
Platzhalter, damit als PDF das Dokument
in 2-Seiten Ansicht gelesen werden kann.

Original und zum Druck ab Seite 2.

fritz
Stempel
Platzhalter, damit als PDF das Dokument in 2-Seiten Ansicht gelesen werden kann.

Original und zum Druck ab Seite 2.
--

This page added for reading the document on 2 pages.
Original and for printing is from page 2.

fritz
Stempel

Series 32000

GNX — Version 4.4
Commands and Operations

Manual for UNIX® and MS-DOS®
Operating Systems

Customer Order Number 424010515-004

June 1992

REVISION RECORD

VERSION RELEASE DATE SUMMARY OF CHANGES

4.0 May 1990 First Release.
Series 32000/EP support.

4.1 Sept 1990 Miscellaneous updates.

4.2 Feb 1991 Sync, release. No changes.

4.3 Au g 1991 Sync, release. No changes.

4.4 June 1992 Miscellaneous updates.
MS-DOS support added.

PREFACE

The Series 32000® GNX (GENIX™ Native and Cross-Support) Language Tools support
the development of software for National Semiconductor’s Series 32000 microprocessor
family. This manual describes the operation of the GNX Language Tools in a cross
environment on a host development system running MS-DOS, UNIX® or a UNIX-derived
operating system (e.g., VAX™/UNIX 4.3bsd, SUN™/SunOS, Series 32000®/System V).

The information contained in this manual is for reference only and is subject to change without
notice.

No part of this document may be reproduced in any form or by any means without the prior writ­
ten consent of National Semiconductor Corporation.

ISE, SYS32 and GENIX are trademarks of National Semiconductor Corporation.

Series 32000 is a registered trademark of National Semiconductor Corporation.

Portions of this document are derived from AT&T copyrighted material and reproduced under license
from AT&T; portions are based in part on the Fourth Berkeley Software Distribution under license
from The Regents of the University of California.
UNIX is a registered trademark of AT&T.
MS-DOS is a registered trademark of Microsoft Inc.
VAX, VMS, and DEC are trademarks of Digital Equipment Corporation.
SUN and SunOS are trademarks of SUN Microsystems Inc.

iii

CONTENTS

Chapter 1 OVERVIEW
1.1 INTRODUCTION.. 1-1
1.2 GNX LANGUAGE T O O L S ... 1-1
1.3 INSTALLATION... 1-3
1.4 MANUAL ORGANIZATION . 1-3
1.5 OTHER MANUALS... 1-3

Chapter 2 USING THE GNX LANGUAGE TOOLS
2.1 INTRODUCTION.. 2-1
2.2 GNX UTILITIES... 2-2

2.2.1 C Optimizing Compiler... 2-2
2.2.2 Pascal Optimizing C om piler.. 2-2
2.2.3 Assembler... 2-3
2.2.4 L in k e r... 2-3
2.2.5 DBUG - Multi-Window Symbolic Debugger.................. 2-3
2.2.6 Source Level Profiler (sp ro f).. 2-4
2.2.7 N b u m ... 2-4
2.2.8 Nar L ibrarian ... 2-4
2.2.9 Ncmp.. 2-5
2.2.10 Nlorder... 2-5
2.2.11 N n m .. 2-5
2.2.12 N size.. 2-5
2.2.13 N s t r ip ... 2-5

2.3 RECOMMENDED INSTALLATION... 2-5
2.3.1 Directly Executable P rogram s....................................... 2-6
2.3.2 Indirectly Executable P rogram s.................................... 2-6
2.3.3 Include F iles.. 2-6
2.3.4 Libraries.. 2-7

Chapter 3 CROSS DEVELOPMENT
3.1 INTRODUCTION.. 3-1
3.2 SOME BASIC CONCEPTS.. 3-1
3.3 GNX SUPPORT LIBRARIES.. 3-2
3.4 MONITORS... 3-4
3.5 COMPILING A PROGRAM.. 3-4
3.6 A SAMPLE DEBUG SESSION.. 3-5

CONTENTS v

3.7 USING NBURN ... 3-7

Chapter 4 GNX TARGET SETUP
4.1 INTRODUCTION .. 4-1
4.2 GNX TARGET SETUP (GTS)... 4-1

4.2.1 Interactive M o d e .. 4-1
4.2.2 Non-Interactive Mode.. 4-1

4.3 TARGET CONFIGURATION FILE CONTENTS........................ 4-2
4.3.1 Description of P a ram e te rs ... 4-2
4.3.2 Choices... 4-2
4.3.3 Syntax of Target Configuration F i l e 4-4

4.4 TARGET CONFIGURATION FILE LOCATION........................... 4-6
4.5 GNXENV.H ... 4-6
4.6 OVERRIDING THE TARGET CONFIGURATION F IL E 4-6
4.7 TARGET CONFIGURATION FILES AND GNX TO O LS............ 4-7
4.8 USING THE GTS M E N U S.. 4-9

Chapter 5 COMMAND SUMMARIES
5.1 INTRODUCTION... 5-1
5.2 G TS.. 5-2
5.3 MINSTALL.. 5-3
5.4 MONFIX... 5-4
5.5 NAR.. 5-6
5.6 NBURN.. 5-8
5.7 NCMP .. 5-13
5.8 NLORDER.. 5-14
5.9 N N M ... 5-15
5.10 NSIZE .. 5-18
5.11 NSTRIP.. 5-19

Appendix A GLOSSARY

INDEX

vi CONTENTS

Chapter 1

OVERVIEW

1.1 INTRODUCTION
The GNX (GENIX Native and Cross-Support) language tools consist of a C compiler, a
Pascal compiler, an assembler, a linker, debuggers, monitors, basic I/O routines, and
other tools. The GNX language tools support the development of software for National
Semiconductor’s Series 32000 microprocessor family. The GNX tools are cross­
development tools. A program is developed and compiled on a host system, such as an
IBM PC, and then downloaded to a Series 32000 microprocessor-based system such as
the FX164ED - Evaluation/Development board, an embedded target system, or a
Series 32000 In-System Emulator (ISE™) unit, for execution and debugging.

This manual describes the GNX software for UNIX and MS-DOS host development sys­
tems.

1.2 GNX LANGUAGE TOOLS
The GNX language tools include the following:

• Development Tools
All GNX tools are distributed on magnetic media. See Table 1-1 for a complete
list of GNX language tools. •

• Language and Runtime Libraries
The GNX libraries provide a complete runtime environment, including I/O math
and full C support.

• Firmware Monitors
The firmware monitors are distributed in source form. The monitor provides an
essential service during the debugging of a program.

• Release Letter
The release letter is an important document that should be read and retained for
reference by all users of the GNX language tools. The release letter contains gen­
eral information about the product, software installation instructions, known
bugs, verification procedures, and supplemental information not found in the
reference manuals.

OVERVIEW 1-1

Table 1-1. GNX Language Tools

GNX TOOLS PURPOSE

nmcc C Optimizing Compiler
nmpc* Pascal Optimizing Compiler (Optional)
nasm Assembler
sprof Source level profiler
mneld Linker
nar File archiver
nlorder Sorts object files to make efficient libraries
dbug Multi-window symbolic debugger* **
dbg32* Symbolic debugger
gts GNX target setup utility
nbum PROM programmer formatting utility
ncmp Compares GNX binary files
nnm Prints symbol table
nsize Size of an object file
nstrip Removes symbol table information
monitors Source directories for all Series 32000 monitors
minstall* Installs GNX binary files
monfix* A monitor fix utility
lib Directories for the run-time libraries and indirectly

executable programs
include Header files

* Not provided in MS-DOS
** Multi-window environment is not supported in MS-DOS

1-2 OVERVIEW

1.3 INSTALLATION
Installation instructions for the software are provided in the release letters which
accompany the GNX language tools.

1.4 MANUAL ORGANIZATION
Chapter 1 provides an overview of the GNX language tools.

Chapter 3 describes the GNX cross development methodology.

Chapter 4 describes GTS, a menu-driven configuration setup utility.

Chapter 5 describes the GNX command syntax and command line options.

1.5 OTHER MANUALS
Other GNX manuals of interest are listed below:
• C Optimizing Compiler Reference Manual.

The C optimizing compiler generates high-quality code for the Series 32000 archi­
tecture. This manual provides guidelines for using the optimizer, information
regarding the compilation process, extensions to the C programming language and
implementation issues.

• Pascal Optimizing Compiler Reference Manual.
This manual provides guidelines for using the optimizer, information regarding the
compilation process, extensions to the Pascal programming language and imple­
mentation issues.

• Assembler Reference Manual.
The GNX Assembler is a support program that assembles Series 32000 Assembly
Language source programs and generates relocatable object modules. This manual
describes the GNX Assembler in detail. •

• Linker User’s Guide.
The GNX Linker is a tool used to link object files, produced either by the GNX
Assembler and Compiler, or by the GNX Linker. The linker combines object files by
resolving symbolic references, allocating output sections, and relocating memory
addresses to produce an executable object file. This manual describes the GNX
Linker in detail.

• Symbolic Debugger (DBUG) Reference Manual.
DBUG is an interactive debugger that can debug programs developed with National
Semiconductor’s GNX Software Development Package. This manual describes the
function, operation and use of the GNX Symbolic Debugger, DBUG.

• Support Libraries Reference Manual.
Provides an overview of the GNX support libraries, including system calls and

OVERVIEW 1-3

emulation libraries.
• Language Tools Technical Notes.

This manual describes the initialization of ROMable code on a Series 32000-based
development system using the GNX (GENIX Native and Cross-Support) Version 4
development tools. This manual also contains a discussion of the GNX tools’ sup­
port for modularity.

• COFF Programmer’s Guide.
This manual describes the GNX Language tools’ implementation of the Common
Object File Format (COFF) for Series 32000 microprocessor-based systems, and
serves as a "how to " guide for implementors of language tools.

1-4 OVERVIEW

Chapter 2

USING THE GNX LANGUAGE TOOLS

2.1 INTRODUCTION
This chapter is intended for new GNX software developers, as well as the infrequent
user who needs a brief refresher. After reading it you should have a general knowledge
of the available GNX tools, as wrell as the basic commands. Pointers to the more
detailed manuals will be given for those who want more detailed information.

GNX is a cross support tool set, i.e., executable code is developed on a host system, such
as an IBM PC, and not on a target system, such as a Series 32000 development board.
During the development cycle you convert a source program, written in C, Pascal, or
even Assembly, to binary machine code that can be executed by a Series 32000 Embed­
ded Processor. The machine code can either be downloaded to a target board’s RAM (for
debugging), or programmed in ROM once the program has been verified.

