
Platzhalter, damit als PDF das Dokument
in 2-Seiten Ansicht gelesen werden kann.

Original und zum Druck ab Seite 2.

fritz
Stempel
Platzhalter, damit als PDF das Dokument in 2-Seiten Ansicht gelesen werden kann.

Original und zum Druck ab Seite 2.
--

This page added for reading the document on 2 pages.
Original and for printing from page 2

fritz
Stempel

Series 32000®
GNX — Version 4.4

Assembler Reference Manual

Customer Order Number 424010497-004
June 1992

REVISION RECORD

VERSION RELEASE DATES SUMMARY OF CHANGES
4.0 May 1990 First Release.

Introduction of the new macro and condi­
tional assembler. Introduction of procedure
support. Series 32000/EP support.

4.1 Sep 1990 Enhanced macro listing control and sym­
bolic debugging of assembly programs.

4.2 Feb 1991 Synchronization revision. No changes.
4.3 Aug 1991 Minor manual corrections.
4.4 June 1992 MS-DOS support added.

iii

PREFACE
This document describes the GNX Series 32000 Assembler, a support program that
assembles Series 32000 Assembly language source programs. This manual defines the
syntax, format, and function of the following:

• Series 32000 Assembly Language Elements
• Assembly Language Programs
• Instructions and Instruction Operands
• Assembler Directives
• Assembler Procedure Support
• Macro and Conditional Assembly
• Series 32000 Assembler Invocation

The GNX Assembler is intended for use as a component in the Series 32000 GNX tools
family to create assembly language programs for Series 32000-based systems. It may
be used in either a native or a cross environment.
The information contained in this manual is for reference only and is subject to change
without notice.
No part of this document may be reproduced in any form or by any means without the
prior written consent of National Semiconductor Corporation.
A complete list of National Semiconductor’s international offices may be found on the
inside back cover of this manual.

ISE, SYS32 and GENIX are trademarks of National Semiconductor Corporation.
Series 32000 is a registered trademark of National Semiconductor Corporation.
Portions of this document are derived from AT&T copyrighted material and reproduced under license from AT&T; portions are based in part on the Fourth Berkeley Software Distribution under license
from The Regents of the University of California.
UNIX is a registered trademark of AT&T.
VAX, VMS, and DEC are trademarks of Digital Equipment Corporation.
SUN and SunOS are trademarks of SUN Microsystems Inc.

IV

CONTENTS

Chapter 1 INTRODUCTION AND OVERVIEW
1.1 INTRODUCTION.. 1-1
1.2 OVERVIEW OF THE GNX ASSEMBLER FEATURES............... 1-2
1.3 SERIES 32000 REGISTERS .. 1-3

1.3.1 General Purpose Registers................................. 1-3
1.3.2 Dedicated Registers . .. 1-3
1.3.3 Floating-Point R egisters.. 1-5
1.3.4 Memory Management R egisters.................................... 1-6

1.4 DEFINITION OF TERMS.. 1-9
1.5 DOCUMENTATION CONVENTIONS.. 1-10

1.5.1 General Conventions.. 1-10
1.5.2 Conventions in Syntax Descriptions.............................. 1-10
1.5.3 Example Conventions.. 1-11

Chapter 2 ELEMENTS OF THE GNX ASSEMBLY LANGUAGE
2.1 INTRODUCTION.. 2-1
2.2 CHARACTER SET .. 2-1
2.3 GNX ASSEMBLER STATEMENTS ... 2-2
2.4 STRING AND NUMBER SYNTAX.. 2-4

2.4.1 Integer Syntax .. 2-4
2.4.2 Floating-Point Number Syntax....................................... 2-5
2.4.3 Character Constant Syntax... 2-8
2.4.4 String S y n tax ... 2-9

2.5 SYMBOLS.. 2-10
2.5.1 Symbol Names .. 2-10
2.5.2 Symbol T y p es... 2-11
2.5.3 Global Sym bols.. 2-13

2.6 LOCATION COUNTER... 2-15
2.7 EXPRESSIONS... 2-16

2.7.1 Rules for Expressions.. 2-19
2.7.2 Types in Expressions.. 2-19
2.7.3 Size of Expressions.. 2-22

Chapter 3 GNX ASSEMBLER PROGRAMS
3.1 INTRODUCTION.. 3-1
3.2 GNX ASSEMBLER PROGRAM STRUCTURE.............................. 3-1

CONTENTS v

3.3 PROGRAM SEGMENTS ... 3-2
3.3.1 Text Segm ent.. 3-2
3.3.2 Initialized Data Segment.. 3-3
3.3.3 Uninitialized Data (bss) S eg m en t................................. 3-3

3.4 SERIES 32000 MODULE SEGMENTS.. 3-3
3.4.1 Module Table Segm ent... 3-4
3.4.2 Link Table Segment... 3-5
3.4.3 Static Base Relative S eg m en t....................................... 3-5

3.5 USER-DEFINED, DUMMY AND COMMENT SEGMENTS . . . 3-6
3.5.1 User-Defined Segments... 3-6
3.5.2 Dummy Segments 3-6
3.5.3 Comment Segments... 3-6

3.6 LINKAGE.. 3-6
3.6.1 Relocatable Addresses ... 3-7
3.6.2 Linking Program Segments .. 3-7
3.6.3 Linking Series 32000 M odules....................................... 3-8

Chapter 4 INSTRUCTION OPERANDS
4.1 INTRODUCTION.. 4-1
4.2 GENERAL OPERANDS.. 4-3

4.2.1 Expression O perands.. 4-5
4.2.2 Register Operands ... 4-6
4.2.3 Register Relative Operands... 4-7
4.2.4 Frame Memory Operands.. 4-9
4.2.5 Frame Memory Relative Operands................................. 4-11
4.2.6 Stack Memory O perands.. 4-13
4.2.7 Stack Memory Relative O perands................................. 4-15
4.2.8 Static Memory O perands.. 4-17
4.2.9 Static Memory Relative O perands................................. 4-19
4.2.10 Program Memory O peran ds.. 4-21
4.2.11 Immediate O perands.. 4-23
4.2.12 Absolute O perands... 4-25
4.2.13 External O perands... 4-26
4.2.14 Top-of-Stack O perands... 4-28
4.2.15 Scaled-Index Byte O perands.. 4-29
4.2.16 Scaled-Index Word Operands.. 4-30
4.2.17 Scaled-Index Double-Word O peran ds........................... 4-31
4.2.18 Scaled-Index Quad-Word O perands.............................. 4-32
4.2.19 Displacement Operands... 4-33

4.3 IMMEDIATE SUBRANGE OPERANDS....................................... 4-35
4.3.1 Quick Operands... 4-36
4.3.2 Block Length Operands... 4-37
4.3.3 Bit-Field Length Operands... 4-38

vi CONTENTS

4.3.4 Bit-Field Offset Operands ... 4-39
4.3.5 Displacement Operands... 4-40

4.4 PROGRAM MEMORY OPERANDS ... 4-42
4.5 GENERAL REGISTER OPERANDS... 4-44
4.6 REGISTER LIST (reglist) OPERAND.. 4-46
4.7 CONFIGURATION LIST (cfglist) OPERAND.............................. 4-47
4.8 PROCESSOR REGISTER OPERANDS 4-49
4.9 NS32082 MEMORY MANAGEMENT REGISTER OPERAND . . 4-50
4.10 NS32382 MEMORY MANAGEMENT REGISTER OPERAND . . 4-51
4.11 NS32532 MEMORY MANAGEMENT REGISTER OPERAND . . 4-52
4.12 EXTERNAL PROCEDURE OPERANDS....................................... 4-53
4.13 LENGTH OF DISPLACEMENTS... 4-54

Chapter 5 SERIES 32000 INSTRUCTION SET
5.1 INTRODUCTION.. 5-1
5.2 INTEGER INSTRUCTIONS ... 5-7
5.3 QUICK INTEGER INSTRUCTIONS... 5-11
5.4 EXTENDED INTEGER INSTRUCTIONS.................................... 5-12
5.5 BOOLEAN INSTRUCTIONS... 5-13
5.6 BIT INSTRUCTIONS.. 5-14
5.7 BIT FIELD INSTRUCTIONS... 5-15
5.8 STRING INSTRUCTIONS .. 5-16
5.9 BLOCK INSTRUCTIONS... 5-17
5.10 PACKED DECIMAL INSTRUCTIONS.. 5-18
5.11 ARRAY INSTRUCTIONS... 5-19
5.12 PROCESSOR CONTROL INSTRUCTIONS................................. 5-20
5.13 PROCESSOR SERVICE INSTRUCTIONS.................................... 5-22
5.14 MEMORY MANAGEMENT INSTRUCTIONS.............................. 5-24
5.15 NS32081 FLOATING-POINT INSTRUCTIONS........................... 5-25
5.16 NS32181 and NS32381 FLOATING-POINT INSTRUCTIONS . . 5-27
5.17 NS32580 FLOATING-POINT INSTRUCTIONS........................... 5-30
5.18 NS32532 INSTRUCTIONS.. 5-32
5.19 NS32CG16 and NS32CG160 INSTRUCTIONS........................... 5-33
5.20 NS32GX32 and NS32GX320 INSTRUCTIONS 5-34
5.21 NS32FX16 INSTRUCTIONS... 5-35

CONTENTS vii

Chapter 6 GNX ASSEMBLER DIRECTIVES
6.1 INTRODUCTION.. 6-1
6.2 SYMBOL CREATION DIRECTIVE.. 6-2

6.2.1 .s e t ... 6-3
6.3 DATA GENERATION DIRECTIVES... 6-4

6.3.1 .a sc ii.. 6-6
6.3.2 .b y te .. 6-8
6.3.3 .word 6-10
6.3.4 .double... 6-12
6.3.5 .flo a t................. 6-14
6.3.6 .lo n g .. 6-15
6.3.7 .fie ld .. 6-17
6.3.8 .xpd .. 6-19
6.3.9 .xdd .. 6-21

6.4 STORAGE ALLOCATION DIRECTIVES 6-23
6.4.1 .b lk b .. 6-24
6.4.2 .blkw .. 6-26
6.4.3 .b lk d .. 6-28
6.4.4 .b lk f .. 6-29
6.4.5 .b l k l ... 6-30
6.4.6 .space ... 6-31

6.5 LISTING CONTROL DIRECTIVES... 6-32
6.5.1 . t i t l e ... 6-33
6.5.2 .su b title .. 6-34
6.5.3 .n o l is t .. 6-35
6.5.4 .lis t... 6-36
6.5.5 .e jec t.. 6-37
6.5.6 .w id th ... 6-38

6.6 LINKAGE CONTROL DIRECTIVES... 6-39
6.6.1 .globl.. 6-40
6.6.2 .com m ... 6-41

6.7 SEGMENT CONTROL DIRECTIVES.. 6-42
6.7.1 .dsect.. 6-43
6.7.2 . t e x t .. 6-45
6.7.3 .d a ta .. 6-46
6.7.4 .b ss... 6-47
6.7.5 .u d a ta ... 6-48
6.7.6 .static ... 6-49
6.7.7 . l i n k .. 6-50
6.7.8 .section... 6-53
6.7.9 .org ... 6-55
6.7.10 .align....................... 6-56
6.7.11 .ident............................. 6-58

viii CONTENTS

6.8 MODULE TABLE DIRECTIVES.. 6-59
6.8.1 .module .. 6-63
6.8.2 .m odentry... 6-65

6.9 FILENAME DIRECTIVE.. 6-67
6.9.1 .file 6-68

6.10 SYMBOL TABLE ENTRY DEFINITION DIRECTIVES 6-69
6.10.1 .de f... 6-71
6.10.2 .d i m .. 6-72
6.10.3 .line .. 6-73
6.10.4 . s c l ... 6-74
6.10.5 .size .. 6-76
6.10.6 .ta g ... 6-77
6.10.7 . ty p e .. 6-79
6.10.8 .v a l... 6-80
6.10.9 .e n d e f ... 6-81

6.11 LINE NUMBER TABLE CONTROL DIRECTIVE........................ 6-82
6.11.1 . I n ... 6-83

6.12 MACRO-ASSEMBLER DIRECTIVES... 6-84
6.12.1 .m acro ... 6-85
6.12.2 .endm ... 6-86
6.12.3 . i f .. 6-87
6.12.4 .e ls if .. 6-88
6.12.5 . e l s e .. 6-89
6.12.6 .endif.. 6-90
6.12.7 .repea t... 6-91
6.12.8 . i r p ... 6-92
6.12.9 .e n d r.. 6-93
6.12.10 .exit .. 6-94
6.12.11 ,macro_on and .macro_off... 6-95
6.12.12 .include .. 6-96
6.12.13 .mwaming... 6-97
6.12.14 .merror... 6-98

6.13 PROCEDURE SUPPORT DIRECTIVES...................................... 6-99
6.13.1 .p ro c .. 6-100
6.13.2 .proct.. 6-101
6.13.3 .proci.. 6-102
6.13.4 .va r... 6-103
6.13.5 .begin ... 6-104
6.13.6 .endproc.. 6-105
6.13.7 .call... 6-106

Chapter 7 PROCEDURE SUPPORT
7.1 INTRODUCTION... 7-1

CONTENTS ix

7.1.1 Procedure O peration .. 7-1
7.2 PROCEDURE DEFINITION... 7-2
7.3 PROCEDURE TYPES... 7-3
7.4 CALLING A PROCEDURE.. 7-4

7.4.1 The Calling Sequence.. 7-5
7.4.2 Optimizing the Calling Sequence 7-5
7.4.3 Passing Parameters... 7-6
7.4.4 The Call Instruction... 7-7

7.5 THE PARAMETER BLOCK.. 7-8
7.5.1 Parameter Allocation.. 7-9
7.5.2 Parameter Alignment.. 7-11
7.5.3 Parameter Block S ize .. 7-12
7.5.4 Parameter S c o p e .. 7-12

7.6 THE VARIABLE BLOCK... 7-12
7.6.1 Variable Allocation... 7-13
7.6.2 Variable Alignment... 7-15
7.6.3 Variable Block S iz e ... 7-16
7.6.4 Variable Scope.. 7-16

7.7 REGISTER USAGE.. 7-16
7.8 THE PROCEDURE B O D Y .. 7-17

7.8.1 Entering a Procedure Body... 7-18
7.8.2 Within a Procedure B ody................................ 7-19
7.8.3 Exiting a Procedure Body.. 7-20

7.9 STACK U SA G E .. 7-23
7.9.1 Sample Assembly Procedure.. 7-25

Chapter 8 MACRO AND CONDITIONAL ASSEMBLER
8.1 INTRODUCTION.. 8-1

8.1.1 Overview of the Major Macro-Assembler Features . . . 8-1
8.2 THE MACRO-PROCESSING P H A S E .. 8-5
8.3 INVOCATION... 8-7
8.4 MACRO VARIABLES... 8-8
8.5 ARITHMETIC MACRO-EXPRESSIONS....................................... 8-9
8.6 MACRO LISTS... 8-11
8.7 BUILT-IN MACRO FUNCTIONS... 8-12
8.8 CONDITIONAL ASSEMBLY... 8-14

8.8.1 Conditional B lock.. 8-14
8.9 REPETITIVE DIRECTIVES ... 8-16

8.9.1 . rep ea t D irective ... 8-16
8.9.2 . i rp Directive.. 8-17

x CONTENTS

8.9.3 .e x i t Directive... 8-18
8.10 MACRO PROCEDURES (MACROS)... 8-18

8.10.1 Macro Procedure Definition... 8-18
8.10.2 Macro Procedure Call and Expansion........................... 8-20
8.10.3 Predefined Macro Procedure Variables 8-20

8.11 .macro_on and .macro_off Directives 8-21
8.12 TEXT INCLUSION.. 8-22
8.13 MACRO WARNING AND ERROR MESSAGES........................... 8-23

8.13.1 . mwarning D irective.. 8-23
8.13.2 .merror Directive ... 8-23

8.14 LISTING CONTROL ... 8-24
8.15 STRING FUNCTIONS ... 8-30

8.15.1 String L eng th .. 8-30
8.15.2 String Com parison... 8-30
8.15.3 Substring E xtraction .. 8-31
8.15.4 Substring S ea rc h .. 8-31

8.16 MACRO-LIST FUNCTIONS ... 8-32
8.16.1 Get Element From L is t ... 8-32
8.16.2 Sublist Extraction.. 8-32
8.16.3 Find An Element In L i s t .. 8-33
8.16.4 Replace An Element In A L i s t 8-33
8.16.5 Insert An Element Into A L i s t 8-34
8.16.6 Delete An Element From A L i s t 8-34
8.16.7 Number Of Elements In A L is t....................................... 8-35
8.16.8 Example of Macro-List Function U sag e 8-35

8.17 DATA CONVERSION FUNCTIONS... 8-36
8.17.1 Convert To Integer Hexadecimal.................................... 8-36
8.17.2 Convert To Float Hexadecimal....................................... 8-37
8.17.3 Convert To Long Float H exadecim al........................... 8-37

8.18 INSTRUCTION OPERAND FUNCTIONS.................................... 8-38
8.18.1 Recognize The Type Of An O perand.............................. 8-38
8.18.2 Operand Subfields.. 8-40

8.19 PREDEFINED MACRO VARIABLES.. 8-47
Chapter 9 INVOCATION AND OPERATION

9.1 INTRODUCTION.. 9-1
9.2 INPUT AND OUTPUT FILES USED/GENERATED BY THE

GNX ASSEMBLER.. 9-1
9.3 GNX ASSEMBLER INVOCATION.. 9-3

9.3.1 Target Machine Specification.. 9-4
9.3.2 Assembler Symbolic D ebugging.................................... 9-7

CONTENTS xi

9.4 ASSEMBLER OUTPUT LISTINGS ... 9-9
9.4.1 Assembler Symbol Table Listing.................................... 9-14
9.4.2 Cross-Reference Table L is tin g 9-15

9.5 GNX ASSEMBLER ERRORS... 9-16
9.6 GNX ASSEMBLER LIMITATIONS.. 9-16

Appendix A DIRECTIVE SUMMARY
Appendix B GNX ASSEMBLER RESERVED SYMBOLS

B.l INTRODUCTION... B-l
B.2 STANDARD INSTRUCTIONS... B-2
B.3 NS32081 FLOATING-POINT INSTRUCTIONS B-4
B.4 NS32181 AND NS32381 FLOATING-POINT INSTRUCTIONS . B-4
B.5 NS32580 FLOATING-POINT INSTRUCTIONS............................ B-4
B.6 NS32CG16, NS32CG160 AND NS32FX16 HIGH

PERFORMANCE GRAPHIC INSTRUCTION.............................. B-5
B.7 NS32GX320 HIGH PERFORMANCE DSP INSTRUCTION . . . B-5
B.8 NS32532 CPU INSTRUCTION... B-5
B.9 STANDARD REGISTERS.. B-5
B.10 NS32082 MMU REGISTERS.. B-5
B .ll NS32382 MMU REGISTERS.. B-5
B.12 NS32081 FLOATING-POINT REGISTERS.................................. B-6
B.13 NS32181, NS32381 AND NS32580 FLOATING-POINT

REGISTERS... B-6
B.14 NS32532 CPU REGISTERS... B-6
B.15 STANDARD DIRECTIVES... B-6
B.16 FLOATING-POINT DIRECTIVES... B-7
B.17 MACRO DEFINITION DIRECTIVES... B-7
B.18 PROCEDURE SUPPORT DIRECTIVES.. B-7
B.19 PROCEDURE SUPPORT PREDEFINED SYMBOLS................... B-7
B.20 MODULARITY DIRECTIVES ... B-7
B.21 ADDRESSING MODE INDICATORS... B-7
B.22 FLA G S.. B-7
B.23 NS32332 SETCFG F L A G S... B-8
B.24 NS32CG160 SETCFG FLAGS ... B-8
B.25 MODULARITY OPTION FLAGS.. B-8
B.26 NS32CG16 OPTION FLA G S.. B-8

xii CONTENTS

B.27 SCALED INDEX QUALIFIERS.. B-8
B.28 NS32532 OPTION F L A G S ... B-8
B. 29 TEMPORARY LABELS... B-8

AppendixC PROGRAM EXAMPLES
C. l INTRODUCTION.. C-l
C.2 FACTORIAL NUMBERS.. C-l
C.3 SQUARE ROOT CALCULATION... C-3
C.4 ACKERMAN'S FUNCTION... C-5
C.5 STRING SORTING... C-6
C.6 MODULAR CODE EXAMPLE... C-8

Appendix D INITIALIZATION OF INTERRUPTS
Appendix E SERIES 32000 STANDARD CALLING CONVENTIONS

E.l INTRODUCTION.. E-l
E. 2 CALLING CONVENTION ELEMENTS.. E-l

Appendix F COMPATIBLY-SUPPORTED MACROS
F. l INTRODUCTION.. F-l
F.2 DEFINITION OF TERMS.. F-l
F.3 DEFINING A MACRO.. F-2

F.3.1 The Macro Header ... F-2
F.3.2 The Macro Body... F-2
F.3.3 The Macro T erm inator... F-3

F.4 USING A MACRO.. F-4
F.4.1 Arguments In Macros.. F-4

Appendix G GLOSSARY

FIGURES
Figure 9-1. Input and Output Files for the GNX Assembler......................... 9-2
Figure 9-2. Sample Assembly Program.. 9-9
Figure 9-3. GNX Assembler Listing F i l e ... 9-9
Figure 9-4. GNX Assembler Listing File (Annotated Version)...................... 9-10
Figure 9-5. Sample Assembly Program With Floating Point Instructions . 9-11
Figure 9-6. GNX Assembler Listing File With libHfp Interface................... 9-12

CONTENTS xiii

Figure 9-7. A Sample Program Containing E rrors...................................... 9-13
Figure 9-8. GNX Assembler Listing File With Error M esage.................... 9-13
Figure 9-9. Sample GNX Assembler Symbol Table Source F i le 9-14
Figure 9-10. Sample GNX Assembler Symbol Table L is tin g 9-14
Figure 9-11. Sample GNX Assembler Cross-Reference Source F ile............... 9-15
Figure 9-12. Sample GNX Assembler Cross-Reference Table Listing 9-15

TABLES
Table 2-1. Escape Sequences... 2-9
Table 2-2. Operator Precedence... 2-17
Table 2-3. Types and O perators... 2-18
Table 8-1. Macro Operator Precedence ... 8-10
Table 8-2. Relevant Operand Subfields... 8-44
Table 9-1. Target Selection Param eters... 9-4
Table 9-2. Optional Flag Syntax ... 9-5

INDEX

xiv CONTENTS

Chapter 1
INTRODUCTION AND OVERVIEW

1.1 INTRODUCTION
The GNX Assembler is a support program that assembles Series 32000 Assembly
Language source programs and generates relocatable object modules. Relocatable
object modules may be linked to create executable load modules which may be run on
Series 32000 microprocessor-based systems that support the Common Object File For­
mat (COFF) as implemented by National Semiconductor. The Series 32000 GNX
(GENIX Native and Cross-Support) language tools provide linkage and library mainte­
nance programs.
This manual describes the GNX Assembler in detail and is organized as follows:
Chapter 1, Introduction and Overview

Introduces the GNX Assembler, summarizes its features, and describes the
Series 32000 registers.

Chapter 2, Elements of the GNX Assembly Language
Describes the format of the GNX Assembly Language statements, constants,
values, symbols, and expressions.

Chapter 3, GNX Assembler Programs
Describes program segments, linkage, and relocation.

Chapter 4, Instruction Operands
Describes the syntax of the GNX Assembly Language instruction operands.

Chapter 5, Series 32000 Instruction Set
Lists the syntax of the Series 32000 instruction set.

Chapter 6, GNX Assembler Directives
Defines the syntax and function of the GNX Assembler directives.

Chapter 7, Procedure Support
Provides a review of the GNX procedure support.

Chapter 8, Macro and Conditional Assembly
Describes the new macro-assembler.

Chapter 9, Invocation and Operation
Describes the GNX Assembler, assembly options, output formats, error mes­
sages, and the Symbol Table.

Appendix A, Directive Summary
Summarizes the GNX Assembler directive syntax and function.

INTRODUCTION AND OVERVIEW 1-1

Appendix B, Reserved Symbols
Lists the GNX Assembler reserved symbols.

Appendix C, Program Examples
Provides GNX Assembly Language program examples.

Appendix D, Initialization of Interrupts
Illustrates interrupt initialization for a Series 32000 system.

Appendix E, Series 32000 Standard Calling Conventions
Describes elements of the Series 32000 standard calling sequence.

Appendix F, Compatibly-Supported Macros
Describes the Version 2.0 macro-assembler.

Appendix G, Glossary
Provides a glossary of GNX terms.

1.2 OVERVIEW OF THE GNX ASSEMBLER FEATURES
The GNX Assembler provides a number of features for efficient assembly language pro­
gramming.
Input and Output Files. The GNX Assembler generates an object code file, an
optional listing file, an optional cross-reference listing, and an optional symbol table
dump from an assembler source file. The object code file consists of assembled state­
ments suitable for execution after the appropriate linking process. The listing file con­
sists of the source file statements, and the assembled code, if the source file assembles
successfully; otherwise, the listing file consists of error messages and source file state­
ments that caused the error. Input and output files, listing file format, cross-reference
listing symbol table dump, and error messages are described in Chapter 9.
Instruction Set. The GNX Assembler supports the complete Series 32000 instruction
set, including the integer, quick integer, extended integer, bit, bit field, Boolean, string,
packed decimal, array, block, processor control, and processor service instructions. The
GNX Assembler also supports memory management and floating-point instruction sets
for systems with the optional NS32082 or NS32382 Memory Management Unit,
NS32081, NS32181, NS32381 or NS32580 Floating-Point Unit, and NS32CG16,
NS32CG160 and NS32FX16 High Performance Graphic Instructions. Chapter 5 defines
the syntax of all Series 32000 instructions. Instruction operation is described in detail
in the Series 32000 and Series 32000/EP Programmer’s Reference Manual.
Addressing Modes. The GNX Assembler supports eight general addressing modes:
register, register relative, memory, memory relative, immediate, absolute, top of stack,
external, and also provides scaled indexing for all of these modes except immediate.
Data Types. The GNX Assembler recognizes a variety of operand data types including
integers (byte, word, double-word), single- and double-precision floating-point numbers,
packed decimal numbers, bits, and bit fields.
1-2 INTRODUCTION AND OVERVIEW

GNX Assembler Directives. The GNX Assembler provides directives to create sym­
bolic labels, generate data, allocate storage, control program listings, control linkage,
control line number table, control program segments, define module table entry, define
symbol table entry, define macros, and define file name.

1.3 SERIES 32000 REGISTERS
The Series 32000 system has four sets of registers; these are described in Sections 1.3.1
through 1.3.4.

• General Purpose registers
• Dedicated registers
• Floating-Point registers
• Memory Management registers

1.3.1 General Purpose Registers
There are eight General Purpose registers. The register names are: rO, rl, r2, r3, r4,
r5, r6, and r7. The General Purpose registers provide temporary storage for address
computation, arithmetic operations, and parameter passing.
Each register is 32 bits long and may be used in byte, word, and double-word opera­
tions. Byte operations affect the register’s low-order eight bits only; word operations
affect the low-order 16 bits, and double-word operations affect all 32 bits.
General Purpose registers may be combined to form even/odd register pairs: rO/rl,
r2/r3, r4/r5, r6/r7. A register pair is 64 bits in length and may hold word, double-word,
and quad-word data. The odd register holds the high-order byte(s); the even register
holds low-order byte(s). Register pair names are: rO, r2, r4, and r6.

store memory addresses and status information needed
Name Contents

1.3.2 Dedicated Registers
The eight Dedicated registers
for CPU operation:

Register
Program Counter pc
Static Base sb
User Stack Pointer spl
Interrupt Stack Pointer spO
Frame Pointer fp
Interrupt Base intbase
Module mod
Processor Status psr

address of current instruction
address of current Static Base Area
address of top of User Stack
address of top of Interrupt Stack
address of current Frame
address of Interrupt Dispatch Table
address of current Module Descriptor
Processor Status flags

INTRODUCTION AND OVERVIEW 1-3

The pc, sb, spl, spO, fp, and intbase registers are each 32 bits long; however, these
registers contain memory addresses in which the number of bits used for address representation and calculation depends on the actual CPU used. 24 bits are used for
address representation in the NS320xx and the NS32CG16 CPUs. These CPUs will be
referred to as 24-pin address processors. 32 bits are used for address representation in
the NS32332, NS32532, NS32FX16, NS32CG160, NS32GX32, and NS32GX320 CPUs.
These CPUs will be referred to as 32-pin address processors. The mod register contains
a memory address, and the psr register contains the processor status flags. A program
can work only with one of the hardware stack registers at any given time: spO or spl.
The CPU selects spO as the current stack pointer if the s bit in the psr is zero, and spl
if the s bit is one. The GNX Assembler uses the symbol sp to refer to the currently
selected stack. A program has no control over which stack will be accessed, except by
changing the s bit. Consequently, the GNX Assembler does not support the symbols
spO and spl, and any reference to “stack” in this manual refers to the currently
selected stack.
The psr status flags define the current operational mode of the CPU and the execution
results of the previous instruction(s). The psr has the following form:

Supervisor Flags User Flags
X X X X i P s u n z f X X 1 t c
15 8 7 0
x - reserved for future use

The status flags have the following functions:
User Flags (available to all programs)
c is the Carry flag. On execution of an add or subtract instruction, c

flag is set to 1 on a carry or a borrow and is set to 0 when neither
occur.

t is the Trace-Trap flag. The Trace-Trap flag enables/disables the sys­
tem Trace-Trap (TRC). The TRC stops program execution on comple­
tion of each program instruction and permits program single-stepping.
When t is 1, the trace trap is enabled. Also see p flag.

1 is the Low flag. The Low flag signals the result of an unsigned com­
parison between two integers. The 1 flag is set to 1 if the second
integer is less than the first; 1 flag is set to 0 if the second integer is
greater than, or equal to, the first.

f is the General Condition flag. If set to 1, this flag indicates an overflow
in arithmetic operations, a set bit in a bit instruction, an until/while
condition in a string instruction, or an out-of-bounds subscript in a
check instruction. If set to 0, this flag indicates no overflow in arith­
metic operations, a clear bit in a bit instruction, no until/while condi­
tion in a string instruction, and no out-of-bounds subscript in a check

1-4 INTRODUCTION AND OVERVIEW

instruction.
z is the Zero flag. The Zero flag indicates the result of the comparison

between two integers. The z flag is set to 1 if the integers are equal
and is set to 0 if not equal.

n is the Negative flag. The Negative flag indicates the result of a signed
comparison between two integers. The n flag is set to 1 if the second
integer is less than the first and is set to 0 if the second integer is
greater than, or equal to, the first.

Supervisor Flags (available to supervisor programs only)
u is the User Mode flag. The User Mode flag sets the current mode of

system operation. If u is 1, the system is in the user mode and no
privileged instructions may be executed. If ua is 0, the system is in
the supervisor mode and all instructions may be executed.

s is the Stack flag. The Stack flag selects the current stack pointer. If s
is 1, the User Stack Pointer (spl) is active. If s is 0, the Interrupt
Stack Pointer (spO) is active. On an interrupt or a trap, the s bit is
automatically cleared.

p is the Trace Pending flag. The Trace Pending flag, in conjunction with
the t flag, enables/disables the trace trap. At the start of an instruc­
tion, the t flag contents are copied to the p flag. At the end of the
instruction, if p is 1, a trace trap is taken. If p is 0, no trace trap is
taken.

i is the Interrupt flag. The Interrupt flag enables/disables the vectored
and nonvectored interrupts. If i is 1, the interrupts are enabled. If i
is 0, then all interrupts except the Non-Maskable Interrupt (NMI) are
disabled.

1.3.3 Floating-Point Registers
The floating-point registers for the NS32081, NS32181, NS32381, and NS32580 are
described in this Section. The Floating-Point Status Register (fsr) contains the
floating-point status flags. The Series 32000 Programmer’s Reference Manual describes
the flags in detail.

The NS32081 Registers
The NS32081 registers (fO, fl, f2, f3, f4, f5, f6 and f7) provide temporary work space for
floating-point operations. Each register is 32 bits long and may hold single-precision
floating-point numbers.
These registers may be combined to form even/odd register pairs: fU/fl, f2/f3, f4/f5, or
f6/f7. A register pair is 64 bits in length and may hold double-precision floating-point
numbers. The odd register contains the high-order bytes of the number; the even regis­
ter contains the low-order bytes. Register pair names are: fl), f2, f4, and f6.

INTRODUCTION AND OVERVIEW 1-5

The NS32181,NS32381 and NS32580 Registers
The NS32181, NS32381 and NS32580 registers (fO, fl, f2, f3, f4, f5, f6, and f7) provide
temporary work space for floating-point operations. Each register is 32 bits long and
may hold single-precision floating-point numbers.
The NS32181, NS32381 and NS32580 registers (10, 11, 12, 13, 14, 15, 16, and 11) are 64
bits long and may hold double-precision floating-point numbers.

1.3.4 Memory Management Registers
The Memory Management registers support virtual memory and program debugging.
Memory Management registers are described in detail in the Series 32000
Programmer’s Reference Manual.

NS32082 MMU Registers
The following is a comprehensive list of the Memory Management registers for the
NS32082. All Memory Management registers, except scO and scl, are 32 bits long.
Both scO and scl are 16 bits long and occupy a single 32-bit register. The assembler
refers to scO and scl with the symbol sc. The scO register is contained in the lower 16-
bit field of sc; scl is contained in the upper 16-bit field of sc.

Register Name
Page Table Register 0 ptbO

Page Table Register 1 ptbl

Error/Invalidate Address eia

Breakpoint Register 0 bprO

Breakpoint Register 1 bprl

Function
Contains the base address of the level 1 Page
Table.
Contains the base address of the user mode
level 1 Page Table (when MMU is in dual
space operation).
Contains, on an error, the virtual address
that caused the error. When written to,
causes the removal of invalid Page Table
entries from the MMU Translation Buffer.
Contains a breakpoint address. The system
breaks execution when the address is
accessed.
Contains a breakpoint address. The system
breaks execution when the address is
accessed.

1-6 INTRODUCTION AND OVERVIEW

Breakpoint Count bent Contains a count of the number of bprO
breakpoint conditions that have been met. If
count is 0, a break is taken. Otherwise, no
break is taken.

Program Flow 0 pfD Contains the address of the last nonsequen­
tial instruction.

Register Name Function
Program Flow 1 Pfl Contains the address of the next to last non­

sequential instruction.
Sequential Count 0 scO Contains the number of sequential instruc­

tions executed since the last nonsequential
instruction.

Sequential Count 1 scl Contains the number of sequential instruc­
tions executed prior to the last nonsequential
instruction.

Memory Status Register msr Contains the status and control flags of the
MMU.

NS32382 MMU Registers
The following is a comprehensive list of memory management registers for the
NS32382. All registers except ivarO and ivarl can be read by the smr instruction.
IvarO and ivarl are write-only pseudo-registers. The tear, bear, and bdr registers are
read-only registers and cannot be loaded by the lmr instruction. Writing to a read-only
register has no effect on the MMU; however, avoid reading a write-only register since
random data patterns may be returned.

Registers Name Description
Breakpoint Address Register bar Holds a virtual address for

breakpoint address comparison
during instruction and operand
accesses.

Breakpoint Mask Register bmr Indicates which bit positions of
the virtual address are to be
compared when the Breakpoint
Address Compare Function is
enabled.

INTRODUCTION AND OVERVIEW 1-7

Breakpoint Data Register bdr Contains the virtual address of
the multiplexed address data
bus from the CPU when a
breakpoint is detected. Registers Name Description

Invalid Virtual Address Register 0 ivarO

Invalid Virtual Address Register 1 ivarl

MMU Control Register mcr

MMU Status Register msr

Translation Exception Address Register tear

Bus Error Address Register bear

Page Table Base 0 ptbO

Page Table Base 1 ptbl

Contains 20-bit physical numbers and
20-bit virtual address tag of the 32
most recently used pages. Used to
invalidate entries with AS (Address
Space)=0.
Contains 20-bit physical numbers and
20-bit virtual address tag of the 32
most recently used pages. Used to
invalidate entries with AS=1.
Contains the different features pro­
vided by the MMU.
Contains the status of the MMU when
a translation exception or a bus error
is reported to the CPU.
Is clocked when a translation excep­
tion occurs. The register contains the
32-bit virtual address which caused
the translation exception.
Is clocked when a CPU or MMU error
occurs. This register contains the 32-
bit virtual address which triggered the
bus error.
Contains the base address used for
address translation (when in
superuser mode.)
Contains the base address used for
address translation (when in user
mode.)

NS32532 MMU Registers
The following is a comprehensive list of memory management registers for the
NS32532. All registers except ivarO and ivarl can be read by the smr instruction.
IvarO and ivarl are write-only pseudo-registers. The tear register is a read-only regis­
ter and cannot be loaded by the lmr instruction. Writing to a read-only register has no
effect on the MMU. However, reading a write-only register should be avoided since
random data patterns may be returned.

1-8 INTRODUCTION AND OVERVIEW

Registers
Invalid Virtual Address Register 0

Invalid Virtual Address Register 1

MMU Control Register

MMU Status Register

Translation Exception Address Register

Page Table Base 0

Page Table Base 1

Name Description
ivarO Contains 20-bit physical

numbers and 20-bit virtual
address tag of the 32 most
recently used pages. Used to
invalidate entries with AS=0.

ivarl Contains 20-bit physical
numbers and 20-bit virtual
address tag of the 32 most
recently used pages. Used to
invalidate entries with AS=1.

mcr Contains the different features
provided by the MMU.

msr Contains the status of the MMU
when a translation exception or
a bus error is reported to the
CPU.

tear Is clocked when a translation
exception occurs. The register
contains the 32-bit virtual
address which caused the trans­
lation exception.

ptbO Contains the base address used
for address translation (when in
superuser mode.)

ptbl Contains the base address used
for address translation (when in
user mode.)

1.4 DEFINITION OF TERMS
The following terms are used throughout this document:

Software Module

Series 32000 Module

Relative Value

A software module is a portion of a program that may
be separately compiled or assembled and linked
together with other software modules into an execut­
able program image.
A Series 32000 module is a software module that uses
the Series 32000 architecture support for linkage.
Currently, the GNX linker supports only one
Series 32000 module per program.
A relative value is a symbol or expression that
specifies an address within one of the Common Object

INTRODUCTION AND OVERVIEW 1-9

File Format (COFF) sections or the corresponding
assembly program segment. Because such addresses
are not bound to actual memory locations until link
time, their value is relative to the base or starting
address of the segment. Relative values are called
relocatable addresses.

Absolute Value An absolute value is a symbol or expression that
specifies a numeric address. An absolute value or
absolute address is unaffected by linkage.

1.5 DOCUMENTATION CONVENTIONS
The following documentation conventions are used in text, syntax descriptions, and
examples in describing commands and parameters.

1.5.1 General Conventions
Nonprinting characters are indicated by enclosing a name for the character in angle
brackets < >. For example, < CR> indicates the RETURN key, < ctrl/B> indicates the
character input by simultaneously pressing the control key and the B key.
Constant-width type is used within text for filenames, directories, command names and
program listings; it is also used to highlight individual numbers and letters. For exam­
ple,

the C preprocessor, cpp, resides in the GNXDIR/lib directory.

1.5.2 Conventions in Syntax Descriptions
The following conventions are used in syntax descriptions:

Constant-width boldface type indicates actual user input.
Italics indicate user-supplied items. The italicized word is a generic term
for the actual operand that the user enters. For example,

cc [[option] ... \filename\ ...] ...
Spaces or blanks, when present, are significant; they must be entered as
shown. Multiple blanks or horizontal tabs may be used in place of a single
blank.
{ } Large braces enclose two or more items of which one, and only one,

must be used. The items are separated from each other by a logical
OR sign “ | ”
Large brackets enclose optional item(s).

1-10 INTRODUCTION AND OVERVIEW

Logical OR sign separates items of which one, and only one, may be
used.

... Three consecutive periods indicate optional repetition of the preced­
ing item(s). If a group of items can be repeated, the group is
enclosed in large parentheses “().”

,,, Three consecutive commas indicate optional repetition of the preced­
ing item. Items must be separated by commas. If a group of items
can be repeated, the group is enclosed in large parentheses “().”

() Large parentheses enclose items which need to be grouped together
for optional repetition. If three consecutive commas or periods follow
an item, only that item may be repeated. The parentheses indicate
that the group may be repeated.

i_ i Indicates a space. u is only used to indicate a specific number of
required spaces.

All other characters or symbols appearing in the syntax must be entered as
shown. Brackets, parentheses, or braces which must be entered, are smaller
than the symbols used to describe the syntax. (Compare user-entered [],
with [] which show optional items.)

1.5.3 Example Conventions
In interactive examples where both user input and system responses are shown, the
machine output is in constant-width regular type; user-entered input is in constant-
width boldface type. Output from the machine which varies (e.g. , the date) is in italic
type. For example,

(dbug) < CR>
Breakpoint 2 reached at filename _main: .3
.3 printf("hello\r\n");

INTRODUCTION AND OVERVIEW 1-11

Chapter 2
ELEMENTS OF THE GNX ASSEMBLY LANGUAGE

2.1 INTRODUCTION
This chapter describes the elements of the GNX Assembly Language. The following
topics are discussed:

• Character set
• Statements
• Constants
• Symbols, symbol types, and values
• Location counter
• Expressions

2.2 CHARACTER SET
The GNX Assembly Language character set consists of the following subset of the stan­
dard ASCII character set:

• Upper- and lower-case letters A through z of the English alphabet.
• Digits 0 through 9.
• Blanks (ASCII 32), Tabs (9), Vertical Tabs (11), and Form Feeds (12).
• The following printable characters:

ELEMENTS OF THE GNX ASSEMBLY LANGUAGE 2-1

Character Name Character Name
Single Quote/Apostrophe + Plus Sign

(Left Parenthesis / Slash
) Right Parenthesis Colon

Period Semi-Colon
Underscore @ At Sign

> Comma [Left Square Bracket
- Minus Sign/Hyphen 1 Right Square Bracket* Asterisk 11 Double-Quote
\ Back Slash % Percent
~ Tilde # Pound Sign
A Caret 1 Vertical Bar
& Ampersand < Left Angle Bracket
$ Dollar Sign > Right Angle Bracket? Question Mark

Carriage Return and Line Feed serve as line terminators; therefore, they cannot be
entered directly into source code statements. They can be entered as their ASCII
value.
Any other ASCII character may appear only within quoted strings.
The GNX Assembler is case sensitive, i.e., the assembler distinguishes between upper-
and lower-case letters. Reserved symbols must be typed in lower-case. User symbols
are interpreted exactly as they are typed.

2.3 GNX ASSEMBLER STATEMENTS
The GNX Assembly Language consists of lines of text that contain one or more state­
ments separated by semicolons and an optional comment. A statement is an optional
label followed, optionally, by a mnemonic plus its operands. Statements are composed
of user-defined symbols (names and labels representing variable quantities or memory
locations), reserved symbols, constant values, and delimiters.
GNX Assembly Language statements are of two kinds: GNX assembly language
instructions and GNX assembler directives. The GNX assembly language instructions
are translated directly into machine instructions so that their meanings are carried out
at execution time. The GNX Assembler directives, on the other hand, are commands to
the assembler itself to carry out some action during program translation, e.g. , allocat­
ing a block of memory.

2-2 ELEMENTS OF THE GNX ASSEMBLY LANGUAGE

Lines of GNX Assembly Language code have the following form:

Syntax:

where:

Description:

([label: [:]] [mnemonic [operands]][;]),„ [# comment]

label is an optional label. The label must be a valid symbol
name and must be followed by one or two colons. See
the syntax descriptions of GNX assembly language
directives in Chapter 6 for those directives that do not
allow labels.

mnemonic is an optional instruction mnemonic or assembler
directive. It must end with a space, tab, end-of-line, or
semicolon.

operands are the operands of the instruction or of the assembler
directive. The number of operands depends on the
instruction or directive type. Each operand must be
separated from the next operand by a comma. Spaces
between operands are ignored. If the statement con­
tains no instruction or directive, the operands must
also be omitted.

comment is the optional comment. A comment must be preceded
by a pound sign (#). If the -c flag (or /CPP in VMS) is
given, the comments should not begin in column 1.

A line of GNX Assembly Language code must conform to the following
rules:

1. Multiple statements (i.e., label, mnemonic, and operands) must be
separated by a semicolon (;).

2. The code line may begin in any column.
3. A line of code may be up to 64K characters (including the end-of-

line (EOL) character) in length. However, in the listing, lines
longer than 132 characters (including the new-line (NL) character)
will be truncated.

4. A code line may consist of zero or more statements, i.e., label,
mnemonic, and operands, separated by semicolons, and optionally
followed by a comment.

ELEMENTS OF THE GNX ASSEMBLY LANGUAGE 2-3

Example: 1 ret 0 # a return instruction
2 jump START # a jump instruction and its one operand
3 movw r2, r3 # a move word instruction and two operands
4 END: # a label only
5 START: movb rO, rl # a label, instruction, and operands
6 # a comment only

2.4 STRING AND NUMBER SYNTAX
There are four basic types of constants in GNX Assembly Language statements:
integer values, floating-point values, character constants, and strings. The syntax for
each type of constant is defined in Sections 2.4.1 through 2.4.4.

2.4.1 Integer Syntax
Integer syntax has the following form:

Syntax: [sign] [base] digits

where: sign

base

digits

specifies the sign. By default, the sign is positive. A
negative sign may be specified with the minus sign
(-).
specifies the base. It may be one of the following:

Binary — B 'o rb '
Octal — 0", o', Q', q" or 0 (leading digit zero)
Decimal — D' or d'
Hexadecimal — H', IT, X", x', Ox (digit zero), or OX
(digit zero)

Default is decimal.
specifies the integer. Digits must be compatible with
the specified base.

Binary — 0 to 1
Octal — 0 to 7
Decimal — 0 to 9
Hexadecimal — 0 to 9 and A to F or a to f

Description: Integer constants may have the following range of values, depending on
the context in which the constant is specified: -128 to 255 for byte con­
stants, -32768 to 65535 for word constants, and -2147483648 to
2147483647 (-231 to 231-l) for double-word constants.

2-4 ELEMENTS OF THE GNX ASSEMBLY LANGUAGE

Decimal constants are sign-extended to double-words. Hexadecimal,
octal and binary constants are zero-extended to double-words.
If the first operand of the addpi or subpi instruction is a constant, the
processor expects BCD encoding. The assembler generates only two’s
complement encoding. However, a valid BCD number preceded by H' or
Ox will be correctly encoded, because both hexadecimal and BCD use the
same encodings within the BCD range.
For example, the instruction

addpd $0x123, bcd_int
adds the immediate decimal value 123 to the contents of the location
bcd_int.

Examples: Binary Octal Decimal Hexadecimal
B ' 11110001 0'077 D '1492 H'12ff

—B '11 —Q '5077 -9 9 9 —X '3 0 2 F
b ' 11 0123 1457 0xAB03

2.4.2 Floating-Point Number Syntax
Floating-point values may be specified in one of two forms: as a decimal number in
scientific notation, or as a hexadecimal value. The GNX Assembler expects floating­
point numbers specified as hexadecimal values to be correctly encoded in the
Series 32000 internal floating-point format. Therefore, hexadecimal notation is most
useful to the writers of compilers or optimizers.

Decimal Floating-Point Syntax
Decimal floating-point syntax has the following form:

Syntax: [decimal prefix]decimal value

where: decimal prefix specifies whether the constant is short or long
floating-point format. It may be one of the following:

{Of | OF} — short format floating-point value
(float).

ELEMENTS OF THE GNX ASSEMBLY LANGUAGE 2-5

{01 | OL} — long format floating-point value
(long).

decimal value specifies a floating-point value in scientific notation.

Description: A decimal floating-point constant has two parts, an optional prefix that
specifies short format (32 bits) or long format (64 bits) and a decimal
value expressed in scientific notation.

The decimal value format is:

Syntax: [sign] digits [. digits] [{E | e} [sign]digits]
Mantissa Exponent

where: sign specifies the sign. A negative sign may be specified (-);
by default, the sign is positive.

digits specify the value. Only decimal digits are permitted (0
to 9). At least one digit must precede the decimal
point.
is the decimal point.

E | e is the exponent flag. It is required when specifying an
exponent.

Description: The decimal value must be in the appropriate range for the prefix size
specified or in the format that is required by the instruction. See note
below.

Examples: Valid Invalid Comments
3.14152
971.
OfO.IE-14

.0125 # digit before decimal point required
—0.00FF # decimal digits only
0.125E999 # exponent exceeds limit

2-6 ELEMENTS OF THE GNX ASSEMBLY LANGUAGE

NOTE: The GNX Assembler recognizes two types of floating-point con­
stants: single-precision (float) and double-precision (long). Single­
precision numbers occupy four bytes. The most positive single­
precision value is 3.40282346 x 1038; the least positive value is
1.17549436 x 10-38. The most negative value is the negative of the
most positive value. Double-precision numbers occupy eight bytes.
The most positive double-precision number is 1.7976931348623157
x 10308; the least positive value is 2.2250738585072014 x IO-308. The
negative range is the negative of the positive value.

Hexadecimal Floating-Point Syntax
Hexadecimal floating-point syntax is of the following form:

Syntax: hexadecimal prefix hexadecimal digits

where: hexadecimal prefix
is one of the following:

{f I F ' I Oy I 0Y} — short format.
{T I L I 0z I 0Z} — long format.

f ' I F ' I Oy I OY
specifies an encoded short (32-bit) floating-point value.
Must be followed by eight hexadecimal digits, if not,
the assembler might generate unpredictable results.

1' I L' I 0z I 0Z
specifies an encoded long (64-bit) floating-point value.
Must be followed by sixteen hexadecimal digits, if not,
the assembler might generate unpredictable results.

hex d ig i ts specify the value. Only hexadecimal digits are permit­
ted (0 to F or f). The encoded value is an exact bit
representation of the resultant 32- or 64-bit value.

Examples: Valid Invalid Comments

f'E01267AC
L'12A945BD4266ECF0

- F 'A7261CD5
L 'E596C.4BF5DB46A26

#no sign permitted
#no decimal point permitted

NOTE: The memory formats for both float and long constants are described
in Chapter 3 of the Series 32000 Programmer's Reference Manual.
The GNX Assembler stores both as long type.

ELEMENTS OF THE GNX ASSEMBLY LANGUAGE 2-7

2.4.3 Character Constant Syntax
Character constants have the following form:

Syntax:

where:

Description:

' [ASCII char | escape sequence}'

ASCII char is any single ASCII encoded character.
escape sequence

is one of the special escape sequences, described in this
section.

A character constant is a single ASCII character enclosed by single
quotes, as in "A'. If the desired character is a special character, for
example, the single quote itself, or if the character is not a printable
character, then an escape sequence may be used to represent the char­
acter. The following rules apply to escape sequences:

• Except as noted in Table 2-1, any character preceded by the escape
character backslash (\) represents that character.

• A backslash followed by one to three octal digits represents the
character whose ASCII encoding is the octal value.

• Certain special characters are represented by the escape sequences
specified in the escape sequence table below.

If the character constant is itself a single quote, the quote must be
escaped, that is, preceded by the escape character backslash (\). Thus,
the character constant single quote is (V). Similarly, if the character
constant is a backslash it must be escaped. The character constant
backslash is (\\).
Other non-printable or special characters may be generated by the
escape sequences in Table 2-1.
Character constants may be used in expressions. The value of the con­
stant is its ASCII encoding. If the character constant is used as an
immediate operand or in an expression, it is zero-extended to the
appropriate number of bytes.

2-8 ELEMENTS OF THE GNX ASSEMBLY LANGUAGE

Table 2-1. Escape Sequences

ESCAPE VALUE
\n newline
\ t horizontal tab
\b backspace
\ r carriage return
\f form feed
\ \ backslash
V single quote
\0 ASCII character 0, or null, the C

string terminator
\ddd an arbitrary byte-sized bit pattern,

where ddd is one to three octal digits,
i.e., the character constant “ ”
represents the character with value
zero.

2.4.4 String Syntax
String syntax has the following form:

Syntax: "({ASCII char \ escape sequence})...”

where: ASCII char is an ASCII encoded character.
escape sequence

is a character sequence used to represent special or
non-printable ASCII encoded characters. Refer to
Table 2-1.

Description: A string is a sequence of ASCII encoded characters enclosed by double­
quotes. The same rules and escape sequence definitions specified in the
description of character constants may be used in string constants. Spe­
cial consideration must be given if a double-quote mark is part of the
string. Strings enclosed in double-quote marks which also contain
double-quotes are allowed. However, each quote which is a part of the
string must be escaped, that is, it must be preceded by the escape char­
acter backslash (\). It is not necessary to escape the single-quote char­
acter in a string constant.

Rev 4.4 ELEMENTS OF THE GNX ASSEMBLY LANGUAGE 2-9

Strings may not be used in expressions.

Examples: Strings Coded In Source Statements Generated String
This is a string
Five O'clock"
\"A\" for Ampere

This is a string
Five O'clock
"A" for Ampere

2.5 SYMBOLS
A symbol is a name that refers to a memory location. Each symbol has a type and a
value. The type of a symbol is either the segment in which the symbol is defined, exter­
nal if the symbol is not defined in the assembly file, or absolute if the symbol is a
numeric address. The value of a symbol is the address of the memory location. A sym­
bol may have the attribute global. A symbol with the global attribute may be refer­
enced from any software module in the program. By default, all symbols referenced
but not defined are considered global.
Some symbol names are reserved, i.e. , the instruction mnemonics, directive mnemon­
ics, names for the registers, address mode indicators, flags, scaled index qualifiers, the
delimiters, and operators. The user may not redefine the reserved symbols. Appendix
B contains a list of the reserved symbols in the GNX Assembly Language. The rest of
this section and all of Section 2.6 deal with user-defined symbols.

2.5.1 Symbol Names
The name of a user-defined symbol is composed of one or more letters, digits and the
characters underscore (_) and period (.). Except for temporary labels, the first charac­
ter of the name may not be a digit. Symbol names with the initial character period (.)
are assumed to be internal names generated by the GNX language tools; for example,
compiler labels, Common Object File Format (COFF) section names, and reserved
names should not be used. The name’s length is limited to 64 characters.
The assembler is case sensitive, that is, it differentiates between upper- and lower-case
letters in a user-defined symbol name. Thus, for example, the names ALPHA and
Alpha are not identical and can be defined as separate symbols.
Examples: Valid Invalid Comment

SYMBOL $YMBOL # dollar-sign character illegal
_ ALPHA 2ALPHA # first character cannot be number
REG2 rl # rl is reserved symbol

2-10 ELEMENTS OF THE GNX ASSEMBLY LANGUAGE

The type of a symbol specifies the segment of the object file in which it occurs. All
labels defined within a segment have the type of that segment. For example, all sym­
bols defined in the .text segment (i.e., following the .text directive) are of type text.
The address of symbols associated with object file segments must be updated at link
time, when the linker associates the object file segment with memory locations.
Undefined symbols are of type external. The value of an undefined symbol is resolved
by the linker. Numeric addresses are of type absolute. The value of absolute symbols
is unaffected by linkage.

2.5.2 Sym bol T ypes

A symbol’s type determines the default addressing mode the assembler uses when the
symbol is referenced. The following table lists symbol types, the associated object file
segment and the default addressing mode for references to the symbol.

Type Segment Default Addressing Mode
Text Text or code segment
Data Initialized data segment
Bss Uninitialized data segment

Static Static base segment
Link Link table segment

External
Absolute

< user-defined> <defined by attributes>

PC Relative
Absolute
Absolute

SB Relative
Absolute
Absolute
Absolute
Absolute

The type of a symbol delimits the places where the symbol may be used as an operand
and the way its value may be manipulated in expressions. Expressions also have one
of the above types. The type of an expression is determined by the types of the symbols
it contains.
Following are descriptions of each of the symbol types:

1. Symbols of type text.
All symbols defined in the .text segment, i.e., labels following a .text
directive, are of type text. All symbols or expressions of type text represent
addresses within the text segment of the program’s object code. The text
segment contains program code and read-only data. The GNX Assembler
uses the Program Counter (PC) Relative addressing mode for symbols and
expressions of type text.

2. Symbols of type data.
All symbols defined in the .data segment, i.e., labels following a .data
directive, are of type data. All symbols or expressions of type data represent
addresses within the initialized data segment of the program’s object code.
The GNX Assembler uses the Absolute addressing mode for symbols and
expressions of type data.

ELEMENTS OF THE GNX ASSEMBLY LANGUAGE 2-11

3. Symbols of type bss.
All symbols defined in the uninitialized data (.bss) segment are of type bss.
Symbols defined by the .bss directive are of type bss, as are labels defined
after a .udata directive. All symbols or expressions of type bss represent
addresses within the uninitialized data segment of the program’s object
code. The GNX Assembler uses the Absolute addressing mode for symbols
and expressions of type bss.

4. Symbols of type static.
All symbols defined in the .static segment, i.e., labels following a . s t a t i c
directive, are of type static. All symbols or expressions of type static
represent addresses within the .static segment of the program’s object code.
The .static segment is used to store static base relative data. The GNX
Assembler uses the Static Base Register (SB) Relative addressing mode for
symbols and expressions of type static.

