
Application Development
Using Multiple
Programming Languages

National Semiconductor
Application Note 590
February 1989

INTRODUCTION
National Semiconductor provides optimizing compilers for
software development for Series 32000 based designs.
GNX-Version 3 is the name of the software tools family that
includes the optimizing compilers. Languages supported in
GNX-Version 3 include compilers that support C, Pascal,
FORTRAN-77, and Modula-2. Each of the optimizing com­
pilers share a common optimizer and code generator and
intermediate representation. This greatly simplifies the pro­
cess of mixed-language programming, or combining mod­
ules written in different high-level languages in the same
application. The ability to use mixed-language programming
simplifies the porting of pre-existing applications and code
reuse.
Mixed-language programs are frequently used for a two rea­
sons. First, one language may be more convenient than an­
other for certain tasks. Second, code sections, already writ­
ten in another language (e.g., an already existing library
function), can be reused by simply making a call to them.
A programmer who wishes to mix several programming lan­
guages needs to be aware of subtle differences between
the compilation of the various languages. The following sec­
tions describe the issues the user needs to be aware of
when writing mixed-language programs and then compiling
and linking such programs successfully.

WRITING MIXED-LANGUAGE PROGRAMS
The mixed-language programmer should be aware of the
following topics:
• Name Sharing—Potential conflicts including permitted

name-lengths, legal characters in identifiers, compiler
case sensitivity, and high-level to assembly-level name
transformations.

• Calling Convention—The way parameters are passed to
functions, which registers must be saved, and how val­
ues are returned from functions. The application note
Portability issues and the GNX-Version 3 C Optimizing
Compiler contains a description of parameter passing.
This information is also contained in Appendix A of the
GNX-Version 3 compiler reference manuals.

• Declaration Conventions—The demands that different
languages impose when referring to an outside symbol
(be it a function or a variable) that is not defined locally in
the referring source file. Note that this is also true of
references to an outside symbol that is not in the same
language as that of the referring source file.

To help the programmer avoid these potential problems, a
set of rules for writing mixed-language programs has been
devised. Each rule consists of a short mnemonic name (for
easy reference), the audience of interest for the rule, and a
brief description of the rule.
Table I summarizes all of the rules in the context of each
possible cross-language pair.

TABLE I. Cross-Language Pairs

C Pascal FORTRAN 77 Modula-2 Series 32000
Assembly

Series 32000
Assembly

“_” prefix “_” prefix
include ext
case sensitivity

“_” prefix
“_” suffix
ref args
case sensitivity

“_” prefix
DEF& IMPORT
init code

Modula-2 DEF& IMPORT
init code

DEF& IMPORT
init code
include ext
case sensitivity

“_” suffix
DEF& IMPORT
init code
ref args
case sensitivity

“_” prefix
DEF& IMPORT
init code

FORTRAN 77 “_” suffix
ref args
case sensitivity

“_” suffix
include ext
ref args

“_” suffix
DEF& IMPORT
init code
ref args
case sensitivity

“_” prefix
“—” suffix
ref args
case sensitivity

Pascal include ext
case sensitivity

“_” suffix
include ext
ref args

DEF& IMPORT
init code
include ext
case sensitivity

“_” prefix
include ext
case sensitivity

C include ext
case sensitivity

“_” suffix
ref args
case sensitivity

DEF& IMPORT
init code

“_” prefix

© 1995 National Semiconductor Corporation TL/EE10358 RRD-B30M75/Printed in U. S. A.

Application D
evelopm

ent Using M
ultiple Program

m
ing Languages

AN-590

RULE 1 case sensitivity
This rule is of interest to every programmer who mixes pro­
gramming languages.
Modula-2, C, and Series 32000 assembly are case sensitive
while FORTRAN 77 and Pascal are not (at least according
to the standard). Programmers who share identifiers be­
tween these two groups of languages must take this into
account. To avoid problems with case sensitivity, the pro­
grammer can:
1. Take case to use case-identical identifiers in all sources

and compile FORTRAN 77 and Pascal sources using the
case-sensitive option (CASE_SENSITIVE on VMS, -d on
UNIX).