The GNX software also includes a set of monitors, which are small programs that actu­
ally run on Series 32000 development boards. The monitors’ main task is to communi­
cate with the GNX debugger that runs on the host computer during a debugging ses­
sion.

The GNX language tools provide a complete environment in which to develop your
application. All tools, except the monitor, are installed and executed on your host com­
puter. Only your application and monitor run on the target system.

During the development process, your program can be in any of the following formats:

• Source file.
This is usually in C, sometimes in Series 32000 Assembly.

• Object file.
This is a machine language representation of the assembly file, as produced by the
GNX assembler, or directly by the compiler. It is relocatable, i.e., it does not yet con­
tain the final mapping of the code to absolute addresses. •

• Executable file.
This is a file that can be executed directly by a Series 32000 Embedded Processor. It
is usually the result of combining several object files with mapping information, and
is the product of the GNX linker. This file can be downloaded to a target board with
help from the GNX debugger, or further processed and converted to PROM format
accepted by most PROM programmers.

USING THE GNX LANGUAGE TOOLS 2-1

Your code may also be in the form of library files. These files are compiled and assem­
bled as any other program, but instead of being linked together in an executable file,
they are arranged into a library by the librarian tool. A library usually contains useful
routines that are shared by many applications. When a library is linked together with
other object files to create an executable file, only the library files that are actually
used are extracted and are included in the final program. Thus the size of the execut­
able file is minimized. Several useful libraries are supplied with the GNX language
tools, see Chapter 3.

2.2 GNX UTILITIES
This section describes most of the components of the GNX language tools that are
invoked at the command line.

2.2.1 C Optimizing Compiler
The GNX C Optimizing Compiler, nmcc, conforms to the full Kernigham and Ritchie C
language definition, augmented with ANSI C prototypes, const and volatile type
modifiers and other extensions. This compiler is a modular language processor consist­
ing of five separate programs: a driver, a preprocessor (cpp), a compiler front end
(c c _ f e) , a code generator (c g e n _ c o f f) , and a global optimizer (o p t) . It can create
object, executable, or assembly language code according to the compiler options
specified by the user.

The optimizations are performed globally, by looking at the code for a whole procedure
at a time, and not only in the local context of a line or loop. The Compiler is also aware
of the special hardware support available on each CPU, and includes support for
embedded programming and application-specific instructions. Thus, you can write even
your most time-critical applications in C.

For detailed information on the GNX C Optimizing Compiler, refer to the Series 32000
GNX-Version 4 C Optimizing Compiler Reference Manual.

2.2.2 Pascal Optimizing Compiler
The GNX Pascal Optimizing Compiler, nmpc, (not supported on MS-DOS) supports
standard Pascal, as defined by the International Standards Organization (ISO db7185
level 1), with a number of extensions. The extensions are a superset of the Berkeley
UNIX “pc” compiler extensions.

The GNX Pascal Optimizing Compiler, nmpc, is a modular language processor consist­
ing of five separate programs: a driver, a preprocessor (cpp), a compiler front end
(p a s _ f e) , a code generator (c g e n _ c o f f), and a global optimizer (o p t) . The compiler

2-2 USING THE GNX LANGUAGE TOOLS

can create object or assembly language code according to compiler options specified by
the user.

For detailed information on the GNX Pascal Optimizing Compiler, refer to the
Series 32000 GNX-Version 4 Pascal Optimizing Compiler Reference Manual.

2.2.3 Assembler
The GNX Assembler, nasm, assembles Series 32000 assembly language source pro­
grams and generates relocatable object modules. Relocatable object modules must be
linked to create executable load modules which may be run on a Series 32000 micropro­
cessor system, nasm is a full featured macro assembler that includes procedure
definition, conditional statement generation, repetitive statement generation, and
much more.

For detailed information on the GNX Assembler, refer to the Series 32000
GNX-Version 4 Assembler Reference Manual.

2.2.4 Linker
The GNX Linker, nmeld, creates executable files by combining object files, performing
relocation and resolving external references. The linker also processes symbolic debug­
ging information.

For detailed information on the GNX Linker, refer to the Series 32000 GNX—Version 4
Linker User’s Guide.

2.2.5 DBUG - Multi-Window Symbolic Debugger
DBUG is the GNX symbolic debugger. DBUG provides a multi-window oriented user
interface* and a rich command set.

DBUG provides the following features:

• Support for the HP64700 family of In-System Emulators for the Series 32000 CPUs.

• Fast communication with development (or target) boards, and In-System Emula­
tors, via Ethernet.

• Extensive breakpoint, trace and print capabilities.

USING THE GNX LANGUAGE TOOLS 2-3

• Command files and Log files.

• Symbolic disassembly.

• Function keys - any DBUG command can be attached to a function key*.

• Command history mechanism, as part of the human interface*.

• Command abasing, to enable command invocation using abbreviations.

Features marked with a * are not supported in MS-DOS.

For more details see the GNX Version 4 Symbolic Debugger (DBUG) Reference Manual.

2.2.6 Source Level Profiler (sprof)
s p r o f is a unique code coverage profiler, supplying the programmer with statistics
about the number of executions of each source line according to actual runs of the pro­
gram. s p r o f output can be used to:
• Pinpoint the most frequently executed sections of program code in order to deter­

mine areas for concentrated optimization.
• Test the expected relative frequency of execution of different code sections.

• Provide indications of test coverage.
• Discover bugs by spotting execution of unexpected code lines.

For more details see the GNX Version 4 Compiler Reference Manuals.

2.2.7 Nbura
This utility loads the specified bytes of an executable file to an EPROM burner in
ASCII-HEX, Intel-hex, Extended Intel-hex or Motorola s-record format. See Section
5.6 for the synopsis and options of n b u r n and Section 3.7 for using n b u r n .

2.2.8 Nar Librarian
This utility maintains groups of files combined into a single archive file. N a r is used
to create and update library files as used by the GNX linker nm e ld . See Section 5.5
for the synopsis and options of n a r .

2-4 USING THE GNX LANGUAGE TOOLS

2.2.9 Ncmp
Ncmp compares two Series 32000 GNX binary files and prints the byte and line number
at which a difference occurs (see Section 5.7).

2.2.10 Nlorder
N l o r d e r finds ordering relations for object libraries. The input may be one or more
object or library archive (see n a r) files. N l o r d e r writes to standard output a list of
pairs of object file names, meaning that the first file of the pair refers to external
identifiers defined in the second file. The output may be processed by t s o r t (if avail­
able on the host system) to find an ordering of a library suitable for one-pass access by
n l o r d e r . See Section 5.8 for the synopsis and options of n l o r d e r .

2.2.11 Nnm
The nnm utility displays the symbol table of a Series 32000 GNX object file. See Sec­
tion 5.10 for the synopsis and options of nnm.

2.2.12 Nsize
N s i z e displays the size information for each section and optional header information of
a Series 32000 GNX object file. See Section 5.11 for the synopsis and options of
n s i z e .

2.2.13 Nstrip
N s t r i p strips symbol and line number information from a Series 32000 GNX object
file. See Section 5.12 for the synopsis and options of n s t r i p .

2.3 RECOMMENDED INSTALLATION
The following sections describe the default arrangement of the GNX language tools on
your host system. The term GNXDIR refers to the home directory in which the GNX
tools are installed. For example, GNXDIR could be C : \g n x 4 in a typical MS-DOS ins­
tallation.

All directly executable programs (nmcc, nm e ld , n a r , etc.) reside in the GNXDIR direc­
tory. Include files reside in the G N X D IR /in c lu d e (G N X D IR \in c lu d e on MS-DOS)
directory and its subdirectories. Libraries and indirectly executable programs (the C
preprocessor, cpp , etc.) reside in the G N X D IR /l ib (G N X D IR \lib on MS-DOS) direc­
tory.

USING THE GNX LANGUAGE TOOLS 2-5

The tools normally search GNXDIR, G N X D IR /I ib for the appropriate files. This nor­
mal search pattern can be altered by setting the environment variables TMPDIR,
CMDDIR, LIBPATH, and INCLUDEPATH.

The environment variable TMPDIR redefines the location at which temporary files are
created in the compilation process (UNIX default: /trap; MS-DOS default: current
directory). This environment variable should be used with care, especially on small
systems with tiny partitions, which overflow when compiling huge files.

The environment variables CMDDIR, LIBPATH, and INCLUDEPATH are described in
the following sections.

2.3.1 Directly Executable Programs
For ease of access to the directly executable programs, it is recommended that GNXDIR
be added to the PATH variable.

2.3.2 Indirectly Executable Programs
Most of the GNX language tools and optional compilers call other programs to perform
distinct phases of the work in hand. For example, the C compiler (nmcc) calls the C
preprocessor (cpp), the C compiler front end (c c _ f e) , the code generator (c g e n _ c o f f),
the assembler (nasm), and finally the linker (runeId).

To find the directory of the indirectly executable programs, each tool determines its
home directory and appends / l i b (\ l i b on MS-DOS). For example, if one executes a
tool such as nmcc residing in directory /NSC, nmcc searches / N S C / l i b for cpp .
This search directory can be changed by setting an environment variable CMDDIR.
For example, if the CMDDIR environment variable is set to / n e w N S C / l ib , nmcc
uses / n e w N S C / l i b / c p p as the C preprocessor.

2.3.3 Include Files
By default, the compilers search for the include files in the G N X D IR / in c lu d e directory
(e.g., / u s r / N S C / i n c l u d e , if the root is /u s r /N S C) .

The search path can be changed by defining an environment variable INCLUDEPATH
which contains the list of directories that are used to search for the include files. Thus,
if INCLUDEPATH is set to / u s r / s y s V / i n c l u d e : / n e w N S C / i n c l u d e , these two
directories will be used to search for the include files instead of G N X D IR /in c lu d e .

2-6 USING THE GNX LANGUAGE TOOLS

NOTE: The C compiler provides a - I option to specify a directory contain­
ing include files. If the - I option is used, the specified directory is
searched before the directories in G N X D IR /in c lu d e or those
specified by the INCLUDEPATH variable.

2.3.4 Libraries
Normally the libraries are located in the directory G N X D IR /l ib . The linker (nm eld)
looks for the libraries in G N X D IR /l ib .

In addition to libraries, G N X D IR /l ib contains the start-up object files (c r tO . o, etc.)
needed by the C (nmcc), and Pascal (nmpc) compilers, if the compilers are installed.