5. Symbols of type link.
All symbols defined in the .link segment, i.e., labels following a .l in k
directive are of type link. All symbols or expressions of type link represent
addresses within the .link segment of the program’s object code. The .link
segment is used to store the link table for a Series 32000 module. The GNX
Assembler uses the Absolute addressing mode for symbols and expressions
of type link.

6. Symbols of type external.
All undefined symbols are of type external. Symbols defined using the
.comm directive are also of type external. The GNX Assembler uses the
Absolute addressing mode for symbols and expressions of type external.

7. Symbols of type absolute.
All symbols assigned numeric values are of type absolute. Absolute symbols
specify an absolute numeric address. They are not relative to any segment
of the object file. Symbols of type absolute may only be defined using the
. se t directive. The GNX Assembler uses the Absolute addressing mode for
symbols and expressions of type absolute.

8. Symbols of user-defined type.
All symbols defined in a section, following the .section definition, are the
type of the section. All symbols are allowed via absolute addressing mode.

2-12 ELEMENTS OF THE GNX ASSEMBLY LANGUAGE

Global symbols are used by multiple software modules. The symbol must be defined
exactly once. The defining module exports the symbol, that is, makes the symbol avail­
able for import by one or more additional software modifies. Global symbols must be
declared for export by the defining module with the . g lob l directive. Undefined sym­
bols intended to be imported from other software modules should also be declared with
the . g lob l directive, although this is not required.
Except for temporary labels, every user-defined symbol must be defined exactly once.
A symbol definition assigns a value and type to a symbol name. There are several for­
mats for defining symbols. The formats form four groups:

• Labels.
• Symbols defined by the . s e t directive.
• Uninitialized symbols defined by the . bss directive.
• Common symbols defined by the . comm directive.

External, or undefined, user symbols may be declared for import with the .g lo b l
directive. Such a declaration does not define the symbol. Any symbol that is refer­
enced in an assembler statement but not defined within the assembly is assigned type
external.

2.5.3 G lobal Sym bols

Labels
The formats permitted for label definitions are:

Syntax: symbol name :
or
symbol name ::
or
symbol name : assembly statement
or
symbol name :: assembly statement

ELEMENTS OF THE GNX ASSEMBLY LANGUAGE 2-13

where: assembly statement
may be any assembly statement except those direc­
tives that do not accept labels. See Chapter 6 for
detailed descriptions of the syntax of all the GNX
assembly language directives.

Description: In each case, the current value and the type of the location counter is
assigned to the symbol, see Section 2.7. The second construction (using

also sets the global attribute on the symbol, see Section 6.6.

Temporary Labels

Syntax: temporary label:

where: temporary label
consists of a digit from 1 to 9.

Description: A temporary label consists of a digit from 1 to 9, followed by a colon.
Reference to the label is via the symbols nf and nb, where n specifies
temporary label n, where / means forward, and b means backwards. All
referenced temporary labels must be defined somewhere within the pro­
gram. Temporary labels may not be exported. There is no limit on the
number of times that a temporary label may be redefined. The follow­
ing symbols are reserved:

If 2f 3f 4f 5f 6f 7f 8f 9f lb 2b 3b 4b 5b 6b 7b 8b 9b
Temporary labels are most useful in conjunction with macros.

Example: 1 9 :
2 T 0 0 0 0 0 0 0 0 a 2 a 2 a 2 a 2 . s p a c e 10

a 2 a 2 a 2 a 2
a 2 a 2

3 TOOOOOOOa e a 0 6 b r 7 f # b r a n c h t o l i n e 6
4 TOOOOOOOc e a 7 4 b r 9b # b r a n c h t o l i n e 1
5 TOOOOOOOe e a 0 2 b r 9 f # b r a n c h t o l i n e 7
6 7 :
7 9 :
8 7 :
9 T 0 0 0 0 0 0 1 0 eaOO b r 7b # b r a n c h t o l i n e 8

In this program, the branch on line 3 refers to label 7 on line 6, the
branch on line 4 refers to label 9 on line 1, the branch on line 5 refers to
label 9 on line 7, and the branch on line 9 refers to label 7 on line 8.

2-14 ELEMENTS OF THE GNX ASSEMBLY LANGUAGE

Defining Symbols with the .set Directive
The format for symbol definition using the . s e t directive is:

Syntax: . s e t symbol name, expression

Description: The statement assigns the value and type of expression to the symbol.
The expression may not be of type external (undefined), nor a forward
reference.

Defining Uninitialized Symbols with the .bss Directive
The format for the definition of uninitialized symbols using the . bss directive is:

Syntax: .bss symbol name, expression!, expression2

Description: This form is used only for uninitialized data (bss) symbols. The symbol
is assigned type bss and the value of the current bss location counter
after it is aligned to a multiple of expression2. For a complete descrip­
tion of the . bss directive see Section 6.7.4.

Defining Common Symbols
The format for the definition of uninitialized, common symbols using the . comm direc­
tive is:

Syntax: .comm symbol name, expression

Description: The type of common symbols is external. If no software module defines
a global symbol by this name, then the linker will allocate an uninitial­
ized storage area whose size is the largest expression specified by any
.comm directive for this symbol. See Section 6.6.2 for a description of
the . comm directive.

2.6 LOCATION COUNTER
The GNX Assembler manages a location counter that keeps track of the current relo­
catable memory address. The current location counter is set to the type of the segment
that is being assembled and the value of the next available address within the seg­
ment. The current location counter is initialized to the TEXT segment, address 0 at
the start of assembly.
The assembler re-initializes the current location counter to a new value (i.e., a new
type and offset) each time a segment control directive is encountered. The segment

ELEMENTS OF THE GNX ASSEMBLY LANGUAGE 2-15

control directives determine the segment into which the following code should be
assembled. On encountering a segment control directive, the assembler saves the next
available address in the previous segment before entering the new segment, so that it
is able to restore the previous address if the previous segment is re-opened. The
assembler maintains a saved location counter for each object file segment (text, data,
bss, static, user-defined sections, dsects and link) as well as each user-defined segment.
When a statement is processed, the assembler increments or decrements the location
counter by the number of bytes of object code generated or by the amount of data
storage allocated.
The location counter symbol, (.) period, is a special token which may be used in expres­
sions or instruction operands to specify the location counter’s current value. The sym­
bol may appear alone or as a term in an arithmetic expression (addition or subtraction
only).
Examples: 1. . s e t A, .

2 . b n e . - 8

In example 1, (.) specifies the current address. The symbol A is
assigned the current location counter address.
In example 2, the expression .-8 specifies the current address minus 8.

2.7 EXPRESSIONS
An expression is a combination of terms and operators which evaluate to a single value
and type. Valid expressions include addresses and integer expressions. Floating-point
expressions are not valid.
Terms in expressions may be constants or symbols, including the location counter sym­
bol (.), see Sections 2.4, 2.5, and 2.6. The type of the term determines the way in which
the term may be combined with other terms and operators. Section 2.7.2 defines the
effect the type of a term has on the result of an expression.
Operators in expressions are the special symbols which define arithmetic and logical
operations. An operator has the following characteristics:

• An operator has a level of precedence which affects the order in which the GNX
Assembler evaluates an expression containing the operator.

• An operator defines the type of the term(s) that may be used with the operator
and the location of the term(s) relative to the operator.

Table 2-2 lists all GNX Assembly Language operators in order of precedence.
Table 2-3 defines the type and order of the terms that may be used with the operators.

2-16 ELEMENTS OF THE GNX ASSEMBLY LANGUAGE

Table 2-2. Operator Precedence

PRECEDENCE OPERATOR NAME OPERATION
Unary Operator

1 _ Unary minus Two’s complement.
1 - Unary complement One’s complement.

Binary Operator
2 * Multiply Multiply 1st term by 2nd.
2 / Divide Divide 1st term by 2nd.*
2 % Modulus Remainder from 1st term divided

by 2nd.**
2 « Shift left Shift 1st term by 2nd; emptied bits

are zero-filled.
2 » Shift right Shift 1st term by 2nd; emptied bits

are zero-filled.
2 ~ Logical OR /

complement
Bit-wise OR of 1st term and one’s
complement of 2nd term.

3 & Logical AND Bit-wise AND of 1st and 2nd terms.
3 1 Logical OR Bit-wise OR of 1st and 2nd terms.
3 A Logical XOR Bit-wise XOR of 1st and 2nd terms.
4 + Add Add 1st and 2nd terms.
4 - Subtract Subtract 2nd term from 1st term.

* Rounds toward 0, e.g., -7/3 = -2 and 7/3 = 2
** e.g., -7%3 = -1 and 7%3 = 1.

ELEMENTS OF THE GNX ASSEMBLY LANGUAGE 2-17

Table 2-3. Types and Operators

UNARY OPERATORS
Operator Terml Operation

. abs Type abs.
abs Type abs.

BINARY OPERATORS
Terml Operator Term2 Result Type
Type Type
abs * abs Type abs.
abs / abs Type abs.
abs % abs Type abs.
abs « abs Type abs.
abs » abs Type abs.
abs - abs Type abs.
abs & abs Type abs.
abs 1 abs Type abs.
abs A abs Type abs.
abs + abs Type abs.
abs - abs Type abs.
rel + abs Type rel.*
rel - abs Type rel.*
rel * rel Type abs.**
ext + abs Type ext.
ext “ abs Type ext.

NOTE:
abs Any term of type absolute.
rel Any term of relative type, i.e., text, data, etc.
ext Any term of type external, undefined.

* The type of the result matches the type of the relative term in the expression.
** Terml and Term2 must be the same type, the result is type absolute.

2-18 ELEMENTS OF THE GNX ASSEMBLY LANGUAGE

2.7.1 Rules for Expressions
The rules for forming and evaluating expressions are as follows:

1. All unary operators must precede a single term and cannot be used to
separate two terms.

2. All binary operators must separate two terms. For example, the expression
8*4 is legal, but 8**4 is not.

3. Compound expressions are valid. An expression may be constructed from
other expressions using unary and binary operators. For example, the two
individual expressions A + l and B+2 may be combined with a multiply
operator and parentheses to form the single expression (A + l) * (B+2) .
Note that the parentheses override the default precedence rules.

4. Evaluation of an expression is governed by three factors:
• Parentheses - expressions enclosed in parentheses are always evaluated

first. For example, the expression 8 /4 /2 evaluates to 1, but the expres­
sion 8 /(4 /2) evaluates to 4.

• Precedence Groups — an operation of a higher precedence group is
evaluated before an operation of a lower precedence whenever
parentheses do not otherwise determine the evaluation order. For exam­
ple, the expression 8+4/2 is evaluated as 10, but the expression 8/4+2
is evaluated as 4.

• Left to Right Evaluation - expressions are evaluated from left to right
whenever parentheses and precedence groups do not determine evalua­
tion order. For example, the expression 8*4/2 is evaluated as 16, but
the expression 8/4*2 is evaluated as 4.

2.7.2 Types in Expressions
The type of the result of an expression depends on the type of the terms and the opera­
tions performed. The rules for types in expressions are as follows:

1. Expressions with terms having absolute type.
Terms with absolute type may be added, subtracted, multiplied, etc. All
operators are allowed. The result is always an absolute type.

ELEMENTS OF THE GNX ASSEMBLY LANGUAGE 2-19

Examples: 1 . 21 ★ 5 # r e s u l t i s 1 0 5
2 . 21 / 5 # r e s u l t i s 4
3 . 21 % 5 # r e s u l t i s 1
4 . 21 S c 5 # r e s u l t i s 5
5 . 21 « : 5 # r e s u l t i s 672
6 . 21 » • 5 # r e s u l t i s 0
7 . 21 + 5 # r e s u l t i s 26
8 . 21 - 5 # r e s u l t i s 16
9 . 21 5 # r e s u l t i s 21

10 . 21 5 # r e s u l t i s 16
2. Expressions combining terms having relative and absolute types.

The only valid operations between terms with relative types and terms with
absolute type are addition and subtraction. The operations take place
between the values of the first and the second terms and the result is
assigned the type of the relative term.
Addition is commutative. An absolute term may be added to a relative term
or a relative term may be added to an absolute term, the result is the same
in either case.
Subtraction is not commutative. An absolute term may be subtracted from
a relative term. A relative term may not be subtracted from an absolute
term.
Example: 1 . set ZERO, 0

2 . set TEN, 10
3 . set COUNT, 30
4
5 .udata
6 Size : . blkd
7 Start: . space (COUNT * 4)
8 End: .blkd
9

10 . text
11 movb $ ZERO, Start + ZERO
12 movb $TEN, TEN + Start
13 movd (End - TEN), rO

In the preceding example several symbols and expressions are used. The
symbols ZERO, TEN, and COUNT are of type absolute. The symbols Size,
Start, and End are of type bss, refer to Section 2.5.2.
The expression “(COUNT * 4)” in line 7 combines two absolute terms, the
result is absolute.

2-20 ELEMENTS OF THE GNX ASSEMBLY LANGUAGE

The expression “Start + ZERO” in line 11 adds a relative type to an absolute
type. The result is type bss.
The expression “TEN + Start” in line 12 adds an absolute type to a relative
type. The result is type bss.
The expression “End - TEN” in line 13 subtracts an absolute type from a
relative type. The result is type bss.

3. Expressions combining terms having relative types.
Terms with relative or absolute type may be subtracted from terms with the
same type. No other operator is allowed. The result is always an absolute
type.
Example: 1 .set COUNT, 30

Z,

3 .udata
4 Size : . blkd
5 Start: .space (COUNT * 4)
6 End: .blkd
7
8 . text
9 movd $(End - Start)/4, Size

The expression “End - Start'” in line 9 subtracts a relative term from another
relative term. Since both symbols are of the same type (bss), this is a legal
expression. The result is of type absolute, i.e., the absolute number of bytes
between the two labels. The result of the subtraction is then divided by 4,
both terms are type absolute and the result is type absolute.
Note that “(End - Start)/4” is not a legal expression without parentheses.
Division is of higher precedence than subtraction, but a relative term may
not be divided.

4. Expressions with terms having external and absolute type.
Terms with absolute type may be added to or subtracted from terms with
external type. No other operations are allowed. The result always has
external type. A term of type absolute may be subtracted from a term of
type external, but a term of type external may not be subtracted from a
term of type absolute. The first term of the subtraction must be the term of
type external.

ELEMENTS OF THE GNX ASSEMBLY LANGUAGE 2-21

Example: 1 . set ZERO, 0
2 . set TEN, 10
3 . set COUNT, 30
4
5 .globl Start
6 .globl End
7
8 . text
9 movb $ZERO, Start + ZERO

10 movb $TEN, TEN + Start
11 movd (End - TEN), r0

The expression “Start + ZERO” in line 9 adds an absolute type to an exter­
nal (undefined) type. The result is type external.
The expression “TEN + Start” in line 10 adds an external type to an abso­
lute type. The result is type external.
The expression “End - TEN” in line 11 subtracts an absolute type from an
external type. The result is type external.

5. Expressions with character constants.
Character constants may appear as terms in expressions. When a character
constant is used this way, it is converted to an integer constant. Integer
constants are stored in four bytes; the assembler fills the higher order bytes
with zero.
Examples: 1. .set UPCASE, 'A' - 'al result is -32

2. .set LOWCASE, 'a' - 'A % result is 32

2.7.3 Size of Expressions
Expressions are stored in 4 bytes, with the higher order bytes filled with zero by the
assembler.

2-22 ELEMENTS OF THE GNX ASSEMBLY LANGUAGE

Chapter 3
GNX ASSEMBLER PROGRAMS

3.1 INTRODUCTION
This chapter describes the structure of GNX Assembly Language programs and how
the GNX Assembler assigns memory addresses to symbols, instructions, and data. In
particular, it describes:

• Program Structure
• Program Segments
• Series 32000 Module Segments
• User-Defined Dummy and Comment Segments
• Linkage and Relocation Modes

3.2 GNX ASSEMBLER PROGRAM STRUCTURE
The structure of a GNX Assembly Language program reflects the structure of the
object file and the layout of the program image in memory. The structure allows
instructions and data to be grouped into logical segments that occupy contiguous
memory. Each segment is an atomic unit, that is, segments may be combined together
into larger units but not broken into smaller units.
Every object file contains at least three program segments: text, data and bss. These
segments correspond to the .text, .data, and .bss sections of a Common Object File For­
mat (COFF). The text segment contains program instructions and constant data, the
data segment contains writable, initialized data, and the bss segment contains unini­
tialized data. No object file space is allocated for the bss segment.
In addition to the default program segments, there are several special segments that
support Series 32000 modules. The module table segment contains the module table
entries and corresponds to the .mod section of the COFF file. The link segment con­
tains the module’s Link Table and corresponds to the .link section of the COFF file.
The static segment contains Static Base Relative data and corresponds to the .static
section of the COFF file.
The programmer is also allowed to create user-defined segments through the assembler
directives .dsect and .section or comment segment through the assembler direc­
tive . ident. The GNX Assembler maintains a location counter for each object file
segment.

GNX ASSEMBLER PROGRAMS 3-1

3.3 PROGRAM SEGMENTS
Every assembly program consists of one or more program segments. A program seg­
ment is a block of sequential statements which are placed in contiguous memory and
treated as a unit with common properties, for example, access protection. Every pro­
gram contains the following types of segments:

• Text or Program Code Segment
• Initialized Data Segment
• Uninitialized Data Segment (bss)

A segment begins and ends with one of the segment control directives (Section 6.7) and
contains any number of statements. The following illustrates the form of a program
segment:

.text
statement-1
statement-2

statement-n
.data

specifies the start of a program code segment
assembler statements

specifies start of a data segment
a segment terminates with another segment
control directive or EOF

3.3.1 Text Segment
The text segment contains Series 32000 instructions and constant data. After every
statement, the text segment location counter is incremented by the number of bytes
generated for that statement. The location counter of the text segment may not be
decremented.
The text segment is written to the .text section of the object file. Each text address
maps to a location in the .text section of the object file. When the text segment is
loaded into memory, it is protected for read-only access.
NOTE: This statement is only true for GNX native environments and if the

MMU is on a development board. It may not be true in other appli­
cations.

All symbols defined in the text segment are of type text. References to locations in the
text segment are addressed with the Program Counter Relative addressing mode.
Related directive: . te x t (Section 6.7.2).

3-2 GNX ASSEMBLER PROGRAMS

The initialized data segment contains writable, initialized data. After every state­
ment, the data segment location counter is incremented by the number of bytes gen­
erated for that statement. The location counter of the data segment may not be decre­
mented.
The data segment is written to the .data section of the object file. Each data address
maps to a location in the .data section of the object file. When the data segment is
loaded into memory, it is protected for read-write access.
All symbols defined in the .data section are of type data. References to locations in the
data segment are addressed with the Absolute addressing mode.
Related directive: . data (Section 6.7.3).

3.3.2 In itia lized D ata S egm en t

3.3.3 Uninitialized Data (bss) Segment
The uninitialized data or bss segment consists of storage allocated for uninitialized
data. After every statement following the .udata section control directive, the bss seg­
ment location counter is incremented by the number of bytes allocated by that state­
ment. The bss location counter is also updated by the .bss directive. No code or data
may be generated in the bss segment. The location counter of the bss segment may not
be decremented.
Each bss address maps to a location in the .bss section of the object file, although the
.bss section of the COFF file contains no actual data. Storage space is allocated and
zeroed at load time. When the .bss section is loaded into memory, it is protected for
read-write access.
All symbols defined in the .bss section are of type bss. References to locations in the
bss segment are addressed with the Absolute addressing mode.
Related directives: .udata (Section 6.7.5), .bss (Section 6.7.4).

3.4 SERIES 32000 MODULE SEGMENTS
The GNX Assembler supports three additional segments for building Series 32000
modules. A Series 32000 module uses the Series 32000 hardware support for linkage.
The following segment types support Series 32000 modules:

• Module Table Segment
• Link Table Segment
• Static Base Relative Segment

GNX ASSEMBLER PROGRAMS 3-3

The Series 32000 hardware support for linkage requires a Module Table for the pro­
gram and a Link Table for each Series 32000 module.
The Module Table records the Program Base, the Static Data Base, and the Link Table
Base for each module. The Program Base is the base address for the text (or program
code) segment of the module. The Static Data Base is the base address for the static
data segment of the module. The Static Data Base may be defined once for each
module with the .module or .modentry directive. If the Static Data Base address is
not explicitly defined, it defaults to zero. The Link Table Base is the base address for
the link segment. The Link Table Base may be defined once for each module with the
.module or .modentry directive. If the Link Table Base address is not explicitly
defined, it defaults to zero. The Module Table is built by the linker.
The Link Table contains an address for each external data reference and an external
procedure descriptor for each external function entry point. It must be built by the pro­
grammer in the link segment using the .xdd directive to define each external data
address and the .xpd directive to define an external procedure descriptor for each
function entry point that uses the cxp/rxp calling discipline. The addresses in the Link
Table are generated at link time.

3.4.1 Module Table Segment
The module table segment is one of three special segments whose function is to support
Series 32000 modules. The module table segment, if one is present, contains the
module table for the program. Each module table entry consists of four 32-bit entries
corresponding to each component of a module:

• The Static Base (sb) entry contains the base address for the module’s static local
data.

• The Link Base (lb) entry contains the base address for the module’s link table.
• The Program Base (pb) entry contains the base address for the module’s program

code.
• A fourth entry is currently unused but reserved.

Each base address is a standard Series 32000 address.
Module table entries may be generated with the .module and the .modentry direc­
tives.
The module segment location counter is incremented by the number of bytes generated
for the directive. The location counter of the module segment may not be decremented.
The module segment is written to the .mod section of the object file.
Related directives: .module (Section 6.8.1) and .modentry (Section 6.8.2).

3-4 GNX ASSEMBLER PROGRAMS

The link table segment is one of three special segments whose function is to support
Series 32000 modules. The link table segment, if one is present, contains the link table
for the Series 32000 module. The link table consists of one 4-byte entry for each vari­
able or function that is accessed with the External addressing mode, see Section 4.2.13.
If the link table entry is for a data item, the entry contains the absolute memory
address of the variable. If the link table entry is for the entry point of a function, the
link table entry contains an external procedure descriptor. Each link table entry is
filled with the appropriate address or procedure descriptor by the linker at link time.
An external procedure descriptor must be generated for any function called with the
exp or expd instruction. An external procedure descriptor consists of a 16-bit module
table offset and a 16-bit program code offset. The module table offset is the distance in
bytes from the base of the program’s module table to the module table entry for this
module. The program code offset is the distance from the program code base of the
module to the entry point of the function. External procedure descriptors may be gen­
erated with the . x p d directive.
Link table entries for data items may be generated with the . x d d directive.
After every statement, the link segment location counter is incremented by the number
of bytes generated for that statement. The location counter of the link segment may
not be decremented. The link segment is written to the .link section of the object file.
Each link address maps to a location in the .link section of the object file. When the
link segment is loaded into memory, it is protected for read-only access.
All symbols defined in the link segment are of type link. References to locations in the
link segment are addressed with the Absolute addressing mode.
Related directives: .x p d (Section 6.3.8), .x d d (Section 6.3.9), . l i n k (Section 6.7.7),
.m o d u le (Section 6.8.1), and .m o d e n tr y (Section 6.8.2).

3.4.2 L ink T able S egm en t

3.4.3 Static Base Relative Segment
The static segment should be used instead of the data segment when building a pro­
gram of Series 32000 modules. The static segment contains Static Base Relative data.
If the static segment is present, the linker assigns the Static Base Register the value of
the base address of the static segment. After every statement, the static segment loca­
tion counter is incremented by the number of bytes generated for that statement. The
location counter of the static segment may not be decremented. The static segment is
written to the .static section of the object file. Each static address maps to a location in
the .static section of the object file. When the static segment is loaded into memory, it
is protected for read-write access.
All symbols defined in the static segment are of type static. References to locations in
the static segment are addressed with the Static Base Relative addressing mode.

GNX ASSEMBLER PROGRAMS 3-5

Related directives: . static (Section 6.7.6), .module (Section 6.8.1) and .moden-
try (Section 6.8.2).

3.5 USER-DEFINED, DUMMY AND COMMENT SEGMENTS
This section describes user-defined, dummy and comment segments.

3.5.1 User-Defined Segments
User-defined segments are generated with the .section directive. These segments
occupy real space in the object file and, depending on the attributes selected, may
appear in the linked file. Symbols declared in these segments are addressed via the
absolute addressing mode.
Related directive: . section (Section 6.7.8).

3.5.2 Dummy Segments
The “dummy” segments are generated with the .dsect directive. These segments do
not allocate storage, nor do they contain generated code or data. If the dummy seg­
ment is of a relative type, it will overlay some portion of that type of segment. For
example, a user-defined dummy segment might be used to overlay one or more struc­
tured data types on a pool of storage. Dummy segments of type absolute may be used
to generate symbolic positive or negative offsets from the frame pointer register for
function arguments or local variables.
Every statement following a .dsect directive increments or decrements the location
counter for the dummy segment by the number of bytes specified by that statement.
Related directive: . dsect (Section 6.7.1).

3.5.3 Comment Segments
Comment segments are generated with the . ident directive and corresponds to the
.comment section of the COFF file.

3.6 LINKAGE
Linkage is the combination of the output of several assemblies or compilations into a
single program. A linker must also resolve all external references and all references to
relocatable addresses within each program segment.

3-6 GNX ASSEMBLER PROGRAMS

The GNX Linker combines all input segments of the same type into a single output
segment and assigns the resultant output segments to specific memory addresses. The
linker also updates all references to addresses within the segment if the base address
of the segment has changed.

3.6.1 Relocatable Addresses
The GNX Assembler assigns a relocatable memory address to each instruction and
each byte of data storage defined in an assembly language program. A relocatable
memory address is one which is relative to the start of the segment. If the linker
moves the base address of the segment, the linker must update every address within
the segment by the same amount. At link time each relocatable address is resolved to
an absolute address, i.e., to the actual address in system memory where the instruction
or data is stored.
A relocatable memory address consists of a type that specifies the segment in which the
symbol is defined and an address that specifies the location of the instruction or data in
memory, relative to the beginning of its segment. If the base address of the segment is
changed at link time, all relocatable addresses within the segment must be modified
accordingly.

3.6.2 Linking Program Segments
An assembly language program segment is the smallest unit the GNX Linker manipu­
lates. Within a segment all code or data remains contiguous throughout the linkage
process. By default, the linker combines all input segments of the same type and
module according to the linker’s combining rule, for example, all text segments, into a
single output segment of the same type. The linker binds the output segment to a sec­
tion of memory within the program’s address space. The linker may function dif­
ferently depending upon the programmer’s instructions.
Each program segment the assembler outputs has associated relocation entries for
every undefined symbol or relocatable address referenced within the segment. The
linker uses these entries to generate absolute memory addresses for the references.
A program segment is relocatable if the segment may be combined with other segments
of the same type and if there are relocation entries for all undefined or relocatable
addresses the segment references.

GNX ASSEMBLER PROGRAMS 3-7

Series 32000 modules use special hardware support provided by the Series 32000 chip
family to resolve external references. A Series 32000 module has three components, a
program base relative code segment, a static base relative data segment, and a link
table. The program base relative portion of the module corresponds to the text seg­
ment of the assembly program. The static base relative component is the static seg­
ment. All data references should use the Static Base Register Relative addressing
mode. See Section 9.3 and Table 9-2 for the command line option that defaults data
segment addresses to the Static Base Register Relative addressing mode. The link
table corresponds to the link segment of the assembly program.
A Series 32000 module built with all code in the text segment, all data in the static
base relative segment, and all external references resolved through the link table is
position independent. All memory references in the module are relative to base
addresses stored in its Module Table entry. Only the module table and possibly the
link table require updating if the module is moved to a different memory location.
To link Series 32000 modules, a module table entry must be built for each module. The
link table of each module must be filled with the address of each external data variable
and an external procedure descriptor for each external procedure.

3.6.3 L in k in g S er ies 32000 M odules

3-8 GNX ASSEMBLER PROGRAMS

Chapter 4
INSTRUCTION OPERANDS

4.1 INTRODUCTION
This chapter defines the syntax of instruction operands. Instruction operands identify
the participants in the operation specified by an opcode or a directive.
Instruction operands may be constants, memory addresses, symbols, and/or expres­
sions. The type of operand required in an instruction is determined by the instruction
itself. These are the following operand types:

Operand Type Section
General Operands

Expression Operands
Register Operands
Register Relative Operands
Frame Memory Operands
Frame Memory Relative Operands
Stack Memory Operands
Stack Memory Relative Operands
Static Memory Operands
Static Memory Relative Operands
Program Memory Operands
Immediate Operands
Absolute Operands
External Operands
Top-of-Stack Operands
Scaled-Index Byte Operands
Scaled-Index Word Operands
Scaled-Index Double-Word Operands
Scaled-Index Quad-Word Operands
Displacement Operands

Immediate Subrange Operands
Quick Operands
Block Length Operands
Bit-Field Length Operands
Bit-Field Offset Operands
Displacement Operands

Section 4.2
Section 4.2.1
Section 4.2.2
Section 4.2.3
Section 4.2.4
Section 4.2.5
Section 4.2.6
Section 4.2.7
Section 4.2.8
Section 4.2.9
Section 4.2.10
Section 4.2.11
Section 4.2.12
Section 4.2.13
Section 4.2.14
Section 4.2.15
Section 4.2.16
Section 4.2.17
Section 4.2.18
Section 4.2.19
Section 4.3
Section 4.3.1
Section 4.3.2
Section 4.3.3
Section 4.3.4
Section 4.3.5

INSTRUCTION OPERANDS 4-1

O perand Type S ection
Program Memory Operands
General Register Operands
Register List Operands
Configuration List Operands
Processor Register Operands
Memory Management Register Operands
External Register Operands

Section 4.4
Section 4.5
Section 4.6
Section 4.7
Section 4.8
Sections 4.9 - 4.11
Section 4.12

About 90 percent of the instructions use one or more general operands.
The following sections define the syntax of the instruction operands.

4-2 INSTRUCTION OPERANDS

GENERAL OPERANDS

4.2 GENERALOPERANDS

Syntax: gen

where: gen is one of the following general operand types:
Expression
Register
Register Relative
Frame Memory
Frame Memory Relative
Stack Memory
Stack Memory Relative
Static Memory
Static Memory Relative
Program Memory
Immediate
Absolute
External
Top-of-stack
Scaled-index Byte
Scaled-index Word
Scaled-index Double-word
Scaled-index Quad-word
Displacement (:b, :w, :d)

Description: Each of the general operand types corresponds to a GNX Assembler gen­
eral addressing mode.
Many general operands use displacements (disp) to specify the offset
from a base address to a particular memory location. General operand
displacements must be within the range - 224+1 to 224- i (-16777215 to
16777215) if the CPU is a 24-pin address CPU. Although the 32-pin
address processors have a full 32-bit address space, displacements are
limited to the range-(229-224) to 229-l (-536870912 to 536870911) because
of the four byte displacement format (see the Series 32000 Programmer’s
Reference Manuals for more details). Displacements that are expressions
must be enclosed in parentheses.

INSTRUCTION OPERANDS 4-3

GENERAL OPERANDS (Cont)

NOTE: The GNX Assembler uses the range -229 to 229-l. It is
up to the user to limit this range if a 24-pin address
processor is used.
24-pin address CPUs include the NS320rr and the
NS32CG16.
32-pin address CPUs include the NS32332,
NS32532, NS32FX16, NS32CG160, NS32GX32, and
the NS32GX320.

Sections 4.2.1 through 4.2.19 define the syntax and function of each of
the general operand types.

4-4 INSTRUCTION OPERANDS

E xp ression O perands

4.2.1 Expression Operands

Syntax: expression

Description: When an expression is used as an operand for a general class instruc­
tion, the addressing mode, or operand type, of the operand depends on
the type of the expression. Expressions of type text generate the Pro­
gram Counter Relative addressing mode. Expressions of type static gen­
erate the Static Base Relative addressing mode. All other expression
types generate the Absolute addressing mode.

INSTRUCTION OPERANDS 4-5

R egister O perands

4.2.2 Register Operands

Syntax: register

where: register is one of the General-purpose or Floating-point regis­
ters. (See Sections 1.3.1 and 1.3.3.) The specified
register contains the operand.

Description: A register operand specifies a General-purpose or Floating-point regis­
ter. In some instructions, the specified General-purpose register points
to the location of the operand, i.e. , the register contents are the address
of the operand. In such cases, the contents of the register are not
affected by the instruction operation.
Floating-point registers may be specified only in floating-point instruc­
tions.

Example: 1 T00000000 be4500 movf fl, f2
2 T00000003 clOl addw rO, r7

The movf instruction copies a single-precision floating-point number
from Floating-point register fl to Floating-point register f2. The addw
instruction adds the low-order word of rO to the low-order word of r7.

4-6 INSTRUCTION OPERANDS

R egister R ela tive O perands

4.2.3 Register Relative Operands
Syntax: expression(register)

is a displacement or expression which evaluates to an
absolute value within the range -16777215 to
16777215 if the CPU is a 24-pin address CPU; or the
range -536870912 to 536870911 if the CPU is a 32-pin
address CPU; or to a relative value of type text, data,
bss, static, or link.
is one of the general registers, rO to r7 (see Section
1.3.1). Parentheses are required.
NOTE: The GNX Assembler uses the range

-536870912 to 536870911 for dis­
placement. It is up to the user to
limit this range if a 24-pin address
CPU is used.

Description: A Register Relative operand specifies an operand at a memory address.
The address is the sum of the displacement expression and the contents
of the General-purpose register rn.

Example: 1
9

. s e t TEN, 10
Z j

3 T00000000 81aac000
000000

addw INTEG, 0 (r2)
4 T00000007 435514c0

000000
addd (TEN*2) (r2) , INTEG

where: expression

(register)

In line 3, 0(r2) is a Register Relative operand. The instruction adds the
word at the address specified by the symbol INTEG to the word at the
memory address specified by 0(r2). The result is stored at 0(r2).
In line 4, (TEN*2)(r2) is a Register Relative operand. The expression
“TEN * 2” evaluates to the absolute value 20. This value is added to the
contents of register r2 to yield the operand’s address. The instruction
adds the double-word at this address to the double-word at the address
specified by the symbol INTEG. The result is stored at INTEG.

INSTRUCTION OPERANDS 4-7

R egister R elative O perands (Cont)

NOTE: 24-pin address CPUs include the NS320xx; and the NS32CG16.
32-pin address CPUs include the NS32332, NS32532, NS32FX16,
NS32CG160, NS32GX32, and the NS32GX320.

4-8 INSTRUCTION OPERANDS

Fram e M em ory O perands

4.2.4 Frame Memory Operands

is a displacement or expression which evaluates to an
absolute base value within the range -16777215 to
16777215 if the CPU is a 24-pin address CPU, or the
range -536870912 to 536870911 if the CPU 32-pin
address CPU.
specifies the Frame-pointer register. Parentheses are
required.
NOTE: The GNX Assembler uses the range

-536870912 to 536870911 for dis­
placement. It is up to the user to
limit this range if a 24-pin address
CPU is used.

Description: A Frame Memory operand specifies an operand at a memory address.
The address is the sum of the displacement disp and the contents of the
Frame-pointer register.

Example: 1 .s e t TEN, 10
2
3 T00000000 OlaecOOO addw INTEG, 31(fp)

00001f
4 T00000007 43 c514c0 addd (TEN*2)(fp), INTEG

000000
In line 3, 31(fp) is a Frame Memory operand. The instruction adds the
word at the address specified by the symbol INTEG to the word at the
memory address specified by 31(fp). The result is stored at 31(fp).
In line 4, (TEN*2)(fp) is a Frame Memory operand. The expression
“(TEN*2)” evaluates to the absolute value 20. This value is added to the
contents of the Frame-pointer register (fp) to yield the operand’s
address. The instruction adds the double-word at this address to the
double-word at the address specified by the symbol INTEG. The result
is stored at INTEG.

Syntax: disp(fp)
where: disp

(fp)

INSTRUCTION OPERANDS 4-9

Fram e M em ory O perands (Cont)

NOTE: 24-pin address CPUs include the NS320xx and the NS32CG16.
32-pin address CPUs include the NS32332, NS32532, NS32FX16,
NS32CG160, NS32GX32, and the NS32GX320.

4-10 INSTRUCTION OPERANDS

Fram e M em ory R ela tive O perands

4.2.5 Frame Memory Relative Operands

Syntax: disp2(displ(fp))

is an expression with absolute type with a value in the
range -16777215 to 16777215 if the CPU is a 24-pin
address CPU, or the range -536870912 to 536870911
if the CPU is a 32-pin address CPU.

is an expression with absolute type with a value abso­
lute value within the range -16777215 to 16777215 if
the CPU is a 24-pin address CPU, or the range
-536870912 to 536870911 if the CPU is a 32-pin
address CPU.

specifies the Frame-pointer register. Parentheses are
required.
Parentheses are required around displ (fp).
NOTE: The GNX Assembler uses the range

-536870912 to 536870911. It is up
to the user to limit this range if a
24-pin address CPU is used.

Description: A Frame Memory Relative operand specifies an operand at a memory
address which is relative to the contents of a double-word in memory.
The address is the sum of disp2 and the double-word at the address
specified by the Frame-pointer relative value displ (fp).

Example: 1 . set TEN, 10
2
O

. set FIFTY, 50
J
4 T00000000 1404330f movb rO, 15(FIFTY+1(fp)
5 T00000004 d7 801400 movd 0 ((TEN*2) (fp)), r3

where: displ

disp2

(fp)

In the example, 15(FIFTY+l(fp)) is a Frame Memory Relative operand.
The instruction copies the low-order byte of register rO to the specified

INSTRUCTION OPERANDS 4-11

Fram e M em ory R ela tive O perands (Cont)

address. The address is the sum of 15 and the double-word at the
address (FIFTY+l(fp)). The address (FIFTY+l(fp)) is the sum of the
symbol FIFTY and one, which evaluates to the absolute value 51, and
the current contents of the fp register.
Line 4 moves the double-word pointed to by 20(fp) to r3.

NOTE: 24-pin address CPUs include the NS320xr and the NS32CG16.
32-pin address CPUs include the NS32332, NS32532, NS32FX16,
NS32CG160, NS32GX32, and the NS32GX320.

4-12 INSTRUCTION OPERANDS

Stack M em ory O perands

4.2.6 Stack Memory Operands

is a displacement or expression which evaluates to an
absolute base value within the range -16777215 to
16777215 if the CPU is a 24-pin address CPU, or the
range -536870912 to 536870911 if the CPU is a 32-pin
address CPU.
specifies the current stack pointer. The current stack
pointer may be the User Stack Pointer (spl) or the
Interrupt Stack Pointer (spO). The s bit in the psr
specifies which pointer is currently active.
Parentheses are required.
NOTE: The GNX Assembler uses the range

-536870912 to 536870911. It is up
to the user to limit this range if a
24-pin address CPU is used.

Description: A Stack Memory operand specifies an operand at a memory address.
The address is computed as the sum of the displacement disp and the
contents of the current stack pointer register.

Example: 1
9

. s e t TEN, 10

3 T 0 0 0 0 0 0 0 0 4 1 a e c 0 0 0
OOOOlf

addw INTEG, 3 1 (s p)

4 T 0 0 0 0 0 0 0 7 4 3 c d l 4 c 0
0 0 0 0 0 0

a d d d (TEN*2) (s p) , INTEG

Syntax: disp (sp)
where: disp

(sp)

In line 3, 31(sp) is a Stack Memory operand. The instruction adds the
word at the address specified by the symbol INTEG to the word at the
memory address specified by 31(sp). The result is stored at 31(sp).
In line 4, (TEN*2)(sp) is a Stack Memory operand. The expression
“(TEN*2)” evaluates to the absolute value 20. This value is added to the
contents of the Stack-pointer register to yield the operand’s address.
The instruction adds the double-word at this address to the double-word
at the address specified by the symbol INTEG. The result is stored at
INTEG.

INSTRUCTION OPERANDS 4-13

Stack M em ory O perands (Cont)

NOTE: 24-pin address CPUs include the NS320xjc and the NS32CG16.
32-pin address CPUs include the NS32332, NS32532, NS32FX16,
NS32CG160, NS32GX32, and the NS32GX320.

4-14 INSTRUCTION OPERANDS

Stack M em ory R ela tive O perands

4.2.7 Stack Memory Relative Operands

Syntax: disp2 (disp 1 (sp))

where: disp2

displ

(sp)

is an expression with absolute type with a value in the
range -16777215 to 16777215 if the CPU is a 24-pin
address CPU, or the range -536870912 to 536870911
if the CPU is a 32-pin address CPU.
is a displacement or expression which evaluates to an
absolute base value within the range -16777215 to
16777215 if the CPU is a 24-pin address CPU, or the
range -536870912 to 536870911 if the CPU is a 32-pin
address CPU.
specifies the current stack pointer. The current stack
pointer may be the User Stack Pointer (spl) or the
Interrupt Stack Pointer (spO) . The s bit in the psr
specifies which pointer is currently active.
Parentheses are required.
Parentheses are required around the stack memory
value displ (sp).
NOTE: The GNX Assembler uses the range

-536870912 to 536870911. It is up
to the user to limit this range if a
24-pin address CPU is used.

Description: A Stack Memory Relative operand specifies an operand at a memory
address which is relative to the contents of a double-word in memory.
The address is the sum of disp2 and the double-word at the address
specified by the Stack-pointer relative value, displ (sp) .

Example: 1 . s e t TEN, 10
2
O

. s e t FIFTY, 50
J
4 T 0 0 0 0 0 0 0 0 5 4 0 4 3 5 0 f movb r 0 , 1 5 (F I F T Y + 3 (s p)
5 T 0 0 0 0 0 0 0 4 1 7 8 8 1 4 0 0 movd 0 ((TEN*2) (s p)) , rO

INSTRUCTION OPERANDS 4-15

Stack M em ory R elative O perands (Cont)

In the above example, 15(FIFTY+3(sp)) is a Stack Memory Relative
operand. The instruction copies the low-order byte of register rO to the
specified address. The address is the sum of 15 and the double-word at
address FIFTY+3(sp). The address FIFTY+3(sp) is the sum of the sym­
bol FIFTY, which evaluates to the absolute value 50, 3, and the contents
of the current stack pointer.
In line 5, 0((TEN*2)(sp)) is a Stack Memory Relative operand. The
instruction copies the double-word at the address 0((TEN*2)(sp)) into
register rO. The address 0((TEN*2)(sp)) is the sum of 0 and
(TEN*2)(sp). (TEN*2)(sp) is the sum of 20 and the current contents of
the Stack-pointer register.
NOTE: 24-pin address CPUs include the NS320x:x; and the

NS32CG16.
32-pin address CPUs include the NS32332,
NS32532, NS32FX16, NS32CG160, NS32GX32, and
the NS32GX320.

4-16 INSTRUCTION OPERANDS

Static M em ory O perands

4.2.8 Static Memory Operands

Syntax: disp{ sb)
or
Aexpression

where: disp is a displacement or expression which evaluates to an
absolute value within the range -16777215 to
16777215 if the CPU is a 24-pin address CPU, or the
range -536870912 to 536870911 if the CPU is a 32-pin
address CPU.

(sb) specifies the Static Base register. Parentheses are
required.

expression is a legal expression of any type.
NOTE: The GNX Assembler uses the range

-536870912 to 536870911. It is up
to the user to limit this range if a
24-pin address CPU is used.

Description: A Static Memory operand specifies an operand at a memory address.
The address is the sum of the displacement disp and the contents of the
Static Base register.
If the Static Memory operand is of the form Aexpression, the address
specified by expression is converted to an offset from the Series 32000
module’s Static Base.

INSTRUCTION OPERANDS 4-17

S tatic M em ory O perands (Cont)

Example: 1
2
3 T 00000 000 8 1 a e c 0 0 0

OOOOlf
4 TO 0000007 4 3 d5 1 4 c0

000000
5 T 0 0 0 0 0 0 0 e 9 7 a e c 0 0 0

OOOOcOOO
018

6
7 D00000000 00 000000 s.

. . e e t TEN, 10

a ddw INTEG, 3 1 (s b)

a d d d (T EN * 2) (s b) , INTEG

movd INTEG, ^ s _ v a l

. d a t a

. d o u b l e 0

In line 3 of the example, 31(sb) is a Static Memory operand. The
instruction adds the word at the address specified by the symbol INTEG
to the word at the memory address specified by 31(sb). The result is
stored at 31(sb).
In line 4 of the example, (TEN*2)(sb) is a Static Memory operand. The
expression “(TEN*2)” evaluates to the absolute value 20. This value is
added to the contents of register sb to yield the operand’s address. The
instruction adds the double-word at this address to the double-word at
the address specified by the symbol INTEG. The result is stored at
INTEG.
In line 5 of the example, “As_val” is a Static Memory operand. The dis­
placement value is the distance from the Static Base to the address
specified by the “s_val” label. Section 3.4 explains how the Static Base
is determined. The instruction moves the value stored at the location
INTEG to the s_val location.
NOTE: 24-pin address CPUs include the NS320acac and the

NS32CG16.
32-pin address CPUs include the NS32332,
NS32532, NS32FX16, NS32CG160, NS32GX32, and
the NS32GX320.

4-18 INSTRUCTION OPERANDS

S ta tic M em ory R ela tive O perands

4.2.9 Static Memory Relative Operands

Syntax: disp2 (displ (s b))

is an expression of absolute type with a value in the
range -16777215 to 16777215 if the CPU is a 24-pin
address CPU, or the range -536870912 to 536870911
if the CPU is a 32-pin address CPU.

is a displacement or expression which evaluates to an
absolute base value within the range -16777215 to
16777215 if the CPU is a 24-pin address CPU, or the
range -536870912 to 536870911 if the CPU is a 32-pin
address CPU.
specifies the Static Base register. Parentheses are
required.
Parentheses are required around the static memory
value, displ (sb).
NOTE: The GNX Assembler uses the range

-536870912 to 536870911. It is up
to the user to limit this range if a
24-pin address CPU is used.

Description: A Static Memory Relative operand specifies an operand at a memory
address which is relative to the contents of a double-word in memory.
The address is the sum of disp and the double-word at the address
specified by the sb relative value, displ (sb).

where: disp 2

where: displ

(sb)

Example: 1 . s e t TEN, 10
2
O

. s e t FIFTY, 50
J
4 T 0 0 0 0 0 0 0 0 9 4 0 4 3 2 0 f movb rO, 1 5 (F I F T Y (s b))
5 T 0 0 0 0 0 0 0 4 1 7 9 0 1 4 0 0 movd 0 ((TEN*2) (s b)) , rO

INSTRUCTION OPERANDS 4-19

S tatic M em ory R elative O perands (Cont)

In the above example, 15(FIFTY(sb)) is a Static Memory Relative
operand. The instruction copies the low-order byte of register rO to the
specified address. The address is the sum of 15 and the double-word
contents of the address FIFTY(sb). The address FIFTY(sb) is the sum of
the symbol FIFTY, which evaluates to the absolute value 50, and the
current contents of the sb register. In line 5 of the example,
0((TEN*2)(sb)) is a Static Memory Relative operand. The statement
moves the double-word pointed to by (TEN*2)(sb) to rO. (TEN*2)(sb) is
the sum of 20 and the current contents of the Static Base register.
NOTE: 24-pin address CPUs include the NS320xjc and the

NS32CG16.
32-pin address CPUs include the NS32332,
NS32532, NS32FX16, NS32CG160, NS32GX32, and
the NS32GX320.

4-20 INSTRUCTION OPERANDS

P rogram M em ory O perands

4.2.10 Program Memory Operands

Syntax: * { + I - } disp
or
%expression

where: * is the current contents of the Program Counter regis­
ter.

disp is a displacement or expression which evaluates to an
absolute value within the range -16777215 to
16777215 if the CPU is a 24-pin address CPU, or the
range -536870912 to 536870911 if the CPU is a 32-pin
address CPU.

expression is a legal expression of any type.
NOTE: The GNX Assembler uses the range

-536870912 to 536870911. It is up
to the user to limit this range if a
24-pin address CPU is used.

Description: A Program Memory operand specifies an operand at a memory address.
The address is the sum of the displacement disp and the current con­
tents of the Program Counter register.
If the Program Memory operand is of the form %expression, the address
specified by expression is converted to an offset from the current loca­
tion, i.e., the contents of the Program Counter register.

INSTRUCTION OPERANDS 4-21

P rogram M em ory O perands (Cont)

Example: 1
o

.set TEN, 10
z.
3 T00000000 claecOOO

OOOOcOOO
OOlf

addw INTEG, *+31

4 TOOOOOOOa 43ddffff
ffeccOOO
0000

addd * - (TEN*2) , INTEG

5 T00000014 d7aec000
OOOOcOOO
000c

movd INTEG, %data

6 . data
7 D00000000 00000000 data: . .double 0

In line 3 of the example, “*+31” is a Program Memory operand. The
instruction copies the word at the address specified by the symbol
INTEG to the word at the memory address specified by the contents of
the Program Counter register plus 31. The result is stored at the “*+31”
address.
In line 4 of the example, “*-(TEN*2)” is a Program Memory operand.
The expression “(TEN*2)” evaluates to the absolute value 20. This
value is subtracted from the contents of the Program Counter register.
The instruction adds the double-word at this address to the double-word
at the address specified by the symbol INTEG. The result is stored at
INTEG.
In line 5 of the example “%data” is a Program Memory operand. It is
interpreted as the distance from the current location, i.e., the contents of
the Program Counter register and the address specified by the “data”
label. The instruction moves the value stored at the location INTEG to
the location data.
NOTE: 24-pin address CPUs include the NS32Cboc and the

NS32CG16.
32-pin address CPUs include the NS32332,
NS32532, NS32FX16, NS32CG160, NS32GX32, and
the NS32GX320.

4-22 INSTRUCTION OPERANDS

Im m ediate O perands

4.2.11 Immediate Operands

Syntax: $expression

where: expression is one of the following:
• A short or long format floating-point value (refer to

Section 2.4.2).
• A character constant (refer to Section 2.4.3).
• A legal expression of any type (refer to Section 2.7).

Description: Immediate operands are encoded into the Immediate addressing mode;
thus, the operand’s value is stored in the instruction stream. If the
expression is a relative type or an external, undefined type, the assem­
bler generates a relocation entry for the operand. The linker uses the
relocation entry to update the operand address at link time.
The range of immediate operands is limited by the length specifier of the
instruction as follows:

• For expressions of type absolute, the ranges are:
-128..255 for byte instructions.
-32768..65535 for word instructions.
-2147483648..2147483647 for double-word instructions.

• For floating-point expressions, the positive ranges are:
1.18xl(H8..3.40x10s8 for single-precision instruc­

tions.
2.23xl(H08..1.80xl0308 for double-precision instruc­

tions.
If a character constant is shorter than the length required by the
instruction, the high-order bytes are zero-filled. If the relocated
address of a relative type is too large for the instruction, an error
occurs at link time.

INSTRUCTION OPERANDS 4-23

Im m ediate O perands (Cont)

Example: 1 . set NUMB, 5
2 T00000000 55a50005

C0000000
movw $NUMB, TEMP

3
4 T00000008 be01a06b

81ee23
addf $0f3 .14152e26, fO

5
6 TOOOOOOOf 57a50000

003fcOOO
0000

movd $ ' ? ' , LAST

7
8 . set ONE, 1
9 . set THREE, ONE+2

10 T00000019 04a003 cmpb $THREE, r0

Example line 2 copies the constant 5 to the memory address specified by
TEMP.
Example line 4 adds the floating-point number 3.14152e26 to the con­
tents of register ft).
Example line 6 copies the character constant ‘7 to the double-word at
the address specified by LAST.
Example line 10 compares the value of the expression “ONE+2” with the
low-order byte of register rO. The expression must evaluate to an abso­
lute value in the range -128 to 255, in this case the value is 3.

4-24 INSTRUCTION OPERANDS

A bsolute O perands

4.2.12 Absolute Operands

Syntax: @expression

where: expression is a legal expression of any type.

Description: An Absolute operand specifies the absolute memory address of an
operand. Regardless of the type of the expression that specifies the
address, or the default addressing mode that the assembler would other­
wise use, an Absolute operand always implies the Absolute addressing
mode.

Examples: 1. addw $H'1234, @9

2. addw ©TWELVE, rO

3. .set BASE, 100
addw ©BASE, rO

In example 1, @9 is an Absolute operand. The instruction adds the
immediate operand H’1234 to the word starting at absolute address 9.
The result is stored at the absolute address.
In example 2, @TWELVE is an Absolute operand. The symbol TWELVE
may be of any type. The instruction adds the word at the absolute
address specified by TWELVE to the low-order word of register rO. If
TWELVE is a segment relative symbol (e.g., text, data, etc.) the assem­
bler generates a relocation entry so that the correct address can be
inserted at link time. The result is stored in rO.
In example 3, BASE is location 100, type absolute. The addw instruc­
tion adds the word at the absolute address specified by BASE to the
low-order word of register rO. The result is stored in the low-order word
of rO. The upper word of rO is undisturbed.

INSTRUCTION OPERANDS 4-25

E xtern al O perands

4.2.13 External Operands

Syntax: disp (link offset (e x t))

where: disp

link offset

(ext)

is an expression with absolute type with a value in the
range -16777215 to 16777215 if the CPU is a 24-pin
address CPU, or the range -536870912 to 536870911
if the CPU is a 32-pin address CPU.
specifies the byte offset from the base of the Link
Table. The link offset must be an expression of type
link or type absolute, and a multiple of four bytes.
is a literal that represents the base address of the Link
Table. The Series 32000 processor gets this address
from the Module Table entry for the current module.
Parentheses are required.
Parentheses are required around the Link Table entry
value, link offset (ext).
NOTE: The GNX Assembler uses the range

-536870912 to 536870911. It is up
to the user to limit this range if a
24-pin address CPU is used.

Description: An External operand specifies a Link Table entry and, possibly, an
offset. During execution the contents of the Link Table entry and the
offset are added together to produce an address. External operands
should be used only in Series 32000 modules.

Examples: 1. movb rO, 12 (ext)
2 . movb LAST, THREE (TWELVE (ext))

In example one, 12(ext) is an External operand. The instruction copies
the low-order byte of register rO to the byte specified by 12(ext). The
external address is the sum of the double-word contents of the third
Link Table entry and 0 (the default offset).

4-26 INSTRUCTION OPERANDS

E xtern al O perands (Cont)

In example two, THREE(TWELVE(ext)) is an External operand. The
instruction copies the byte at the address specified by LAST to the byte
specified by THREE(TWELVE(ext)). The symbol THREE must evaluate
to an absolute value. The symbol TWELVE must evaluate to an abso­
lute value, or a value of type link, that is a multiple of four.
NOTE: 24-pin address CPUs include the N S 3 2 0 jc3C and the

NS32CG16.
32-pin address CPUs include the NS32332,
NS32532, NS32FX16, NS32CG160, NS32GX32, and
the NS32GX320.

INSTRUCTION OPERANDS 4-27

Top-of-Stack O perands

4.2.14 Top-of-Stack Operands

Syntax: tos

where: tos is the required keyword.

Description: A Top-of-Stack operand (tos) specifies an operand at the top of the stack.
The top of the stack is the address specified by the stack pointer. The
stack pointer will be either the User Stack Pointer (spl), or the Inter­
rupt Stack Pointer (spO) depending on the value of the s bit in the psr.
(Refer to Section 1.3.2.)
Top-of-Stack operands are encoded as tos addressing mode. (See the
Series 32000 Programmer's Reference Manual.)
If a Top-of-Stack operand is read, the stack pointer is incremented by
the length (in bytes) of the operand after the read is performed. If the
operand is to be written, the operation decrements the stack pointer by
the length (in bytes) of the operand before the write is performed. When
an operand is both read and written, the stack pointer is not modified.

Examples: 1 . movb rO, tos
2. addb tos, tos

Example 1 decrements the stack pointer by 1 and then copies the low-
order byte of register rO to the top of the stack.
Example 2 reads the byte at the top of the current stack, increments the
stack pointer by 1, and adds this byte to the byte at the new top of
stack.

4-28 INSTRUCTION OPERANDS

S caled-Index B yte O perands

4.2.15 Scaled-Index Byte Operands

Syntax: gen [register:b]

where: gen

register

: b

specifies a general operand. It must not be an immedi­
ate operand or another Scaled-Index operand.
specifies a General-purpose register rn where n must
be a decimal digit in the range of 0 to 7.
is the byte-scaling flag; it specifies a multiplier of 1.
The colon (:) is required.
are the required brackets.

Description: A Scaled-Index Byte operand specifies an operand at a memory address
which is relative to the address specified by a general operand. The
address is the sum of the contents of the General-purpose register rn
multiplied by 1 and the address given by the general operand gen.

Example: movb rO, 5(sp) [rl:b]

In this example, 5(sp)[rl:b] is a Scaled-Index Byte operand. The
instruction copies the low-order byte of register rO to the specified
address. The address is the sum of the contents of the register r l multi­
plied by 1 and the address specified by 5(sp).

INSTRUCTION OPERANDS 4-29

Scaled-Index W ord O perands

4.2.16 Scaled-Index Word Operands

Syntax: gen [register: w]

where: gen operand or another Scaled-Index operand.
register specifies a General-purpose register rn where n must

be a decimal digit in the range of 0 to 7.
: w is the word-scaling flag; it specifies a multiplier of 2.

The colon (:) is required.
[] are the required brackets.

Description: A Scaled-Index Word operand specifies an operand at a memory address
which is relative to the address specified by a general operand. The
address is the sum of the contents of the General-purpose register rn
multiplied by 2 and the address of the general operand gen.

