Programs

13-high speed paper tape reader . . , ,
14 - user reader 1
15 - user reader 2
16 - teletype paper tape punch (teletype)
17 - high speed paper tape punch
18 - user punch 1
19 - user punch 2 > J

20 - line printer '"
21 - user list 1
22 - byte bucket (a pseudo input/output device)
23 - console input
24 - console output
25 - disk drive 6
26 - disk drive 7
27 - disk drive 8
28-disk drive9

The file name and extension are the ISIS file name.

The device type specifies the type of peripheral with which the file is associated. The
possible values for this field are:

0 - sequential input device
1 - sequential output device
2 - sequential input/output device
3 - random access input/output device

The drive type field specifies the type of drive controller if the device type field is 3.
If the device type is anything except 3, the drive type is undefined. The possible
values for a device type of 3 are:

0 - controller not present < > - '"
1 - two-board double density
2 - two-board single density
3 - integrated single density
4 - two-board hard disk

• The address of a memory location for the return of a nonfatal error number.
The nonfatal error numbers issued by the SPATH call are listed in Appendix C.

PL/M SPA TH Call Example

SPATH
PROCEDURE (FILE,BUFFER,STATUS) EXTERNAL;

DECLARE (FILE,BUFFER,STATUS) ADDRESS,
ENDSPATH;

DECLARE FILENAM(15) BYTE;
DECLARE BUF$IN(12) BYTE,
DECLARE STATUS ADDRESS,

CALL SPATH (FILENAM,.BUF$IN, STATUS);
IF STATUS 00 THEN ..

5-17

Use of ISIS-II and the Monitor by Other Programs ISIS-II User's Guide

OPEN - Initialize File for Input/Output Operations '

The OPEN call initializes ISIS tables and allocates buffers that are required for
input/output processing of the specified file. If the specified file is a punch device
(:HP: or :TP:), 12 inches of leader (ASCII nulls) are punched.

A parameter list of five variables must be passed with the OPEN call:
• An address of a two byte field in which ISIS will store the active file number

(AFTN) of the file that is opened. Your program will use this value for other
calls relative to this file. :CI: and :CO: are always open and have the AFTNs 1
and 0 permanently assigned. Excluding :CI: and :CO:, you can only have six
files open at any one time. Be careful not to confuse AFTN with the PL/M con-
struction .AFTN. The period prefacing .AFTN signifies the location in memory
of AFTN.

• The address of the ASCII string containing the name of the file to be opened.
The ASCII string can contain leading space characters but no embedded space
characters. It must be terminated by a character other than a letter, digit, colon
(:), or period (.). A space can be used.

• A value indicating the access mode for which the file is being opened. A value of
1 specifies that the file is open only for input to the system (READ). A value of 2
specifies that the file is open only for output from the system (WRITE). A value
of 3 specifies that the file is open for update, READ and WRITE. When a file is
opened for input, MARKER is set to 0 and LENGTH is unchanged. If the file
specified for input is nonexistent, a nonfatal error occurs. When a file is opened
for output, MARKER and LENGTH are set to 0. If the file specified for output
is nonexistent, a disk file is created with the specified filename and all attributes
of the new file are reset. Specifying a disk file whose format or write-protect
attributes are set causes a nonfatal error. When a file is opened for update,
MARKER is set to 0. If the file already exists, LENGTH is unchanged. If the
file is nonexistent, a file is created with the specified filename and all attributes
reset. LENGTH is set to 0. Opening a file for an access mode that is not
physically possible causes a nonfatal error. For example, opening :HP: (high-
speed paper tape punch) for input or opening :LP: (line printer) for update
causes an error.

• The AFTN of the echo file if the file is to be opened for line editing. The echo
file must be previously opened for output (ACCESS=2). The AFTN of the echo
file is passed in the least significant byte of the field. If this field contains 0, no
line editing is done. To specify an AFTN of 0 for :CO:, a nonzero value must be
in the most significant byte and zero in the least significant byte. For example,
FFOOH specifies the AFTN for the :CO: device.

• The address of a memory location for the return of nonfatal error numbers. The
error numbers that OPEN can return are listed in Appendix C.

PL/M OPEN Call Example , -. -*•*.,*.'•
OPEN

PROCEDURE (AFTNPTR,FILE,ACCESS,MODE,STATUS) EXTERNAL,
DECLARE (AFTNPTR,FILE,ACCESS,MODE,STATUS) ADDRESS,

ENDOPEN,

DECLARE AFT$IN ADDRESS,
DECLARE FILENAME(15) BYTE DATA C'FVMYPROG SRC');
DECLARE STATUS ADDRESS,

CALLOPEN(AFT$IN,.FILENAME,1,0, STATUS);
IF STATUS 00 THEN.

5-8

ISIS-II User's Guide Use of ISIS-II and the Monitor by Other Programs

DECLARE FILENAM(20) BYTE;
DECLARE STATUS ADDRESS;

CALL DELETE (FILENAM,.STATUS);
IF STATUS 00 THEN ..

Assembly Language DELETE Call Example

DELETE
EXTRN
EQU

MVI
LXI

CALL
LDA
ORA
JNZ

ISIS
2

C,DELETE
D,DBLK

ISIS
DSTAT
A
EXCEPT

;LINK TO ISIS ENTRY POINT
;SYSTEM CALL IDENTIFIER

;LOAD IDENTIFIER
;ADDRESS OF PARAMETER
;BLOCK

;TEST ERROR STATUS

;BRANCH TO EXCEPTION
;ROUTINE

DBLK: ;PARAMETER BLOCK FOR
;DELETE

DW DFILE ;POINTER TO FILENAME
DW DSTAT ;POINTER TO STATUS

DSTAT: DS 2 ;STATUS (RETURNED)
DFILE: DB 'FILE.EXT ';NAME OF FILE TO BE DELETED

RENAME - Change Disk Filename
The RENAME call allows your program to change the name of a disk file.

A parameter list of three variables must be passed with the RENAME call:

• The address of an ASCII string that contains the old file name. The string can
contain leading spaces but no embedded spaces. It must be terminated by a
character other than a letter, digit, colon (:), or period (.). You can use a space.

• The address of an ASCII string that contains the new file name. The string can
contain leading spaces but no embedded spaces. It must be terminated by a
character other than a letter, digit, colon (:), or period (.). You can use a space.
The device portion of the name must be the same as that in old name.

• The address of a memory location for the return of a nonfatal error number.
The nonfatal error numbers issued by RENAME are listed in Appendix C.

5-19

Use of ISIS-II and the Monitor by Other Programs ISIS-II User's Guide

PL/M READ CalJ Example

READ:
PROCEDURE(AFTN,BUFFER,COUNT,ACTUAL,STATUS)EXTERNAL;

DECLARE (AFTN,BUFFER,COUNT,ACTUAL,STATUS) ADDRESS,

END READ;

DECLARE AFT$IN ADDRESS;

DECLARE BUFFER(128) BYTE;

DECLARE ACTUAL ADDRESS;

DECLARE STATUS ADDRESS,

CALL READ (AFTSIN, BUFFER,128,.ACTUAL, STATUS),

IF STATUS 00 THEN..

Assembly Language READ Call Example

READ
EXTRN
EQU

MVI
LXI

CALL
LDA
ORA
JNZ

ISIS
3

C,READ
D.RBLK

ISIS
RSTAT
A
EXCEPT

;LINK TO ISIS ENTRY POINT
;SYSTEM CALL IDENTIFIER

;LOAD IDENTIFIER
,ADDRESS OF PARAMETER
, BLOCK

JEST ERROR STATUS

;BRANCH TO EXCEPTION
;ROUTINE

RBLK-
RAFT.

RCNT:

DS
DW
DW
DW
DW

PARAMETER BLOCK FOR READ
2 ;FILEAFTN
IBUF .ADDRESS OF INPUT BUFFER
128 .LENGTH OF READ REQUESTED
ACTUAL .POINTER TO ACTUAL
RSTAT ;POINTER TO STATUS

ACTUAL:

RSTAT:
IBUF:

DS

DS
DS

2
128

;COUNT OF BYTES READ
.(RETURNED)
;STATUS (RETURNED)
;INPUT BUFFER

WRITE - Transfer Data From Memory to File
The WRITE call transfers data from a specified location in memory called a buffer
to an open file. A parameter list of four variables must be passed with the WRITE
call:
• The AFTN of a file open for output or update. The AFTN was returned by a

preceding OPEN call or is 0 for :CO:.
• The address of the memory location of the buffer from which data is to be

transferred, or a string literal of the format .string literal, where the period (.)
specifies the contents of the string buffer labeled .stringliteral.

5-10

ISIS-II User's Guide Use of ISIS-II and the Monitor by Other Programs

• An identifier indicating which attribute is to be changed. The identifier can be:

0 - invisible attribute

1 - system attribute
2 - write protect attribute

3 - format attribute
• A value indicating whether the attribute is to be set (turned on) or reset (turned

off) . The value is stored in the low order bit of the low order byte. A value of 1
specifies that the attribute be set and a value of 0 specifies that it be reset.

• The address of a memory location for the return of a nonfatal error number.
The nonfatal error numbers issued by the ATTRIB call are listed in Appendix
C.

PL/M A TTRIB Call Example

ATTRIB:

PROCEDURE (FILE,ATRIBTE,ONOFF,STATUS) EXTERNAL;

DECLARE (FILE,ATRIBTE.ONOFF,STATUS) ADDRESS;

END ATTRIB; • ' - •

DECLARE FILE(15) BYTE;

DECLARE STATUS ADDRESS;

CALL ATTRIB (.FILE,2,0,.STATUS);

IF STATUS 00 THEN

Assembly Language A TTRIB Call Example

ATTRIB
EXTRN
EQU

MVI
LXI
CALL
LDA
ORA
JNZ

ISIS
10

C,ATTRIB
D.ABLK
ISIS
ASTAT
A
EXCEPT

;LINK TO ISIS ENTRY POINT
.SYSTEM CALL IDENTIFIER

;LOAD IDENTIFIER
;LOADPARAMADDR

JEST ERROR STATUS

;BRANCH TO EXCEPTION
.ROUTINE

ABLK:

FILEN-
ASTAT:

DW
DW
DW
DW

DS
DS

PARAMETER BLOCK FOR
.ATTRIB

FILEN ;POINTER TO FILE NAME
2 ATTRIBUTE IDENTIFIER
0 ;SET/RESET SWITCH
ASTAT ;POINTER TO STATUS

15
2

;FILE NAME FIELD
;STATUS (RETURNED)

5-21

Use of ISIS-II and the Monitor by Other Programs ISIS-II User's Guide

SEEK - Position Disk File Marker
x

The SEEK call allows your program to find the location of or to change the value of
MARKER associated with a disk file open for read or update. The SEEK call can ^~s
only be used with a file open for update or read. The MARKER can be changed in
four ways: moved forward, moved backward, moved to a specific location, or
moved to the end of the file. A nonfatal error occurs if SEEK is issued for a file
opened for output.

i
A parameter list of five variables must be passed with the SEEK call:
• The AFTN of a disk file opened for update or input. The AFTN was returned

by a preceding OPEN call.
• A mode value from 0 through 4 that indicates what action should be performed

on the MARKER. The block and byte parameters (see below) are used to repre- *
sent the current MARKER position or to calculate the desired offset.

Return Marker Location

If the mode value is 0, the system returns a pair of block and byte values that
signify the current position of the marker. For example, if the marker is just j
beyond the first block of the file, the system might return the numbers 1 and 0 in ^~"^
the addresses assigned to block and byte, respectively. It might also return the
numbers 0 and 128, which point to the same byte in the file. The value of
MARKER is given by the following equation:

MARKER = 128 * (block number MODULO 32768) + byte number

~vr

Mo ve Marker Backward
If the mode value is 1, the marker is moved backward, toward the beginning of
the file. The block and byte parameters determine the offset; for example, if ^~^^
block is equal to 0 and byte is equal to 382, the marker is moved backward 382
bytes. To define an offset of N, use block and byte values such that

N = 128 * (block number MODULO 32768) + byte number

If N is greater than MARKER, i.e., if the prescribed action would place the
marker before the beginning of the file, MARKER is set to 0 (beginning of file),
and a non-fatal error occurs.

^Mo ve Marker to Specific Loca tion
If the mode value is 2, the marker is moved to a specific position in the file. The
block and byte parameters define the position; for example, if block is equal to
27 and byte is equal to 63, the marker will be moved to block 27, byte 63.
Similarly, if both block and byte are equal to 0, the marker is moved to the 4
beginning of the file. If the file is open for update and the prescribed action
would place the marker beyond the end of the file, ASCII nulls (OOHH) are
added to the file to extend the file to the marker. (Thus, LENGTH becomes ^
equal to MARKER.)

j>\

i

Move Marker Forward
If the mode value is 3, the marker is moved forward, toward the end of the file.
The block and byte parameters define the offset N, according to the following
equation:

N + 128 * (block number MODULO 32768) + byte number

5-12

ISIS-II User's Guide Use of ISIS-II and the Monitor by Other Programs

LHLD STATP ;STATUS
PUSH H
POP D
CALL GETATT
LDA GSTAT ;TEST ERROR STATUS
ORA A

;... JNZ EXCEPT ;BRANCH TO EXCEPTION
;ROUTINE

FILEP: DW GFILE ;POINTER TO FILE
;PATHNAME

ATTP: DW ATTRIB ,POINTER TO ATTRIBUTE

STATP. DW GSTAT .POINTER TO STATUS

GFILE: DB ':FO:FILE.EXT' ;FILE PATHNAME

> ' i.

ATTRIB: DS 1 , ATTRIBUTE VALUE
;(RETURNED)

GSTAT: DS 2 ;STATUS (RETURNED)

GETD—Obtain File Device Directory

The GETD call allows your program to access information in a file device directory.
Six parameters must be passed in the GETD call:

• The address variable containing the number for the directory from which entries
are to be returned. Valid integer values are 0-9, representing :FO:-:F9:,
respectively.

• A pointer to an address value which must be initialized to zero when the first
display request of a sequence is made. Changing this value will cause an error.
The system assigns a value to this word which is returned in subsequent requests
for directory entries and acts as a pseudo-connection for subsequent calls.

• An address value which contains the number of entries to be returned. A value
of 0 terminates the current display request sequence and releases the pseudo-
connection. The program must make a final call to GETD with count = 0 to
release the connection unless it is automatically released.

• A pointer to the address value containing the number of directory entries
returned by the system. When this number is less than the number of entries
requested, the last directory entry has already been returned and the pseudo-
connection will be automatically released.

• A pointer to the memory structure where directory entries are returned. The
structure form is:

DECLARE ENTRY STRUCTURE(

RESERVED1 (1) BYTE,
FILE$NAME (9) BYTE,
RESERVED2 (6) BYTE);

where

FILESNAME is a 9-byte field with two subfields left-justified and zero-
filled. The first 6 bytes represent the name and the remaining 3 bytes are the
file extension.

5-23

Use of ISIS-II and the Monitor by Other Programs ISIS-II User's Guide

Assembly Language SEEK Call Example

SEEK
EXTRN
EQU

ISIS
5

;LINK TO ISIS ENTRY POINT
.SYSTEM CALL IDENTIFIER

MVI
LXI

CALL
LDA
ORA
JNZ

C.SEEK
D.SBLK

ISIS
SSTAT
A
EXCEPT

;LOAD IDENTIFIER
.ADDRESS OF PARAMETER
.BLOCK

;TEST ERROR STATUS

;BRANCH TO EXCEPTION
;ROUTINE

SBLK:
SAFT-
MODE:

DS
DS
DW
DW
DW

.PARAMETER BLOCK FOR SEEK
2 ;AFTN FROM OPEN
2 ;TYPEOFSEEK
BLKS .POINTER TO BLKS
NBYTE .POINTER TO MBYTE
SSTAT ;POINTER TO STATUS

BLKS:
NBYTE
SSTAT.

DS
DS
DS

.NUMBER OF SECTORS TO SKIP
;NUMBER OF BYTES TO SKIP
;STATUS (RETURNED)

RESCAN - Position MARKER to Beginning of Line

The RESCAN call is used on line-edited files only. It allows your program to move
the MARKER to the beginning of a logical line that has already been read. Thus the
next READ call starts at the beginning of the last logical line read. This line is not
echoed (output to the echo file), it has already been input from the keyboard and
echoed. Thus the subsequent READ does no input from a file but only reads from a
buffer in memory.

A parameter list of two variables must be passed with the RESCAN call:
• The AFTN of a file open for line-edited input (echo file AFTN specified) by a

preceding OPEN call.
• The address of a memory location for the return of nonfatal error numbers. The

error numbers returned by the RESCAN call are listed in Appendix C.

PL/M RESCAN Call Example

RESCAN
PROCEDURE (AFTN,STATUS) EXTERNAL,

DECLARE (AFTN,STATUS) ADDRESS;
END RESCAN;

DECLARE AFT$IN ADDRESS;
DECLARE STATUS ADDRESS;

CALL RESCAN (AFT$IN,.STATUS);
IF STATUS 00 THEN...

5-14

ISIS-II User's Guide Use of ISIS-II and the Monitor by Other Programs

LHLD GSTAT
PUSH H

POP D

;STATUS

CALL GETD
LDA DSTAT
ORA A

JNZ EXCEPT

;TEST ERROR STATUS

;BRANCH TO EXCEPTION
;ROUTINE

DID. DW 1 DIRECTORY IDENTIFIER FOR-F1:

CONN: DW 0 .DIRECTORY CONNECTION
COUNT: DW 8 ;ENTRY COUNT

ACTP: DW DACT .POINTER TO ACTUAL
BUFFP: DW DBUF .POINTER TO BUFFER
GSTAT: DW DSTAT ;POINTER TO STATUS

DACT. DS 2 ;COUNT OF ENTRIES READ
;(RETURNED)

DBUF: DS 128 ;DIRECTORY BUFFER
DSTAT: DS 2 ;STATUS (RETURNED)

Console Reassignment and Error Message Output

Three system calls are available to your program for system console control. These
system calls allow you to change the device used as the system console, to determine
which device is the current console, and, if needed, to send an error message to the
console.

CONSUL - Change Console Device

The CONSOL call allows your program to change the console input and output
devices (:CI: and :CO:) to devices other than the initial system console.

A parameter list of three variables must be passed with the CONSOL call:

• The address of an ASCII string that contains the name of the file to be used for
system console input. The string can contain leading spaces but no embedded
spaces. It must be terminated by a character other than a letter, digit, colon (:),
or period (.). You can use a space. Before opening the new file, the file is closed
unless it happens to be :CI: which is always open. If the specified file cannot be
opened, a fatal error occurs. Do not use SUBMIT to run programs which con-
tain CONSOL calls which change the console input device name.

• The address of an ASCII string that contains the name of the file to be used for
system console output. The string can contain leading spaces but no embedded
spaces. It must be terminated by a character other than a letter, digit, colon (:)
or period (.). You can use a space. Before opening the new file, the current out-
put file is closed unless it happens to be :CO: which is never closed. If the
specified file cannot be opened, a fatal error occurs.

• The address of a memory location for the return of a nonfatal error number.
The nonfatal error numbers issued by the CONSOL call are listed in Appendix
C.

5-25

Use of ISIS-II and the Monitor by Other Programs ISIS-II User's Guide

Assembly Language CLOSE Call Example

CLOSE

CBLK:

CAFT:

CSTAT-

EXTRN
EQU

MVI
LXI

CALL
LDA
ORA
JNZ

DS
DW

DS

ISIS
1

C.CLOSE
D.CBLK

ISIS
CSTAT
A
EXCEPT

2
CSTAT

;LINK TO ISIS ENTRY POINT
;SYSTEM CALL IDENTIFIER

,LOAD IDENTIFIER
.ADDRESS OF PARAMETER
;BLOCK

JEST ERROR STATUS

;BRANCH TO EXCEPTION
.ROUTINE

.PARAMETER BLOCK FOR

.CLOSE

.FILEAFTN

.POINTER TO STATUS

;STATUS (RETURNED)

SPATH - Obtain File Information
The SPATH call allows your program to obtain information relating to a specified
file. The information returned by this call includes the device number, file name and
extension, device type, and if a disk file, the drive type.