The library search path can be changed by setting an environment variable LIBPATH
to a list of directories which should be searched for libraries. If the LIBPATH environ­
ment variable is set to / N S C / d b l i b : /n e w N S C /n e w l ib , these directories are searched
for libraries and start-up code instead of G N X D IR /l ib . If the LIBPATH environment
variable contains more than one directory name, the start-up file c r t O . o must reside
in the first directory in the list.

NOTE: The linker provides a -L option which specifies a directory contain­
ing libraries. If this option is used, the specified directory is
searched before G N X D IR /l ib or the LIBPATH variable.

If you want a mixture of standard and nonstandard libraries, set the LIBPATH vari­
able, and make sure that the nonstandard library does not contain files with the same
names as files in the standard library. If greater flexibility is required, you may have
to copy or link standard libraries to nonstandard locations.

USING THE GNX LANGUAGE TOOLS 2-7

Chapter 3

CROSS DEVELOPMENT

3.1 INTRODUCTION
This chapter will explain the process of generating code suitable for execution on a tar­
get board. It will show you how to invoke the compiler, how to select the proper
libraries and use the linker, how to use d b u g as a debugger, and finally, how to use
n b u r n to create binary files for the PROM programmer.

3.2 SOME BASIC CONCEPTS
The process of creating an executable file, loading it to a target board, and debugging
it, depends on four special files, in addition to library files and your normal application
files. These are the target configuration file, the linker definition file, the start-up
object file (c r tO . o), and the DBUG configuration file.

The target configuration file controls several default parameters in the development
process, such parameters as the CPU you are using, the FPU (if any), the default bus
width of the system, etc. This file also contains data relevant to the linking and debug­
ging phases.

You can create a target configuration file by using the GNX Target Setup program
(GTS). For more information about the target configuration file and GTS, see chapter
4 in this manual.

The linker definition file is where you specify the physical target memory
configuration; RAM and ROM address ranges, initial stack pointer value, etc. This file
determines the actual mapping of your application to memory during the linking pro­
cess. You specify the name of the linker definiton file either in the command line when
invoking the linker, or in the target configuration file. Note that if you do not specify a
linker definition file in either place, a default linker definition file, placed in GNXDIR,
will be used (l i n k e r . d e f).

For more information on the linker definition file, see the GNX Version 4 Linker User’s
Guide.

The start-up object file is usually linked together with your application. The main pur­
pose of the GNX default file, c r t O . o, is to interface between your application and the
debugger. For example, it sets the stack pointer to the value defined in the linker
definition file and contains the default start-up entry-point (s t a r t :) . The default
start-up code, c r t O . o, is linked if the linker is called indirectly by the compiler. If you

CROSS DEVELOPMENT 3-1

perform the linking by explicitly invoking the linker, the start-up code must be
specified. You may use your own start-up code if you prefer.

The DBUG configuration file can be used to set basic debugger parameters, such as the
name of the I/O port used for debugging, the baud rate, and other parameters which
can override the setting in the . gnxrc file. This file can also contain definitions of
aliased commands, and can contain a list of debugger commands that you want to exe­
cute whenever the debugger is invoked.

The DBUG configuration file is local to each directory, and if it does not exist, the
debugger will use information from the target configuration file; the name of the CPU,
the name of the monitor, etc. Other parameters, such as the name of the I/O port, can
be specified on the command line, or from inside the debugger.

3.3 GNX SUPPORT LIBRARIES
The GNX libraries support application development in C and PASCAL. In addition,
these libraries facilitate debugging of user programs by providing input and output
capability with the user terminal or host filesystem. Programs linked with these
libraries can run on a development board or an in-system emulator.

The libraries are located in the G N X D IR /l ib directory in which the GNX tools are
installed. Table 3-1 lists each library and its description. Note that there is a set of
libraries for generating non-modular code, a set for producing modular code and a set
for producing high speed fp emulation (Hfp) code. Refer to the Series 32000
GNX-Version 4 Language Tools Technical Notes for additional information on modular­
ity, and to Series 32000 GNX-Version 4 Support Libraries Reference Manual Chapter 6
for more information on using the high speed fp emulation library.

3-2 CROSS DEVELOPMENT

Table 3-1. Libraries

NON-MODULAR MODULAR HFP
CODE CODE CODE DESCRIPTION

LIBRARIES LIBRARIES LIBRARIES

libc.a libXc.a libHc.a C library

libctp. a libXctp.a libHctp.a Library containing compiler
specific routines

libg.a libXg.a libHg.a Library for C and FORTRAN
when compiled with the
-g option

libpas.a libXpas.a libHpas.a Pascal interface library

libm. a libXm.a libHm.a Math library

lib381m.a libX381m.a Support library for FPU

libHfp.a High speed fp emulation
library

libfpe.a libXfpe.a Floating-point emulation
library

C programs must always link with l i b c . a and l i b c t p . a, and they need l i b m . a if
using any math functions. Pascal programs need l i b p a s . a , l i b m . a, and l i b c . a in
that order. In addition to the libraries, C and PASCAL programs must link with
start-up and run-time initialization code for debugging, such as the start-up object file
c r t O . o (X c r t O . o for modular code) located in the G N X D IR /I ib directory, or an
equivalent startup code.

The math library, l i b m . a , contains standard math functions, such as sin(), log(), etc.
The l i b 3 8 1 m .a supports the NS32081 and NS32181 floating-point unit, for full IEEE
compatibility.

The l i b H f p . a is a high speed floating point emulation package that can replace the
floating point unit.

The l i b f p e . a is an alternate floating point emulation package, that uses the
Series 32000 trap mechainsm. Code compiled for an FPU, will also run without an

CROSS DEVELOPMENT 3-3

FPU, if this library is linked.

For more information on the GNX Libraries, refer to the Series 32000 GNX— Version 4
Support Libraries Reference Manual.

3.4 MONITORS
This section gives a brief description of the different monitors available with the GNX
language tools. For GNX software tools to work with any Series 32000 development
board, one of the monitors must be installed on the board.

The GNX monitors are PROM-based firmware monitors for use on a Series 32000
development board. These monitors allow you to load, execute, and debug development
board programs with the DBUG debugger running on a host computer system. Pro­
gram execution and debugging are controlled by breakpoints. At breakpoints, the user
can display and change the contents of memory, internal CPU registers, and Special
Purpose and Slave Processor registers.

The monitors also provide run-time services such as physical I/O, interrupt handling,
error handling, and virtual I/O. Services are available in the form of supervisor calls.

The GNX release includes the monitors’ sources to enable you to tailor a monitor to a
specific target system.

For detailed information on the monitors, refer to the Series 32000 Development Board
Monitor Reference Manual.

3.5 COMPILING A PROGRAM

This section describes the basic steps required to develop an executable file suitable for
debugging with dbug . To compile the C files f i l e . c and f i l e l . c, enter the follow­
ing:

nmcc -c f i l e . c f i l e l . c -g

Two relocatable files, f i l e . o and f i l e l . o will be created. The target configuration
file determines the CPU and FPU (if any) for which to generate the code. The -g flag
indicates that symbolic information for debugging is to be produced.

Linking, then, may be performed by entering:

3-4 CROSS DEVELOPMENT

nmcc f i l e . o f i l e l . o -o binprog

The Compiler, in this example, calls the linker with the required libraries, specifies the
start-up file, and uses the linker definition file as set by the target configuration file.
The -o flag indicates the name of the generated executable file.
The same result can be achieved by invoking the linker explicitly:

nmeld CRTO f i l e .o f i l e l . o - lc tp - lc -d l in k .d e f -m -o binprog

where CRTO is the full pathname of the crtO . o start-up file, and link.def is the name
of the linker definition file. The -m flag indicates that a memory map is to be gen­
erated on the standard output.

If math functions are used, the math library must be specified during linking, as fol­
lows:

nmcc -c f i l e .o f i l e l . o -lm -o binprog

The executable file just generated, binprog, will be ready to run on a Series 32000
development board.

3.6 A SAMPLE DEBUG SESSION
This section assumes that a Series 32000 development board is installed to operate in
stand-aside mode, and is connected to serial port t ty a of your system. The target
configuration file should indicate that the communication will be via the serial port.
The sample session shows the interaction between you and the debugger when down­
loading a program (binprog) to a development board, and using dbug for debugging.
For a detailed description of dbug, refer to the Series 32000 GNX - Version 4 Symbolic
Debugger (dbugj Reference Manual.

1. Connect the board to t ty a
2. Press the reset switch on the board.
3. Invoke the GNX Debugger (dbug)

% dbug binprog

The following is a log of a debug session:

CROSS DEVELOPMENT 3-5

Dbug - Version 4.4
Type 'help' for help
connecting...
connection with ttya established
setup in remote mode
reading symbolic information ...
load with sp 0x100000
loading...........
loaded 8964 bytes of code, 3708 bytes of data
total of 12672 bytes_loaded
(dbug) list 1

1 main()
2 {
3 printf("hello");
4)

(dbug) stop at 3
[1] stop at “myprog.c":3
run
[1] stopped in main at line 3 in file "myprog.c"

3 printf(“hello");
(dbug) pcpu

CPU REGISTERS
$r0 = Oxffffffff $rl = 0x00000000 $r2 = 0x00000006
$r3 = 0x00011e64 $r4 = 0x00011e64 $r5 = 0x00000000
$r6 = 0x00000000 $r7 = 0x00000000 $fp = OxOOOfffee
$sp = 0x000fffc8 $pc = 0x0000el79 $psr = 0x0340
$mod := OxeOOO $sb = 0x00011e7c $is = 0x00000400
$us = OxOOOfffc8 $in = 0x00000480 $cfg = 0x00000000
(dbug) cont
hello
execution completed
(dbug) quit with save
saved session on file dbug.save

NOTE: The size of the object file and the address of variables
and program statements may differ depending on the
version of tools.

3-6 CROSS DEVELOPMENT

3.7 USING NBURN
The GNX linker produces output files that are loadable by the GNX debuggers and ker­
nels of Series 32000-based development systems. A program can also be executed by
using the n b u r n utility to transfer the program into PROMs.

N b u rn is a program that converts the text and data sections of a GNX executable file
into ASCII-HEX, Intel-hex or Motorola s-record format, which can be down-loaded to a
PROM programming device. Output from n b u r n can either be sent directly to a
PROM programmer connected to the auxiliary port of the user terminal or stored in a
file to be down-loaded later. Each session of the n b u r n program results in a data
stream or file containing data for one or more PROMs.