2. Use only lower-case letters for identifiers which are
shared with FORTRAN 77 or Pascal, since the FOR­
TRAN 77 and Pascal compilers fold all identifiers to low­
er-case if not given the case-sensitive option.

RULE 2 “_” prefix
This rule is of interest to those who mix high-level languages
with assembly code.
All compilers map high-level identifier names into assembly
symbols by prepending these names with an underscore.
This ensures that user-defined names are never identical to
assembly reserved words. For example, a high-level symbol
NAME, which can be a function name, a procedure name,
or a global variable name, generates the assembly symbol
_NAME.
Assembly written code which refers to a name defined in
any high-level language should, therefore, prepend an un­
derscore to the high-level name. Stated from a high-level
language user viewpoint, assembly symbols are not acces­
sible from high-level code unless they start with an under­
score.

RULE 3 suffix
This rule is of interest to those who mix FORTRAN 77 with
C, Pascal, Modula-2, or assembly code.
The FORTRAN 77 compiler appends an underscore to each
high-level identifier name (in addition to the action described
in RULE 1). The reason for an appended underscore is to
avoid clashes with standard-library functions that are con­
sidered part of the language, e.g., the FORTRAN 77 WRITE
instruction. For example, a FORTRAN 77 identifier NAME is
mapped into the assembly symbol_NAME_.
Therefore, a C, Pascal, Modula-2, or assembly program that
refers to a FORTRAN 77 identifier name should append an
underscore to that name. Stated from a FORTRAN 77 user
viewpoint, it is impossible to refer to an existing C, Pascal,
Modula-2, or assembly symbol from FORTRAN 77 unless
the symbol terminates with an underscore.

RULE 4 ref args
This rule is of interest to those who mix FORTRAN 77 with
other languages.
Any language which passes an argument to a FORTRAN 77
routine must pass its address. This is because a FORTRAN
77 argument is always passed by reference, i.e., a routine
written in FORTRAN 77 always expects addresses as argu­
ments.
Routines not written in FORTRAN 77 cannot be called from
a FORTRAN 77 program if the called routines expect any of

their arguments to be passed by value. Only routines which
expect all their arguments to be passed by reference can be
called from FORTRAN 77.
Pascal and Modula-2 programs must declare all FORTRAN
77 routine arguments using var. C programs must prepend
the address operator & to FORTRAN 77 routine arguments
in the call.
The C, Pascal, or Modula-2 programmer who wants to pass
an unaddressable expression (such as a constant) to a
FORTRAN 77 routine, must assign the expression to a vari­
able and pass the variable, by reference, as the argument.

RULE 5 include ext
This rule is of interest to Pascal programmers who want to
share variables between different source files which may or
may not be written in Pascal.
Pascal sources which share global variables must define
these variables exactly once in an external header (include)
file. The external header file has to be included in all Pascal
source files which access the shared global variable, and its
name must have a .h extension.

RULE 6 DEF and IMPORT
This rule is of interest to those who mix Modula-2 with other
languages.
Modula-2 modules which access external symbols must im­
port external symbols. If external symbols are not defined in
Modula-2 modules but defined in other languages, the pro­
grammer must export these symbols to conform with the
strict checks of the Modula-2 compiler.
External symbols can be exported by writing a “ dummy”
DEFINITION MODULE which exports all of the foreign lan­
guage symbols, making them available to Modula-2 pro­
grams.
This export must be nonqualified to prevent the module
name from being prepended to the symbol name.

RULE 7 Init code
This rule is of interest to those who mix Modula-2 with other
languages.
Modula-2 modules which import from external modules acti­
vate the initialization code of the imported modules before
they start executing. The initialization code entry-point is
identical to the imported module name.
To avoid getting an “ Undefined symbol” message from the
linker, the programmer should define a possibly empty, ini­
tialization function for every imported module. This is in case
the implementation part of that module is not written in Mod­
ula-2. It should be noted that the initialization code is not
necessarily called during run-time. Initialization code is exe­
cuted if, and only if, the following two conditions hold true:
1. The main program code is written in Modula-2.
2. The Modula-2 routines which are supposed to activate

the initialization part are not called indirectly through
some non-Modula-2 code.