A parameter list of three variables must be passed with the SPATH call:
• The address of an ASCII string containing the name of the file for which

information is requested. The string can contain leading spaces but no
embedded spaces. It must be terminated by a character other than a letter, digit,
colon (:), or period (.). A space can be used.

• The address of a 12-byte memory location in which the system will return the
information. After the call is completed, the buffer will contain the following
information: , ,, j ,n . . v . «•

Byte 0 - Device number ' ' '• " • ' '-"

Bytes 1 through 6 - file name

Bytes 7 through 9 - file name extension t , , •> • , \

Byte 10 - Device type

Byte 11 - Drive type

The possible values for device number are:

0 - disk drive 0
1 - disk drive 1
2 - disk drive 2
3 - disk drive 3
4 - disk drive 4
5 - disk drive 5
6 - teletype input
7 - teletype output
8 - CRT input
9 - CRT output

10 - user console input
11 - user console output
12 - teletype paper tape reader

>,' r ' '>

5-16

ISIS-II User's Guide Use of ISIS-II and the Monitor by Other Programs

PL/M WHOCON Call Example

WHOCON:
PROCEDURE (AFTN,BUFFER) EXTERNAL;

DECLARE(AFTN,BUFFER) ADDRESS;
ENDWHOCON,

DECLARE BUFF$IN(15) BYTE;

CALL WHOCON (1,.BUFF$IN);

Assembly Language WHOCON Call Example

WHOCON
EXTRN
EQU

MVI
LXI
CALL

ISIS
13

C.WHOCON
D,WBLK
ISIS

;CALL IDENTIFIER

;LOAD IDENTIFIER
;LOADPARAMADDR

WBLK:
AFTN: DS

DW
DW

2 ,AFTN FOR IN OR OUT
BUFIN .POINTER TO BUFFER
STATUS .POINTER TO STATUS RETURN

BUFIN-

STATUS:

DS

DS

15

2

.BUFFER FOR RETURN
FILENAME
;STATUSRETURN

ERROR - Output Error Message on System Console , (

The ERROR call enables your program to send an error message to the initial system
console.

A parameter list of two variables must be passed with the ERROR call:

• The error number to output to the console. The error number must be in the low
order eight bits of the parameter. Only the numbers 101 through 199 inclusive
should be used for user programs; the other numbers (0-100 and 200-255) are
reserved for system programs. The system displays the error in the following
format: ERROR nnn, USER PC mmmm where nnn is the error number
specified in the call and mmmm is the return address in the calling program.

• (Assembly language only) The address of a memory location for return of an
error number.

5-27

Use of ISIS-II and the Monitor by Other Programs ISIS-II User's Guide

Assembly Language SPA TH Call Example

SPATH
EXTRN
EQU

MVI
LXI
CALL
LDA
ORA
JNZ

ISIS
14

C,SPATH
D.SBLK
ISIS
SSTAT
A
EXCEPT

,LINK TO ISIS ENTRY POINT
;SYSTEM CALL IDENTIFIER

;LOAD IDENTIFIER *
.LOADPARAMADDR

;TESTERROR STATUS

;BRANCH TO EXCEPTION
;ROUTINE

SBLK:

FILEN
BUFIN.
SSTAT-

DW
DW
DW

DS
DS
DS

.PARAMETER BLOCK FOR
,SPATH

FILEN .POINTER TO FILE NAME
BUFIN .POINTER TO BUFFER
SSTAT ;POINTER TO STATUS

15 .FILENAME FIELD
12 ;BUFFER FOR DATA
2 ;STATUS (RETURNED)

Disk Directory Maintenance
- T ,}

Five system calls are available to your program for changing and accessing informa-
tion in the disk directory. These calls allow you to delete a disk file, rename a disk
file, change the attributes of a disk file, and obtain attribute and directory informa-
tion about a disk file.

DELETE - Delete a File from the Disk Directory
The DELETE call removes a specified file from its disk. The space allocated to the
file is released. The space can then be reused for another file.

A parameter list of two variables must be passed with the DELETE call:

• The address of an ASCII string that specifies the name of the file to be deleted.
The file to be deleted must not be open. The string can contain leading space
characters but no embedded spaces. It must be terminated by a character other
than a letter, digit, colon (:), or period (.). You can use a space.

• The address of a memory location for the return of a nonfatal error number.
The error numbers returned by DELETE are listed in Appendix C.

PL/M DELETE Call Example

DELETE:
PROCEDURE (FILE,STATUS) EXTERNAL;

DECLARE (FILE,STATUS) ADDRESS;
END DELETE,

5-18

ISIS-II User's Guide Use of ISIS-II and the Monitor by Other Programs

NOTE

When control passes to the Monitor, the Monitor saves the CPU
registers and system status by pushing these items on the stack belong-
ing to the program that issued the LOAD system call. If the newly
loaded program overlays the area formerly occupied by the stack, it will
be overwritten when the Monitor pushes items on the stack. Therefore,
the stack should be located in an area of memory that will not cause the
newly loaded program to be overwritten when the Monitor uses the
stack.

• The address of a memory location for the return of the loaded program entry
point address when the control value is zero. The entry point is obtained from
the loaded program. A zero is returned if the program is not a main program.

• The address of a memory location for the return of a nonfatal error number.
The error numbers issued by the LOAD call are listed in Appendix C.

PL/M LOAD Call Example

LOAD-
PROCEDURE (FILE,BIAS,SWITCH,ENTRY,STATUS) EXTERNAL;

DECLARE (FILE,BIAS,SWITCH,ENTRY,STATUS) ADDRESS;
END LOAD;

DECLARE FILNAM(15) BYTE;
DECLARE ENTRY ADDRESS;
DECLARE STATUS ADDRESS;

CALL LOAD (.FILNAM,0,1, ENTRY, STATUS);
IF STATUS 00 THEN .

Assembly Language LOAD Call Example

LOAD
EXTRN
EQU

ISIS
6 ;CALL IDENTIFIER

MVI
LXI
CALL
LDA
ORA
JNZ

C.LOAD
D,LBLK
ISIS
LSTAT
A
EXCEPT

;LOAD IDENTIFIER
;LOADPARAM ADDR

;TEST ERROR STATUS

;BRANCH IF ERROR

LBLK:

BIAS:
SWITCH:

DW
DS
DS
DW
DW

FILNAM ;POINTER TO FILE NAME
2 .BIAS FIELD
2 .CONTROL SWITCH
ENAD ;POINTER TO ENTRY ADDRESS
LSTAT ;POINTER TO STATUS

FILNAM.
ENAD.
LSTAT:

DS
DS
DS

15
2
2

;FILE NAME FIELD
;ENTRY POINT ADDR (RETURN)
;STATUS (RETURNED)

5-29

Use of ISIS-II and the Monitor by Other Programs ISIS-II User's Guide

PL/M RENAME Example

RENAME:
PROCEDURE (OLDFILE.NEWFILE,STATUS) EXTERNAL;

DECLARE (OLDFILE.NEWFILE,STATUS) ADDRESS;
END RENAME;

DECLARE OFILE(20) BYTE;
DECLARE NFILE(20) BYTE;
DECLARE STATUS ADDRESS;

CALL RENAME (.OFILE, NFILE,.STATUS);
IF STATUS 00 THEN .

Assembly Language RENAME Call Example

RENAME
EXTRN
EQU

MVI
LXI

CALL
LDA
ORA
JNZ

ISIS
7

;LINK TO ISIS ENTRY POINT
.-SYSTEM CALL IDENTIFIER

C,RENAME ;LOAD IDENTIFIER
D.NBLK

ISIS
NSTAT
A
EXCEPT

.ADDRESS OF PARAMETER

.BLOCK

;TEST ERROR STATUS

;BRANCH TO EXCEPTION
;ROUTINE

NBLK: ;PARAMETER BLOCK FOR
.RENAME

DW FILE2 ;POINTER TO OLD FILENAME
DW FILE1 ;POINTER TO NEW FILENAME
DW NSTAT ;POINTER TO STATUS

NSTAT: DS 2 ;STATUS (RETURNED)
FILE1: DB 'FILE.NEW ' ;NEW NAMEOF FILE
FILE2: DB 'FILE.OLD ' ;OLD NAMEOF FILE

ATTRIB - Change the Attributes of a Disk File
The ATTRIB call allows your program to change an attribute of a disk file.

A parameter list of four variables must be passed with the ATTRIB call:
• The address of an ASCII string containing the name of the file whose attribute

is to be changed. The string can contain leading space characters but no
embedded spaces. It must be terminated by a character other than a letter, digit,
colon (:), or period (.). A space can be used. „

5-20

ISIS-II User's Guide Use of ISIS-II and the Monitor by Other Programs

These routines are available as ISIS-II calls. The following sections describe how to
use each of these routines, how and where information is passed to them, how and
where information is returned, and an example of each.

NOTE

A call to a Monitor I/O routine from an Assembly language program
changes the contents of the registers. If the contents of a register must be
saved, you should store them before calling the Monitor, and then restore
them after return from the Monitor I/O routine.

CI - Console Input Routine

The Console Input routine is a routine which reads a character entered at the Intellec
Console input device and returns it as a byte variable (if called from PL/M) or in the
A-register (if called from the assembler). No parameters are passed to the routine.
The routine, once called, loops until a character is input at the console device. The
character is not echoed on the Console Output device.

The name of the Console Input routine in SYSTEM.LIB is CI.

PL/M CI Call Example

This example is of a routine which reads a string of characters from the Console
device. The routine terminates when a carriage return is detected or when the
number of characters specified by BUFSIZ has been read. If a carriage return is
detected, the DONE code is executed and if the buf fe r is filled, the OVFL code is
executed.

CI. PROCEDURE BYTE EXTERNAL;
ENDCI,

DECLARE BUFSIZ LITERALLY '122';
DECLARE BUFFER(BUFSIZ) BYTE;
DECLARE INDEX BYTE;
DECLARE CR LITERALLY 'ODH';

INDEX = 0,
BUFFER(INDEX) = CI AND 7H;

DO WHILE BUFFER(INDEX) OCR;
IF INDEX < LAST (BUFFER);

DO;
INDEX = INDEX + 1;
BUFFER(INDEX) = CI AND 7FH;

END;
ELSE

DO;
/•OVFLCODE*/
END;

END;
TDONECODE*/

/'ENTRY POINT INTO SYSTEM LIB*/

/'BUFFER SIZE*/
/'BUFFER FOR STORING CHARACTERS*/
/'INDEX INTO BUFFER*/
/'CARRIAGE RETURN*/

/ 'READ IN CHARACTER AND STRIP OFF*/
/•PARITY BIT*/

/•CONTINUE READING UNTIL A CARRIAGE*/
/'RETURN HAS BEEN INPUT OR THE*/
/•BUFFER IS FULL*/

5-31

Use of ISIS-II and the Monitor by Other Programs ISIS-II User's Guide

GETATT—Obtain Attribute Information

The GETATT call allows your program to access the attribute associated with a disk
file.

Three parameters must be passed with the GETATT call:

• The address of an ASCII string representing the name of the file for which
attribute information is to be returned. The string can contain leading space
characters, but no embedded spaces. It must end with a space.

• The address of a one-byte field to which attributes for the file are to be returned. *
The following defines this byte:

t

bit 0 set = invisible
bit 1 set = system ' *•
bit 2 set = write-protect
bit 3 = reserved
bit 4 = reserved
bit 5 = reserved
bit 6 = reserved
bit 7 set = format

• The address of an address variable for the return of the completion status for ^—-'
the requested operation. Zero indicates completion with no error. A nonzero
value is a nonfatal error number. The error numbers issued by the GETATT
system call are listed in Appendix C.

PL/M-80 GET A TT Call Example

GETATT.
PROCEDURE (PATH,ATTRIB,STATUS)EXTERNAL;

DECLARE(PATH,ATTRIB,STATUS)ADDRESS,
EN D GETATT, ' ^

DECLARE FILE(15) BYTE;
DECLARE STATUS ADDRESS;
DECLARE ATTRIB BYTE;

CALL GET ATT (.FILE, .ATTRIB, .STATUS);
IFSTATUSOOTHEN...

Assembly Language GET A TT Call Example

EXTRN GETATT ;MUST BE LINKED
;WITH SYSTEM.LIB

jGETATT

LHLD FILER ;FILE PARAMETER
PUSH H
LHLD ATTP ;ATTRIBUTE POINTER
PUSH H
POP B

5-22

ISIS-II User's Guide Use of ISIS-II and the Monitor by Other Programs

Assembly Language CO Call Example

CR
BUFFER.

EXTRN

EQU

DS

CO

ODH

122

;ENTRY POINT INTO SYSTEM.LIB
,FOR CO
.CARRIAGE RETURN
;BUFFER CONTAINING OUTPUT

iSTRING

LOOP:

LXI H,BUFFER ;HL CONTAIN ADDRESS OF
.BUFFER ,t

4>

MOV C,M ;GET CHARACTER FROM
;BUFFER

CALL CO jOUTPUT THE CHARACTER TO
;THE CONSOLE

MVI A,CR • * - . , > >

CMP M ;IS IT A CARRIAGE RETURN?
JZ EXIT ;GO TO EXIT IF IT IS
INX H INCREMENT BUFFER POINTER

JMP LOOP ;OUTPUT NEXT CHARACTER
EXIT:

RI - Reader Input Routine

The Reader Input routine reads a single character from the system Reader device
and returns it as a byte value (if called from PL/M) or in the A-register (if called
from the assembler). If a character is not read within 250 milliseconds, an end-of-file
condition is simulated and a value of zero is returned with the 8080 carry condition
code set to 1. Thus the condition of the carry bit specifies whether or not valid data
was returned. Your program must handle the end-of-file character when it is read.

The name of the Reader Input routine in SYSTEM.LIB is RI.

PL/M RI Call Example

The following example uses the Reader Input routine to read a string of characters
from paper tape and store them in a buffer . When the reader runs out of tape or a
control/Z (1AH) character (used here as an end-of-file character) is read the opera-
tion is terminated. In this simple example there is'no check made for overflowing the
buffer area.

RI: PROCEDURE BYTE EXTERNAL;
ENDRI;

/'ENTRY POINT INTO SYSTEM.LIB*/

DECLARE BUFFER$PTR ADDRESS;
DECLARE BUFFER BASED BUFFERSPTR BYTE;
DECLARE ENDFILE LITERALLY '1AH'
DECLARE TEMP BYTE;

DECLARE ESCAPE BYTE;

DECLARETRUE LITERALLY '01H';
DECLARE FALSE LITERALLY 'OOH';

BUFFER$PTR = .MEMORY;

TEMP = RI;

/'END OF FILE CONDITION'/
/'TEMPORARY VARIABLE IN CASE*/
/ 'READ RESULTS IN END OF FILE*/
/'CONDITION*/
/'BOOLEAN TO DECIDE IF*/
/'SHOULD EXIT ROUTINE*/

/'INITIALIZETHE BUFFER*/
/'POINTER*/
/'READ IN FIRST CHARACTER*/

5-33

Use of ISIS-II and the Monitor by Other Programs ISIS-II User's Guide

• A pointer to the memory location for the return of the status for the requested
operation. Zero indicates no error A nonzero value corresponds to a nonfatal
error number. The error numbers issued by the GETD system call are listed in
Appendix C

GETD requires loading an ISIS overlay (ISIS OVO) into the top of a 64K memory
space with the LOAD system call before calling GETD LOAD places this overlay
between OE800H and OF6BFH. Access the overlay entry point by l inking to
SYSTEM LIB. Avoid overwriting the overlay when accessing the directory desired

Reserved fields returned by GETD are d i f fe ren t from one ISIS system call to
another. Do not use 'reserved' fields in a user program which employs GETD

PL/M-80 GETD Call Example

GETD
PROCEDURE (DID,CONN,COUNT,ACTUAL,TABLE,STATUS) EXTERNAL,
DECLARE (DID,CONN,COUNT,ACTUAL TABLE,STATUS) ADDRESS,

END GETD,

DECLARE (DUMMY,STATUS,CONN,ACTUAL) ADDRESS,

DECLARE TABLE (50) STRUCTURE
(Reserved(1)Byte, ^ ,, f

Filename (9) Byte,
Reserved (6) Byte),

CONN = 0,

CALL LOAD ((' FO ISIS OVO'),0,0, DUMMY, STATUS),

CALL GETD (1, CONN, 50, ACTUAL, TABLE (0), STATUS)

IF STATUS 00 THEN

Assembly Language GETD Call Example

,GETD
EXTRN GETD ,MUST BE LINKED

,WITH SYSTEM LIB
,ISIS OVO MUST BE LOADED BEFORE CALLING GETD

LXI

SHLD
LHLD
PUSH
LXI
PUSH
LHLD
PUSH

LHLD
PUSH

LHLD
PUSH
POP

H,O
CONNP
DID
H
H, CONN
H
COUNT
H

ACTP
H

BUFFP
H
B

.INITIALO

.DIRECTORY

.CONNECTION POINTER

.COUNT

.ACTUAL

.BUFFER POINTER

5-24

ISIS-II User's Guide Use of ISIS-II and the Monitor by Other Programs

DECLARE BUFFER(122) BYTE;

DECLARE INDEX BYTE;
DECLARE END$FILE LITERALLY'IAH',

/* BUFFER CONTAINING STRING TO */
/* BE OUTPUT*/
/ ' INDEX INTO BUFFER*/
/ *ENDOFFILE* /

INDEX = 0;
CALL PO(BUFFER(INDEX)),
DO WHILE BUFFER(INDEX)<> END$FILE;

INDEX = INDEX + 1;
CALLPO(BUFFER(INDEX)),

END;

/* OUTPUTTHE FIRST CHARACTER */

/* CONTINUE TO OUTPUT UNTIL * /
/* AN END-OF-FILE HAS BEEN PUNCHED */

Assembly Language PO Call Example

EOF
BUFFER-

EXTRN
EQU
DS

PO
1AH
122

;ENTRY POINT INTO SYSTEM.LIB FOR PO
;CONTROL/Z
;BUFFER CONTAINING OUTPUT STRING

LOOP:
LXI H,BUFFER ;HL CONTAINS ADDRESS OF BUFFER

MOV C,M ;GET CHARACTER FROM BUFFER
CALL PO ;OUTPUTTHECHARACTER TO THE

.PUNCH
MVI A,EOF ,LOAD THE EOF CHARACTER INTO THE

;A-REG
CMP M ;IS IT AN END-OF-FILE?
JZ EXIT ;GO TO EXIT IF IT IS 5 '
INX H INCREMENT BUFFER POINTER
JMP LOOP ;OUTPUT NEXT CHARACTER

EXIT:

LO - List Output Routine
The List Output routine takes a single character (passed as a byte parameter if called
from PL/M or passed in the C-register if called from Assembler) and transmits it to
the system list device.

The name of the List Output routine in SYSTEM.LIB is LO.

PL/M LO Call Example

This example uses the List Output routine to output a string of characters to the list
device. The routine terminates after an ETX (03H) character is detected in the out-
put string and is transmitted to the list device. In this simple example there is no
check to see if the buffer has been exhausted.

LO: PROCEDURE(BUFF) EXTERNAL;
DECLARE CHAR BYTE;
ENDLO;

DECLARE BUFFER(122) BYTE;

DECLARE INDEX BYTE;
DECLARE ETX LITERALLY'OSH';

/ 'ENTRY POINT INTO SYSTEM LIB*/

/* BUFFER CONTAINING STRING TO */
/* BE OUTPUT*/
/ ' INDEX INTO BUFFER*/
/'TERMINAL CHARACTER*/

5-35

Use of ISIS-II and the Monitor by Other Programs ISIS-II User's Guide

PL/M CONSUL Call Example

CONSOL:
PROCEDURE (INFILE.OUTFILE,STATUS) EXTERNAL,

DECLARE (INFILE.OUTFILE,STATUS) ADDRESS;
END CONSOLE;

DECLARE INFILE(6) BYTE;
DECLARE OUTFILE(6) BYTE;
DECLARE STATUS ADDRESS;

CALL CONSOL (.INFILE,.OUTFILE,.STATUS);
IFSTATUSOOTHEN...