Example: movb r2, 10(sb)[r6:w]

In this example, 10(sb)[r6:w] is a Scaled-Index Word operand. The
instruction copies the low-order byte of register r2 to the specified
address. The address is the sum of the contents of the register r6 multi­
plied by 2 and the address specified by 10(sb).

4-30 INSTRUCTION OPERANDS

S caled-Index Double-W ord O perands

4.2.17 Scaled-Index Double-Word Operands

Syntax: gen [register: d]

where: gen specifies a general operand. It must not be an absolute
operand or another Scaled-Index operand.

register specifies a General-purpose register rn where n must
be a decimal digit in the range of 0 to 7.

: d is the double-word scaling flag; it specifies a multi­
plier of 4. The colon (:) is required.

[] are the required brackets.

Description: A Scaled-Index Double-Word operand specifies an operand at a memory
address which is relative to the address specified by a general operand.
The address is the sum of gen and the contents of the General-purpose
register rn multiplied by 4 and the address of the general operand gen.

Example: movb r5, 10(r6)[r7:d]

In this example, 10(r6)[r7:d] is a Scaled-Index Double-Word operand.
The instruction copies the low-order byte of register r5 to the specified
address. The address is the sum of the contents of register r7 multiplied
by 4 and the address specified by 10(r6).

INSTRUCTION OPERANDS 4-31

Scaled-Index Quad-W ord O perands

4.2.18 Scaled-Index Quad-Word Operands

Syntax: gen [register :q]

where: gen specifies a general operand. It must not be an Abso­
lute operand or another Scaled-Index operand.

register specifies a General-purpose register rn where n must
be a decimal digit in the range of 0 to 7.

: q is the quad-word scaling flag; it specifies a multiplier
of 8. The colon (:) is required.

[] are the required brackets.

Description: A Scaled-Index Quad-Word operand specifies an operand at a memory
address which is relative to the address specified by a general operand.
The address is the sum of the contents of the General-purpose register
rn multiplied by 8 and the address of the general operand gen.

Example: movb rO, 8(fp)[rl:q]

In this example, 8(fp)[rl:q] is a Scaled-Index Quad-Word operand. The
instruction copies the low-order byte of register rO to the specified
address. The address is the sum of the contents of register r l multiplied
by 8 and the address specified by 8(fp).

4-32 INSTRUCTION OPERANDS

D isp lacem en t O perands

4.2.19 Displacement Operands

Syntax: addressing jnode

where: addressing jnode
is not Register, Top-of-Stack, External, Immediate, or
Scaled Indexed.

displacement _size
is an optional field. It can be one of the following:

: b specifies 1 byte displacement.
: w specifies 2 byte displacement.
: d specifies 4 byte displacement.

Description: The displacementjsize option allows the programmer to specify the size of
the displacement field. If the desired displacement is too small, the
assembler will issue an error. This feature is allowed only in an
operand position and only if the operand involves a displacement.

Example: 1 T00000000 ea34 br Ll:b
2 T00000002 a2a2a2a2

a2a2a2a2
a2a2

.space 10

3 TOOOOOOOc ea8028 br Ll:w
4 TOOOOOOOf a2a2a2a2

a2a2a2a2
a2a2

.space 10

5 T00000019 eacOOOOO
lb

br Ll:d

6 TOOOOOOle a2a2a2a2
a2a2a2a2
a2a2

.space 10

7 T00000028 eaOc br Ll
8 T0000002a a2a2a2a2

a2a2a2a2
a2a2

.space 10

9 LI:

INSTRUCTION OPERANDS 4-33

D isp lacem en t O perands (Cont)

In this program, the branch on line 1 is requested to be placed in a byte-displacement
field, the branch on line 3 is placed in a word-displacement field, the branch on line 5 is
placed in a double-word-displacement field, and the branch on line 7 is placed in the
smallest single displacement field in which it will fit.

4-34 INSTRUCTION OPERANDS

IMMEDIATE SUBRANGE OPERANDS

4.3 IMMEDIATE SUBRANGE OPERANDS
All Immediate Subrange operands are expressions of absolute type with values within
subranges of the full double-word range.

INSTRUCTION OPERANDS 4-35

Q uick O perands

4.3.1 Quick Operands

Syntax: [$]quick

Description: A signed constant or expression which evaluates to a constant immedi­
ate value within the range of -8 to 7 inclusive.
A Quick operand is encoded as a 4-bit signed integer in a field of the
instruction. Quick operands are used in the quick-integer instructions.
(See Section 5.3.) A Quick operand is the first operand in the following
instructions:

Move Quick Integer movqi
Compare Quick Integer cmpqi
Add Quick Integer addqi
Add, Compare, and Branch acbi

Examples: 1 . movqd -2, FIRST(rl
2 . cmpqw 5, TEMP
3 . addqb -1, rl
4. LOOP: muld r2 , rl

acbb -1, rO, LOOP

Example 1 copies the Quick operand -2 to the Double-word operand at
the address specified by FIRST(rl).
Example 2 compares the Quick operand 5 with the Word operand
specified by TEMP.
Example 3 adds the Quick operand -1 to the low-order byte of register
rl.
In Example 4, the acbb instruction adds -1 to the low-order byte of
register rO and passes execution to the muld statement labelled LOOP
as long as the result is not zero.

4-36 INSTRUCTION OPERANDS

B lock L en gth O perands

4.3.2 Block Length Operands

Syntax: [$]integer_cons

Description: An unsigned constant or expression which evaluates to an absolute
value within the range of 1 to 16 (see below).
A Block Length operand is an unsigned constant which specifies the
length of a block of integers. The block may be no more than 16 bytes in
length. Therefore, the range of values the constant may have depends
on the instruction’s length specifier (b, w, or d) as shown by the follow­
ing:

Length Specifier Integer Size (Bytes) Range
b 1 1 to 16
w 2 1 to 8
d 4 1 to 4

At assembly-time, the operand is multiplied by the corresponding
integer size and then decremented by one, before being encoded in the
instruction.
A Block Length operand is the last operand in the following instruc­
tions:

Move Multiple movmi
Compare Multiple cmpmi

Examples: 1 . movmd GEN1, GEN2, 3
2 . cmpmw GEN1, GEN2, NELEMENTS

In example 1, the block length 3 specifies the number of double-words to
move from the address specified by GEN1 to the address specified by
GEN2.
In example 2, the block length is the expression “NELEMENTS.” It
specifies the number of elements to be compared. NELEMENTS must
evaluate to a number in the range of 1 to 8.

INSTRUCTION OPERANDS 4-37

B it-F ield L ength O perands

4.3.3 Bit-Field Length Operands

Syntax: [$ [integer_cons

Description: An unsigned constant or an expression which evaluates to an absolute
value within the range of 1 to 32. At assembly-time, the number is
decremented by 1 before being encoded into the instruction.
A Bit-Field Length operand is an unsigned number. It specifies the
length of a bit field in a bit-field instruction (Section 5.7). The length
operands of the short bit-field instructions are encoded into a 5-bit field
and into a byte in the other bit-field instructions. A Bit-Field Length
operand is the last operand in the following instructions:

Extract Field exti
Insert Field insi
Extract Field Short extsi
Insert Field Short inssi

Examples: 1. extsw BASE, DEST, 3, 14
2. inssb SRC, BASE, 7, 10

In example one, 14 is the bit-field length constant. The instruction com­
putes the location of a bit field that is 14 bits in length at 3 bits offset
from the address specified by BASE and then copies the field to the
address specified by the symbol DEST.
In example two, 10 is the bit-field length constant. The instruction com­
putes the destination of a bit field that is 10 bits in length by adding a
bit offset 7 to the address referenced by BASE. It then moves the field
from the address specified by SRC to the destination.

4-38 INSTRUCTION OPERANDS

B it-F ield O ffset O perands

4.3.4 Bit-Field Offset Operands

Syntax: [$]integer_cons

Description: An unsigned constant or expression which evaluates to an absolute
value within the range of 0 to 7.
A Bit-Field Offset operand is an unsigned number. It specifies an offset
which is used to compute the location of the first bit in a bit field. A
Bit-Field Offset operand is the third operand in the following instruc­
tions:

Extract Field Short extsi
Insert Field Short inssz

Examples: 1. extsw BASE, DEST, 3, 14
2. inssb SRC, BASE, 7, 10

In example one, 3 is a Bit-Field Offset constant. The instruction copies
a field, 14 bits in length, to the address specified by the symbol DEST
and zero-fills the high-order two bits. The field’s location is specified by
adding a bit offset of 3 to the address BASE.
In example two, 7 is a Bit-Field Offset constant. The instruction copies
SRC into the bit field addressed by adding a bit offset 7 to the address
referenced by BASE. The length of the field to be written to is 10 bits.

INSTRUCTION OPERANDS 4-39

D isp lacem en t O perands

4.3.5 Displacement Operands

Syntax: [$]disp

Description: A constant or expression which evaluates to an absolute base value
within the range of -16777215 to 16777215 if the CPU is a 24-pin
address CPU, or the range of-536870912 to 536870911 if the CPU is a
32-pin address CPU.
NOTE: The GNX Assembler uses the range -536870912 to

536870911. It is up to the user to limit this range if
a 24-bit CPU is used.

A Displacement operand specifies a signed integer. A Displacement
operand is the last (or only) operand in the following instructions:

Extract Field exti
Insert Field insi
Return From External Procedure rxp
Return from Trap rett
Enter New Context enter
Return from Subroutine ret

Examples: 1 . extw r2, BASE, DEST, 4
2 . insb r0, r2, 0 (rl), 7
3 . rxp 5
4 . rett 1
5 . enter [rO], 2
6 . ret 0

In example 1, the displacement is 4. It specifies the length of a field.
In example 2, the displacement is 7. It specifies the number of bits in
the field to be written to.
In example 3, the displacement is 5. It specifies the number of bytes to
be removed from the stack on the return from an external procedure.
In example 4, the displacement is 1. It specifies the number of bytes to
be removed from the stack on the return from a trap.

4-40 INSTRUCTION OPERANDS

D isp lacem en t O perands (Cont)

In example 5, the displacement is 2. It specifies the number of bytes to
allocate on the stack on entry to a procedure.
In example 6, the displacement is 0. It specifies the number of bytes to
remove from the stack on the return from a local procedure.
Displacement operands are encoded the same way as memory displace­
ments are. This format is described in the Series 32000 Programmer’s
Reference Manual.
NOTE: 24-pin address CPUs include the NS32(ba and the

NS32CG16.
32-pin address CPUs include the NS32332,
NS32532, NS32FX16, NS32CG160, NS32GX32, and
the NS32GX320.

INSTRUCTION OPERANDS 4-41

PROGRAM MEMORY OPERANDS

4.4 PROGRAM MEMORY OPERANDS

Syntax: label

where: label is a legal expression of any type.

Description: A Program Memory operand specifies the destination of a branch
instruction. The operand is interpreted as the address of the destina­
tion of the branch. The assembler converts this address to an offset
from the current location counter. The Label operand must specify the
address of the first byte of an instruction.
The Program Memory operand label may also use the syntax of the gen­
eral Program Memory class operands, refer to Section 4.2.10.
A Label operand is the last (or only) operand in the following instruc­
tions:

Branch on Condition bcond
Unconditional Branch br
Add, Compare, and Branch acbi
Branch to Subroutine bsr

Examples: 1 . beq EQUAL
2 . br * + 8
3. acbb -1, rO, * - 12
4 . bsr SUBROUTINE

In example 1, the Label operand is the label EQUAL. If the z flag in
the psr is set, the instruction passes control to the location EQUAL.
In example 2, the Label operand is the “*+8” expression. The “*” symbol
specifies the current location counter as a pc-relative address. The
expression evaluates to a pc-relative address which is 8 bytes from the
current location.

4-42 INSTRUCTION OPERANDS

PROGRAM MEMORY OPERANDS (Cont)

In example 3, the Label operand is “* - 12” which evaluates to a PC-
relative value. As long as the contents of register rO remains non-zero,
the program continues its execution at a point which is 12 bytes lower
than the current program code address.
In example 4, the Label operand is the label SUBROUTINE. When exe­
cuted, the instruction transfers program control to the subroutine refer­
enced by the label SUBROUTINE.

INSTRUCTION OPERANDS 4-43

GENERAL REGISTER OPERANDS

4.5 GENERAL REGISTER OPERANDS

Syntax: register

Description: A General-purpose register specified by rn, where n must be a decimal
digit in the range of 0 to 7.
A General Register operand specifies one of the General-purpose regis­
ters. The value of the operand is the value contained in the register. A
General Register operand is the first operand in the following instruc­
tions:

Extract Field ext/
Insert Field ins/
Convert to Bit Pointer cvtp
Check Array Index check/
Calculate Array Index index/

General Register operands differ from Register operands (Section 4.2.2)
only in that Register operands can be used with floating-point instruc­
tions to specify floating-point registers.

Examples: 1 . extw r2 , BASE . A, DEST.A, 5
2 . insb rO , tSJ o n h-1) , 7
3 . cvtp rl, BASE.B, DEST.B
4. checkw r3 , BOUND1, K
5 . indexd r5, 3, J

In example 1, the General Register operand is r2. The contents of regis­
ter r2 (together with the values of BASE.A and the displacement 5) is
used as an offset to compute the location of a bit field which is five bits
long. The field is copied to the address specified by DEST.A.
In example 2, the General Register operand is rO. The contents of regis­
ter rO is used as an offset from the base 0(rl) to specify the starting bit
of the desired bit field.
In example 3, the General Register operand is rl. The contents of regis­
ter r l (together with the value of BASE.B) is used to compute the bit-
address of a bit of memory. The bit-address is copied to DEST.B.

4-44 INSTRUCTION OPERANDS

GENERAL REGISTER OPERANDS (Cont)

In example 4, the General Register operand is r3. The contents of regis­
ter r3 reflects the difference between an array’s lower bound, addressed
by BOUND 1, and an index K into the array.
In example 5, the General Register operand is r5. The register contains
the accumulated index into an array. This index is generated by adding
1 to 3, multiplying this result by the previous contents of register index,
and then adding the value referenced by J to this product.

INSTRUCTION OPERANDS 4-45

REGISTER LIST (reglist) OPERAND

4.6 REGISTER LIST (reglist) OPERAND

Syntax: [[register,,,]]

where: [] are the required brackets. The brackets are required
even if no registers are specified.

register specifies a symbol with register type.

Description: A Register List operand specifies one or more General-purpose registers.
A Register List operand may be used in the following instructions:

Save Registers save
Restore Registers restore
Enter New Context enter
Exit Context exit

Examples: 1. save [rl]
2 . restore [rO, rl]
3 . enter [rO, rl, r2, r3, r4, r5, r6, r7], 5
4 . exit []

In example 1, the operand specifies a single register rl. The contents of
register r l are saved on stack.
In example 2, the operand specifies two registers: rO and rl. The
instruction pops two consecutive double-words from the stack to the
registers.
In example 3, the operand specifies all eight General-purpose registers.
The instruction copies the contents of the eight General-purpose regis­
ters to consecutive double-words on stack. The Displacement operand 5
is then used to allocate five bytes of the stack for storage.
In example 4, the operand specifies no General-purpose registers and
none are popped off the stack when the exit instruction is executed.

4-46 INSTRUCTION OPERANDS

CONFIGURATION LIST (cfglist) OPERAND

4.7 CONFIGURATION LIST (cfglist) OPERAND

Syntax: [[c] [i] [de] [m] [f] [f f] [fm] [fc] [p]]

where: []

c

i
de
m

f
ff

fm

f c

P

are the required brackets. The brackets are required
even if no configuration bit is specified.
specifies the Clock Scaling bit for NS32CG16,
NS32FX16, and NS32CG160.
specifies the Custom Slave bit for the rest of the Series
32000 processors.
specifies the Interrupt Control Unit bit.
specifies the direct exception bit in the NS32CG160.
specifies the Clock Scaling Factor bit for the
NS32CG16, NS32FX16, and NS32CG160.
illegal for the NS32008, NS32GX32, and NS32GX320.
specifies the Memory Management Unit bit for the
NS32016, NS32032, NS32332, and NS32532.
specifies the Floating-Point Unit bit.
specifies the Fast FPU Protocol bit, NS32332 and
NS32532 only.
specifies the Fast MMU Protocol bit, NS32332 and
NS32532 only.
specifies the Fast Custom Slave Protocol bit, NS32332
and NS32532 only.
specifies the 4096 bytes page size bit, NS32332 and
NS32532 only.

If a configuration option is specified, the corresponding bit in the
Series 32000 Configuration register is set (see the data sheet for the

INSTRUCTION OPERANDS 4-47

CONFIGURATION LIST (cfglist) OPERAND (Cont)

appropriate Series 32000 processor); otherwise, the bit is cleared. Any com­
bination is allowed; however, if more than one bit is specified, they must be
separated by commas.

Description: A Configuration List operand specifies Configuration register bits. The
list may specify any combination of the bits, depending on which devices
are present in the system.
A Configuration List operand may be used in the s e tc f g instruction.

Examples: 1. se tc fg []
2. se tc fg [f]
3. se tc fg [de]

In example 1, the operand specifies no register bits. The instruction
clears all bits in the Configuration register.
In example 2, the operand specifies the f bit. The instruction sets the
f bit and clears the i, m, and c bits.
In example 3, the operand specifies the de bit of the NS32CG160.

4-48 INSTRUCTION OPERANDS

PROCESSOR REGISTER OPERANDS

4.8 PROCESSOR REGISTER OPERANDS

Syntax: procreg

Description: Specifies a Dedicated register. It must be one of the following register
names:

upsr User Processor Status Register
fp Frame Pointer
sp Stack Pointer
sb Static Base
psr Processor Status Register
intbase Interrupt Base
mod Module

The function of the Dedicated registers is described in Section 1.3.2.
A Processor Register operand specifies a Dedicated register. A Processor
Register operand is the first operand in the following instructions:

Load Processor Register lpri
Store Processor Register spri

Examples: 1. lprw mod, rl
2. sprb upsr, TEMP

In example 1, mod is the Processor Register operand. The instruction
copies the low-order word in register r l to the Module register.
In example 2, upsr is the Processor Register operand. The instruction
copies the low-order byte of the Processor Status register (i.e., the user’s
part of the psr) to the address specified by the symbol TEMP.

INSTRUCTION OPERANDS 4-49

NS32082 MEMORY MANAGEMENT REGISTER OPERAND

4.9 NS32082 MEMORY MANAGEMENT REGISTER OPERAND

Syntax: mmureg

Description: Specifies a NS32082 Memory Management register. It must be one of
the following register names:

bprO Breakpoint Register 0
bprl Breakpoint Register 1
pfO Program Flow 0
pfl Program Flow 1
bent Breakpoint Count
ptbO Page Table Base 0
ptbl Page Table Base 1
sc Sequential Count 0 and Sequential Count 1
msr Memory Management Status Register
eia Error/Invalidate Address

Memory Management registers are described in Section 1.3.4 and in the
NS32082 Data Sheet.
A Memory Management Register operand specifies a Memory Manage­
ment register. A Memory Management Register operand is the first
operand in the following instructions:

Load Memory Management Register Inn-
Store Memory Management Register smr

Examples: 1 . lmr bprO, SETBPRO
2. smr msr, SAVEMSR

In example 1, bprO is the Memory Management Register operand. The
instruction loads the double-word at the address specified by SETBPRO
into the Breakpoint Register 0.
In example 2, msr is the Memory Management Register operand. The
instruction stores the double-word contents of the msr at the address
specified by the symbol SAVEMSR.

4-50 INSTRUCTION OPERANDS

NS32382 MEMORY MANAGEMENT REGISTER OPERAND

4.10 NS32382 MEMORY MANAGEMENT REGISTER OPERAND

Syntax: mmureg

Description: Specifies an NS32382 Memory Management register. It must be one of
the following register names:

bar Breakpoint Address Register
bmr Breakpoint Mask Register
bdr Breakpoint Data Register
ivarO Invalid Virtual Address Register 0
ivarl Invalid Virtual Address Register 1
mcr MMU Control Register
msr MMU Status Register
tear Translation Exception Address Register
bear Bus Error Address Register
ptbO Page Table Base 0
ptbl Page Table Base 1

Memory Management registers are described in Section 1.3.4 and in the
NS32382 Data Sheet.
A Memory Management Register operand specifies a Memory Manage­
ment register. A Memory Management Register operand is the first
operand in the following instructions:

Load Memory Management Register lmr
Store Memory Management Register smr

Examples: 1. lmr bprO, SETBPRO
2. smr msr, SAVEMSR

In example 1, bprO is the Memory Management Register operand. The
instruction loads the double-word at the address specified by SETBPRO
into the Breakpoint Register 0.
In example 2, msr is the Memory Management Register operand. The
instruction stores the double-word contents of the msr at the address
specified by the symbol SAVEMSR.

INSTRUCTION OPERANDS 4-51

NS32382 MEMORY MANAGEMENT REGISTER OPERAND (Cont)

4.11 NS32532 MEMORY MANAGEMENT REGISTER OPERAND

Syntax: mmureg

Description: Specifies an NS32532 Memory Management register. It must be one of
the following register names:

ivarO Invalid Virtual Address Register 0
ivarl Invalid Virtual Address Register 1
mcr MMU Control Register
msr MMU Status Register
tear Translation Exception Address Register
ptbO Page Table Base 0
ptbl Page Table Base 1

Memory Management registers are described in Section 1.3.4 and in the
NS32532 Data Sheet.
A Memory Management Register operand specifies a Memory Manage­
ment register. A Memory Management Register operand is the first
operand in the following instructions:

Load Memory Management Register lmr
Store Memory Management Register smr

Examples: 1. lmr bprO, SETBPRO
2. smr msr, SAVEMSR

In example 1, bprO is the Memory Management Register operand. The
instruction loads the double-word at the address specified by SETBPRO
into the Breakpoint Register 0.
In example 2, msr is the Memory Management Register operand. The
instruction stores the double-word contents of the msr at the address
specified by the symbol SAVEMSR.

4-52 INSTRUCTION OPERANDS

EXTERNAL PROCEDURE OPERANDS

4.12 EXTERNAL PROCEDURE OPERANDS

Syntax: external

Description: An operand of the general operand type External with no offset, or a
procedure label for which a Link Table entry has been defined.
An External Procedure operand specifies an entry in the Link Table for
an external procedure descriptor. Link Table entries for external pro­
cedures, called external procedure descriptors, consist of the 16-bit
address of an entry in the Module Table and a 16-bit offset. During exe­
cution, the address of the external procedure is calculated by adding the
offset to the address in the Module Table entry. (See the section on
software modules in the Series 32000 Programmer's Reference Manual.)
An External operand is the first operand in the following instructions:

Call External Procedure exp

Example: . globl OUT
. link
. xpd OUT

. text
exp OUT

In this example, OUT is an External operand. OUT references a Link
Table entry address. The Link Table entry offset of OUT is divided by
four to obtain the Link Table entry number. The double-word at this
Link Table entry number specifies a Module Table entry and an offset
from the address contained in the Module Table entry. The address
plus offset is the start address of a procedure.

INSTRUCTION OPERANDS 4-53

LENGTH OF DISPLACEMENTS

4.13 LENGTH OF DISPLACEMENTS
The GNX Assembler attempts to determine the optimal number of bytes to allocate for
each displacement it assembles, i.e., the smallest number of bytes into which the dis­
placement value will fit. If an expression involves a forward reference, the displace­
ment size cannot be determined until the reference is defined. If an expression is com­
posed of one undefined symbol plus or minus a constant, the Assembler allocates one
byte and makes an entry in the span-dependent instruction link fist. The actual size
required to hold the displacement is determined at the completion of the first pass. If
the size of the displacement cannot be determined at assembly time, the GNX Assem­
bler uses the largest displacement size available by default.
The Assembler determines displacement length by the following rules:

1. If the expression evaluates to a defined absolute value, the Assembler uses
the smallest displacement that will fit.

2. If the expression can be evaluated and the type is relocatable, that is, rela­
tive to the memory location into which an object file segment will be loaded,
then the Assembler allocates the maximum number of bytes and generates a
relocation entry. The relocation entry will be used to determine the actual
address at link time.

3. If the expression contains an external, undefined term, the maximum dis­
placement is generated.

4. Optimizing of displacement may be overridden by using the displacement
operands, refer to Section 4.2.19, or the -n flag (or /nosdi flag for VMS).

A programmer may set the maximum length displacement using a command line argu­
ment. If the maximum size chosen is too small, an error will result at link time. See
Chapter 9.
NOTE: Displacements which span an .align directive use the maximum

length displacement.
For example:

br foo
.align 4

foo:

uses 4 bytes or a user-specified disp for displacement.

4-54 INSTRUCTION OPERANDS

Chapter 5
SERIES 32000 INSTRUCTION SET

5.1 INTRODUCTION
This chapter presents the syntax of the Series 32000 assembly language instruction
set. The syntax describes the following:

• Opcode Mnemonic
• Operands

The opcode mnemonic specifies the operation to be performed by the instruction. In
most cases, the opcode mnemonic consists of three or more letters and one of the follow­
ing:

i — length of integer operands — must be b (byte), w (word), or d (double-word)
f — length of floating-point operands — must be f (float) or 1 (long)

When encoding an instruction, the i and f must be replaced by the appropriate operand
length specifier.
The operand syntax specifies the number, type, and access class of the operands. The
first line of the operand description indicates the use for the operand, e.g., the first
operand of movi is marked src; therefore, that operand is the source for the move. The
second line, when present, indicates the access class for the operand. For a complete
discussion of the access classes, see the Series 32000 Programmer’s Reference Manual.
The operand type is indicated by a combination of the access class and, when present, a
third line. Most of the operands can use any of the general operand types. The general
operands use a particular set of access classes, so the access class alone is used to iden­
tify a general operand. For nongeneral operands the access class is not sufficient; the
third line of the operand description states the specific type of operand for nongeneral
operands.
The general operand access classes are:

read — the operand is read,
write — the operand is written,
rmw — the operand is read, modified, and written,
addr — the address of the memory location designated by the

operand is calculated. Whether or not the address is
accessed depends upon the instruction.

SERIES 32000 INSTRUCTION SET 5-1

regaddr — the operand designates either a memory location or a gen­
eral register which is in turn used as a base for a bit
address calculation.

The other access classes used are:
quick — 4-bit constant is read
reg — double-word from register is read
short — 4-bit condition code is read
imm — a) 8-bit register mask is read

b) concatenated 5-bit and 3-bit constants are read
disp — 1-, 2-, or 4-byte displacement is read

NOTE: The GNX Assembler groups quick, imm type b and disp operands
together as immediate subrange operands (Section 4.3), the 5-bit
field of imm type b. The GNX Assembler uses bit-field offset
operands to store the 3-bit field of imm type b. The GNX Assem­
bler uses block-length operands to store the 4-bit constant of the
movmi and cmpmi instructions. (The constant is encoded in a disp
operand.)

Instead of being a member of one of the access classes an operand may be:
cond = eq — equal: z=l

ne — not equal: z=0
cs — carry set: c=l
cc — carry clear: c=0
lo — lower: z=0 and 1=0
hs — higher or the same: z=l or 1=1
It — less than: z=0 and n=0
ge — greater than or equal: z=l or n=l
fs — flag set: f=l
fc — flag clear: f=0
hi — higher: 1=0 and z=0
Is — lower or the same: 1=1
gt — greater than: n=l
le — less than or equal: n=0

cfglist = [[i][f][d e][m][c] [ff][fm][fc][p]]
[] — no slaves
i — ICU (Interrupt Control Unit)
de — Direct exception
f — FPU (Floating-Point Unit)
m — MMU (Memory Management Unit)

or Clock scaling factor
c — Custom slave clocking scale or clock scaling
ff — Fast FPU

5-2 SERIES 32000 INSTRUCTION SET

procreg

fm — Fast MMU (32332 and 32532 only)
fc — Fast Custom (32332 and 32532 only)
p — 4 Kbytes (4096 byte) page (32332 and 32532 only)

= upsr — User psr (low byte in psr)
fp — Frame Pointer
sp — Stack Pointer
sb — Static Base
psr — Processor Status Register
intbase — Interrupt Base
mod — Module

mmureg
(NS32082)

= bprO — Breakpoint Register 0
bprl — Breakpoint Register 1
pfO — Program Flow 0
pfl — Program Flow 1
sc — Sequential Count Registers scO and scl
msr — Memory Status Register
bent — Breakpoint Count
ptbO — Page Table Base 0
ptbl — Page Table Base 1
eia — Error/Invalidate Address

mmureg
(NS32382)

= bar — Breakpoint Address Register
bmr — Breakpoint Mask Register
bdr — Breakpoint Data Register
ivarO — Invalid Virtual Address Register 0
ivarl — Invalid Virtual Address Register 1
mcr — MMU Control Register
msr — MMU Status Register
tear — Translation Exception Address Register
bear — Bus Error Address Register
ptbO — Page Table Base 0
ptbl — Page Table Base 1

mmureg
(NS32532)

= ivarO — Invalid Virtual Address Register 0
ivarl — Invalid Virtual Address Register 1
mcr — MMU Control Register
msr — MMU Status Register
tear — Translation Exception Address Register
ptbO — Page Table Base 0
ptbl — Page Table Base 1

[b [,]] [u | w] = b
w

— backwards
— while

SERIES 32000 INSTRUCTION SET 5-3

b, w — backwards and while
u — until
b, u — backwards and until

When encoding an instruction, the above operand names must be replaced with
appropriate operands. Operand types and syntax are described in detail in Chapter 4.
Commas, if shown, are required.
Some instructions are privileged and may be executed only when the system is in the
supervisor-mode (i.e., the u bit in the psr is clear). In the following sections, the sym­
bol “§” specifies a privileged instruction.
Instruction operations are defined in the Series 32000 and Series 32000 /EP
Programmer’s Reference Manuals.
NOTE: The MMU can generate an ABT trap for any instruction; this occurs

when the instruction or operand is stored in, or tries to write to, an
address not currently in memory or in a protected memory location.
Some instructions may cause an ABT without themselves causing a
page fault. Only this latter group of instructions are marked as
capable of taking an ABT trap.

5-4 SERIES 32000 INSTRUCTION SET

The following notations are used in the description of the action of the instructions:
OPERATIONS
Operators Definition

replace value on left with value on right.
+ - *' 9 9div
/
mod**

addition, subtraction, multiplication,
division with truncation.
division with rounding toward negative infinity,
modulus (or remainder after “div”).
exponential operator.

AND
NOT(name)
OR
XOR

bit-wise logical AND.
bit-wise complement of name,
bit-wise logical OR.
bit-wise logical exclusive OR.

SIGN(nawe)
BIT(6ase, offset)
FIELD) 6ase, offset, length)

evaluates to sign bit of name,
evaluates to bit at bit address 8*base+offset.
evaluates to field at bit address 8*base+offset;
length is field length in bits.

WORD (address)
DOUBLEWORD (address)
ADDR(name)

word operand from address,
double-word operand from address,
evaluates to address of name.

return address address of next sequential instruction after a
Branch, Jump, Call instruction.

PUSHi(name)
POPz(name)

push argument name, of length i, onto the stack,
pop item, of length i, from the stack into name.

SERIES 32000 INSTRUCTION SET 5-5

TRAPS
Trap Name Taken on
DVZ = Divide by Zero Trap a zero divisor in a Divide, Modulus, Quotient,

Remainder, or Divide Extended Integer
instruction.

ILL = Illegal Instruction
Trap

a Privileged instruction when u=l

UND =Undefined Instruction
Trap

a Memory Management instruction when cfg m=0, or
a Floating-point instruction when cfg f=0,
or any undefined operation codes.

FPU =Floating-Point Error
Trap

a Floating-point instruction on:
Underflow
Overflow
Invalid Division
Illegal Instruction
Reserved Operand
Inexact Result

SVC = Supervisor Trap a Supervisor Call instruction.
FLG = Flag Trap a Flag instruction when f=l.
BPT =Breakpoint Trap a Breakpoint instruction.
ABT = Instruction Abort

Trap
a Page fault.

TRC =Trace Trap instruction completion while in trace mode
(Series 32000 family only)

SLAVE = Slave Trap exceptional condition detected during
slave instruction execution.

OVF = Integer Overflow Trap detected overflow during integer instruction execution
(NS32532, NS32GX32, and NS32GX320 only).

DBG = Debug Trap a condition selected by a DSR bit is detected
(NS32532, NS32GX32, and NS32GX320 only).

5-6 SERIES 32000 INSTRUCTION SET

INTEGER INSTRUCTIONS

5.2 INTEGER INSTRUCTIONS
SYNTAX OPERATIONS FLAGSAFFECTED

Arithmetic Instructions
addi src , d e s t

read.i rmw.i

addci src , d e s t
read.i rmw.i

cmpi s r c l , src2read.i read.i

subi src , d e s t
read.i rmw.i

subci src,
read.i

d e s t
rmw.i

negi src ,
read.i

d e s t
write.i

absi src ,
read.i

d e s t write.i

Add
d e s t := d e s t + srcc := 1 on carry; c := 0 on no carry f := 1 on overflow; f := 0 on no overflow
Add with Carry
d e s t := d e s t + src + c
c := 1 on carry; c := 0 on no carry
f := 1 on overflow; f := 0 on no overflow
Compare
z := 1 if s rc l= src 2 ; z := 0 otherwise
n := 1 if s r c l> sr c 2 ; n := 0 otherwise (signed operands)1 := 1 if s r c l> sr c 2 ; 1 := 0 otherwise
(unsigned operands)
Subtract
d e s t := d e s t - src
c := 1 on borrow; c := 0 on no borrow
f := 1 on overflow; f := 0 on no overflow
Subtract with Borrow
d e s t := d e s t - (src + c)
c := 1 on borrow; c := 0 on no borrow c := 1 on overflow; f := 0 on no overflow
Negate
d e s t := 0 - src
c := 1 on carry; c := 0 on on carry
f := 1 on overflow; f := 0 on no overflow
Absolute Value
if src< 0, then

d e s t := 0 - src; f := 1 on overflow f := 0 on no overflow
else

d e s t := s r c ; f := 0

cf

c
f

zn
1

c
f

c
f

c
f

f

SERIES 32000 INSTRUCTION SET 5-7

H £

INTEGER INSTRUCTIONS (Cont)

SYNTAX OPERATIONS FLAGS TRAPS AFFECTED TAKEN
Arithmetic Instructions

muli src , d e s t Multiply — —

read .i rmw.i
dest := src * dest

divi s r c , d e s t Divide __ DVZread.i rmw.i
if src=0, then TRAP(DVZ) else

d e s t := d e s t DIV src(signed division; d e s t DIV src rounded toward negative infinity)
modi s r c , d e s t Modulus __ DVZ

read.i rmw.i
if src=0, then TRAP(DVZ)
else

d e s t := d e s t - src* (d e s t DIV src)
(signed division; d e s t DIV src rounded toward
negative infinity)

quoi src , d e s t Quotient — DVZ
read .i rmw.i

if src=0, then TRAP(DVZ) else d e s t := d es t/s rc
(signed division; d e s t/s rc round toward zero)

remi s r c , d e s t Remainder __ DVZ
read.i rmw.i

if src=0, then TRAP(DVZ)
else d e s t := d e s t - src* (des t/src)
(signed division; d e s t/s rc rounded toward zero)

Move Instructions
movi s r c , d e s t Move — —

read.i write, i
d e s t := src

movxbw s r c , d e s t Move Sign-Extending Byte to Word — —

read.b write.w
d e s t (low-order byte) := src
d e s t (high-order bits) := SIGN(src)

movxbd s r c , d e s t Move Sign-Extending Byte to Double-Word — —
read.b write.d

d e s t (low-order byte) := src
d e s t (high-order bits) := SIGN(src)

5-8 SERIES 32000 INSTRUCTION SET

INTEGER INSTRUCTIONS (Cont)

SYNTAX OPERATIONS FLAGS
AFFECTED

Move Instructions
movxwd src, d e s tread.w write.d

movzbw src , d e s t
read.b write.w

movzbd src , d e s tread.b write.d

movzwd src, d e s t
read.w write.d

addr src , d e s taddr write, d

Shift Instructions
ashi c ou n t, d e s tread.B rmw.i

lshi cou n t, d e s t
read.Bi rmw.i

roti cou n t, d e s t
read.Bi rmw.i

Move Sign-Extending Word to Double-Word
d e s t (low-order byte) := src
d e s t (high-order bits) := SIGN(src)
Move Zero-Extending Byte to Word
d e s t (low-order byte) := src
d e s t (high-order bits) := 0
Move Zero-Extending Byte to Double-Word
d e s t (low-order byte) := src
d e s t (high-order bits) := 0
Move Zero-Extending Word to Double-Word
d e s t (low-order word) := src
d e s t (high-order bits) := 0
Compute Effective Address
d e s t := ADDR(src)

Arithmetic Shift (Left or Right)
if cou n t< 0, then

d e s t := d e s t shifted right by I cou n t I bits,
emptied bit positions filled from original
sign bit.

else
d e s t := d e s t shifted left by I cou n t I bits,

emptied bit positions filled with zero.
Logical Shift (Left or Right)
if cou n t< 0, then

d e s t := d e s t shifted right by I c o u n t I bits,
emptied bit positions filled with zeroes, else

d e s t := d e s t shifted left by I c o u n t I bits,
emptied bit positions filled with zeroes.

Rotate (Left or Right)
if cou n t< 0, then

d e s t := d e s t shifted right by I cou n t I bits, end-around.
else

d e s t := d e s t shifted left by I cou n t I bits,
end-around.

TRAPS
TAKEN

SERIES 32000 INSTRUCTION SET 5-9

INTEGER INSTRUCTIONS (Cont)

SYNTAX OPERATIONS FLAGSAFFECTED
Logical Instructions

andi s rc , d e s t Logical ANDread.i rmw.i dest := cfest AND src
on s rc , d e s t Logical ORread.i rmw.i dest := cfesi OR src
bid s rc , d e s t Bit Clearread.i rmw.i

eiest := cfesi AND NOT(src)
xori src, d e s t Exclusive OR

read.i rmw.i
d e s t := ciesi XOR src

com* src , d e s t Complement
read.i write.i eiesi := NOT(src)

5-10 SERIES 32000 INSTRUCTION SET

H
 H

QUICK INTEGER INSTRUCTIONS

5.3 QUICK INTEGER INSTRUCTIONS
SYNTAX OPERATIONS FLAGSAFFECTED

movqi src , d e s t Move Quick Integer __
quick write.!
quick d e s t := src

(src sign-extended to d e s t length)
cmpqi srcl, src 2 Compare Quick Integer zquick read.i n

quick z := 1 if src2=srcl; z := 0 otherwise
n := 1 ifsrc2<srcl; n := 0 otherwise (signed operands)1 := 1 ifsrc2<srcl; 1 := 0 otherwise (unsigned operands)
(srcl sign-extended to src2 length)

1

addqi src , d e s t Add Quick Integer cquick rmw.i fquick d e s t := d e s t + src
c := 1 on carry; c := 0 on no carry
f := 1 on overflow; f := 0 on no overflow
(src sign-extended to d e s t length)

SERIES 32000 INSTRUCTION SET 5-11

H E-<

EXTENDED INTEGER INSTRUCTIONS

5.4 EXTENDED INTEGER INSTRUCTIONS
SYNTAX OPERATIONS FLAGS TRAPSAFFECTED TAKEN

meii src ,
read i d e s t rmw ,2i

Multiply Extended Integer
d e s t := src * (d e s t mod 2**i) (unsigned operands) (low-order half of d e s t)

deii s r c ,
read.i

d e s t
rmw ,2 i

Divide Extended Integer
d e s t := (d e s t div src) * 2**i + d e s t mod src

— DVZ

(unsigned operands)

5-12 SERIES 32000 INSTRUCTION SET

BOOLEAN INSTRUCTIONS

5.5 BOOLEAN INSTRUCTIONS
SYNTAX OPERATIONS FLAGSAFFECTED TRAPSTAKEN

noti src,
read .i

d e s t
write.! NOT

d e s t := src XOR 1
— —

s {c o n d } i d e s twrite.! Save Condition Code as a Boolean
if cond, then
d e s t := 1 else,
d e s t := 0

SERIES 32000 INSTRUCTION SET 5-13

BIT INSTRUCTIONS

5.6 BIT INSTRUCTIONS
SYNTAX OPERATIONS FLAGSAFFECTED

tbiti offset, b aseread.; regaddr

sbit [i]i offset, baseread.; regaddr

cbit [i]i offset, baseread.i regaddr

ibiti offset, b ase
read.i regaddr

Test Bit
f := BIT(feose, offset)

Set Bit
f := BITfbase, offset)
BIT(iase, offse t) := 1
Clear Bit
f := BIT(6ase, offset)
BIT(feose, o ffse t) := 0
Invert Bit
f := BIT(6ase, offset) BIT(fcose, offset)
:= NOT|BIT(fcase, offset)]

cvtp offset, b a se , d e s t Convert to Bit Pointer
reg addr write.dreg d e s t :=(8 *ADDR(base) + offset) mod 2**32

ffsi base , o ffset
readi rmw.B

Find First Set Bit
if (offset< 0 or o ffse t> \en g th in bits of base),

then operation is undefined else
j := offsetwhile (j < length of b ase and BIT (ba se j) = 0)

do j := j+1
if j = length of b a se then f := 1 ; offset := 0 else

f := 0 ; offset := j

f

f

f

f

f

5-14 SERIES 32000 INSTRUCTION SET

TRAPSTAKEN

BIT FIELD INSTRUCTIONS

5.7 BIT FIELD INSTRUCTIONS
SYNTAX OPERATIONS FLAGSAFFECTED TRAPSTAKEN

exti offset,regreg
b ase ,regaddr d e s t, len g th write./ disp Extract Field

d e s t := FIELDffca.se, offset, le n g th)
— —

extsii base ,
regaddr

d e s t ,
write./ offse t,len g th

immcons3,cons5
Extract Field Short
d e s t := FIELD(b ase , o ffse t, le n g th)

— —

ins i o ffset,regreg
src ,
read .i b ase , len g th regaddr disp disp

Insert Field
FIELD(fcase, offse t, len g th) := src

— —

inssi src ,
read./

base ,
regaddr offse t,len g th imm

cons3,con5
Insert Field Short
FIELDffcase, offse t, len g th) := src

— —

SERIES 32000 INSTRUCTION SET 5-15

STRING INSTRUCTIONS
5.8 STRING INSTRUCTIONS

SYNTAX OPERATIONS FLAGSAFFECTED
movsi P > [.]] M w] Move String

s tr in g 2 := s t r in g lf:=l if until/while condition is met; f:=0 otherwise

f —

movst w] Move String with Translation
s tr in g 2 := tra n s la te -s tr in g
f:=l if until/while condition is met; f:=0 otherwise

f —

cmpsi w] Compare String
f:=l if until/while condition is met; f:=0 otherwise
z:=l if s t r in g l= s tr in g 2 and f=0; else z:=0 n:=l if s t r in g 2 < s tr in g l and f=0; else n:=0
1:=1 if s tr in g 2 < s t r in g l and f=0; else 1:=0

z —
n
1
f

cmpst [b [>]] M w] Compare String with Translation
f:=l if until/while condition is met; f:=0 otherwise z:=0 if translate-string?tstring2 and f=0; z:=0 otherwise
n:=l if translate-string>stnng2 and f=0; n:=0 otherwise
1:=1 if translate-string>strmg2 and f=0; 1:=0 otherwise

z — n
1
f

skpst [b [>]] [u 1 w] Skip String
f:=l if until/while condition is met; f:=0 otherwise

f —

skpst [b [>]] [u 1 w] Skip String with Translation
f:=l if until/while condition is met; f:=0 otherwise

f —

The flags b, w, and1 u are optional. The u and w flags are mutually exclusive. The comma is
required whenever both b and either u or w are specified.

5-16 SERIES 32000 INSTRUCTION SET

H £

BLOCK INSTRUCTIONS
5.9 BLOCK INSTRUCTIONS

SYNTAX OPERATIONS FLAGSAFFECTED
movmi block 1 , b lock2 , len g th Move Multiple —

addr addr dispcons4 block2 := b lo c k t

cmprru b lo c k t, b lock2 , len g th Compare Multiple zaddr addr disp
cons4 z:=l if b lo c k t =b lock2; else z:=0

n:=l if block t> b lo ck 2 \ else n:=0 (signed integers)1:=1 if b lo c k l> b lo c k 2 ; else 1:=0 (unsigned integers)

n
1

SERIES 32000 INSTRUCTION SET 5-17

PACKED DECIMAL INSTRUCTIONS

5.10 PACKED DECIMAL INSTRUCTIONS
SYNTAX OPERATIONS FLAGSAFFECTED

addpi s r c , d e s t Add Packed Decimal Creadi rmw .i
d e s t := d e s t + src + c f
c := 1 on carry; c := 0 on no carry f := 0

subpi s r c , d e s t Subtract Packed Decimal c
readi rmw .i

d e s t := d e s t - s rc - c
c := 1 on borrow; c := 0 on no borrow f := 0

f

5-18 SERIES 32000 INSTRUCTION SET

ARRAY INSTRUCTIONS
5.11 ARRAYINSTRUCTIONS

SYNTAX OPERATIONS FLAGSAFFECTED TRAPSTAKEN
indexi a ccu m ,regreg

len g th ,read.i in dexread.i Calculate Array Index
a ccu m := (len g th + 1)*accum + in dex

— —

checkt d e s t,reg
reg

b ou n d s,
addr

src
read.i Check Array Index

if b ou n d s(u p p er) > = src > = b o u n d s(lo w e r)
then,

f

d e s t := src - b ou n d s(lo w er)
f := 0else;
d e s t := undefined
f := 1

SERIES 32000 INSTRUCTION SET 5-19

PROCESSOR CONTROL INSTRUCTIONS

5.12 PROCESSOR CONTROL INSTRUCTIONS
SYNTAX OPERATIONS FLAGSAFFECTED

Direct and Conditional Jumping
jump dest

addr
Jump
pc := ADDR(dest)

b \con d} d ispshort destdisp
label

Conditional Branch
if cond, then pc := pc + d isp

—

br dest
displabel

Unconditional Branch
pc := pc + d isp

—
"

casei indexread.i
Case Branch
pc := pc + index (signed index)

acbi inc,
quick
quick

index,
rmw .i

d es t
disp
label

Add, Compare, and Branch
index := index + inc
if index < > 0, then pc := pc + d isp

Subroutine and Procedures
jsr d est Jump to Subroutine — —

addr PUSHD(retum address)
pc := ADDR(dest)

bsr dest Branch to Subroutine — —

disp
label PUSHD(retum address)

pc := pc + d isp

ret constan t Return from Subroutine — —

d isp POPD(pc)
sp := sp + con stan t

exp con stan t Call External Procedure — —

disp
external sp := sp - 2

PUSHW(mod)
PUSHD(return address) temp := DOUBLEWORD

(DOUBLEWORD(mod+4)
+constant)

mod := WORD(temp)
sb := DOUBLEWORD(mod+0)
pc := DOUBLEWORD(mod+8)

+ W0RD(temp+2)

5-20 SERIES 32000 INSTRUCTION SET

H
H

PROCESSOR CONTROL INSTRUCTIONS (Cont)

SYNTAX OPERATIONS FLAGS TRAPSAFFECTED TAKEN
Subroutine and Procedures
cxpd d esc

addr

rxp c o n s ta n t
d isp

Service Return
rett c o n s ta n t

d isp

reti

Call External Procedure with Descriptor
sp := sp - 2 PUSHW(mod)
PUSHD(retum address) mod := WORD)descriptor)
sb := DOUBLEWORD(mod+0)
pc := DOUBLEWORD(mod+8)+ WORD(d escrip to r+2)
Return from External Procedure
POPD(pc)
POPW(mod)
sb := DOUBLEWORD(mod+0) sp := sp + c o n s ta n t + 2

Return from Trap § all
if u=l, then TRAP(ILL) else

POPDipc)
POPW(mod)
POPW(psr)
sb := DOUBLEWORIXmod) sp := sp + c o n s ta n t

Return from Interrupt § all
if u=l, then TRAP(ILL) else,POPEXpc)

POPW(mod)
POPW(psr)
sb := DOUBLEWORIXmod)

ILL

ILL

SERIES 32000 INSTRUCTION SET 5-21

PROCESSOR SERVICE INSTRUCTIONS

5.13 PROCESSOR SERVICE INSTRUCTIONS
SYNTAX

Register/Stack Manipulation
OPERATIONS FLAGSAFFECTED TRAPSTAKEN

adjspi src
read .i Adjust Stack Pointer

sp := sp - src (src is signed) S bit specifies current sp
bicpsr{b | w} src

read, {b | w}
Bit Clear in psr § if w len g th

if bicpsrw and u=l, then TRAP(ILL) eise,psr := psr AND NOT(src)

all ILL

bispsrjb | w} src
read, {b | w}

Bit Set in psr § if w len g th

if bispsrw and u=l, then TRAP(ILL)
eise,psr := psr OR src

all ILL

save re g lis t
imm
reglist

Save General Purpose Registers
for each register rn in re g lis t,

PUSHD(rn)in numerical order.
restore re g lis t

immreglist
Restore General Purpose Registers
for each register rn in r e g lis t,POPD(rn) in reverse numerical order.

enter r e g lis t,
imm
reglist,

c o n s ta n t
disp
disp

Enter New Context
PUSHD(fp)
fp := spsp := sp - c o n s ta n t
for each register rn in r e g lis t, PUSHD(rn) in numerical order.

exit re g lis t
imm
reglist

Exit Context
for each register rn in r e g lis t,

POPD(rn) in reverse numerical order.
SP := fpPOPD(fp)

lpri procreg ,
short
procreg

src
readi

Load Processor Register § if psr or intbase
if u=l and ((p rocreg=psr) or

all ILL

(procreg=intbase)) then TRAP(ILL)eise p ro c reg := src
(S bit specifies current sp)(all flags affected if p ro creg = psr or upsr)

5-22 SERIES 32000 INSTRUCTION SET

PROCESSOR SERVICE INSTRUCTIONS (Cont)

SYNTAX OPERATIONS FLAGSAFFECTED
Register/Stack Manipulation
spri p ro creg , d e s tshort write.iprocreg

setcfg c fg lis t
short cfglist

Exceptions
bpt

svc

flag

Miscellaneous
nop

wait

di a

Store Processor Register § if psr or intbase
if u=l and ((procreg=psr) or (procreg=intbase)) then TRAP(ILL) else d e s t := p rocreg
(s bit specifies current sp)
Set Configuration Register §
if u=l, then TRAP(ILL) else cfg := short

Breakpoint Trap
TRAP(BPT)
Supervisor Call Trap
TRAP(SVC)
Flag Trap
if f=l, then TRAP(FLG)

No Operation
pc := pc + 1
Wait for Interrupt
pc := pc + 1
Wait until next interrupt
pc := pccycle infinite loop until an interrupt occurs

TRAPSTAKEN

ILL

BPT

SVC

FLG

SERIES 32000 INSTRUCTION SET 5-23

MEMORY MANAGEMENT INSTRUCTIONS

5.14 MEMORY MANAGEMENT INSTRUCTIONS
SYNTAX OPERATIONS FLAGSAFFECTED TRAPSTAKEN

lmr m m u reg ,
short srcread.d Load MMU Register — UND*ILL**
mmureg m m u reg := src

smr m m u reg ,short d e s twrite.d Store MMU Register — UND*ILL**
mmureg d e s t := m m u reg

rdval src
addr

Validate Address for Reading §
if ADDRESS(src) in User mode may be read,

f := 0 else
f := 1

f UND*
ILL**ART***

wrval d e s taddr Validate Address for Writing §
if ADDRESS(ciesi) in User mode may be written to,
then f := 0
else f := 1

f UND*ILL**ART***

movsui src ,addr d e s taddr Move Value from Supervisor to User Space §
d e s t := src
(src is in supervisor space; d e s t in user space)

UND*ILL**

movusi src ,
addr

d e s t
addr

Move Value from User to Supervisor Space §
d e s t := src
(src is in user space; d e s t in supervisor space)

UND*
ILL**

* TRAP(UND) if m bit in cfg is 0.
** TRAP(ILL) if u flag in p s r is 1.

*** TRAP(ABT) if level 1 page table address invalid.

5-24 SERIES 32000 INSTRUCTION SET

NS32081 FLOATING-POINT INSTRUCTIONS

5.15 NS32081 FLOATING-POINT INSTRUCTIONS
SYNTAX OPERATIONS FLAGSAFFECTED TRAPSTAKEN

mo v/ src , read./ d e s twrite./ Move Floating-Point
dest := src

— UND*

movlf src ,read.l
d e s t
write.f Move Long Floating to Floating

dest. f := src.l fsr:tt
uf
if

UND*FPU

movfl src ,
read.f

d e s t
write.l Move Floating to Long Floating

dest.l := src.f fsr:tt
UND*
FPU

mo\ i f src ,
read.i

d e s t
write./ Move Integer to Floating-Point

d es t. f := src .i
fsr:ttif

UND*
FPU

round/i src ,
read./

d e s t
write, i Round Floating-Point to Integer

(round to even) fsr:tt
if

UND*
FPU

d e s t .i := s r c .f
If overflow, then TRAP(FPU)
(s rc .f rounded to nearest integer, or
to nearest even integer if a tie)

trunc/i src , read./ d e s t write, i Truncate Floating-Point to Integer
d e s t .i := s r c .f
if overflow, then TRAP(FPU)
(s rc .f rounded toward zero)

fsr:tt
if

UND*FPU

floor/i src , read./
d e s t
write.l Floor Floating-Point to Integer

d e s t .i := s r c .f
if overflow, then TRAP(FPU)
(round s r c .f toward negative infinity)

fsr:tt
if

UND*
FPU

add/ src , read./ d e s trmw./ Add Floating-Point
d e s t := d e s t + src

fsr:tt
uf
if

UND*FPU

sub/ src , read./
d e s t rmw./ Subtract Floating-Point

d e s t := d e s t - src
fsr:tt

uf
if

UND*
FPU

SERIES 32000 INSTRUCTION SET 5-25

NS32081 FLOATING-POINT INSTRUCTIONS (Cont)
SYNTAX OPERATIONS FLAGSAFFECTED

mul/' src , read / d e s t rmw / Multiply Floating-Point
d e s t := d e s t * src

fsr:tt
ufif

di\ f src , read / d e s t rmw / Divide Floating-Point
if src=0, then TRAP(FPU) else d e s t := d e s t / src

fsr:ttufif
cmp/ s r c l ,

read /
src2
read/

Compare Floating-Point
z := 1 if s rc 2 = src l; else z := 0 n := 1 if s r c 2 < s r c l ; else n := 0
1 := 0 (always)

z
n1fsr:tt

negf src ,
read /

d e s t
write/

Negate Floating-Point
d e s t := 0 - src(src sign bit complemented)

fsr:tt

absf src , read / d e s twrite/
Absolute Value of Floating-Point
if src< 0,

d e s t := 0 - src if src>=0,
d e s t := src

fsr:tt

lfsr src
read.d

Load fsr
fsr := src

fsr:all

sfsr d e s t
write.d

Store fsr
d e s t := fsr

—

* TRAP(UND) if f bit in cfg is 0.

TRAPSTAKEN
UND*FPU

UND*FPU

UND*
FPU

UND*
FPU

UND*FPU

UND*

UND*

5-26 SERIES 32000 INSTRUCTION SET

NS32181 and NS32381 FLOATING-POINT INSTRUCTIONS

5.16 NS32181and NS32381 FLOATING-POINT INSTRUCTIONS
SYNTAX OPERATIONS FLAGS TRAPSAFFECTED TAKEN

movf s r c ,
read / d e s twrite./ Move Floating-Point

d e s t := src

UND*

movlf src ,read.l d e s t write.f Move Long Floating to Floating
d e s t . f := src.l fsr:tt

uf
if

UND*FPU

movfl src ,read.f d e s twrite.] Move Floating to Long Floating
d e s t . 1 := src.f fsr:tt

UND*FPU

movi/ src ,readi d e s t
write./ Move Integer to Floating-Point

d e s t . f := src .i
fsr:tt

if
UND*FPU

roundfi. src , d e s t Round Floating-Point to Integer __ UND*read / write.i (round to even)

d e s t .i := s r c .fIf overflow, then TRAP(FPU)
(s rc .f rounded to nearest integer, or
to nearest even integer if a tie)

fsr:tt
if FPU

trunc/i src ,
read/

d e s t
write.i Truncate Floating-Point to Integer

d e s t .i := s r c .f
if overflow, then TRAP(FPU)
(s rc .f rounded toward zero)

fsr:tt
if

UND*
FPU

floor/i src ,
read / d e s t

write.i Floor Floating-Point to Integer
d e s t .i := s rc .f
if overflow, then TRAP(FPU)

fsr:ttif
UND*FPU

(round s r c .f toward negative infinity)

SERIES 32000 INSTRUCTION SET 5-27

NS32181 and NS32381 FLOATING-POINT INSTRUCTIONS(Cont)

SYNTAX OPERATIONS FLAGS TRAPS
AFFECTED TAKEN

add/ src , d e s t Add Floating-Point __ UND*
read./ rmw./ fsr:tt FPU

dest := dest + src ufif
sub/ src, d e s t Subtract Floating-Point ___ UND*read./ rmw./ fsr:tt FPUdest := dest - src ufif
mul/ src, d e s t Multiply Floating-Point ___ UND*

read./ rmw./ fsr:tt FPU
dest := dest * src uf

if
div/ src , d e s t Divide Floating-Point ___ UND*

read./ rmw./ fsr:tt FPU
if src=0, then TRAP(FPU) uf
else dest := dest / src if

cmp/ s r c l , src2 Compare Floating-Point z UND*
read./ read./

z := 1 if s r c 2 = s r c l\ else z := 0
n
1

FPU
n := 1 if s r c 2 < s r c l; else n := 0 fsr:tt
1 := 0 (always)

neg/ src , d e s t Negate Floating-Point — UND*
read./ write./ dest := 0 - src(src sign bit complemented)

fsr:tt FPU

abs/ src , d e s t Absolute Value of Floating-Point __ UND*
read./ write./

if src<0,
dest := 0 - src if src>=0,

fsr:tt FPU

dest := src
lfsr src Load fsr ___ UND*

read.d fsr := src
fsr:all

sfsr d e s t Store fsr ___ UND*
write.d dest := fsr

5-28 SERIES 32000 INSTRUCTION SET

NS32181 and NS32381 FLOATING-POINT INSTRUCTIO NS^ ont)

SYNTAX OPERATIONS FLAGSAFFECTED TRAPSTAKEN
scalb/ src , read./ d e s t rmw./ ciest := d e s t * 2 ^

src = in teg er
fsr:all UNDFPU

logb/ scr , read./ d e s twrite./ d e s t := unbiased exponent of src fsr:all UNDFPU
dot/ src ,

read./
dest
read./ Scalar Product

fO := (src * d e s t) + ft) fsr:all UND
FPU

p°iy/ src , read./
dest
read./ Polynomial Step fO := (fO * src) + d e s t fsnall UNDFPU

* TRAP(UND) if f bit in cfg is 0.