For n b u r n to determine how a GNX program should be converted, several parameters
may be specified, among them are buswidth (-w), byte number (-b), and PROM size
(-1). PROMs are generally byte wide. For a system with a 16-bit bus (or 2-byte wide
bus), assuming no dynamic bus sizing, data from an executable file has to be inter­
leaved into 2 blank PROMs (i.e., byte 0 goes into PROM 0, byte 1 goes into PROM 1,
byte 2 goes into PROM 0, etc.) In this case, n b u r n reads text or data from the file and
puts out every other byte to the port or output file. For a set of 2764 PROMs (which is
8 Kbytes in length), the byte number 0 PROM contains the first 8192 of the even bytes
of the file (i.e., address 0,2,4 ... up to address 16382), assuming that the program is
linked to start from location 0 and that the first byte of the program goes to the first
location in the PROM. The byte number 1 PROM contains the first 8192 of the odd
bytes of the file (i.e., addresses 1,3,5 ... up to address 16383). If the file is too big to fit
into the two PROMs, the next set of PROMs will contain data starting from address
16384. n b u r n can also automatically produce output for the next set of PROMs. For
example, if a file contains the following data starting from address 0:

e a cO eO 00 05 7d a l 00 09 74 a5 01 cO fO 00 80
9a 87 5b 5 f 38 27 d8 cO 00 00 09 e a 89 0a 67 d8

For a buswidth of 4 bytes, the PROM for byte number 0 contains the following bytes
from the file:

e a 05 09 cO 9a 38 00 89

and the PROM for byte number 3 contains:

00 00 01 80 5 f cO e a d8

Other n b u r n options may be used to specify the start address of PROMs, the number
of banks to be selected and other parameters. See Section 5.6 for a detailed description
of the n b u r n options.

CROSS DEVELOPMENT 3-7

Chapter 4

GNX TARGET SETUP

4.1 INTRODUCTION
The GNX language tools support several target setup combinations, which can be
specified as invocation options. The GNX Target Setup (GTS) utility allows for a one­
time target setup specification. This specification can be used afterwards by all GNX
tools.

4.2 GNX TARGET SETUP (GTS)
GNX Target Setup (GTS) is an editor that generates a user’s local target configuration
file which is read by the GNX tools when invoked.

Some GNX applications may have configuration parameter-dependent source code that
needs to be conditionally compiled. To accommodate these types of applications, GTS
offers the option to generate a C-style include file named g n x e n v . h . This feature
allows the GNX user access to the target configuration parameters at the same point
that the parameters are set.

GTS operates in two modes, Interactive or Non-interactive.

4.2.1 Interactive Mode
In Interactive mode, GTS requires user participation. The target configuration file is
generated from the user’s input. Interactive mode consists of a main menu and sub
menus, one for each target parameter. Section 4.8 describes these menus and their
use.

4.2.2 Non-interactive Mode
In Non-interactive mode, GTS generates the local target configuration file from a
source file instead of from the user’s input. The current target configuration file is first
copied to the file specified by the GTSBACKUP parameter or to g n x r c . b a k , if
GTSBACKUP is not set. Then the source file is copied to the local target configuration
file in the user’s home directory. Non-interactive mode requires that GTS is invoked
with the - f option.

GNX TARGET SETUP 4-1

4.3 TARGET CONFIGURATION FILE CONTENTS
The target configuration file contains the target parameters and the user-chosen value
for each parameter.

4.3.1 Description of Parameters
The parameters are individual factors which affect the behavior of the GNX tools.
Table 4-1 lists these parameters and their meanings.

Table 4-1. Target Parameters

PARAMETER DESCRIPTION
OS: Specifies which monitor or operating system is the execu­

tor of the code that the GNX tool is compiling or debug­
ging.

CPU: Specifies which Series 32000 CPU’s are on the target.
MMU: Specifies which, if any, of National’s memory management

units is on the target.
FPU: Specifies which, if any, of National’s floating-point units is

on the target.
COMMTYPE: Specifies the protocol to be used in communicating with

the target.
BUSWIDTH: Specifies the data buswidth of the CPU.
COMMPORT: Specifies to which port the target is connected.
PREDEFS: Specifies which symbols to predefine in the C preprocessor.
LINKERFILE: Specifies a linker directives file to use instead of the

default.
GTS_BACKUP: Specifies the backup filename of the local target

configuration file.

4.3.2 Choices
Each legal selection of a parameter is called a “choice.” Table 4-2 lists the parameters
and their legal choices.

The parameters, whose choice is a string, are supplied by the user. The GNX
utilities/tools check for syntactic and semantic correctness of the strings, GTS does not.

4-2 GNX TARGET SETUP

Table 4-2. Choices to the Parameters
Sheet 1 of 2

PARAMETER CHOICES MEANING
OS SYS5_2 Target is System 5, Release 2, OS

SYS5_3 Target is System 5, Release 3, OS
DBMON Target is a db/edb with its monitor
MON 16, MON32 "

MON332, MON332B ”

MON532, MONGX32 ”

MONCG16, MONGX32E ”
MONCG160, MONGX320 ”
MONAM160, MONFX16 "

MONFX164, MONCG160LX "

ISEGX320, ISECG16 ISE with an HP64772/8/9 emulator
ISEFX16, ISEFX164 "

ISECG160, ISE532 ”
SPMON Target is Splice with a splice monitor
OTHER_OS Target is a non-National OS

CPU NS32008 CPU is an NS32008.
NS32016 CPU is an NS32016.
NS32032 CPU is an NS32032.
NS32332 CPU is an NS32332.
NS32532 CPU is an NS32532.
NS32CG16 CPU is an NS32CG16.
NS32GX32 CPU is an NS32GX32.
NS32CG160 CPU is an NS32CG160.
NS32GX320 CPU is an NS32GX320.
NS32FX16 CPU is an NS32FX16.
NS32AM160 CPU is an NS32AM160.
NS32FX164 CPU is an NS32FX164.

MMU NOMMU No MMU is on-board.
NS32082 MMU is an NS32082.
NS32382 MMU is an NS32382.
ONCHIP MMU is on the CPU chip.

FPU NOFPU No FPU is on-board.
NS32081 FPU is an NS32081.
NS32181 FPU is an NS32181.
NS32381 FPU is an NS32381.
NS32580 FPU is an NS32580.
EMULATION Use libHfp emulation.

GNX TARGET SETUP 4-3

T able 4-2. C hoices to th e P a ra m eters
Sheet 2 of 2

PARAMETER CHOICES MEANING

COMMTYPE NOCOMMTYPE No communication type.
SERIALA Debuggers use pre-GNX R2 Rev. C

protocol and RS232 line to down-load.
SERIALB Debuggers use post-GNX R2 Rev. C

protocol and RS232 line to down-load.
ETHERNET Debuggers use ethemet to down-load.

COMMPORT string Target is connected to this port, or tar­
get Ethemet ID.

PREDEFS string Predefine these macros to the C
preprocessor.

BUSWIDTH 1 Data bus width is 1 byte.
2 Data bus width is 2 bytes.
4 Data bus width is 4 bytes.

LINKERFILE string Linker directives file to use instead of
the default.

GTS_BACKUP string Filename of target configuration file
backups.

4.3.3 Syntax of Target Configuration File
Each line of the target configuration file consists of a parameter and a choice. Each
parameter and choice is separated by an “=” equal sign. White space is ignored.
Parameters and choice identifiers are case insensitive, except where the value is a
string.

Depending on the parameter, the string may be a filename, a pathname, etc. Table 4-3
summarizes the legal strings.

4-4 GNX TARGET SETUP

Table 4-3. Legal Strings

STRING DESCRIPTION

COMMPORT The string must be a valid tty port, or
target Ethernet ID. The actual syntax
is operating system dependent.

PREDEFS The string is an options string to the C
preprocessor. The options string
resembles a c p p command, except
that only the -D, -U, and -I flags are
accepted.

LINKERFILE The string is a linker directives file.
The actual syntax is operating system
dependent.

g t s . ba ck u p The string is a valid filename. The
actual syntax is operating system
dependent.

The following is an example of the contents of a target configuration file:

Example: OS = monGX320
CPU NS32GX320
MMU = noirunu
FPU = NS32381
COMMTYPE ETHERNET
BUSWIDTH 4
COMMPORT n o d e l 4
LINKERFILE l d f i l e
PREDEFS = -DHELLO -DHOST_IS_V
GTS_BACKUP = m y g n x r c . b a k

n o d e ! 4 is the Ethernet address to which the development board is connected.

GNX TARGET SETUP 4-5

4.4 TARGET CONFIGURATION FILE LOCATION
The GNX tools look for target configuration files in three standard locations, in the fol­
lowing order:

1. The global target configuration file.
This file is installed by the installation procedure in GNXDIR. On UNIX,
GNXDIR/ . gnxrc, on MS-DOS GNXDIR\gnx. ini. The global target configuration
file should not be modified, except by the system administrator.

2. The user’s target configuration file.
If it exists, the user’s target configuration file overwrites the configuration values
of the global target configuration file. The user’s target configuration file is
located in $ h o m e / .gnxrc on UNIX. On MS-DOS, you must define an environ­
ment variable, HOME that contains the path of your home directory, e.g.,

SET HOME = D :\m yhom e

The user’s target configuration file will then be expected in :

D : \m y h o m e \g n x . i n i

3. The local target configuration file.
This file is located in the current directory. On UNIX, this is . / . gnxrc, on MS-
DOS .\gnx.ini. If it exists, the local target configuration file overwrites the
configuration values of the global and user’s target configuration files.

4.5 GNXENV.H
The C-style include file gnxenv.h contains only target configuration parameters
whose choice is not string. This file is optional and is intended to provide source-code-
level control of the target specification. The target configuration macros set up in this
file are accessed via standard cpp directives.

The gnxenv.h file is created by answering y to the questions asked when exiting
GTS. Table 4-4 shows a version of the gnxenv. h file for the example in Section 4.3.3.

4.6 OVERRIDING THE TARGET CONFIGURATION FILE
The target specifications in the configuration file can be overridden by using the exist­
ing flags that each GNX utility supports. For example, if DBUG is invoked with the
-iranu=3 82 f l a g , the existing target MMU specification parameter in the configuration
file is overridden.