Assembly Language CONSOL Call Example

CONSOL

CBLK:

INFILE:
OTFILE:
CSTAT:

EXTRN
EQU

MVI
LXI
CALL
LDA
ORA
JNZ

DW
DW
DW

DS
DS
DS

ISIS

C,CONSOL
D,CBLK
ISIS
CSTAT
A
EXCEPT

INFILE
OTFILE
CSTAT

15
15
2

;LINK TO ISIS ENTRY POINT
;SYSTEM CALL IDENTIFIER

;LOAD IDENTIFIER - -
;LOADPARAM ADDR

;TEST ERROR STATUS

;BRANCH TO EXCEPTION
;ROUTINE

;PARAMETER BLOCK FOR
;CONSOL
;POINTER TO FILE NAME
;POINTERTO FILE NAME
;POINTER TO STATUS

;INPUT FILE NAME
.OUTPUT FILE NAME
;STATUS (RETURNED)

WHOCON - Determine File Assigned as System Console :

The WHOCON call allows your program to determine what file is assigned as the
current system input console or output console.

A parameter list of three variables must be passed with the WHOCON call:
• A value that indicates whether the input or output file (:CI: or :CO:) name is to

be returned. A value of 0 specifies output and a value of 1 specifies input.
• The address of a 15-byte buffer reserved by your program for the return of the

name of the file assigned to :CI: or :CO:. The name is returned as an ASCII
string terminated by a space.

• (Assembly language only) The address of a memory location for return of an
error number.

5-26

ISIS-II User's Guide Use of ISIS-II and the Monitor by Other Programs

Before calling the Universal PROM Programmer Input routine, you should call the
Universal PROM Programmer Status routine (described later in this chapter) to
ascertain the current status of the UPP. If an error occurs in the process of reading
from the UPP, the content of the A-register is meaningless. Thus, you should follow
the call to the UPP input routine with another call to the UPP status routine.

The name of the Universal PROM Programmer Input routine in SYSTEM.LIB
i s U I .

PL/M VI Call Example

The following PL/M procedure reads the first LENGTH locations from a PROM in
socket 1 into the user buffer pointed to by BUFFERSADDRESS. If it encounters
any UPP error, it will stop immediately and return the nonzero value of the UPP
status byte; otherwise, it will return a value of zero after LENGTH locations have
been read.

Ul PROCEDURE(PROMSADDR) BYTE EXTERNAL,/* RETURNS DATA IN PROM */
DECLARE PROMSADDR ADDRESS, /* AT PROMSADDR */
ENDUI,

UPPS PROCEDURE BYTE EXTERNAL, /* RETURNS UPP STATUS */
ENDUPPS,
READ$PROM$TO$BUFFER PROCEDURE (BUFFERSADDRRESS,LENGTH) BYTE,
DECLARE (BUFFERSADDRESS,LENGTH) ADDRESS,
DECLARE (BUFFER BASED BUFFER$ADDRESS)(1) BYTE,
DECLARE SOCKETS1 LITERALLY'2000H'
DECLARE SOCKET$2 LITERALLY'OOOOH'
DECLARE BUSY LITERALLY'OIH',
DECLARE COMPLETE LITERALLY'02H',
DECLARE STATUS BYTE,
DECLARE 1 ADDRESS,

DOI = OTOLENGTH-1,
DO WHILE ((UPPS AND BUSY) < > 0),
END,
BUFFER(I) = Ul(l OR SOCKETS'!),
IF (STATUS = UPPS) 0 COMPLETE
THEN

RETURN STATUS;
END;

RETURN 0,
END READ$PROM$TO$BUFFER,

/ * SELECT SOCKET 1 MASK*/
/* SELECT SOCKET 2 MASK * /
/* UPP BUSY STATUS*/
/* OPERATION COMPLETE STATUS * /
/ * S A V E FOR STATUS*/

/* WAIT FOR UPP READY */

/ 'READ D A T A * /

/•CHECK STATUS*/

Assembly Language UI Call Example ' •' "

The following assembly language procedure implements the same function as the
preceding PL/M example. Note that the status value is returned in the A-register.

;ROUTINETO READ FROM DATA
.ROUTINE TO READ UPP STATUS
,UPPBUSY CODE
;UPP OPERATION COMPLETE CODE
;SOCKET1 SELECT MASK
;SOCKET 2 SELECT MASK

,SAVE FROM BUFFER POSITION "
,SAVE FOR COUNT
,SAVE FOR PROM ADDRESS OR'D WITH

,'SOC1'

BUSY
COMPLT

SOC1
SOC2
BUFAD-
LENGTH.
PROMAD-

EXTRN

EXTRN
EQU
EQU
EQU
EQU
DW
DW
DW

Ul
UPPS
01 H
02H
2000H
OOOOH

0
0
0

5-37

Use of ISIS-II and the Monitor by Other Programs ISIS-II User's Guide

PL/M ERROR Call Example

ERROR:
PROCEDURE (ERRNUM) EXTERNAL,

DECLARE (ERRNUM) ADDRESS,
END ERROR;

DECLARE ENUM ADDRESS;

CALL ERROR (ENUM);

Assembly Language ERROR Call Example

ERROR

EBLK
ERNUM.

STATUS:

EXTRN
EQU

MVI
LXI
CALL

DS
DW
DS

ISIS
12

C,ERROR
D.EBLK
ISIS

STATUS
2

,CALL IDENTIFIER

,LOAD IDENTIFIER
.LOADPARAMADDR

;ERROR NUMBER FIELD
, ISIS-II WANTS TO RETURN A
.STATUS, SO PUT IT HERE

Program Execution

Two system calls allow your program to transfer control to another program
(LOAD) or to ISIS (EXIT). The LOAD call can be used to load another program
and then transfer control to it, to the Monitor, or have control returned to the call-
ing program. The EXIT call is used to terminate processing and return to ISIS.

LOAD - Load a File of Executable Code and Transfer Control
The LOAD call allows your program to load a LOCATED or absolute object file.
After the file is loaded, control is passed to the loaded program, the calling pro-
gram, or to the Monitor depending on the value of a parameter.

A parameter list of five variables must be passed with the LOAD call:

• The address of an ASCII string containing the name of the file to be loaded. The
string can contain leading spaces but no embedded spaces. It must be terminated
by a character other than a letter, digit, colon (:), or a period (.). You can use a
space.

• A bias value to be added to the load address of the program. The program is
loaded at the adjusted address. The use of the bias does not mean that the pro-
gram is relocatable. Usually the code cannot be executed at the biased address.
For most applications, the bias will be zero.

• A value indicating where control is transferred after the load. A value of zero
returns control to the calling program. The debug toggle is unchanged. A value
of 1 transfers control to the loaded program. The debug toggle is reset. If the
program is not a main program, its entry point is zero, which causes control to
vector through location zero to the Monitor. A value of 2 transfers control to
the Monitor. The debug toggle is set. The Monitor Execute (G) command can be
used to start the program.

5-28

ISIS-II User's Guide Use of ISIS-II and the Monitor by Other Programs

UO, PROCEDURE(PROM$DATA,PROM$ADDR)EXTERNAL, /* PROGRAM PROM LOCATION */
DECLARE PROMSDATA BYTE; /* 'PROMSADDR' WITH DATA */
DECLARE PROMSADDR ADDRESS; /* 'PROM$DATA' */

ENDUO,
UPPS: PROCEDURE BYTE EXTERNAL; /* RETURNS UPP STATUS */
ENDUPPS;
PROGRAM$PROM$FROM$BUFFER:PROCEDURE(BUFFER$ADDRESS,LENGTH) BYTE;

DECLARE (BUFFERSADDRESS,LENGTH) ADDRESS;
DECLARE (BUFFER BASED BUFFER$ADDRESS)(1) BYTE;
DECLARE SOCKETS'! LITERALLY'2000H';
DECLARE SOCKETS2 LITERALLY'OOOOH';
DECLARE BUSY LITERALLY'OIH',
DECLARE COMPLETE LITERALLY'02H';

DECLARE STATUS BYTE;
DECLARE I ADDRESS;
DOI = OTOLENGTH-1;

DO WHILE ((UPPS AND BUSY) <>0);
END,
CALL UO(BUFFER(I), I OR SOCKETJ1);
IF (STATUS: = UPPS) < > COMPLETE

THEN
RETURN STATUS;

END;

RETURN 0;
END PROGRAM$PROM$FROM$BUFFER;

/* SELECT SOCKET 1 MASK* /
/ * SELECT SOCKET 2 M ASK * /
/ 'UPP BUSY STATUS*/
/ 'OPERATION COMPLETE STATUS * /
/ ' SAVE FOR STATUS*/

/ 'WAIT FOR UPP READY* /

/* PROGRAM LOCATION */

/ 'CHECK STATUS*/

Assembly Language UO Call Example

The following assembly language procedure implements the same function as the
preceding PL/M example. Note that the status value is returned in the A-register.

BUSY
COMPLT
SOC1
SOC2
BUFAD:
LENGTH:
PROMAD:

PPFB:

PPFB1:

PPFB2:

EXTRN
EXTRN
EQU
EQU
EQU
EQU
DW
DW
DW

MOV
MOV
SHLD
LXI

SHLD
XCHG
SHLD
MOV

ORA
RZ
CALL
ANI
JNZ
LHLD
MOV
MOV

UO
UPPS
01H
02H
2000H
0000 H
0
0
0

H,B
L,C
BUFAD
H.SOC1

PROMAD

LENGTH
A,H

UPPS
BUSY
PPFB2
PROMAD
B,H
C,L

;ROUTINE TO WRITE PROM DATA
;ROUTINE TO READ UPP STATUS
;UPPBUSY CODE
;UPP OPERATION COMPLETE CODE
;SOCKET1 SELECT MASK
;SOCKET 2 SELECT MASK
;SAVE FOR BUFFER POSITION
;SAVE FOR COUNT
;SAVE FOR PROM ADDRESS OR'D
,WITH 'SOC1'
;STORE 'BUFFER$ADDRESS'

;SET UP PROMAD TO 'SOC1' TO GET
;'SOC1ORADDR'

;STORE'LENGTH'

;CHECK IF NO LOCATIONS LEFT
;TO READ

;RETURN WITH RESULTZERO IF DONE
;CHECK FOR 'NOT BUSY' STATUS

;LOOP WHILE BUSY
;SET UP PROM ADDRESS
;UO EXPECTS ADDRESS IN BC

5-39

Use of ISIS-II and the Monitor by Other Programs ISIS-II User's Guide

EXIT - Terminate Program and Return to ISIS-II
The EXIT call can be used by your program to terminate execution and return to x /
ISIS-II. All open files are closed, with the exception of :CO: and :C1:. The current
system console assignment is not changed.

A parameter list of one variable must be passed with the EXIT call:

• (Assembly language only) The address of a memory location for return of an
error number.

PL/M EXIT Call Example

EXIT
PROCEDURE EXTERNAL;
END EXIT,

CALL EXIT,

Assembly Language EXIT Call Example

EXTRN ISIS
EXIT EQU 9 ;CALL IDENTIFIER

MVI C.EXIT ;LOAD IDENTIFIER
LXI D.EBLK .LOADPARAMADDR
CALL ISIS

EBLK
DW ESTAT .POINTER TO STATUS

ESTAT: DS 2 .STATUS FIELD

Monitor I/O Interface Routines
*

The Monitor contains the following I/O interface routines:

• Console Input, which reads a character entered at the system console.
»

• Console Output, which writes a character to the system console.

• Reader Input, which reads a character from the system reader device.

• Punch Output, which writes a character to the system punch device.

• List Output, which writes a character to the system list device.

• UPP Input, which reads a byte from the Universal PROM programmer. (Series
II only)

• UPP Output, which writes a byte to the Universal PROM programmer. (Series „ J
II only)

5-30

ISIS-II User's Guide Use of ISIS-II and the Monitor by Other Programs

DECLARE CTLC LITERALLY '03H';

IFCSTSTHEN
DO,

IF Cl = CTLC THEN
DO;

END,
END,

Assembly Language CSTS Call Example

EXTRN CSTS

/•CONTROL/C SIGNALS TERMIN ATE* /
/ 'OPERATION*/

/* A KEY HAS BEEN PRESSED */

/ 'CONTROL/C RECEIVED TERMINATE*/
/ 'OUTPUT OPERATION.*/

CTLC
EXTRN
EQU

CALL
RRC
JNC

CALL
CPI
JZ

Cl
03H

CSTS

CONT

Cl
CTLC
TERM

CONT

TERM-

.ENTRY POINT INTO SYSTEM LIB FOR
;CSTS
;ENTRY POINT INTO SYSTEM LIB FOR Cl
;CONTROL/C SIGNALS TERMINATE
;OUTPUT

;GET CONSOLE STATUS
.ROTATE TO CARRY FLAG
,NO CHARACTER, CONTINUE OUTPUT
.OPERATION
.THERE IS A CHARACTER, GET IT
.ISITACONTROL/C
;IF YES, BRANCH TO TERMINATE CODE

;CODE TO CONTINUE OUTPUT
;OPERATION

;CODE TO TERMINATE OUTPUT
;OPERATION

UPPS - Universal PROM Programmer Status Routine (Series II only)

The Universal PROM Programmer Status routine returns an eight bit status byte as
a byte value (if called from PL/M) or in the A-register (if called from the
Assembler). The meaning of the bits in the status byte are:

BIT
7 6 5 4 3 2 1 0 UPP DEVICE STATUS BYTE

I— BUSY

OPERATION COMPLETE/VERIFIED

FAILED TO PROGRAM PROM

PROGRAMMING ERROR

ADDRESS ERROR

HARDWARE ERROR

BOARD SENSE ERROR

ORIENTATION ERROR

5-41

Use of ISIS-II and the Monitor by Other Programs ISIS-II User's Guide

Assembly Language CI Call Example

EXTRN CI

BUFSIZ
CR
BUFFER:

LOOP:

EQU
EQU
DS

LXI

MVI

CALL
AMI
MOV
CPI
JZ

INX

OCR

JZ

JMP

122
ODH
BUFSIZ

H, BUFFER

D, BUFSIZ

CI
7FH
M,A
CR
DONE

H

D

OVFL

LOOP
DONE:

;ENTRY POINT INTO SYSTEM.LIB
;FORCI
;BUFFERSIZE
CARRIAGE RETRUN
;BUFFER

;HLPOINTTO BEGINNING OF V;
;BUFFER
,SET UP BUFFER SIZE COUNTER

;GET CHARACTER
;STRIP OFF PARITY
.STORE IT IN BUFFER i<(.
;IS IT A CARRIAGE RETURN
;IFITIS,JUMPTOTHEDONE
;CODE
;OTHERWISE, MOVE THE , •
,BUFFER POINTER
.DECREASE CHARACTER
;COUNT
;IF BUFFER FULL, JUMP TO THE
;OVFLCODE
;GET THE NEXT CHARACTER

;DONECODE

OVFL:
;OVFLCODE

CO - Console Output Routine
The Console Output routine takes a single character (passed as a byte parameter if
called from PL/M or passed in the C-register if called from the assembler) and
transmits it to the system console output device.

The name of the Console Output routine in SYSTEM.LIB is CO.

PL/M CO Call Example

This example uses the Console Output routine to output a string of characters to the
Console device. The routine terminates after a carriage return is detected in the out-
put string and is transmitted to the Console device. In this simple example there is no
check to see if the buffer has been exhausted.

CO' PROCEDURE (CHAR) EXTERNAL,
DECLARE CHAR BYTE;
END CO;

DECLARE BUFFER(122) BYTE;

DECLARE INDEX BYTE;
DECLARE CR LITERALLY 'ODH';

INDEX = 0;
CALL CO(BUFFER(INDEX));
DO WHILE BUFFER(INDEX)< >CR;

INDEX = INDEX + 1;
CALL CO(BUFFER(INDEX));

END;

/•ENTRY POINT INTO SYSTEM.LIB*/

/'BUFFER CONTAINING STRING TO BE*/
/•OUTPUT*/
/'INDEX INTO BUFFER'/
/ 'CARRIAGE RETURN*/

/'OUTPUT THE FIRST CHARACTER*/

/'CONTINUE OUTPUTTING UNTILA*/
/•CARRIAGE RETURN HAS BEEN OUTPUT*/

5-32

ISIS-II User's Guide Use of ISIS-II and the Monitor by Other Programs

Masks to check for physical device codes:

CONSOLE

READER

TTY

CRT

BATCH

Reserved

TTY

PUNCH
Reserved
Reserved

OOH

01 H

02H

03H

OOH

04 H
08H

OCH

OOOOOOOOB PUNCH
00000001B
00000010B
00000011B

OOOOOOOOB LIST
000001OOB
00001OOOB
00001100B

TTY OOH OOOOOOOOB
PUNCH 10H 00010000B

Reserved 20H 00100000B
Reserved 30H 00110000B

TTY OOH OOOOOOOOB
CRT 40H 01000000B
PRINTER 80H 10000000B
Reserved COH 11000000B

Note: The Monitor is initially configured when turned on to assign the console and
list to the first device operated during initialization and the TTY to all other devices.

The name of the check system I/O configuration routine in SYSTEM.LIB is
IOCHK.

PL/M IOCHK Call Example

This example checks which device is assigned as the system punch. If the high speed
stand-alone device is being used, the program can go ahead and punch a tape
because this type of device is presumed to be turned on and ready. However, if
another device (e.g., TTY) is assigned as the punch device, a message must be sent to
the operator to turn the punch on.

IOCHK: PROCEDURE BYTE EXTERNAL;
END IOCHK;

/* ENTRY POINT INTO SYSTEM.LIB */

DECLARE DEVMSK LITERALLY'00110000B'; /* MASK TO ISOLATE PUNCH ASSIGNMENT */
DECLARE TYPE LITERALLY'00010000B'; /* MASK FOR HIGH SPEED PUNCH DEVICE*/

IF (IOCHK AND DEVMSK) < > TYPE THEN
DO;

END;

/ 'PUNCH DEVICE IS NOT*/
/* HIGH SPEED PUNCH, SO SEND*/
/* MESSAGE TO THE OPERATOR */

Assembly Language IOCHK Call Example

EXTRN IOCHK

DEVMSK EQU 00110000B

TYPE EQU 00010000B

;ENTRY POINT INTO SYSTEM.LIB FOR
,IOCHK
;MASK TO ISOLATE PUNCH DEVICE
ASSIGNMENT
;MASK FOR HIGH SPEED PUNCH

CALL IOCHK ;GETTHE STATUS BYTE
ANI DEVMSK ;MASKALLBUTTHEPUNCH

ASSIGNMENT
CPI TYPE ;YES, BRANCH TO PUNCH CODE
JZ CONT ;OTHERWISE, EXECUTE CODE TO SEND

;MESSAGE TO THE OPERATOR

CONT:

5-43

Use of ISIS-II and the Monitor by Other Programs ISIS-II User's Guide

IF CARRY THEN ESCAPE = TRUE;
ELSE ESCAPE = FALSE;

DO WHILE NOT ESCAPE;
BUFFER = TEMP AND 7FH;

IF BUFFER <> END$FILETHEN
DO

BUFFERSPTR = BUFFERSPTR + 1,
TEMP = RI,

IF CARRY THEN ESCAPE = TRUE,
END,

END,

/'STORE THE CHARACTER AFTER* /
/'STRIPPING OFF PARITY BIT*/

/'CONTINUE READING IN THE NEXT*/
/ 'CHARACTER*/

Assembly Language RI Call Example

EOF

LOOP.