SERIES 32000 INSTRUCTION SET 5-29

NS32580 FLOATING-POINT INSTRUCTIONS

5.17 NS32580 FLOATING-POINT INSTRUCTIONS
SYNTAX OPERATIONS FLAGSAFFECTED

TRAPSTAKEN
mo\ f src , read / d e s twrite/ Move Floating-Point

d e s t := src
— UND*

movlf src ,read.l d e s twrite.f Move Long Floating to Floating
d e s t . f := src.l fsr:ttuf

if

UND*FPU

movfl src ,read.f d e s twrite.l Move Floating to Long Floating
d e s t . 1 := src.f fsr:tt

UND*FPU

mo\ i f src ,
read.i

d e s t
write/

Move Integer to Floating-Point
d e s t . f := src .i

fsr:tt
if

UND*
FPU

round/i src , read /
d e s t
write.i

Round Floating-Point to Integer
(round to even) fsr:tt

if
UND*FPU

d e s t .i := s r c .fIf overflow, then TRAP(FPU)
(s r c .f rounded to nearest integer, or
to nearest even integer if a tie)

truncfi src ,
read /

d e s t
write.i

Truncate Floating-Point to Integer
d e s t .i := s r c .fif overflow, then TRAP(FPU)
(s rc .f rounded toward zero)

fsr:tt
if

UND*
FPU

floorfi src , read /
d e s twrite.i Floor Floating-Point to Integer

d e s t .i := s r c .f
fsr:ttif

UND*FPU
if overflow, then TRAP(FPU)
(round s r c .f toward negative infinity)

5-30 SERIES 32000 INSTRUCTION SET

NS32580 FLOATING-POINT INSTRUCTIONS (Cont)

SYNTAX OPERATIONS FLAGSAFFECTED TRAPSTAKEN
addf src, read / d e s t rmw / Add Floating-Point

dest := dest + src fsr:ttufif

UND*FPU

sub f src , read / d e s t rmw / Subtract Floating-Point
cfes£ := d e s t - src

fsr:tt
uf
if

UND*FPU

mul/1 src ,
read /

d e s t
rmw / Multiply Floating-Point

c?es< := c?est * src fsr:ttuf
if

UND*
FPU

div/ src ,
read/

d e s t
rmw/ Divide Floating-Point

if src=0, then TRAP(FPU)
else dest := dest / src

fsr:tt
ufif

UND*
FPU

cmp/ s r c l , read /
src2 read / Compare Floating-Point

z := 1 if s rc 2 = src l; else z := 0
n := 1 if s r c 2 < s r c l\ else n := 0 1 := 0 (always)

z
n
1fsr:tt

UND*
FPU

negf src,
read /

d e s t
write/

Negate Floating-Point
dest := 0 - src
(src sign bit complemented)

fsr:tt
UND*
FPU

abs/ src ,
read /

d e s t
write/

Absolute Value of Floating-Point
if src<0,

d e s t := 0 - src
if src>=0, dest := src

fsr:tt UND*
FPU

lfsr src
read.d

Load fsr
fsr := src fsr:all UND*

sfsr d e s t
write.d Store fsr

dest := fsr
— UND*

macf src ,
read /

d e s t
read / move(genl!'‘gen2)+ll/fl

to ll/fl with two rounding errors
UNDFPU

sqrtf scr ,
read /

d e s t
write/

move the square root
if float to long Float

UND
FPU

*TRAP(UND)if f bit in cfe is 0.

SERIES 32000 INSTRUCTION SET 5-31

NS32532 INSTRUCTIONS

5.18 NS32532 INSTRUCTIONS
The NS32532 supports the full Series 32000 instruction set, as described in Sections
5.2 through 5.13.
The NS32532 also contains four registers dedicated for debugging functions:

Debug Condition Register (der)
Debug Status Register (dsr)
Compare Address Register (car)
Breakpoint Program Counter (bpc)

These registers are accessed using privileged forms of the lpr and spr instructions.
The NS32532 supports a privileged Cache Invalidation (cinv instruction and privileged
access to the following dedicated registers using the lpr and spr instructions: cfg,
usp(spl), der, dsr, car, and bpc.

SYNTAX OPERATION
FLAGSAFFECTED TRAPSTAKEN

cinv [options],* sre
gen

read.d
Cache Invalidated ILL

lpri procreg,**
short

sre
gen

read.i
Load Processor Register — ILL

spri procreg,**
short

dest
gen

write.i
Store Processor Register — ILL

* options are specified by listing the letters a, i or d separated by comma(s) within
brackets.

** procreg can be the user stack pointer (usp or spl), configuration register (cfg), and
the debug registers in addition to the processor registers supported by the NS320xc
and NS32332.

5-32 SERIES 32000 INSTRUCTION SET

NS32CG16 and NS32CG160 INSTRUCTIONS

5.19 NS32CG16 and NS32CG160 INSTRUCTIONS
In addition to supporting the full Series 32000 instruction set (as described in Sections
5.2 through 5.13), the NS32CG16 and NS32CG160 support the following instructions:

SYNTAX
bb{ and I or I xor I stod) [da I ia [,]] [s I -s]
bbfor
bitwit
extblt

movmpi
tbits (0 I 1)
sbits
sbitps

Note that the following instructions
NS32CG160:

OPERATIONS
Bit-aligned block transfer
Bit-aligned block transfer
Bit-aligned word transfer
External bit-aligned block transfer
Move multiple pattern
Test bit string
Set bit string
Set bit string perpendicular

are not available in the NS32CG16 and

FLAGSAFFECTED TRAPS

f,l,n,z
f

Instruction Purpose
lmr Load MMU register
smr Store MMU register
rdval Validate address for reading
wrval Validate address for writing
movsm Move value from supervisor to user space
movusi Move value from user to supervisor space

For the NS32CG160, the setcfg instruction accepts the de (direct exception)
configuration operand.

SERIES 32000 INSTRUCTION SET 5-33

NS32GX32 and NS32GX320 INSTRUCTIONS

5.20 NS32GX32 and NS32GX320 INSTRUCTIONS
The NS32GX32 and the NS32GX320 support the same instruction set as the NS32532
(Section 5.18), except for the following instructions which are not supported:

Instruction Purpose
lmr Load MMU register
smr Store MMU register
rdval Validate address for reading
wrval Validate address for writing
movsui Move value from supervisor to user space
movusi Move value from user to supervisor space

In addition, the m configuration option of the setcfg instruction is not supported.
For the NS32GX320, four new DSP instructions are supported:

SYNTAX OPERATIONS FLAGS
AFFECTED

TRAPS
TAKEN

MULWD src ,read.u;
d e s t
rmw D

Multiply word to double — —

MACTD s r c l ,
readT)

src2
read.P

Multiply and accumulate twice double
if s r c l = (A2,Al), src2 = (B2,Bl)
then RO := RO + A1*B1 + A2*B2

OVF

CMACD s r c l ,readJD src2read.D
Complex multiply double and accumulate twice
if s r c l = (A2,Al), src 2 = (B2,Bl)
then RO := RO + Al*Bl - A2*B2
and Rl := Rl + A1*B2 + A2*Bl

OVF

CMULD s r c l ,
read D src2 read .D

Complex multiply double — OVF
if s r c l = (A2,A1), src2 = (B2,B1)
then RO := Al*Bl-A2*B2
and Rl := A1*B2 + A2*Bl

5-34 SERIES 32000 INSTRUCTION SET

NS32FX16 INSTRUCTIONS

5.21 NS32FX16 INSTRUCTIONS
In addition to supporting the full Series 32000 instruction set (as described in Sections
5.2 through 5.14), the NS32FX16 supports the following instructions:

SYNTAX FLAGSOPERATIONS AFFECTED TRAPS
bb{ and I or I xor I stod) [da I ia [,]] [s I -s] Bit-aligned block transfer
bbfor Bit-aligned block transfer — —
bitwit Bit-aligned word transfer — —
extblt External bit-aligned block

transfer — —
movmpi Move multiple pattern — —
tbits (Oi l) Test bit string f,l,n,z —
sbits Set bit string f —
sbitps Set bit string perpendicular — —

Note that the following instructions are not available in the NS32FX16:

Instruction Purpose
lmr Load MMU register
smr
rdval
wrval

Store MMU register
Validate address for reading
Validate address for writing

movsui Move value from supervisor to user space
movusi Move value from user to supervisor space

SERIES 32000 INSTRUCTION SET 5-35

Chapter 6
GNX ASSEMBLER DIRECTIVES

6.1 INTRODUCTION
Directives are commands to the assembler which allow the programmer to control the
assembler in its generation of object code and production of listings.
The GNX Assembler directives are divided into functional groups as follows:

Directive Function Section
Symbol Creation
Data Generation
Storage Allocation
Listing Control
Linkage Control
Segment Control
Module Table
Filename
Symbol Table
Line Number Table
Macro Support
Procedure Support

Assigns a name, type, and value to a symbol.
Initializes a block of memory with constant
values.
Reserves a block of memory for data storage.
Controls format of program listings.
Exports and imports data and procedures.
Defines physical or logical image segments.
Manages the task of building a module table.
Names the source file.
Specifies symbol table entry data.
Specifies a line number table entry.
Provides macro and conditional assembly support.
Provides an easy method of writing assembly
procedures.

Section 6.2
Section 6.3
Section 6.4
Section 6.5
Section 6.6
Section 6.7
Section 6.8
Section 6.9
Section 6.10
Section 6.11
Section 6.12
Section 6.13

The remainder of this chapter will discuss these directives in detail.

GNX ASSEMBLER DIRECTIVES 6-1

SYMBOL CREATION DIRECTIVE

6.2 SYMBOL CREATION DIRECTIVE
The symbol creation directive causes the assembler to compute the value of an expres­
sion and assign that value to a symbol name.

Directive Function
. s e t creates a symbol name

6-2 GNX ASSEMBLER DIRECTIVES

6.2.1 .set

Syntax:

where:

Description:

Example:

.set

. s e t symbol, expression

. s e t is the directive name.
symbol is a symbol name. It consists of a series of characters.

The characters may be letters, numbers, period (.), or
underscore (_). The first character must not be a
number.

expression is a constant or an expression. It may evaluate to any
type.

The . s e t directive causes the GNX Assembler to compute the value of
the expression and assign this value to the symbol name. The expression
may evaluate to any type except undefined, refer to Section 2.7. The
expression may not be of type external (undefined), not forward refer­
ence.
For each symbol defined with the . s e t directive, the GNX Assembler
enters the symbol name and value in its internal symbol table. The
symbol may then be used in expressions in subsequent portions of the
assembly.

1 . s e t SYMBA, 5
2 . s e t SYMBB, LABELA + SYMBA
3 . s e t SYMBC, ' A '

Line 1 defines the symbol SYMBA and assigns it the value 5.
Line 2 defines the symbol SYMBB and assigns it the value of
LABELA+SYMBA. If SYMBA has the value 5, then SYMBB is assigned
the value of LABELA+5 and the type of LABELA.
Line 3 defines the symbol SYMBC and assigns it the value of the 'A'
expression. Note that only single character constants may be used in
expressions (refer to Section 2.7.2).

GNX ASSEMBLER DIRECTIVES 6-3

DATA GENERATION DIRECTIVES

6.3 DATA GENERATION DIRECTIVES
The data generation directives place constant data in the instruction stream during
assembly-time. These are the following data generation directives:

Directive Function
. a s c i i assigns ASCII encoded textual data
. b y t e assigns byte-long data
. w o r d assigns word-long data
. d o u b l e assigns double word-long data
. f l o a t assigns single-precision floating-point number
. l o n g assigns double-precision floating-point number
. f i e l d assigns bit field
. x p d assigns external procedure descriptor
. x d d assigns external data descriptor

Each of the above directives places one or more bytes of data in the object code of the
program currently assembling. Data generation directives may be specified only in
Program Code segments where data is written to the object file {i.e., when the location
counter is in the text segment, the data segment, the static segment, or the link seg­
ment).
All the numeric data generation directives, i.e., all directives listed except . f i e l d ,
. a s c i i , . xpd, and .xdd, have the following form:

[label]d irective({ [[repetition-factor] ^expression | s tr in g }) ,,,

The directive stores the expression value in the instruction stream. If a repetition-
factor is specified, the directive stores the expression value in consecutive locations as
specified by the repetition-factor. A label is optional.
The . b y t e , .wo rd , . d o u b l e , . f l o a t , and . l o n g directives may specify one or
more expressions. Multiple expressions must be separated by commas. Each expression
is evaluated and stored in the number of bytes specified by the directive. An expression
must evaluate to an absolute value within the range specified by the directive, but
expressions for the . l o n g and . f l o a t directives should evaluate to a long value.
(The assembler evaluates all floating-point expressions as long floating-point numbers.
If necessary, the result is then converted to a single-precision floating-point value.) If
no expression is specified, the GNX Assembler issues an error message and terminates
code generation.
A repetition-factor may be any expression which evaluates to a positive absolute value.
The repetition-factor expression may use symbolic values, but no forward symbol refer­
ences are allowed.
6-4 GNX ASSEMBLER DIRECTIVES

DATA GENERATION DIRECTIVES (Cont)

Packed Decimal numbers may be generated using the .byte, .word, and .double
directives. A Packed Decimal is created by specifying it as a hexadecimal constant.
For example, .word H' 1289 creates the Packed Decimal number 1289.
The .byte, .word, and .double directives may be used for both signed and
unsigned numbers.

GNX ASSEMBLER DIRECTIVES 6-5

.ascii

6.3.1 .ascii

Syntax:

where:

Description:

Example:

[label] .a s c i i "string"

label is an optional label.
.a s c i i is the directive name.
"string” specifies a string constant. The string must not con­

tain an embedded new-line. The user may use the
escape sequence "\n" to enter a new-line into a string
constant.

The .ascii directive generates textual data. The GNX Assembler
places the text in the instruction stream at the current address specified
by the location counter. The assembler stores the ASCII value of each
character in the string in one byte, placing the first character of the
string at the lowest byte address and the last character of the string at
the highest byte address. Unprintable ASCII characters may be
included via the escapes defined in Section 2.4.3. No special string ter­
minator is implied or inserted by the assembler.

1
2 D00000000

3 D00000018

4572726f
723a2075
6e6b6e6f
776e2063
6f6d6d61
6e642e0a
55736167
653a206c
69737420
5b2d7464
72785d20

.data

.ascii "Error: unknown command.\n"

.ascii "Usage: list [-tdrx]

6-6 GNX ASSEMBLER DIRECTIVES

.a scii (Cont)

Line 2 places the ASCII character string “Error: unknown command.”
followed by a new-line character (\n) in consecutive bytes beginning at
address 0 of the data segment.
Line 3 places the character string “Usage: list [-tdrx]” in consecutive
bytes starting at address 00000018 in the data segment.

GNX ASSEMBLER DIRECTIVES 6-7

.byte

6.3.2 .byte

Syntax: [la b e l] .byt e ({ [[re p e titio n -fa c to r]] expression \ s tr in g }) ,, ,

where: label is an optional label.
. byte is the directive name.
[repetition-factor]

(optional) specifies the number of occurrences of the
specified data byte. It must be an expression which
evaluates to a positive absolute value. If the
repetition-factor is specified, it must be enclosed in “[]”
brackets.
specifies the data byte value. This value must be in
the range of-128 to 255.
specifies a string constant. The assembler issues a
warning if the string contains an embedded new-line.
Therefore, it is preferable to use the “\n ” escape
sequence.

Description: The .byte directive generates one or more byte constants. The GNX
Assembler places the constants in the instruction stream at the current
address specified by the location counter. If multiple constants are
specified {e.g., repetition-factor is greater than one or more than one
expression is given), the constants are stored in consecutive bytes begin­
ning at the current address.
If a string is specified, the assembler places the string, starting with the
first character in the string, in one or more bytes beginning at the
current address. The assembler stores the ASCII value of each charac­
ter in the strin g in one byte. Character constants appearing as terms in
the expression are converted to integers (see Section 2.7.2, Rule 5).

expression

strin g

6-8 GNX ASSEMBLER DIRECTIVES

.byte (Cont)

Example: 1 T00000000 8 1 .byte 129
2 T00000001 03030303

03
.byte [5] 3

3 T00000006 414243 . byte " A B C "
4 T00000009 034142 .byte 3,"AB "
5 TOOOOOOOc 2202 .byte 7 7 3 , 7 7 ' 3 '
6 TOOOOOOOe 8 1 .byte -127

Line 1 places 81 in a byte at address 000000 of the text segment.
Line 2 places 3 (repeated 5 times) in five consecutive bytes starting at
address 000001 in the text segment.
Line 3 places the ASCII values of “ABC” in three consecutive bytes
starting at address 000006 in the text segment.
Line 4 places 3 in the byte at address 000009 in the text segment fol­
lowed by the ASCII values of “AB” in two consecutive bytes.
Line 5 places the value of the expressions T /3 and TT3' in consecutive
bytes beginning at address 00000C in the text segment. The value of
T/3 (0x22) is first, followed by the value of T /'3 ' (0x02).
Line 6 places 81 in a byte at address 00000E in the text segment.

GNX ASSEMBLER DIRECTIVES 6-9

.w ord

6.3.3 .word

Syntax: [la b e l] .word ({ [[repetition-factor]] expression | s tr in g }) ,, ,

where: label is an optional label.
.word is the directive name.
[repetition-factor]

(optional) specifies the number of occurrences of the
specified data word. It must be an expression which
evaluates to a positive absolute value. If the
repetition-factor is specified, it must be enclosed in
“[]” brackets.

expression specifies the data word value. It must evaluate to an
absolute value within the range of-32768 to 65535.

strin g specifies a string constant. If the string is not com­
posed of an even multiple of two characters, it is null
padded by the appropriate amount.

Description: The .word directive generates one or more word length constants. The
assembler places the constants in the instruction stream at the current
address specified by the location counter. The assembler stores the
least-significant byte at the lower address and the most-significant byte
at the higher address.
If multiple constants are specified {e.g., repetition-factor is greater than
one, or more than one expression is given), the constants are stored in
consecutive words beginning at the current address.
When a string is specified as an operand of the .word directive, it is
output as a byte string beginning at the lowest address and padded at
the high address to an even multiple of two bytes if necessary.

6-10 GNX ASSEMBLER DIRECTIVES

.w ord (Cont)

Example: 1 T0000000 0180 .word 32769
2 T0000002 34123412 .word [2] 0x1234
3 T0000006 41004142 .word 'A', "AB"
4 TOOOOOOa 0100 .word 0x41424344/0x41424344
5 TOOOOOOc 0180 .word -32767

Line 1 places the constant 32769 in a word at the address 000000 in the
text segment.
Line 2 places the constant 0x1234 (repeated twice) in two consecutive
words.
Line 3 places the word values of the character constant 'A' and the
string “AB” (evaluated as integers) in two consecutive words.
Line 4 places the value of the expression 0x41424344/0x41424344 in a
word at the address 00000A in the text segment.
Line 5 places 0x8001 (-32767) in a word at address 00000C in the text
segment.

GNX ASSEMBLER DIRECTIVES 6-11

.double

6.3.4 .double

Syntax: [la b e l] .double ({ [[re p e titio n -fa c to r]] expression | s tr in g }) ,, ,

where: label is an optional label.
. double is the directive name.
[repetition-factor]

(optional) specifies the number of occurrences of the
specified double-word. It must be an expression which
evaluates to a positive absolute value. If the
repetition-factor is specified, it must be enclosed in “ []”
brackets.
specifies the double-word value. It must evaluate to
an absolute value within the range of-231 to 231-1.
specifies a string constant. If the string is not com­
posed of an even multiple of four characters, it is null
padded by the appropriate amount.

Description: The .double directive generates one or more double-word constants.
The assembler places the constants in the instruction stream at the
current address specified by the location counter. The assembler places
the bytes in ascending order, beginning with the least-significant byte at
the lowest address.
If multiple constants are specified (e.g., repetition-factor is greater than
one, or more than one expression is given), the constants are stored in
consecutive double-words, beginning at the current address. When a
string is specified as an operand of the .double directive, it is output
as a byte string, beginning at the lowest address and padded at the high
address to an even multiple of four bytes if necessary.

expression

strin g

6-12 GNX ASSEMBLER DIRECTIVES

.double (Cont)

Example: 1 T0000000 ffffOOOO
OOOOffff

. double 0x0 0 0 0FFFF, 0xFFFF0000

2 T0000008 03000000
03000000

. double [2] 3

3 T0000010 41424300 . double ' ' A B C ' '
4 T0000014 01000000 . double 0x41424344/0x41424344
5 T0000018 70ffffff

01010000
. double -144, 257

Line 1 places the constants OxOOOOffff and OxfffTOOOO in two consecutive
double-words.
Line 2 places the constant 3 (repeated twice) in two consecutive double-
words.
Line 3 places the value of the string “ABC” in a double-word.
Line 4 places the value of the expression 0x41424344/0x41424344 in a
double-word at address 00000014 in the text segment.
Line 5 places the value of the signed constants -144 and 257 in consecu­
tive double-words.

GNX ASSEMBLER DIRECTIVES 6-13

.float

6.3.5 .float

Syntax:

where:

Description:

Example:

[label] . f lo a t ([[repetition-factor]] expression),,,

label is an optional label.
.float is the directive name.
[repetition-factor]

(optional) specifies the number of occurrences of the
specified floating-point number. It must be an expres­
sion which evaluates to a positive absolute value. If
the repetition-factor is specified, it must be enclosed in
brackets.

expression specifies a single-precision floating-point constant
(refer to Section 2.4.2). Strings are not permitted.

The .float directive generates one or more single-precision floating­
point constants. The assembler places the constants in the instruction
stream at the current address specified by the location counter. The
assembler stores a single-precision floating-point constant in a double-
word (32 bits).
If multiple constants are specified (e.g., repetition-factor is greater than
one, or more than one expression is given), the constants are stored in
consecutive double-words beginning at the current address.

1 T0000000 4cdc3654 .float 3.14152E+12
2 T0000004 Iff47c3 f .float [2] 0.9881

Iff47c3f

Line 1 places the floating-point constant 3.14152E+12 in a double-word
at the current address.
Line 2 places the floating-point constant 0.9881 (repeated twice) into
two consecutive double-words.

6-14 GNX ASSEMBLER DIRECTIVES

.long

6.3.6 .long

Syntax:

where:

Description:

Example:

[label] . long ([[.repetition-factor]]expression),,,

label is an optional label.
. long is the directive name.
[repetition-factor]

(optional) specifies the number of occurrences of the
specified floating-point number. It must be an expres­
sion which evaluates to a positive absolute value. If
the repetition-factor is specified, it must be enclosed in
“[]” brackets.

expression specifies a double-precision floating-point constant
(refer to Section 2.4.2). Strings are not permitted.

The . long directive generates one, or more double-precision floating­
point constants. The assembler places the constants in the instruction
stream at the current address specified by the location counter. The
assembler stores a double-precision floating-point constant in a quad-
word (64 bits).
If multiple constants are specified (e.g., repetition-factor is greater than
one, or more than one expression is given), the constants are stored in
consecutive quad-words beginning at the current address.

1 T0000000 00002078 .long 3.14152E+12
89db8642

2 T0000008 3695efe2 .long 6.12E-23, [3] 0.9881
le7 f523b
e6ae25e4
83 9eef3 f
e6ae25e4
839eef3f
e6ae25e4
839eef3f

Line 1 places the floating-point constant 3.14152E+12 in a quad-word at
the current address.

GNX ASSEMBLER DIRECTIVES 6-15

.long (Cont)

Line 2 places the floating-point constants 6.12E-23 and 0.9881
(repeated three times) in four consecutive quad-words.

6-16 GNX ASSEMBLER DIRECTIVES

.field

6.3.7 .field

Syntax:

where:

Description:

Example:

\label~\ .field ([subfield-size]subfield-value),,,

label is an optional label,
.field is the directive name.
[subfield-size] (required) specifies the length in bits of the field being

generated. It may be any expression which evaluates
to a positive absolute value. No forward referencing of
symbols is permitted. The subfield-size must be
enclosed in “ [1” brackets.

subfield-value (required) specifies a field value. It may be any
expression which evaluates to a non-negative absolute
value. It must be within the range specified by the
field size (e.g., 0 to 15 for a 4-bit field, 0 to 31 for a 5-
bit field).

The . field directive generates one or more bit fields. The assembler
places the field(s) in the instruction stream at the current address
specified by the location counter. The directive provides no default
values; thus, both subfield-size and subfield-value must be specified.
If the directive specifies more than one sub field-size!sub field-value pair,
the values are placed in contiguous fields. If a field or a combination of
fields do not extend to a byte boundary, the assembler zero-fills the
remaining bits.
If multiple constants are specified, the sub field-size/sub field-value pairs
must be separated by commas. See lines 2 and 3 in the following exam-
pie.

1 T0000000 08 . field [4] 8
2 T0000001 3 f . field [4] 15, [4] 3
3 T0000002 2143 . field [4] 1, [4] 2, [4] 3, [4] 4

Line 1 places 8 in a 4-bit field at address 0000000 in the text segment
and zero-fills the four high-order bits.

GNX ASSEMBLER DIRECTIVES 6-17

.field (Cont)

Line 2 places 15 and 3 in two consecutive 4-bit fields at address 0000001
in the text segment.
Line 3 places 1, 2, 3, and 4 in four consecutive 4-bit fields. The fields
occupy two bytes beginning at address 0000002 in the text segment.

6-18 GNX ASSEMBLER DIRECTIVES

.xpd

6.3.8 .xpd

Syntax: [label] . xpd expression

where: label
.xpd

expression

is an optional label,
is the directive name.
specifies the entry point of a function using the exp
rxp calling discipline.

Description: The . xpd directive generates an external procedure descriptor for the
specified entry point. A procedure descriptor is a double-word of data.
The low-order two bytes specify the module table entry for the module
that contains the function. The high-order two bytes contain the offset
of the function entry point from the module’s program code base. The
module entry and offset values are updated by the linker at link time.
The assembler generates the procedure descriptor at the current loca­
tion. Normally, the current location will be in the link table (link seg­
ment). However, the .xpd directive may also be used to put a pro­
cedure descriptor for a function at a known memory location for use
with the expd instruction.
The definition of an xpd symbol through the . xpd directive should pre­
cede any reference to it.

Example: 1 .link
2 L0000000 00000000 .xpd __main
3 L0000004 00000000 .xpd _funl
4 L0000008 00000000 .xpd _fun2

Line 2 generates a procedure descriptor link table entry for the function
_main at address 00000000 in the link segment.
Line 3 generates a procedure descriptor for the function _funl at
address 00000004 in the link segment.
Line 4 generates a procedure descriptor for the function _fun2 at
address 00000008 in the link segment.

GNX ASSEMBLER DIRECTIVES 6-19

.xpd (Cont)

Both sample functions are external to the assembly. The actual module
table entry and code offset will be filled in by the linker.

6-20 GNX ASSEMBLER DIRECTIVES

.xdd

6.3.9 .xdd

Syntax: . xdd expression

where: . x d d is the directive name.
expression specifies a double-word value.

Description: The . x d d directive or external data descriptor, defines link table
entries for external data variables.
If expression is specified by a single symbol of non-absolute type, refer­
ences to this symbol can be addressed via the external addressing mode.
If the external data variable is defined by:

the syntax for addressing the symbol value via the external addressing
mode is either by value, which is equivalent to offset (ext), or by disp
(value) and value+disp, which is equivalent to disp(offset(ext)), where
disp is an expression of absolute type.
If expression is specified by a combination of symbols (e.g., sym+var), or
a combination of symbols and constants (e.g., value+10), references to
these symbols (i.e., sym, var, value) will be addressed via their appropri­
ate default addressing mode, (i.e., absolute addressing mode if symbol in
link segment).
The assembler generates the data descriptor at the current location.
Normally, the current location will be in the link table, that is, the link
segment. However, the . x d d directive may also be used to put a data
descriptor at any other segment.
The definition of an xdd symbol through the . x d d directive should pre­
cede any reference to it.

offset: . x d d value

GNX ASSEMBLER DIRECTIVES 6-21

.xdd (Cont)

Example: 1 . data
2
O

D0000000 00000000 fool: .blkd
-J
4 .link
5 L0000000 00000000 ext_var: .xdd

Line 5 generates an external data variable link table entry for the vari­
able foo at address 00000000 in the link segment.

6-22 GNX ASSEMBLER DIRECTIVES

STORAGE ALLOCATION DIRECTIVES

6.4 STORAGE ALLOCATION DIRECTIVES
There are six storage allocation directives:

Directive Function
. blkb
.blkw
. blkd
. blkf
.blkl
. space

allocates byte storage
allocates word storage
allocates double-word storage
allocates double-word(s) for floating-point storage
allocates quad-word(s)for long floating-point storage
allocates a block of storage

All storage allocation directives except . space have the following form:
[label] directive [expression]

The optional expression specifies the number of bytes, words, double-words, or quad-
words to be allocated. It must evaluate to a non-negative absolute value. If the expres­
sion evaluates to zero, no storage is allocated. If no expression is specified, the default
value is one. The expression may use symbolic values, but no forward symbol refer­
ences are allowed.
When storage allocation directives occur in the text segment, the allocated bytes,
words, double-words, or quad-words allocated are initialized to the nop instruction and
appear in the program listing as generated code. When storage allocation directives
occur in the data, static, or link segments, the allocated bytes, words, double-words, or
quad-words are initialized to zero and appear in the program listing as generated code.
For all other segment types, the allocated space is uninitialized.
Sections 6.4.1 through 6.4.6 define the syntax of these directives.

GNX ASSEMBLER DIRECTIVES 6-23

blkb

6.4.1 .blkb

Syntax:

where:

Description:

Example:

[label] . blkb [expression]

label is an optional label.
. b l k b is the directive name.
expression specifies the number of bytes to be allocated. It must

be an unsigned integer constant or an expression
which evaluates to a non-negative absolute value. The
default value is one.

The . b l k b directive allocates zero or more consecutive bytes of memory
for data storage. The bytes begin at the current location counter
address.

. s t a t i c
soooooooo 00 . b l k b 1
S00000001 00000 00 0 AA:

00 000000
00000000
000000

. b l k b 15

S00000010 00000000
00

. b l k b (. - A A) / 3

S00000015 00 . b l k b

Line 2 allocates a single byte for data storage. The byte is located at
address 00000000 in the static segment.
Line 3 allocates 15 consecutive bytes for data storage, beginning at
address 00000001 in the static segment. The label AA is assigned the
address of the first byte.

6-24 GNX ASSEMBLER DIRECTIVES

.blkb (Cont)

Line 4 allocates the number of bytes specified by the “(.-AA)/3” expres­
sion. The expression evaluates to 5, i.e., (16 (static relative) - 1 (static
relative)) = 15 (absolute), 15/3 = 5. Therefore, 5 bytes are allocated,
beginning at address 00000010 static segment relative.
Line 5 allocates a single byte for storage.

GNX ASSEMBLER DIRECTIVES 6-25

.b lkw

6.4.2 .blkw

Syntax:

where:

Description:

Example:

[label] .blkw [expression]

label is an optional label.
. blkw is the directive name.
expression specifies the number of words to be allocated. It must

be an unsigned integer constant or an expression
which evaluates to a non-negative absolute value.

The .blkw directive allocates zero or more consecutive words of
memory for data storage. The words begin at the current location
counter address.

1
2 T00000000
3 T00000002

4 T00000020

5 T00000034

a2a2
a2a2a2a2 AA:
a2a2a2a2
a2a2a2a2
a2a2a2a2
a2a2a2a2
a2a2a2a2
a2a2a2a2
a2a2
a2a2a2a2
a2a2a2a2
a2a2a2a2
a2a2a2a2
a2a2a2a2
a2a2

. text

.blkw 1

.blkw 15

.blkw (.-AA)/3

.blkw

Line 2 allocates one word for data storage at address 00000000 in the
text segment.
Line 3 allocates 15 consecutive words for data storage, beginning at
address 00000002 in the text segment. The label AA is assigned the
address of the first word.

6-26 GNX ASSEMBLER DIRECTIVES

.b lkw (Cont)

Line 4 allocates the number of words specified by the “(,-AA)/3” expres­
sion. The expression evaluates to 10, i.e., (32 (text relative) - 2 (text
segment relative)) = 30 (absolute), 30/3 = 10. Therefore, 10 words are
allocated, beginning at address 00000020 in the text segment.
Line 5 allocates one word for storage.

GNX ASSEMBLER DIRECTIVES 6-27

.blkd

6.4.3 .blkd

Syntax:

where:

Description:

Example:

[label] .blkd [expression]

label is an optional label.
. blkd is the directive name.
expression specifies the number of double-words to be allocated.

It must be an unsigned integer constant or an expres­
sion which evaluates to a non-negative absolute value.

The .blkd directive allocates zero or more consecutive double-words of
memory for data storage. The double-words begin at the current loca­
tion counter address.

1 .text
2 text_start:
3 .dsect lo_text, text_start
4 .blkd 1
5 AA: .blkd 15
6 .blkd (.-AA)/3
7 .blkd

Line 4 allocates one double-word for data storage, overlaid onto address
000000 of the text segment.
Line 5 allocates 15 consecutive double-words for data storage, overlaid
onto address 000004 of the text segment. The label AA is assigned the
address of the first double-word.
Line 6 allocates the number of double-words specified by the “(.-AA)/3”
expression. The expression evaluates to 20, i.e., (64 (text relative) - 4
(text relative)) = 60 (absolute), 60/3 = 20. Therefore, 20 double-words
are allocated and overlaid onto address 000040 of the text segment.
Line 7 allocates a single double-word for storage.

6-28 GNX ASSEMBLER DIRECTIVES

.b lkf

6.4.4 .blkf

Syntax:

where:

Description:

Example:

[label] .b lk f [expression]

label is an optional label.
.blkf is the directive name.
expression specifies the number of double-words to be allocated.

It must be an unsigned integer constant or an expres­
sion which evaluates to a non-negative absolute value.

The .blkf directive allocates zero or more consecutive double-words of
memory for storage of single-precision floating-point (32-bit) numbers.
The double-words begin at the current location counter address.

1 .udata
2 .blkf 1
3 AA: .blkf 15
4 .blkf

Line 2 allocates one double-word for data storage at the address of the
bss segment.
Line 3 allocates 15 consecutive double-words for data storage, beginning
at the current address of the bss segment. The label AA is assigned the
address of the first double-word.
Line 4 allocates one double-word for storage at the address of the bss
segment.

GNX ASSEMBLER DIRECTIVES 6-29

.blkl

6.4.5 .blkl

Syntax:

where:

Description:

Example:

[label] .b lk l [expression]

label is an optional label.
. blkl is the directive name.
expression specifies the number of quad-words to be allocated. It

must be an unsigned integer constant or an expression
which evaluates to a non-negative absolute value.

The .blkl directive allocates zero or more consecutive quad-words of
memory for storage of double-precision floating-point (64-bit) numbers.
The quad-words begin at the current location counter address.

1 .udata
2 .blkl 1
3 AA: .blkl 15
4 .blkl

Line 2 allocates one quad-word for data storage at address 00000000 of
the bss segment.
Line 3 allocates 15 consecutive quad-words for data storage, beginning
at address 00000008 of the bss segment. The label AA is assigned the
address of the first quad-word.
Line 4 allocates a single quad-word for storage at 00000128 of the bss
segment.

6-30 GNX ASSEMBLER DIRECTIVES

.space

6.4.6 .space
Syntax: [label] . space expression
where: label is an optional label.

. space is the directive name.
expression specifies the number of bytes to be allocated. It must

be an unsigned integer constant or an expression
which evaluates to a non-negative absolute value.

Description: The . space directive allocates a consecutive block of memory for data
storage. The block begins at the current location counter address. The
size in bytes of the storage block is specified by expression.

Example: 1
2 S 0 0 0 0 0 0 0 0
3 S 0 0 0 0 0 0 0 1

4 S 0 0 0 0 0 0 1 0

5 S 0 0 0 0 0 0 1 5

00
00000000 AA:
00000000
00000000
000000
00000000
00
00

. static

.space 1

.space 15

.space (.-AA)/3

. space 1

Line 2 allocates one byte for data storage. The byte is located at address
00000000 in the static segment.
Line 3 allocates 15 consecutive bytes for data storage, beginning at
address 00000001 in the static segment. The label AA is assigned the
address of the first byte.
Line 4 allocates the number of bytes specified by the “(.-AA)/3” expres­
sion. The expression evaluates to 5, i.e., (16 (static relative) - 1 (static
relative)) = 15 (absolute), 15/3 = 5. Therefore, five bytes are allocated,
beginning at address 00000010 static segment relative.
Line 5 allocates a single byte for storage.

GNX ASSEMBLER DIRECTIVES 6-31

LISTING CONTROL DIRECTIVES

6.5 LISTING CONTROL DIRECTIVES
The listing control directives control the format of the GNX Assembler’s program list­
ing:

Directive Function
. title prints title at top of program listing
. subtitle
. nolist
. list
.ej ect
.width

prints subtitle at top of program listing
suppresses the printing of lines of source program to listing
restores printing of lines of source program to listing
continues listing at top of next page
sets width of listing page

Sections 6.5.1 through 6.5.6 describe the listing control directives in detail.

6-32 GNX ASSEMBLER DIRECTIVES

.title

6.5.1 .title

Syntax: \label] . t i t l e "string"

where: label is an optional label.
. title is the directive name.
string specifies the character string to be printed at the top of

the listing page. The string (required) may consist of
any combination of up to 126 letters, numbers, and
text characters and must be enclosed in double-quotes.

Description: The . title directive causes the assembler to print the specified string
at the top of each new page of the program listing.
The first . title directive affects the current listing page as well as all
previous pages.
If a program contains more than one .title directive, the last
.title directive to be specified before the page break affects subse­
quent pages. If a page other than the first page has no .title direc­
tive, it receives the title of the previous page.
If a program contains no . title directive, no title is printed.
No title is printed on the cross-reference page.

Example: . t i t l e "John 's Program"
The preceding example causes the string “John’s Program” to be printed
at the top of the current page of the program listing. If it is the only
. title directive in the program, all pages will have the same title.

GNX ASSEMBLER DIRECTIVES 6-33

.su b title

6.5.2 .subtitle

Syntax: [label] .subtitle "string"

where: label is an optional label.
. subtitle is the directive name.
string specifies the character string to be printed at the top of

listing page. The string (required) may consist of any
combination of up to 126 letters, numbers, and text
characters and must be enclosed in double-quotes.

Description: The .subtitle directive causes the assembler to print the specified
string at the top of each new page of the program listing. If a . title
directive is also specified, the subtitle string appears below the title
string.
The first . subtitle directive affects the current listing page as well as
all previous pages.
If a program contains more than one .subtitle directive, the last
. subtitle directive to be specified before page break affects the subse­
quent page. If a page has no . subtitle directive, it receives the subti­
tle of the previous page.
If a program contains no . subtitle directive, no subtitle is printed.
No subtitle is printed on the cross-reference listing page.

Example: .subtitle "Written 7/7/81"

The preceding example causes the string “Written 7/7/81” to be printed
at the top of the current page of the program listing. If it is the only
. subtitle directive in the program, all pages will have the same subti­
tle.

6-34 GNX ASSEMBLER DIRECTIVES

.n o list

6.5.3 .nolist

Syntax: [ilabel] .nolist [qualifier_list]

where: label is an optional label.
.nolist is the directive name.
qualifier Jist macro listing qualifiers to be set off. Can be any com­

bination of the qualifiers: mac_source,
mac_expansions and mac_directives, as
described in Section 8.14.

Description: The . nolist directive suppresses the printing of source program lines.
All lines following the .nolist directive are assembled but are not
printed to the program listing.
The . nolist directive does not affect the printing of error messages.
The .nolist directive may be disabled by specifying a .list direc­
tive (see Section 6.5.4).

Example: . nolist
movd rO, rl
addb TEMP, rl
subb rl, rO
. list

In the preceding example, the .nolist directive suppresses printing of
the statement containing the .nolist directive and the following three
lines of source. Printing is restored by the .list directive. Only the
statement containing the . list directive is printed.

GNX ASSEMBLER DIRECTIVES 6-35

.list

6.5.4 .list

Syntax:

where:

Description:

Example:

[label] . l i s t [qualifier_list]

label is an optional label,
.list is the directive name.
qualifierJ,ist macro listing qualifiers to be set on. Can be any com­

bination of the qualifiers: mac_source,
mac_expansions and mac_directives, as
described in Section 8.14.

The . list directive restores the printing of lines of the source program
after suppression by a .nolist directive. All lines following the
. list directive are printed to the program listing. The statement con­
taining the . list directive is also printed to the program listing.

NXT:

. nolist
movb rO, rl
addb TEMP,
subb rl, rO
. list
cmpb rl, rO

In this example, the .list directive restores printing after the previ­
ous .nolist directive. Only the statement labelled NXT: and the .list
statements are printed.

6-36 GNX ASSEMBLER DIRECTIVES

.eject

6.5.5 .eject

Syntax:

where:

Description:

Example:

[label] •eject

label is an optional label.
.ej ect is the directive name.

The . eject directive causes the program listing to continue at the top
of the next page. The statement containing the . ej ect directive is
printed in the program listing.

.eject

This example causes the program listing to continue at the top of the
next page. The statement containing the . e j ect directive is printed.

GNX ASSEMBLER DIRECTIVES 6-37

.width

6.5.6 .width

Syntax: [label] .width expression

where: label is an optional label.
.width is the directive name.
expression specifies page width in characters. It must be an

unsigned integer constant or expression which evalu­
ates to an absolute value within the range of 80 to 132.

Description: The .width directive sets the width (in characters) of the program list­
ing lines which follow the directive. (The first .width directive effects
all preceding pages as well.) More than one .width directive is
allowed, with each directive effective until the next or until the end of
the file. If there is no .width directive, the width is 132 characters by
default. The new-line character is included in the maximum width.
If the expression value is outside the specified range, an error message is
generated.

Example: •width MYPAGEWIDTH - 12

The preceding example sets the page width to the value of the expres­
sion MYPAGEWIDTH-12. The expression must evaluate to a number
within the range 80 to 132.

6-38 GNX ASSEMBLER DIRECTIVES

LINKAGE CONTROL DIRECTIVES

6.6 LINKAGE CONTROL DIRECTIVES
The linkage control directives provide support for modular programming by allowing
symbols and procedures to be exported from, or imported to, separately assembled
modules. These directives are:

Directive Function
. globl declares external data symbols
. comm declares external undefined data symbols

The . globl directive declares a symbol external, either for import or export, but does
not define the symbol. The . comm directive is similar, except an associated size is
specified. At link time, symbols declared with . comm are resolved and allocated in the
bss segment.
Sections 6.6.1 through 6.6.2 describe the linkage control directives.

GNX ASSEMBLER DIRECTIVES 6-39

•globl

6.6.1 .globl

Syntax:

where:

Description:

Example:

.g lo b l symbol ,,,

. globl is the directive name.
symbol is the name of a symbol. If more than one symbol is

specified, the symbols must be separated by commas.
The .globl directive declares a symbol to be external, that is, a sym­
bol intended to be used by multiple, separately assembled pieces of the
same program. The .globl directive guarantees that a symbol table
entry will be generated in the object file, marked external. The linker
uses these entries to resolve external symbol references at link time.
Symbols declared with the . globl directive may or may not be defined
within the current assembly. Defined symbols that are not declared to
be external are assumed to be local symbols and may not be used to
resolve undefined external references at link time. Undefined symbols
are assumed to be external, with or without declaration, but it is good
practice to declare all external symbols.
An alternate way to declare external symbols is to replace the colon of
the label definition with a double colon (::).

.globl FIRST, SECOND
FIRST:
SECOND:
THIRD::

This example defines and exports three symbols: FIRST, SECOND,
THIRD.
NOTE: Because .globl symbols are used by the linker to

resolve external symbol references at link time, the
user is advised to declare all .globl symbols as either
external procedure descriptors (through the . x p d
directive) or external data descriptors (through the
. x d d directive), when assembling the program
module with the modularity flag (-X on UNIX/MS-
DOS, or /MODULAR on VMS).

6-40 GNX ASSEMBLER DIRECTIVES Rev 4.4

.comm

6.6.2 .comm

Syntax: .comm symbol, expression

where: . comm is the directive name.
symbol is the name of a data symbol referenced, but not

defined, in the current module.
expression specifies the number of bytes allocated for the symbol.

It may be any expression which evaluates to a positive
absolute value.

Description: The . comm directive imports the specified symbol and assigns it an
external undefined type. When the module is linked, the symbol will be
placed in the .bss section.

Example: 1 . comm SYM1,16
2 . comm SYM2, 4
3 T00000000 14a8c000

0000
movb SYMl, r 0

4 T00000006 57a8c000
0000

movd SYM2, r l

NOTE: Because .comm symbols are used by the linker to
resolve external symbol references at link time, the
user is advised to declare all .comm symbols as
either external procedure descriptors (through the
. xpd directive) or external data descriptors (through
the .xdd directive), when assembling the program
module with the modularity flag (-X on UNIX/MS-
DOS, or /MODULAR on VMS).

Rev 4.4 GNX ASSEMBLER DIRECTIVES 6-41

SEGMENT CONTROL DIRECTIVES

6.7 SEGMENT CONTROL DIRECTIVES
The segment control directives control the current segment type and the value of the
assembler’s location counter. These directives are:

Directive Function
. d s e c t
. t e x t
. d a t a
. b s s
. u d a t a
. s t a t i c
. l i n k
. s e c t i o n
. o r g
. a l i g n
. i d e n t

sets the location counter to a user-defined segment
sets the location counter to the text segment
sets the location counter to the date segment
assigns space in the bss segment, updates the location counter
sets the location counter to the bss segment
sets the location counter to the static segment
sets the location counter to the link segment
defines a section with attributes
sets the location counter to specified value
sets the location counter to specified offset
places the string argument in the .comment section of the object file

The segment control directives permit definition of program segments. A segment is a
group of sequential statements whose addresses are all relative to the same base. Seg­
ments permit data or instructions to be processed as a unit and to be stored in a con­
tiguous block within memory at run-time.
Sections 6.7.1 through 6.7.11 describe the syntax and operation of the segment control
directives.

6-42 GNX ASSEMBLER DIRECTIVES

.dsect

6.7.1 .dsect

Syntax: .d sec t symbol expression [, specifier]

where: .dsect is the directive name.
symbol
expression

specifier

specifies the name of the dummy section.
specifies the value and type of the location counter for
the segment. The expression is required the first time
a named dsect is invoked. Subsequent .dsect direc­
tives using the same name may omit the expression.
is a plus sign (+) or a minus sign (-). Specifier indi­
cates whether the location counter should be incre­
mented or decremented.

Description: The .dsect directive defines a named, user-defined (or dummy) seg­
ment. A dummy segment is used to define symbols which may be used
in expressions or as instruction operands to access data. No code or ini­
tialized data may be generated in a dsect.
The assembler assigns a location counter to the segment with the value
and type specified by the expression. If the type of the expression is
relative, for example text or data, the dummy segment may be thought
of as an overlay of an existing memory segment. For example, a dummy
segment might be used to define differing logical data structures that
occupy the same storage space, as in a C union or a Pascal variant
record.
An optional specifier may be used to indicate whether the location
counter for the dummy segment will increment or decrement. If the
optional specifier is omitted, the value of expression determines whether
the location counter increments or decrements. If the value of the
expression is negative, the assembler decrements the location counter.
If the value of the expression is positive or zero, the assembler incre­
ments the location counter. In either case, labels are assigned the
lowest byte address of the following statement. That is, the location
counter is post-incremented and pre-decremented.

GNX ASSEMBLER DIRECTIVES 6-43

.dsect (Cont)

Example: . d s e c t D A T E _ R E C , 0
M O N T H : . b l k b
D A Y : . b l k b
Y E A R : . b l k w

This example defines three absolute symbols in a dummy segment
named DATEJREC. The symbols have the absolute values of 0, 1, and
2 .

The symbols can be used as offsets into any block of memory. In the
example below, rO contains the address of a block of memory for storing
the data. The instructions in the example zero-fill the month, day, and
year fields.

D A T E :
. udata
.blkb 4
. t e x t
movd DATE, rO
movqb 0 , MONTH(rO)
movqb 0 , DAY (r 0)
movqw 0 , YEAR (r O)

6-44 GNX ASSEMBLER DIRECTIVES

.text

6.7.2 .text

Syntax: . text

where: . t e x t is the directive name.

Description: The . t e x t directive indicates the beginning of a program text segment
or code segment. The assembler assigns the current location counter
the next available text segment address. Subsequent storage allocation,
data generation, or program statements generate code and constant
data that will be placed in the .text section of the object file. Storage
allocated in the text segment is filled with nop instructions. The loca­
tion counter is incremented after every assignment, storage allocation,
or code generation.
Symbols defined in the text segment are of type text. The assembler
uses the Program Counter (PC) Relative addressing mode for all sym­
bols or expressions of type text. When the text segment is loaded into
memory, it contains a module’s instructions and constant data and is,
therefore, protected for read-only access.

Example: . text

In the preceding example, the location counter is set to text segment
type. The offset is set to the next available offset. Instructions and data
directives that follow the . t e x t directive generate code in the .text sec­
tion of the object file.

GNX ASSEMBLER DIRECTIVES 6-45

.data

6.7.3 .data

Syntax: .data

where: . d a t a is the directive name.

Description: The . d a t a directive indicates the beginning of an initialized data seg­
ment. An initialized data segment contains writable data or program
code and will be placed in the .data section of the object file. When the
data segment is loaded into memory, it is protected for read-write
access.
The . d a t a directive sets the location counter to the next available data
segment address. The location counter is incremented after every data
assignment or code generation. Symbols defined in the data segment
are of type data. The assembler uses the Absolute addressing mode for
all symbols or expressions of type data.

Example: .data

In the preceding example, the location counter is set to the data seg­
ment. The offset is set to the next available data segment address.
Subsequent data directives, or instructions, are output to the .data sec­
tion of the object file.

6-46 GNX ASSEMBLER DIRECTIVES

6.7.4 .bss

Syntax:

where:

Description:

Example:

.bss

.bss symbol, expression!, expression2

. b s s

symbol
expression!
expression2

is the directive name,
is a symbol name,
specifies the symbol size.
specifies an alignment value for the bss location
counter. The alignment value may not be zero.

The . b s s directive defines a symbol in the bss or the uninitialized data
segment. There is no code or data in the object file associated with the
bss segment. The . b s s directive is a shorthand way to align the loca­
tion counter associated with the bss segment, define a S3onbol, and allo­
cate the appropriate number of bytes of storage space. It does not
change the current location counter to the bss segment. To change the
current location counter, use the . udata directive, see Section 6.7.5.
The . b s s directive performs the following actions:

1. aligns the bss location counter to a multiple of expression2.
The value of the location counter is incremented if necessary.

2. defines the specified symbol. The symbol is assigned the
current value of the bss segment location counter and type
bss. The assembler uses the Absolute addressing mode to
reference symbols or expressions of type bss.

3. adds the number of bytes specified by expression! to the bss
location counter.

.bss name_str, 25, 4
In the preceding example, the bss segment location counter is aligned to
the next multiple of four bytes, incrementing if necessary. The symbol
name_str is defined and assigned the value of the bss location counter.
The bss segment location counter is incremented by 25.

GNX ASSEMBLER DIRECTIVES 6-47

.udata

6.7.5 .udata

Syntax: .udata

where: . udata is the directive name.

Description: The .udata directive indicates the beginning of a bss or uninitialized
data segment. It is used to define symbols and allocate storage space.
As with dummy sections, no code or data is generated in the object file.
However, storage space is accumulated. The total accumulated size of
the segment is recorded in the a.out header and the .bss section header
of the object file. Memory is allocated for the total size of the bss seg­
ment at load time.
The directive sets the location counter to the next available bss segment
address. Symbols defined in the bss (udata) segment are of type bss.
The assembler uses the Absolute addressing mode for all symbols or
expressions of type bss.

Example: .udata
In the preceding example, the location counter is set to type bss. The
offset is set to the next available offset.

6-48 GNX ASSEMBLER DIRECTIVES

.static

6.7.6 .static

Syntax: .static

where: . static is the directive name.

Description: The .static directive defines a static base segment. The assembler
assigns the current location counter the next available static segment
address. Subsequent storage allocation, data generation, or program
statements generate code in the static segment. The location counter is
incremented after every assignment or code generation. The data will
be placed in the .static section of the object file. Storage allocated in the
static segment is zero-filled. All symbols defined in the static segment
are of type static. The assembler addresses all symbols or expressions of
type static with the SB Relative addressing mode.
The .static directive is useful when building Series 32000 modules.
The assembler generates all SB Register Relative and SB Memory Rela­
tive addresses as offsets from zero unless a .module directive or a
.modentry directive is issued to set the static base address directly.

Example: 1 .static
2 soooooooo 00 ALPHA: .blkb
3 S00000001 00000000 BETA: .blkw
4 S00000005 00000000 GAMMA: . blkd

The preceding example defines three symbols in a static base segment.
The .static directive (Line 1) sets the location counter to static seg­
ment type and to the next available static segment address. Lines 2, 3,
and 4 allocate a total of 9 bytes of storage, zero-filled.

GNX ASSEMBLER DIRECTIVES 6-49

.Unk

6.7.7 .link

Syntax:

where:

Description:

. link

. l i n k is the directive name.

The . l i n k directive defines a link table segment. The link segment
contains a Series 32000 module’s link table. A Series 32000 module
requires a link table entry for each variable the module imports from
another module and for each procedure the module imports or exports
that uses the exp, rxp calling discipline. The link table offset should be
used with the External addressing mode to access all external variables
from a Series 32000 module. The . x d d directive should be used to gen­
erate link table entries for data variables. The . x p d directive should
be used to generate procedure descriptor link table entries for functions.
Care should be taken that link table entries remain aligned on 4-byte
boundaries if any other directives or instructions are used in the link
segment.
The . l i n k directive assigns the current location counter the next avail­
able link segment address. The location counter is incremented after
every . x d d or . x p d directive. The link table will be placed in the .link
section of the object file. Any storage allocated in the link segment is
zero-filled. All symbols defined in the link segment are of type link.
The assembler addresses all symbols or expressions of type link with the
absolute addressing mode.
The definition of a link table entry in the link table segment should pre­
cede any reference to it.

L I N K _ E N T R Y :
. l i n k
. x p d s c a n _ a r g
. t e x t
a d d r L I N K _ E N T R Y
e x p d r O

In this example, the addr instruction uses the absolute addressing mode
to access LINKJENTRY.

6-50 GNX ASSEMBLER DIRECTIVES

.link (Cont)

Example: 1 . g l o b l _ m a i n
2
"3

. g l o b l _ p r i n t f
J
4 . l i n k
5 L00000000 00 000000 m a i n : . x p d _ m a i n
6 L00000004 00 000000 p r i n t f : . x p d _ p r i n t f
7
8 . t e x t
9 _ m a i n :

10 T00000000 820000 e n t e r [] , 0
11 T00000003 e 7 d 5 c 0 0 0

0020
a d d r m s g , t o s

12 T00000009 2 2 c0 0 0 0 0
07

exp p r i n t f

13 TOOOOOOOe 7 c a 5 f c a d j s p b $-4
14 T00000011 9200 e x i t []
15 T00000013 3200 r x p 0
16
17 . s t a t i c
18 m s g :
19 SOOOOOOOO 4 8 6 5 6 c 6 c

6 f 2 c 2 0 5 7
6 f 7 2 6 c 6 4
210a 00

. a s c i i " H e l l o , World

Lines 1 and 2 declare the variables _main and _printf to be external,
i.e., available for export or necessary to import.
Line 4 begins the link table segment. The current location counter is
set to link segment type, offset 0.
Line 5 generates a procedure descriptor link table entry for _main,
beginning at link table segment address L00000000. Each link table
entry is four bytes long. The current location counter is address
L00000004 of the link segment at the end of line 5.
Line 6 generates a procedure descriptor link table entry for _printf. The
current location counter is link segment address L00000008 at the end
of line 6.
Line 8 begins a text segment. The current location counter is set to the
next available text segment address, which is T00000000.