In addition to these rules, a few points should be noted.
First, GNX Version 3 FORTRAN 77 allows identifiers longer
than the six character maximum of traditional FORTRAN
compilers. Second, the family of GNX Version 3 compilers
allows the use of underscores in identifiers. Both of these
enhancements simplify name sharing.

2

IMPORTING ROUTINESAND VARIABLES USING THE ASM KEYWORD
The general conventions of all languages must be kept in
mixed-language programs. In particular, externals must be
declared in those program sections which import them. The
following are examples of declarations of external (import­
ed) functions/procedures and external (imported) variables
in each language. The examples are in the form:
Caller Language: external (imported) functions/procedures
or external (imported) variables
C: extern int func_();

or
extern int var_name_;

Note that the strict reference C model (draft-proposed ANSI
C standard) is assumed. If the model is relaxed, then the
external declarations are not mandatory.
FORTRAN 77: INTEGER func

or
COMMON /var_name/ local_name

Pascal: function func_: integer;
external;
procedure proc_; external;
or

#include "var_def.h"
where the file var_def.h contains the following declaration:

var
var_name_: integer;

as explained in RULE 5 (include ext).
Modula-2: FROM modula_name IMPORT func_

or
FROM module_name IMPORT
var_name_

Series 32000:
assembly

globl _func_
or

globl _var_name_

The keyword asm is recognized to enable insertion of as­
sembly instructions directly into the assembly file generated.
The syntax of its use is
asm (constant-string) ;
where constant-string is a double-quoted character string.
Asm can be used inside of functions as a statement and out
of functions in the scope of global declarations. A newline
character will be appended to the given string in the assem­
bly code.
Example: if for the C source:

i++;
3+ = 2;

the assembly code generated is:
addqd ¢1, _i
addqd ¢2, _j

then the assembly code generated for:
i++;
asm ("movd _i, rO");
3+ = 2;

will be:
addqd ¢1, _i
movd _i, rO
addqd ¢2, _j

Note: The word asm is a reserved keyword. Using asm as an identifier is a
syntax error. Existing programs using such identifiers must be modi­
fied.

In support of mixed-language programming, the compiler
also recognizes and compiles appropriate files written in
other programming languages. Files with a .s suffix are as­
sembly source programs and may be assembled (to pro­
duce .o files) and linked. Pascal, FORTRAN 77, and
Modula-2 source files are also recognized, and compile ap­
propriately if your system includes the National Semicon­
ductor GNX Version 3 compiler for those languages. The
suffixes for these files are listed in Table II.

TABLE II. Filename Conventions

File Name
Suffix File Type

.c
.i

C Source File
Preprocessed C Source File

.f, .for
.F, .FOR

FORTRAN 77 Source File
FORTRAN 77 Source with cpp Directives

.m, .mod
.M, .MOD

.def
.DEF

Modula-2 Source File
Modula-2 Source with cpp Directives
Modula-2 Definition Module Source File
Modula-2 Definition Module Source with cpp Directives

.p, .pas
.P, .PAS

Pascal Source File
Pascal Source with cpp Directives

.s Assembly Source File

.0

.a
Object Code
Library Archive File

3

COMPILING MIXED-LANGUAGE PROGRAMS
After writing different program parts in different languages,
keeping in mind the rules previously mentioned, the mixed-
language programmer must still link and load these parts to
make them run successfully. Three points should be men­
tioned in conjunction with the successful linking and loading
of programs. These are as follows:
• External library (standard or nonstandard) routines must

be bound with the user-written code that calls them.
• Initialization code which arranges to pass program pa­

rameters to the main program and then calls the main
program, sometimes has to be bound with user-written
code.