EXIT:

EXTRN

EQU

LXI

JMP

RI

1AH

H,BUFFER

CALL
JC

ANI
MOV
CPI
JZ
INX

RI
EXIT

7FH

M,A
EOF
EXIT
H

LOOP

;ENTRY POINT INTO SYSTEM LIB
,FORRI
.END OF FILE CONDITION

,HL POINTS TO BEGINNING OF
.BUFFER

;GET A CHARACTER
;EXIT IF CARRY BIT SET (I E 250
;MS. TIME-OUT)
;STRIP OFF PARITY BIT
;STORE IT IN THE BUFFER
,IS IT AN EOF CHARACTER''
,EXIT IF IT IS
.OTHERWISE, MOVE THE
.BUFFER POINTER
.GET THE NEXT CHARACTER

.EXIT CODE

BUFFER DS .EXPANDABLE BUFFER

PO - Punch Output Routine
The Punch Output routine takes a single character (passed as a byte parameter if
called from PL/M or passed in the C-register if called from assembler) and transmits
it to the System Punch device.

The name of the Punch Output routine in SYSTEM.LIB is PO.

PL/M PO Call Example '

This example uses the Punch Output routine to output a string of characters to the
Punch device. The routine terminates after a Control/Z(l AH) is detected in the out-
put string and is transmitted to the Punch device. In this simple example there is no
check to see if the buffer has been exhausted.

PO: PROCEDURE (CHAR) EXTERNAL;
DECLARE CHAR BYTE;
ENDPO,

/* ENTRY POINT INTO SYSTEM.LIB*/

5-34

ISIS-II User's Guide Use of ISIS-II and the Monitor by Other Programs

The BOOT program determines the last 256 byte page of RAM by checking the first
byte of each page starting from the beginning of memory. When the first non-RAM
location is encountered, the previous byte of memory is considered to be the last
byte of RAM in the system. (A 2K region is skipped from E800H to EFFFH. The
BOOT ROM resides at these locations.)

This test allows the user to add additional ROMs to the system or to use memory-
mapped I/O boards in the system as long as the locations used begin at the start of a
256 byte page of memory. It is always best to use the last page(s) of physical memory
for these purposes to preserve RAM for use by ISIS.

Example: If you use the 16 contiguous memory-mapped locations from F700H to
F70FH for a peripheral controller, the top of user memory then becomes F700H-
140H,orF5COA.

PL/M MEMCK Call Example

The following example obtains the highest address of contiguous memory available.

MEMCK: PROCEDURE ADDRESS EXTERNAL; /* ENTRY POINT INTO SYSTEM.LIB */
END MEMCK;

DECLARE MADR ADDRESS; /* ADDRESS TO CONTAIN VALUE RETURNED BY MEMCK * /

MADR = MEMCK;

Assembly Language MEMCK Call Example

EXTRN MEMCK ;ENTRY POINT INTO SYSTEM.LIB FOR
;MEMCK

MADR; DS 2 ;CONTAINS VALUE RETURNED BY
;MEMCK

CALL MEMCK
SHLD MADR ;STORE ADDRESS IN MADR

5-45

Use of ISIS-II and the Monitor by Other Programs ISIS-II User's Guide

INDEX = 0,
CALL LO(BUFFER(INDEX));
DO WHILE BUFFER(INDEX) < > ETX,

INDEX = INDEX + 1,
CALL LO(BUFFER(INDEX»,

/* OUTPUT THE FIRST CHARACTER */

/* CONTINUE TO OUTPUT UNTIL AN ETX */
/* HAS BEEN TRANSMITTED */

END,

Assembly Language LO Call Example

EXT
BUFFER:

LOOP:

EXTRN
EQU
DS

LXI

MOV
CALL
MVI,
CMP
JZ
INK
JMP

LO
03H
122

H,BUFFER

C,M
LO
A, ETX
M
EXIT
H
LOOP

;ENTRY POINT INTO SYSTEM LIB FOR LO
TERMINATING CHARACTER
;BUFFER CONTAINING OUTPUT STRING

,HL CONTAINS ADDRESS OF BUFFER

;GET CHARACTER FROM BUFFER
;OUTPUT THE CHARACTER TO THE LIST
,LOAD EXT CHARACTER INTO A-REG
;ISITAN END OF FILE?
;BRANCH TO EXIT IF IT IS
INCREMENT BUFFER POINTER
;OUTPUT NEXT CHARACTER

EXIT-

UI - Universal PROM Programmer Input Routine (Series II only)

The Universal PROM Programmer Input routine reads eight bits of data from the
Universal PROM Programmer (UPP) and returns it as a byte value (if called from
PL/M) or in the A-register (if called from the Assembler). The PROM address of
the desired data is passed as an address parameter (if called from PL/M) or is loaded
into register pair BC (if called from the Assembler), as shown below:

7

0

6

0

B REGISTER
5 4 3 2 1 0

A11 A10 A9 A8 ;

C REGISTER

7 6 5 4 3 2 1 0

|A7 A6 A5 A4 A3 A2 A1 API

8 LEAST SIGNIFICANT BITS OF
12 BIT PROM ADDRESS

. 4 MOST SIGNIFICANT BITS OF
12 BIT PROM ADDRESS

-NIBBLE SELECT
0= LEAST SIGNIFICANT 4

BITS
1= MOST SIGNIFICANT 4

BITS
(IGNORED FOR 8-BIT PROMS)

-SOCKET SELECT
0= SOCKET #2
1= SOCKET #1

-MUST BE ZERO
j

-MUSTBEZERO

5-36

CHAPTER 6
THE INTELLEC® MONITOR

The Monitor is a control program that provides supervisory functions for the
Intellec microcomputer development systems. It processes the commands you enter
at the console device. The set of available commands provide the following facilities:
• Displaying and modifying memory and processor registers.
• Initiating execution of your programs.
• Inserting breakpoints into your programs before execution.
• Reading hexadecimal data from an external device into memory.
• Writing hexadecimal data from memory to an external device.

• Invoking resident diagnostics.
Your communication with the Monitor is through the system console. When you
enter the Monitor, the sign-on message and a prompt character are displayed on the
system console. The prompt character is a period (.) at the left margin of the system
console.

Command Entry

You can enter commands at the console anytime after the prompt character is
displayed at the left margin.

All Monitor commands are single alphabetic characters. Some commands have
optional parameters and some have required parameters. For example, the X com-
mand displays the contents of all the registers. But if you only want to see the con-
tents of a single register, you can specify that register in the command. However, the
D command, which displays the contents of memory, requires that beginning and
ending memory locations be included in the command.

Normally, commands are ended by pressing the return key on the keyboard. There
are exceptions to this and will be fully explained in the individual command
descriptions.

Thus the general syntax of the Monitor commands is:

<command>[<parameters>]<CR>]

where:

<command> is the single alphabetic character for the command.

<parameters> are one or more variable data supplied with the command.
Parameters can be numeric or alphabetic. When a numeric parameter is called
for, it must be entered in hexadecimal form and is limited to four hexadecimal
digits (OOOOH through FFFFH). Larger numbers can be entered but only the
four rightmost digits are used by the system. For example, the value 123456H is
treated as 3456H by the system.

<CR> is the carriage return key on the keyboard.

Where a comma is shown in the syntax, you can use either a comma or a space
unless otherwise noted under the individual commands.

6-1

Use of ISIS-II and the Monitor by Other Programs ISIS-II User's Guide

RPTB:

RPTB1:

RPTB2-

MOV
MOV
SHLD
LXI

SHLD
XCHG
SHLD
MOV

ORA
RZ
CALL
AMI
JNZ
LHLD
MOV
MOV
INX
SHLD
CALL
LHLD
MOV
INX
SHLD
CALL
CPI
RNZ

LHLD
OCX
SHLD
JMP

H,B
L,C
BUFAD
H.SOC1

PROMAD

LENGTH
A,H

UPPS
BUSY
RPTB2
PROMAD
B,H
C,L
H
PROMAD
Ul
BUFAD
M,A
H
BUFAD
UPPS
COMPLT

LENGTH
H
LENGTH
RPTB1

;STORE 'BUFFERSADDRESS'

;SET UP PROMAD TO 'SOC1' TO GET
;'SOC1 orADDR'

;STORE'LENGTH'

jCHECK IF NO LOCATIONS LEFT TO
;READ

;RETURN WITH RESULTZERO IF DONE
;CHECK FOR 'UPP NOT BUSY' STATUS

;LOOP WHILE BUSY
;SET UP PROM ADDRESS
;UI EXPECTS ADDRESS IN BC

INCREMENT POSITION FOR NEXT TIME
;STORE IT BACK
;READ PROM LOCATION
;READ CURRENT BUFFER POSITION
;STORE PROM VALUE
.INCREMENT POSITION FOR NEXT TIME

;CHECK IF OPERATION OK |M

;RETURN WITH BAD STATUS IF NOT
;COMPLETE
;CHECKLOOP COUNTER
;DECREMENTCOUNT

;LOOP

UO - Universal PROM Programmer Output Routine (Series II Only)

The Universal PROM Programmer Output routine transfers eight bits of data as a
byte parameter (if called from PL/M) or from the C-register (if called from the
Assembler) to the UPP. The PROM address to be programmed is passed as an ad-
dress parameter (if called from PL/M), or with the most significant byte in the D-
register and the least signficant byte in the E-register (if called from the Assembler).
See the Universal PROM Programmer Input Routine (UI) for a description of the
address bits.

Before calling the Universal PROM Programmer Output routine, you should call
the Universal PROM Programmer Status routine (described later in this chapter) to
ascertain the current status of the UPP. You should also follow the call to the UPP
output routine with another call to the UPP status routine to determine the success
of the operation.

The name of the Universal PROM Programmer output routine in SYSTEM.LIB
isUO.

PL/M UO Call Example

The following PL/M procedure programs the first LENGTH locations of a PROM
in socket 2 from the user buffer pointed to by BUFFERSADDRESS. If it encounters
any UPP errors, it will stop immediately and return the nonzero value of the UPP
status byte; otherwise, it will return a value of zero after LENGTH locations have
been programmed.

5-38

ISIS-II User's Guide The Intellec Monitor

When the Monitor detects a checksum error when reading from an input device,
such as a paper tape reader, it displays a cross-hatch (#) and destroys all the data
from the record in which the error occurred. Subsequent records are not read.

Command Categories

The Monitor commands are divided into seven categories:

• Monitor I/O configuration

• Memory control

• Register control

• Paper tape I/O
• Program execution

• Utility

• Diagnostics (the Z$ command, described in Intellec Series II Installation
Manual)

Monitor I/O Configuration Commands

The Monitor has four system devices defined:

• Console

• Reader

• Punch

• List

You have the option of selecting the actual peripheral device that will perform the
required function. For example, the Console device accepts commands and data and
presents error and informational messages. To perform these functions you can
assign a teletype console, a CRT console, a paper tape reader (in conjunction with a
printer), or some non-standard device (for which you must write the driver
program).

There are two Monitor commands with which you can control the I/O
configuration:

• Assign (A) to change device assignment.

• Query (Q) to find what devices are currently assigned.
To make I/O device assignments, you must understand the characteristics of the
system devices.

The Console is an interactive, character-orientated input and output device. To be
used as a Console, a device must have all these characteristics. A teletypewriter and a
CRT terminal have all these characteristics. A paper tape punch has all but the input
characteristic, therefore it can't be assigned as a Console.

The Reader is a character-oriented input device that transfers data on command and
notifies the calling system when no more data is available. A paper tape reader meets
these qualifications.

The Punch is a character-oriented output device that accepts a character from the
calling system and records it on an external medium. A paper tape punch meets these
qualifications.

6-3

Use of ISIS-II and the Monitor by Other Programs ISIS-II User's Guide

INX
SHLD
LHLD
MOV
INX
SHLD
CALL
CALL
CPI
RNZ

LHLD
OCX
SHLD
JMP

H
PROMAD
BUFAD
A, M
H
BUFAD
UO
UPPS
COMPLT

LENGTH
H
LENGTH
PPFB1

INCREMENT POSITION FOR NEXT TIME
,STORE IT BACK
,READ CURRENT BUFFER POSITION
;READ PROM VALUE
INCREMENT POSITION FOR NEXTTIME

;PROGRAM VALUE INTO PROM
.CHECK IF OPERATION OK i!-"' '

;RETURN WITH BAD STATUS IF NOT
.COMPLETE
;CHECK LOOP COUNTER ' " '-{-
;DECREMENTCOUNT - " -

•LOOP ' • - > - • • iH.'

System Status Routines , «:, ,
.11

The Monitor contains the following system status routines:

• Console input status, which determines if a character is ready for input from the
Console input device.

• Universal PROM programmer status, which reads an eight bit status byte from
the Universal PROM Programmer.

• System I/O configuration status, which returns an eight bit byte describing the
current I/O assignments.

r (• ,

• Set I/O configuration, which changes the current I/O assignments.
• RAM memory status, which returns the highest RAM address available to the

user.
The following sections describe how to use each of these routines, how and where
information is passed to them, how and where information is returned, and an
example of each.

' ' v
CSTS - Console Input Status Routine

The Console Input Status routine tests the Console device to determine if a character
is ready for input. If this routine is called from PL/M, it returns a value of OOH if no
key has been pressed since the last call to the Console Input Routine (CI), or a value
of OFFH if a key has been pressed. If this routine is called from the assembler, then
the OOH or OFFH value will be returned in the A-Register.

The name of the Console Input Status routine in SYSTEM.LIB is CSTS.

PL/M CSTS Call Example

The following example tests the Console Input Device during a Console Output
operation so that the operator has the facility to signal that the output operation be
terminated. A Control/C (03H) character entered at the Console Input Device will
signal this termination.

CSTS. PROCEDURE BYTE EXTERNAL;

END CSTS,
CI. PROCEDURE BYTE EXTERNAL;

ENDCI,

/ 'ENTRY POINT INTO SYSTEM LIB FOR* /
/ *CSTS*/

/* ENTRY POINT INTO SYSTEM.LIB FOR CI */

5-40

ISIS-II User's Guide The Intellec Monitor

READER T or TTY (teletype terminal)
P or PTR (high speed paper tape reader)
1 or 2 (user-defined devices for which user-written
driver programs are present)

PUNCH T or TTY (teletype terminal)
P or PTP (high speed paper tape punch)
1 or 2 (user-defined devices or which user-written driver
programs are present)

LIST T or TTY (teletype terminal)
C or CRT (Intellec II compatible CRT terminal)
L or LPT (line printer)
1 (user-defined device for which a user-written driver
program is present)

Examples of the Assign Command: To assign a high speed paper tape reader as the
system Reader device:

.AR=P<CR>

or

.AREADER=PTR<CR>

To assign a CRT terminal as the system Console device:

.AC=C<CR>

or

.ACONSOLE=CRT<CR>

Q - Query Command

The Query command displays the current status of the system I/O devices. It
displays a list of the system devices and the physical devices assigned to them. The
format of the Query command is:

Q

where:

Q is the Query command code. No parameters are allowed with this command.

Example of the Query Command: To list the current assignments of system devices:

.Q<CR>

The system displays:

C=T
R=T
P=T
L=L

This response indicates that a teletype terminal is assigned as the Console, Reader,
and Punch devices. A line printer is assigned as the List device, not the Console
device.

6-5

Use of ISIS-II and the Monitor by Other Programs ISIS-II User's Guide

If the UPP is not present or is timed-out, the value returned is OFFH.

For additional information concerning the meaning of the status bits, see the
Universal PROM Programmer Hardware Reference Manual.

The name of the Universal PROM Programmer Status routine in SYSTEM.LIB is
UPPS.

See the description of UI and UO for examples of the use of UPPS.

IOCHK - Check System I/O Configuration Routine

The Check System I/O Configuration routine returns a value which describes the
current assignment of physical devices to the logical system devices (Console,
Reader, Punch, and List). It is returned as a byte value (if called from PL/M) or in
the A-Register (if called from the assembler). This value is divided into four 2-bit
fields:

BITS
7 6 5 4 3 2 1 0 STATUS WORD

I CONSOLE

READER

ni IMOIJ

l IST

The following table shows the meaning of the possible values in each field:

VALUE

00

01

10

11

CONSOLE

TTY

CRT

BATCH

Reserved

READER

TTY

H.S. READER

Reserved

Reserved

PUNCH

TTY

H.S PUNCH

Reserved

Reserved

LIST

TTY

CRT

LINE PRINTER

Reserved

The following are lists of the mask values you must use to check for specific system
devices and types of physical devices assigned to them. The mask values are shown
in hexadecimal and binary representation.

Masks to check for system device:

CONSOLE 03H
READER OCH
PUNCH 30H
LIST COH

00000011B
00001100B
00110000B
11000000B

5-42

ISIS-II User's Guide The Intellec Monitor

F - Fill Command

The Fill command writes a specified 1-byte constant into a specified RAM area. If
ROM or PROM is specified, no error is issued, and the command continues to com-
pletion even though the memory does not change.

The format of the Fill command is:

F<low-address>,<high-address>,<constantXCR>

where:

F is the Fill command code.

<low-address> specifies the beginning of the memory range to be filled with
the <constant>. The memory address must be entered in hexadecimal.

<high-address> specifies the last byte of the memory range to be filled with the
<constant>. The memory address must be entered in hexadecimal.

<constant> is the byte to written to the specified address range. The
<constant> must be entered as a hexadecimal number.

All three parameters of the Fill command are required.

If a character other than 0 through F is entered, the command is terminated and the
prompt character (.) is displayed. - * •

Example of the Fill Command: To initialize memory locations 20H through 2FH
withOOH:

F20,2F,00<CR>

M - Move Command

The Move command copies a specified area of memory into an area of RAM. The
move is done on a byte by byte basis, that is, the first byte of the specified area is
copied to the new location, then the second byte is copied to the location following
the first new location, and so forth. The data in the original location is not
destroyed. Any data existing at the new location is overlaid.

The format of the Move command is:

M<start-address>,<end-address>,<destination-addressXCR>

where: rt ,, ., ,•,- ; ..,
\ > (.

M is the Move command code.

<start-address> specifies the address of the first byte to be moved. The address
must be specified in hexadecimal.

<end-address> specifies the address of the last byte to be moved. The address
must be specified in hexadecimal.

<destination-address> specifies the address to which the first byte (start- ad-
dress) is to be move. Each subsequent byte is moved to a location one higher
than the last.

All three parameters are required. - '•

6-7

Use of ISIS-II and the Monitor by Other Programs ISIS-II User's Guide

IOSET - Set System I/O Configuration Routine

The Set System I/O Configuration routine modifies the system I/O configuration
assignments. The new configuration is passed to the routine as a byte parameter (if
called from PL/M) or in the C-register (if called from the assembler). Refer to the
description of the IOCHK routine for a specification of this configuration byte
parameter.

The name of the Set System I/O Configuration routine in SYSTEM. LIB is IOSET.

PL/M IOSET Call Example

The following PL/M sequence changes the Console device to be the CRT.

IOSET: PROCEDURE(CONFIG) EXTERNAL; /* ENTRY POINT INTO SYSTEM. LIB */
/* FOR IOSET*/

DECLARE CONFIG BYTE;
END IOSET;

IOCHK: PROCEDURE BYTE EXTERNAL; /* ENTRY POINT INTO SYSTEM. LIB * /
/ 'FOR IOCHK*/

END IOCHK;

DECLARE DEVMSK LITERALLY '00000011 B'; / 'MASK TO ISOLATE CONSOLE ASSIGNMENT*/
DECLARE NEWDEV LITERALLY '00000001 B'; /*MASK TO ASSIGN CRT TO CONSOLE*/

CALL IOSET((IOCHK AND (NOT DEVMSK)) OR NEWDEV);

Assembly Language IOSET Call Example

DEVMSK

NEWDEV

EXTRN

EXTRN

EQU

EQU

CALL
ANI

IOSET

IOCHK

00000011 B

00000001 B

IOCHK
NOTDEVfi

ORI

MOV
CALL

;ENTRY POINT INTO SYSTEM. LIB FOR
; IOSET
;ENTRY POINT INTO SYSTEM. LIB FOR
;IOCHK
;MASK TO ISOLATE CONSOLE
ASSIGNMENT
;MASK TO ASSIGN CRT TO CONSOLE

;GET THE CURRENT I/O STATUS
NOT DEVMSK ;CLEAR THE CURRENT CONSOLE

ASSIGNMENT
NEWDEV .ASSIGN THE CRT TO THE CONSOLE

;DEVICE
C,A
IOSET ;SETTHE NEW ASSIGNMENT

^_X

MEMCK - Check RAM Size Routine
The Check RAM Size routine returns the highest memory address of contiguous
memory available to the user. This address is the highest address available after the
Monitor has reserved its own memory (320 bytes) at the top of contiguous RAM.
This value is returned as an address value (if called from PL/M) or in the H and L
registers (if called from the assembler).