GNX ASSEMBLER DIRECTIVES 6-51

.link (Cont)

Lines 9 to 15 generate program code. At the end of line 15, the current
location counter is text segment address T00000015, hexadecimal. This
is the next available text address.
Line 17 begins a static segment. The current location counter is set to
the next available static segment address, S00000000.
Line 19 generates the ASCII character string “Hello, World!\12\0” in
the static segment.

6-52 GNX ASSEMBLER DIRECTIVES

.section

6.7.8 .section

Syntax: . sec tio n section jia m e , string or
. sec tio n section jiame

where: section jiam e is any legal identifier, only eight significant characters
string is a quoted string consisting of any combination of the

following letters:
b -> STYP_BSS
c -> STYP_COPY
i -> STYPJNFO
d -> STYP_DSECT
X -> STYP_TEXT
n -> STYP_NOLOAD
0 -> STYP_OVER
1 -> STYP_LIB
w -> STYP_DATA

Description: The .section directive allows the assembly programmer to define a
section with attributes, refer to the Series 32000 GNX — Version 3
COFF Programmer’s Guide for a description of section attributes.
Sectionjiame is the name of the section, and each character in string
represents an attribute. Symbols declared within a section belong to the
particular section. A section is active until the next . section, . text,
.data, .udata, .link, or .static directive. In the default case,
reference to symbols of a user-defined section are referenced via the
absolute addressing mode. Only 10 sections are allowed including .text,
.data, .bss, .link, .static, .mod, and .comment. The .mod and .comment
sections are optional; therefore, there can only be 3, 4 or 5 user-defined
sections.

GNX ASSEMBLER DIRECTIVES 6-53

.section (Cont)

Example: 1 .globl start
2 .globl istart
3 .globl mcount
4
5
6 start:
7 T00000000 7ca508 adj spb $8
8 T00000003 57ce0800 movd 8 (sp),0 (sp)
9 T00000007 27c80c addr 12(sp),rO

10 TOOOOOOOa 570604 movd rO,4 (sp)
11 TOOOOOOOd 02c00000 bsr istart

13
12 T00000012 02ffffff bsr _main

ee
13 T00000017 7ca5f4 adj spb $-12
14 mcount:
15 TOOOOOOla 1200 ret 0
16
17 . data
18 . align 4
19 environ :
20 D00000000 00000000 . double 0
21
22 . section..init,"x"
23 istart:
24 00000000 820700 enter [rO,rl,r2],

In this program, line 22 is the declaration of a section called .init, whose
section attribute is STYP_TEXT. The label “istart” and the “enter”
instruction both belong to the .init section.

6-54 GNX ASSEMBLER DIRECTIVES

•org

6.7.9 .org

Syntax:

where:

Description:

Example:

. org expression

. org is the directive name.
expression specifies the new value of the location counter. The

expression must evaluate to type absolute or the type
of the current location counter.

The .org directive changes the value of the current location counter
within a segment. It sets the location counter to the value specified by
expression. The type of the expression must be compatible with that of
the current location counter, or it must be an absolute address. If the
expression evaluates to an absolute address, the assembler generates a
warning message, and sets the location counter to the value specified by
expression + the starting location of the current segment.
If the current segment is an object file segment, that is, one of text,
data, static, or link, then the value of the expression must be greater
than, or equal to, the current location counter (i.e., backstepping is not
permitted). Furthermore, for object file segments, the GNX Assembler
fills the bytes between the current and the new location with alignment
values as filled for the . align directive. The added bytes are included
in the program listing.
1 . set NUM_CHNKS, 10
2 . set CHNK_SIZE, 4096
- J

4 .udata
5 B00000000 c_ptr: . blkd 10
6 B00000028 pool: . org pool + (NUM_CHNKS
7 B0000a028 mark: .blkd

* C H N K _S IZ E)

This example uses the . org directive to leave a large area of memory
available in the bss segment.

GNX ASSEMBLER DIRECTIVES 6-55

.align

6.7.10 .align
Syntax: .a lig n expression! [,expression2]

where: . align is the directive name.
expression! specifies the basis of a new location counter value. It

must evaluate to a positive absolute value. No for­
ward symbol references are permitted.

expression2 specifies the offset of the new location counter value.
It must evaluate to a non-negative absolute value and
must be less than the value of expression!. Default
value is zero. No forward symbol references are per­
mitted.

Description: The .align directive sets the location counter to a new value without
changing the current type. The new value is the sum of a multiple of
the basis, expression!, and the offset, expression2. The new value is
always equal to, or greater than, the current location counter and
satisfies the following equation:

new value MOD expression! = expression2
The new value is the multiple of the basis that is greater than, or equal
to, the current location counter. For example, if expression! is 6 and the
current location counter is 20, then the new value is 24 (i.e., 4*6). The
default value of expression2 is zero.
If both expression! and expression2 are specified, the new value is the
sum of the multiple of the basis and the offset. For example, if expres­
sion! is 4, expression2 is 3, and the current location counter is 22, then
the new value is 27 (i.e., 6*4+3).
The assembler will optimize the fill pattern if the current section is
.text. The optimized filler can be viewed as a fancy nop. The assembler
will use “movb r7,r7” for 2-bytes fillers , “orb $0,r7” for 3-bytes fillers ,
“orw $0,r7” for 4-bytes fillers , “orw $0,r7” and “nop“ for 5-bytes fillers ,
“ord $0,r7” for 6-bytes fillers. All other alignments are filled with combi­
nations of the above.
If the . align directive is used in the data, static, or link segment, then
the assembler zero-fills all bytes between the current location and the
specified address and includes up to 128 bytes of the zero-filled bytes in

6-56 GNX ASSEMBLER DIRECTIVES

.a lign (Cont)

the program listing.
Example: 1 . static

2 soooooooo 00 FIRST: . blkb
3 S00000001 000000 .align 4
4 S00000004 00 SECOND : .blkb
5 S00000005 00000000

00
.align 4,

6 SOOOOOOOa 00 THIRD : .blkb

The preceding example contains two .a lig n directives (lines 3 and 5).
In line 3, the directive sets the location counter to a multiple of 4. The
current location counter is S00000001 (static segment), so the new loca­
tion counter will be S00000004 (i.e., 1*4). In line 5, the directive sets
the location counter to a multiple of 4 plus 2. If the current location
counter is 5, then the new location counter is 10 (Oxa) (i.e., 2*4 + 2).

Example: 1 _mail:
2 T00000000 a2 nop
3 LABEL :
4 T00000001 d439 .align 3
5 T00000003 OaOO .word 10
6 T00000005 d8al00 .align 4
7 T00000008 01 .byte 1
8 T00000009 OaOO .word 10
9 TOOOOOOOb a2 .align 2

10 TOOOOOOOc 1200 ret 0

The preceding example contains three .align directives (lines 4, 6,
and 9). In line 4, the directive sets the location counter to a multiple of
3. The current location counter is T00000001 (text segment), so the new
location counter is T00000003 (i.e., 1*3). The 2-byte filler “movb r7,r7”
denoted by the opcode d439 (low bytes first) is used. In line 6, the direc­
tive sets the location counter to a multiple of 4. The current location
counter is T00000005, so the new location counter will be T00000008
(i.e., 2*4). The 3-byte filler “orb $0,r7” denoted by the opcode d8al00 is
used. In line 9, the directive sets the location counter to a multiple of 2.
The current location counter is TOOOOOOOb, so the new location counter
will be TOOOOOOOc (i.e., 6*2). The single byte filler “nop” denoted by the
opcode a2 is used in this case.

GNX ASSEMBLER DIRECTIVES 6-57

.ident

6.7.11 .ident

Syntax: . iden t string

where: string is a quoted string.

Description: The . ident directive takes its string argument and places it in the
.comment section of the object file. This directive may be used more
than once. The .comment section is given the section attribute of
STYP_INFO. The Linker will combine all .comment sections at link
time.

Example: 1 . text
2 . ident "This is . ident"
3 T00000000 a2a2a2a2

a2a2a2a2
a2a2

. space 10

4 . ident 11 Another . ident"

In this program, the strings "This is .ident" and "Another .ident” are
placed in the .comment section of the object file.

6-58 GNX ASSEMBLER DIRECTIVES

MODULE TABLE DIRECTIVES

6.8 MODULE TABLE DIRECTIVES
The module table directives manage the task of building the module table. Defined
module table entries are placed by the GNX Assembler into the .mod section of the
COFF output file. The following are the module table directives discussed in this sec­
tion:
Directive Function
.module

Warning

.modent re­

names a module, associates the assembled code and static local data with
the module, and defines a module table entry for the module.
The .text and .static sections of the file where .module is used will
be treated as modular sections by the GNX linker even when the
assembler was not invoked with the " -X” ("/MODULAR" on VMS)
invocation option. In particular, during the link, input section rules of
the form *(. text) or *(. static), will not apply to such files.
Please see the GNX Linker Programmer’s Reference Manual for further
information on the linking process.
defines a module table entry for a named module.

A module table entry consists of four 32-bit entries corresponding to each component of
a module:

• The Static Base (sb) entry contains the base address for the module’s static local
data.

• The Link Base (lb) entry contains the base address for the module’s link table.
• The Program Base (pb) entry contains the base address for the module’s program

code.
• A fourth entry is currently unused but reserved.

Each base address is a standard Series 32000 address. The relocation information for
the sb, lb, and pb entries depends on how these base addresses have been specified.
The following discusses the module table entries and their relocation information.

Static Base (sb) Entry
If the sb entry is specified by an expression of:

1. absolute type (e.g., sb=200), the module table entry’s static base address is
the specified absolute value. No relocation information will be generated.

2. non-absolute type (e.g., sb=sb_sym+10 where sb_sym is non-absolute), the
module table entry’s static base address is the value of the expression, and a
relocation entry will be generated as follows:

GNX ASSEMBLER DIRECTIVES 6-59

MODULE TABLE DIRECTIVES (Cont)

R_ ADDRTYPE
R_RELTO
R_ FORMAT
R_ SIZESP

= R_ ADDRESS
= R_ ABS
= R_ NUMBER
= R_ S_ 3 2

with symbol table index pointing to the symbol table entry that is being
relocated {e.g., sb_sym). Refer to the Series 32000 COFF Programmer’s
Guide for a definition of these symbols.

If the sb entry is not specified, the assembler will use location zero as the module table
entry’s static base address. At link time, the linker will set the module’s static base to
the lowest address of the output section that contains the input .static sections for the
module.
The relocation entry, generated by the assembler when the sb entry is not specified, is
as follows:

R_ ADDRTYPE
R_RELTO
R_ FORMAT
R_ SIZESP

= R_ STATIC_ SEC
= R_ ABS
= R_ NUMBER
= R_ S_ 3 2

with symbol table index pointing to the module name. Refer to the Series 32000 COFF
Programmer’s Guide, for a definition of these symbols.

Link Base (lb) Entry
If the lb entry is specified by an expression of:

1. absolute type {e.g., lb=200), the module table entry’s link table base address
is the specified absolute value. No relocation information will be generated.

2. non-absolute type {e.g., lb=lb_sym+10 where lb_sym is non-absolute), the
module table entry’s link table base address is the value of the expression,
and a relocation entry will be generated as follows:

R_ ADDRTYPE
R_RELTO
R_ FORMAT
R_SIZESP

= R_ ADDRESS
= R_ ABS
= R_ NUMBER
= R_ S_ 3 2

with symbol table index pointing to the symbol table entry that is being
relocated {e.g., lb_sym). Refer to the Series 32000 COFF Programmer’s
Guide, for a definition of these symbols.

6-60 GNX ASSEMBLER DIRECTIVES

MODULE TABLE DIRECTIVES (Cont)

If the lb entry is not specified, the assembler will use location zero as the module table
entry’s link table base address. At link time, the linker will set the module’s link table
base to the lowest address of the output section that contains the input .link sections
for the module.
The relocation entry generated by the assembler when the lb entry is not specified is as
follows:

R_ ADDRTYPE
R_RELTO
R_ FORMAT
R_ SIZESP

= R_ LINK_ SEC
= R_ ABS
= R_ NUMBER
= R_ S_ 3 2

with symbol table index pointing to the module name. Refer to the Series 32000 COFF
Programmer’s Guide, for a definition of these symbols.

Program Base (pb) Entry
If the pb entry is specified by an expression of:

1. absolute type (e.g., pb=200), the module table entry’s program code base
address is the specified absolute value. No relocation information will be
generated.

2. non-absolute type (e.g., pb=pb_sym+10 where pb_sym is non-absolute), the
module table entry’s program code base address is the value of the expres­
sion, and a relocation entry will be generated as follows:

R_ ADDRTYPE
R_RELTO
R_ FORMAT
R_ SIZESP

= R_ ADDRESS
= R_ ABS
= R_ NUMBER
= R_ S_ 3 2

with symbol table index pointing to the symbol table entry that is being
relocated (e.g., pb_sym). Refer to the Series 32000 COFF Programmer’s
Guide, for a definition of these symbols.

If the pb entry is not specified, the assembler will use location zero as the module table
entry’s program code base address. At link time, the linker will set the module’s pro­
gram base to the lowest address of the output section that contains the input .text sec­
tions for the module.

GNX ASSEMBLER DIRECTIVES 6-61

MODULE TABLE DIRECTIVES (Cont)

The relocation entry generated by the assembler when the pb entry is not specified is
as follows:

R_ ADDRTYPE
R_RELTO
R_ FORMAT
R_SIZESP

= R_ TEXT_ SEC
= R_ ABS
= R_ NUMBER
= R_ S_ 3 2

with symbol table index pointing to the module name. Refer to the Series 32000 COFF
Programmer’s Guide, for a definition of these symbols.

6-62 GNX ASSEMBLER DIRECTIVES

.m odule

6.8.1 .module

Syntax: . module symbol [, sb^static base] [, lb=link base]
[, pb =program base]

where: .module

symbol

sb ̂static base

lb=link base

is the directive name.
is the name of the module. This symbol will define the
module’s module table entry.
explicitly sets the static base address for the module.
explicitly sets the link table base address for the
module.

pb ̂program base
explicitly sets the program code base address for the
module.

Description: The .module directive declares a module name, associates the text,
link, and static local data segments generated by this assembly to the
module table entry name and optionally defines a module table entry for
the module.
If none of the optional arguments are specified, symbol is a global,
undefined symbol unless n a m e is previously defined by the .modentry-
directive. See Section 6.8.2 for the description on the .modentry direc­
tive.
If any of the optional arguments are specified, the assembler generates
a 16-byte module table entry that contains the module’s static base
address, link table base address, program code base address, and a
reserved double-word set to zero in the .mod section of the output COFF
file. The value for the module table entry’s static base address, link
table base address, and program code base address will be as specified

GNX ASSEMBLER DIRECTIVES 6-63

.m odule (Cont)

by the sb, lb, pb contents, or by default, the lowest address of .static,
.link, .text section for the named module as output by the linker, if there
is one, otherwise zero, and their corresponding relocation entries. Refer
to Section 6.8 for the description on module table entries and their relo­
cation information. Symbol, in this case, is global and is defined in the
.mod section with the value of the address of the module table entry.
There may be no more than one . module directive per assembly.

Example: .module hello, sb=.static, lb=.link

6-64 GNX ASSEMBLER DIRECTIVES

.m odentry

6.8.2 .modentry

Syntax: .modentry symbol [, sb=static base] [, lb=link base]
[, pb^program base]

where: .modentry is the directive name.
symbol is the module name. This symbol defines the module’s

module table entry.
sb=static base explicitly sets the static base address for the module. If

not specified, the assembler will use the default value
of zero and at link time, the linker will set it to the
lowest address of the output .static section.

lb -link base explicitly sets the link table base address for the
module. If not specified, the assembler will use the
default value of zero and at link time, the linker will
set it to the lowest address of the output .link section.

pb =program base
explicitly sets the program code base address for the
module. If not specified, the assembler will use the
default value of zero and at link time, the linker will
set it to the lowest address of the output .text section.

Description: The .modentry directive defines a module table entry for a named
module by generating a 16-byte module table entry that contains the
module’s static base address, link table base address, program code base
address, and a reserved double-word set to zero in the .mod section of
the output COFF file. The value for the module table entry’s static base
address, link table base address, and program code base address will be
as specified by the sb, lb, pb contents, or by default, the lowest address
of the .static, .link, .text section for the named module as output by the
linker, if there is one, otherwise zero, and their corresponding relocation
entries. Refer to Section 6.8 for the description on module table entries
and their relocation information.
Symbol identifies the module.

GNX ASSEMBLER DIRECTIVES 6-65

.m odentry (Cont)

Example: d e v i c e s . s :
. f i l e " d e v i c e s . s "
. m o d e n t r y d e v A # D e f i n e m o d t a b l e e n t r y f o r d e v i c e A
. m o d e n t r y d e v B # D e f i n e m o d t a b l e e n t r y f o r d e v i c e B
. m o d e n t r y d e v C # D e f i n e m o d t a b l e e n t r y f o r d e v i c e C

d e v A . s :
. f i l e " d e v A . s "
. m o d u l e d e v A # M u s t n o t u s e o p t i o n a l args

d e v B . s :
. f i l e " d e v B . s "
. m o d u l e d e v B # M u s t n o t u s e o p t i o n a l args

d e v C . s :
. f i l e " d e v C . s "
. m o d u l e d e v C # M u s t n o t u s e o p t i o n a l args

6-66 GNX ASSEMBLER DIRECTIVES

FILENAME DIRECTIVE

6.9 FILENAME DIRECTIVE
The filename symbol directive specifies the name of the source file:

Directive Function
. f i l e specifies the source filename

GNX ASSEMBLER DIRECTIVES 6-67

.file

6.9.1 .file

Syntax:

where:

Description:

Example:

. f i l e "symbol"

. f i l e is the directive name.
"symbol'' specifies source filename for the current assembly.

Must be enclosed in double-quotes.

The . f i l e directive specifies the name of the source file currently
being assembled. The GNX Assembler records the filename in the object
file as an auxiliary symbol table entry of the special symbol .file. Only
one . f i l e directive per source file is allowed. It may appear anywhere
in the file. If no . f i l e directive is specified, the filename is the input
source filename.
If more than one . f i l e directive is specified, the first specified
filename is taken, and a warning message is issued for the rest of them.
The . f i l e directive is used by compilers to associate the name of a
high-level language source file with the object file produced by the GNX
Assembler.

. f i l e " s t r e s s . c "
This example defines the symbol stress.c as the name of the source file
associated with the current assembly.
NOTE: When using the debugger, the symbol must be the

same as the filename since the debugger uses this as
the name of the source file.

6-68 GNX ASSEMBLER DIRECTIVES

SYMBOL TABLE ENTRY DEFINITION DIRECTIVES

6.10 SYMBOL TABLE ENTRY DEFINITIO N DIRECTIVES
The symbol table entry definition directives specify symbolic information which the
GNX Assembler records in the object file. The directives provide a means to record a
variety of information useful to symbolic debuggers. Symbol table entry directives do
not affect the execution of an assembly language program.
The basic symbol table entry directives are . d e f and . e n d e f . They mark the start
and the end of a symbol definition. Between these, various directives may be used to
assign attributes to the symbol, for example, its size, value, and type or its location in
the source file.
Each . d e f begins to define a new symbol table entry. Therefore, all information to be
recorded about a single symbol must be included between the . d e f directive and the
matching . e n d e f directive.
Symbol table entry definitions may not be nested.
The symbol table entry definition directives are as follows:

Directive Function
. d e f
. d i m
. l i n e
. s c l
. s i z e
. t a g
. t y p e
. v a l
. e n d e f

begins symbol table entry definition
defines the dimensions of an array
specifies a source line number
specifies the symbol’s storage classification
specifies the symbol’s storage size
specifies the tag name associated with a type
specifies the symbol’s type
specifies the symbol’s value
terminates the symbol table entry definition

Sections 6.10.1 through 6.10.9 describe the symbol table entry directives in detail.

GNX ASSEMBLER DIRECTIVES 6-69

SYMBOL TABLE ENTRY DEFINITION DIRECTIVES (Cont)

NOTE: It is important to fully understand the Common Object File Format
(COFF) symbol table requirements before attempting to use these
directives. For complete specification of COFF requirements refer
to the Series 32000 GNX — Version 3 COFF Programmer’s Guide.
For useful constant definitions see the include files:

File Contents
s y m s . h

s t o r c l a s s . h

Symbol table entry definition, auxili­
ary entry definition, type and derived
type values
Storage class values

6-70 GNX ASSEMBLER DIRECTIVES

.def

6.10.1 .def

Syntax:

where:

Description:

Example:

.def symbol

. d e f is the directive name.
symbol is a symbol name. It consists of a series of characters

which may be letters, numbers, period (.), or under­
score (_). The first character must not be a number.

The . d e f directive causes the GNX Assembler to begin the definition of
a Common Object File Format (COFF) symbol table entry for the
specified symbol. The GNX Assembler creates the new symbol table
entry and enters the symbol name. The Assembler does not check the
COFF validity of the given values for symbol table entries definiton.

d e f _ n _ p t r
. v a l _ n _ p t r
. s c l 2
. t y p e 2 1 (1

e n d e f

g l o b l _ n _ p t r
c o m i n _ n _ p t r , 4

This example is a symbolic definition associated with the C declaration:
char *n_ptr;

The . d e f directive starts the definition. The symbol table entry is
assigned the value _n_ptr, a storage class of external (C_EXT)
represented by the value 2, a base type of character (T_CHAR)
represented by the value 2, and a derived type of pointer (DT_PTR)
represented by the value 1. The . e n d e f directive ends the definition.
For more information about the structure of a COFF symbol table entry,
the meaning of various fields, and the values each may contain, refer to
the Series 32000 GNX — Version 3 COFF Programmer’s Guide.

GNX ASSEMBLER DIRECTIVES 6-71

.dim

6.10.2 .dim

Syntax:

where:

Description:

Example:

.dim expression,,,

. d i m is the directive name.
expression specifies the size of one dimension of an array.

The . dim directive defines the dimensions of an array. Each argument
expression specifies the number of elements in one array dimension.
The symbol table entry format allows the specification of up to four
array dimensions.
The GNX Assembler enters the specified expressions into the array
dimension field of the auxiliary symbol table entry for the symbol that is
being defined. If no auxiliary entry exists, the GNX Assembler creates
one.

.dim 5,10
This example is a portion of the symbolic definition for a two-
dimensional array. Dimension one is 5, dimension two is 10.

6-72 GNX ASSEMBLER DIRECTIVES

.line

6.10.3 .line

Syntax:

where:

Description:

Example:

. l in e expression

.line is the directive name.
expression is the source file line number of the symbol declara­

tion.

The .line directive specifies the source file line number on which a
symbol has been declared. The GNX Assembler enters the specified
value, expression, into the line number field of the auxiliary symbol
table entry for the symbol that is being defined. The Assembler gen­
erates an auxiliary entry if one does not exist.
The . line directive should be used when the symbol being defined is a
block symbol. Block symbols include the special symbols .bf and .ef
which define the beginning and ending of functions, the special symbols
.bb and .eb which define the beginning and ending of blocks, and all
symbols defined within a block.
NOTE: The . line directive should be used only where the

Common Object File Format symbol table entry
specification requires and accepts a line number.
For additional information, refer to the Series 32000
GNX — Version 3 COFF Programmer’s Guide.

. l in e 25
This example is part of the definition of a block symbol declared on
source line number 25.

GNX ASSEMBLER DIRECTIVES 6-73

•sei

6.10.4 .sei

Syntax:

where:

Description:

.s e i expression

.s e i is the directive name.
expression is the value of a storage classification as defined in the

Series 32000 GNX — Version 3 COFF Programmer’s
Guide.

The . s c l directive assigns a storage class value to the symbol
definition. The storage class of a symbol affects the interpretation of the
“value” field of the entry. Storage classes are as follows:

C_AUTO — automatic variable, whose value is a stack offset.
C_EXT — external symbol, whose value is a relocatable address.
C_STAT — C style static or local variable, whose value is a relo­
catable address.
C_REG — register variable, whose value is the number of the
register. For example, if the register is rO the register number is
0 .
CJLABEL — an assembly language label, whose value is a relocat­
able address.
C_MOS — member of a structure, whose value is the offset of the
field from the start of the structure.
C_ARG — function argument, whose value is a stack offset.
C_STRTAG — structure tag (name), whose value is 0.
C_MOU — member of a union, whose value is the offset of the field
from the start of the union.
C_UNTAG — union tag (name), whose value is 0.
C_TPDEF — type definition, whose value is 0.
C_ENTAG — enumeration tag (name), whose value is 0.
C_MOE — member of an enumeration, whose value is the
enumeration number.
C_REGPARM — register parameter, whose value is the number of
the register.

6-74 GNX ASSEMBLER DIRECTIVES

.sei (Cont)

Example:

C_FIELD — bit field, whose value is the bit displacement.
C_BLOCK — beginning or end of block, whose value is a relocat­
able address.
C_FCN — beginning or end of a function, whose value is a relocat­
able address.
C_EOS — end of a structure, whose value is the structure size.
C_FILE — filename entry, whose value is the symbol table index
of the next .file symbol or the beginning of the global symbols if
there are no more .file symbols.
C_ALIAS — duplicate tag, whose value is the symbol table index
of the tag definition.

For more complete information about storage classes and their values,
refer to the Series 32000 GNX — Version 3 COFF Programmer’s Guide.

. scl 2
This example specifies a storage classification of C_EXT (external),
represented by the value 2.

GNX ASSEMBLER DIRECTIVES 6-75

.size

6.10.5 .size

Syntax:

where:

Description:

Example:

.s iz e expression

.s iz e is the directive name.
expression specifies the size of a structured variable.

The .s iz e directive specifies the total size of a structured type, an
array, or an enumerated type. The GNX Assembler enters the specified
value into the size field of the auxiliary symbol table entry for the sym­
bol that is being defined. If no auxiliary entry exists, the Assembler
generates one. For example, the C declaration:

char name_list[20] [200];
generates the following symbol specification:

1 . def _nam e_list
2 . val _nam e_list
3 . sc l 2
4 .type 0362
5 . dim 20,200
6 . s ize 4000
7
8

. endef
. g lobl _nam e_list

10 . comm _ nam e_ list, 4000
The storage size specified by the . s ize directive in line 6 is 4000 bytes
(20*200*sizeoflchar)), where the size of a character is one byte.

.s iz e 200
This example specifies a symbol’s storage size as 200 bytes. The Assem­
bler enters the value 200 into the size field of the auxiliary symbol table
entry for the symbol that is being defined.

6-76 GNX ASSEMBLER DIRECTIVES

6.10.6 .tag

Syntax:

where:

Description:

Example:

.tag

.ta g symbol

. tag is the directive name.
symbol is a symbol. The symbol is the tag name of a data

structure definition, for example, a C struct or union.

The .tag directive associates the tag name of a data structure with a
symbol. The GNX Assembler enters the symbol table index of the tag
name into the tag index field of the auxiliary entry for the symbol that
is being defined. If no auxiliary entry exists, the GNX Assembler gen­
erates one.

. d e f _ c o o r d

d e f
. s c l

_ a
1 0 ; • t y p e 0 1 0 ; . s i z e 1 2 ; . e n d e f

d e f
. v a l

_ b
0; . s c l 8 ; • t y p e 0 4 ; . e n d e f

d e f
. v a l

_ c
4 ; . s c l 8 ; • t y p e 0 4 ; . e n d e f

. v a l 8 ; . s c l 8 ; . t y p e 0 4 ; . e n d e f
. d e f . e o s

. v a l 1 2 ; . s c l 1 0 2 ; . t a g _ c o o r d ; . s i z e 1 2 ; . e n d e f

. d e f _ b a r
. v a l _ b a r ; . s c l 2 ; . t y p e 0 1 0 ; . t a g _ c o o r d ; . s i z e 1 2 ; . e n d e f

. g l o b l _ b a r

. comm _ b a r , 12

GNX ASSEMBLER DIRECTIVES 6-77

.tag (Cont)

This example defines the symbols associated with the C declarations:
s t r u c t c o o r d {

i n t a ;
i n t b ;

};
s t r u c t

i n t c ;

c o o r d b a r ;

The special symbol .eos (end of structure) uses the . t a g directive to
point back to the definition of the structure coord.
The bar symbol, which is of type struct coord, also uses the . t a g direc­
tive to point to the entry for coord.

6-78 GNX ASSEMBLER DIRECTIVES

.type

6.10.7 .type

Syntax: . type expression

where: . type is the directive name.
expression specifies the type of a symbol.

Description: The . type directive specifies type information associated with the sym­
bol that is being defined. The GNX Assembler enters the expression into
the type field of the main symbol table entry for the symbol that is being
defined.
The type field consists of sixteen bits, of which the low-order four con­
tain the base type. The remaining bits contain derived types, each of
which is specified in a two-bit field. For definition of types and derived
types see the Series 32000 GNX — Version 3 COFF Programmer’s
Guide.

Examples: 1. .type (2 | (2 << 4)) 1 1 << 6
2 . . type 4

The first example is a symbolic definition associated with the C declara­
tion:

char *fn () ;
The base type is T_CHAR (type character) represented by the value 2.
The first derived type is DT_FCN (function) represented by the value 2.
The second derived type is DT_PTR (pointer) represented by the value
1. The entire type field is interpreted as a pointer to a function that
returns a character.
The second example is associated with the C declaration:

in t f lag ;
The . type directive specifies the type T_INT (integer) represented by
the value 4.

GNX ASSEMBLER DIRECTIVES 6-79

.val

6.10.8 .val

Syntax: .val expression

where: . v a l is the directive name.
expression specifies the value of the symbol.

Description: The . v a l directive specifies the value field of the main symbol table
entry for the symbol that is being defined.

Example: .val _flag

This example sets the value field of the symbol table entry to the
address of the symbol _flag.

6-80 GNX ASSEMBLER DIRECTIVES

.endef

6.10.9 .endef

Syntax: . endef

where: . endef is the directive name.

Description: The .endef directive causes the GNX Assembler to end the definition
of a Common Object File Format (COFF) symbol table entry for the
specified symbol. The GNX Assembler adds the new symbol table entry
to the symbol table. The GNX Assembler generates an auxiliary entry if
the symbol specifications require one and fills in any symbol table index
fields as necessary.

Example: . def _ flag
.val _ flag
. sc l 2
. type 4

. endef
This example is a symbolic definition associated with the C declaration:

in t flag ;
The . endef directive ends the definition.

GNX ASSEMBLER DIRECTIVES 6-81

LINE NUMBER TABLE CONTROL DIRECTIVE

6.11 LINE NUM BER TABLE CONTROL DIRECTIVE
Each section in the object file may have an associated line-number table, for the pur­
pose of source-level debugging support. The line-number table maps source file line
numbers to addresses within the section. Each line number table entry is either a
function entry or a line number entry. Function entries record the symbol table index
for the function. Line number entries record a line number offset from the start of the
function and an associated physical address.
Function entries are generated automatically by the assembler when a function is
defined, refer to Section 6.10. Line number table entries are created with the .In
directive.

Directive Function
. In specifies a line number entry

6-82 GNX ASSEMBLER DIRECTIVES

6.11.1 .ln

Syntax:

where:

Description:

Example:

.ln

. ln expressionl [,expression2]

.ln is the directive name.
expressionl specifies the source file line offset from the beginning

of a function.
expression2 specifies an associated memory address. This value

defaults to the current location.

This directive is used to equate higher level source code line numbers to
assembly code, normally generated by compilers. Expressionl must
yield a value of absolute type that gives a line number in the source
code. Expression2 if present, must have a value of type TEXT, DATA, or
BSS that gives the address within the section where the line number
occurs. If the second operand is missing, the value of the current loca­
tion counter will be used as the address of the line number.

. ln 1
This example defines a line number entry for the first line of a function.
The associated memory address is the value of the current location
counter.

GNX ASSEMBLER DIRECTIVES 6-83

MACRO-ASSEM BLER DIRECTIVES

6.12 MACRO-ASSEMBLER DIRECTIVES
The macro-assembler directives provide the macro and conditional assembly support.
They enable the definition and usage of macros, and allow for the inclusion or deletion
of optional assembly statements. Other macro-assembler directives help minimize pro­
gramming errors and speed the development process. For more details see Chapter 8.
The macro-assembler directives are as follows:

Directive Function
.macro
. endm
. i f
. e l s i f

begins a macro-procedure definition
ends a macro-procedure definition
begins a conditional macro-assembler statement
begins an elsif close for the conditional macro­
assembler statement

. e lse begins an else close for the conditional macro­
assembler statement

. endif

. r e p e a t / . irp

. endr

. e x it

.macro_on

.macro_off

. include

.mwarning

.merror

ends a conditional macro-assembler statement
begins a macro repetitive block
ends a macro repetitive block
terminates processing of the current repetitive block
enables macro-procedure expansions
disables macro-procedure expansions
includes another file
generates an assembler warning message
generates an assembler error message

6-84 GNX ASSEMBLER DIRECTIVES

.m acro

6.12.1 .m acro

Syntax: .macro macro-name \formal-arg [, formal-arg] . . . !

where: macro-name is the macro-procedure name. It may be any legal
assembler symbol.

formal-arg is a macro-variable defining a formal argument.

Description: The .macro directive begins the macro-procedure definition. The
macro-procedure associates a macro name with a sequence of state­
ments which follow the .macro directive, up to the . end if directive.

Example: .macro c lea r_ a rray s iz e , base_reg

Defines a macro procedure named c lea r_ a rray with two formal argu­
ments s iz e and base_reg.

GNX ASSEMBLER DIRECTIVES 6-85

.endm

6.12.2 .endm

Syntax: .endm [macro_name]

where: . endm ends the macro-procedure definition.

Description: The . endm directive marks the end of the macro-procedure definition.
macro_name is an optional specification for the name of the macro to be
ended.

Example:

.macro c le a r-a r ra y s iz e , base-reg

.endm c le a r-a r ra y

d efines c le a r-a r ra y
macro statem ents

ends the d e f in i tio n of c le a r

6-86 GNX ASSEMBLER DIRECTIVES

.if

6.12.3 .if

Syntax: . i f if_condition

where: if_condition is an arithmetic macro-expression.

Description: The . i f directive begins a conditional macro assembler statement.
ifjcondition is a condition to be tested during macro processing phase. If
found to be true, the statements following it (until a corresponding
.e l s e i f , .e ls e or . endif directive) are processed by the macro pro­
cessor.

Example : .if {reg_num} > 5
movqd 5, r{reg_num}

.elsif (reg_num) > 3
movqd 3, r{reg_num)

. else
movqd 1, r{reg_num}

.endif

If reg_num holds the value 6 this is expanded to
movqd 5, r6

if reg_num holds the value 4 this is expanded to
movqd 3, r4

and if reg_num holds the value 0 this is expanded to
movqd 1, rO

GNX ASSEMBLER DIRECTIVES 6-87

.e ls if

6.12.4 .e ls if

Syntax: . e l s i f elsif^condition

where: elsif_condition is an arithmetic macro-expression.

Description: In a conditional block, if the ifjcondition is found to be false, the
elsifjcondition arguments are evaluated until one is found to be true. If
the elsif„condition is found to be true, the corresponding
elsif'_conditional_body statements following the elsifjcondition are pro­
cessed.

6-88 GNX ASSEMBLER DIRECTIVES

.e lse

6.12.5 .else

Syntax: • e ls e else conditional Jbody

where: else.conditionalJbody
consists of valid assembly language statements, direc­
tives, macro-procedure calls and macro-assembler
directives, repetitive blocks and macro-procedure
definitions.

Description: In a conditional block, if the previously specified if condition or
elsifcondition is found to be false, then the else_conditional_body state­
ments (following the elsif condition) are processed.

GNX ASSEMBLER DIRECTIVES 6-89

.endif

6.12.6 .endif

Syntax: .en d if

Description: Ends an . i f conditional macro-assembler statement.

6-90 GNX ASSEMBLER DIRECTIVES

.repeat

6.12.7 .repeat

Syntax: . rep ea t [iteration _count [, iteration joar]

where: iteration_count specifies the number of iterations.
iteration jja r is a macro-variable name used as an iteration index.

Description: The .rep ea t directive begins a macro repetitive block, which ends
with a . endr directive. The number of repetitions is determined by the
iteration_count argument. Repetitive blocks may appear inside a
macro-procedure definition, in conditional blocks, and may be nested
without limit.
If given, the iterationjoar argument holds a string representing the
current iteration number for each iteration. After the repetitive block
has been processed, it holds the iteration_count value. If the
iterationjeount argument is evaluated as a negative or zero value, the
statements in the block are read textually without being processed until
an . endr directive is reached. If the iterationjcount argument is not
given, then the repetitive block is processed repeatedly until an . e x it
directive is processed (see section 8.9.3).

Example: .rep ea t 8, i
movqd 0, r {{i } - 1}

. endr

generates code that clears rO through r7

GNX ASSEMBLER DIRECTIVES 6-91

irp

6.12.8 .irp

Syntax: . i rp iterationjuar, iterationJist

where: iterationjuar is a macro-variable name to be used as an iteration
variable.

iteration_list is a macro-list.

Description: The . i rp directive begins a special macro repetitive block, which ends
with a endr directive. For each element in the iteration_list argument,
the macro-processor assigns its string value to iterationjuar, and process
the code between the . i r p statement and the corresponding .endr
statement. If the iteration_list argument is an empty macro-list, the
statements in the block are read textually without being processed.
After the repetitive block has been processed, iterationjuar contains the
last element of iterationjist.

Example: . i r p r e g , [rO , r l , r 2 , r 3 , r 4 , r 5 , r 6 , r 7]
movqd 0 , { r eg}

. endr

generates code that clears registers rO through r7

6-92 GNX ASSEMBLER DIRECTIVES

.endr

6.12.9 .endr

Syntax: . endr

Description: The . endr directive ends a macro repetitive block.

GNX ASSEMBLER DIRECTIVES 6-93

.exit

6.12.10 .exit

Syntax: .e x i t

Description: Terminates the processing of the current repetitive block that begins
with either a .rep ea t or . i rp directive. Statements following this
directive are read textually without being processed, until an . endr
statement is encountered.

Example:
x : =1
. repeat

. i f {x} > 30
. e x it

. endif

.by te {x}
x:={{x}*2)

. endr
will generate the code
. by t e 1
.byte 2
.byte 4
.by te 8
.by te 16

6-94 GNX ASSEMBLER DIRECTIVES

.macro_on and .macro_off

6.12.11 .m acro_on and .m acro o ff

Description: The .macro_on and .macro_off directives enable and disable
macro-procedure expansions, respectively, in selective parts of the
source text.

Example:
.macro addd opl,op2

bsr count_additions
.macro_off
addd {opl},{op2}

,macro_on
. endm

the following macro-procedure call:
addd rl,r2

will generate:
bsr count_additions
addd rl,r2

GNX ASSEMBLER DIRECTIVES 6-95

.inclu de

6.12.12 .in c lu d e

Syntax: .in c lud e includedJile

where: included Jile is an existing file name

Description: The .include directive allows for the inclusion of text from another
file as part of the file being assembled.

Example: .include filehdr.h

NOTE: If the includedJile does not contain the full directory path of the
file to be included, the assembler will search for it in either the
current directory, or in a directory specified with the -MI invocation
option (macro include directory).

6-96 GNX ASSEMBLER DIRECTIVES

.mwarning

6.12.13 .m w a rn in g

Syntax: .mwarning warning _message

Description: The . mwarning directive generates an assembler warning message.

Example: xx:= 222
.mwarning current value of "xx" is : {xx}.

.mwarning is used to write the current value of macro-variable xx to
the listing output. The assembler will issue the following warning mes­
sage:
Assembler (Macro-Processor): "filename.s" , line 2 ,
WARNING: current value of "xx" is : 222

GNX ASSEMBLER DIRECTIVES 6-97

.merror

6.12.14 .m error

Syntax: . merror errorjnessage

Description: The directive .merror generates an assembler error message.

Example:
.merror
Wrong value used for addr "address"

The assembler will issue the following error message:
Assembler (Macro-Processor) Error: “ filename.s', line i, statement is ==> .merror 'err*
Wrong value used for addr “address“<== ERROR: Wrong value used for addr 'address'

6-98 GNX ASSEMBLER DIRECTIVES

PROCEDURE SUPPORT DIRECTIVES

6.13 PROCEDURE SUPPORT DIRECTIVES
The procedure support directives enable the definition of assembly procedures and an
easy interface with other assembler or HLL procedures. The assembler procedure han­
dling conforms to the GNX standard calling convention.

The procedure support directives are as follows:
Directive Function
.proc
.proct
.proci
. var
.begin
.endproc
. call

defines an ordinary procedure
defines a trap procedure
defines an interrupt procedure
starts definition of local variables for procedure
starts the body of the procedure
ends the procedure definition
calls an assembler or an HLL procedure

GNX ASSEMBLER DIRECTIVES 6-99

.proc

6.13.1 .proc

Syntax: .proc

Description: The . proc directive starts an ordinary procedure definition. It marks
both the definition point of the procedure and the beginning of the
parameter block definition.

Example:
pi: .proc # define procedure, pi
pari: .blkd # double-word parameter, pari
par2: .blkw # two-byte parameter, par2

.begin # starts procedure body

procedure body

.endproc # ends procedure body

6-100 GNX ASSEMBLER DIRECTIVES

.proct

6.13.2 .proct

Syntax: .proct

Description: The .proct directive starts the definition of a trap procedure. The
body of a trap procedure is exited via the rett instruction.

Example:
trap_proc: .proct

.begin

.endproc

define trap procedure
starts body

trap procedure body

exit via rett

GNX ASSEMBLER DIRECTIVES 6-101

.proci

6.13.3 .proci

Syntax: .proci

Description: The .proci directive starts the definition of an interrupt procedure.
The body of an interrupt procedure is exited via the reti instruction.

Example:
int_proc: .proci

.begin

. endproc

defines interrupt procedure
starts body

interrupt procedure body

exit from int_proc here is t
the reti instruction

6-102 GNX ASSEMBLER DIRECTIVES

.var

6.13.4 .var

Syntax:

where:

Description:

Example:

.var [reglist]

reglist is a list of the registers to be saved upon procedure
entrance and restored upon procedure exit. The regis­
ters are specified within brackets, and seperated by
commas.

The .var directive starts the local variable block definition. It also
ends the parameter block definition started with the .proc, .proct or
.proci directives.

p l : . p r o c # s t a r t s d e f i n i t i o n o f p r o c e d u r e , p l
p a r i : . b l k d # a d o u b l e - w o r d p a r a m e t e r

. v a r [r 4 , r 5] # s t a r t s l o c a l v a r i a b l e b l o c k d e s c r i p t i o n
v a r l : . b l k d # a d o u b l e - w o r d v a r i a b l e
v a r 2 : . b l k w # a t w o - b y t e v a r i a b l e

. b e g i n # s t a r t s p r o c e d u r e b o d y
i m p l i e d s a v i n g r 4 a n d r 5

p r o c e d u r e b o d y

. e n d p r o c # e n d s p r o c e d u r e b o d y
r e s t o r i n g r 4 a n d r 5 i m p l i e d

GNX ASSEMBLER DIRECTIVES 6-103

.begin

6.13.5 .b eg in

Syntax: .begin

Description: The .begin directive begins the procedure body. It also ends the vari­
able block definition.
The .begin directive develops into an enter sequence for entering the
procedure body, saving registers specified with the .var directive; and
allocates stack area for the local variables.

Example:
p i : . p r o c

. v a r [r 2]
v a r l : . b l k d # a d o u b l e - w o r d v a r i a b l e
v a r 2 : . b l k d # a d o u b l e - w o r d v a r i a b l e

. b e g i n # s t a r t s p r o c e d u r e b o d y
s a v e s r 2
a l l o c a t e s 8 b y t e s t a c k a r e a f o r v a r l a n d v a r 2

p r o c e d u r e b o d y

. e n d p r o c # e n d s p r o c e d u r e b o d y

6-104 GNX ASSEMBLER DIRECTIVES

.endproc

6.13.6 .end proc

Syntax: . endproc [returnjualue [: returnjsizeW

where: returnjualue is an optional value to be returned from the procedure.
return_size is an optional size specification for the retum_value. It

can be either of the specifications: b, w, d, f or 1.

Description: The . endproc directive ends the procedure definition. It also marks
the end of the procedure body and develops into an exit sequence from
it.
The exit sequence may prepare a return value; it releases stack area
allocated for local variables; restores saved registers; and returns from
the procedure using exp, rett or reti, depending on the procedure
type.

Example:
p i : . p r o c

. v a r [r 3 , r 4 , r 5]
v a r l : . b l k w

. b e g i n # s t a r t s p r o c e d u r e b o d y

p r o c e d u r e b o d y

. e n d p r o c v a r l : d # e n d s p r o c e d u r e b o d y
p r e p a r e s r e t u r n v a l u e v a r l i n r
r e l e a s e s s t a c k a r e a f o r v a r l
r e s t o r e s r 3 , r 4 , r 5
r e t u r n s t o c a l l e r t h r o u g h t h e
r e t i n s t r u c t i o n

GNX ASSEMBLER DIRECTIVES 6-105

.call

6.13.7 .call

Syntax: . call proc_name [param_l:x:y, ... param_n:x:y]

where: procjiame is the name of the procedure to be called.
param is an actual parameter for the called procedure.
x,y are size specifications for the actual and formal param­

eters, respectively. They can be any of the following
specifications: b, w, d, f, or 1.

Description: The .call directive calls the procedure .proc_name with the specified
parameters param_l through param_n, adhering to the GNX standard
calling convention.

Example: .call cproc, r3:d, $50 :d

Calls procedure cproc with two double-word parameters: r3 and the
immediate value : 50.

6-106 GNX ASSEMBLER DIRECTIVES

Chapter 7
PROCEDURE SUPPORT

7.1 INTRODUCTION
A procedure is a sequence of instructions that can be called from several different
places in a program. After a called procedure has finished executing, it returns control
to the caller.
Assembly procedures can be defined and called within assembly code. Symbolic param­
eters and local variables may be defined and used within each assembly procedure,
enabling easy, maintainable, and well structured assembly programming. The GNX
Assembler conforms to the standard GNX calling convention, thus making the inter­
face with high-level-language written code easy.

7.1.1 P roced u re O peration
The following steps are performed in the call and execution of an assembly procedure:

1. The caller pushes parameters onto the stack.
2. The caller passes execution control to the first instruction of the procedure.
3. The procedure saves the contents of the specified general purpose registers and

allocates storage for the local variables on the stack.
4. The procedure’s code is executed.
5. The procedure stores a possible return value in rO or fO.
6. The procedure releases the storage allocated for local variables, restores the con­

tents of the saved general purpose registers by popping them off the stack, and
returns control to the caller.

PROCEDURE SUPPORT 7-1

7.2 PROCEDURE DEFINITION

Syntax:
p ro ced u re : p r o c e d u r e j ie a d

[pa ra m eter_ b lo ck]
[[.var [reg list]

tlo c a l_ v a r_ b lo ck]]
.begin
[p r o c e d u r e jb o d y]
.endproc [re tu m _ v a lu e :[re tu rn _ size \]

where: p ro ce d u re is an assembly label defining the procedure name.
Should appear within a text section.
If a double colon (::) is used instead of a single colon (:),
the procedure is defined as global.

p ro ce d u re _ h ea d begins the procedure definition. The directives
.proc, .proct or .proci should be used for
defining either an ordinary procedure, a trap pro­
cedure, or an interrupt procedure, respectively.

p a ra m eterJ b lo ck is a definition of the procedure’s formal parameters. It
consists of storage allocation statements of the form:
[param _n am e :] . b i tt [b lo ck _ size \

.b lkx can be any storage allocation directive (.b lkb ,
.blkw, .blkd, .blkf, or .blkl).

. var is a directive that specifies the beginning of the local
variable block.

reg lis t is an optionally specified list of general purpose regis­
ters to be saved upon entering the procedure and
restored upon exiting.

lo ca l_va rJ b lo ck is a definition of the procedure’s local variables. It con­
sists of storage allocation statements of the form:
[var_n am e :] . blkx [b lo c k js iz e]

.b lkx can be any storage allocation directive (.blkb,
.blkw, .blkd, .blkf, or .blkl).

7-2 PROCEDURE SUPPORT

.begin starts the procedure body. It generates an enter
sequence for register saving and local variables
storage allocation.

procedureJbody assembly statements that constitute the actual pro­
cedure code to be executed.

. endproc ends the procedure body. It generates an exit sequence
for releasing local variables, restoring saved registers,
and exiting the procedure.

retum_value is an optional return value to the procedure.
retum_size is an optionally specified size for retum_value. It can be

one of the following specifications: b, w, d, f, or 1.

7.3 PROCEDURE TYPES

Three types of procedures are supported by the GNX assembler:
• Ordinary procedures and functions
• Trap handler procedures
• Interrupt handler procedures

For each procedure type, a different exit instruction is generated when the . endproc
directive is encountered.
Ordinary procedures or functions are specified by the . proc directive. They should be
called with the bsr instruction. The exit sequence uses the ret instruction. When
the assembler is invoked using the modularity option, the procedures should be called
using the exp instruction, and the rxp instruction is used instead of the ret instruc­
tion.
The trap handler procedure is specified by the .proct directive. The exit sequence
uses the rett instruction.
The interrupt handler procedure is specified by the .proci directive. The exit
sequence uses the reti instruction.
The GNX calling convention defines standards for using registers within different pro­
cedure types. These standards are discussed in detail in Section 7.7.

PROCEDURE SUPPORT 7-3

7.4 CALLING A PROCEDURE

A procedure can be called using the . call directive.

Syntax:
.call proc_name [,actual_param [:x[:y]],...]

where: proc_name is the name of the procedure to be called.

actualjiaram is an actual value that is passed to the called pro­
cedure. It is any legal assembly expression. Each
parameter can be either an integer or a floating-point.

x is a size specification for an actual parameter. It can
be either b, w or d for integer values; and either f or I
for floating-point values.

y is a size specification for the formal parameter as
appears in the procedure definition. It can be either b,
w or d for signed integer parameters; either ub, uw or
ud for unsigned integer parameters; and either f or 1
for floating-point parameters.
For both integer and floating-point parameters, the
size of the actual parameter must not be greater than
the size of the formal parameter.

Description: The .call directive develops into a calling sequence that prepares
parameters on the stack and calls the procedure. A more detailed
description follows below.

7-4 PROCEDURE SUPPORT

7.4.1 The Calling Sequence
In the normal calling sequence, parameters are pushed on top of stack (t o s) using the
m o v instructions, the procedure is called using a call instruction, and on the return
from the call the parameters are released from the stack using the a d j s p instruction.
This sequence is generated when either optimization is off, or when optimization is on
but the . c a l l directive appears outside a procedure definition.
Example:

The call
. c a l l c m u l , o p d l : b : d , o p d 2 : f : 1

develops into
m o v f l o p d 2 , t o s
m o v x b d o p d l , t o s
b s r c m u l
a d j s p b $ - 1 2

p r e p a r e o p d 2
p r e p a r e o p d l
c a l l c m u l
r e l e a s e p a r a m e t e r s t o r a g e f r o m s t a c k

7.4.2 Optimizing the Calling Sequence
The generated calling sequence can be optimized using the assembler optimization
option (-0 on UNIX, /OPTIMIZE on VMS). Optimized code is generated based on the
location of the . c a l l directive in your program code.
When the . c a l l directive appears inside a procedure definition, a special scratch area
is allocated on the top of stack upon entrance to the procedure containing the call. The
. c a l l directive moves parameters into the special scratch area using m o v instructions
and calls the procedure. The scratch area is released only upon exit from the procedure
containing the call. This reduces the number of a d j s p instructions normally gen­
erated for each procedure call to a minimum, thereby improving performance.

PROCEDURE SUPPORT 7-5

The call
.call cmul, opdl:d, o p d 2 :d

develops into

Example:

at this point, scratch area of at least 8 bytes
should be allocated on top of stack,

movd opd2, 4(sp) # prepare opd2
movd opdl, 0(sp) # prepare opdl
bsr cmul # call cmul

scratch area should be released from the top
of stack later on.

Note: Use of the debug invocation option (-g on UNIX, /DEBUG on VMS) suppresses
procedure optimization since there is no frame when optimization is on.

7.4.3 Passing Parameters
Parameters are prepared on top of stack, from right to left (i.e., last specified actual
parameter is innermost from top of stack). Parameters are prepared on the stack
according to the parameters’ sizes as specified with the .call directive. No implicit
stack alignment is done by the assembler. If the formal parameter size (y) is not
specified, it is assumed to always be the same as the actual parameter size Oc). When
no size is specified for a parameter, the default 1 is used for immediate floating-point
values; the default d is used for any other value.
Example:
The call

. c a l l c p r o c , v a r l : d , v a r 2 : w , v a r 3 : b : w

develops into
m ovxbw v a r 3 , t o s
movw v a r 2 , t o s
m o v d v a r l , t o s
b s r c p r o c

p u s h v a r 3 o n t o p o f s t a c k
p u s h v a r 2 o n t o p o f s t a c k
p u s h v a r l o n t o p o f s t a c k

7-6 PROCEDURE SUPPORT

After c p r o c is called using the b s r instruction, the stack layout is

2 bytes param 3
2 bytes param 2
4 bytes param 1

return
address

sp -- >

High Memory Addresses

Low Memory Address

You must ensure type and size consistency between actual parameters specified for the
.call directive and the corresponding formal parameters in the procedure definition.
Further, you must verify that when interfacing HLL written procedures, integer
parameters are double-word aligned, and float parameters are 8-byte aligned, as
defined by the standard GNX calling convention (see Appendix E).
Example:

Calling the HLL print f procedure:
p r i n t _ b y t e : . p r o c
b y t e _ p a r a m : . b l k b # a o n e b y t e p a r a m e t e r

. b e g i n
p r i n t f e x p e c t s a l i g n e d p a r a m e t e r s

. c a l l _ p r i n t f , $ f o r m a t _ s t r i n g : d , b y t e : b : u d

. e n d p r o c

. d a t a
f o r m a t _ s t r i n g : . a s c i i “ % d \ n \ 0 "

7.4.4 The Call Instruction
The call instruction generated for the .call directive is dependent on the assembler
invocation line. If the modularity option is specified (-X on UNIX, /MODULAR on
VMS), the exp instruction is generated. Otherwise, the bsr instruction is generated.

PROCEDURE SUPPORT 7-7

Example:
The call

. c a l l c p r o c

normally uses the bsr instruction
b s r c p r o c

When using 32000 modularity, the . call directive uses
the exp instruction

e x p c p r o c

7.5 THE PARAMETER BLOCK
The parameter block defines formal parameters for the procedure. It consists of
storage allocation statements. Each statement either defines a parameter or is an
alignment statement.
Syntax for parameter definition:

param_name : .blkx [expression]
Syntax for an alignment statement:

{.blkx, .align, .space} [expression]

where: param_name is an assembly label defining a parameter name.
.blkx can be any storage allocation directive (.blkb,

.blkw, .blkd, .blkf, or .blkl).

Description: Parameter definitions and alignment statements constitute the parame­
ter block. All parameter definitions and alignment statements must be
specified as one contiguous block between the .proc and the following
procedure directive (the .v a ro r . begin directives). This block should
not be broken by any other segment.

7-8 PROCEDURE SUPPORT

Each parameter has a size and type associated with it, based on the
storage allocation directive specified. The following storage allocation
directives are used:
. blkb specifies a one byte integer.
.blkw specifies a two byte integer.
. blkd specifies a four byte integer.
.blkf specifies a four byte (single-precision) floating-point.
.blkl specifies an eight byte (double-precision) floating-point.

Example:

pari: .blkw
. align

par2: .blkf
. space

par3: .blkd
ERROR in line
line is: .if

2-byte integer parameter named pari.
4 # align pari to double-word.

4-byte floating-point parameter named par2.
4 # align par2 to quad-word.

4-byte integer parameter named par3.
number 441 incorrect number of fields

7.5.1 Parameter Allocation
Parameters are allocated on the stack by the caller; the right parameter is located
intermost from the top of stack. The assembler addresses the parameters as either sp-
relative or fp-relative addresses.
Normally, the assembler uses the fp-relative addressing mode. When invoked with the
optimization option (-0 on UNIX, /OPTIMIZE on VMS), the assembler uses the sp-
relative addressing mode since the frame is not used. When the debug option (-g on
UNIX, /DEBUG on VMS) is used together with the optimization option, procedure
optimization is suppressed and the fp-relative addressing mode is used.