• The entry point of the code, i.e., the location where the
program starts executing, should be determined.

In some cases, a standard is not so widely accepted as with
Modula-2. In these cases, the user must be aware of the
libraries that are available and the calling conventions of the
main program used by the operating system.

LIBRARIES
Table III lists libraries associated with each compiler. When
programming with mixed-languages, the libraries associated
with the languages used must be bound with the program
during the link phase of compilation.

TABLE III. Compilers and their Associated Libraries

Compiler (Driver)
Name Libraries

cc (Cross nmcc)
f77 (Cross nm77)
pc (Cross nmpc)
m2c (Cross nm2c)

libc
libF77, Iibl77, libm, libc
libpas, libm, libc
libmod2, libm, libc

INITIALIZATION CODE AND ENTRY-POINTS
Normally, the entry point of the final executable file is called
start. The code that follows this entry-point is initialization
code that prepares the run-time environment and arranges
parameters to be passed to the user-written main program.
The initialization object file which contains start is linked in
by default is called crtO.o. The crtO.o file always calls main.
The assembly-symbol that starts the user main program in
the C language is_main (the underscore is prepended by
the C compiler) and is called_MAIN___ in Pascal, FOR­
TRAN 77, or Modula-2 programs.
Note that the last three compilers completely ignore the us­
er’s main program name. Therefore, in C, the user-written
code is called directly from crtO.o. In Pascal, FORTRAN 77,
and Modula-2,_main is located in the respective standard
library which performs additional initializations before calling
the user entry-point_MAIN___ .

COMPILATION ON UNIX OPERATING SYSTEMS
National Semiconductor’s GNX tools (assembler, linker,
etc.,) on systems relieve a user’s concern about external
libraries, initialization code, and entry-points. This is due to
the coherency and consistency of the GNX-Version 3 com­
pilers and their integration through the use of a common
driver.
When using a GNX Version 3 compiler on a UNIX system,
the user does not directly call the compiler front end, opti­

mizer, code generator, assembler or linker. Instead, the
calls are indirectly made through the driver program.
The driver program accepts a variable number of filename
arguments and options and knows how to identify language-
specific options. The driver also identifies the languages in
which its filename arguments are written by the names of
these arguments. Therefore, the driver can arrange to com­
pile and bind the programs with the needed libraries in order
to run the program successfully.
As mentioned earlier, the driver program used by C, Pascal,
FORTRAN 77, and Modula-2 programmers is exactly the
same program on UNIX systems. The respective driver
names are cc, pc, f77, and m2c on native systems such as
the SYS32/20 or SYS32/30 and nmcc, nmpc, nf77, and
nm2c on cross-support systems such as VAX/VMS or a
VAX running Berkley UNIX.
The driver program looks at its own name in order to deter­
mine the libraries that are bound with the program. In addi­
tion, the driver links additional libraries according to the
name extensions of any of its filename arguments. For in­
stance, cc also links libm and libpas when one of the file­
name arguments is a Pascal source (recognized by the .p
extension).
The -v (verbose) option of the driver verbosely outputs all
driver actions. With this option, the interested user can track
problems that might arise (such as undefined symbols from
the linker).
As mentioned in the previous section, different languages
use different initialization code that resides in language-spe­
cific standard libraries. It is necessary that the correct lan­
guage initialization code be linked with a mixed-language
program. The driver program helps do this, but it needs to
know in which language the main program is written.
To ensure that the correct initialization code is linked with a
mixed-language program, the user should call the driver that
corresponds to the language of the main program module
within the mixed-language program.
For example, suppose there are five source modules written
in five different languages (c_utils.c written in C, f_utils.f
written in FORTRAN 77, p_tuils.p written in Pascal, m_
utils.m written in Modula-2, and s_utils.s written in assem­
bly), and there is a sixth module that has already been com­
piled separately (obj.o, an object module). Assuming there
is a main program written in FORTRAN 77, the f77 driver
should be used.
f77 main.f c_utils.c f_utils.f p_utils.p m__utils.m
s_utils.s obj.o
If the main program is written in C, cc is used, and so on.