The name of the Check RAM Size routine in SYSTEM. LIB is MEMCK.

In a system containing 64K of RAM, the user top of memory is OFFFFH minus 2K
for the Monitor PROM and minus 320 bytes for Monitor RAM space, or OF6COH.
In a 32K system the top of memory is 7ECOH, since the 2K for the monitor is still
located between 62 and 64K.

5-44

ISIS-II User's Guide The Intellec Monitor

End the command and not modify the data byte by pressing the carriage
return key: S100,FF-<CR>

Any combination of the first two and finally ending with a carriage return:
S100,FF-AA,00-,11-22<CR>. The example changes the first byte from
FFH to AAH, leaves the second byte unchanged, and changes the third byte
f r o m l l H t o 2 2 H .

Register Command

There is one command to display register contents and to modify register contents.
You can display the contents of all the registers, but to modify a register, you must
specify a single register with the command.

The registers you can display and modify and their symbols in the Monitor are:

A CPU A register
f

B CPU B register -" ••

C CPU C register

D CPU D register

E CPU E register

F CPU flag byte

H CPU H register

I Intellec interrupt mask

L CPU L register

M CPU H and L registers combined

P CPU program counter

S CPU stack pointer

The F register is packed with the CPU condition flags:

7 6 5 4 3 2 1 0
• carry
• always 1
• parity
• always 0
•auxiliary carry
• always 0
-zero
-sign

X - Register Command (Display Form)
This form of the Register command displays the contents of all the registers. To
modify register contents, use the modify form of the command. The format of the
display form of the command is:

X<CR>

6-9

ISIS-II User's Guide The Intellec Monitor

Examples of the Modify Form of the Register Command: To examine but not
change the M register:

XM1234-<CR>

To examine and change the M register:

.XM1234-5678<CR> ^ . '-*.

To examine all the registers in sequence and change the D and H registers:

XAOO-,11-,22-,33-FF,44-,02-,55-FF,EC-,66-,FF66-,FC9C-,E410-<CR>

To examine and change the interrupt mask (1) and the L register: '' - -
"1 ,' \ '

XI FE-FC, 45-44<CR>

Paper Tape I/O Commands
/

The Monitor has four commands to support your usage of paper tape:
• Read (R), which reads data from a paper tape into the Intellec memory.
• Write (W), which writes data from Intellec memory to paper tape.
• End-of-File (E), which writes an end-of-file record to paper tape.
• Null Leader/Trailer (N), which writes null leader and trailer characters to paper

tape.
The Intellec reads and writes paper tape in hexadecimal format. This format is
described in detail in Appendix A.

R - Read Command

The Read command reads a paper tape in hexadecimal format from the device
assigned as the Reader and loads the data into memory at the location specified in
the record. A bias value can be specified in the command. The bias is a value that is
added to the address specified in the record. The record is then loaded at a location
determined by the address plus the bias value.

The format of the Read command is:
'* j >

R<biasXCR>

where:

R is the Read command code.

<bias> specifies a value (modulo 65,536) to be added to the load address con-
tained in the paper tape record. The data is loaded at the memory location
specified by the record address and the bias value. The bias value must be
specified in hexadecimal. Normally, a value of 0 is used.

NOTE
The addition of the bias value does not imply that the code is
relocatable. In some cases, the code would not be executed at the
biased location.

The data read is not changed in any way by the specification of a bias value.

6-11

The Intellec Monitor ISIS-II User's Guide

Entry Errors

The Monitor checks for several error conditions:
• Invalid characters

• Address value errors
• Checksum errors

The Monitor checks the validity of each character entered at the Console device. As
soon as it encounters an invalid character, it displays a cross-hatch (#) and aborts the
command. It displays the prompt character on the next line and waits for more
input:

M • •

4 is rejected because it is not a valid command. '

The first character entered must be a valid command, otherwise it is rejected by the
Monitor.

When the Monitor is expecting an address in hexadecimal (all addresses are entered
in hexadecimal) any character other than 0-9 and A-F is rejected:

.D1000,1FFG# < 3 ;

G is not a valid hexadecimal digit.

Many commands require two addresses where the first address is lower than the ,
second. If the first address is higher than the second, the operation will be per- x

formed on the single address specified as the first address. For example, there is a
command that fills memory with a constant value. If you meant to say fill memory
from address 900 to address 1000 with FF but entered the addresses in the opposite
order:

.F1000,900,FF

The Monitor would place a FF in address 1000 and do nothing else. No indication
that an error occurred is given. You will only find the error when you notice that a ,
single byte was filled instead of 100H bytes. ^-^

Addresses are evaluated modulo 65,536. That means that the highest address that
will be accepted is FFFF in hexadecimal. If addresses higher than FFFF are entered,
only the last four digits will be used and the command will be executed. For exam-
ple, if in the previous addresssing error example, we had entered 10000 instead of „
1000:

.F10000,900,FF
t ' »

The command would have been evaluated as:

FOOOO,900,FF

and memory from address 0 through 900 would have been filled with FF. This is not
what you wanted, in fact, you probably wiped out data you wanted. As you'll find
out later in this chapter, it did wipe out some of the memory that the Monitor itself
uses. No indication of this error is given except that the Monitor will not function J
correctly for some commands without rebooting the system.

6-2

ISIS-II User's Guide The Intellec Monitor

You can specify an entry point address in the end-of-file record written with the
End-of-File command. The entry point address is the address of the first instruction
in the program to be executed. When this address is specified in the end-of-file
record, the address is loaded into the Intellec program counter when the tape is read
with a Read command. The program can then be executed by a simple Execute (G)
command (described later). If the load address field is 0, the program counter is not
altered by the Read command.

The format of the End-of-File command is:

E<entry-pointXCR>

where:

E is the End-of-File command code.

<entry-point> specifies the entry point address of the program in the file to
which the end-of-file record is being added. <entry-point> must be specified in
hexadecimal. Of course an <entry-point> value does not make any sense unless
the file contains executable code. A zero should be specified if an entry point
address is not wanted.

Examples of the End-of-File Command:

To punch an end-of-file record in a tape that has just been written and specify an
entry point address to be used when the tape is read with a Read command:

EO<CR>

To punch an end-of-file record in a tape that has just been written and specify an
entry point address to be used when the tape is read with a Read command:

.E1000<CR>

N - Null Command

The Null command punches a 60 null character leader or trailer. The null character
is a OOH. You should punch a leader before writing data to a tape and after the end-
of-file record. It makes the tape easier to load and saves the data on the tape from
the usual damage that tape ends incur through normal handling.

The format of the Null command is:

N<CR>

where:

N is the Null command code.

Example of the Null Command: To punch a leader or trailer in a paper tape:

.N<CR>

6-13

The Intellec Monitor / ISIS-II User's Guide

The List device is a character-oriented output device that accepts a character from
the calling program and records it on an external medium in human readable form.
A line printer meets these qualifications.

x_X
One of four actual devices can be assigned to each of the system devices. The devices
for which the Monitor has driver programs are:

• Teletype console with a keyboard, printer, paper tape reader, and punch. This
type of device can be assigned to all the system devices.

• CRT devices with a keyboard that are compatible wi th the Intellec system. This
type of device can be assigned to the Console or the List device. *

• High speed paper tape reader. This type of device can be assigned to the Reader
device.

• High speed paper tape punch. This type of device can be assigned to the Punch *
device.

• Line printer. This type of device can be assigned to the List device.

• Batch. This is a non-interactive mode in which CONSOLE input is read from
the assigned READER device and written to the assigned LIST device. In
preparing a command file for BATCH input , the user should enter commands
in exactly the same way as if the system were in interactive mode. Each com- ;
mand should end with a carriage return/ l ine feed pair. The period (prompt) ^~^^
character which is generated by the Monitor in interactive mode should not
appear as part of the command. Since the Monitor will continue to read from
the READER unt i l the CONSOLE is reassigned, the last command in the
BATCH command fi le should reassign the CONSOLE to prevent the Monitor
from reading off the end of the tape.

A - Assign Command

You can assign one physical device to a system with the Assign command. The for- /
mat of thecomand is: ^—^

A<logical-device>=<physical-device>

where:

A is the Assign command code.

<logical-device> specifies which of the system devices is to to be assigned a
<physical-device>. The possible values for <logical-device> are:

x—s
C or CONSOLE

R or READER

P or PUNCH
L or LIST »

The equal sign (=) must be entered.

<physical-device> specifies which of the physical devices is to be assigned to the
<logical-device>. The possible values of <physical-device> for each
<logical-device> are:

CONSOLE T or TTY (teletype terminal)
C or CRT (Intellec II compatible CRT terminal)
B or BATCH (batch mode)
1 (user-defined device for which a user-written program
is present) ^J

6-4

ISIS-II User's Guide The Intellec Monitor

where: . _ .7; • ! '

G is the Execute command code.

<start-address> specifies the address to be placed in the program counter. Con-
trol of the Intellec is passed to this address. The address must be specified in
hexadecimal.

<breakpointl> and <breakpoint2> specify points in the program where control
will be passed back to the Monitor. The breakpoints are entered in hexadecimal.

When breakpoints are specified, command entry is in the following sequence:

1. Enter the command code and, optionally, the start-address followed by a
comma:

G1FA,

2. The Monitor displays a dash: . ,, , .

G1FA,— - ' '

3. Enter the first breakpoint address:

G1FA,—22C
I

4. Enter another comma if a second breakpoint is to be specified or a carriage
return if only one breakpoint is wanted. If a second breakpoint is entered,
follow it with a carriage return:

G1FA,—22C,—24E<CR>
or

G1FA,—22C<CR>

If the command contains a syntax error, no breakpoints are set. The command must
be re-entered and the breakpoints again specified.

, < '

When either of the breakpoints are reached and control is returned to the Monitor,
or when control is returned to the Monitor because of an interrupt 0, both break-
points are eliminated. If you want them when you resume execution of your pro-
gram you must specify them again.

Examples of the Execute Command: To pass control to the program address in the
program counter:

G<CR>

To pass control to the program whose entry point is 30A:

G30A<CR>

To pass control to the program whose entry point is 30A and to set a breakpoint at
address 400 within that program:

.G30A,—400<CR>

To pass control to the program whose entry point is 30A and to set two breakpoints,
at addresses 400 and 500, within that program:

G30A,—400,—500<CR>

6-15

The Intellec Monitor ISIS-II User's Guide

Memory Control Commands

There are four Monitor commands with which you can work with the Intellec
memory. The commands that only read memory can be used on RAM as well as
PROM and ROM. The commands that write to memory can only effectively be used
on RAM. If you specify ROM or PROM with these commands, no error indication
is given but the write portion of the command is not executed.

The Memory control commands are:

• Display (D) which displays a specified range of memory.

• Fill (F) which overlays a specified range of RAM with a constant value.

• Move (M) which copies the contents of a specified portion of memory into
another RAM location.

• Substitute (S) which modifies RAM on a byte-by-byte basis.

D - Display Command
The Display command displays a section of memory formatted into lines of 16 bytes
separated by spaces with the address of the first byte at the left margin.

The format of the Display command is:

D<low-address>,<high-addressXCR>

where: x^_x

D is the Display command code.

<low-address> specifies the beginning of the memory range to be printed. The
address must be specified in hexadecimal. <low-address> must be less than or
equal to <high-address>. If <low-address> is equal to <high- address>, a single
byte is printed. Also, if <low- address> is greater than <high- address>, a single
byte is printed.

<high-address> specifies the end of the memory range to be printed. The ^^J
address must be specified in hexadecimal.

Both parameters of the Display command are required.

If the List device is not ready, the Display command will hang. To continue, make
the List device ready, or, if that isn't possible, press the interrupt 0 button on the *
main chassis.

Example of the Display Command: To print the contents of memory locations 109H »
through 12AH:

D109,12A<CR>
V

The system prints:

0109 09 OA OB OC OD OE OF

0110 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF , \

0120 01 02 03 04 05 06 07 08 09 OA ^~S

6-6

CHAPTER 7
INTERRUPT PROCESSING

Interrupt processing is controlled by logic on the processor board. It provides an
eight-level priority interrupt structure, using an Interrupt Mask Register (the I-
register), and a "current operating level" indicator, which keeps track of the level of
interrupt currently serviced. The Interrupt Mask Register is set by a program or
from the Console device. You select which interrupts will be acknowledged at any
time.

Interrupts 0, 1, and 2 are reserved for internal use and cannot be referenced by the
user.

Priority of Interrupts

There are eight levels of interrupts, numbered 0 through 7. The levels correspond to
the eight Interrupt switches and lights on the front panel. Interrupt 0 has the highest
priority and Interrupt 7, the lowest. An interrupt is not serviced unt i l all higher
priority interrupts are serviced. An interrupt of level 4 that is currently being serv-
iced can be interrupted to service an interrupt of level 3, 2, 1, or 0. It cannot be inter-
rupted to service one of level 5, 6, or 7, nor can it be interrupted by another level 4.

The Interrupt Mask Register
The Intellec Interrupt Mask Register (1-register) determines which interrupts are
accepted by the system. The Interrupt Mask Register contains eight bits, each of
which corresponds to an interrupt level:

BITS 7 6 5 4 3 2 1 0

INTERRUPT LEVELS 7 6 5 4 3 2 1 0

A "1" bit in the Interrupt Mask Register prevents the corresponding interrupt from
being serviced. A "0" bit allows the interrupt to be serviced. For example, the In-
tellec Monitor sets the Interrupt Mask Register to OFEH (11111 HOB) which blocks
all interrupts except interrupt 0.

The Interrupt Mask Register can be set programmatically by writing the desired
value to Port OFCH. For example:

MVIA.OFOH

OUTOFCH

sets the Interrupt Mask Register to 11110000B, blocking interrupts 4 through 7 and
allowing interrupts 0 through 3.

A program can also read the current value of the Interrupt Mask Register from Port
OFCH. For example:

IN OFCH

places the current value of the Interrupt Mask Register into the A-register.

7-1

The Intellec Monitor ISIS-II User's Guide

Because the command works on a byte by byte basis, you should be careful when at-
tempting to move a block of data to a location within the block. By the time the >
command reaches the end of the block, the data will have been overlaid by the first ,
data moved. x—

Examples of the Move Command: To move the data currently at address 0100H
through 0200H to address 0400H through 0500H:

M100,200,400<CR>

To move the data currently at address 1000H through 1FFFH to address 1500H *
through 24FFH.

M1500,1FFF,1AOO<CR> ^

M1000,14FF,1500<CR>

If you tried to do the above example with a single command:

M1000,1FFF,1500<CR>

the first 500H bytes would be copied as you expected, but the second 500H bytes "̂"̂
would be a copy of the first 500H because bytes 1500H through 1FFFH were
overlaid by the first 500H bytes.

S - Substitute Command
The Substitute command displays memory locations on an individual basis and gives
you the option of modifying each location as it is displayed.

The Substitute command functions differently than most of the Monitor com-
mands. The function of this command is performed before the carriage return ^—^
(<CR>) is entered. The use of the command is described after the syntax and
parameter descriptions. The format of the Substitute command is:

S<address>,[<data-byte>][,[<data-byte>]][...]<CR>

where:

S is the Substitute command code.

<address> specifies a RAM address. The address must be specified in hex- ^—^
adecimal.

<data-byte> specifies a single byte of data in hexadecimal that is to replace the
byte currently at the location specified by address. This is an optional
parameter. If it is not entered, the byte specified by address is not modified.

The Substitute command functions in the following manner:

1. Enter the command code and the address followed by a comma: S100, *

2. The contents of the specified memory location followed by a dash is displayed:
S100.FF-

3. You can now:

• Modify the contents of the address by entering a new byte in hexadecimal: v

S100,FF-AA

• Look at the next sequtxitial byte of data by entering a comma: S100,FF-,00- ^~s

6-8

ISIS-II User's Guide Interrupt Processing

The following example shows the skeleton of the code necessary to service an inter-
rupt at level 1.

INT1:

ASEG

ORG
JMP
CSEG

El
PUSH
PUSH
PUSH
PUSH

8
INT1

PSW
B
D
H

;VECTOR GOES AT ABSOLUTE
.LOCATION
,RST ADDRESS FOR INTERRUPT 1

;PUT CODE IN RELOCATABLE CODE
:SEGMENT

;ROUTINE CAN BE INTERRUPTED
;SAVE
; REGISTERS

<code to service interrupt and remove signal>

POP
POP
POP
Dl

MVI
OUT
POP
El

RET

H
D
B

A,20H
OFDH
PSW

.RESTORE
REGISTERS

;CRITICAL SECTION.
; DISABLE INTERRUPTS
;RESTORE CURRENT OPERATING LEVEL

;RESTORE A REG AND FLAGS
.PERMIT INTERRUPTS AFTER NEXT
; INSTRUCTION
;THE RETURN MUST IMMEDIATELY
;FOLLOW THE El TO MAKE SURE
;IT IS EXECUTED BEFORE ANOTHER
INTERRUPT OCCURS

7-3

The Intellec Monitor ISIS-II User's Guide

where:

X is the Register command code. /

No parameters are used with this form of the command. , :

Example of the Display Form of the Register Command: To display the contents of
the Intellec registers:

X<CR> " 4 . > . i . ' , . » •

The system displays:

A=OOB=78C=OOD=47E=11 F=02H=FCI=FCL=20M = FC20P=1024S=CD10 , , 4

X - Register Command (Modify Form)

The modify form of the Register command allows you to display and optionally
change the contents of the registers, one at a time. „' •

This form of the Register command functions differently than most of the Monitor
commands. The function of the command is performed before the carriage return
(<CR>) is entered. The use of the command is described after the syntax and
parameter descriptions. The format of the modify form of the Register command is:

X <register>, [<data>] [,[<data>]] [,...] <CR>

where:

X is the Register command code.
>'• ' , "—

<register> specifies a single register by letter.

<data> specifies one or two bytes of data (depending on the register) to be plac-
ed in the register. The data must be entered in hexadecimal.

The modify form of the Register command functions in the following manner:

1. Enter the command code and the register letter: ,

XC ,

2. The contents of the specified register followed by a dash is displayed: ' "J ' '

XCFF-

3. You can now:

• Modify the contents of the register by entering new hexadecimal data:
XC FF-00

• Look at the contents of the next sequential register by entering a comma:

XC FF-, EE- „

• End the command and not modify the register by pressing the carriage
return key:

XC FF-<CR>

• Any combination of the first two and finally ending with a carriage return:
XCFF-EE,EE-,02-82<CR>

This example changes the C register from FFH to EEH, leaves the D register
unchanged, and changes the flag byte from 02H to 82H. . ^_^

6-10

APPENDIX A
HEXADECIMAL PAPER TAPE FORMAT

Object code is stored on paper tape in an ASCII representation of the program in
memory. The code is blocked into records, each of which contains the record type,
length, type, memory load address, and checksum in addition to the data. Figure
A-l shows the frames of a tape record.

CHECKSUM

RECORD TYPE

LOAD
ADDRESS

RECORD
LENGTH

RECORD MARK

Figure A-l. Paper Tape Record Format

The Record Mark is a colon (3AH) and is used to signal the start of a record.

The Record Length is the count of the data bytes in the record. A record length of
zero indicates end-of-file.

The Load Address specifies the address at which the first data byte will be loaded.
The successive data bytes will be stored in successive memory locations.

The Record Type specifies the type of this record. All data records are type 0. End-
of-file records can be type 0 or 1.

The Data consists of two frames per memory word. The data is represented by hex-
adecimal values OOH through FFH.

The Checksum is the negative of the sum of all 8-bit bytes in the record, beginning
with the Record Length and ending with the last Data byte, evaluated modulo 256.
The sum of all bytes in the record (including the checksum) should be zero.