4-6 GNX TARGET SETUP

/ *
* gnxenv.h
* National Semiconductor Corporation
* This file was generated by Get GNX Target (gts)
* on 5/1/90 at 11:42:25
*/

#define SYS5_2 10
#define SYS5_3 11
#define DBMON 12
#define MON 16 13
#define MONCG16 14
#define MONCG160 15
#define MON32 16
#define MON332 17
#define MON332B 18
#define MON532 19
#define ISE532 20
#define MONGX32 21
#define MONGX320 22
#define MONGX32E 23
#define SPMON 24
#define OTHER_OS 25
#define OS MONGX320
#define NS32008 30
#define NS32016 31
#define NS32CG16 32
#define NS32FX16 33
#define NS32CG160 34
#define NS32032 35
#define NS32332 36
#define NS32532 37
#define NS32GX32 38
#define NS32GX320 39
#define CPU NS32GX320
#define NOMMU 50
#define NS32082 51
#define NS32382 52
#define ONCHIP 53
#define MMU NOMMU
#define NOFPU 60
#define NS32081 61
#define NS32181 62
#define NS32381 63
#define NS32580 64
#define EMULATION 65
#define FPU NS32381
#define NOCOMMTYPE 70
#define SERIALA 71
#define SERIALB 72
#define ETHERNET 73
#define COMMTYPE ETHERNET
#define BUSWIDTH 4

4.7 TARGET CONFIGURATION FILES AND GNX TOOLS
Table 4-4 demonstrates how each target specification parameter affects the behavior of
the GNX tools.

GNX TARGET SETUP 4-7

Table 4-4. Parameters and GNX Tools

GNX TOOL PARAMETER RESULT
C preprocessor PREDEFS Predefines PREDEFS in the C prepro­

cessor.

compiler CPU Performs optimizations for the
specified CPU.

BUSWIDTH Performs alignment and packing
optimizations for the specified BUS.

FPU Performs floating-point optimizations
for the specified FPU.

assembler CPU Accepts instructions for the specified
CPU only.

MMU Accepts instructions for the specified
MMU only.

FPU Accepts instructions for the specified
FPU only.

linker LINKERFILE Gets linker directives from l i n k e r -
f i l e .

debugger OS The specified operating system is the
executor of the program.

CPU The specified CPU is on-board the tar­
get.

FPU The specified FPU is on-board the tar­
get.

MMU The specified MMU is on-board the
target.

COMMTYPE Down-loads to the target using
COMMTYPE protocol.

COMMPORT The target is located at the tty port
COMMPORT.

4-8 GNX TARGET SETUP

4.8 USING THE GTS MENUS
The GNX Target Setup (GTS) menu-driven screens are easy to use. The up/down
arrows move to the appropriate selection and depressing the < CR> makes that selec­
tion. The characters enclosed in “()” parentheses are called shortcut keys and elim­
inate excessive keystrokes. Depressing a shortcut key makes a selection automatically
(e.g., depressing a g on the MAIN MENU moves to the SELECT FPU menu). When
each menu is displayed, the instructions and the first selection are highlighted.

There are different types of menus: a command menu, SELECT menus, SET menus,
HELP menus, and REVIEW menus.

The MAIN MENU is the only command menu. From the MAIN MENU, each selection
is a command that results in a sub-menu.

Each SELECT menus present a target parameter with all of its choices. The user is
allowed to “select” one of the legal choices for the value of the target parameter. For
example, the OS MENU sets the operating system target. Each SELECT menu indi­
cates its current setup with two asterisks (**).

SET menus correspond to target parameters that accept strings. The commands of the
SET menus are: OK, REVIEW SETUP, HELP, CANCEL, DELETE, and ENTER
MODE. OK means that the string entered is acceptable and the target parameter
corresponding to this menu should be saved. REVIEW SETUP displays the current
target configuration for review. HELP provides a brief explanation and examples of
the string. CANCEL exits the SET menu, without saving the changes. DELETE
deletes the current input line. ENTER MODE allows the user to begin entering or
modifying the input string. When a SET menu is selected, ENTER MODE is the
current state; a < CR> exits ENTER MODE.

The REVIEW menu is accessed from the MAIN MENU, each SELECT menu, and each
SET menu. Depressing any key returns the user to the previous menu.

When target specifications are set and the EXIT command of the main menu is issued,
GTS checks for illegal target configuration combinations. If it finds any, it issues a
warning and allows the user the opportunity to remedy the illegal combination. Fol­
lowing the combination check, GTS inquires whether or not to generate the file
gnxenv. h. Finally, it inquires whether or not the changes should be saved, and then
exits.

GNX TARGET SETUP 4-9

Chapter 5

COMMAND SUMMARIES

5.1 INTRODUCTION
This chapter summarizes the commands and the use of command line options for the
GNX software tools running on a UNIX or MS-DOS operating system.

The following is a list of the commands discussed in this chapter:

g t s
m i n s t a l l
m o n f i x
n a r
n b u r n
ncmp
n l o r d e r
nnm
n s i z e
n s t r i p

GNX Target Setup
Installs GNX binary files (UNIX only)
A monitor maker (UNIX only)
Archive and library maintainer
Generates formatted data streams
Compares two binary files
Finds ordering relocation for an object library
Prints name list of Series 32000 GNX object files
Prints section sizes of object files
Strips symbol and line number information

For informatiom on dbug, nasm, nmcc, nmpc, nine I d and s p r o f , see the appropri­
ate manuals, (s p r o f is described in the C Compiler manual.)

COMMAND SUMMARIES 5-1

GTS

5.2 GTS
g t s - constructs a target configuration file

USAGE

gts [-f]
DESCRIPTION

G ts is a menu-driven program which takes the user’s target specification and
constructs either a user’s target configuration file, or a local target configuration
file, which is read by each of the GNX tools when invoked. The user’s target
specification is written to the file . g n x r c (g n x . i n i on MS-DOS) in the user’s
home directory. The local target specification is written to the file . / . g n x r c
(. \ g n x . i n i on MS-DOS). For futher details of the target configuration files and
their locations, see Section 4.4.

Some GNX applications may have configuration-parameter-dependent source
code that may need to be conditionally compiled. To accommodate these types of
applications, g t s offers the option to generate a C-style include file named
g n x e n v . h. This feature offers the GNX user access to the target configuration
parameters at the same point that the parameters are set.

The target configuration file consists of the GNX target parameters and their
user-chosen values.

A detailed description of the target parameters and their choices is found in
Chapter 4.

-f Generates the local target configuration file from a source file (Non-
interactive mode). Default is from user input (Interactive mode).

FILES

. g n x r c (g n x . i n i) local target configuration file
$ HOME / . g n x r c (%HOME%\gnx. i n i) private target configuration file
GNXDIR/ . g n x r c (%GNXDIR%\gnx. i n i) default target configuration file

Files in brackets are for MS-DOS.

5-2 COMMAND SUMMARIES

MINSTALL

5.3 MINSTALL
m i n s t a l l - installs GNX binary files

USAGE

m insta ll [o p t io n] f ilen a m e [f ile n a m e] d e s tin a tio n

DESCRIPTION

The b in a ry GNX file is copied (or moved if the -m option is specified) to d e s tin a ­
tio n . If d e s tin a tio n already exists, it is removed before b in a ry is copied (or
moved). If the destination is a directory, then the b in a ry GNX file is copied (or
moved) into the destination directory with its original filename.

The mode for the d e s tin a tio n is set to 0664.

The available options are
-m move file instead of copying.
-s strip symbols from the destination file.
-x remove source file’s extension.

-V prints out the version number of m i n s t a l l .

Note: This command is not available under MS-DOS.

COMMAND SUMMARIES 5-3

MONFIX

5.4 MONFIX
m o n f i x - a monitor maker

USAGE

monfix [o p t io n] f ilen a m e

DESCRIPTION

Mon f i x modifies the first 16 bytes of the text segment of f ilen a m e for making a
S erie s 3 2 0 0 0 -based board monitor. F ilen a m e must be an executable file in GNX
format.

Mon f i x makes the first text byte the entry point because any S erie s 3 2 0 0 0 board
bootstrap program requires that upon reset or power-up the first text byte be the
entry point.

M o n f ix adds three instructions to the file: Load Module register, Load Static
Base register, and Branch to the actual entry point. The values for these three
addresses are computed from the a32 . o u t header and module table entries but
can be overridden by user-supplied values. Instructions generated and starting
addresses are as follows:

address instruction

0 lprw mod, $modvalue
4 lprd sb, $sbvalue
10 br entrypoint

-b n u m b er
Uses n u m b er as the address where the program loads. Defaults to
zero.

-e n u m b er
Real entry point is at address n u m b e r . M o n f ix uses n u m b e r as the
parameter for the b r (third) instruction.

-m n u m b er
Initial MOD register value is n u m b e r . M o n f ix uses n u m b e r as the
parameter for the l p r w (first) instruction.

5-4 COMMAND SUMMARIES

MONFIX (Cont)

-s number
Initial static base register value is number. M o n f ix uses number as
the parameter for the l p r d (second) instruction.

-V Prints out the version numb er of m o n f ix .

All numbers are hexadecimal.

The default filename is a3 2 . out.

Note: This command is not available under MS-DOS.

COMMAND SUMMARIES 5-5

NAR

5.5 NAR
n a r - archive and library maintainer for portable archives

USAGE

nar key [modifier] [posname] afile filename ...

DESCRIPTION

The n a r command maintains groups of files combined into a single archive file.
Its main use is to create and update library files for use by the linker. It can be
used, though, for any similar purpose. The magic string and the file headers
used by n a r consist of printable ASCII characters. If an archive is composed of
printable files, the entire archive is printable.

When n a r creates an archive, it creates headers in a format that is portable
across all machines running the GNX language tools. The archive symbol direc­
tory is used by the linker nmeld to issue multiple passes over libraries of object
files in an efficient manner. An archive symbol directory is created and main­
tained by n a r only when there is at least one object file in the archive. This file
is neither mentioned to nor accessible to the user. Whenever the n a r command
is used to create or update the contents of such an archive, the symbol directory
is rebuilt. The s option described below forces the symbol directory to be rebuilt.

The minus is optional to key, followed by one character from the set d, r , q,
t , p, V, m, or x, optionally concatenated with one or more modifiers from the
set v, u, a, i , b, c, 1 and/or s. Posname is the reference file used by the
positioning characters a, b, or i ; afile is the archive file. The filenames are
constituent files in the archive file. The meanings of the key characters are as
follows:

d Deletes the named files from the archive file.
r Replaces the named files in the archive file. If the optional character

u is used with r , only those files with dates of modification later than
the archive files are replaced. If the archive does not already exist, it
is created. If the file is not already present in the archive, it is placed
at the end. An optional positioning character a, b, or i may be
specified along with a posname, which allows the user to determine
the placement of new files within the archive.

q Quickly appends the named files to the end of the archive file.
Optional positioning characters are invalid. This command does not
check whether the added members are already in the archive.