PROCEDURE SUPPORT 7-9

For the procedure definition
Example:

p l : . p r o c
p a r i : . b l k d
p a r 2 : . b l k d

. b e g i n
a d d r p a r l , r l
. e n d p r o c

pari is normally addressed as 8(fp). The stack layout is

par 2

par 1

return
address

old fp
fp -■
sp -■

High Memory Addresses

12(fp)

8 (fp)

4 (fp)

0(fp)

Low Memory Address

When procedure optimization is on, pari is addressed as
4(sp). The stack layout is

sp

High Memory Addresses

8 (sp)

4 (sp)

0 (sp)
Low Memory Address

Refer to Section 7.9 for more details on stack usage.
7-10 PROCEDURE SUPPORT

7.5.2 Parameter Alignment
You must ensure type and size consistency between formal parameter definitions and
the corresponding actual parameters as specified in the procedure call.
The assembler does not implicitly align each of the procedure parameters. When inter­
facing HLL code, it is your responsibility to align integer parameters to double-word
and floating-point parameters to eight byte addresses on the stack, as defined by the
GNX standard calling convention (see Appendix E).
Example:

Calling an assembly procedure from a C module
c h a r c = ' \ 1 '
s h o r t s = 2 ;
i n t i = 3 ;
f l o a t f = 4 . 0
d o u b l e d = 5 . 0

c _ f u n c ()
{

a s m _ p r o c (c , s , i , f , d) ;
}

The corresponding assembly procedure definition is

_ a s m _ p r o c : : . p r o c
p a r _ c : . b l k d # a l i g n e d t o d o u b l e - w o r d
p a r _ s : . b l k d # a l i g n e d t o d o u b l e - w o r d
p a r _ i : . b l k d # a l i g n e d t o d o u b l e - w o r d
p a r _ f : . b l k l # a l i g n e d t o l o n g f l o a t
p a r _ l : . b l k l # a l i g n e d t o l o n g f l o a t

. v a r

. b e g i n

a n y u s e r c o d e

. e n d p r o c

PROCEDURE SUPPORT 7-11

7.5.3 P a ra m e te r B lock S ize
After a parameter block has been defined, the parameter block size value is available
through the predefined variable param_size. This value can be used throughout the
procedure’s definition, starting with the .var directive through the .endproc direc­
tive.

7.5.4 Parameter Scope
Parameters can only be referenced within the body of the procedure in which they are
defined. Procedure parameters need not be uniquely named among different pro­
cedures.

7.6 THE VARIABLE BLOCK
The variable block defines the local variables for the procedure. It consists of storage
allocation statements. Each statement defines a parameter or is an alignment state­
ment.
Syntax for variable definition:

var_name : .blkx [expression]
Syntax for an alignment statement:

{.blkx, .align, .space} [expression]

where: var_name is an assembly label that defines the local variable
name.

.blkx can be any storage allocation directive (.blkb,
.blkw, .blkd, .blkf, or .blkl).

Description: Variable definitions and alignment statements constitute the variable
block. All variable definitions and alignment statements must be
specified as one contiguous block between the .var and the .begin
directives. This block should not be broken by any other segment. If
the procedure has no variables, the .var directive can be omitted.

7-12 PROCEDURE SUPPORT

Each variable has a size and type associated with it, based on the
storage allocation directive specified. The following storage allocation
directives are used:
.blkb specifies a one byte integer.
.blkw specifies a two byte integer.
.blkd specifies a four byte integer.
.blkf specifies a four byte (single-precision) floating point.
.blkl specifies an eight byte (double-precision) floating point.

Example:

v a r l : . b l k w # 2 - b y t e i n t e g e r v a r i a b l e n a m e d v a r l .
. a l i g n 4 # a l i g n t o d o u b l e - w o r d .

v a r 2 : . b l k b # 1 - b y t e i n t e g e r v a r i a b l e n a m e d v a r 2 .
. a l i g n 4 # a l i g n t o d o u b l e - w o r d .

v a r 3 : . b l k f # 4 - b y t e f l o a t i n g - p o i n t v a r i a b l e n a m e d v a r 3

7.6.1 Variable Allocation
Local variables are allocated on the stack upon entering the procedure body; the first
variable is located intermost from the top of stack. The assembler addresses them as
either sp-relative or fp-relative addresses.
Normally, the assembler uses the fp-relative addressing mode. When invoked with the
optimization option (-0 on UNIX, /OPTIMIZE on VMS), the assembler uses the sp-
relative addressing mode since the frame is not used. When the debug option (-g on
UNIX, /DEBUG on VMS) is used together with the optimization option, the procedure
optimization is suppressed and the fp-relative addressing mode is used.

PROCEDURE SUPPORT 7-13

Example:
For the procedure

p l : . p r o c
p a r i : . b l k d
p a r 2 : . b l k d

. v a r
v a r l : . b l k d
v a r 2 : . b l k d

. b e g i n

. e n d p r o c

varl will normally be addressed as -4(fp). The stack layout will be

< -- 12(fp)

< - - 8 (f p)

< -- 4 (fp)

< - - 0 (f p)

< --- 4 (fp)

< --- 8 (fp)

High Memory Addresses

Low Memory Address

7-14 PROCEDURE SUPPORT

When the procedure optimization is on, varl will be addressed as 4(sp).
The stack layout will be

sp

High Memory Address

16(sp)

12(sp)

8 (sp)

4 (sp)

0 (sp)
Low Memory Address

Refer to Section 7.9 for more details.

7.6.2 Variable Alignment
The assembler does not implicitly align each of the procedure variables. It is your
responsibility to align local variables according to your target bus width in order to
achieve better performance at run time. However, the whole variable block is always
double-word aligned.
Note that the assembler assumes the stack is properly aligned upon entering a pro­
cedure. Therefore, you must ensure the proper alignment of parameters before enter­
ing the procedure.
Example:

. v a r
v a r l . b l k w # a l l o c a t e s 2 b y t e s f o r v a r l
v a r 2 : . b l k b # a l l o c a t e s 1 b y t e f o r v a r 2

. b e g i n

The complete variable block will occupy 4 bytes since it is double-word aligned.

PROCEDURE SUPPORT 7-15

7.6.3 V a ria b le B lock S ize
After a variable block has been defined, the variable block size value is available
through the predefined variable var_size. This value can be used throughout the
procedure’s body, starting with the . begin directive through the . endproc directive.

7.6.4 Variable Scope
Variables can only be referenced within the body of the procedure in which they are
defined. They need not be uniquely named among different procedures.

7.7 REGISTER USAGE
There is no special support for the usage of registers within a procedure. Registers
may be used throughout the procedure, provided they are used consistently, and saved
and restored when necessary.
When using the GNX standard calling convention, certain rules apply for the use of
registers. Volatile registers (r0-r2, fl)-f3) can be freely modified within an ordinary
assembly procedure; non-volatile registers (r3-r7, f4-f7) should be saved when a pro­
cedure is entered if they are to be modified. This also means that before calling a pro­
cedure that conforms to the GNX calling covention:

1. You should save volatile registers whose values you wish to keep, since they may
be changed in the called procedure.

2. You do not need to save non-volatile registers, since they are guaranteed to be
saved in the called procedure.

Both volatile and non-volatile registers should be saved when entering a trap or an
interrupt procedure if they will be modified within the procedure (see Appendix E for a
complete description of the GNX calling convention).
You should save registers when entering a procedure, and restore them when exiting a
procedure, by using the reglist option of the . var directive.

Syntax:
.var [reglist]

where: reglist is a list of registers to be saved upon procedure
entrance (.begin) and to be restored upon procedure
exit (. endproc). The registers are specified within
brackets, and separated by commas.

7-16 PROCEDURE SUPPORT

Description: The assembler uses the enter or save instruction for saving registers
and the exit or restore instruction for restoring registers, depend­
ing on the assembler invocation options (for details see Sections 7.8.1
and 7.8.3).

Example:
For the following assembly procedure

Preg: .proc
.var [r4,r5]
. begin
addd rO,rl
subd rl,r4
muld r0,r5
.endproc

r4 and r5 are saved when the .begin directive is encountered, and restored when
the . endproc directive is encountered. The actual code is

enter [r4,r5], $0 # save r4,r5
addd rO , rl
subd rl, r4
muld rO , rS
exit [r4,r5] #restore r4,r5

7.8 THE PROCEDURE BODY
The procedure body is constructed from assembly statements between the . begin and
. endproc directives:

.begin
[procedurejbody]
.endproc [return_value[:retum_size\\

PROCEDURE SUPPORT 7-17

7.8.1 E n te rin g a P ro c e d u re B ody

The .begin directive starts the procedure body. It develops into an enter sequence
that saves the registers specified with the .var directive and allocates space for local
variables on the stack. In the case of procedure optimization, the enter sequence allo­
cates an additional scratch area on the stack for optimization purposes (as described
below).
The assembler generates different enter sequences depending on the specified invoca­
tion options. Normally, the assembler generates an enter sequence that enables using
the frame within the procedure body. Local variables are allocated on the frame and
the reglist registers are saved on the stack using the enter instruction.
Example:

In the assembly procedure p i
p l : . p r o c
p a r i : . b l k d

. v a r [r 4]
v a r l : . b l k d

. b e g i n
a d d r v a r l , r 4
. e n d p r o c r 4 : d

l o c a l v a r i a b l e v a r l

the .begin directive develops into
e n t e r [r 4] , $ 4 # a l l o c a t e s t a c k f r a m e a r e a f o r v a r l

a n d s a v e r e g i s t e r r 4

When invoked with the optimization option, the assembler does not use the frame.
Rather, the reglist registers are saved using the save instruction, and local variables
are allocated using the ad j sp instruction. In addition, if the procedure contains calls
to other procedures using the .call directive, the same adjsp instruction allocates
an additional scratch area for passing parameters to the subsequent calls.

7-18 PROCEDURE SUPPORT

Example:
In the assembly procedure p2

p 2 : . p r o c
p a r i : b l k d

. v a r [r 4]
v a r l : . b l k d

. b e g i n
a d d r v a r l , r 4
. c a l l p i , p a r i : d ,
. e n d p r o c v a r l : d

The begin directive develops into
s a v e [r 4] # s a v e r e g i s t e r r 4
a d j s p w $12 # a l l o c a t e s t a c k a r e a f o r v a r l (4 b y t e s) a n d s c r a t c h

a r e a f o r p a s s i n g t h e 2 p a r a m e t e r s t o p i (8 b y t e s)

7.8.2 Within a Procedure Body
The procedure body should contain assembly statements for execution. Such state­
ments can symbolically reference the procedure’s parameters and local variables. They
can also reference global symbols. No symbolic reference is allowed to local parameters
or variables of a different procedure.
Both symbolic references to parameters and local variables are interpreted as refer­
ences to their addresses on the stack. These addresses may be fp-relative or sp-relative
(see Sections 7.5.1 and 7.6.1).
When procedure optimization is on, the assembler assumes a fixed stack-pointer value
throughout the procedure body. This value is used for referencing parameters and
local variables as sp-relative addresses. Therefore, when using the optimization option,
you should not alter the stack-pointer value within the procedure body (by using either
the adjsp, save, restore, enter, exit instructions or the tos adressing
mode).
Registers can be used throughout the procedure body as described in Section 7.7.
Transferring control from one procedure to another should be done using the .call
directive. Nested procedure definition is illegal. The procedure body may be broken up
by other segments.

PROCEDURE SUPPORT 7-19

7.8.3 E x itin g a P ro c e d u re B ody

The . endproc directive is provided for exiting a procedure.

Syntax:
.endproc [return_value [:x[:y]]

where: . endproc marks the end of procedure body and exits from it.
retum_value is an optional value to be returned from the procedure.
r is a size specification for the source of the return value.

It can be either b, w or d for integer values; and either
f or 1 for floating-point values.

y is a size specification for the destination of the return
value. It can be either b, w or d for signed integer
values; either ub, uw or ud for unsigned integer values;
and either f or 1 for floating-point values.
For both integer and floating-point values, the source
size must not be greater than the destination size.

Description: The . endproc directive ends the procedure body. It develops into an
exit sequence for releasing the stack storage that was allocated upon
procedure entrance. The . endproc directive also restores saved regis­
ters and returns from the procedure.
If a return_value is specified, a code preparing the return value precedes
the exit sequence. The return value is prepared either in rO, fO, or
10 according to the standard calling convention. Integer values are
returned in rO. Floating-point values are returned either in fO or 10.
Note that registers are restored after the retum_value is prepared. There­
fore, the return value will be lost if rO is one of the restored registers
(e.g. specified in reglist with the . var directive). Also note that when a
floating point value, beeing a part of a HLL expression, is returned as a
single-precision value in f 0, it is expanded to a double-precision value
by the HLL code after retumning from the assembly procedure.

The assembler generates different exit sequences depending on the specified invocation
option. Normally, the assembler prepares retum_value in rO, fO, or 10 restores saved
registers and releases the frame using the exit instruction, and returns from the pro­
cedure using a return instruction.
7-20 PROCEDURE SUPPORT

The return instruction generated for the exit sequence is dependent on the procedure
type and the assembler invocation options. The ret instruction is generated for ordi­
nary non-modular procedures. The rxp instruction is generated for ordinary modular
procedures. The rett instruction is generated for trap procedures. The reti
instruction is generated for interrupt procedures.

Example:
In the assembly procedure Pi

pi: .proc
pari: .blkd

.var [r4]
varl: .blkd

.begin
addr varl,r4
.endproc r4:d

local variable varl

the . endproc directive develops into

movd r4, rO
exit [r4]
ret 0

prepare return value r4 in rO
restores r4 and releases frame
returns to caller

PROCEDURE SUPPORT 7-21

When invoked with the optimization option, the assembler prepares retum_value in rO
or f 0, releases the allocated stack storage (including both the local variables and the
scratch area storage) using the adjsp instruction. The assembler restores saved
registers using the restore instruction, and returns from the procedure using the
return instruction.

Example:
In the assembly procedure p2

p2: .proc
pari: .blkd

. var
varl: .blkd

[r4]

.begin
addr
. call
.endproc

varl, r4
pi, parl:d, r4:d
varl:d

The . endproc directive develops into

movd 8 (sp), rO
adjspw $-12

restore [r4]
ret $0

prepare return value varl in rO
release stack area for local variabl
and scratch area
restore r4
return to caller

7-22 PROCEDURE SUPPORT

7.9 STACK USAGE

Normally within a procedure body the stack layout will be

parameters

return block

fp -- >

caller
last arg

i
first arg
[mod/psr]
return pc
saved fp

first local var

positive
offsets of
fp

< -- 0 (fp)

local
variables

sp -- >

: negative offsets
: of fp

last local var
saved registers

High Memory Address

Low Memory Address

Parameters are prepared before calling the procedure, and are referenced within the
procedure body as fp-relative addresses (offset (fp), offset being positive).
The return block is created by the call, save and adj sp instructions. When Series
32000 modularity is used or in cases of trap or interrupt procedures, the mod and psr
values (which are a total of four bytes), are pushed on the stack.
The procedure enter sequence save registers on stack. Local variables are allocated on
the stack by the enter sequence, and are referenced within the procedure body as fp-
relative addresses (offset (fp), offset being negative).

PROCEDURE SUPPORT 7-23

When procedure optimization is on, the stack layout will be

parameters

return block

local
variables

sp -- >

_____caller_____
last arg

I
first arg
[mod/psr]
return pc

saved registers
first local var

last local var
scratch area

High Memory Address

Low Memory Address

The frame is not used in this layout. Parameters are prepared before calling the pro­
cedure and are referenced within the procedure body as sp-relative addresses.
The return block is created by the call, save and adjsp instructions. When Series
32000 modularity is used or in cases of trap or interrupt procedures, the mod and psr
values (which are a total of four bytes), are pushed on the stack.
The procedure enter sequence saves registers on stack. Local variables are allocated
on the stack by the enter sequence, and are referenced within the procedure body as
sp-relative addresses.
The scratch area is a special stack storage. It is allocated once upon entering the pro­
cedure body, and released when the procedure body is exited. The scratch area is used
for passing parameters to other procedures called with the . call directive. Therefore
an area does not have to be allocated and released each time a subsequent procedure is
called.

7-24 PROCEDURE SUPPORT

7.9.1 S a m p le A ssem b ly P ro c e d u re

The procedure
x p r o c : . p r o c
p a r i : . b l k d

. v a r [r 4]
v a r l : - b l k d

. b e g i a
a d d r v a r l , r 4

. c a l l p i , p a r i : d , r 4 : d

. c a l l p 2 , $ 1 0 0 : d

. c a l l p 3 , $ 2 0 : d , rO

. e n d p r o c v a r l : d

will normally expand to
e n t e r [r 4] , $4 # s a v e r 4 , a l l o c a t e f r a m e
a d d r - 4 (f p) , r 4
m o v d r 4 , t o s # p u s h r 4
m o v d 8 (f p) , t o s # p u s h p a r i
b s r P i # c a l l p i
a d j s p b $ - 8 # r e l e a s e s p a r a m e t e r a r e a o f p a r i
m o v d $ 1 0 0 , t o s # p u s h i m m e d i a t e v a l u e 100
b s r p2 # c a l l p2
a d j s p b $ - 4 # r e l e a s e p a r a m e t e r a r e a o f p 2
m o v d r O , t o s # p u s h rO
m o v d $ 2 0 , t o s # p u s h i m m e d i a t e v a l u e 20
b s r P3 # c a l l p3
a d j s p b $ - 8 # r e l e a s e p a r a m e t e r a r e a o f p3
a d d d r O , - 4 (f p) # u p d a t e v a r l
m o v d - 4 (f p) , rO # p r e p a r e r e t u r n v a l u e o f r l
e x i t [r 4] # r e s t o r e r 4 , r e l e a s e f r a m e
r e t $0 # r e t u r n

In this example, an adjsp instruction is generated for every procedure called with
parameters within the xproc procedure.

PROCEDURE SUPPORT 7-25

Just before the bsr to p i the stack layout will be

parameters
t o
Pi
sp -- >

High Memory Address

8 (f p)

4 (sp)

0 (f p)

- 4 (f p)

- 8 (fp)

4 (sp)

0 (sp)
Low Memory A d d r e s s

When procedure optimization is on, the procedure will expand to
x p r o c : . p r o c
p a r i : . b l k d

. v a r [r 4]
v a r l : . b l k d

s a v e [r 4] # s a v e r 4
a d j s p w $12 # a l l o c a t e v a r l a n d s c r a t c h a r e a o n s t a c k
a d d r 8 (s p) , r 4
m ovd r 4 , 4 (s p) # p a s s r 4 t o p i
m o v d 2 0 (s p) , 0 (s p) # p a s s p a r i t o p i
b s r P i # c a l l p i
m o v d $ 1 0 0 , 0 (s p) # p r e p a r e i m m e d i a t e v a l u e 1 0 0
b s r p2 # c a l l p 2
m o v d r O , 4 (s p) # p r e p a r e rO
m ovd $ 2 0 , 0 (s p) # p r e p a r e i m m e d i a t e v a l u e 20
b s r P3 # c a l l p3
a d d d r O , 8 (s p) # u p d a t e v a r l
m o v d 8 (s p) , rO # p r e p a r e r e t u r n v a l u e o f v a r l
a d j s p w $ - 1 2 # r e s t o r e s t a c k a r e a
r e s t o r e [r 4] # r e s t o r e r 4
r e t $0 # r e t u r n

In this example, ad j sp instructions are generated only for the entrance to and exit
from the xproc procedure.
7-26 PROCEDURE SUPPORT

Just before the bsr to p i the stack layout will be

H i g h M e m o r y A d d r e s s

2 0 (s p)

1 6 (s p)

1 2 (s p)

8 (s p)

4 (s p)

0 (s p)
Low M e m o r y A d d r e s s

PROCEDURE SUPPORT 7-27

Chapter 8
MACRO AND CONDITIONAL ASSEMBLER

8.1 INTRODUCTION
The GNX macro-assembler makes writing assembly programs easier. It eliminates the
need to rewrite similar assembly source code repeatedly, and simplifies program docu­
mentation. The conditional assembler feature allows for the inclusion or deletion of
optional assembly statements. Other macro-assembler features help minimize pro­
gramming errors and speed the development process.
The macro-assembler is automatically invoked by the assembler.
The macro-assembler described in this chapter is a completely new element for the
GNX Version 4 Assembler. It is characterized by powerful and flexible features. This
new macro-assembler is not compatible with the previously supplied macro-assembler
(from Version 2.0 and up).
For compatibility purposes, the Version 2 macro-assembler is still supported in this
release (but will be obsolete in Version 5). However it must now be invoked by the -MC
invocation option for the UNIX environment, and by the /MCOMPATIBILITY invoca­
tion option for the VMS environment. See Appendix F for details.

8.1.1 O v erv iew o f th e M ajor M acro-A ssem bler F eatu res
The GNX macro-assembler supports the following features:

• Macro-procedures ("macros")
A macro-procedure is equivalent to the common term "macro". For example, for
the following macro-procedure:

. m a c r o m o v e _ b y t e s s

s a v e [r O , r l , r 2]
m ovd $ { l e n g t h } , rO
a d d r {s o u r c e } , r l
a d d r { d e s t } , r 2
m o v s b
r e s t o r e [r O , r l , r 2]

. endm

s o u r c e , d e s t , l e n g t h

MACRO AND CONDITIONAL ASSEMBLER 8-1

the macro-procedure calls:
m o v e _ b y t e s a a , 1 2 (- 8 (f p)) , 1 0 2 4

m o v e _ b y t e s 0 (f p) [r 7 : b] , 0 (r 5) , 512

will generate the code:
s a v e [r 0 , r l , r 2]
m o v d $ 1 0 2 4 , rO
a d d r a a , r l
a d d r 1 2 (- 8 (f p)) , r 2
m o v s b
r e s t o r e [r 0 , r l , r 2]

s a v e [r 0 , r l , r 2]
m o v d $ 5 1 2 , rO
a d d r 0 (f p) [r 7 : b] , r l
a d d r 0 (r 5) , r 2
m o v s b
r e s t o r e [r 0 , r l , r 2]

This feature is fully described in Section 8.10.
• Conditional Code Generation

Code may be generated according to conditions tested in the macro-assembly
phase. For example the sequence:

. i f {STR_EQ [(G N X _FP U), n s 3 2 3 8 1])
l o g b f f l , f 2

e l s e
m o v f f 2 , t o s
m o v f f l , t o s
b s r _ s q r t f
a d j s p b $ - 8
m o v f fO , f 2

e n d i f

will generate code using the l o g b f opcode if the predefined variable GNX_FPU
holds the value 3 2 3 8 1 . Otherwise a calling sequence to the subroutine _ s q r t f
will be generated.
This feature is fully described in Section 8.8.

• Macro Variables
String values may be assigned to macro-variables. These variables may be later
utilized in place of the string value. For example:

b a s e _ r e g : = rO

m o v q d 0 , 0 ((b a s e _ r e g))

8-2 MACRO AND CONDITIONAL ASSEMBLER

is equivalent to :
m o v q d 0 , 0 (r 0)

This feature is fully described in section 8.4.
Repetitive Code Generation
This feature allows for the easy repetition of sequences of statements, by specify­ing either:
- the number of repetitions, as for example

. r e p e a t 3 , i n d e x

. a l i g n 4

. w o r d { i n d e x }

. e n d r

which is equivalent to the code
. a l i g n 4
. w o r d 1
. a l i g n 4
. w o r d 2
. a l i g n 4
. w o r d 3

- or a repetition list
. i r p v a l , [2 5 , 3 , 1 9 8 9]
. a l i g n 4
. w o r d { v a l }
. e n d r

which is equivalent to the code
. a l i g n 4
. w o r d 25
. a l i g n 4
. w o r d 3
. a l i g n 4
. w o r d 1 9 8 9

This feature is fully described in section 8.9.
Text Inclusion
Text from another file may be included as part of the file being assembled. For
example:

. i n c l u d e u s e f u l . d e f i n i t i o n s

will place code that is the contents of file u s e f u l . d e f i n i t i o n s .

This feature is fully described in section 8.12.

MACRO AND CONDITIONAL ASSEMBLER 8-3

• Listing of Expanded Code
A listing output may be produced to display all expanded code. The listing out­put can be generated after either the macro-processing phase or after the second phase of the assembly process.
This feature is fully described in section 8.3.

• User Error and Warning Messages
Error and warning messages can be issued by the user. For example, given the following macro:

. m a c r o c h e c k _ r e g _ n u m b e r r e g _ n u m b e r

. i f { r e g _ n u m b e r } > 7
. m e r r o r i n v a l i d r e g i s t e r n u m b e r s p e c i f i e d .

. e n d i f

. endm

the call:
c h e c k _ r e g _ n u m b e r 10

will result in the error message:
Assembler (Macro-Processor) Error :
"filename.s", line 4, statement is ==> .merror invalid register number specified<==
. . . from line 9 : while calling ”check_reg_number'' with "ARG_LIST"=[10]

ERROR : invalid register number specified

These features are fully described in section 8.13.
• Arithmetic Operations and Expressions

Arithmetic operations and expressions (including arithmetic comparisons) can be
performed on constants and variables.
For example, assuming the macro-variable x holds the string value 10 0, the
statement:

r e s u l t := { {x} * ({x} - 1) }

is processed by the macro-assembler so that the macro-variable
r e s u l t will hold the string value 9 900 .

Arithmetic operations and expressions are fully described in section 8.5.
• Built-in Macro Functions

Built-in macro-functions provide the following capabilities:
1. Manipulation of strings. For example

8-4 MACRO AND CONDITIONAL ASSEMBLER

{SU B _S TR [abode , 2 , 3]}

is equivalent to the string bed.
2. Manipulation of macro-lists (special strings used for implementing complex data structures). For example:

r e g _ l i s t : = {s u b l i s t [[R 1 , R 5 , R 7] , 2 , 2] }

sets r e g _ l i s t to hold R5 and R7.
3. Integer and floating-point conversions.
4. Manipulation of NS32000 instruction operand strings. For example

{O P _ IN D E X _ R E G [x x + 9 (s p) [r 3 : b]]}

is evaluated as a string specifying the index register r3.

8.2 THE M ACRO-PROCESSING PHASE
Assembly source text is processed by the assembler in two distinct phases: the macro­
processing phase and the assembly phase.
The macro-processing phase involves the reading and processing of source text state­
ment by statement. Strings between braces ({}) are handled and replaced with the
appropriate value. If the resulting statement is a macro-directive statement or a
macro-procedure call it is acted upon. All other statements are not processed by the
macro-processor and are passed directly to the assembly phase.
The assembly phase is performed in two passes and generates the appropriate output
files.
A more detailed explanation of the various stages of the macro-processing follows
below.
A string between braces is handled as follows:

• A macro-variable name is replaced with the current value of the variable. For exam­
ple, if the variable a holds the value x x y 1 0 0 , then {a } is replaced by x x y 1 0 0 .

• An arithmetic macro-expression is evaluated and replaced with the result. For
example, (100* (10+10) } is replaced by 2000.

• A built-in macro-function call is evaluated and replaced by the result. For example,
{STR_LEN [a b e d e] } is replaced by 5 .

• All other braced strings cause an error message to be issued.

MACRO AND CONDITIONAL ASSEMBLER 8-5

Pairs of braces may be nested, in which case the string contained by the inner pair of
braces is evaluated and replaced first.
For example, assuming the macro-variable op holds the value r2 ,then the following

statement
m ovd $ 0 , r { {SUB_STR[{ o p } , 2 , 1] } + 4}

will be replaced by
m o v d $ 0 , r 6

-F irst, {op} is replaced by r2.- Then, the function call (SUB_STR[r2, 2, 1]} is replaced by 2.- Finally, (2 + 4} is arithmetically evaluated and replaced by the
resulting string 6.

Braces are not processed in the macro-processing phase if they appear within either an
ascii constant (such as " {1 + 1}") or a character constant (such as ' {')•
A statement followed by a backslash (\) before a carriage-return (<CR>) is con­
catenated with its previous statement. The statements are then treated as a single
statement (any number of lines may be concatenated in this way). This does not apply
to comments. Comments will be terminated by a carriage return (<CR>) even if pre­
ceded by a backslash (\). This feature may be used in macros for breaking complex
expressions into several lines. All error messages refer to the first concatenated state­
ment.
Macro-directives and macro-procedure calls are handled as follows:
• When the opcode field is the name of a previously defined macro-procedure, the

statement is considered a macro-procedure call.
The statements in the macro-procedure body are processed, as if they were encoun­
tered at this point, after matching the actual arguments with the formal arguments
of the macro-procedure.

• When the statement is of the form "symbol : = value", the statement is considered a
macro-variable assignment.
The variable statement on the left side of the : = is assigned the value specified on
the right side.

• When the opcode field is a .macro directive, the statement is considered a macro­
procedure definition.
The statements following the . macro directive, but before the . endm directive, are
read textually without being processed and are stored internally.

• When the opcode field is an . i f directive, a conditional block is began.
Statements following a true clause are processed; statements following an untrue
clause are read textually without being processed and are discarded. •

• When the opcode field is a .repeat or a .irp directive, a repetitive block is
begun. The statements of the block are repetitively processed, according to the

8-6 MACRO AND CONDITIONAL ASSEMBLER

operands of the . repeat or . irp directive.
• When the opcode field is a . include directive, the specified file is read and pro­
cessed.

8.3 INVOCATION
Several aspects of macro-processing can be controlled by assembler invocation options.
The following table presents these specific options:

FLAG (VMS) FLAG (UNIX) DEFINITION
/MCOMPATIBILITY -MC Invokes the Version 3 macro-assembler.
/MDEFINE=
(n a m e [= d e fl[,...])

-M D n a m e or
-MD n a m e = d e f

Defines name to macro assembler as if
by macro assignment statement.

/MLIBRARY=
(lib n a m ei,...])

-ML filenam e Includes macro library file.
/MINCLUDE=
(d ire c to ry i ,. . .])

-MI d ir Specifies an include search directory.
/MONLY -MO Invoke only macro-processing phase.
/MPRINT=filenam e -MP filenam e Prints the macro-processing output.

When the -MC option (/MCOMPATIBILITY on VMS) is used, version 4 macro-processing is
suppressed. The old, version 3, macro-assembler is used instead. If this option is specified, it
may not be combined with the other macro options described here.
The -MD option (/MDEFINE on VMS) assigns an initial value to a macro variable.
The -ML option (/MLIBRARY on VMS) includes an already existing macro-library. A macro-
libarary is any valid assembly file using the Version 4 macro-assembler features; as described
in Section 8.12 for the i n c lu d e d _ f i le of the . include directive.
The -MI option (/MINCLUDE on VMS) sets a search directory for included files. The assembler
searches for .include files which do not begin with a slash (/) (or an open bracket ([) on VMS), in
the directory of the specified input file first, then in the directory named in this option.
The -MO option (/MONLY on VMS) invokes only the macro-processing phase of the assembler.
The -MP option (/MPRINT on VMS) causes the assembler to print the macro-processor’s output
to filen am e. If filen a m e is not given, the output is written to standard output on UNIX, or a .mac
file on VMS.

MACRO AND CONDITIONAL ASSEMBLER 8-7

8.4 MACRO VARIABLES
Macro-variables are variables that are active only during the macro-processing phase.
The name of a macro-variable may be any assembly symbol as defined in section 2.5, i.e. a
sequence of letters, digits, underscores (_) and periods (.). The first character may not be a
digit. A period (.) should not be used as the first character of the variable name since it may
be confused with a directive name.
The initial value of any macro-variable is the empty string, unless it has been assigned a value
on the invocation line (see section 8.3) through the -MD macro invocation option (/MDEFINE
on VMS). Generally a macro-variable is assigned a value by the user through a macro-variable
assignment statement.
The value of an undefined variable is the empty string.
Syntax: macrojuar : = [value]
Description: This assigns the value of the macro variable value to macrojvar, after strip­

ping leading and trailing blanks. If value is omitted, an empty string is
assigned to macrojvar.

A macro-variable is substituted with its current value when its name is enclosed
within braces.
Syntax: { macrojvar }

Examples:
1. AAA := 5+5

assigns the string value 5 + 5 to the macro-variable AAA.
2. XXX := 7

XXX := {XXX}+1

assigns the string value 7+1 to the macro-variable XXX.
3. XXX := 7

XXX := {{XXX} + 1}

assigns the value 8 to the macro-variable XXX.
4. VAR_NAME:= XXX

{VAR_NAME} := 7

assigns the value 7 to the macro-variable XXX .

8-8 MACRO AND CONDITIONAL ASSEMBLER

5 . EEE
FFF
LLL

e e e
= f f f
= [d d d , {EEE}, { F F F } , g g g]

assigns the value of the macro-list [ddd, eee, fff, ggg] to the macro-variable LLL.

8.5 ARITHMETIC MACRO-EXPRESSIONS
An arithmetic macro-expression is a string whose contents are a legal combination of
integer constants, arithmetic operators, comparison operators and parentheses. This
string can be evaluated as an integer value.
Examples of various arithmetic macro-expressions are:

1 . 1000
2. 20 + 8 * (3 / 2)

3. assuming that the value of a is 50 and that the value of b is +, then:
{a} {b} 27

is also a legal arithmetic macro-expression (equivalent to 50 + 27).

When an arithmetic macro-expression is enclosed between braces or used in an arith­
metic context (for example, the clause of a .if / .elsif directive or as the first
operand of a . repeat directive), it is evaluated by the macro-processor and substi­
tuted with a string representing its value. This string contains an integer constant in
signed decimal notation with no leading blanks. Arithmetic macro-expressions are
evaluated and converted by the macro-assembler to a 32-bit signed integer representa­
tion. All arithmetic operations are performed on 32-bit signed integer operands, and
also return a 32-bit integer value.
Each arithmetic macro-operator in a macro-expression has a level of precedence. This
determines the macro-expression’s order of evaluation. Table 8-1 lists all the macro­
operators and their precedence for evaluation.
The user must follow these rules when writing arithmetic macro-expressions:

1. All unary operators must precede a single term and cannot be used to
separate two terms.

2. All binary operators must separate two terms. For example, the macro­
expression 8*4 is legal, but 8**4 is illegal.

MACRO AND CONDITIONAL ASSEMBLER 8-9

Table 8-1. Macro Operator Precedence

PRECEDENCE OPERATOR NAME DESCRIPTION OF OPERATION
Unary Operator

1 - Unary minus Two’s complement (= negation).1 ~ Unary complement One’s complement.
Binary Operator

2 * Multiply Multiply 1st term by 2nd term.2 / Divide Divide 1st term by 2nd term.*
2 % Modulus Remainder from 1st term divided

by 2nd term.**2 « Shift left Shift 1st term by 2nd term; emptied bits are zero-filled.2 » Shift right Shift 1st term by 2nd term; emptied bits are zero-filled.2 Logical OR /
complement

Bit-wise OR of 1st term and one’s
complement of 2nd term.

3 & Logical AND Bit-wise AND of 1st and 2nd terms.3 1 Logical OR Bit-wise OR of 1st and 2nd terms.
3 A Logical XOR Bit-wise XOR of 1st and 2nd terms.
4 + Add Add 1st and 2nd terms.
4 - Subtract Subtract 2nd term from 1st term.

5 = Equal 1 if 1st and 2nd terms are equal, 0 otherwise
5 <> Not Equal 1 if 1st and 2nd terms are not

equal, 0 otherwise
5 > Greater Than 1 if 1st term is greater than 2nd

term, 0 otherwise
5 < Less Than 1 if 1st term is less than 2nd term,

0 otherwise
5 >= Greater or Equal 1 if 1st term is greater than or equal to 2nd term, 0 otherwise5 <= Less or Equal 1 if 1st term is less than or equal to 2nd term, 0 otherwise

* Rounds toward 0, e.g., -7/3 = -2 and 7/3 = 2
** e.g., -7%3 = -1 and 7%3 = 1.

8-10 MACRO AND CONDITIONAL ASSEMBLER

3. Compound macro-expressions are valid. A macro-expression may be con­
structed from other macro-expressions using unary and binary operators.
For example, the two individual macro-expressions {A} + 1 and {B}+2 may
be combined with a multiply operator and parentheses to form the single
macro-expression ({A}+1) *({B}+2). Note that the parentheses override
the default precedence rules.

4. Evaluation of a macro-expression is governed by three factors:
• Parentheses - macro-expressions enclosed in parentheses are evaluated

first. For example, {8/4/2} is evaluated as 1, but {8/(4/2)} is
evaluated as 4.

• Precedence Groups - an operation of a higher precedence group is
evaluated before an operation of a lower precedence group whenever
parentheses do not otherwise determine the evaluation order. For exam­
ple, {8+4/2} is evaluated as 10, but {8/4+2} is evaluated as 4.

• Left to Right Evaluation - macro-expressions are evaluated from left to
right whenever parentheses and precedence groups do not determine
evaluation order. For example, {8*4/2} is evaluated as 16, and
{8/4*2} is evaluated as4.

8.6 MACRO LISTS
A macro-list is a sequence of strings separated by commas and enclosed between brack­
ets. Each string in the macro-list is called an element. An element of a macro-list may
itself be a macro-list, allowing for multilevel macro-lists.
Macro-lists are useful for implementing macro data-structures (such as arrays, records,
stacks) in conjunction with built-in functions that perform macro-list manipulations,
such as search, insertion and deletion of elements (see Section 8.16). Some examples of
various types of macro-lists are:
Examples:

1. [)

a macro-list with no elements
2. [xx,yy]

a macro-list with two elements: xx and yy.
3. [a,,]

a macro-list with three elements: a and two empty strings.

MACRO AND CONDITIONAL ASSEMBLER 8-11

4. [[r l , r 2] ,100]

a macro-list with two elements, a macro-list with two elements
and the string 10 0.

5 . [1 2 [r 2 : w] , @ x x]

a macro-list with two elements.

8.7 BUILT-IN MACRO FUNCTIONS
The macro-assembler provides built-in functions to manipulate macro-strings, arith­
metic constants, macro-lists and assembly operands.
The general syntax for calling a macro-function is:
Syntax: {macro June p aram jist}
where: macro June is the name of the function

paramjist is a macro-list in which each element is a parameter to
the function.

Leading and trailing blanks of parameters are stripped before processing the macro-
function. The macro-function call is then evaluated and replaced by the result of the
function call.

Example: The macro-function call
{SU B _STR [a b c d e , 3 , 2] }

is replaced by the string cd.
Below is a list of available built-in functions. The macro-list and operand functions are
advanced features of the macro-assembler and therefore may not be necessary for all
users. For a detailed description of these functions see Sections 8.15 through 8.18.
String Functions:
• { STR_l e n [string]>
• { s t r_e q [string 1, string2] }
• { s u b_s t r [string, start [, length]] >
• (s t r_f i n d [string, substring]}

8-12 MACRO AND CONDITIONAL ASSEMBLER

Macro-List Functions:
• {LIST_GET[l is t , e le m e n t j iu m b e r]}
• { s u b_l i s t [l is t , s ta r t [, len g th]]}
• {LIST_FIND[l is t , s t r i n g] }
• {l i s t_r e p l [l is t , e lem en t j iu m b e r , s tr in g]}
• {l i s t_ ins [l is t , s tr in g , e lem en t j i u m b e r]}
• {l i s t_d e l [l is t , e lem en t j i u m b e r]}
• {LIST_LEN[l i s t])

Data Conversion Functions:
• {CNV_h e x [in teg er_ co n sta n t]}
• { c n v_h e x f [co n sta n t]>
• {CNV_HEXL [co n sta n t]>

Instruction Operand Functions:
• {OP_TYPE[o p e ra n d]}
• (OP_REG[o p e ra n d]>
• {0P_DISP1 [o p e ra n d] >
• (0P_DISPSIZE1 [o p e ra n d]}
• {0P_DISP2 [o p e ra n d]>
• (OP_d i s p s i z e 2 [o p e ra n d] >
• {OP_VAL [o p e ra n d]}
• {OP_VALSlZE [o p e ra n d]}
• {0P_LIST[o p e ra n d]>
• {OP_IS_i n d e x e d [o p e ra n d]}
• (0P_INDEX[o p e ra n d]}
• {OP_INDEX_BASE [o p e ra n d]>
• {OP_INDEX_REG [o p e ra n d]}
• (OP_lNDEX_SCALE [o p e ra n d]}

MACRO AND CONDITIONAL ASSEMBLER 8-13

8.8 CONDITIONAL A SSE M B LY
Sequences of statements may be generated according to conditions tested during the macro-processing phase.

8.8.1 Conditional Block
Syntax: .if if_ co n d itio n

if_conditional_body
[.elsif e ls if_ co n d ition

e ls if_ co n d itio n a l_ b o d y] ...

[.else

e lse_ co n d itio n a l_ b o d y]

.endif

where: if_ co n d itio n and e ls if_ co n d itio n {s)are arithmetic macro-expressions.
Description: A condition evaluated by the macro-assembler as a non-zero value is

considered to be true. See Section 8.5 for details on macro-expression
evaluation.
In a conditional block the i f jc o n d it io n argument is evaluated first, and
only if found to be true the statements in if_ co n d itio n a l_ b o d y are pro­
cessed. If the if_ co n d itio n is found to be false, the e ls if_ co n d itio n {s)
arguments are evaluated until one of them is found to be true, in which
case the corresponding e ls if_ co n d itio n a l_ b o d y statements are processed.
Otherwise, if an .e ls e statement has been specified, the
e lse_ co n d itio n a l_ b o d y statements are processed.
The types of statements that are allowed in c o n d itio n a l J b o d ies are valid
assembly language statements, directives, macro-procedure call and
macro-assembly directives, with all the conditional blocks, repetitive
blocks and macro-procedure definitions being complete.

8-14 MACRO AND CONDITIONAL ASSEMBLER

Example: . i f { r e g _ n u m } > 5
m o v q d 5 , r { r e g _ n u m }

. e l s i f { r e g _ n u m } > 3
m o v q d 3 , r { r e g _ n u m }

. e l s e
m o v q d 1 , r (r e g _ n u m }

. e n d i f

If r e g _ n u m holds the value 6 this is expanded to
m o v q d 5 , r 6

if r e g _ n u m holds the value 4 this is expanded to
m o v q d 3 , r 4

and if r e g _ n u m holds the value 0 this is expanded to
m o v q d 1 , rO

MACRO AND CONDITIONAL ASSEMBLER 8-15

8.9 REPETITIVE DIRECTIVES
The basic constructs of a repetitive block are:

. repeat [ite ra tio n _ co u n t [, ite ra tio n ._var]

rep e titiv eJ b o d y

. endr
and

. irp ite ra tio n _ v a r , ite ra tio n _ lis t

rep e titiv eJ b o d y

.endr

Repetitive blocks may appear inside a macro-procedure definition, in conditional
blocks, and may be nested without limit.
The types of statements allowed in a repetitive block are valid assembly language
statements, directives, macro-procedure calls, macro-assembly directives (except the
.macro and the .endm directives) with all conditional blocks and repetitive blocks
being complete.

8.9.1 . r e p e a t D irectiv e

Syntax: . repeat [ite ra tio n _ co u n t [, i te r a t io n jv a r]]

where: i te ra tio n jc o u n t specifies the number of iterations.
i te r a t io n jv a r is a macro-variable name used as an iteration index.

Description: The i te ra tio n jc o u n t argument is evaluated by the macro-processor. If its
value is positive, the code following the .repeat statement through
the corresponding . endr statement, is processed ite ra tio n _ co u n t
amount of times.
If given, the i te r a t io n jv a r argument holds a string representing the
current iteration number for each iteration. It receives values from 1 to
i te ra tio n _ co u n t. After the the processing of the repetitive block has been
completed, it holds the i te ra tio n _ co u n t value.
If the i te ra tio n jc o u n t argument is evaluated as a negative or zero value,
the statements in the block are read textually without being processed
until an . endr directive is reached.
If the i te ra tio n jc o u n t argument is not given, then the repetitive block is

8-16 MACRO AND CONDITIONAL ASSEMBLER

processed repeatedly until an . exit directive is processed (see Section
8.9.3).

Examples:
1 . . r e p e a t 8 , i

m o v q d 0 , r { { i } - 1}
. e n d r

generates code that clears rO through r7.
2. . r e p e a t 4

n o p
. e n d r

generates 4 consecutive nop instructions.

8.9.2 . ir p D irectiv e

Syntax: . i rp i te ra tio n _ v a r , i t e r a t io n j i s t

where: i te r a t io n ju a r is a macro-variable name to be used as an iteration
variable.

i t e r a t io n j i s t is a macro-list.
Description: For each element in the i t e r a t io n j i s t argument, the macro-processor

assigns its string value to i te ra tio n _ u a r, and process the code between
the . irp statement and the corresponding . endr statement.
If the i t e r a t io n j i s t argument is an empty macro-list, the statements in
the block are read textually without being processed.
After the processing of the repetitive block has been completed,
i te r a t io n ju a r contains the last element of i t e r a t io n j i s t .

Example: . i r p r e g , [r O , r l , r 2 , r 3 , r 4 , r 5 , r 6 , r 7]
m o v q d 0 , { r e g }

. e n d r

generates code that clears registers rO through r l .

MACRO AND CONDITIONAL ASSEMBLER 8-17

8.9.3 . e x i t D irectiv e

Syntax: . exit
Description: Terminates the processing of the current repetitive block. Statements

following this directive are read textually without being processed, until
an . endr statement is encountered.

Example: x : =1
. r e p e a t

. i f {x} > 30
. e x i t

. e n d i f

. b y t e {x}
x : = { { x } * 2 }

. e n d r

will generate the code
. b y t e 1
. b y t e 2
. b y t e 4
. b y t e 8
. b y t e 16

8.10 MACRO PRO CEDURES (M A C R O S)
Use of a macro-procedure makes it possible to associate a macro name with a sequence
of statements. This sequence can be generated by specifying the macro name in the
opcode field, optionally with arguments.
The macro-procedure directives (.macro and .endm) in this version are not compati­
ble with the GNX-assembler version 3.0 However, old code can be assembled using the
-MC invocation option (/MCOMPATIBILITY on VMS) (see Section 8.3 for more details).

8.10.1 M acro P roced u re D efin ition

Syntax: .macro macro-name [formal-arg [, formal-arg] . . .
macro-procedure-body
. endm [macro-name]

8-18 MACRO AND CONDITIONAL ASSEMBLER

where: macro-name is the macro-procedure name. It may be any legal
assembler symbol.

formal-arg is a macro-variable defining a formal argument.
macro-procedure-body

are the statements to be inserted into the assembler
code when the macro-procedure is called.

Description: The statements of the macro-procedure body are read textually without
being processed and are stored internally.

Within a macro-procedure body, other macro-procedure definitions are not allowed and
all conditional and repetitive blocks must be complete. If macro-name is given in the
. endm directive, it must be the same macro-name as given in the corresponding
.macro directive.
A macro-procedure can only be defined once in an assembly file and its definition must
precede any call to it.
The formal arguments in the .macro directive specify the names of the macro­
variables to be assigned values according to the actual arguments, when the macro­
procedure is called and expanded. The specification of formal arguments in the
definition of a macro-procedure is optional.

Example: . m a c r o c l e a r _ a r r a y s i z e , b a s e _ r e g
c l e a r s a n a r r a y o f ' s i z e ' d o u b l e - w o r d s w h o s e
b a s e a d d r e s s i s i n ' b a s e _ r e g '

. r e p e a t { s i z e } , e l e m _ n u m
c l e a r _ e l e m { e l e m _ n u m } , { b a s e _ r e g }

. e n d r

. endm

. m a c r o c l e a r _ e l e m e l e m _ n u m , b a s e _ r e g
c l e a r s e l e m e n t n u m b e r ' e l e m _ n u m ' o f
a n a r r a y w h o s e a d d r e s s i s i n ' b a s e _ r e g '

movqd 0, {4 * ({elem_num} - 1) } ({b a se _ re g })
. endm

c l e a r _ a r r a y 3 , r 4

will expand to
m o v q d 0, 0 (r 4)
m o v q d 0, 4 (r 4)
m o v q d o , 8 (r 4)

MACRO AND CONDITIONAL ASSEMBLER 8-19

8.10.2 M acro P roced u re C all and E xp a n sio n
Syntax: macro-name [actual-arg [, actual-arg] . . .
Description: A macro-procedure is called by specifying its name in the opcode field of

the statement, provided it has already been defined. The name of the
invoked macro-procedure may be followed by a sequence of actual argu­
ments separated by commas.

When a macro-procedure call is processed, the current value of each macro-variable
specified as formal argument is saved, and the macro-variable is assigned the value of
its corresponding actual argument instead.
The body of the called macro-procedure is read from storage and processed as if it were
inserted instead of the macro-procedure call statement. This is called macro-procedure
expansion.
A macro-variable specified as a formal argument for the macro-procedure may be used
in the macro-procedure body as any other macro-variable.
The number of actual arguments and the number of formal arguments do not have to
correspond. If there are more formal arguments than actual arguments, the unmatched
formal arguments will be assigned the value of an empty string. If there are more
actual than formal arguments, the unmatched actual arguments can be accessed by
using the predefined macro-procedure ARG_LIST. See the following section for more
details on ARG_LIST.

8.10.3 P red efin ed M acro P roced u re V ariab les
Two macro-variables, ARG_COUNT and ARG_LIST, are predefined macro-procedure
variables. When a macro-procedure is called and expanded, their current values are
saved, and they are assigned new values according to:

1. ARG_COUNT - is assigned the number of arguments actually passed to the macro­
procedure.

2. ARG_LIST - is assigned the value of a macro-list, whose elements are the actual
arguments to the macro-procedure. The first element of ARG_LIST will always
be the first actual argument.

3. ARG_LABEL - is assigned the value of the label of the macro-procedure invocation.
It is assigned a value only if a label appears on the same line as a macro invoca­
tion.

These predefined variables cannot be specified as formal arguments.

8-20 MACRO AND CONDITIONAL ASSEMBLER

Example: ”print_i_caH" creates a calling sequence for the subroutine
”print_integers" by pushing its parameters, and the number of parame-
ters on the stack.
. m a c r o p r i n t _ i _ c a l l

. i r p a r g , {ARG _LIST)
m o v d { a r g } , t o s
. e n d r

m o v d $ { ARG_COUNT} , t o s
b s r p r i n t _ i n t e g e r s
a d j s p d $ { - 4 * ({ARG_COUNT}+:

. endm

The following call:
p r i n t _ i _ _ c a l l $ 1 0 0 , x x , 0 (r 3

will generate
m o v d $ 1 0 0 , t o s
m o v d x x , t o s
m o v d 0 (r 3) , t o s
m o v d $ 3 , t o s
b s r p r i n t _ i n t e g e r s
a d j s p d $ - 1 6

8.11 .m acro_on and . m acro_of f D irectiv es
The .macro_on and .macro_off directives enable and disable macro-procedure
expansions, respectively, in selective parts of the source text. This is useful when
macro-procedure names contradict opcode mnemonic or assembler directives. Thus, if
for example opcode addd is redefined as a macro-procedure without the using the
,macro_off directive (as shown below), it would develop into an infinite sequence of
recursive macro-procedure calls. However, the .macro_off directive allows disabling
of macro-procedure expansions. As can be seen for:

MACRO AND CONDITIONAL ASSEMBLER 8-21

. m a c r o a d d d o p l , o p 2
b s r c o u n t _ a d d i t i o n s

. m a c r o _ o f f
a d d d { o p l } , {op2}

. m a c r o _ o n

. endm

the following macro-procedure call:
a d d d r l , r 2

will generate:
b s r c o u n t _ a d d i t i o n s
a d d d r l , r 2

8.12 TEXT INCLUSION
This feature allows for the inclusion of text from another file as part of the file being
assembled. The inclusion of text can also be specified from the invocation line by use of
the -ML macro-library option (/MLIBRARY on VMS).

Syntax: .in c lu d e included.Jle
where: included Jile is an existing file name
Description: An . i n c l u d e directive causes the macro-processor to process state­

ments from the file named included J le before processing the state­
ments following the . i n c l u d e directive in the original file.
By default, if the included J le argument does not start with a /, only
the directory in which the source file resides is searched. Additional
directories for the included J le argument can be searched as specified
on the invocation line using the macro Include Search Directory option
(-MI on UNIX, /MINCLUDE on VMS).

Included files may contain any valid assembly directives and state­
ments, macro-procedure call or macro-assembly directives (in particular
. i n c l u d e directives), macro-procedure calls or macro-assembly direc­
tives, with all conditional blocks, repetitive blocks and macro-procedure
definitions being complete.

Example: . i n c l u d e f i l e h d r . h

8-22 MACRO AND CONDITIONAL ASSEMBLER

The directives .mwarning and .merror generate assembler warning and error mes­
sages.

8 .13 M ACRO WARNING AND ERRO R M E SSAG E S

8.13.1 .mwarning D irective

Syntax: .mwarning

Description: When a statement with a .mwarning directive is processed by the
macro-processor, a warning message with the source file name, the
current line number and warning jnessage is displayed on the assem­
bler listing output (or written to the standard error file, if no listing out­
put has been requested in the invocation line).

Example: x x := 2 2 2
. m w a r n i n g c u r r e n t v a l u e o f " x x " i s : { x x } .

In this example the .mwarning directive may be used to write the current value of macro-variables on the listing output. The assembler will issue the following warning message:
Assembler (Macro-Processor): "filename. s ”, line 2 , WARNING : current
value of "xx" is : 222

8.13.2 .m error D irectiv e

Syntax: .merror error jnessage
Description: When a statement with a .merror directive is processed by the macro­

processor, an error message with the source file name, the current line
number and error jnessage is displayed on the listing output (or written
to the standard error file, if no listing has been requested in invocation
line). The assembly process that follows is terminated after the macro­
processing phase is completed, and the second phase, the assembly
phase, is suppressed.

MACRO AND CONDITIONAL ASSEMBLER 8-23

Example: . m e r r o r W rong v a l u e u s e d f o r a d d r " a d d r e s s "

The assembler will issue the following error message:
Assembler (Macro-Processor) Error:
"f.s", line 1, statement is ==> .merror Wrong value used for addr "address" <==
ERROR: Wrong value used for addr “address"

8.14 LISTING CONTROL
Macro processor expansions can be output in two ways. After the macro processing
phase, expansions can be output to the assembler. After the full assembly process is
completed, a complete assembly listing file can be produced.
To display macro processor expansions after the macro processing phase, invoke the
assembler with the -MP option (/MPRINT on VMS). The display will contain the expan­
sions of the macro processor as assembly statements, with other non-macro assembly
statements. See 8.3 for full details on the -MP option.
To list macro processor expansions after the full assembly process, invoke the assem­
bler with the -L option (/LIST on VMS). This option will produce a complete listing.
When the -L option is used, the . list and .nolist directives can be used to select
parts of the assembly source file to be listed. In addition, qualifiers can be used with
these directives to include or exclude certain levels of macro expansions. . list turns
the qualifiers ON and .nolist turns them OFF.
The qualifiers are:
mac_source - When mac_source is ON, the assembler lists user source lines, before

any macro expansions or macro substitutions have been done. The
default setting is ON.

mac_expansions - When mac_expansions is ON, the assembler lists user source lines,
after all macro substitutions have been performed on them. The
default setting is OFF.

mac_directives - When macjdirectives is ON, the macro directives also appear in the
source listing. The default setting is ON.