A-l

The Intellec Monitor ISIS-II User's Guide

Examples of the Read Command: To read a paper tape into memory:

RO<CR>

To read a paper tape into a memory location that is 1000H above the address
specified in the tape record:

R1000<CR>

W - Write Command
The Write command punches the contents of a specified memory area to the
assigned punch device. The memory area is specified by the beginning and ending
addresses of the data to be punched.

The Write command does not put an end-of-file record on the paper tape. Thus you
can punch non-contiguous areas of memory as a single file. The end-of-file record is
written by the End-of-File command (E).

The format of the Write command is:

W<start-address>,<end-addressXCR>

where:

W is the Write command code.

<start-address> specifies the first memory location to be punched onto the tape.
<start-address> must be specified in hexadecimal.

<end-address> specifies the last memory location to be punched into the tape.
<end-address> must be specified in hexadecimal. <end-address> must be higher
than <start-address>.

The final record in a paper tape file must be an end-of-file record. After you have
written the last memory area to tape, you must write an end-of-file record with the
End-of-File command.

Examples of the Write Command: To write the contents of memory locations 200H
through 3AFH to paper tape:

.W200,3AF<CR>

To write the contents of memory locations 450H through 54FH and locations 1000H
through 1FFFH to paper tape as a single file:

.W450,54F<CR>

.W1000,1FFF<CR>

E - End-of-File Command
Every paper tape file must have an end-of-file record as the last record. If the end-
of-file record is missing, the reader will read off the end of the tape.

6-12

APPENDIX B
HEXADECIMAL-DECIMAL CONVERSION

The following table is for hexadecimal to decimal and decimal to hexadecimal con-
version. To find the decimal equivalent of a hexadecimal number, locate the hex-
adecimal number in the correct position and note the decimal equivalent. Add the
decimal numbers.

To find the hexadecimal equivalent of a decimal number, locate the next lower
decimal number in the table and note the hexadecimal number and its position. Sub-
tract the decimal number from the table from the starting number. Find the dif-
ference in the table. Continue this process until there is no difference.

BYTE
HEX DEC

0 0
1 4,096

2 8,192
3 12,288
4 16,384

5 20,480
6 24,576
7 28,672

8 32,768
9 36,864

A 40,960
B 45,056
C 49,152
D 53,248
E 57,344
F 61,440

HEX DEC

0 0
1 256

2 512
3 768
4 1,024
5 1 ,280
6 1,536

7 1 ,792

8 2,048
9 2,304
A 2,560

B 2,816
C 3,072

D 3,328
E 3,548
F 3,840

BYTE

HEX DEC

0 0
1 16
2 32

3 48
4 64
5 80
6 96

7 112
8 128

9 144
A 160

B 176
C 192
D 208

E 224
F 240

HEX DEC

0 0
1 1
2 2
3 3
4 4
5 5
6 6

7 7

8 8
9 9
A 10
B 11
C 12

D 13
E 14
F 15

B-l

The Intellec Monitor ISIS-II User's Guide

Execute Command

The Execute command lets you transfer control of the Intellec system from the
Monitor to your own program. You can specify the starting address and one or two
breakpoints with the command. The starting address is optional. If it isn't specified
in the command, the address in the program counter will be used. In the following
conditions, you can be sure that the desired address is in the program counter:

• You interrupted your program with the interrupt 0 switch on the front of the
Intellec and you have done nothing to destroy the program's registers.

• You loaded the program from paper tape and the end-of-file record contained
the entry point address. This entry point address is loaded into the program
counter by the Monitor.

• You modified the program counter to your entry point address with the Register
command.

• Your program returned control to the Monitor because a breakpoint was
encountered.

A breakpoint is the address of an instruction within your program that, if fetched,
results in the return of control to the Monitor. You may want to do this so you can
check the contents of certain registers or data fields at this point in your program.
When a breakpoint is reached, the instruction at the address is not executed before
control is returned to the Monitor. The instruction at the breakpoint is executed
when you return control to your program with the Execute command.

There are two important points you must know when using breakpoints to debug
and test your program:

• In saving the CPU status for your program, the Monitor uses the top 12 bytes of
your program stack. This pushes the status of your registers and program
counter into the stack. You should be aware of this when examining the stack.
When control is returned to your program, your registers are restored and the
stack pointer is reset as if the breakpoint had never occurred.

• The Intellec interrupt system is enabled when the Monitor is entered. The
Monitor cannot determine the state of the interrupt system just prior to exit
from your program. It is assumed that the interrupt system was enabled and so
interrupts are enabled when control is returned to your program. It is your
responsibility to either enable or disable the interrupt system. - -• ...

G - Execute Command ^

The Execute command gives control of the Intellec to the program at the address
specified or implied in the command. It optionally sets one or two breakpoints in the
program to which control is passed. «

If breakpoints are specified, the Execute command functions d i f fe ren t ly than most
of the Monitor commands. Before the carriage return is entered, the Monitor
prompts for breakpoints if a comma is entered after typing G. This use of the com-
mand is described after the syntax and parameter descriptions. The format of the
Program Execute command is:

G[<start-address>][,<breakpointl>][,<breakpoint2>]<CR> ^ j

6-14

APPENDIX C
ERROR MESSAGES

This appendix lists the error messages issued by the various ISIS-II commands.

The numbered messages are listed in the first section. The unnumbered messages
that are issued by specific commands are listed in subsequent sections.

Numbered ISIS-II Error Messages

By convention, error numbers 1-99 inclusive are reserved for errors that originate in
or are detected by the resident routines of ISIS-II; error numbers 100-199 inclusive
are reserved for user programs; and numbers 200-255 inclusive are used for errors
that may be encountered by nonresident system routines. In the following list an
asterisk precedes errors that are always fatal. The other errors are generally nonfatal
unless they are issued by the CONSUL system call. See Tables C-l and C-2.

0 No error detected.
* 1 Limit of 19 buffers exceeded.

2 AFTN does not specify an open file.
3 Attempt to open more than six files simultaneously.
4 Illegal filename specification.
5 Illegal or unrecognized device specification in pathname.
6 Attempt to write to a file open for input.

* 7 Operation aborted; insufficient disk space.
8 Attempt to read from a file open for output.
9 No more room in disk directory.

10 Pathnames do not specify the same disk.
11 Cannot rename file; name already in use.
12 Attempt to open a file already open.
13 No such file.
14 Attempt to open for writing or to delete or rename a write-protected file.

* 15 Attempt to load into ISIS-II area or buffer area.
16 Illegal format record.
17 Attempt to rename/delete a non-disk file.

* 18 Unrecognized system call.
19 Attempt to seek on a non-disk file.
20 Attempt to seek backward past beginning of file.
21 Attempt to rescan a non-lined file.
22 Illegal ACCESS parameter to OPEN or access mode impossible for file

specified.
23 No filename specified for a disk file.

* 24 Disk error (see below).
25 Incorrect specification of echo file to OPEN.
26 Incorrect second parameter in ATTRIB system call.
27 Incorrect MODE parameter in SEEK system call.
28 Null file extension.

*29 End of file on console input. ' • >
*30 Drive not ready.

31 Attempted seek on write-only (output) file.
32 Can't delete an open file.

*33 Illegal system call parameter.
34 Bad third parameter in LOAD system call.
35 Attempt to extend a file opened for input by seeking past end-of-file.

C-l

The Intellec Monitor ISIS-II User's Guide

Utility Command

There is one utility command that does hexadecimal addition and subtraction for
you. Many of your early errors in programming will come from mistakes in per-
forming hexadecimal arithmetic.

H - Hexadecimal Command
The Hexadecimal command adds and subtracts two hexadecimal numbers for you.
The numbers can be up to and including four hexadecimal digits. The format of the
Hexadecimal command is:

H<numberl >,<number2XCR>

where:

H is the Hexadecimal command code.

<numberl> specifies the first number to be added. This is number is used as
minuend for the subtraction. The number must be entered in hexadecimal.

<number2> specifies the second number to be added. This number is used as the
subtrahend for the subtraction.

The command displays two four-digit values. The first is the addition of the two
numbers and second is the subraction. Negative numbers must be entered in their
twos complement form.

If more than four digits are entered, the command uses the rightmost four digits.
The leading digits are lost.

Example of the Hexadecimal Command: To add and subtract E49 (minuend) and
111 (subtrahend):

.HE49,11KCR>

6-16

ISIS-II User's Guide Error Messages

For hard disks, nn has the following meanings: -;

01 ID field miscompare.
02 Data Field CRC error. , • •
04 Seek error.
08 Bad sector address.
OA ID field CRC error.
OB Protocol violations.
OC Bad track address. i !

OE No ID address mark or sector not found.
OF Bad data field address mark.
10 Format error.
20 Attempt to write on Write protected drive.
40 Drive has indicated a Write error.
80 Drive not ready.

Table C-l. Nonfatal Error Numbers Returned by System Calls

OPEN
READ
WRITE
SEEK
RESCAN
CLOSE
SPATH
DELETE
RENAME
ATTRIB
GETATT
GETD
CONSUL
WHOCON
ERROR
LOAD
EXIT

3,4,5,9,12,13,14,22,23,25,28.
2,8.
2,6
2,19,20,27,31,35.
2,21
2.
4, 5, 23, 28.
4,5,13,14,17,23,28,32.
4,5,10,11,13,17,23,28.
4,5,13,23,26,28
4,5,13,23,28.
3,4,5,13,23.
None; all errors are fatal.
None.
None
3,4 ,5 ,12 ,13,22,23,28,34
None.

Table C-2. Fatal Errors Issued by System Calls

OPEN
READ
WRITE
SEEK
RESCAN
CLOSE
SPATH
DELETE
RENAME
ATTRIB
G ET ATT
GETD
CONSOL
WHOCON
ERROR
LOAD

1,7,24,30,33.
24, 30, 33.
7,24,30,33.
7, 24, 30, 33.
33.
33.
33
1,24,30,33.
1,24,30,33.
1,24,30,33.
1,24,30,33.
1,24,30,33.
1, 4, 5, 12, 13, 14, 22, 23, 24, 28, 30, 33
33
33
1,15,16,24,30,33

C-3

Interrupt Processing ' " ISIS-II User's Guide

Interrupt Mask Register Initialization
The interrupt mask register is initialized by the monitor when the system is turned on ^—^
and when the RESET button is pressed. At both of these times it is set to OFEH
(11111110B); only interrupt 0 is allowed. If 1SIS-11 is boot loaded, the mask register
is set toOFCH(l 111 1100B); interrupts0 and 1 are allowed. - , <

Interrupt Acceptance .
When an interrupt occurs, the interrupt mask register is checked to see if an inter-
rupt of that level is permitted. If it is not, no further action is taken, but the inter-
rupt is not cleared and remains pending. If the interrupt is permitted, the "current *
operating level" is checked to see if another interrupt of equal or higher priori ty is
being serviced. If so, the new interrupt remains pending until the value of the "cur-
rent operating level" is less than the priority of the the new interrupt.

When the new interrupt can be serviced all interrupts from the Multibus are locked
out, while an RST instruction to the appropriate interrupt address (see the following
table) is generated and the "current operating level" is set to the new value. The m- i
terrupt lock out is then removed.

The addi esses called when an interrupt is accepted are:

INTERRUPT
LEVEL ADDRESS

0 OOOOH

1 0008H
2 0010H

3 0013H ,- " f . o r " ' . • • - ' . • •*^*rsi :• - ; x—
4 0020H
5 0028H - ,
6 0030H
7 0038H

Interrupt Removal
The program servicing an interrupt must do two things: transmit a signal to the in-
terrupting device, telling it to remove the interrupt signal it generated initially; and x—
restore the "current operating level" maintained by the system. The former action is
device-dependent. The latter is accomplished by writing a value of 20H to port
OFDH. This must be done with interrupts disabled . If the code permits another in-
terrupt to be serviced while this is being done, a stack overflow could result. The
following is a sample sequence in assembly language for doing this: ,,

<remove interrupt signal from external device> <
Dl ,DISABLE INTERRUPTS
MVI A.20H *
OUT OFDH

POP PSW ;RESTOREA-REGISTER AND FLAGS ' •
El .ENABLE INTERRUPTS

The following is a sample PL/M sequence for restoring the current operating level:

DISABLE, /'DISABLE INTERRUPTS*/

OUTPUT(OFDH) = 20H, /'RESTORE THE INTERRUPT LOGIC*/ J
ENABLE, /*ALLOW INTERRUPTS*/ X

7-2

ISIS-II User's Guide Error Messages

The file specified in the message was used with a list of module names in the LINK
command, therefore it was expected to be a library file. The file actually was not a
library file. This could be caused by a misspelled file name.

filename, SEGMENTTOO LARGE

An output segment is greater than 64K bytes. The segment portion in the file
specified in the message cannot be added to the output segment because it would
then be greater than 64K.

filename, INSUFFICIENT MEMORY

LINK cannot generate the output file specified in the message because there is insuf-
ficient memory for its work space, which is needed primarily for the symbol table.

Non-Fatal Error Messages

Nonfatal errors issued by LINK are written to the map file and the current console
output device (if different). LINK completes processing before returning to ISIS-II.

MORE THAN 1 MAIN MODULE, CONFLICT IN modname ' - •

LINK found more than one main module in the input list. The module named in the
message is found after another main module was detected previously. All main
modules are included in the output module, but the starting address of the output
module is taken from the first main module in the input list.

name-MULTIPLY DEFINED, DUPLICATE IN modname . « - . • > . „

The public name specified in the message was defined in more than one module, the
second definition was detected in the module specified in the message.

MODULE NOT IN LIBRARY, LOOKING FOR f i lename (modname) '

The module in the input list was not found in the specified library.

/name/-UNEQUAL COMMON LENGTH, CONFLICTIN modname - -<

Two named common segments with the same name but different lengths were
encountered. The module containing the conflicting definition is specified in the
message.

t t -

LOCATE Error Messages . * . - >>•< i

Fatal Error Messages

Fatal errors encountered by LOCATE cause a message to be sent to the console out-
put device. LOCATE terminates processing and returns control to ISIS-II.

The errors that are caused by improper command entry are followed by a partial
image of the command with a cross hatch (#) in the vicinity of the error.

INVALID SYNTAX , " " ' : " •
partial command image ; ' ' '•'' ''-'

C-5

ISIS-II User's Guide Error Messages

There is an error in the internal format of the specified file. This error may be the
result of a misspelled file name. The error may have occurred when the language
translator produced the module or in a previous LINK, in which case you should
translate the source module again and re-LOCATE. If the problem persists, it
should be reported on a Software Problem Report (SPR).

filename, PROGRAM EXCEED 64K

The output module to be placed in the output file exceeds the maximum of 64K
bytes.

filename, INSUFFICIENT MEMORY

LOCATE cannot process the input file specified in the message because there is
insufficient memory for its work space.

Non-fatal Error Messages ; t ' *
K> .. ; ' 7.

Non-fatal error messages issued by LOCATE are written to the map file and the cur-
rent console output device (if different). LOCATE completes processing before
returning the ISIS-II

INPAGE SEGMENT > 256 BYTES COERCED TO PAGE BOUNDARY

If this message is issued, a segment marked as inpage relocatable is greater than 256
bytes. Relocation types are described in Chapter 4.

UNSATISFIED EXTERNAL(n) external name

This message is printed when an unsatisfied external name is encountered m the
input file. The number (n) is the running count of the number of unsatisfied external
names encountered previously, it is also used in the following message when a
reference is made to the unsatisfied external name.

REFERENCE TO UNSATISIFIED EXTERNAL(n) AT xxxxH

A reference was made to the unsatisfied external name identified by the count (n) at
the address specified.

(MEMORY OVERLAP FROM xxxxH THROUGH xxxxH)

This message is issued if the same memory location is defined in more than one pro-
gram segment.

Lib Error Messages
All LIB command error messages are nonfatal because LIB is an interactive pro-
gram. The command (ADD, CREATE, DELETE, EXIT, or LIST) that caused the
error is aborted.

The errors that are caused by improper command entry are followed by a partial
image of the command with a cross hatch (#) in the vacinity of the error.

INSUFFICIENT MEMORY

C-7

' 1.

ISIS-II User's Guide Error Messages
I

The specified file contains a record of insufficient length. < - • r*
* * r

filename, PREMATURE EOF >, •

The EOF record occurred before the length of the file indicated it should.

LEFT PARENTHESIS EXPECTED
partial command image

There is a missing left parenthesis "(" in the command. - - <- •'' • ' - . • < •

modname- ATTEMPT TO ADD DUPLICATE MODULE

The specified module already exists in the library.

MODULE NAME TOO LONG
partial command image

I
The specified module name exceeds 31 characters.

RIGHT PARENTHESIS EXPECTED
partial command image

There is a missing right parenthesis ")" in the command.

symbol- PUBLIC SYMBOL ALREADY IN LIBRARY

You attempted to add a module that contains a PUBLIC symbol that already exists
in the library.

'TO'EXPECTED
partial command image

The TO file is not specified in the ADD command.

UNRECOGNIZED COMMAND

An illegal or misspelled command (i.e., not ADD, CREATE, DELETE, EXIT, or
LIST) was entered.

Editor Error Messages

The Editor issues the following error messages:

"n" ILLEGAL IN THIS CONTEXT

The "n" represents an alphanumeric character that is not an Editor command. Any
commands that precede the illegal character are executed. Any commands that
follow the illegal character are not executed.

CANNOT FIND "text"

C-9

APPENDIX D
ISIS-II SAMPLE PROGRAMS—TYPE

This appendix describes two programs—one written in PL/M, one written in
8080/8085 Assembly Language, with identical functions. Both programs allow you
to type a file to the :CO: device by specifying:

TYPE f i lename

rather then

COPY filename to CO

The PL/M program must be compiled and linked with SYSTEM.LIB and
PLM80.LIB and located to an actual memory location before it can be executed.
The assembly language program must be assembled, linked to SYSTEM.LIB and
located to an actual memory location before it can be executed.

PL/M Version of TYPE
t

TYPE
DO,

DECLARE BUFFER(128) BYTE,
DECLARE ACTUALSCOUNT ADDRESS, -
DECLARE STATUS ADDRESS,
DECLARE AFTSIN ADDRESS,
DECLARE READSACCESS LITERALLY 'V,

OPEN
PROCEDURE (AFT,FILE,ACCESS,MODE,STATUS) EXTERNAL, .; ->l' ;,;,".,'.

DECLARE (AFT,FILE,ACCESS,MODE,STATUS) ADDRESS,
END OPEN,

CLOSE ~~
PROCEDURE (AFT,STATUS) EXTERNAL, „̂

DECLARE (AFT,STATUS) ADDRESS,
END CLOSE,

READ - ,
PROCEDURE (AFT,BUFFER,COUNT,ACTUAL,STATUS) EXTERNAL,

DECLARE (AFT,BUFFER,COUNT,ACTUAL,STATUS) ADDRESS,
END READ,

WRITE i _,
PROCEDURE (AFT,BUFFER,COUNT,STATUS) EXTERNAL;

DECLARE (AFT,BUFFER.COUNT,STATUS) ADDRESS;
END WRITE,

EXIT
PROCEDURE EXTERNAL,
END EXIT,

ERROR.
PROCEDURE (ERRNUM) EXTERNAL,

DECLARE (ERRNUM) ADDRESS,
END ERROR,

D-l

Error Messages _ , - - - - - ISIS-II User's Guide

'\ ' s.',

201 Unrecognized switch.
202 Unrecognized delimiter character. -^
203 Invalid command syntax. ,
204 Premature end-of-file. N—s
206 Illegal disk label.
207 No END statement found in input.
208 Checksum error. ' ' ': .
209 Illegal records sequence in object module file.
210 Insufficient memory to complete job. •' •
211 Object module record too long.
212 Bad object module record type. *
213 Illegal fixup record specified in object module file.
214 Bad parameter in a SUBMIT file.
215 Argument too long in a SUBMIT invocation. „ . . _ _ . *
216 Too many parameters in a SUBMIT invocation. '- - 1 • » « t f « 0-- '--<' ' ' '•
217 Object module record too short.
218 Illegal object module record format. ' '-•
219 Phase error in LINK. '
220 No end-of-file record in object module file. ' * ' ' ''!