5-6 COMMAND SUMMARIES

NAR (Cont)

t Prints a table of contents of the archive file. If no names are given,
all files in the archive are tabled. If names are given, only those files
are tabled.

p Prints the named files in the archive.
m Moves the named files to the end of the archive. If a positioning char­

acter is present, the posname argument must be specified.
x Extracts the named files. If no names are given, all files in the

archive are extracted. In neither case does x alter the archive file.
V Prints the version number of the n a r program being used.

The meanings of the modifier characters are as follows:
v Gives a verbose file-by-file description of the making of a new archive

file from the old archive and the constituent files. When used with t ,
gives a long listing of all information about the files. When used with
x, precedes each file with a name.

c Suppresses the message that is produced by default when afile is
created.

1 Places temporary files in the local current working directory, rather
than in the directory specified by the environment variable TMPDIR
or in the default directory / tmp .

n Suppresses generation of symbol directory, thus shortening nar pro­
cessing time. This command is useful when incrementally creating
large libraries by several calls to n a r . When used, all calls should be
made with the - n option, except for the last call.

s Forces the regeneration of the archive symbol directory, even if n a r
is not invoked with an option which modifies the archive contents.
This command is useful to restore the archive symbol directory of an
archive created using the - n option, or an archive whose symbol
table has been removed using the n s t r i p utility.

a,b, or i
Optional character positioning characters. When used, the posname
argument is required and specifies that new files are to be placed
after a or before b or i posname.

MS-DOS Additional Options:
©filename reads n a r options from file. The @ option directs the
GNX Version 4 archiver to read additional options from the named
file. This option avoids the MS-DOS limitation on the length of invo­
cation lines, and enables passing options of unlimited length.

COMMAND SUMMARIES 5-7

NAR (Cont)

5.6 NBURN
n b u r n - generates formatted data for an EPROM programmer

USAGE

nburn [options] [filename]

DESCRIPTION

filename is an nburn input file. The input file for nburn should be a GNX exe­
cutable object file produced by the GNX linker. The default input file name is
a32 . o u t .

The nburn utility is used to bum EPROMs by converting data from GNX exe­
cutable object files into an EPROM programmer format. Three formats are sup­
ported: ASCII-hex (default), Intel-hex and Motorola. The output is directed into
separate files, one for each EPROM. If no output file name is specified, the out­
put is directed to the auxiliary (printer) port of a VT100 compatible terminal; the
EPROM programmer must then be attached to the auxiliary port.

Each EPROM holds part of the data bytes of a memory block, depending on the
system bus-width (or word size). If the system bus_width is 2, the EPROMs come
in pairs. In each pair one EPROM holds the even address data bytes and the
other EPROM holds the odd address data bytes. Together they form a bank. If
the system bus-width is 4, the EPROMs come in quartets: one EPROM holds the
first data bytes of each word, another EPROM holds the second data byte of each
word and so on. These 4 EPROMs again form a bank.

The nburn utility allows you to create output for one or more EPROMs in vari­
ous ways. The ROM area is regarded by the nburn utility as a two-dimensional
matrix of EPROMs. One dimension is the EPROM byte number (i.e. which byte
in the word the EPROM holds). The other dimension is the bank number, since
the nburn utility can produce output for several consecutive banks.

The figure below illustrates a two-dimensional matrix of EPROMs:

5-8 COMMAND SUMMARIES

NBURN

b y t e 0 b y t e 1 b y t e 2 b y t e 3

b a n k 0
1 1
1 1
1 1

1 1
1 1
! 1

1 1
1 1
1 1

1 1
1 1
1 1

b a n k 1
1 1
1 1
1 1

1 1
1 1
1 1

1 1
1 1
1 1

1 1
1 1
1 1

b a n k 2
1 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1

Using the nburn utility you can both specify each EPROM in the matrix, and
specify each row or column of EPROMs. It is also possible to specify the com­
plete matrix in order to produce output for the entire ROM area in a single invo­
cation of nburn. If the output is directed to a file(s), nburn will create one out­
put file for each EPROM.

The nburn invocation options listed below. All integer constants can be
specified in C syntax (i.e. decimal, hexadecimal, or octal).

-wsize
Used to specify the buswidth (word size), size can be have the values:
1, 2, 4, 8, 16 or 32. If this option is not specified, the default buswidth
is the value of the BUSWIDTH parameter of the GNX target setup
(see Section 5.2). If the BUSWIDTH parameter is missing, a default
buswidth of 2 bytes (16 bits) is used.

-hbytenumber
Used to select an EPROM in a bank. The EPROM is denoted by the
byte number of the word, bytenumber can have any value in the
range of 0 to buswidth-1 (buswidth is the system buswidth). By
default all EPROMs in the bank are selected.

COMMAND SUMMARIES 5-9

NBURN (Cont)

-x a d d re ss
Used to specify the start address of the first bank, a d d r e s s is an
integer constant.

-1 size
Used to specify the size of the EPROMs in use. s iz e is specified in
Kbytes (i.e. the EPROM size is 1024*size). Default is 64 Kbytes.

-k [ban k#:]n u m
Used to specify which banks should be selected. If two values are
specified in the form b a n k # :n u m , n u m banks are selected starting
from bank b a n k # . If only one value is specified, n u m banks are
selected starting from the first bank (bank 0). By default nburn will
select only the first bank.

-o f ilen a m e
Used to specify the output filename. Since nburn can produce several
output files, filen a m e is g en era lly u sed a s a gen eric nam e. F or each
o u tp u t file , nburn will add the extension J b a n k n u m J b y ten u m to the
file name (unless the -n option is specified), b a n k n u m is the EPROM
bank number, b y ten u m is the EPROM byte number. If this option is
not specified, nburn will direct the output(s) to an auxiliary port of a
VT100 compatible terminal. The EPROM programmer should be
attached to this port. Before writing the output for each EPROM,
nburn prints a message to the terminal and waits for you to plug in
the EPROM.

-n Specifies that a filename extension is not required. This option is use­
ful when only one output file is to be produced. The output file name
in this case will be exactly as specified in the -o option.

-poffset
Used to specify an EPROM offset to which the data will be directed.
By default the offset is 0. This option applies only to EPROMs of the
first bank.

-i Specifies nburn output in Intel-hex format. This format supports
EPROMs of up to 1 Mbytes. The default format is ASCII-hex, which
format supports EPROMs of up to 64 Kbytes.

5-10 COMMAND SUMMARIES

NBURN (Cont)

-m{l 1213}
Specifies nbum output in one of the three Motorola formats: format
1 supports EPROMs of up to 64 Kbytes; format 2 supports EPROMs
of up to 16 Mbytes; format 3 supports EPROMs of up to 4 Gbytes. The
default format is ASCII-hex, which format supports EPROMs of up to
64 Kbytes.

-c
Specifies that a checksum byte is added for each EPROM. This option
is used if the contents of the EPROM are to be verified at run-time
(e.g. for diagnostics purposes). The checksum byte will be located in
the first unused byte of the EPROM. The checksum byte value is cal­
culated such that the xor of the one’s complement of all bytes (includ­
ing the checksum byte) is 0. Unused bytes are set by EPROM pro­
grammers to OxFF, and therefore do not affect the checksum. If all
bytes of the EPROM are occupied, nburn will issue a warning and
will not add a checksum byte.

EXAMPLES

1. n b u r n -xOxlOOOO - o o u t e x e c f i l e

This command is used to burn one bank of EPROMs located at address
0x10000. The word size will be taken from the BUSWIDTH parameter of
the GNX target setup. Assuming that the word size is 4, nburn will pro­
duce four output files, one file for each EPROM:

o u t_ 0 _ 0 o u t _ 0 _ l o u t_ 0 _ 2 o u t_ 0 _ 3

The EPROM size will be 64K (default size). The output format will be
ASCII-hex (default format).

2. n b u r n -w2 - b l -x 0 x 2 0 0 0 0 -1 3 2 - i - o OUT e x e c f i l e

This command is used to bum the second EPROM in a bank located at
address 0x20000. The word size is 2 (i.e. there are two EPROMs in each
bank, 0 and 1). The byte number is 1, signifying that the second EPROM is
required. The EPROM size is 32K and the output format is intel-hex. Only
one output file will be produced:

o u t _ 0 _ l

3. n b u r n -w2 -xOxlOOOO -k 2 -m2 - o o u t e x e c f i l e

COMMAND SUMMARIES 5-11

NBURN (Cont)

This command is used to bum two consecutive banks of EPROMs. The
start address of the first bank is 0x10000. Each bank has two EPROMs
because the word size is 2. Since there are four EPROMs, the following four
output files will be produced:

The EPROM size is 64K (default). The output format is motorola format
number 2.

4. n b u r n -w4 - k l : 1 - i e x e c f i l e

This command is used to bum the second bank (bank number 1) of a set of
consecutive banks of EPROMs. The address of the first bank is 0 (default).
However, since the second bank is required, data will be taken from the
start address of the second bank. This address is equal to the size of one
bank (i.e. the EPROM size 64K, multiplied by four EPROMs in each bank,
gives 256K or 0x40000). Because no output file is specified, the output will
be directed to the terminal’s auxiliary port where the EPROM programmer
is attached. Before writing the output for the first EPROM, nburn will
print the following message:

C r e a t i n g o u t p u t d a t a f o r b a n k 1 b y t e n u m b e r 0
P r e s s RETURN when r e a d y . . .

A similar message is printed for each other EPROM. The appropriate
EPROM should be plugged into the programmer before pressing the
RETURN key.

o u t _ 0 _ 0
o u t _ 0 _ l
o u t _ l _ 0
o u t _ l _ l

(f i r s t b a n k , f i r s t EPROM)
(f i r s t b a n k , s e c o n d EPROM)
(s e c o n d b a n k , f i r s t EPROM)
(s e c o n d b a n k , s e c o n d EPROM)

SEE ALSO

Section 3.7
S er ie s 3 2 0 0 0 D eve lo p m en t B o a rd M o n ito r R eference M a n u a l

5-12 COMMAND SUMMARIES

NC MP

5.7 NCMP
ncmp - compares two GNX binary files

USAGE

ncmp [option] filename 1 filename2 [skipl [skip2]]

DESCRIPTION

The two files are compared. If a file is the standard input is used. Only one
file may be standard input, ncmp read the first eight bytes from each file to
determine the type. Type may be COFF, Modular COFF, archive, or any other
legal type. Files are compared on the basis of their types. If the input file types
differ, ncmp terminates and an error message is printed. Exit code 0 is returned
for identical files, 1 for differing files, and 2 for an inaccessible or missing argu­
ment.