COMPILATION ON VMS OPERATING SYSTEMS
When using the GNX tools on VMS systems, the linking
phase is separate from the compilation phase; therefore, it
demands separate actions from the user.
The interested user should refer to the language tools man­
uals (assembler, linker, etc.) for a complete description of
how to use them on VMS systems.

COMPILING A MIXED-LANGUAGE EXAMPLE
The example listed in Appendix A consists of a number of
program modules written in languages different from the
main program, which is written in C.

4

COMPILING THE EXAMPLE ON A UNIX SYSTEM
To compile the program modules on a Berkeley UNIX sys­
tem, type the command:
nmcc c_main.c\

c_fun.c dmod_fun.def dummy.def
f77_fun.f\
imod_fun.m pas_fun.p asm_fun.s

This assumes that all the program modules are in the same
directory. If the program compiles and links successfully,
the result is an executable file that, when run on a Series
32000 CPU, prints the line “ Passed OK!!!” .

5

APPENDIX A
PROGRAM MODULE LISTINGS
The different program modules are listed in this section.

c_main.c
/*---
* Example of a C program which communicates with C, Pascal,
* Fortran 77, Modula-2 and Assembly external functions, via
* direct calls as well as via a global variable.
* Parameter passing by reference is accomplished by passing the
* addresses of the characters variables "a1, "b', "c', "d' and "e'.
* ---*/
char str_[] = "Passed 0K!!!\nM ; /* global ('exported') string*/
main () {

char a, b, c, d, e ;
int three = 3 ; /* FORTRAN must get its parameters by reference

*So we put this constant into a variable . . .
*/

if (c_func (&a, 0) && /* in C arrays start with 0*/
pas_func (&b,2) && /* in Pascal they start at 1*/
f77_func_(&c,&three)&& /*in f77, at 1*/
mod_func (&d, 3) && /* in Modula-2, at 0*/
asm_func (&e, 4)) /*in assembly, at 0*/
printf ("%c%c%c%c%c%s'', a, b, c, d, e, str_ +5) ;
/^Should print "Passed OK!!!"*/

/* dummy initialization function for Modula-2*/
dummy ()|

c_fun.c
/** Declaration of the public character string 'str[]' and definition
* of the C function 'c_func{)'.
* Note the appending of an underscore to the external symbol 'str_'
* which is shared with FORTRAN 77.
*/extern char str_[] ;
int c_func (c_ptr, index)
char *c_ptr;
int index;
{

*c_ptr = str_[index] ;
return 1;

6

f77_fun.f
C
C The FORTRAN 77 function:
C
C All parameters are passed by reference
C The COMMON statement aliases the external array 'str' as 'text'
C

LOGICAL FUNCTION f77_func(c, index)
CHARACTER c
INTEGER index
COMMON /str/text
CHARACTER text(15)
c = text(index)
f77_func = .TRUE.
RETURN
END

dmod_fun.def
DEFINITION MODULE mfunc.module ;
EXPORT mod_func;
PROCEDURE mod_func(VAR c: CHAR; index: INTEGER): BOOLEAN;

END mfunc_module.
dummy.def

(** This definition module was written in order to 'satisfy' Modula-2
* strict conformance checks regarding the foreign language functions
* and in order to define the global character array 'str[]'.
* The external functions are called from the Modula-2 main program,
* so they must be exported from somewhere . . .
*)DEFINITION MODULE dummy;

EXPORT
str_, c_func, pas_func, f77_func_, asm_func;

(^external function declarations*)
PROCEDURE c.func (VAR c: CHAR; index: INTEGER): BOOLEAN;
PROCEDURE pas.func (VAR c: CHAR; index: INTEGER): BOOLEAN;
PROCEDURE f77_func (VAR c: CHAR; VAR index: INTEGER): BOOLEAN;
PROCEDURE asm.func (VAR c: CHAR; index: INTEGER): BOOLEAN;
VAR
str_: ARRAY [0. . 14] OF CHAR;
END dummy.