221 Segment overflow during Link operation. '
222 Unrecognized record in object module file. ' • • • • • >
223 Fixup record pointer is incorrect. • • - - ' ' x—'
224 Illegal record sequence in object module file in LINK.
225 Illegal module name specified.
226 Module name exceeds 31 characters. ' ''
227 Command syntax requires left parenthesis.
228 Command syntax requires right parenthesis.
229 Unrecognized control specified in command. " '•
230 Duplicate symbol found.
231 File already exists. ' ' ' ' ' ' . —^
232 Unrecognized command.
233 Command syntax requires a "TO" clause. ! < l '. ~>v ' ** /
234 File name illegally duplicated in command. ' " '
235 File specified in command is not a library file. ' ''' '*'• '"
236 More than 249 common segments in input files. '' ' '''
237 Specified common segment not found in object file.
238 Illegal stack content record in object file.
239 No module header in input object file. ' '
240 Program exceeds 64K bytes.

When error number 24 occurs, an additional message is output to the console:

STATUS=OOnn - -' f

D=x T=yyy S=zzz - • • • { • • ' f

where x represents the drive number, yyy the track address, zzz the sector address, —
and where nn has the following meanings for floppy disks:

*>. ~ ' "
01 Deleted record.
02 Data field CRC error. • , . - , ^ -
0 3 Invalid address mark. , ! • • - , . ^
04 Seek error. ' ' " ' • ' •">
08 Address error. • /
OA ID field CRC error.
OE No address mark.
OF Incorrect data address mark. i *
10 Data overrun or data underrun.
20 Attempt to write on Write Protected drive.
40 Drive has indicated a Write error. i
80 Drive not ready. x J

C-2

ISIS-II User's Guide ISIS-II Sample Programs—Type

ORA
JNZ
LHLD
SHLD

A
ERR
AFT
CAFT

LOOP

DONE:

MVI

LXI
CALL
LDA

ORA

JNZ
LHLD
MOV

ORA
JZ
MVI
LXI
CALL
LDA

ORA
JNZ
JMP

MVI
LXI

CALL
MVI
LXI
CALL

C,READ
D,RBLK
ISIS
STATUS
A

ERR
ACTUAL
A, H
L
DONE
C.WRITE
D.WBLK
ISIS
STATUS
A

ERR
LOOP

C.CLOSE
D.CBLK
ISIS
C.EXIT
D.XBLK
ISIS

; READ THE INPUT FILE

; WRITE TO THE CONSOLE

; CLOSE THE INPUT FILE

NORMAL EXIT

ERR:
MVI

LXI
CALL
MVI
LXI
CALL

C, ERROR
D.EBLK
ISIS
C,EXIT
D.XBLK
ISIS

ERROR MESSAGE

; ERROR EXIT

OBLK:
DSEG

DW
DW
DW
DW
DW

AFT
BUFFER
1
0
STATUS

; BEGINNING OF DATA SEGMENT

; READ ACCESS
;NO ECHO

CBLK:
CAFT: DS

DW STATUS

RBLK:
AFT: DW

DW
DW
DW
DW

1
BUFFER
128
ACTUAL
STATUS

D-3

Error Messages ISIS-II User's Guide

Link Error Messages
\

Fatal Error Messages

Fatal errors encountered by LINK cause a message to be sent to the console output
device. LINK terminates processing and returns control to ISIS-II.

The errors that are caused by improper command entry are followed by a partial
image of the command with a cross hatch (#) in the vicinity of the error. i

INVALID SYNTAX
partial command image

There is an error in the command as entered. The error may be an unrecognized ..?
keyword, a missing comma, or a non-blank character following an ampersand.

DUPLICATE FILE NAME
partial command image

The same file name is specified both as an input and output file. . . 4 1
'TO'EXPECTED
partial command image ^ J

The command syntax requires a "TO" clause to specify the output file.
LEFT PARENTHESIS EXPECTED
partial command image

A PUBLICS, NAME, or PRINT keyword is not followed by a "(".
RIGHT PARENTESIS EXPECTED
partial command image

The list following a PUBLICS, NAME, or PRINT keyword is not ended with a ")".
INVALID NAME ^ /
partial command image

A module name contains an illegal character.
NAME TOO LONG
partial command image

A module name greater than 31 characters was encountered in the command.
UNRECOGNIZED CONTROL
partial command image

A character string other than NAME, MAP, or PRINT was encountered when a ,
control keyword was expected. ^—'

filename, PREMATURE EOF
filename, CHECKSUM ERROR e

filename, RECORD TOO LONG
filename, ILLEGAL RELO RECORD
filename, FIXUP BOUNDS ERROR ,, z
filename, ILLEGAL RECORD FORMAT
filename, NO EOF
filename, BAD RECORD SEQUENCE ' ft

filename, ILLEGAL STACK CONTENT RECORD
filename, NO MODULE HEADER RECORD

There is an error in the internal format of the specified file. This error may be the
result of a misspelled file name. The error may have occurred when the language
translator produced the module or in a previous LINK, in which case you should
translate the source module again and relink. If the problem persists, it should be
reported on a Software Problem Report (SPR).

filename, NOT A LIBRARY ' ' ^-^

C-4

APPENDIX E
ASCII CODES

Table E-1. ASCII Code List

Decimal

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

Octal

000
001
002
003
004
005
006
007
010
011
012
013
014
015
016
017
020
021
022
023
024
025
026
027
030
031
032
033
034
035
036
037
040
041
042
043
044
045
046
047
050
051
052
053
054
055
056
057
060
061
062
063
064
065
066
067
070
071
072
073
074
075
076
077

Hexadecimal

00
01
02
03
04
05
06
07
08
09
OA
OB
OC
ÖD
OE
OF
10
11
12
13
14
15
16
17
18
19
1A
1B
1C
1D
1E
1F
20
21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F
30
31
32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F

Character

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
LF
VT
FF
CR
SO
Sl

OLE
DC1
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM

SUB
ESC
FS
GS
RS
US
SP

i

#
$
%
&

(
)

+
1

-

/
0
1
2
3
4
5
6
7
8
9

<
=
>
9

Decimal

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

Octal

100
101
102
103
104
105
106
107
110
111
112
113
114
115
116
117
120
121
122
123
124
125
126
127
130
131
132
133
134
135
136
137
140
141
142
143
144
145
146
147
150
151
152
153
154
155
156
157
160
161
162
163
164
165
166
167
170
171
172
173
174
175
176
177

Hexadecimal

40
41
42
43
44
45
46
47
48
49
4A
4B
4C
4D
4E
4F
50
51
52
53
54
55
56
57
58
59
5A
5B
5C
5D
5E
5F
60
61
62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F
70
71
72
73
74
75
76
77
78
79
7A
7B
7C
7D
7E
7F

Character

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
[
\
A
—
'
a
b
c
d
e
f
g
h
i
i
k
l

m
n
o
P
q
r
s
t
u
v
W

X

y
z<
1
}
~

DEL

E-1

Error Messages ISIS-II User's Guide

There is an error in the command as entered. The error may be an unrecognized
keyword, a missing comma, or a non-blank character following an ampersand. ~N

'TO' EXPECTED "^
partial command image

The "TO" clause was not specified in the LOCATE command and the input file
name does not contain an extension.

LEFT PARENTHESIS EXPECTED „
partial command image

A COLUMNS, ORDER, START, STACKSIZE, CODE, DATA, STACK, „
MEMORY, /common name/, //, NAME, or PRINT keyword is not followed by a

t

RIGHT PARENTHESIS EXPECTED
partial command image * ' - • • ! >

The list following a COLUMNS, ORDER, START, STACKSIZE, CODE, DATA, ^_J
STACK, MEMORY, /common name/, //, NAME, or PRINT keyword is not
ended with a")".

INVALID NAME . v, . ,,
partial command image

A module name or /common name/ contains an illegal character.

NAMETOO LONG ^~~~~
partial command image s ^

A module name or /common name/ greater than 31 characters was encountered in
the command.

common name, COMMON NOT FOUND

The input module does not contain the common segment that was specified in the
command.

UNRECOGNIZED CONTROL - • S—
partial command image I

A character string other than NAME, MAP, PRINT, COLUMNS, SYMBOLS,
LINES, PUBLICS, PURGE, ORDER, CODE, DATA, STACK, MEMORY, /,
RESTARTO, START, or STACKSIZE was encountered when a control keyword *
was expected.

filename, PREMATURE EOF , *K..
filename, CHECKSUM ERROR
filename, RECORD TOO LONG H - ,
filename, ILLEGAL RELO RECORD
filename, FIXUP BOUNDS ERROR
filename, ILLEGAL RECORD FORMAT
filename, NO EOF
filename, BAD RECORD SEQUENCE
filename, ILLEGAL STACK CONTENT RECORD
filename, NO MODULE HEADER RECORD .

C-6

INDEX

",3-41
//4-14
/common name/, 4-14
?,3-7
• ,2-4
:BB:,2-5
:CI:, 2-4
:CO:, 2-4
:Fn:,2-4
:HP:,2-4
:HR:,2-4
:LP:,2-4
:TI:,2-4
:TO:, 2-4
:TP:,2-4
:TR:, 2-4
:VI:,2-4
:VO:,2-4

A command
Editor, 3-53
Monitor, 6-4

A switch of FORMAT command, 3-13
aborting commands, Editor, 3-41
absolute code

converted from hexadecimal code, 3-39
absolute object module, 4-3
absolute information, 4-3
accepting interrupts, 7-2
accessing

devices, 2-5
files, 2-5

ADD command, 4-18
addressing relative, 4-4
AFTN, 5-8
aids, user, 3-1
angle brackets, 3-54
append command, 3-53
arithmetic with hex, 6-16
ASCII Codes, E-l
ASEG,4-3
ASM80, 4-1
assembler, 1-2
assembler and relocation, 4-21
assembly language calls, 5-6
assign command, 6-4
asterisk (*), 3-41
ATTRIB command, 3-37
ATTRIB system call, 5-20
attributes, 3-6 <
attributes, change

from console, 3-37
with system call, 5-21

attribute system call, 5-22

B command, 3-44
B switch of COPY command, 3-31
base address, 4-2
BB (byte bucket), 2-5

beginning of text command, 3-44
blocks, 3-5
BOOT switch, 2-7
breakpoint, 6-14
buf fe r use by SUBMIT, 3-25
byte bucket (:BB:), 2-5
byte relocation, 4-22

C command, 3-45
C switch of COPY command, 3-21
calls, system

ATTRIB, 5-20
Cl.5-31
CLOSE, 5-15
CO, 5-32
CONSOL, 5-25
CSTS, 5-40
DELETE, 5-18
ERROR, 5-27
EXIT, 5-30
GETATT, 5-22
GETD.5-23
1OCHK, 5-42
IOSET, 5-44
LO, 5-35
LOAD, 5-28
MEMCHK, 5-44
OPEN, 5-8
PO, 5-34
READ, 5-9
RENAME, 5-19
RESCAN, 5-14
RI, 5-33
SEEK, 5-12
SPATH,5-16
UI, 5-36
UO, 5-38
UPPS, 5-41
WHOCON,5-26
WRITE, 5-10

care of disks, 2-5
carriage return and line feed

characters, 3-42
change console device, 5-25, 5-44
change disk file attributes, 5-20
change disk file name, 5-19
changing disk file attributes, 3-37
character command, 3-45
characteristics, recording disk, 3-5
CI (device), 2-4
Cl (system call), 5-31
CLOSE, 5-15
closing files, 2-5, 5-16
CO (device), 2-4
CO (system call), 5-32
CODE, 4-13
code conversion commands

HEXOBJ,3-39
OBJHEX, 3-40

lndex-1

Error Messages ISIS-II User's Guide

There is not enough memory available for execution of the command.

INVALID MODULE NAME '
partial command image

t !

A module name in the command is invalid. It may have in illegal first character.

INVALID SYNTAX

partial command image

There is an error in the command. Check for the following:

• Misspelled keywords. •

• Ampersand followed by a non-blank character.

• ADD: TO <filename> not followed by a <CR>.

• DELETE: <libname>(<modname>) not followed by a <CR>.

• DELETE: <modname> not specified. -.^|

• CREATE: <filename> not followed by <CR>.

• LIST: TO <filename> not followed by PUBLICS or <CR>.

FILE ALREADY EXISTS

The file specified in a CREATE command already exists,

f i lename, BAD RECORD SEQUENCE

The file specified in the command has an unexpected record sequence. It may not be
terminated with an EOF record. You may have attempted to ADD a non-object or
non-library file to a library.

filename, CHECKSUM ERROR

The specified file contains a record that has an invalid checksum. Go back and
generate the file again.

filename, DUPLICATE SYMBOL IN INPUT

You have attempted to ADD a file that contains a PUBLIC symbol that already
exists in the library.

filename, ILLEGAL RECORD FORMAT

The file specified in the command has an illegal format. The object file may contain
a name that has more than 31 characters. The file may contain records in an "*
improper order.

filename(modname): NOT FOUND "' . «

You have attempted to delete a non-existant module. You may have misspelled the
name.

f i l ename, NOT LIBRARY

The specified file is not a library.

filename, OBJECT RECORD TOO SHORT • ' s—'

C-8

ISIS-II User's Guide Index

CSEG, 4-2
CSTS, 5-40
current system console, 3 2

D command
Editor, 3-49
Monitor,6-6

DATA, 4-14
data segment, 4-2
data, reading from disk, 3-53
DEBUG command, 3-23
debug mode, 3 3
debug toggle, 3-3
debugging and processing errors, 3 3
decimal to hexadecimal conversion, B l
DELETE (LIB command), 4-18
DELETE (system call), 5 18
DELETE command, 3 34
delete characters, 3-49
delete file from directory, 5-18
deleting a disk file, 3-34
descriptions of LOCATE controls

//, 4-14
/common name/, 4-14
CODE, 4-14
COLUMNS (number), 4 12
DATA, 4-14
LINES, 4-13
MAP, 4-11
MEMORY, 4 14
NAME, 4 14
NOPRINT, 4-12
ORDER, 4-13
PRINT, 4-12
PUBLICS, 4 13
PURGE, 4-13
RESTARTO, 4-15
STACK, 4-14
STACKSIZE, 4-15
START, 4-15
SYMBOLS, 4-12

determine console assignment 5-26, 5-42
determining memory space

from console, 3 53
from program, 5 44

device
accessing, 2-5
designations, 2-4
management, 2-3
name format, 2-3
names, system, 2-4

different source languages, using, 4-4
DIR command, 3-26
directory

content, disk, 3-6
listing command, 3 26
maintenance calls, 5 19
system call, 5-23

disk
addressing, 2-5
care, 2-5
directory content, 3-6
directory listing command, 3-26
directory maintenance calls, 5-19
drives, 1-1,2-1

errors, 3-3
file attribute changing, 3-37
file attribute system call, 5-22
file copying, 3-28
file deletion, 3 34
file directory system call, 5-23
file marker, positioning, 5-12
file renaming, 3 36
files, 1 2
format, 3-10, 3-12
formatting commands, 3-10, 3 12
hard platter, 2-2
initialization command, 3-10
maintenance commands, 3 10
operating system, 1-1 '
organization, 3 5
recording characteristics, 3 5
reading data, 3-53

display command, 6 6
double density disks, 2 1
DSEG, 4-2

E command
Editor, 3-51
Monitor, 6 12

easier debugging and program
modification, 4-4

echo file, 5 8
EDIT command, 3-40
editing, 2-3
editing characters, 5 4
editing, line, 3-1
Editor

command aborting, 3-41
command entry, 3 41
command parameters, 3 41
commands

A, 3-53
B, 3-44
C, 3-45
D, 3-49
E, 3-51
F, 3-46
I, 3-47
K, 3-49
L, 3-45
M , 3 53
Q, 3-52
S, 3-48
T, 3-50
W, 3-52
Z, 3-44

error messages, C-9
formatting characters, 3-41
functions, 3 40
activating, 3 42
saving your work, 3-51
terminating a session, 3-51
using, 3-40

end of file command, 6-7
end of file control, 3-2
end of text command, 3 44
entry error, Monitor, 6 2
ERROR, 5-27
error message output, 5-27

Index-3

Error Messages ISIS-II User's Guide

The "text" represents a search argument in an F or S command that was not found
in the file, from the pointer location to the end. When this message is displayed, the
pointer location is not changed by the F or S command. If any commands follow the
F or S command in a command string, they are not executed.

ITERATION STACK FAULT ' '

This message is issued when command string iterations are nested more than eight
deep. None of the nested commands are executed. Any commands that preceded the
first iteration string are executed. Any commands that follow the outer iteration
string are not exectuted.

1 ' 'V! ' '

C-10

ISIS-II User's Guide Index

Intellec series II, 1-1
interations of command strings, 3-54
interfaces peripheral, 1-1
interrupt

acceptance, 7-2
mask register, 7-2
processing, 7-1
removal, 7-2
switches, 3-3

intersegment references, 4-5
intrasegment references, 4-5
introduction, 1-1
invisible attribute, 3-6
IOCHK, 5-42
IOSET, 5-44
ISIS-II command format, 3-10
ISIS-II commands

ATTRIB, 3-37
COPY, 3-28
DEBUG, 3-23
DELETE, 3-34
DIR, 3-26
EDIT, 3-40
Editor

A, 3-53
B, 3-44
C, 3-45
D, 3-49
E, 3-51
F, 3-46
I, 3-47
K, 3-49
L, 3-45
M,3-53
Q, 3-52
S, 3-48
T, 3-50
W,3-52
Z, 3-44

FORMAT, 3-12
Functions, 1-2
HEXOBJ, 3-39
IDISK, 3-10
LIB, 4-17

ADD, 4-18
CREATE, 4-18
DELETE, 4-18
EXIT, 4-19
LIST, 4-19

LINK, 4-7
LOCATE, 4-10
Monitor

A, 6-4
D,6-6
E, 6-12
F, 6-7
G.6-14
H.6-16
M.6-7
N.6-13
Q, 6-5
R, 6-11
8,6-8
W, 6-12
X, 6-9, 6-10

OBJHEX, 3-40
RENAME, 3-36
SUBMIT, 3-24
VERS, 3-38

ISIS-II resident area, 5-1
ISIS-II system calls

ATTRIB, 5-20
CI.5-31
CLOSE, 5-15
CO, 5-32
CONSOL, 5-25
CSTS, 5-40
DELETE, 5-18
ERROR, 5-27
EXIT, 5-30
GET ATT, 5-22
GETD, 5-23
IOCHK, 5-42
IOSET, 5-44
LO, 5-35
LOAD, 5-28
MEMCK, 5-44
OPEN, 5-8
PO, 5-34
READ, 5-9
RENAME, 5-19
RESCAN, 5-14
Rl, 5-33
SEEK, 5-12
SPATH, 5-16
UI.5-36
UO, 5-38
UPPS, 5-41
WHOCON, 5-26
WRITE, 5-10

ISIS-II version numbers, 3-38

K command, 3-49
kill line command, 3-49

L command, 3-45
language translations, 1-2
length, 3-6
LIB command, 4-17
LIB commands
ADD, 4-18
CREATE, 4-17
DELETE, 4-18
EXIT, 4-19
LIST, 4-19

librarian, 4-17
libraries, use of, 4-6
library files, 4-6
line

command, 3-45
edit buffer , reading, 5-3
edited input files, 5-3
editing, 3-1
editing characters, 3-1
printer, 1-1

LINES, 4-13
LINK command, 4-7

error messages, C-4
fatal, C-4
non-fatal, C-5

Index-5

ISIS-II Sample Programs—Type
5 4 , 't

,.