For COFF files, ncmp ignores the file time stamp. For archive files, ncmp
ignores both the file time stamp and the file modification types in archive
headers of each COFF member.

The skipl and skip2 parameters are offsets from the beginning of filenamel and
filename2 to be compared, respectively. The skip offsets may be specified as
either octal (0), decimal or hexadecimal (OX) numbers.

Options:
-a Compares two archives, ignoring the order of members in the archive,

and prints a message for each differing archive member. (Note that
archives with a differing member order will usually have a differing
symbol directory.)

-1 Prints the byte number (decimal) and the differing bytes (octal) for
each difference.

-s Prints nothing for differing files; return codes only.
-V Prints out the version number of ncmp.

-v Prints the byte number (decimal) and the differing bytes (octal) for
each difference, while adding the character interpretation of differing
bytes for each difference.

COMMAND SUMMARIES 5-13

NLORDER

5.8 NLORDER
n l o r d e r — finds ordering relation for an object library

USAGE

nlorder filename ...

DESCRIPTION

The input is one or more object or library archive (see nar) filenames. N l o r d e r
writes to standard output a list of pairs of object filenames, meaning that the
first file of the pair refers to external identifiers defined in the second file. The
output may be processed by t s o r t , if available on a Series 32000/UNIX host sys­
tem, to find an ordering of a library suitable for one-pass access by nm eld .

This command line builds a new library from existing . o files.

nar cr library 'n lorder *.o I tso r t '

N l o r d e r invokes nnm. The user’s PATH environment variable must be set to
specify the directory containing nnm.

5-14 COMMAND SUMMARIES

NNM

5.9 NNM
nnm - prints name list of Series 32000 GNX object file

USAGE

nnm [option] filename

DESCRIPTION

The nnm command displays the symbol directory of each Series 32000 GNX
object file. The object file may be a relocatable or absolute GNX object file; or it
may be an archive of relocatable or absolute GNX object files. For each symbol,
the following information will be printed:

Name The name of the symbol (only the first 74 characters).
Value The symbol’s value, depending on its storage class, is expressed

as an offset or an address.
Class The symbol’s storage class.

Type The symbol's type and derived type. If the symbol is an instance
of a structure or of a union, the structure or union tag is given
following the type, e.g., struct-tag. If the symbol is an array, the
array dimensions are given following the type, e.g.,
c h a r [n] [m] . Note that the object file must have been com­
piled with the -g option of the nmcc command for this informa­
tion to appear.

Size The symbol’s size in bytes, if available. Note that the object file
must have been compiled with the -g option of the nmcc com­
mand for this information to appear.

Line The source line number at which the symbol is defined, if avail­
able. Note that the object file must have been compiled with the
-g option of the nmcc command for this information to appear.

Section For storage classes static and external, the object file section
containing the symbol, e.g., text, data or bss.

The output of nnm may be controlled using the following options:

-o Prints the value and size of a symbol in octal instead of in
decimal.

-x Prints the value and size of a symbol in hexadecimal instead of
in decimal.

COMMAND SUMMARIES 5-15

NNM (Cont)

-h Does not display the output header data.
-v Sorts external symbols by value before they are printed. Sorts

the first 74 characters by default.
-r Prepends the name of the object file or archive to each output

line.
-p Produces easily parsable, terse output. Each symbol name is

preceded by its value (blanks if undefined) and one of the letters
U (undefined), A (absolute), T (text segment symbol), D (data
segment symbol), S (user-defined segment symbol), R (register
symbol), F (file symbol), B (bss section), or C (common symbol).
If the symbol is local (non-external), the type letter is in lower­
case. Name can be up to 1024 characters.

-n Sorts external symbols by name before they are printed.

-e Prints only external and static symbols.
-f Produces full output. Prints redundant symbols (.text, .lib,

.comment, .data, and .bss), normally suppressed.
-u Prints undefined symbols only.
-V Prints the version of the nnm command.

-T By default, nnm prints the entire name of each symbol listed.
Because object files can have symbol names with an arbitrary
number of characters, a name that is longer than the width of
the column set aside for names will overflow its column, forcing
every column after the name to be misaligned. The -T option
causes nnm to truncate every name which would otherwise
overflow its column and then places an asterisk as the last char­
acter in the displayed name to mark it as truncated.

Options may be used in any order, either singly or in combination, and may
appear anywhere in the command line. Therefore, both nnm name -e -v and
nnm -ve name print the static and external symbols in name, with external
symbols sorted by value.

MS-DOS Additional Options:
©filename reads nnm options from file. The © option directs the GNX nnm
utility to read additional options from the named file. This option avoids the
MS-DOS limitation on the length of invocation lines, and enables passing
options of unlimited length.

5-16 COMMAND SUMMARIES

NNM (Cont)

DIAGNOSTICS

“nnm: filename: c a n n o t o p e n ”
if filename cannot be opened.

“nnm: filename: b a d m a g ic ”
if filename is not an appropriate GNX object file.

“nnm: filename: no s y m b o l s ”
if the symbols have been stripped from filename.

COMMAND SUMMARIES 5-17

NSIZE

5.10 NSIZE
n s i z e - prints section sizes of GNX object files

USAGE

nsize [option] filename

DESCRIPTION

The n s i z e command produces section size information for each section in an
object file. The size of the text, data, bss (uninitialized data), link, and static
sections are printed along with the total size of the object file. If an archive file
is input to the n s i z e command, the information for all archive members is
displayed.

-n Includes NOLOAD sections in the size.
-o Forces the output in octal. Default is decimal.
- f Produces full output, that is, it prints the size of every loadable sec­

tion, followed by the section name in parentheses.
-V Prints out the version number of the n s i z e utility.
-x Forces the output in hexadecimal. Default is decimal.
MS-DOS Additional Options:

©filename reads n s i z e options from file. The © option directs the
GNX Version n s i z e utility to read additional options from the
named file. This option avoids the MS-DOS limitation on the length of
invocation lines, and enables passing options of unlimited length.

DIAGNOSTICS

“n s i z e : filename: c a n n o t o p e n ”
if filename cannot be opened.

“n s i z e : filename: b a d m a g ic ”
if filename is not an appropriate GNX object file.

5-18 COMMAND SUMMARIES

NS TRIP

5.11 NSTRIP
n s t r i p - strips symbol and line number information from a GNX object file

USAGE

nstrip [option] filename

DESCRIPTION

The n s t r i p command strips the symbol directory and line number information
from GNX object files, including archives. Once this has been performed, no
symbolic debugging access will be available for that file; therefore, this command
is normally run only on production modules that have been debugged and tested.

The amount of information stripped from the symbol directory can be controlled
by using any of the following options:

-1 Strips line number information only; does not strip any symbol direc­
tory information.

-x Strips local symbols and line number information only.
-b Strips local symbols except scoping information (e.g., beginning and

end-of-block delimiters) only.
-r Resets the relocation indexes into the symbol directory. Strips the

local symbols and line number information only.

-V Prints the version of the n s t r i p utility on the standard error output.

The -1, -x, -b, and - r options are mutually exclusive.

If there are any relocation entries in the object file and any symbol table infor­
mation is to be stripped, n s t r i p will complain and terminate without stripping
filename, unless the - r flag is used.

If the n s t r i p command is executed on a GNX archive file, the archive symbol
directory will be removed. The archive symbol directory must be restored by
executing the n a r command with the s option before the archive can be link-
edited by the n m e ld command. N s t r i p will instruct the user with appropriate
warning messages when this situation arises.

The purpose of this command is to reduce the file storage overhead taken by the
object file.

COMMAND SUMMARIES 5-19

NSTRIP (Cont)

MS-DOS Additional Options:
©filename reads n s t r i p options from file. The © option directs the GNX Ver­
sion n s t r i p utility to read additional options from the named file. This option
avoids the MS-DOS limitation on the length of invocation lines, and enables
passing options of unlimited length.

DIAGNOSTICS

“n s t r i p : filename: c a n n o t o p e n ”
if filename cannot be opened.

“n s t r i p : filename: b a d m a g ic ”
if filename is not an appropriate GNX object file.

“n s t r i p : filename: r e l o c a t i o n e n t r i e s p r e s e n t ; c a n n o t s t r i p ”
if filename contains relocation entries and the - r flag is not used, the
symbol directory information cannot be stripped.

5-20 COMMAND SUMMARIES

Appendix A

GLOSSARY

.gnxrc (gnx.ini on MS-DOS) A GNX target specification file that is used by GNX
tools to obtain the CPU, FPU, MMU, system bus-width, and OS target specifications.

Assembler Assembles Series 32000 assembly language source programs and generates relo­
catable object modules. Relocatable object modules must be linked to create executable load
modules.

COFF Acronym for the Common Object File Format. This is the standard object file format
for the Unix System V operating system, and for the GNX software tools. A COFF file contains
machine code and data and additional information for relocation and debugging purposes.

Cross configuration When the compilation and execution of the compiled program are
done on different machines (the host and target machines are different).

DBUG GNX symbolic debugger. It is used for the symbolic debugging of high level and
assembly language programs.

Development board The 32000 based system used for developing/running programs and
user applications.

Executable object file An executable object file is the final product of a linking process. In
an executable object file all external symbolic references have been resolved. The executable
object file is therefore in a form that can be executed on the Series 32000-based target system.

GTS A menu-driven program which takes the user’s target specification and con­
structs a target configuration file, which is read by each of the GNX tools when
invoked.

Host machine The machine on which the compiler runs.

Linker A GNX utility that creates executable files by combining object files, perform­
ing relocation and resolving external references. The linker also processes symbolic
debugging information.

Minstall A GNX utility that copies or moves a binary file to a specified destination.

Monfix A GNX utility that creates Series 32000 bootstrap programs by modifying the
first 16 bytes of a GNX executable file.

Monitor A GNX utility that provides the interface between the hardware execution

GLOSSARY A-l

environment and the GNX language tools running on a host development system. The
monitor is provided in PROMs on National Semiconductor’s development board.
Sources of the monitor are supplied with each GNX binary release.

Nar Utility that maintains groups of files combined into a single archive file. The
utility is used to create and update library files used by the GNX Linker.

Nburn A GNX utility that loads the specified bytes of a file to an EPROM burner in
ASCII-HEX, Intel-hex, extended Intel-hex, or Motorola s-record format.

Ncmp A GNX utility that compares two files.

Nlorder A GNX utility that displays the ordering relation for object files. The input
may be one or more object or library archive files.

Nnm A GNX utility that displays the symbol table of a Series 32000 GNX object file.
This tool is used to obtain information on a symbol within an executable object file.
For each symbol, Nm displays the symbol name, storage class, type, size, and source
line number at which the symbol is defined.