It is not necessary to include the .list directive to use the default settings of the
qualifiers. The -L option automatically produces a list and assumes the default
qualifier settings.
For source level debugging, use the default settings of the qualifiers to produce a listing
in which the displayed lines correspond to the line numbering recognized by the
debugger.
8-24 MACRO AND CONDITIONAL ASSEMBLER

For assembly level debugging, set mac_source and mac_direcfives OFF and mac_expansions
ON to produce a listing in which the displayed lines correspond to the actual generated
code.
When both macjsource and mac_expansions are OFF, no listing is produced. This combi­
nation is equivalent to . nolist with no parameters.
It is not advisable to use the mac_source option when both mac_direcfives and
mac_expansions are OFF. This combination will produce output which is difficult to
read.
In the default setup, the expansions of macro procedure calls, .repeat, and . irp
blocks, are not listed.
Example : (Default)

mac_source= ON
mac_expansions= OFF
mac_directives= ON

This source file:

labl:

.macro zero_reg regno
movqd 0, r{regno}
. endm

zero_reg 0
.repeat 7, i
zero_reg {i}
. endr

Produces this listing:

GNX Assembler Version X.XX date Page: 1

File "listl.s"

1 .macro zero_reg regno
1 movqd 0, r{regno}
1 . endm
4
5 T00000000 labl:
6 T00000000 5f 00 zero_reg 0
7 . repeat 7, i
7 zero_reg {i}
7 T00000002 5f085f10 . endr

5fl85f20
5f285f30
5f 38

MACRO AND CONDITIONAL ASSEMBLER 8-25

When mac_expansions is ON, and macjsource and mac_directives are both OFF, only the
output of the macro processing phase, as passed on to phase-1 of the assembler, is
listed.
Example:

mac_source= OFF
mac_expansions= ON
mac_directives= OFF

This source file:
. list
. nolist
.macro
movqd
. endm

mac_expansions
mac_source mac_directives
zero_reg regno
0, r{regno}

labl:
zero_reg 0
.repeat 7, i
zero_reg {i}
. endr

Produces this listing:

GNX Assembler Version X.XX date Page: 1

File "1is12 . s"

1
2

mac_directives

.list mac_expansions
.nolist mac source

6
7
8

T00000000
T00000000 5f 00

labl:
movqd 0, rO

9 T00000002 5f 08 movqd 0, rl
9 T00000004 5f 10 movqd 0, r2
9 TO 0000006 5f 18 movqd 0, r3
9 T00000008 5f 2 0 movqd 0, r4
9 T0000000a 5f 2 8 movqd 0, r5
9 T0000000C 5f 30 movqd o, r6
9 TOOOOOOOe 5f 38 movqd 0, r l

8-26 MACRO AND CONDITIONAL ASSEMBLER

When both mac_source and mac_expansions are ON, each source line expanded by the
macro assembler is printed twice: first as
appears after the expansion.
Example:

nuic_source= ON
mac_expansions= ON
mac_directives= OFF

This source file:
. list
.macro
movqd
. endm

labl:
zero_reg
. repeat
zero_reg
. endr

Produces this listing:

GNX Assembler Version X.XX date

File " list3 . s"

1
2
2
2
5
6 T00000000 labl:
7
7
7 T00000000 5f00
8
8
8
8
8 T00000002 5f08
8
8
8
8 T00000004 5f10
8
8

it appears in the source, and then as it

mac_expansions
zero_reg regno
0, r{regno}

0
7, i
{i)

Page: 1

. list mac_expansions

.macro zero_reg regno
movqd 0, r{regno}
. endm

zero_reg 0
movqd 0, r{regno}
movqd OUo

. repeat 7, i
zero_reg {i}
zero_reg 1
movqd 0, r{regno}
movqd 0, rl
zero_reg {i}
zero_reg 2
movqd 0, r{regno}
movqd 0, r2
zero_reg {i}
zero_reg 3

MACRO AND CONDITIONAL ASSEMBLER 8-27

8 movqd 0, r{regno)
8 T00000006 5f 18 movqd 0, r3
8 zero_reg U)
8 zero_reg 4
8 movqd 0, r{regno)
8 T00000008 5f 2 0 movqd 0, r4
8 zero_reg {i)
8 zero_reg 5
8 movqd 0, r{regno)
8 TOOOOOOOa 5f 28 movqd 0, r5
8 zero_reg (i)
8 zero_reg 6
8 movqd 0, r{regno)
8 TOOOOOOOc 5f 3 0 movqd kOUo

8 zero_reg {i}
8 zero_reg 7
8 movqd 0, r{regno)
8 TOOOOOOOe 5f 3 8 movqd 0, r7
8 . endr

After expansion of a macro or a . repeat / . irp block has started, it cannot be reversed.
However, it is possible to expand only one level by starting a macro or . repeat / . irp
block with macjexpansion ON, and switch it OFF inside a block. Only the outer level
will be expanded.
Example:
This source file:

labl:

. list mac_expansions

.macro zero_reg regno
movqd 0, r{regno)
. endm

zero_reg 0
. repeat 7, i
.if (i) = 2

.nolist mac_expansions
.endif
zero_reg {i >
. endr

8-28 MACRO AND CONDITIONAL ASSEMBLER

Produces this listing:

GNX Assembler Version X.XX date Page: 1

File "1is14 . s "

1 . list mac_expansions
2 .macro zero_reg regno
2 movqd 0, r{regno}
2 . endm
5
6 T00000000 labl:
7 zero_reg 0
7 movqd 0, r{regno}
7 T00000000 5f 00 movqd 0, rO
8 . repeat 7, i
8 . if H- II to

8 .if 1 = 2
8 .endif
8 zero_reg {i}
8 zero_reg 1
8 movqd 0, r{regno}
8 T00000002 5f 08 movqd 0, rl
8 . if {i} = 2
8 .if 2 = 2
8 .nolist mac_expansions
8 .endif
8 T00000004 5f 10 zero_reg {i}
8 .if {i} = 2
8 .endif
8 T00000006 5f 18 zero_reg {i}
8 .if {i} = 2
8 . endif
8 T00000008 5f 20 zero_reg {i}
8 .if oqli- H

8 .endif
8 TOOOOOOOa 5f 28 zero_reg {i}
8 .if {i} = 2
8 .endif
8 TOOOOOOOc 5f 30 zero_reg {i}
8 .if {i} = 2
8 .endif
8 TOOOOOOOe 5f 38 zero_reg {i}
8 . endr

MACRO AND CONDITIONAL ASSEMBLER 8-29

8 .15 STRING FUNCTIONS
The macro-assembler provides a set of built-in functions to manipulate strings: string
length, string comparison, substring extraction, and substring search.
Characters in strings are counted starting number 1. For example, in the string
abcde, a is character number 1, b is character number 2, and so on.

8.15.1 StringLength
Syntax: { STR_l e n [string] >
Description: Evaluates as the number of characters in string.

Examples:
1. { str_ l e n [abed]) is evaluated as 4.
2. {str_len[ab c d] } is evaluated as 5.
3. { str_len []} is evaluated as 0.

8.15.2 String Comparison
Syntax: { STR_EQ [string 1, string2] }

Description: Evaluates as 1 if string 1 and string2 are the same, and as 0 if they are
different.

Example: . m a c r o a d d d 3 s r c l , s r c 2 , d e s t
. i f {ARG_COUNT} = 2
a d d d { s r c l } , { s r c 2 }
. e l s i f {S T R _E Q [{ s r c 2 } , { d e s t }] }
a d d d { s r c l } , { s r c 2 }
. e l s i f {S T R _E Q [{ s r c l } , { d e s t }] }
a d d d { s r c 2 } , { s r c l }
. e l s e

m o v d { s r c l } , { d e s t }
a d d d { s r c 2 } , { d e s t }
. e n d i f
. endm

8-30 MACRO AND CONDITIONAL ASSEMBLER

8 .15 .3 S u b s tr in g E x tra c tio n

Syntax: {SUB_STR [s tr in g , s ta r t [, len g th]] >

Description: Extracts a substring of the s tr in g argument from position s ta r t . Gen­
erally, length is taken to be substring size. If the len g th argument is
omitted or is greater than the remaining length of the s tr in g argument,
then the length of the substring is the remaining length of the string.

The function call will be evaluated as an empty string when:
• s ta r t is less than or equal to zero.
• s ta r t is greater than the length of the string.
• len g th is less than or equal to zero.

Examples:
1. {SUB_STR[abcdefgh, 2 , 3] } evaluates to b e d .
2. {suB_sTR[abcdefgh, 3]} evaluates to c d e f g h .
3. {sub_ s t r [a b c d e f g h , 1000,3]} evaluates to an empty string.

8.15.4 Substring Search
Syntax: (STR_FIND [s tr in g , s u b s tr in g]>

Description: Evaluates as the position of the first character of s u b s tr in g in its first
occurrence in s tr in g . If s u b s tr in g is not found, the value of the function
is 0 .

Examples:
1. {STR_FIND[abcdefgh,cde]}

evaluates to 3.
2. {STR_FIND[abcabc,c]}

evaluates to 3.
3. {STR_FIND[abcdefgh,zz]}

evaluates to 0.

MACRO AND CONDITIONAL ASSEMBLER 8-31

8.16 MACRO-LIST FUNCTIONS
A macro-list is a string that contains substrings separated by commas and that is
enclosed between brackets. Each of these substrings is called an e lem en t of the macro­
list. See Section 8.6 for more details about macro-lists.
The macro-assembler includes a set of built-in functions to process macro-lists that
allow creation and manipulation of array-like and other complex structures (stacks,
queues, etc ...). The built-in functions are : sub-list extraction, retrieval, search, inser­
tion and deletion of elements into/from lists. Another built-in function returns the
number of elements in a macro-list.
Elements in macro-lists are counted starting from the left with number 1. For exam­
ple, in the macro-list [aa, bb, c c , d d] , element number 1 is aa, element number 2 is
b b , and so on.

8.16.1 GetElement From List
Syntax: {l i s t_g e t \ l is t , e le m e n tjx u m b e r]}

Description: Evaluates as the element whose number is specified by e lem en t j iu m b e r .

Example: {l i s t _g e t [[a ,b , c , d] , 2] } is evaluated as the string b.

8.16.2 Sublist Extraction
Syntax: {SUB_LIST[l is t , s ta r t \, len g th]] }

Description: Evaluates as a macro-list of len g th elements from the l is t , starting at
element number s ta r t . If len g th is omitted or is greater than the number
of remaining elements, all remaining elements are included in the sub­
list.
In the following cases, the function call is evaluated as an empty
macro-list [] :

• s ta r t is less than or equal to zero.
• s ta r t is greater than the number of elements in l is t.
• len g th is less than or equal to zero.

8-32 MACRO AND CONDITIONAL ASSEMBLER

Examples:
1. {SUB_LIST[[a , b , c , d , e , f , g , h] , 2 , 3] } is evaluated as [b , c , d] .
2. {SUB_LIST[[a,b,c,d,e,f,g,h],3]]}

is evaluated as
[c, d, e, f, g, h].

3. {SUB_LIST[[a, b, c , d, e , f , g , h] , 1 0 0 0 ,3] } is evaluated as [].

8.16.3 Find An Element In List
Syntax: {list_find [list, string]>

Description: Evaluates as the position (element number) of the first occurrence of
string as an element of list. If string is not an element of list, the func­
tion call is evaluated as 0 .

Example: After the assignment:

d u m m y _ l i s t : = [h h h , r l , i i , x , h h , x]

then:
• {l i s t _ f i n d [{ d u m m y _ i i s t } , r l] } is evaluated as 2.
• {LIST_FIND[{dummy_l i st } , y y y] } is evaluated as 0.
• {l i s t _ f i n d [{dummy_i i st } , x] } is evaluated as 4.

8.16.4 Replace An Element In A List
Syntax: {LIST_REPL [list, element j i u m b er, string] }

Description: Evaluates as list after replacing the element, whose number is specified
by element jiumber, with the given string. This macro-function is useful,
when a macro-list is handled as an array, for assigning a value to a
specified element in a macro-list.

MACRO AND CONDITIONAL ASSEMBLER 8-33

Example: d u m _ l i s t : = [x x , y y , z z]

d u m _ l i s t : = { L I S T _ R E P L [{ d u m _ l i s t } , 2 , a a] }

The second element of dum _list has been "assigned" (replaced with)
the string aa, and dum_li s t now holds the value [xx ,aa ,zz].

8.16.5 Insert An Element Into A List
Syntax: {LIST_INS [list, string, element_number] >

Description: Evaluates as list after inserting string as an element before the element
specified by element jiumber.

Example: listl:=[aa,bb,cc]
list2:={ L I S T _ I N S[{listl},dd,3]}

list2 holds the value [aa, bb, dd, cc].

8.16.6 Delete An Element From A List
Syntax: {l i s t_d e l [list, element jiumber] >

Description: Evaluates as list after removing the element whose number is specified
by element jiumber.

Example: l i s t l : = [a a , b b , c c]

l i s t 2 :={ L I S T _ D E L [{ l i s t l } , 2] }

l i s t 2 holds the value [a a , c c] .
l i s t l remains to hold the original value [a a , b b , c c] .

8-34 MACRO AND CONDITIONAL ASSEMBLER

8 .16 .7 N um ber O f E lem ents In A L ist

Syntax: {l i s t_l e n [list]}
Description: Evaluates as the number of elements in list.

Example: v a r s _ l i s t : = [- 1 2 (f p) , - 1 6 (f p) , - 2 0 (f p) , r O , r l [r 4 : b] , r 2]

(LIST_LEN [{vars_list}] } evaluates to 6.

8.16.8 Example of Macro-List Function Usage
Included here is an example showing the capability of the different macro-list func­
tions. A stack-list is implemented using the macro-list functions. We define a set of
macro-procedures : PUSH, POP, TOP, RESET.

. m a c r o PUSH 1 i s t _ n a m e , e l e m e n t
p u s h e s a n e l e m e n t i n t o a s t a c k l i s t

{ l i s t _ n a m e } : = { L I S T _ I N S [{ { l i s t _ n a m e } } , { e l e m e n t } , 1] }
{ l i s t _ n a m e } e v a l u a t e s t o t h e NAME o f t h e l i s t .
{ { l i s t _ n a m e } } e v a l u a t e s t o i t s VALUE.

. endm

. m a c r o POP l i s t _ n a m e , e l _ v a r _ n a m e
r e t u r n s t h e f i r s t e l e m e n t o f a l i s t , a n d r e m o v e t h a t
f i r s t e l e m e n t f r o m i t .

(e l _ v a r _ n a m e) : = { L I S T _ G E T [{ { l i s t _ n a m e } } , 1] }

{ l i s t _ n a m e } : = { L IS T _ D E L [{ { l i s t _ n a m e } } , 1] }

. endm

. m a c r o TOP l i s t _ n a m e , e l _ v a r _ n a m e
r e t u r n s t h e l a s t e l e m e n t o f a l i s t .

{ e l _ v a r _ n a m e } : = { L IS T _ G E T [{ { l i s t _ n a m e } } , 1] }

. endm

. m a c r o RESET l i s t _ n a m e
a s s i g n a e m p t y l i s t v a l u e [] t o t h e l i s t .

{ l i s t _ n a m e } : = []

. endm

In the following sequence of macro-procedure calls, the values of the variables after
each call are specified in the comments.

MACRO AND CONDITIONAL ASSEMBLER 8-35

v a r : =
RESET s t a c k l
RESET s t a c k 2

v a l u e o f :
s t a c k l 1 s t a c k 2 1 v a r

[] 1 [] I e m p t y s t r i n g

PUSH s t a c k l , a a # [a a] 1 [] 1 e m p t y s t r i n g
PUSH s t a c k l , b b # [b b , a a] 1 [] 1 e m p t y s t r i n g
PUSH s t a c k l , c c # [c c , b b , a a] 1 [] 1 e m p t y s t r i n g
POP s t a c k l , v a r # [b b , a a] 1 [] 1 CC
PUSH s t a c k 2 , { v a r } # [b b , a a] 1 [c c] 1 c c
TOP s t a c k l , v a r # [b b , a a] 1 [c c] 1 b b
RESET s t a c k l # [] 1 [c c] 1 b b

8.17 DATA CONVERSION FUNCTIONS
The macro-assembler provides a set of built-in functions to convert strings representing
assembly numerical constants (as defined in Section 2.4) into hexadecimal digit strings.
These are integer hexadecimal, float hexadecimal or long float hexadecimal.

8.17.1 ConvertTo Integer Hexadecimal
Syntax: {CNV_HEX[integer_constant]}
Description: Evaluates as a string of 8 hexadecimal digits representing the constant

in hexadecimal integer format. The integerjconstant may be specified in
any of the integer notations.

Example:
Given the definition
c o n s t := 1 0 2 4

then {CNV_HEX [{const}]} is evaluated as X'00000400.

8-36 MACRO AND CONDITIONAL ASSEMBLER

8.17 .2 C o n v e rt To F lo a t H exadecim al

Syntax: { c nv_ h e x f [constant] }

Description: Evaluates as a string of 8 hexadecimal digits representing the constant
in float-hexadecimal format. If constant is not a single precision floating
point constant, it is first converted to this representation.

E x a m p le s :
1. {CNV_HEXF[{5-4}] }

is evaluated as f ' 3 f 8 0 0 0 0 0 .

2. {CNV_HEXF[1 . 0e 0] }

is evaluated as f ' 3 f 8 0 0 0 0 0 .

3. {CNV_HEXF[l ' 3f f0000000000000])
long r e p r e se n ta t io n o f 1 .

is evaluated as f ' 3 f 8 0 0 0 0 0 .

8.17.3 Convert To Long Float Hexadecimal
Syntax: { c nv_ h ex l [constant] }
Description: Evaluates as a string of the 16 hexadecimal digits representing the con­

stant in long hexadecimal-decimal format. If constant is not a long float­
ing point constant, it is first converted to this representation.

MACRO AND CONDITIONAL ASSEMBLER 8-37

Examples:
1 . {CNV_HEXL[{ 5 - 4 }] }

evaluates to e'3ff0000000000000.
2. {CNV_HEXL[1 . 0e0] }

evaluates to e '3 f f 0000000000000.
3. {C N V _ H E X L [f '3 f 8 0 0 0 0 0] }

s i n g l e p r e c i s i o n f l o a t r e p r e s e n t a t i o n o f 1 .

evaluates to e'3ff0000000000000.

8.18 INSTRUCTION OPERAND FUNCTIONS
The macro-assembler includes a set of built-in functions for processing instruction
operands, including recognition of operand type and extraction of subfields from
operands strings. These functions provide for ease in using the diversity of operands
types and addressing modes provided by the NS32000 architecture and the GNX
assembler.
For example, given an operand string specifying a memory location, another operand
string can be created which points to the double word next to that location (.i.e "loca-
tion+4"). If the operand is a symbol, a leading 4+ string can be concatenated to the
operand string. If the operand has been specified with a leading @ (absolute addressing
mode), 4+ can be inserted after the @ . However with many other operand notations
adding such an offset to the location is not as simple. Therefore some convenient
built-in functions are provided which recognize the notation (type) in which the
operand has been specified, and extract subfields in operand strings.

8.18.1 RecognizeThe Type Of An Operand
Syntax: { o p_ t y p e [operand]}
Description: Evaluates as a string describing the NS32000 type of operand, or as

an empty string if the string is not a legal NS32000 operand.

8-38 MACRO AND CONDITIONAL ASSEMBLER

A list of possible operands types are:
EXPR any legal combination of symbols,

constants and arithmetic operators
optionally followed by a displacement
size specification (:b , :w , :d).
examples: xx:b

12
ss+3+(kk-9):d

GREG rO,rl ...
FREG fD,fl,...
LREG 10,11,...
PREG processor register : upsr,cfg,sp ..
MREG mmu register : tear,mcr ...
REG_REL expres sion 1 (register)
MEM_SPACE expressionl(fp),

or expressionl(sp), or expressionl(sb)
EXPL_PC_REL %expressionl
EXPL_SB_REL Aexpressionl
MEM_REL expression2(expressionl(fp)),

or expression2(expressionl(sp)),
or expression2(expressionl(sb))

ABS ©expression 1
IMM $expressionl
EXT_1 expression2(expressionl(ext))
EXT_2 expressionl(ext)
DREF.SYM expression2(expressionl)
TOS tos
REG_LIST register list [r0,rl,..]
OPT.LIST options list [cc,f,..]

1 . {O P_TYPE[1 2 (s p)]}

is evaluated as MEM_SPACE.
2. {O P _ T Y P E [@ x x + 1 2 1]}

is evaluated as ABS.
3. {O P_TYPE[1 2 (p a r a m + 1 2)] }

is evaluated as DREF_SYM.

MACRO AND CONDITIONAL ASSEMBLER 8-39

NOTE: The OP_TYPE built-in macro-function can not always provide the
definite addressing mode that will be used for the operand. Infor­
mation returned by this function is just the most accurate conclu­
sion that can be drawn about the nature of the operand, through
scanning the operand string and without any knowledge of the con­
text in which the operand appears or of the type of the user-symbols
(e.g. labels) involved in the operand. Since this knowledge is man­
datory for determining the exact addressing mode in which the
operand will be encoded, and since the macro-processing phase is
done prior to the assembly phase, this information is unavailable
during the macro-processing phase.

8.18.2 Operand Subfields
The following are the various operand subfield functions

• Syntax: { op_r e g [operand]}
Description: If the operand is a register, it is evaluated as that register. If the

operand has a base register, it is evaluated as the base register.
No register is returned if the operand is a register list.

Example: { O P _ R E G [x x :w (y y + 8 (s p))] }

is evaluated as sp.
• Syntax: {0P_DISP1[operand]>

Description: If the operand contains at least one displacement field, with or
without a displacement size specification, the function call is
evaluated as the innermost displacement string without the dis­
placement size specification. Otherwise the empty string is
returned.
Note that when the operand type is DREF_SYM, the intermost dis­
placement string is returned.

Example: {o p _ d i s p i [x x : w (y y + 8 (s p))]}

is evaluated as yy+8.

8-40 MACRO AND CONDITIONAL ASSEMBLER

Syntax: {0P_DISPSIZE1 [operand] }

Description: If the innermost displacement string has a size specified, that size
specification is returned. Otherwise, the empty string is
returned.

Example: { O P _ D I S P S I Z E l [x x : w (y y + 8 (sp))]}

evaluates to an empty string.
Syntax: {0P_DISP2 [operand] }
Description: If the operand contains two displacement fields (in MEMORY

RELATIVE addressing mode and in some EXTERNAL addressing
mode notations), it is evaluated as the string of the outermost dis­
placement without the displacement size specification.
Note that when the operand type is EXT_3, the outermost dis­
placement string is returned.

Example: { O P _ D I S P 2 [x x : w (y y + 8(sp))] }

is evaluated as x x .

Syntax: {0P_DISPSIZE2 [operand] >

Description: If the operand contains two displacement fields (in MEMORY
RELATIVE addressing mode and in some EXTERNAL addressing
mode notations), it is evaluated as the the displacement size
specification of the outermost displacement field.

Example: { O P _ D I S P S I Z E 2 [x x : w (y y + 8(sp))]}

is evaluated as : w.
Syntax: {OP_v a l [operand] >

Description: If the operand is EXPR, ABS, IMM, EXPL_PC_REL, or
expl_sb_rel, it is evaluated as the expression without the size
or any preceding literals.

Example: {OP_VAL[$ y y + 8]}

is evaluated as yy+8.

MACRO AND CONDITIONAL ASSEMBLER 8-41

• Syntax: {OP_valsize[operand]}
Description: If the operand is E X P R , A B S , IMM, E X P L _ P C _ R E L or

E X P L _ S B _ R E L , it evaluates to its specified size.
Example: {OP_VALSIZE[$yy+8:b]}

is evaluated as : b
• Syntax: {OP_LlST[operand] >

Description: If the operand is a register list (general purpose registers between
[]) or an option list (either cfg or cinv option list between []), it is
evaluated as the list after sorting of its elements.

Examples:
1. {OP_LIST[[r4,r6, r2, rO]]}

is evaluated as a macro-list with the registers which appear
in the list after sorting : [r0,r2,r4,r6]

2. {OP_LIST[[i, f , c]]}
is evaluated as [c , f , i] .

• Syntax: {0P_IS_INDEXED[operand 3}
Description: If the operand has a scaling index it evaluates to the boolean

value 1; otherwise it evaluates to the boolean value 0.
Example: {OP_IS_INDEXED[r0[r2:d]]}

is evaluated as the boolean value: 1.

• Syntax: {OP_INDEX[operand 3 >
Description: If the operand is a scaled indexed operand, it is evaluated as the

scaling index string, including the index register, the index scale
specification (:b, or :w, or :d, or :q, or an empty string) and the
enclosing brackets.

Example: {OP_INDEX[xx+9(sp)[rl:b]]}
is evaluated as the index specification string : [r l :b] .

8-42 MACRO AND CONDITIONAL ASSEMBLER

Syntax: {OP_i n d e x_b a s e [operand] }
Description: If the operand is a scaled indexed operand, it is evaluated as the

operand string without the index mode specification string.
Example: { O P _ I N D E X _ B A S E [x x + 9 (s p) [r l : b]] }

is evaluates as the "base" of the operand, that is, the operand
string without index specification string : xx+ 9 (sp) .

Syntax: {0P_INDEX_REG[operand] >
Description: If the operand is a scaled indexed operand, it is evaluated as a

string specifying the index register.
Example: { O P _ IN D E X _ R E G [x x + 9 (sp) [r l : t o]]}

it is evaluated as the index register rl.
Syntax: (OP_lNDEX_SCALE [operand] }

Description: If the operand is a scaled indexed operand, it is evaluated as a
string specifying the index mode scale specification (:b, or :w, or
:d, or :q, or an empty string).

Example: {O P _ IN D E X _ S C A L E [x x + 9 (s p) [r l : t o]]}

is evaluated as the scale specification : b.

MACRO AND CONDITIONAL ASSEMBLER 8-43

The following table defines the subfields that are relevant to various operand types.

Table 8-2. Relevant Operand Subfields

TYPE REG DISP1 SIZEl DISP2 SIZE2 VAL VALSIZE LIST INDEX
EXPR + + +
GREG + +
FREG +
LREG +
PREG +
MREG +
REGJtEL + + + +
MEM.SPACE + + + +
EXPL_PC_REL + + +
EXPL_SB_REL + + +
MEM_REL + + + + + +
ABS + + +
IMM + +
EXT_1 + + + + +
EXT_2 + + +
EXT_3 + + + + +
TOS +
REG_LIST +
OPT_LIST +

8-44 MACRO AND CONDITIONAL ASSEMBLER

The macro-procedure warn_same_reg receives an operand string as an argument,
and issues a warning message when the operand has scaled indexing and the index
register is the same as the base register.

. m a c r o w a r n _ s a m e _ r e g o p e r a n d

. i f { O P _ I S _ I N D E X E D [{ o p e r a n d }]}
r e g : = {OP_REG[{ o p e r a n d }]}
s c a l i n g _ r e g : = {OP_INDEX_REG[{ o p e r a n d }]}

. i f {ST R _E Q [{ r e g } , {s c a l i n g _ r e g }]}
. m w a r n i n g b a s e r e g i s t e r a n d i n d e x r e g i s t e r a r e

t h e s a m e i n { o p e r a n d }
. e n d i f

The following example illustrates use of the OP_TYPE and of the subfield functions.

. e n d i f

. endm

NOTE: It is not necessary to check types of operands. Registers will be
empty if operands are irrelevant.

MACRO AND CONDITIONAL ASSEMBLER 8-45

The following example shows a possible usage of the "warn_same_reg" macro-
procedure. The macro-procedure "wam_same_reg" is invoked from another macro­
procedure, "movd", which first performs a check on both its operands and then actually
issues a "movd" instruction.

. m a c r o m o v d s o u r c e , d e s t

w a r n _ s a m e _ r e g { s o u r c e }

w a r n _ s a m e _ r e g { d e s t }

. m a c r o _ o f f
c a n c e l d e f i n i t i o n o f "m ovd" a s a m a c r o - p r o c e d u r e ,
t o a v o i d i n f i n i t e r e c u r s i v e c a l l s
"m ovd" i s now c o n s i d e r e d t o b e a n i n s t r u c t i o n ,
a n d n o t a m a c r o - p r o c e d u r e .

m o v d { s o u r c e } , { d e s t }

. m a c r o _ o n
r e s t o r e m a c r o - p r o c e d u r e "m ovd" d e f i n i t i o n .

. endm

m o v d 1 2 (r l) [r l : b] , r 2 [r 2 : q]
2 w a r n i n g m e s s a g e s a r e i s s u e d , o n e f o r e a c h o p e r a n d .#
" WARNING b a s e r e g i s t e r a n d i n d e x r e g i s t e r a r e
t h e s a m e i n 1 2 (r l) [r l : b] " .#
“ WARNING b a s e r e g i s t e r a n d i n d e x r e g i s t e r a r e
t h e s a m e i n r 2 [r 2 : q] " .
#
t h e i n s t r u c t i o n "m ovd 1 2 (r l) [r l : b] , r 2 [r 2 : q] " i s a l s o
g e n e r a t e d .

m o v d 0 (r 3) [r 3 : q] , r 2
a w a r n i n g m e s s a g e i s i s s u e d f o r t h e f i r s t o p e r a n d .
#
" WARNING b a s e r e g i s t e r a n d i n d e x r e g i s t e r a r e
t h e s a m e i n 0 (r 3) [r 3 : q] " .#
t h e i n s t r u c t i o n m o v d 0 (r 3) [r 3 : q] , r 2 i s a l s o g e n e r a t e d .

m o v d r l [r 3 : w] , @aaa
n o w a r n i n g m e s s a g e s a r e i s s u e d .
t h e i n s t r u c t i o n "m o v d r l [r 3 : w] , @ aaa" i s g e n e r a t e d .

8-46 MACRO AND CONDITIONAL ASSEMBLER

8.19 PREDEFINED MACRO VARIABLES
Several variables are predefined by the GNX macro-assembler to hold the values of
several target specification parameters. These parameters are either set in the .gnxrc
file or as invocation switches to the assembler.
The predefined variables are:

The MAC_DEBUG predefined variable is set to "1" if the assembler is invoked with the
"-g" ("/DEBUG") option. It is set to "0" otherwise. This can be used to add special test-
code during the debugging phase.
The MAC_COMMENT predefined variable is set to the "#" character. It allows user
macros to add comments to the output when the macro assembler is used as a macro
preprocessor only. (i.e. when the assembler is invoked with the "-MO" and "-MP" flags
on UNIX, or "/MONLY" and "/MPRINT” on VMS.)

Variable Target Specification
GNX_OS
GNX_CPU
GNX_MMU
GNX_FPU
GNX_COMMTYPE
GNX_B YTE SEX
GNX_BU SWIDTH

os
cpu
mmu
fpu
commtype
bytesex
buswidth

MACRO AND CONDITIONAL ASSEMBLER 8-47

Chapter 9
INVOCATION AND OPERATION

9.1 INTRODUCTION
The GNX Assembler generates object code from Series 32000 assembly language source
files and optionally produces a listing file and debugging information. Each assembly
source file produces one Series 32000 software module, consisting of a text (code) sec­
tion and an initialized data section. The module is suitable for execution on
Series 32000-based systems after the appropriate linking process.
This chapter describes the input and output files used by the GNX Assembler, the GNX
Assembler invocation, the assembler listing file, symbol table listing, the cross-
reference table, assembly errors, and the GNX Assembler limitations.

9.2 INPUT AND OUTPUT FILES USED/GENERATED BY THE GNX ASSEMBLER
The files used as input and those generated as output by the assembler are shown in
Figure 9-1 and described below.

Source file — Input. The source file is a text file containing the source program
to be assembled.
Object file — Output. The object file contains the relocatable object code and
data produced by the assembler, as well as optional debugging information.
When no filename for the object file is given, the default name is the name of the
source file with the . s suffix, if any, stripped off and a . o suffix appended. For
example, if the source file is named build. s, the name of the object file will be
build. o. The object file is suitable for use as input to the linker, Id (native), or
nmeld (cross-support).
Listing file — Output. The listing file, created with the -L option (/LIST on
VMS), contains the program listing produced by the assembler. On UNIX, the
default listing file is the standard output (stdout); on VMS it is filename. lis.
If a filename parameter is specified with the listing option, the filename is the
listing output.
Macro-processor output — Output. Contains the macro-processor output. For
details see Section 8.14.

INVOCATION AND OPERATION 9-1

GF-Ol-O-U

Figure 9-1. Input and Output Files for the GNX Assembler

Temporary files used by the GNX Assembler during the assembly process are as fol­
lows:

DOS: alxxxxxxamxxxxxx
atxxxxxx
asxxxxxx axxxxxxx

temporary files for listing
temporary source file for listing temporary file
temporary files for pre-processing temporary files for cross-referencing

UNIX: / 1 mp / a s 1 s txxxxxx / tmp / ami s txxxxxx / tmg> / asxxxxxx
/tmp /as txxxxxx
/ tmp / a smdxxxm;
/ tmp / a smaxxxxxx
/ tmp / asxxxxxxx

temporary files for listing temporary source file for listing temporary file
temporary files for pre-processing
temporary files for macro definitions
temporary files for macro arguments
temporary files for cross-referencing

VMS: a s 1 s txxxxxx. tmpami s txxxxxx. tmp asxxxxxx. tmp
astxxxxxx. tmp asmdxxxxxx. tmp asmaxxxxxx. tmp
asxxxxxxx. tmp

temporary files for listing temporary source file for listing temporary file
temporary files for pre-processing temporary files for macro definitions temporary files for macro arguments
temporary files for cross-referencing

Where xxxxxx is replaced by the current process ID.
The creation of temporary files can cause a file I/O operation failure if there is limited
space in the directory. The default location for temporary files can be changed on
UNIX/MS-DOS by using the TMPDIR enironment variable.

9-2 INVOCATION AND OPERATION Rev 4.4

9.3 GNX ASSEM BLER INVOCATION
The GNX Assembler is invoked from the shell by entering the as command or the
nasm command (under X-support), optionally followed by flags and an output filename, followed by a source filename. The following is the assembler syntax:

{as | nasm} [o p t io n s] s o u r c e f i le

The source filename and the flags may appear in any order with the exception of the -c option which must come before the -D, -U, or -I options. Only one source filename is

nasm
nasm m y f i l e .s
nasm -L myfile.s
nasm -L -o myfiledebug.o myfile.s
nasm -L myfile.s > myfile.lis
nasm -Lmyfile.lis myfile.s

permitted. See
definition.

Examples: 1
2
3
4
5
6
Example 1 does not specify any filename or switch. The assembler will
wait for input from stdin.

Example 2 will assemble the source file myfile.s and generate an
object file with the default name myf i l e . o. No listing file will be pro­
duced.
Example 3 will generate both an object file, myf i l e . o, and a listing file
from the source file myfile.s. The listing file will be output to
stdout.

Example 4 will generate the object file myf iledebug. o from the
source file myfile.s. Because the -L option is specified, a listing will
be produced on stdout.

Examples 5 and 6 will generate a listing file from the source file
myf ile . s and output it to myfile.lis.

INVOCATION AND OPERATION 9-3

9.3.1 T arget M achine S p ec ifica tion
The assembler provides a way for the user to tune the code for a specific target system
by specifying its CPU, FPU and MMU. This timing is performed by setting permanent
defaults using the GNX Target Setup (GTS) facility, or by specifying /TARGET (-K) on
the command line.
Table 9-1 lists the possible target selection parameters. The values for the CPU, FPU
and MMU can either be the complete device name e.g., N S 3 2 G X 3 2 0 or N S 3 2 3 8 1 , or
the last characters of the device name, e.g. GX32 0 or 3 8 1 . The absence of an FPU on
the target system can be indicated by specifying the parameters emulation (emu) or
nofpu. See the Series 32000 Support Libraries Manual for details on the floating-point
emulation library (libHfp). The absence of an mmu is indicated by specifying the
parameter nommu. The existence of mmu on a the specified CPU is indicated by using the parameter onchip (or mmu_onchip).

Table 9-1. Target Selection Parameters

CPU (C) FPU (F) MMU (M)
[NS32JCG16 nofpu nommu
[NS32]CG160
[NS321AM160
[NS32JFX164

emulation onchip

[NS32JFX16 [NS32J381 [NS32J382
[NS32JGX32
[NS321GX320
[NS32]532
[NS32]332
[NS32J032
[NS32J016
[NS32]008

[NS321181
[NS321081
[NS321580

[NS321082

Example: The following example specifies an NS32GX320 CPU, an NS32381 FPU,
and a bus width of 4 bytes (the default).
UNIX
as -KCGX320 -KF381 temp.s (native-support)
or nasm -KCGX320 -KF381 temp.s (cross-support)
VMS
NASM /TARGET=(CPU=GX320,FPU=381) TEMP .S

9-4 INVOCATION AND OPERATION Rev 4.4

Table 9-2. Optional Flag Syntax
Sheet 1 of 2

FLAGVMS FLAGUNIXMS-DOS
DEFINITION

TDISPLACE- MENT= {byte i
WORD 1 DOUBLE}

-dl 1 -d2 1 -d4 Sets the default displacement size to byte (dl), word (d2), or double-word (d4). The default is double-word (d4).
/M4 -m Runs the m4 macro pre-processor on the input to the assembler.
/CPP - c Runs the C compiler pre-processor (cpp) on the input to the assembler.* -R Deletes (unlinks) input file after assem­bly. Off by default.

/NODATA -r Incorporates the data segment into the text segment. Off by default.
/SAVESYM -s Saves compiler-generated labels in the symbol table of the object file.
/version -V Writes the version number of the assem­bler to stderr (UNIX) or SYS$OUTPUT (VMS).

/VMEM -v Uses virtual memory for intermediate storage rather than a temporary disk file.
/AMODE = SB -A s Overrides default addressing modes. The s or SB causes all references to symbols of type data to use the Static Base Register Relative addressing mode.

/LIST[==filename] -L [filename] If filename is given, produces the listing in that file.
If filename is not given, then on UNIX the listing is produced in the stdout file; on VMS in the .lis file.

/NOSDI -n Disables displacement size optimization.
/OBJECT=object -o objfile Leaves the output of the assembly on the file objfile. On UNIX, by default, the out­put filename is formed by removing the .s suffix, if any, from the input filename and adding a .o suffix. On VMS, by default, the output filename is formed by replac­ing the extension with a .obj extension.* -t Causes the assembler to show all the util­ities it calls. This option is useful for trac­ing all processes executed by the assem­bler.

@ filename Reads options from file filename .
(MS-DOS only)

Rev 4.4 INVOCATION AND OPERATION 9-5

Table 9-2. Optional Flag Syntax
Sheet 2 of 2

FLAGVMS FLAGUNIXMS-DOS
DEFINITION

/NOWARNING -w Supresses assembly warning messages.
/MAP [= filen a m e] -y {filenam e] Produces a symbol table listing entitled “Symbol Table Dump.” On VMS, if f ilen a m e is not given, the output filename is formed by replacing the extension with a .map extension.
/XREF [^ filen a m e]- x lf ilen a m e]Produces a cross-reference listing entitled “Cross- Reference Table”. On VMS, if f ilen a m e is not given, the output filename is formed by replacing the extension with a .xrf extension.
/[NOJOPTIMIZE -0 Do not] perform procedure optimizations.

/DEFINE=("narae[=def]",...) -Dn a m e or
-D n a m e = d e f

Defines n a m e to cp p , as if by “#define.” If no definition is given, n a m e is defined as 1. The -c 'or /CPP for VMS) option must precede this option.
/UNDEFINE=
{"nam e '[,...])

-U n a m e Removes initial definition of a predefined n am e.
C pp supplies initial definition of 1 for predefined names (e .g ., NS32000, VMS, UNIX). The -c (oi UPP for VMS) option must precede this option.

/IN CLUDEDIR=
(d ir e c to ry i,...])

-Id ir Searches “#include” files that do no begin with / (or [for VMS) in the directory of the filen am e argument first, then the directory named in this option, then the directories on a standard list. The -c (or /CPP for VMS) option must precede this option.
/DEBUG ~g Produces additional line number information foi symbolic debugging.

/MODULAR -X Sets the 32000 modularity.
/TARGET=
(p a r a m e te r[,...])

-I^param eter Allows the user to specify the CPU, FPU, and MMU of the user’s target system. The p a ra m e te r is in the form Ccp u , Ffp u , Mm m u , or Bb u s iv id th on UNIX and in the form CPU- c p u , FPU=fpu,
M M \J = m m u , and BUSWIDTH=6z/suuöWi on VMS.

/M option -M option Macro specific option. These options are /MCOM- PATIBILITY (-MC), /MDEFINE (-MD), /MLI- BRARY (-ML), /MINCLUDE (-MI), /MONLY (- MO), and /MPRINT (-MP) **
* This flag is not available for VMS.
** Refer to Section 8.3 for a detailed description.

9-6 INVOCATION AND OPERATION

When invoked with the -g option (/DEBUG option on VMS), the assembler generates a
line number entry in the object file for every source line of the input assembly file
where a breakpoint can be inserted. The information from the line number entries
allows the user to reference the line numbers when using a software debugger, such as
DBUG.
Each assembly procedure defined using the GNX Assembler Procedure Support causes
the generation of appropriate symbolic information for the debugger. This symbolic
information includes the same information generated by the GNX compiler for HLL
procedures. Therefore, it is possible to stop in the procedure, reference its variables by
name, and receive information on variable types.
Code segments, which are not part of such procedures are grouped by the assembler to
form dummy procedures. Dummy procedures start at the first non procedural state­
ment and end at the last non procedural statement of the assembly source file. The
name of the dummy procedure is of the form .Xbasename_number, where basename is
the source file name without the . s or .asm suffix; and number is the file segment
number.
Every assembler label with a storage allocation directive (e.g. .double, .blkd) is
given a type based on the storage allocation. The types are assigned as follows:

9.3.2 A ssem b ler S ym b olic D eb u gg in g

Storage Allocation Directives Corresponding Type
.byte, .blkb unsigned char
.word, .blkw short int

.double, .blkd int
.float, .blkf float
.long, .blkl double

.ascii char

When the .ascii directive is used or when a repetitive factor is specified for any
other storage allocation directive, the associated label is considered an array of the
corresponding type.

INVOCATION AND OPERATION 9-7

Each procedure defined using the GNX Assembler Procedure Support will also be given
a type based on the return value specified by the . endproc directive. If the return value is omitted, a default int or float will be assigned. The types are assigned as
follows:

Return Value Modifer Procedure Type
b char
w short int
d int
f float
1 long

ub unsigned char
uw unsigned short
ud unsigned int

If the input source file contains . In directives, no symbolic debugging information will
be prepared by the assembler; instead, information from the . In directive will be used
to generate the line number entry.

9-8 INVOCATION AND OPERATION

9.4 ASSEM BLER OUTPUT LISTINGS
Figure 9-2 shows a sample assembly language program. The listing produced when
the program is assembled is shown in Figure 9-3. Figure 9-4 is an annotated version of
Figure 9-3.

. s e t p _ s t a r t , 8

. d s e c t p a r a m _ l i s t , p _ s t a r t
v n a m e : . b l k d
num : . b l k d

. t e x t
i n d i r e c t _ a d d :

e n t e r [r 4] , 0
m o v d 0 (v n a m e (f p)) , r 4
a d d d n u m (f p) , r 4
m o v d r 4 , 0 (v n a m e (f p))

e x i t [r 4]
r e t 0

Figure 9-2. Sample Assembly Program

GNX A s s e m b l e r V e r s i o n X . X X d a t e P a g e : 1

F i l e " e x a m p l . s " # # # #

1 ★ ★ ★ ★ ★ ★ ★ 0 0 0 0 0 0 0 8 . s e t p _ s t a r t , 8
2 . d s e c t p a r a m _ l i s t , p _ s t a r t
3 A 0 0 0 0 0 0 0 8 v n a m e : . b l k d
4 AOOOOOOOc num: . b l k d
5 . t e x t
6 T 0 0 0 0 0 0 0 0 i n d i r e c t . _ a d d :
7 T 0 0 0 0 0 0 0 0 8 2 1 0 0 0 e n t e r [r 4] , 0
8 T 0 0 0 0 0 0 0 3 1 7 8 1 0 8 0 0 m o v d 0 (v n a m e (f p)) , r 4
9 T 0 0 0 0 0 0 0 7 0 3 c l 0 c a d d d n u m (f p) , r 4

1 0 TOOOOOOOa 1 7 2 4 0 8 0 0 m o v d r 4 , 0 (v n a m e (f p))
1 1 TOOOOOOOe 9 2 0 8 e x i t [r 4]
1 2 T 0 0 0 0 0 0 1 0 1 2 0 0 r e t 0

Figure 9-3. GNX Assembler Listing File

INVOCATION AND OPERATION 9-9

1 2

3

GNX Assembler Version X.XX date Page: 1

F i l e "e x a m p 1. . s " # # # #

4 5 6 7

1 0 0 0 0 0 0 0 8 . s e t p _ s t a r t , 8
2 . d s e c t p a r a m _ l i s t , p _ s t a r t
3 A 0 0 0 0 0 0 0 8 v n a m e : . b l k d
4 AO 0 0 0 0 0 0 c num: . b l k d
5 . t e x t
6 T 0 0 0 0 0 0 0 0 i n d i r e c t _ a d d :
7 T 0 0 0 0 0 0 0 0 8 2 1 0 0 0 e n t e r [r 4] , 0
8 T 0 0 0 0 0 0 0 3 1 7 8 1 0 8 0 0 m o v d 0 (v n a m e (f p)) , r 4
9 T 0 0 0 0 0 0 0 7 0 3 c l 0 c a d d d n u m (f p) , r 4

1 0 T 0 0 0 0 0 0 0 a 1 7 2 4 0 8 0 0 m o v d r 4 , 0 (v n a m e (f p))
1 1 T 0 0 0 0 0 0 0 e 9 2 0 8 e x i t [r 4]
12 TO0 0 0 0 0 1 0 1 2 0 0 r e t 0

C a l l o u t s 1 t o 7 :

1 V e r s i o n n u m b e r o f a t o o l
2 L i s t e d f i l e p a g e n u m b e r
3 S o u r c e f i l e n a m e . W i l l r e f l e c t i n c l u d e d f i l e s .
4 S o u r c e f i l e l i n e n u m b e r .
5 A d d r e s s o f t h e c u r r e n t l i n e . P r e c e e d e d b y l e t t e r

r e p r e s e n t i n g t h e s e c t i o n o f a d d r e s s .
6 C o d e o r v a l u e o f s o u r c e l i n e .
7 U s e r s o u r c e l i n e i t s e l f .

Figure 9-4. GNX Assembler Listing File (Annotated Version)

9-10 INVOCATION AND OPERATION

Figure 9-5 shows a sample assembly language program containing floating-point
instructions. The listing produced when the program is assembled with a request for
libHfp emulation is shown in Figure 9-6. For a detailed description of the libHfp inter­
face, Refer to Chapter 6 of the Series 32000 GNX-Version 4 Support Libraries Reference
Manual.

. d a t a
f p _ v a r : . b l k f

. t e x t
l a b l :

e n t e r []
a d d f t o , f 2
a d d l 1 4 , 1 6
m o v f f 2 , f p _ v a r
e x i t []
r e t 0

Figure 9-5. Sample Assembly Program With Floating Point Instructions

INVOCATION AND OPERATION 9-11

GNX Assembler Version X.XX date Page: 1

]F i l e " e x a m p 2 .s" # # # #

1
2 D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3
4
5

T 0 0 0 0 0 0 0 0
T 0 0 0 0 0 0 0 0 8 2 0 0 0 0

6 r p * * * * * * * ★
T 0 0 0 0 0 0 0 3 e 7 a d c 0 0 0 * * *

T 0 0 0 0 0 0 0 9
0 0 0 0
d 7 a d c 0 0 0 * * *

TOOOOOOOf
0 0 0 0
0 2 f f f f f f * ★ ★

7 r p * * * * * * * *
T 0 0 0 0 0 0 1 4

f l

e 7 a d c 0 0 0 ★ ★ ★

TOOOOOOla
0 0 0 0
d 7 a d c 0 0 0 * * *

T 0 0 0 0 0 0 2 0
0 0 0 4
d 7 a d c 0 0 0 ★ * *

T 0 0 0 0 0 0 2 6
0 0 0 0
0 2 f f f f f f * * *

8 r p * * * * * * * *
T 0 0 0 0 0 0 2 b

d a

5 7 a d c 0 0 0 * * *

9 T 0 0 0 0 0 0 3 5

OOOOcOOO
0 0 3 c
9 2 0 0

1 0 T 0 0 0 0 0 0 3 7 1 2 0 0

f p _ v a r :

l a b l :

. d a t a

. b l k f

. t e x t

e n t e r
a d d f
a d d r

[] , 0
f O , f 2
F 2 ___, t o s

m o v d F 0 ___, t o s

b s r a d d f ___

a d d l
a d d r

1 4 , 1 6
F 6 ___, t o s

m o v d F 4 ___+ 4 , t o s

m o v d F 4 ___, t o s

b s r a d d l ___

m o v f
m o v d

f 2 , f p _ v a r
F 2 ___, f p _ v a r

e x i t
r e t

[]
0

Figure 9-6. GNX Assembler Listing File With libHfp Interface
Note that emulated instructions are marked with * * *.

9-12 INVOCATION AND OPERATION

A sample program with one error is shown in Figure 9-7. When the program is assem­
bled, the error is flagged as shown in Figure 9-8. Assembly errors are discussed in Sec­
tion 9.5.

m a i n : :

m s g :

e n t e r []
a d d r m s g , t o s
j s r _ p r i n t f
a d j s p b $ - 4
e x i t []
r e t 0

. d a t a

. a s c i i " H e l l o , w o r l d \ n \ 0 II
Figure 9-7. A Sample Program Containing Errors

GNX A s s e m b l e r V e r s i o n X . X X d a t e P a g e : 1

F i l e " e x a m p 3 . s " # # # #

1
2

e x a m p 3 . s " ,

_ m a i n : :
e n t e r

l i n e 2 : T o o f e w o p e r a n d s s p e c i f i e d ,
[]
2 o p e r a n d s e x p e c t e d .

3
4
5
6
7
9

10 m s g :

a d d r m s g , t o s
j s r _ p r i n t f
a d j s p b $ - 4
e x i t []
r e t 0
. d a t a
. a s c i i " H e l l o , w o r l d \ n \ 0 "

ERRORS DETECTED : 1 .

Figure 9-8. GNX Assembler Listing File With Error Mesage

INVOCATION AND OPERATION 9-13

The symbol table listing will be entitled “Symbol Table Dump.” It will be preceded by
a formfeed, and will be output to the specified file. If no output file is specified for it,
the symbol table will be output either to s t d o u t (On UNIX/MS-DOS systems), or to the
. MAP file (On VMS systems).
Figure 9-9 shows a sample symbol table source file, and Figure 9-10 shows a sample
symbol table listing.

. s e t x , 1 0
b s r f o o
m o v d f o o , rO

f o o :
. g l o b l b l a p

m o v d b l a p , rO

9.4.1 A sse m b le r S ym b o l T able L is tin g

GF-09-0-U

Figure 9-9. Sample GNX Assembler Symbol Table Source File

GNX A s s e m b l e r V e r s i o n X . X X date
S y m b o l T a b l e Dump

S y m b o l
b l a p
f o o

V a l u e S e c t i o n
0X0 u n d e f i n e d , e x t e r n a l
0X8 . t e x t

P a g e : 1

GF-10-0-U

Figure 9-10. Sample GNX Assembler Symbol Table Listing

The symbols are listed in the order in which they are encountered. The first column of
the output is the name of the symbol, the second column is the value (in hexadecimal)
of the symbol, and the last column is the name of the section to which it belongs.

9-14 INVOCATION AND OPERATION Rev 4.4

9.4.2 Cross-Reference Table Listing
The cross-reference listing will be entitled “Cross-Reference Table”. It will be preceded by a formfeed, and will be output to the specified file. If no output file is specified for it, the cross reference will be output either to s t d o u t (On UNIX/MS-DOS systems), or to the . XRF file (On VMS systems).Figure 9-11 shows a sample cross-reference source file, and Figure 9-12 shows a sample cross-reference table listing.

. s e t x , 1 0
b s r f o o
m o v d f o o , rO

f o o :
. g l o b l b l a p

m o v d b l a p , rO

GF-ll-O-U

Figure 9-11. Sample GNX Assembler Cross-Reference Source File

GNX A s s e m b l e r V e r s i o n X . X X
C r o s s R e f e r e n c e T a b l e

b l a p 5 + 6
f o o 2 3 4 -
X 1 -

d a t e P a g e : 1

GF-012-0-U

Figure 9-12. Sample GNX Assembler Cross-Reference Table Listing
Symbols will be listed in alphabetical order. The numbers listed beside the line numbers are the source lines where the symbol appears. A ~ beside a line number indi­
cates that the symbol is declared on that line. A + beside a line number indicates that
the symbol is imported/exported (declared with a . g l o b l directive) on that line. A - beside a line number indicates that the symbol is set (or reset with a . s e t directive)
on that line.

Rev 4.4 INVOCATION AND OPERATION 9-15

9.5 GNX ASSEMBLER ERRORS
When the assembler finds an error, it provides an error message through standard error. If the -L option flag on UNIX/MS-DOS systems (or /LIST on VMS) has been
selected, the assembler includes the error message in the listing file following the line containing the error. Most errors will inhibit the assembler from generating any further object code (refer to Figure 9-8).

9.6 GNX ASSEMBLER LIMITATIONS
This section contains a list of limitations of the GNX Assembler.

Expression:
Expressions are calculated as 4-byte integers. High order bytes/bits are filled with
zero.

Line:
The length of the input line is limited to 64K characters.

Range of values:
The range of values for displacements is:

byte displacement: -64 to 63word displacement: -8192 to 8191double-word displacement: -536870912 to 536870911 ie: -(2**29) to (2**29 - 1)
The range of values for floating-point constants is:

single precision: 1.17549436 x 10**-38 to 3.40282346x10**38 and
-1.17549436 x 10**-38 to -3.40282346 x 10**38

double precision: 2.2250738585072014 x 10**-308 to 1.7976931348623157 x 10**308 and -2.2250738585072014 x 10**-308 to
-1.7976931348623157 x 10**308

The range of values for integer constants is:
byte constants: -128 to 255word constants: -32768 to 65535
double-word constants: -2147483648 to 2147483647 ie: -2**31 to (2**31-1)

9-16 INVOCATION AND OPERATION

Section:
The length of a section name as specified with the . sec tio n directive must be up to 8 characters.
The number of sections are limited to 10 sections.

• By default, the first 5 sections are: .text, .data, .bss, .link, and .static.
• If there are module table entries there is a .mod section.
• If there are . iden t directives there is a .comment section.
• Therefore, there are only 3 to 5 sections that can be defined by the user in the assembly source level.

String:
The string length is limited to 256 characters.

Symbol name:
The length of a symbol name in the Cross-reference Table (-x flag on UNIX/MS-DOS or /XREF qualifier on VMS) is truncated to 14 characters.
The length of a symbol name in the Symbol Table Dump (-y flag on UNIX/MS-DOS or /MAP qualifier on VMS) is truncated to 14 characters.

Rev 4.4 INVOCATION AND OPERATION 9-17

Appendix A
DIRECTIVE SUMMARY

The following is a comprehensive summary of the GNX Assembler Directives.
SYMBOL GENERATION
. se t symbol, expression sets symbol to the value and type specified

by expression. Scope is local.
DATA GENERATION__
[label] . a s c i i string generates a string constant, string specifies

constant value.
[label] .b y t^[[repetition-factor]] [expression | string}),,,

generates byte constant or string, expression
or string specifies constant value.
repetition-factor specifies number of
occurrences of value.

[label] .word([[repetition-factor]] {expression \ string}),,,
generates word constants. expression
specifies constant value.

[label] .double([[repetition-factor]]{expression \ string}),,,
generates double-word constants.

[label] . f lo a t([[repetition-factor]]expression),,,
generates single-precision floating-point con­
stants.

[label] . long([[repetition-factor]]expression),,,
generates double-precision floating-point
constants.

[label] . f ie ld ([subfield-length]subfield-value),,,
generates bit fields, subfield-length specifies
length of field, sub field-value specifies field
value.

DIRECTIVE SUMMARY A-l

[label] .xpd expression generates external procedure descriptor.
expression specifies an external function
name.

[/label] . xdd expression generates external data descriptor, expres­
sion specifies a double-word value.

STORAGE ALLOCATION
[label] .blkb [expression] allocates consecutive bytes of memory for

storage, expression specifies the number of
bytes.

[label] .blkw [expression] allocates consecutive words of memory for
storage, expression specifies the number of
words.

[label] .blkd [expression] allocates consecutive double-words of
memory for storage, expression specifies the
number of double-words.

[label] .b lk f [expression] allocates consecutive double-words for
single-precision floating-point storage.
expression specifies the number of double-
words.

[label] .b lk l [expression] allocates consecutive quad-words for double­
precision floating-point storage, expression
specifies the number of quad-words.

[label] . space expression allocates consecutive bytes for storage.
expression specifies the number of bytes.

LISTING CONTROL
[label] . t i t l e string prints the specified string at the top of each

page of the listing file.
[label] . s u b t i t l e string prints the specified string at the top of each

page of the listing file and below the title
string (if any).

A-2 DIRECTIVE SUMMARY

MODULE TABLE DIRECTIVES

.module name [,sb=static 6ase] [,1b=link base] [,pb =program base]
declares a module name, associates the text,
link, and static local data segments gen­
erated by the assembly with the module
name and optionally defines a module table
entry. Name is the module name.

.modentry name \,sb=static base]\,\h=link base] [,pb=program base]
defines a module table entry for a named
module. Name is the module name.

FILE NAME DIRECTIVE
. f i l e "symbol" assigns the source filename symbol to the

current assembly.
SYMBOL TABLE ENTRY DEFINITION DIRECTIVES
• def symbol specifies the start of the definition of a sym­

bol table entry for symbol.
. dim expression,,, specifies the dimensions of an array variable.

Up to four dimensions may be specified.
. l in e expression specifies the source file line number, expres­

sion, on which a symbol is defined.
. s c l expression specifies the storage classification, expres­

sion, of a symbol.
. s iz e expression expression specifies the size in bytes of a

symbol.
. tag symbol symbol specifies the tag name of a structured

data type.
. type expression specifies the type, expression, of a symbol.
.va l expression expression specifies the value of the symbol

that is being defined.

DIRECTIVE SUMMARY A-5

. endef terminates the definition of a symbol table
entry.

LINE NUMBER TABLE CONTROL DIRECTIVE
. In expression! [, expression2] specifies the source file line number offset

from the start of a function and an optional,
associated memory address.

MACRO DEFINITION DIRECTIVES
.macro macro-name formal-argument-list begins the definition of the macro-procedure.
.endm end the macro-procedure definition.
. i f ifjcondition begins a conditional macro assembler state­

ment.
. e 1 s i f elsif_condition specifies an elsif clause for the conditional

macro assembler statement.
.e ls e else_conditional_body specifies an else clause for the conditional

macro assembler statement.
. end if ends the conditional macro assembler state­

ment.
rep ea t [iteration_count [,iteration_var] Jbegins a macro repetitive block.

. irp iteration_var,iterationJist begins a special macro repetitive block.

.endr ends a macro repetitive block.

. e x it ends the processing of the current repetitive
block.

.macro_on enables macro-procedure expansions.

.macro_off disables macro-procedure expansions.
.inc lud e included Jile allows for the inclusion of text from another

file.
. mwarning warningjnessage generates an assembler warning message.
.m error error jnessage generates an assembler error message.

A-6 DIRECTIVE SUMMARY

PROCEDURE SUPPO RT DIRECTIVES

.proc marks the definition point of an ordinary
procedure.

.p ro c t marks the definition point of a trap pro­
cedure.

.p roc i marks the definition point of an interrupt
procedure.

. var starts the variable block definition.

.begin begins the procedure body.

. endproc ends the procedure body.

.c a l l issues a procedure call.

DIRECTIVE SUMMARY A-7

Appendix B
GNX ASSEMBLER RESERVED SYMBOLS

B.l INTRODUCTION
This appendix contains lists of the GNX-Version 4 Assembler reserved symbols (i.e.,
instructions, registers, directives, addressing mode indicators, flags, qualifiers, and
temporary labels).
N O T E : The following instructions must be lower-case.