ISIS-II User's Guide

READ THE CONSOLE FILE TO GET THE PARAMETER STRING „v

FOR THIS EXAMPLE, THE COMMAND ENTERED IS

TYPE ASM LST(CR)(LF)

ATTHIS POINT, THE CONSOLE INPUT BUFFER CONTAINS

ASM LST(CR)(LF)

* /
CALL READ(1, BUFFER 128 ACTUALSCOUNT STATUS)
CALLOPEN(AFT$IN, BUFFER, READSACCESS.O, STATUS),
IF STATUS > 0 THEN CALL ERROR(STATUS), "
/ *

THE FILE ASM LST IS NOW OPEN FOR INPUT
* /
ACTUAL$COUNT = 1,
DO WHILE ACTUALSCOUNT <> 0,

CALL READ(AFTSIN, BUFFER, 128 ACTUAL$COUNT STATUS),
IF STATUS > 0 THEN CALL ERROR(STATUS)
CALLWRITE(0 BUFFER, ACTUALSCOUNT STATUS),
IF STATUS >0 THEN CALL ERROR(STATUS), ' *

END

CALL WRITE (0, (COPY COMPLETED' ODH, OAH), 16, STATUS)
CALLCLOSE(AFT$IN STATUS),
IF STATUS > 0 THEN CALL ERROR(STATUS),
CALL EXIT,

END,

8080/8085 Assembly Language Version of TYPE

; Sample Program

OPEN
CLOSE
READ
WRITE
EXIT
ERROR

BEGIN

EQU
EQU
EQU
EQU
EQU
EQU

EXTRN

CSEG

LXI
MVI
LXI
CALL
LDA
ORA
JNZ

MVI
LXI
CALL
LDA

0
1
3
4
9
12

ISIS

.BEGINNING OF CODE SEGMENT

SP,STCKA + 4
C,READ
D,RBLK
ISIS
STATUS
A
ERR

C.OPEN
D,OBLK
ISIS
STATUS

, READ THE CONSOLE

, OPEN THE INPUT FILE

D-2

ISIS-II User's Guide Index

nonfatal errors, 3-3
nonsystem disk formatt ing, 3-10
null command, 6-13

object file formats, 2-3
object module, 4-4
OBJHEX command, 3-40
obtaining file information 5-16
OPEN, 5-8
operating system, 1-1
ORDER, 4-13
order of modules in an output file, 4-9
organization of disks, 3-5
organization of memory, 5-1
overlay, 4-19
overlay management, 4-19

P switch of COPY command, 3-30
P switch of DIR command, 3-27
page boundary, 4-24
page relocation, 4-22
paper tape I/O commands, 6-11
paper tape punch, 1-1
paper tape reader, 1-1
parameter passing to SUBMIT, 3-24
parameters, text Editor command, 3-43
passing parameters to SUBMIT, 3-24
pause switch

COPY command, 3-30
DELETE command, 3-34
DIR command, 3-26

peripheral devices, 1-1
peripheral interfaces, 1-1
PL/M, 1-2
PL/M calls, 5-6
PLM80, 4-1
PO, 5-34
pointer, text, 3-43
position disk file marker, 5-12
position file marker at beginning, 5-14
power up, 2-7
PRINT, 4-12
PRINT parameter of LINK command, 4-8
printer, 1-1
processing errors and debugging, 3-3
processing interrupts, 7-1
program

development, 4-4
execution calls, 5-28
execution commands, 3-23
execution under Monitor, 3-23, 6-13
execution, non-interactive, 3-24
loading, 5-28
overlays and linked loading, 4-20
segments, 4-2

public symbols and external references, 4-5
PUBLICS, 4-13
punch, 1-1
punch output, 5-34
PURGE, 4-13

Q command
Editor, 3-52
Monitor, 6-5

Q switch
of ATTRIB command, 3-37
of COPY command, 3-30
of DELETE command, 3-34

query command, 6-5
query switch

of ATTRIB command, 3-37
of COPY command, 3-30
of DELETE command, 3-34

question mark (?), 3-7, 3-30
QUIT, 3-20
quit command, 3-52

R command, 6-11
READ, 5-9
read command, 6-11
reader, 1-1
reader input, 5-33
reading a command line, 5-4
reading data from disk, 3-53
reading from line edit bu f fe r , 5-3
RECORD, 3-19
recording characteristics, disk, 3-4
references, external, 4-5
references, intersegment, 4-5
references, intrasegment, 4-5
register command, 6-9, 6-10
relative addressing, 4-4
relocatable object module, 4-2
relocation, 4-4
relocation and linkage, mechanics of, 4-4
relocation types, 4-22
relocation with the assembler, 4-22
removing interrupts, 7-2
RENAME command, 3-36
RENAME system call, 5-19
renaming a disk file, 3-36
RESCAN, 5-14
reset button, 2-7
RESTARTO, 4-14
RI, 5-33
rubout, 3-1, 5-4

S command
Editor, 3-48
Monitor, 6-8

S switch
of COPY command, 3-30
of FORMAT command, 3-13
of IDISK command, 3-11

50 parameter of ATTRIB command, 3-37
51 parameter of ATTRIB command, 3-37
saving your work, 3-51
sectors, 3-5
SEEK, 5-12
segments, 4-2
shared subprograms, 4-4
single density disks, 2-1
source program, 4-1
single disk drive copying, 3-28
SPATH,5-16
STACK, 4-14
stack segment, 4-3
STACKSIZE.4-15

Index-7

ISIS-II Sample Programs—Type ISIS-II User's Guide

WBLK

ACTUAL

DW
DW
DS
DW

0
BUFFER
2
STATUS

XBLK
DW STATUS

EBLK
STATUS

BUFFER

STCKA

END

DS
DW

DS

DS

BEGIN

2
STATUS

128

4

f ^

D-4

ISIS-II User's Guide Index

universal PROM programmer, 1-1
unsatisfied external reference, 4-5
unsatisfied module, 4-5
UO, 5-38
UPP

input, 5-36
output, 5-38
status, 5-41

UPPS, 5-41
use of di f ferent source languages, 4-4
use of ISIS-II by other programs, 5-1
use of libraries, 4-6
user aids, 3-1
using ISIS-II commands, 3-8
using the Text Editor, 3-40
util i ty command, 6-16
util i ty version numbers, 3-38

VERS command, 3-38
version numbers, 3-38
V I , 2-4
VO, 2-4

W command,
Editor, 3-50
Monitor, 6-12

WO parameter of ATTRIB command, 3-37
Wl parameter of ATTRIB command, 3-37
WHOCON,5-26
wild card fi le names, 3-7, 3-30
working with program modules, 4-1
WRITE, 5-10
write command

Editor, 3-52
Monitor, 6-12

write-protect attr ibute, 3-6

X command, 6-9, 6-10

Z command, 3-44

Index-9

ASCII Codes ISIS-II User's Guide

Table E-2. ASCII Code Definition

Abbreviation

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
LF
VT
FF
CR
SO
Sl

OLE
DC1
DC2
DC3
DC4
NAK
SYN
ETB ;
GAN
EM

SUB
ESC
FS
GS
RS
US
SP

DEL

Meaning

NULL Character ' "'•
Start of Heading ' t"~
Start of Text "*:; • ' • ' • 'sf<

End of Text
End of Transmission
Enquiry
Acknowledge
Bell :

Backspace
Horizontal Tabulation
Line Feed
Vertical Tabulation
Form Feed

; Carriage Return
Shift Out

j Shift In :
: Data Link Escape •

Device Control 1
Device Control 2
Device Control 3
Device ControU
Negative Acknowledge
Synchronous Idle
End of Transmission Block
Cancel
End of Medium
Substitute
Escape . :
File Separator

; Group Separator
Record Separator
Unit Separator
Space
Delete

Decimal
Code

0
" "1 "" '"

'""-"":•"*•.. ' 2 . ""'••;••
: 3 „,
; 4 '

' • ' • ' 5 '"-'

6
7
8
9 .

10 -•"•
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

: 27
28
29
30
31
32

127

E-2

Index ISIS-II User's Guide

CODE segment, 4-2
COLUMNS, (number), 4-12
command

aborting, Editor, 3-41
categories, Monitor, 6-3
entry, Editor, 3-41
entry, Monitor, 6-1
line, reading, 5-4
parameters, Editor, 3-41
sequence definit ion file, 3-24
string i terations, 3 54
syntax

Editor, 3-43

Monitor, 6-1
commands

ATTR1B, 3 37
COPY, 3-28
DEBUG, 3-23
DELETE, 3-34
DIR, 3-26
EDIT, 3-43
Editor

A, 3-53
B, 3-44
C, 3-45
D, 3-49
E, 3-51
F, 3-46
1, 3-47
K, 3-49
L, 3-45
M, 3-53
Q, 3-52
S, 3-48
T, 3-50
W,3-52
Z, 3-44

FIXMAP, 3 14
FORMAT, 3-12
HDCOPY,3-32
HEXOBJ, 3-39
1D1SK, 3-10
LIB, 4-17

ADD, 4-18
CREATE, 4-18
DELETE, 4-18
EXIT, 4-19
LIST, 4-19

L I N K , 4-7
LOCATE, 4-10
Monitor

A, 6-4
D, 6-6
E, 6-12
F, 6-7
G,6-14
H,6-16
M,6-7
N,6-13
Q,6-5
R, 6-11
S, 6-8
W,6-12
X, 6-9, 6-10

OBJHEX, 3-40
RENAME, 3-36
SUBMIT, 3-24
VERS, 3-38

common segments 4-3
compiler, 1-2
composition, system, 2-1
configuration commands, Monitor, 6-3
Configurations, supported, 2-1
CONSOL, 5-25
CONSOL and SUBMIT, 3-25
console

assignment, 5-25, 5-44 '
changing, 6-4
current, 3-2
initial system, 3-2
input, 5-31
input status, 5-40
output, 5-35
resuming output , 3 2
stopping output, 3-2
system, 3 2
user aids, 3-1

content, disk directory, 3-6
continuation lines, 4-8, 4-11
control characters

control/c, 3 4 1
control/e, 3-24
control/i, 3-42, 3-47
control/p, 3-1 ,5-4
control/q, 3-2
control/r, 3-1 ,5-4 /.
control/s, 3-2
control/x, 3-1 ,5-4
control/z, 3 2 ,5-4

control descriptions
LINK, 4-7
LOCATE, 4-11

control/c, 3-41
control/e, 3-24
control/i, 3-42, 3-47
control/p, 3-1 ,5-4
control/q, 3 2
control/r, 3-1 ,5-4
control/s, 3-2
control/x, 3-1 ,5-4
control/z, 3-2 ,5-4
conversion commands

HEXOBJ, 3-39
OBJHEX, 3-40

converting
absolute object code to

hexadecimal, 3-40
hexadecimal code to absolute object

code, 3-39
COPY command 3-28
COPY command switches, 3-30
copying a disk file, 3-28
copying a hard disk file, 3 32
COUNT, 3-19
CPU registers, 6-9
CREATE, 4-18 N
creation and mangement of files, 3-1
CRT terminal, 1-1
CSD, 3-24

» l !

V I '

I I

Index-2

Index ISIS-II User's Guide

error messages
Editor, C-9
ISIS-II , C-l
LIB, C-7
LINK, C-4
LOCATE, C-5

error processing and debugging, 3-3
ERRORS, 3-21
execute command, 6-14
executing the Editor, 3-42
execution commands, program, 3-22
execution of program under Monitor, 3-23
execution, non-interactive, 3-23
EXIT (FIXMAP), 3-20
EXIT (LIB command), 4-19
EXIT (system call), 5-30
exit command, 3-51
extension, 2-4
external references and public symbols, 4-5

F command
Editor, 3-46
Monitor, 6-7

F switch of DIR command, 3-27
FO parameter of ATTRIB command, 3-37
Fl parameter of ATTRIB command, 3-37
faster program development, 4-3
fatal errors, 3-3
file

accessing, 2-5
attribute changing, 3-37
attr ibutes, 3-6
blocks, 3-6
character coding, 3-5
control commands, 3-26
copying, 3-28
creation and management, 3-1
deletion, 3-34
extensions, 2-4
from memory, 5-9
input/output calls, 5-7
length, 3-6
marker, positioning, 5-12
name format, 2-3
name, change, 3-36, 5-19
names, wild card, 3-7
renaming, 3-36, 5-19
saving, 3-51
to memory, 5-9
types, 2-4
typing, 3-50

filename, 3-6
filename command, 3-22
filename format, 2-4
files, disk, 1-2
files, initializing for I/O, 5-8
fi l l command, 6-7
find command, 3-46
flexible disk care, 2-5

start-up, 2-7
FIXMAP, 3-14

commands, 3-15
Mark, 3-16
Free, 3-17
List, 3-18

Count, 3-19
Record, 3-19
Quit, 3-20 .
Exit, 3-20
Errors, 3-21

FOR parameter of DIR command,3-26
format attribute, 3-6
FORMAT command, 3-12
format of filename, 2-3
format of ISIS-II commands, 3-10
format, name, 2-4
formatting characters, Editor 3-42
formatt ing nonsystem disks, 3-9
formatt ing system disks, 3-10, 3-12
FORT80, 4-1
FREE, 3-17
functions of the Editor, 3-40

G command, 6-14
gap, 4-9
GET ATT system call, 5-22
GETD system call, 5-23
getting started with ISIS-II, 2-1
go command, 6-14

H and L registers and memory pages, 4-21
H command, 6-16
hard disk, 2-2
hardware configuration, 1-1
HDCOPY command, 3-32
hexadecimal

arithmatic, 6-16
code, converting to absolute object

code, 3-39
command, 6-16
format, 2-3
paper tape format, A-l
to decimal conversion, B-l

HEXOBJ command, 3-39
how LOCATE locates segments, 4-15
HP, 2-4
HR,2-4

1 command, 3-47
I switch of DIR command, 3-27
I/O

configuration commands, 6-3
device management, 2-3
interface, 2-2 •
operations, terminate, 5-15

10 parameter of ATTRIB command, 3-37
II parameter of ATTRIB command, 3-37
1DISK command, 3-10
ln-Circuit Emulators, 1-1 '
initial system console, 3-2
initialization command, disk, 3-10
initialization of mask register ,7-1
initializing (formatting) disks, 2-2 ,3-10
initializing files for I/O, 5-8
inpage relocation, 4-22
input/output calls, 5-7
insert command, 3-46
inserting text, 3-47
IntellecMDS, 1-1 • '
Intellec Monitor, 6-1 '

«i.10 >'

! '

Af .

.-i t

Index-4

Index ISIS-II User's Guide

l ink map, 4-8
linkage and relocation, mechanics of, 4-4
linked loading and program overlays, 4-20
LIST, 4-19
LIST (FIXMAP), 3-18
listing directory, command, 3-26
LO.5-35
LOAD, 5-28
LOCATE command, 4-10
LOCATE control descriptions

/ 7,4-14
/common name/, 4-14
CODE, 4-14
COLUMNS (number), 4-12
DATA, 4-14
LINES, 4-13
MAP, 4-11
MEMORY, 4-14
NAME, 4-14
ORDER, 4-13
PRINT, 4-12
PUBLICS, 4-13
PURGE, 4-13
RESTARTO, 4-14
STACK, 4-14
STACKSIZE,4-14
START (address), 4-14
SYMBOLS, 4-12

LOCATE errors, C-5
fatal, C-5
non-fatal, C-7

LOCATE map, 4-11
LOCATE with default order, 4-15
Locating with the defaul t , ORDER con-
trol,

and specific addresses, 4-15
LP, 2-4

M command
Editor, 3-53
Monitor, 6-6

maintenance, directory calls, 5-18
management and creation of files, 3-1
management, I/O device, 2-3
management, module, 2-3
MAP parameter of link command, 4-8
MAP, LINK, 4-8
MAP, LOCATE, 4-11
MARK, 3-16
MARKER, 5-6
mechanics of relation and linkage, 4-4
MEMCK, 5-44
memory

allocation, 4-1
command, 3-53
control commands, 6-6
from file, 5-9
organization, 5-1
pages and H and L registers, 4-21
requirements, 1-1
segment, 4-3
space, determing, 3-53
to file, 5-10
usage, 2-2

MEMORY control, 4-14
merging files, 3-28

microprocessor memory allocation, 4-1
minimum memory, 2-2
modular program development, 4-3
modular programming, 1-3
module management, 2-3
module name, 4-18
Monitor

calls
CI, 5-31
CO, 5-32
CSTS, 5-40
IOCHK, 5-42
IOSET, 5-44
LO, 5-35
MEMCHK,5-44
PO, 5-34
RI, 5-33
UI.5-36
UO, 5-38
UPPS, 5-41

command categories, 6-3
command entry, 6-1
commands

A, 6-4
D,6-6
E,6-12
F, 6-7
G.6-14
H.6-16
M.6-7
N.6-13
Q, 6-5
R, 6-11
S, 6-8
W.6-12
X, 6-9, 6-10

entry errors, 6-2
I/O configuration commands, 6-3
I/O Interface routines, 5-30
memory control commands, 6-5
program execution under, 3-23

move command, 6-7
moving data, 5-9

N command, 6-13
N switch of COPY command, 3-30
name format, 2-4
NAME parameter of LINK command, 4-8
names system devices

:BB:,2-5
:CI:,2-4
:CO:, 2-4
:Fn:,2-4
:HP:, 2-4
:HR:,2-4
:LP:, 2-4
:Tl:,2-4

,2-4
,2-4
,2-4

:TO:
:TP:,
:TR:
:VI:, 2-4
:VO:,2-4

nesting SUBMIT files, 3-24
non-interactive program execution, 3-24

Index-6

Index ISIS-II User's Guide

standard devices
:BB:,2-5
:CI:,2-4
:CO:, 2-4
:Fn:, 2-4
:HP:,2-4
:HR:,2-4
:LP:,2-4
:Tl:,2-4
:TO:,2-4
:TP:,2-4
:TR:, 2-4
:Vl:,2-4
:VO:,2-4

START, 4-15
start-up procedure, 2-7
starting the Editor, 3-42
start ing the system, 2-7
STKLN,4-2
storage, 2-2
string, command iterations, 3-54
SUBMIT and CONSOL, 3-25
SUBMIT command, 3-24
SUBMIT files, preparing, 3-24
subst i tute command

Editor, 3-48
Monitor, 6-8

summary of system calls, 5-5
switches, in terrupt , 3-2
SYMBOLS, 4-12
syntax of system calls, 5-6
system

attribute, 3-6
call syntax and usage, 5-6
calls

ATTRIB, 5-20
CI,5-31
CLOSE, 5-15
CO, 5-32
CONSOL, 5-25
CSTS, 5-40
DELETE, 5-18
ERROR, 5-27
EXIT, 5-30
GET ATT, 5-22
GETD, 5-23
lOCHK,5-42
IOSET, 5-44
LO, 5-35
LOAD, 5-28
MEMCHK.5-44
OPEN, 5-8
PO, 5-34
READ, 5-9
RENAME, 5-19
RESCAN, 5-14
RI,5-33
SEEK, 5-12
SPATH,5-16
UI, 5-36
UO, 5-38
UPPS, 5-41
WHOCON.5-26
WRITE, 5-10

calls, cautions, 5-7

calls, summary, 5-5
composition, 2-1
console, 3-2
designated device names, 2-4
disk formatt ing, 3-10, 3-12
start-up, 2-7
operating, 1-1
status routines, 5-40

SYSTEM.LIB, 5-6

T command, 3-50
TAB character, 3-42
temporary files, 3-5 '
terminate I/O operations, 5-15
terminate program, 5-30
terminating a line, 5-3
terminating a session, 3-51
text commands, 3-47
Text Editor

command entry, 3-41
command parameters, 3-41
command string iteration, 3-54
commands

A, 3-53
B, 3-44
C, 3-45
D, 3-49
E.3-51
F, 3-46
I, 3-47
K, 3-49
L, 3-45
M,3-53
0,3-52
S, 3-48
T, 3-50
W, 3-52
Z, 3-44

errors, C-9
formatting characters, 3-42
functions, 3-40
activating, 3-42
saving your work, 3-51
terminating a session, 3-51
using, 3-40

text pointer, 3-43
Tl .2-4
TO, 2-4
TO parameter

of COPY command, 3-30
of DIR command, 3-26
of RENAME command, 3-36

top of memory, 5-44
TP, 2-4
TR, 2-4
tracks, 3-5
transferring data, 5-7
TTY, 1-1
TYPE program, D-l
type command, 3-50
types of disk files, 1-3
typing a file, 3-50

U switch of COPY command, 3-30
UI, 5-36

Index-8