7

imod_fun.m
(*
* Definition of the Modula-2 function 'mod_func () '
*)IMPLEMENTATION MODULE mfunc_module;
FROM dummy IMPORT str_;
PROCEDURE mod_func{VAR c: CHAR; index: INTEGER): BOOLEAN;
BEGIN
c : = str_[index] ;
RETURN (TRUE) ;
END mod_func;
END mfunc_module.

pas_fun.p
<*
* The Pascal function 'pas_func ()'
)('str[] character-array declaration *)

#include 'str_pas.h'' ;
(* make this function visible to outsiders ('export')*)
function pas_func(var c: char; index: integer): boolean; external;

function pas_func () ;
begin
c: = str_[index] ;
pas_func: = TRUE;

end;
str_pas.h

(* 'str[]' character-array declaration for Pascal*)
var
str_: packed array [1. . 15] of char;

8

asm_fun.s
#
The 32000 Assembly Language Function 'asm_func'
#
The function includes an artificial use of r7, to demonstrate the
need to save it upon entry and restore upon exit, as opposed to
rO, rl and r2; fO, fl, f2 and f3 which can be used freely without
saving or restoring. This is according to the Series 32000
standard calling convention.
The function return value is placed in rO, also according to the
standard calling convention.
#

.globl _str_ #Import the global str[] array.

.globl _asm_func #Export (make visible) the assembly function,

.align 4

_asm_func
enter
movb
movqd
movd
exit
ret $

[r7],0 #Set frame, demonstrate saving of r7
str + 0(12(fp)) ,0(8(fp)) # argument_l str[argument_2]
|(1), r7 #artificial use of r7
r7, rO #return_value TRUE
[r7] #Unwind frame, restore r7
(0) #Return to caller

9

AN
-5

90

Ap
pl

ic
at

io
n

D
ev

el
op

m
en

t U
si

ng
 M

ul
tip

le
 P

ro
gr

am
m

in
g

La
ng

ua
ge

s
Lit. #100590

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL
SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or
systems which, (a) are intended for surgical implant
into the body, or (b) support or sustain life, and whose
failure to perform, when properly used in accordance
with instructions for use provided in the labeling, can
be reasonably expected to result in a significant injury
to the user.

2. A critical component is any component of a life
support device or system whose failure to perform can
be reasonably expected to cause the failure of the life
support device or system, or to affect its safety or
effectiveness.

National Semiconductor
Corporation
2900 Semiconductor Drive
P.O. Box 58090
Santa Clara, CA 95052-8090
Tel: 1(800) 272-9959
TWX: (910) 339-9240

National Semiconductor
GmbH
Livry-Gargan-Str. 10
D-82256 Fürstenfeldbruck
Germany
Tel: (81-41) 35-0
Telex: 527649
Fax: (81-41) 35-1

National Semiconductor
Japan Ltd.
Sumitomo Chemical
Enqineerinq Center
Bldg. 7F
1-7-1, Nakase, Mihama-Ku
Chiba-City,
Ciba Prefecture 261
Tel: (043) 299-2300
Fax (043) 299-2500

National Semiconductor
Hong Kong Ltd.
13th Floor, Straight Block,
Ocean Centre, 5 Canton Rd.
Tsimshatsui, Kowloon
Hong Kong
Tel: (852) 2737-1600
Fax: (852) 2736-9960

National Semiconductores
Do Brazil Ltda.
Rue Deputado Lacorda Franco
120-3A
Sao Paulo-SP
Brazil 05418-000
Tel: (55-11) 212-5066
Telex: 391-1131931 NSBR BR
Fax (55-11) 212-1181

National Semiconductor
(Australia) Pty, Ltd.
Building 16
Business Park Drive
Monash Business Park
Nottinghill, Melbourne
Victoria 3168 Australia
Tel: (3) 558-9999
Fax: (3) 558-9998

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