GNX ASSEMBLER RESERVED SYMBOLS B-l

B.2 STANDARD INSTRUCTIONS

absb bgt
absw bhi
absd bhs
acbb ble
acbw blo
acbd bis
addb bit
addw bne
addd br
addcb bicb
addcw biew
added bied
addpb biepsrb
addpw biepsrw
addpd bispsrb
addqb bispsrw
addqw bpt
addqd bsr
addr caseb
adjspb casew
adjspw cased
adjspd ebitb
andb ebitw
andw ebitd
andd ebitib
ashb ebitiw
ashw ebitid
ashd checkb
bcc checkw
bcs checkd
beq empb
bfc empw
bfs empd
bge cmpmb

cmpmw ibitb
cmpmd ibitw
cmpqb ibitd
cmpqw indexb
cmpqd indexw
empsb indexd
empsw insb
empsd insw
empst insd
comb inssb
comw inssw
comd inssd
evtp jsr
exp jump
expd lmr
deib lprb
deiw lprw
deid lprd
dia lshb
divb lshw
divw lshd
divd meib
enter meiw
exit meid
extb modb
extw modw
extd modd
extsb movb
extsw movw
extsd movd
ffsb movmb
ffsw movmw
ffsd movmd
flag movqb

B-2 GNX ASSEMBLER RESERVED SYMBOLS

movqw
movqd
movsb
movsw
movsd
movst
movsub
movsuw
movsud
movusb
movusw
movusd
movxbd
movxwd
movxbw
movzbd
movzwd
movzbw
mulb
mulw
muld
negb
negw
negd
nop
notb
notw
notd
orb
orw
ord
quob
quow
quod

STANDARD INSTRUCTIONS (CONT)
rdval sbitid sged slsd subd
remb sccb sgtb sltb subebremw sccw sgtw sltw subcw
remd seed sgtd sltd subcdrestore scsb shib sneb subpb
ret scsw shiw snew subpwreti scsd shid sned subpd
rett seqb shsb setefg sve
rotb seqw shsw skpsb tbitb
rotw seqd shsd skpsw tbitwrotd sfcb sieb skpsd tbitd
rxp sfcw slew skpst wait
save sfcd sied smr wrval
sbitb sfsb slob sprb xorbsbitw sfsw slow sprw xorw
sbitd sfsd slod sprd xord
sbitib sgeb slsb subb
sbitiw sgew slsw subw

GNX ASSEMBLER RESERVED SYMBOLS B-3

B.3 N S32081 FLOATING-POINT INSTRUCTIONS

absf floorfw movbl negf subf
absl floorfd movwl negl subl
addf floorlb movdl roundfb truncfb
addl floorlw movf roundfw truncfw
cmpf floorld movl roundfd truncfd
cmpl lfsr movfl roundlb trunclb
divf movbf movlf roundlw trunclw
divl movwf mulf roundld truncld
floorfb movdf mull sfsr

B.4 NS32181 AND NS32381 FLOATING-POINT INSTRUCTIONS
absf floorfd movdl negl scalbl
absl floorfw movf polyf sfsr
addf floorlb movfl polyl subf
addl floorld movl roundfb subl
cmpf floorlw movlf roundfd truncfb
cmpl lfsr movwf roundfw truncfd
divf logbf movwl roundlb truncfw
divl logbl mulf roundld trunclb
dotf movbf mull roundlw truncld
dotl movbl negf scalbf trunclw
floorfb movdf

B.5 NS32580 FLOATING-POINT INSTRUCTIONS
absf floorlb movfl roundfw trucnfw
absl floorld movl roundlb trunclb
addf floorlw movlf roundld truncld
addl lfsr movwf roundlw trunclw
cmpf macf movwl sqrtf
cmpl macl mulf sqrtl
divf movbf mull sfsr
divl movbl negf subf
floorfb movdf negl subl
floorfd movdl roundfb truncfb
floorfw movf roundfd truncfd

B-4 GNX ASSEMBLER RESERVED SYMBOLS

B.6 NS32CG16, NS32CG160 AND NS32FX16 HIGH PERFORMANCE GRAPHIC INSTRUCTION
bband bbstod extbl movmpw tbits
bbfor bbxor movmpb sbitps
bbor bitwit movmpd sbits

B.7 NS32GX320 HIGH PERFORMANCE DSP INSTRUCTION
mulwd mactd cmacd cmuld

00PQ NS32532 CPU INSTRUCTION
cinv

B.9 STANDARD REGISTERS
fp rO r4 sp
intbase r l r5 upsr
mod r2 r6 sb
psr r3 r7

B.10 NS32082 MMU REGISTERS
bent eia pfO ptbO
bprO msr pfl ptbl
bprl

B .ll NS32382MMU REGISTERS
msr bar bdr bear
bmr mcr ivarO ivarl
ptbO ptbl tear

GNX ASSEMBLER RESERVED SYMBOLS B-5

B .12 N S32081 FLOATING-POINT REG ISTERS

fD f2 f4 f6
fl ß f5 f7

B.13 NS32181,NS32381 AND NS32580 FLOATING-POINT REGIS­TERS
fD £2 f4 f6
fl ß f5 f7
10 12 14 16
11 13 15 17

B.14 NS32532 CPU REGISTERS
bpc der ivarl ptbO tear
car dsr mcr ptbl usp
cfg ivarO msr

B.15 STANDARD DIRECTIVES
.align .data .file .sb .text
.ascii .def .globl .scl .title
.blkb .dim .ident .section •type
.blkw .double .line .set .udata
.blkd .dsect .link .size .val
.bss .eject .list .space .width
.byte .endef .In .static .word
.comm .field .nolist .subtitle .xdd

•org •tag .xpd

B-6 GNX ASSEMBLER RESERVED SYMBOLS

B .16 FLOATING-POINT DIRECTIVES

.blkf .blkl .float long

B.17 MACRO DEFINITION DIRECTIVES
.macro .endm .if .else
.elsif .repeat .irp .endr
.macro_on .macro_off .include .m warning

B.18 PROCEDURE SUPPORT DIRECTIVES
.proc .proct .proci .var
.endproc .call

B.19 PROCEDURE SUPPORT PREDEFINED SYMBOLS
param_size var_size

B.20 MODULARITY DIRECTIVES
.module .modentry

B.21 ADDRESSING MODE INDICATORS
ext tos

B.22 FLAGS
b f m u
c i

.endif

.exit

.merror

.begin

GNX ASSEMBLER RESERVED SYMBOLS B-7

B.23 NS32332 SETCFG FLAGS
fc ff fm p

B.24 NS32CG160 SETCFG FLAGS
de

B.25 MODULARITY OPTION FLAGS
lb pb

B.26 NS32CG16 OPTION FLAGS
da ia -s s

B.27 SCALED INDEX QUALIFIERS
b w q d

B.28 NS32532 OPTION FLAGS
a d i

B.29 TEMPORARY LABELS
lf 2f 3f 4f 5f
6f 7f 8f 9f
lb 2b 3b 4b 5b
6b 7b 8b 9b

B-8 GNX ASSEMBLER RESERVED SYMBOLS

Appendix C
PROGRAM EXAMPLES

C.l INTRODUCTION
This appendix provides sample assembly programs that illustrate various features of
the GNX Assembler. The programs are written in the GNX C compiler style of code
generation.

C.2 FACTORIAL NUMBERS
This example illustrates procedure calls between two separately assembled software
modules and an object language library module. The assembly language modules
implement a factorial number algorithm; the procedure in the library prints out the
result.
The two assembly language modules are m a i n . s , which contains the procedure
_ m a i n , and f a c . s , which contains the procedure _ f a c . The procedure _ m a i n calls
the external procedure _ f a c ; an argument is passed, and a value is returned in rO.
The procedure _ f a c returns any factorial number that can be represented by a
double-word integer. (The factorial of a number n is the product 1 x2 x n.) If _ f a c
is passed as an argument whose factorial cannot be represented as a double-word
integer, it returns the integer unchanged and sets the f flag of the psr. This condition
is checked by the flag instruction on return to _main.
The _ m a i n makes three calls to _ f a c , and then calls the C Library routine
_ p r i n t f to print the result on standard output. The _ p r i n t f is contained in the
object file / l i b / c r t O . o .

The two assembly language modules are assembled separately and then linked with
the library object module as follows:

a s m a i n . s

a s f a c . s

I d / l i b / c r t O . o m a i n . o f a c . o - l c

PROGRAM EXAMPLES C-l

The module, main. s:

print:

main:

. file "main.s"

. text

.globl _main

.globl _printf # Import external C Library procedure.

.globl _ fac # Import external procedure _fac.

. data

. byte "%d %d %d\12\0" # Formatting input for _printf.

. text
enter [rO],0 # Push previous contents of rO on stack.
movqd 1, rO # Pass input-value 1 to external
bsr _fac # procedure _fac in rO.
flag # Check for out-of-bounds error.
movd rO,tos # Push returned answer in rO on stack.
movqd 6, rO # Prepare to pass input-value 6 to _fac.
bsr _ fac
flag
movd rO,tos
addr @12,rO # Prepare to pass input-value 12 to _fac.
bsr _fac
flag
movd rO,tos
addr print,tos # Push formatting arguments for _printf on
bsr _printf # stack and print answers.
adj spb $-16 # Adjust stack pointer to allow for

arguments passed to _printf.
exit [rO] # Restore previous contents of rO.
ret 0 # Return from _main.

C-2 PROGRAM EXAMPLES

The module, fac.s:
. file "fac.s"
. text
.globl _ f ac

. data
g: . double 1

. double 1

. double 2

. double 6

. double 24

. double 120

. double 720

. double 5040

. double 40320

. double 362880

. double 3628800

. double 39916800

. double 479001600

. text
_fac : :
num: cmpd rO,$12 # Check for in-bounds (must be less than

bhi error # If not, branch to error handler.
movd g[rO:d],rO # Otherwise, scale-index into the array :
ret 0 # corresponding factorial result and

move to rO.
error: bispsrb b'00100000 # Set the psr f bit to "1" for detection

ret 0 # flag in calling program.

C.3 SQUARE ROOT CALCULATION
This example illustrates local procedure calls, i.e. , calls to procedures in the same
assembly file. The procedure _main calls the local procedure _sqrt and passes it to an
input-value on the stack. The _sqrt calculates the square root of a positive integer
using a successive approximation algorithm. If _ sqrt is passed a nonpositive integer,
the integer is returned unchanged on the stack, and the f flag of the psr is set. Other­
wise, the answer (i.e., the closest integer less than or equal to the square root of the
input-value) is returned on the stack and printed out using _ printf.
The module sqrt.s is assembled and linked as follows:

PROGRAM EXAMPLES C-3

as s q r t .s
Id /lib/crtO.o sqrt.o -lc

. file "sqrt.s"

. text

.globl _main

.globl

. data
_printf # Import external C Library procedure.

print: .byte "%d %d",Oxa,0x0 # Formatting input for _printf.
. text

_main:
enter [] ,4
movqd $1,tos # Pass input-value 1 to local procedure _sqrt
bsr _sqrt # via stack.
flag # Check for illegal negative input-value.
movqd $4,tos # Pass input-value 4 to local procedure _sqrt
bsr _sqrt
flag
addr print,tos # Push formatting input for _printf on stack.
bsr _printf # Print formatted answers.
adj spb $-12 # Adjust stack pointer in allowance for input
exit [1 # to _printf.
ret 0 # Return from _main.

_sqrt:
enter [rO, rl, r2],0 # Save contents of registers to be used

on stack.
movqd $1, rO # Start guessing square-root as 1.
movd 8 (fp),rl # Get the passed parameter on the stack.
cmpd rl, $0 # Check for illegal negative input.
ble error # If so, branch to error-handler.

loop: movd rl, r2 # Otherwise, make a copy and divide the copy
divd rO, r2 # by the initial guess.
cmpd rO , r2 # Is the answer ready yet?
addd rO , r2 # Sum the result and the guess.
ashd $-1,r2 # Take their average.
movd r2 , rO # Make the next guess.
bhi loop # If answer not ready yet, continue.
movd rO,8(fp) # Otherwise, return the answer
br exits # and exit.

error: bispsrb b'00100000 # Set the PSR F bit to "1" for detection by
flag after return from procedure.

exits : exit [rO,rl,r2]

C-4 PROGRAM EXAMPLES

C.4 ACKERMAN’S FUNCTION
This example contains an assembly language program produced by the GNX C com­
piler. The C program implements Ackerman’s function, a well-known example of a
recursive procedure that terminates for all positive integer values of its two parame­
ters. Following the C program is the optimized assembler output from the GNX C com­
piler.
The program is compiled as follows:

cc -0 -S ack.c

The C program:
main ()
{ int i=3,j=3;

printf("%d\n",ack(i,j));
}
ack(a,b)
int a , b ;
{

if (a==0)
return(b+1);

else if (b==0)
return(ack(a-1,1));

}
else

return(ack(a-1,ack(a,b-1)));

The optimized assembly code for the above C program:
. text
.data
. text
.globl _main

.file "ack.c"
.align 4

. data

. text

.globl _ack

. data

.globl _printf #

. L17 :

.ascii "%d\12\0" #

. text
_main:

enter [] ,8 #
movqd 3,-4(fp) #
movqd 3,-8(fp) #
movd -8(fp),tos #
movd -4(fp),tos #

Import external C library procedure.
Formatting input for _printf.

Allow for the amount of data to be
pushed on stack.
Allocate input-values to data storage
area of procedure _main and push on
stack in preparation to call external

PROGRAM EXAMPLES C-5

bsr _ack #
adj spb $-8 #
movd rO,tos #
addr .L17,tos #
bsr _printf #
adj spb $-8 #
exit [] #
ret 0 #
. align 4

_ack:
enter [] ,0
cmpqd 0,8 (fp) #
bne . L23 #
movqd 1, rO #
addd 12(fp),rO #
br . L2 0 #

L2000001
movqd 1, tos #

#
L2000005

movd 8 (fp),rO #
addr -1(rO),tos #
bsr _ack #
adj spb $-8 #

#
. L2 0 :

exit □ #
ret 0

. L23 :
cmpqd 0,12(fp) #
beq L2000001 #
movd 12(fp),rO #
addr -1(rO),tos #
movd 8 (fp),tos #
bsr _ack #
adj spb $-8 #
movd rO,tos #
br L2000005 #

#

procedure _ack.
Adjust stack pointer in allowance for
input to _ack and push returned answer
in rO on stack
Print answer.
Adjust stack pointer in allowance for
input to _printf and exit _main,
adjusting stack for initial data input.

If a is equal to 0 then,
add 1 to b,
using rO, and
branch to exit _ack.

Push 1 on stack as 2nd argument
to _ack.
Move a to rO,
subtract 1 and push on stack as 1st
argument to _ack, then call _ack.
Adjust stack pointer in allowance for
arguments to _ack pushed on stack.
Exit _ack.

If a is not equal to 0 and b is equal
to 0 then branch to L2000001.
Else move b to rO, subtract 1 and
push on stack as 2nd argument to _ack.
Then push a on stack as 1st argument
to _ack and call _ack.
Adjust stack pointer for arguments.
Push result in rO on stack as 2nd
argument to _ack in recursive call.
Branch to L2000005 for 1st argument.

C.5 STRING SORTING
This example implements a bubble-sorting algorithm for an array of pointers to
strings. A bubble-sorting algorithm performs successive exchanges of unordered neigh­
bors. The algorithm may be represented in C as follows:

C-6 PROGRAM EXAMPLES

string_ sort (e_ ent, array)
char * array [];
int e__cnt;
{

char *temp;
int f, i;
f = e_ ent ;
while (f-- > 0) {

for (i = 0; i < f ; i + +) {
if (stremp(array[i] , array[i + 1]) > 0) {

temp = array[i];
array[i] = array[i+1];
array[i+1] = temp;

An assembly language module, sort.s, implementing the bubble sort algorithm is given
below. The external procedure _ sort performs a bubble sort on a passed string array.
The maximum allowed length of a string is “max_ length,” an imported variable. The
array address (“array”) and element count (“e_cnt”) are passed on the stack, with
“e_cnt” on top.

. f i l e " s o r t . s "

. g l o b l m a x _ l e n g t h

. d s e c t a r g s , 8 #
a r r a y : . b l k d
e _ c n t : . b l k d

. t e x t
_ s o r t : :

e n t e r [r O , r l , r 2 , r 3 , r 4 , r 7] , 0
mo vd e _ c n t (f p) , r 3 #

l o o p 2 : a d d q d - 1 , r 3 #
e mp d 0 , r 3 #
b e q p _ e x i t #
m o v q d 0 , r 7 #

l o o p l : e mp d r 3 , r 7 #
b e q l o o p 2 #
mo vd m a x _ l e n g t h , rO #
mo vd 0 (a r r a y (f p)) [r 7 : d] , r l #
a d d q d 1, r 7 #
mo vd 0 (a r r a y (f p)) [r 7 : d] , r 2 #
m o v q d 0 , r 4 #
e m p s b #
b i s l o o p l #
a d d r 0 (a r r a y (f p)) [r 7 : d] , rO #
mo vd - 4 (r O) , r l #
mo vd 0 (r O) , - 4 (rO) #
mo v d r l , 0 (rO) #
b r l o o p l

p _ e x i t : e x i t [r 0 , r l , r 2 , r 3 , r 4 , r 7]

S e t a r g u m e n t o f f s e t s f r o m f p .

S e t e _ c n t t o r a n g e - l i m i t f o r l o o p l .
S e t r a n g e - l i m i t t o r a n g e - l i m i t - 1 .
B r a n c h t o p _ e x i t i f r a n g e - l i m i t
i s e q u a l t o 0 .
F o r i = 0 . . .
. . . t o r a n g e - l i m i t .
B r a n c h t o l o o p 2 o n r e a c h i n g r a n g e - l i m i t .
S e t s t r i n g - l e n g t h l i m i t f o r e m p s b .
S e t u p a r r a y [i] .
i = i + 1 .
S e t u p a r r a y [i + 1] .
S e t u p e n d o f s t r i n g .
I f s t r i n g (a r r a y [i]) > s t r i n g (a r r a y [i + 1])
c o n t i n u e , o t h e r w i s e b r a n c h t o n e x t p a i r .
G e t a d d r e s s o f a r r a y [i + 1] .
t e m p = a r r a y [i] .
a r r a y [i] = a r r a y [i + 1] .
a r r a y [i + 1] = t e m p .

PROGRAM EXAMPLES C-7

C.6 MODULAR CODE EXAMPLE
This example shows a Series 32000 module built from a single source file.
1 # Declare the module
2
3

We specify the static and link base, the program base defaults to .text.

4 . file "hello .s "
5 MOOOOOOOO IcOOOOOO . module hello, sb = .static, lb = .link

6
7
8
9
10

18000000
00000000
00000000

. link # Begin link segment,
lb will point here

L00000000 00000000 printf : . xpd _printf # Local link table entry for _printf
11
12 . text # Begin code segment,
13 # pb will point here
14
15 _ma i n :
16 TOOOOOOOO 820000 enter N, 0
17 T00000003 e7d5c000

0000
addr msg, tod

18 T00000009 22COOOOO
00

exp printf

19 TOOOOOOOe 7ca5fc adj spb $-4
20 T00000011 9200 exit []
21 T00000013 3200 rxp 0
22
23 . static # Begin static segment,
24 # sb will point here
25 msg :
26 SOOOOOOOO 48656c6c . byte "Hello, World!\012\Q"

6f2c2057
6f72 6c 64
210a00

C-8 PROGRAM EXAMPLES

INITIALIZATION OF INTERRUPTS
Appendix D

The following skeleton program illustrates a method of initializing the necessary regis­
ters and tables to process the first 10 standard interrupts in a Series 32000 system
with a single ICU. This same technique can be used to initialize the vectored inter­
rupts when needed.
In order to load interrupt vectors at run-time, the appropriate procedure descriptors
may be stored in a link table and moved into place during program initialization.
Because the offset portion of the procedure descriptor is 16 bits, the interrupt routines
must be within the first 64 Kbytes (65536 bytes) of address space. Since the linker
loads files in command line order, this can be accomplished by specifying the object file
that contains the interrupt routines early in the load command.

. text
start::
#
Initialize Intbase Register to point to the Interrupt
Vector Table:
#

addr intvec,r0 # Get address of Interrupt Vector Table,
lprd intbase, rO # Save it in Intbase Register.

#
Code for process:
#

... # Code for program.

#
#
#
nvi :

nmi :

abt:

Code for interrupts:

Code for non-vectored interrupt.

... # Code to process interrupt.

reti # Return to interrupted routine.
Non-maskable interrupt.

... # Code to process interrupt.

reti # Return to interrupted routine.
Abort interrupt.

INITIALIZATION OF INTERRUPTS D-l

Code to process interrupt.

ignore :

#
#
#
#
#
#
#
#
#
#
#
intvec:

#
#

reti # Return to interrupted routine.
Ignore state.

reti # Return to interrupted routine.
. data

Build Interrupt Vector Table entry by entry.
Each .xpd directive initializes one entry in the table
with a procedure descriptor for the appropriate entry
point. Note that this program chooses not to use
interrupts 3 through 10, they are set up to be
ignored.

.xpd nvi # non-vectored interrupt (always 0)

.xpd nmi # non-maskable interrupt (always 1)

.xpd abt # abort interrupt (always 2)

.xpd ignore # FPU (always 3)

.xpd ignore # illegal operation (always 4)

.xpd ignore # supervisor call (always 5)

.xpd ignore # divide by zero (always 6)

.xpd ignore # flag (always 7)

.xpd ignore # breakpoint (always 8)

.xpd ignore # trace (always 9)

.xpd ignore # undefined instruction (always 10)
11-15 reserved
16-31 vectored interrupts

D-2 INITIALIZATION OF INTERRUPTS

SERIES 32000 STANDARD CALLING CONVENTIONS
Appendix E

E .l INTRODUCTION
The main goal of standard calling conventions is to enable the communication between
the routines of one program consisting of different modules, even when written in mul­
tiple programming languages. The Series 32000 standard calling conventions support
various special language features (such as the ability to pass a variable number of
arguments, which is allowed in C) by using the different calling mechanisms of the
Series 32000 architecture. This convention is employed only to call “externally visible”
routines. Calls to internal routines may employ even faster calling sequences, by pass­
ing arguments in registers, for instance.
Basically, the calling sequence pushes arguments on top of the stack, executes a call
instruction, and then pops the stack, using the fewest possible instructions to execute
at the maximum speed. The following sections discuss the various aspects of the
Series 32000 standard calling conventions.

E.2 CALLING CONVENTION ELEM ENTS
Elements of the standard calling sequence are:

• The Argument Stack
Arguments are pushed on the run-time stack from right to left. Therefore, the
first (left-most) argument is always at a constant offset from the frame pointer
(fp) regardless of how many arguments have been passed. This is important
because C allows a variable number of arguments. This does not mean that the
actual parameters are always evaluated from right to left. Programs cannot rely
on the order of parameter evaluation.
For reasons of efficiency, the run-time stack is required to be aligned to a full
double-word boundary. Argument lists always use a whole number of double-
words; integer and pointer values use a double-word (by extension, if necessary),
floating-point values use eight bytes and are represented as long values, struc­
tures use a multiple of double-words.
The above conventions allow writing functions which take a variable number of
arguments of unknown types, such as the printf function.
Note that the stack alignment is maintained by all of National Semiconductor’s
optimizing compilers through aligned allocation and de-allocation of local vari­
ables. Interrupt routines and other assembly-written interface routines are
expected to maintain this double-word alignment.

SERIES 32000 STANDARD CALLING CONVENTIONS E-l

The caller routine must pop the arguments off the stack, upon return from the
called routine.

• Saving registers
General registers RO, Rl, and R2 and floating registers F0, Fl, F2, and F3 are
volatile or unsafe registers whose value may be changed by a called routine.
These registers need not be saved upon procedure entry, nor restored before exit.
If the other registers (R3 through R7, F4 through F7) are used, their value must
be saved (onto the stack) by the called routine immediately upon procedure entry
and restored immediately before executing the return instruction.

NOTE: Interrupt and trap service routines are required to
save/restore all registers they use.

• Returned Value
An integer or a pointer value that is returned from a function is returned in (part
of) register RO.
A long floating-point value that is returned from a function is returned in register
pair F0-F1. A float-returning function returns the value in register F0.
If a function is defined to return a structure, the calling function will pass an
additional argument at the beginning of the argument list. This argument points
to where the called function will return the structure. The called function copies
the structure into the specified location during execution of the return statement.
Note that functions which return structures must be correctly declared as such
even if the return value is ignored.

E-2 SERIES 32000 STANDARD CALLING CONVENTIONS

When the C optimizing compiler builds an argument list, the layout of the stack looks
like this:

caller
last arg High Memory Addresses

fp >

first arg
[mod,psr]
return pc
saved fp

local vars

saved
registers
last arg Low Memory Addresses

sp > current arg

Example: given a call to a function func (first, second, third, last) :
i = func(1, x, *cp, j);

with these variable declarations:
float x;
register char *cp;
int j;

the compiler might generate the following code:
movd - 8 (f p) , t o s
m ovzbd 0 (r 7) , t o s
m ovf 1 - 4 (f p) , t o s
m ovqd 1 , t o s
b s r _func
a d j sp b -2 0
movd rO , r6

#last argument
#byte argument
#float argument
#first argument

#pop args off stack
#save return value

SERIES 32000 STANDARD CALLING CONVENTIONS E-3

func might look as follows:
enter [r7,r6],12 #save regs, alloc vars
movl f6,tos #save floating regs f6 and

movd 8 (fp),rl #put first arg in temp reg

movd r7 , rO #return value
movl tos,f6 #restore floating regs
exit [r7,r6] #restore regs
ret 0 #do not pop off args

The standard calling sequence decreases the chance of an error which could destroy the
stack. Maintaining the stack is crucial since the debugger cannot trace a destroyed
stack, and the user must know what functions in a program are currently active.

E-4 SERIES 32000 STANDARD CALLING CONVENTIONS

COMPATIBLY-SUPPORTED MACROS
Appendix F

F.l INTRODUCTION
This appendix describes the Version 2 and 3 macro-assembler. For compatibility pur­
poses this macro-assembler is still supported in this release, but will be obsolete in Ver­
sion 5. It is not compatible with the new Version 4 macro-assembler, which is
described in Chapter 8.
This old macro-assembler version must be invoked by the -MC invocation option for the
UNIX environment, and by the /MCOMPATIBILITY invocation option for the VMS
environment.
The following sections explain the process of defining and using old macros.

F.2 DEFINITION OF TERMS
Macro Definition A method of giving a name to a sequence of instructions. After

the macro has been defined, the programmer can write the macro
name instead of the sequence of instructions.

Macro Usage The use of the macro name as an opcode, operand, directive,
expression or partial expression.

Macro Expansion The process of replacing the line containing the macro name with
the sequence of instructions from the macro definition. Every for­
mal argument in the macro definition is replaced by the actual
argument specified in the macro name.

Formal Arguments Arguments that are used throughout the sequence of instructions
in the macro definition.

Actual Arguments Arguments specified during the actual use of the macro name.
These arguments will replace the formal arguments during the
macro expansion.

COMPATIBLY-SUPPORTED MACROS F-l

F.3 DEFINING A MACRO

A macro definition consists of three parts: a header, a body, and a terminator. The
macro definition is written only once but can be used any number of times. A macro
may not be redefined in a single assembly session.

F.3.1 The Macro Header
The header of a macro definition gives the name of the macro being defined. The
header consists of the .macro directive, the name of the macro, and a list of argu­
ments to be used in the definition. The .macro directive begins the definition of the
macro. The macro definition header is followed by the body of the macro definition.
The format of the macro definition header is as follows:

.macro macro-name formal-arguments-list
where formal-arguments-list is a list of formal arguments, denoted by In, and
separated by any of the following delimiters:

, & C] ()

The argument number n ranges from 1 to 9. Some examples of formal-arguments-list
are

?1, ?2, ?3 #formal arguments are ' ‘ ‘12'' , ' ' ?3' '
#delimiter is ' ' , '

[?1], ?2, &?3& #formal arguments are ''11'' , ''12'' , ''13''
#delimiters are ‘ ,

The argument number n does not need to follow a consecutive order, so the following
formal-arguments-list is also allowed:

? 2 , 1 1 , 14

Macro names may not be the same as standard assembler mnemonics, directives, or
user-defined symbols.

F.3.2 The Macro Body
The body of a macro definition consists of the statements to be inserted into the assem­
bler source code when the macro name is used. The types of statements that are
allowed in the body of the macro are current assembly language statements, directives,
usage of other macros, and expressions or partial expressions. The macros being used
within a macro definition body may be undefined during the time of macro definition,
but they must be defined before actual expansion take place.
The body of a macro definition can be empty, i.e., it can contain no statements.
F-2 COMPATIBLY-SUPPORTED MACROS

The body of a macro definition cannot contain the definition of another macro name;
macro definitions may not be nested.
The formal arguments used in the body of the macro definition are of the form ?n,
where n ranges from 1 to 9 as specified in the macro header. During the use of the
macro name, the macro body statements are inserted in the source code at the place
where the macro is used with every formal parameter being replaced by the
corresponding actual parameter using a “string” substitution.

F.3.3 The Macro Terminator
A macro definition is terminated by the .endm pseudo-instruction. During a macro
definition, an . endm directive must be found before another .macro directive may be
used.
The format of the . endm directive is as follows:

. endm

The following are three examples of a macro definition:
Example 1:

. m a c r o s t o r e 11, 12 , 13 # m a c r o n a m e i s " s t o r e "
t h e r e a r e 3 f o r m a l a r g u m e n t s

. l o n g 11 # ? 1 i s f i r s t a r g u m e n t

. w o r d 13 # ?3 i s t h i r d a r g u m e n t

. b y t e 12 # ?2 i s s e c o n d a r g u m e n t

. e n d m

Example 2:
. m a c r o loc # m a c r o n a me i s " l o c "
4 (f p) # d e f i n i t i o n b o d y i s a n e x p r e s s i o n
. e n d m

Example 3:
. m a c r o f u n [11] , 12, &?3& # m a c r o n ame i s ' ' f u n ' '

t h e r e a r e 3 f o r m a l a r g u m e n t s
f i r s t a r g u m e n t i s d e l i m i t e d b y ' ' []
s e c o n d a r g u m e n t i s d e l i m i t e d b y ' ' ,
t h i r d a r g u m e n t i s d e l i m i t e d b y ' ' & &

e n t e r [?1], 12
. b y t e 13
e x i t [?1]
. e n d m

COMPATIBLY-SUPPORTED MACROS F-3

F.4 USING A M ACRO
Macros can be used as directives, operands, opcodes, expressions and even partial
expressions. A macro is invoked by using the macro name, followed by a list of the
actual arguments to be substituted into the macro definition body if the macro has for­
mal arguments. The format of macro usage is as follows:

macro-name actual-arguments-list
where macro-name is the name of a macro which has already been defined, and actual-
arguments-list is a list of arguments and delimiters following the prototype as specified
by the formal-arguments-list of the macro definition header. The actual arguments
obtained then replace the formal arguments in the macro definition body.

F.4.1 Arguments In Macros
The arguments in the actual-arguments-list must be separated by delimiters as
specified in the formal-arguments-list of the macro definition header. These actual
arguments will replace the formal arguments in the order in which they are written
using a “string” substitution. Actual arguments not supplied will result in missing
arguments during macro expansion. The number of actual arguments associated with
the use of the macro must equal the number of formal arguments specified in the
macro definition.
All actual arguments will be evaluated at argument usage time, that is, during the
time of the expansion of the actual arguments, as opposed to during the time the macro
name is used. The actual arguments should be thought of as delimited by leading and
trailing spaces so that text concatenations are not possible.
Using the macros defined in Section 8.2, the following are examples of macro usage:

Example 1:
s to re 3 . 3 , 2 , 1

Example 2:
movd 6, loc

Example 3:
fun [rO, r l , r2] , 20, &1,2,3,4,5&

Expansion of the macro calls are as follows:

F-4 COMPATIBLY-SUPPORTED MACROS

Example 1:
. long 3.3 # 3.3 is the first argument
.word 1 # 1 is the third argument
.byte 2 # 2 is the second argument

Example 2:
movd 6, 4 (fp)

Example 3:
enter [rO,rl,r2],, 20 # r0,rl,r2 is the first argument# 20 is the second argument
.byte 1,2,3,4,5 # 1,2,3,4,5 is the third argument
exit [rO,rl,r2]

COMPATIBLY-SUPPORTED MACROS F-5

Appendix G
GLOSSARY

.gnxrc (gnx.ini on VMS) A GNX target specification file that is used by GNX tools
to obtain the CPU, FPU, MMU, system bus-width, and OS target specifications.

Assembly Procedure A procedure defined in the assembly source. It provides for
easy programming and interface with HLL written code.

Assembly Program segment Part of an assembly program that resides in a con­
tiguous area. Every GNX assembly program produces at least three program segments
in the output object file: text, data, and bss. These segments correspond to the .text,
.data, and .bss sections of the COFF file. Other Series 32000 segments or user-defined
sections may be included in the assembly source file.

Assembly directive Provides the assembler with control information. Directives
define labels, generate data, define procedures, control program listings, control
macro-assembly, allocate storage, control linkage, define module table entries, control
line number tables, control program segments, define symbol table entries, and define
file names.

Assembly expression A combination of terms and operators which evaluate to a
single value and type. Valid expressions include addresses and integer expressions,
but not floating-point expressions.

Assembly label A user-defined symbol specified at the beginning of an assembly
statement, followed by a colon (:) or a double colon (::).

Assembly statement Composed of an optional label, which is a user-defined symbol;
followed by an optional instruction or directive mnemonic that is an assembler-
reserved symbol; followed by optional operands that are composed of symbols, constant
values, and delimiters.

Built-in Macro Functions A set of macro-assembler functions used to manipulate
strings, lists, type conversions and Series 32000 operands.

GLOSSAKY G-l

COFF Acronym for the Common Object File Format. This is the standard object file
format for the Unix System V operating system, and for the GNX software tools. A
COFF file contains machine code and data and additional information for relocation
and debugging purposes.

Calling convention A standard GNX convention for calling procedures from either
an assembly or a HLL written code. It defines the way parameters are passed, register
usage and how a value should be returned.

Compound Assembly expression An expression constructed from other assembly
expressions using unary and binary operators.

Conditional Macro Statement Sequences of statements specified between the .if
and the .endif directives. They are generated according to a condition specified with the
.if directive.

Cpp An acronym for the C preprocessor.

Cross configuration When the compilation and execution of the compiled program
are done on different machines (the host and target machines are different).

DBUG GNX symbolic debugger. DBUG provides a window-oriented user interface
for both X-windows and ASCII terminals. It is used for the symbolic debugging of high
level and assembly language programs.

Development board The 32000 based system used for developing/running pro­
grams and user applications.

Displacement An integer constant that is specified as part of an instruction
operand. Its value is an offset added to a specified base address for operand address
calculation. It may be encoded as either a byte, word, or double-word.

Displacement operand A displacement size specification that determines a dis­
placement encoding as either byte, word, or double-word.

Dummy segment Defines a symbolic offset for each of its defined labels. It does not
contain generated code or data and does not allocate space. It is useful for overlaying
portions of specific segments.
G-2 GLOSSARY

External symbol A symbol which is defined outside the assembled module. It can
be defined either in another assembly module or in a HLL module.

Floating-point constant An immediate Series 32000 floating-point value. Can be
either a four byte single precision value or an eight byte double precision value.

Global symbols Global symbols are symbols to be used by multiple software
modules, either assembly or HLL modules.

Host machine The machine on which the compiler runs.

Initialized data segment Contains initialized data, follows the .data directive, and
corresponds to the .data section of the COFF file. The initialized data segment has the
same functionality as initialized data in the C language. This functionality enables the
start-up of a target system with an automatically initialized data area.

Instruction operand The Series 32000 instruction operand is defined by the
microprocessor architecture as one of nine possible addressing modes: register, immedi­
ate, absolute, register-relative, memory space, memory-relative, external, top-of-stack,
or scaled index.

Integer constant An immediate integer value. Can be specified either in decimal,
hexadecimal or octal format. Integers can be used within assembly expressions that
are part of either an instruction or directive operand.

Link segment A special segment of the assembly program that corresponds to the
.link section of the COFF file. The link segment defines a module’s link table, thereby
supporting Series 32000 modularity. The actual link table entries are specified follow­
ing the assembly .link directive.

Location counter A relocatable memory address of the current statement within
the currently assembled segment.

Macro Procedure Known by the more common name: macro. Consists of legal
assembly statements to be expanded on macro call, according to given parameters.

Native configuration When the compilation and execution of the compiled program
are done on the same machine (the host and target machines are the same).

GLOSSARY G-3

Object file A file that is the output of either the assembler or the compiler. It con­
tains compiled code, data and additional control information such as relocation or sym­bolic information. The assembler’s object file conforms to the COFF Common Object
File Format.

Option The UNIX term for a parameter, specified on the command line, that is used
to control the utility.

Output listing An optional assembler output of the assembled source file. It
displays the original assembly source, along with additional useful information. Each
source line has an annotated line number, segment type information, and the gen­
erated code or data. Macro expansions are also displayed where applicable.

Procedure Body A part of the assembly procedure support, defining the procedure
code to be executed. Proper entrance and exit is ensured by beginning and ending the
procedure body using the .begin and the .endproc directives, respectively.

Procedure Call A part of the assembly procedure support that calls either an
assembly or a HLL procedure from an assembly code. Calling is done using the .call
directive, with the operands being the procedure name and actual parameters.

Procedure Definition A part of the assembly procedure support, defining an assem­
bly procedure. Assembly procedure is specified between .proc and .endproc directives.
It consists of a procedure body and optional formal parameters, local variables, and
registers to be saved.

Procedure Parameters A part of the assembly procedure defining formal parame­
ters. Procedure parameters are defined after the .proc directive.

Procedure Variables A part of the assembly procedure defining local variables.
Procedure variables are defined after the .var directive.

Qualifier The VMS term for a parameter, specified on the command line, that is
used to control the utility.

Relative value A symbol or expression that specifies an address within one of the
COFF sections or the corresponding assembly program segment. Because such
addresses are not bound to actual memory locations until link-time, their value is rela­
tive to the base or starting address of the segment. Relative values are relocatable,
G-4 GLOSSARY

and have a relocatable entry in the generated COFF object file. They are resolved later
at link-time.

Relocatable object files Output of the assembly process. Relocatable object files
may be linked to create executable files for a Series 32000 target.

Repetitive Macro Statement Sequences of statements specified between the
.repeat or .irp directives and the .endr directive. They are generated repeatedly accord­
ing to an iteration index specified with the .repeat directive.

Return value An integer or floating-point value that is returned by a function
through register RO or F0, respectively, according to the GNX standard calling conven­
tion.

Series 32000 instruction A Series 32000 instruction mnemonic. Should appear
within a text section in order to be executed.

Source file Assembler input. The source file is a text file containing the source pro­
gram to be assembled.

Static segment A special segment of the assembly program. It follows the .static
directive, and corresponds to the .static COFF section. The static segment is used for
defining a static base area for each module in the Series 32000 modularity mode. The
static base area maintains specific data for each module, which is considered to be part
of the module’s environment (i.e. it is saved when switching to another module and
restored on returning to the module). The static segment is especially useful in real­
time embedded applications.

Target machine The machine on which the program being compiled will run.

Text segment Contains code for execution, follows the .text directive and
corresponds to the .text section of the COFF file.

Uninitialized data segment Contains uninitialized data, follows the .bss or the
.udata directive. Corresponds to the .bss section of the COFF file.

GLOSSARY G-5

INDEX

A

Absolute operands 4-25
Absolute type symbols 2-12
Absolute value 1-10
Addressing modes 1-2
.align directive 6-56
Argument Packing E-l
Argument Stack E-l
Array instructions 5-19
.ascii directive 6-6

B

.begin directive 6-104
Binary operators 2-19
Bit field instructions 5-15
Bit instructions 5-14
Bit-field length operands 4-38
Bit-field offset operands 4-39
.blkb directive 6-24
.blkd directive 6-28
.blkf directive 6-29
.blkl directive 6-30
.blkw directive 6-26
Block instructions 5-17
Block length operands 4-37
Board

development G-2
Boolean instructions 5-13
.bss directive 2-15, 6-47
bss segment location counter 3-3
Bss type symbols 2-12
.byte directive 6-8

C
.call directive 6-106, 7-4
Calling convention elements E-l
Calling sequence E-l
Character constant syntax 2-8
Character constants 2-22
Character set 2-1
Code rules 2-3
COFF symbol table requirements 6-70
.comm directive 2-15, 6-41
.comment 6-58
Comment segments 3-6
Compound expressions 2-19
Conditional assembly 8-14
Conditional assembler 8-1

Configuration
cross G-2
native G-3

Configuration list (cfglist) operand 4-47
Cross-reference table listing 9-15

D

.data directive 6-46
Data generation directives 6-4, A-l

.ascii directive 6-6

.byte directive 6-8

.double directive 6-12

.field directive 6-17

.float directive 6-14

.long directive 6-15

.word directive 6-10

.xdd 6-21

.xpd directive 6-19
Data segment 3-1, 3-3
Data type symbols 2-11
Data types 1-2
Decimal floating-point syntax 2-5
Dedicated registers 1-3
.def directive 6-69, 6-71
Defining symbols 2-13

.bss directive 2-15

.comm directive 2-15
common symbols 2-15
labels 2-13
.set directive 2-15
uninitialized symbols 2-15

.dim directive 6-72
Directive summary A-l
Directives 1-3, 6-1
Displacement lengths 4-54
Displacement operands 4-33, 4-40
Documentation conventions 1-10
.double directive 6-12
.dsect directive 3-1, 6-43
Dummy segments 3-6

E
.eject directive 6-37
Elements 2-1
Elements of assembler language 2-1
.else directive 6-89
.elsif directive 6-88
.endef directive 6-69, 6-81
.endif directive 6-90
.endm directive 6-86, F-3

INDEX 1

.endproc directive 6-105 H

.endr directive 6-93
Error messages 9-16 Hexadecimal floating-point syntax 2-7
Escape sequences, list of 2-9
Example

initialization of interrupts D-l I
program C-l

Executable load modules 1-1 .ident directive 3-1, 6-58
.exit directive 6-94, 8-18 .if directive 6-87
Expression limitations 9-16 Immediate operands 4-23
Expression operands 4-5 Immediate subrange operands 4-35
Expressions 2-16 .include directive 6-96

evaluation 2-19 Initialized data segment 3-2, 3-3
size of 2-22 Input and output files 9-1

Expressions generate 4-5 listing file 9-1., 9-9, 9-10
Expressions, rules for 2-19 listing file with error flag 9-13
Expressions, types in 2-19 listing file with libHfp interface 9-12
Extended integer instructions 5-12 macro-processor output 9-1
External operands 4-26 object file 9-1
External procedure operand 4-53 source file 9-1
External type symbols 2-12 Input/Output files 1-2

Instruction operands 4-1
Instruction set 1-2

F Integer constants 2-22
range of values 2-4

F e a t u r e s 1 - 2 Integer instructions 5-7
a d d r e s s i n g m o d e 1 - 2 Integer syntax 2-4
d a t a t y p e s 1 - 2 Integer Variables E-l
d i r e c t i v e s 1 - 2 Invocation 9-3
i n p u t a n d o u t p u t f i l e s 1 - 2 options 9-4
i n s t r u c t i o n s e t 1 - 2 .irp directive 6-92, 8-17

. f i e l d d i r e c t i v e 6 - 1 7

. f i l e d i r e c t i v e 6 - 6 8
F i l e n a m e d i r e c t i v e 6 - 6 7 , A -5 L

. f i l e d i r e c t i v e 6 - 6 8
F l a g 9 - 4 Labels 2-13

i n v o c a t i o n 9 - 3 Limitations 9-16
F l a g s , l i s t o f B -7 expression 9-16
. f l o a t d i r e c t i v e 6 - 1 4 line 9-16
F l o a t i n g - p o i n t 1 - 5 range of values 9-16
F l o a t i n g - p o i n t a r g u m e n t s E - l section 9-17
F l o a t i n g - p o i n t d i r e c t i v e s , l i s t string 9-17

o f B - 7 symbol name 9-17
F l o a t i n g - p o i n t i n s t r u c t i o n s , .line directive 6-73

l i s t o f B -4 Line limitations 9-16
F l o a t i n g - p o i n t n u m b e r s y n t a x 2 - 5 Line number table control directives 6-82, A-6
F r a m e m e m o ry o p e r a n d s 4 - 9 .In directive 6-83
F r a m e m e m o ry r e l a t i v e o p e r a n d s 4 - 1 1 Link base entry (lb) 6-60

.link directive 6-50
Link offset 4-26

G Link segment 3-1
Link table 3-4

General operand access classes 5-1 Link table segment 3-5
General operands 4-3 Link type symbols 2-12
General purpose registers 1-3 Linkage 3-6
General register operands 4-44 Linkage control directives 6-39, A-3
Global symbols 2-13 .comm directive 6-41
.globl directive 6-40 .globl directive 6-40

Linker 3-7

2 INDEX

resolve relocatabletable addresses 3-7
Linking program segments 3-7
Linking Series 32000 modules 3-8
.list directive 6-36
Listing control directives 6-32, A-2

.eject directive 6-37

.list directive 6-36

.nolist directive 6-35

.subtitle directive 6-34

.title directive 6-33

.width directive 6-38
Listing file 9-1, 9-9

error message 9-13
libHfp interface 9-12

Listing file consists of 1-2
.In directive 6-83
Location counter 2-15
.long directive 6-15

M
Machine

host G-3
target G-5

Macro F-l
arguments F-4
definition F-l
macro body F-2
macro definition F-2
macro header F-2
termination F-3
use F-4

Macro assembly
arithmetic expressions 8-9
built-in function 8-12
data conversion functions 8-36
error messages 8-23
instruction operand functions 8-38
invocation 8-7
list functions 8-32
listing control 8-24
macro procedures 8-18
macro-list 8-11
.macro_off directive 8-21
.macro_on directive 8-21
processing 8-5
repetitive directives 8-16
string functions 8-30
text inclusion 8-22
variables 8-8
warning messages 8-23

Macro definition directives A-6
Macro definition directives, list of B-7
.macro directive 6-85
Macro directives 6-84

.else directive 6-89

.elsif directive 6-88

.endif directive 6-90

.endm directive 6-86

.endr 6-93

.exit 6-94

.if directive 6-87

.include 6-96

.irp 6-92

.macro directive 6-85

.macro_off 6-95
,macro_on 6-95
.merror 6-98
.mwarning 6-97
.repeat directive 6-91

Macro, list of arguments of 8-20
Macro, number of arguments of 8-20
Macro Operator precedence, list of 8-10
Macro assembler 8-1
Macro-Expression Evaluation, rules for 8-9
.macro_off directive 6-95
,macro_on directive 6-95
Macro-procedure, defining a 8-18
Macro-procedure, predefined variables 8-20
Memory management instructions 5-24
Memory management register operand 4-50
Memory management registers 1-6
.merror directive 6-98, 8-23
mod register 1-4
.modentry directive 3-4, 6-65
Modularity directives, list of B-7
Modularity option flags, list of B-8
.module directive 3-4, 6-63
Module segments 3-3

link table 3-5
.modentry directive 3-4
.module directive 3-4
module table 3-4
static base relative 3-5
.xdd directive 3-4
.xpd directive 3-4

Module table 3-4
directives 6-59, A-5
segment 3-4

.mwarning directive 6-97, 8-23

N
.nolist directive 6-35
NS32081 floating-point instructions 5-25
NS32081 floating-point registers, list of B-6
NS32081 registers 1-5
NS32082 MMU registers 1-6
NS32082 MMU registers, list of B-5
NS32181 floating-point instructions 5-25
NS32181 floating-point registers, list of B-6
NS32181 FPU support, list of B-4
NS32181 registers 1-6
NS32332 flags, list of B-8
NS32381 floating-point instructions 5-27
NS32381 floating-point registers, list of B-6

INDEX 3

NS32381 FPU support, list of B-4 invocation 7-4
NS32381 registers 1-6 operation 7-1
NS32382 memory mgmt register operand 4-51 parameter alignment 7-11
NS32382 MMU registers 1-7 parameter allocation 7-9
NS32382 MMU registers, list of B-5 parameter block 7-8
NS32532 CPU instruction, list of B-5 parameter block size 7-12
NS32532 CPU registers, list of B-6 parameter scope 7-12
NS32532 instructions 5-32 passing parameters 7-6
NS32532 memory mgmt register operand 4-52 procedure body 7-17
NS32532 MMU registers 1-8 procedure types 7-3
NS32532 option flags, list of B-8 register usage 7-16
NS32580 floating-point instructions 5-30 variable alignment 7-15
NS32580 floating-point registers B-6 variable allocation 7-13
NS32580 FPU support, list of B-4 variable block 7-12
NS32580 registers 1-6 variable block size 7-16
NS32CG16 flags, list of B-8 variable scope 7-16
NS32CG16 instructions 5-33 Procedure support directives 6-99, A-7
NS32CG16 option flags, list of B-8 .begin directive 6-104
NS32CG16 printer instruction, list of B-5 .call directive 6-106
NS32CG160 instructions 5-33 .endproc directive 6-105
NS32CG160 printer instruction, list of B-5 .proc directive 6-100
NS32FX16 instructions 5-35 .proci directive 6-102
NS32FX16 printer instruction, list of B-5 .proct directive 6-101
NS32GX32 instructions 5-34 .var directive 6-103
NS32GX320 instructions 5-34 Procedure support directives, list of B-7
NS32GX320 printer instruction, list of B-5 Procedure support predefined symbols, list
Number syntax 2-4 of B-7

Procedure type
interrupt handler 7-3

O trap handler 7-3
Procedure types

Object code file consists of 1-2 ordinary 7-3
Object file 9-1 Processor control instructions 5-20
Opcode mnemonic 5-1 Processor register operands 4-49
Operand syntax 5-1 Processor service instructions 5-22
Operations 5-5 .proci directive 6-102
Operator 2-16 .proct directive 6-101

binary 2-17 Program base 3-4
unary 2-17 Program base entry (pb) 6-61

Operator precedence, list of 2-17 Program examples C-l
Optional flag syntax 9-5 Ackerman's function C-5
Options 9-1 factorial numbers C-l

invocation 9-4 square root calculation C-3
Order of Evaluation E-l string sorting C-6
.org directive 6-55 Program memory operands 4-21, 4-42
Output listing 9-9 Program segments 3-2
Overview 1-1 initialized data 3-2

text 3-2
uninitialized data (bss) 3-3

P Program structure 3-1
Programs 3-1

Packed decimal instructions 5-18 psr register 1-4
Parentheses 2-19 psr status flags 1-4
Precedence groups 2-19
Printable characters, list of 2-1
.proc directive 6-100
Procedure support 7-1

call instruction 7-7
definition 7-2

4 INDEX

Q standard instructions B-l, B-2
standard registers B-5

Quick integer instructions 5-11 Reserved symbols, list of 2-14
Quick operands 4-36 Return Value E-2

Rules for expressions 2-19
R

Runtime Stack E-l

Range of values limitations 9-16 S
Register list (reglist) operand 4-46
Register operands 4-6 Safe Registers E-2
Register relative operands 4-7 Sample assembly program 9-9
Registers 1-3 Sample assembly program with floating­

dedicated 1-3 point instructions 9-11
floating-point registers 1-5 Sample cross-reference source file 9-15
general purpose 1-3 Sample cross-reference table listing 9-15
memory management 1-6 Sample program containing errors 9-13
NS 32081 FPU 1-5 Sample symbol table listing 9-14
NS32082 MMU 1-6 Sample symbol table source file 9-14
NS32180 FPU 1-6 Saving Registers
NS32381 FPU 1-6 safe registers E-2
NS32382 MMU 1-7 Scaled index qualifiers, list of B-8
NS32532 MMU 1-8 Scaled-index operand 4-3
NS32580 FPU 1-6 byte 4-29

Relative value 1-9 double-word 4-31
Relocatable addresses 3-7 quad-word 4-32
Relocatable object modules 1-1 word 4-30
.repeat directive 6-91, 8-16 .scl directive 6-74
Reserved symbols .section directive 3-1, 6-53

addressing mode indicators B-7 Section limitations 9-17
flags B-7 Segment control directives 6-42, A-3
floating-point directives B-7 .align directive 6-56
floating-point instructions B-4 .bss directive 6-47
macro definition directives B-7 .data directive 6-46
modularity directives B-7 .dsect directive 6-43
modularity option flags B-8 .ident 6-58
NS32081 floating-point registers B-6 .link directive 6-50
NS32082 MMU registers B-5 .org directive 6-55
NS32181 floating-point registers B-6 .section 6-53
NS32181 FPU support B-4 .static directive 6-49
NS32332 flags B-8 .text directive 6-45
NS32381 floating-point registers B-6 .udata directive 6-48
NS32381 FPU support B-4 Segment, form of 3-2
NS32382 MMU registers B-5 Segments correspond to 3-1
NS32532 CPU instruction B-5 Series 32000 instruction set 5-1
NS32532 CPU registers B-6 Series 32000 module 1-9
NS32532 option flags B-8 .set directive 2-15, 6-3
NS32580 floating-point registers B-6 Set target configuration 9-4
NS32580 FPU support B-4 .size directive 6-76
NS32CG16 flags B-8 Size of expressions 2-22
NS32CG16 option flags B-8 Software module 1-9
NS32CG16 print instructions B-5 Source file 9-1
NS32CG160 print instructions B-5 sp symbol 1-4
NS32FX16 print instructions B-5 .space directive 6-31
NS32GX320 dsp instructions B-5 Stack Alignment E-l
procedure support directives B-7 Stack arbitration 1-5
procedure support predefined B-7 Stack Layout E-3
scaled index qualifiers B-8 Stack memory operands 4-13
standard directives B-6 Stack memory relative operands 4-15

INDEX 5

Stack of Arguments E-l T
Stack usage 7-23
Standard calling convention E-l .tag directive 6-77
Standard directives, list of B-6 Temporary labels 2-14, B-8
Standard instructions B-l Terms in expressions 2-16
Standard instructions, list of B-2 Terms with absolute type 2-21
Standard registers, list of B-5 .text directive 6-45
Statements 2-2 Text segment 3-2
Static base entry (sb) 6-59 Text type symbols 2-11
Static data base 3-4 .title directive 6-33
.static directive 6-49 Top-of-stack operands 4-28
Static memory operands 4-17 Traps 5-6
Static memory relative operands 4-19 .type directive 6-79
Static segment 3-1, 3-5 Types in expressions 2-19
Static type symbols 2-12
Storage allocation directives 6-23, A-2

.blkb directive 6-24 U

.blkd directive 6-28

.blkf directive 6-29 .udata directive 6-48

.blkl directive 6-30 Unary operators 2-19

.blkw directive 6-26 Uninitialized data (bss) segment 3-3

.space directive 6-31 Unsafe Registers E-2
String instructions 5-16 User-defined segments 3-6
String limitations 9-17 .dsect directive 3-1
String sorting C-6 .ident directive 3-1
String syntax 2-4, 2-9 .section directive 3-1
.subtitle directive 6-34 User-defined type symbols 2-12
Supervisor flags 1-5
Symbol creation directive (.set) 6-3
Symbol generation directives A-l V
Symbol name limitations 9-17
Symbol names 2-10 .val directive 6-80
Symbol table entry definition directives 6-69, .var directive 6-103

A-5
.def directive 6-71
.dim directive 6-72 W
.endef directive 6-81
.line directive 6-73 .width directive 6-38
.scl directive 6-74 .word directive 6-10
.size directive 6-76
.tag directive 6-77
.type directive 6-79 X
.val directive 6-80

Symbol table listing 9-14 .xdd directive 3-4, 6-21
Symbols 2-10 .xpd directive 3-4, 6-19

defining symbols 2-13
global symbols 2-13
symbol names 2-10
symbol types 2-11
temporary labels 2-14

Symbols of type absolute 2-12
Symbols of type bss 2-12
Symbols of type data 2-11
Symbols of type external 2-12
Symbols of type link 2-12
Symbols of type static 2-12
Symbols of type text 2-11
Symbols of user-defined type 2-12

6 INDEX

	GNX - Version 4.4 Assembler Reference Manual
	REVISION RECORD
	PREFACE

	CONTENTS
	Chapter 1 INTRODUCTION AND OVERVIEW
	Chapter 2 ELEMENTS OF THE GNX ASSEMBLY LANGUAGE
	Chapter 3 GNX ASSEMBLER PROGRAMS
	Chapter 4 INSTRUCTION OPERANDS
	Chapter 5 SERIES 32000 INSTRUCTION SET
	Chapter 6 GNX ASSEMBLER DIRECTIVES
	Chapter 7 PROCEDURE SUPPORT
	Chapter 8 MACRO AND CONDITIONAL ASSEMBLER
	Chapter 9 INVOCATION AND OPERATION
	Appendix A DIRECTIVE SUMMARY
	Appendix B GNX ASSEMBLER RESERVED SYMBOLS
	Appendix C PROGRAM EXAMPLES
	Appendix D INITIALIZATION OF INTERRUPTS
	Appendix E SERIES 32000 STANDARD CALLING CONVENTIONS
	Appendix F COMPATIBLY-SUPPORTED MACROS
	Appendix G GLOSSARY
	INDEX
	NSC_Deckblatt_240dpi_color