Nsize A GNX utility that displays the size information for each section and optional
header information of a Series 32000 GNX object file.

Nstrip A GNX utility that strips symbol and line number information from a Series
32000 GNX object file, thereby reducing the size of the executable file.

Object file A file that is the output of either the assembler or the linker. An object
file contains compiled code and data and additional information for relocation informa­
tion and debugging purposes.

Option The UNIX term for a parameter, specified on the command line, that is used
to control the utility.

Target machine The machine on which the program being compiled will run.

A-2 GLOSSARY

INDEX

A G

Assembler
(nasm) 2-3

AVAIL_SWAP

B

2-6

Board
development

C

A-l

C optimizing compiler
(nmcc) 2-2

CMDDIR 2-6
Command summaries 5-1

gts 5-2
minstall 5-3
monfix 5-4
nar 5-6
nbum 5-8
ncmp 5-13
nlorder 5-14
nnm 5-15
nsize 5-18
nstrip 5-19

Compare binary files (ncmp) 2-5
Configuration

cross A-l

D
DB support library 3-2
Debugger

dbug 2-3

E

Environment variables
AVAIL_SWAP 2-6
CMDDIR 2-6
INCLUDEPATH 2-6
LIBPATH 2-6
PITFILE 2-6
TMPDIR 2-6

GNX language tools 1-1
table 1-2

GNX utilities 2-2
dbug 2-3
nar 2-4
nasm 2-3
nburn 2-4
ncmp 2-5
nlorder 2-5
nmcc 2-2
nmeld 2-3
nmpc 2-2
nnm 2-5
nsize 2-5
nstrip 2-5

gts command 5-2

I
Include files 2-6
INCLUDEPATH 2-6
Include files 2-6
INCLUDEPATH 2-6

L

LIBPATH 2-6
Librarian (nar) 2-4
Libraries 2-7
Linker

nmeld) 2-3

M

Machine
host A-l
target A-2

minstall command 5-3
monl6 3-4
mon32 3-4
mon332 3-4
mon532 3-4
monCG16 3-4
monCG160 3-4
monfix 3-7

command 5-4
monGX32 3-4
monGX320 3-4
monGX32E 3-4
Monitors

monl6 3-4

INDEX 1

mon32 3-4
mon332 3-4
mon532 3-4 Using
monCG16 3-4 nburn and monfix
monCG160 3-4
monGX32 3-4
monGX320 3-4
monGX32E 3-4

N

nar command 5-6
nbum

command 5-8
utility 2-4, 3-7

ncmp command 5-13
nlorder

command 5-14
utility 2-5

nnm
command 5-15
utility 2-5

nsize
command 5-18
utility 2-5

nstrip
command 5-19
utility 2-5

O

Option A-2

P

Pascal
compiler 2-2

PITFILE 2-6

S

Sample sessions
link with development board 3-5

SPROF 2-4

T

TMPDIR 2-6

2 INDEX

Series 32000®

GNX — Version 4.4
Linker User’s Guide

Customer Order Number 424010506-004

June 1992

REVISION RECORD

VERSION RELEASE DATE SUMMARY OF CHANGES

4.0 May 1990 First Release.
Addition of directive file allocation options.
Automatic generation of special symbols is
now possible. A section can now have both a
ROM and RAM address.

4.1 Sep 1990 Updated error list in appendix B.

4.2 Feb 1991 Synchronization revision. No changes.

4.3 Aug 1991 Synchronization revision. No changes.

4.4 Jun 1992 MS-DOS support added.

The information contained in this manual is for reference only and is subject to change
without notice.

No part of this document may be reproduced in any form or by any means without the
prior written consent of National Semiconductor Corporation.

A complete list of National Semiconductor’s international offices may be found on the
inside back cover of this guide.

ISE and SYS32 are trademarks of National Semiconductor Corporation. Series 32000
is a registered trademark of National Semiconductor Corporation. UNIX is a
registered trademark of AT&T. VAX, VMS, and DEC are trademarks of Digital Equip­
ment Corporation.

CONTENTS

Chapter 1 OVERVIEW
1.1 INTRODUCTION.. 1-1
1.2 REASONS FOR A LINKER.. 1-1
1.3 THE COMMON OBJECT FILE FORMAT.................................... 1-1
1.4 LINKER IN PU T... 1-2

1.4.1 The Simple Object F i l e ... 1-2
1.4.2 The Partially Linked Object F ile 1-2
1.4.3 The Library F ile ... 1-3
1.4.4 The Directive F ile .. 1-3

1.5 LINKER OUTPUT.. 1-3
1.5.1 The Executable Object F ile ... 1-3
1.5.2 Partially Linked Object F i l e .. 1-3
1.5.3 The Memory M a p .. 1-4

1.6 LINKER FUNCTIONS .. 1-4
1.6.1 Resolution of Symbolic References................................. 1-4
1.6.2 Allocation of Output Sections.. 1-5
1.6.3 Relocation of Memory Addresses.................................... 1-5

Chapter 2 THE INVOCATION LINE
2.1 INTRODUCTION.. 2-1
2.2 UNIX ENVIRONMENT INVOCATION....................................... 2-1

2.2.1 Libraries.. 2-2
2.3 VMS ENVIRONMENT INVOCATION.................... 2-2

2.3.1 Libraries.. 2-3
2.4 INVOCATION OPTIONS... 2-3

2.4.1 Specify Output Filenam e.. 2-3
2.4.2 Specify Directive F i le .. 2-4
2.4.3 Specify Library Filename.. 2-4
2.4.4 Specify Library Directory.. 2-5
2.4.5 Request Memory M ap.. 2-5
2.4.6 Specify Program Entry P o in t.. 2-6
2.4.7 Retain Relocation Information....................................... 2-6
2.4.8 Keep Relocation Information.. 2-7
2.4.9 Strip Symbolic Information... 2-7
2.4.10 Strip Local Symbolic Inform ation................................. 2-7
2.4.11 Specify Undefined S ym bol... 2-8
2.4.12 Request Initialization T a b le .. 2-8

CONTENTS v

2.4.13 Specify Fill Value for Section Gaps................................. 2-8
2.4.14 Suppress Size Warning Message for Common Data . . . 2-9
2.4.15 Suppress Error M essage.. 2-9
2.4.16 Issue Warning for Defined Common D a ta 2-9
2.4.17 Output Linker Version Inform ation.............................. 2-10
2.4.18 Specify Version S ta m p ... 2-10

Chapter 3 THE LINKER DIRECTIVE FILE
3.1 INTRODUCTION 3-1
3.2 STRUCTURE OF THE DIRECTIVE F IL E 3-1

3.2.1 Example of a Directive F ile ... 3-2
3.3 DIRECTIVE FILE EXPRESSIONS.. 3-2

3.3.1 E xam ples.. 3-3
3.4 COMMENT.. 3-3
3.5 INPUT FILE SPECIFICATION.. 3-3
3.6 memory STATEMENT... 3-4
3.7 SECTIONS STATEMENT... 3-5

3.7.1 Output Section Specification.. 3-5
3.7.2 Input Section Specification... 3-6
3.7.3 Allocating a Section to M em o ry 3-8
3.7.4 Aligning a Section.. 3-11
3.7.5 Setting the Section T y p e .. 3-12
3.7.6 Grouping Output S ections... 3-13

3.8 ASSIGNMENT STATEMENT... 3-14
3.8.1 Symbol Assignment Within SECTIONS Statement . . . 3-15
3.8.2 Creating Gaps Within An Output Section..................... 3-15

3.9 OUTPUT FILE OPTIONS... 3-16
3.9.1 Change Default Filename and Permission..................... 3-16
3.9.2 Optional Header Magic N um ber.................................... 3-16

Chapter 4 RESOLUTION OF SYMBOLIC REFERENCES
4.1 INTRODUCTION.. 4-1

4.1.1 Examples of Symbol Definition and Reference 4-1
4.1.2 Symbol Resolution Using the Symbol Table.................. 4-2
4.1.3 Exam ple.. 4-2

4.2 LIBRARY PROCESSING... 4-3
4.2.1 Exam ple.. 4-3

4.3 COMMON DATA PROCESSING... 4-4
4.3.1 E xam ples.. 4-5

4.4 SYMBOL DEFINITION IN THE DIRECTIVE F I L E 4-5
4.5 LINKER DEFINED SYMBOLS.. 4-6

vi CONTENTS

4.5.1 Example 4-6

Chapter 5 ALLOCATION OF OUTPUT SECTIONS
5.1 INTRODUCTION... 5-1
5.2 CREATING OUTPUT SECTIONS FROM INPUT SECTIONS . . 5-1

5.2.1 Exam ple... 5-1
5.3 ASSIGNING AN ADDRESS TO AN OUTPUT SECTION............ 5-2

5.3.1 Exam ple... 5-3
5.4 DATA INITIALIZATION SUPPORT... 5-3

5.4.1 Exam ple... 5-5
5.5 LINKER CREATED INPUT SECTIONS....................................... 5-7

5.5.1 Exam ple... 5-7
5.6 MEMORY M A P .. 5-8

5.6.1 Exam ple... 5-9

Chapter 6 RELOCATION OF MEMORY ADDRESS
6.1 INTRODUCTION... 6-1
6.2 RELOCATION INFORMATION... 6-1

6.2.1 Exam ple... 6-1
6.3 THE RELOCATION PROCESS.. 6-2

6.3.1 Exam ple... 6-3

Appendix A DIRECTIVE FILE EXPRESSIONS
A.l INTRODUCTION.. A-l
A.2 INTEGER SYNTAX... A-l

A.2.1 Decimal Value Syntax .. A-l
A.2.2 Octal Value S y n tax .. A-l
A.2.3 Hexadecimal Value Syntax.. A-l

A.3 UNARY OPERATORS.. A-2
A.4 BINARY OPERATORS... A-2
A.5 ASSIGNMENT OPERATORS.. A-2
A. 6 SPECIAL FUNCTIONS... A-3

A.6.1 Size of Output Function ... A-3
A.6.2 Memory Address F unction .. A-4
A.6.3 File Address Function... A-4
A.6.4 Next Address Function.. A-4
A.6.5 Highest Memory Address Function A-4

Appendix B LINKER ERROR MESSAGES
B. l INTRODUCTION.. B-l

CONTENTS vii

B.2 ERROR MESSAGES B-l

Appendixe GLOSSARY

INDEX

viii CONTENTS

HOW TO USE THIS MANUAL

PURPOSE OF THIS GUIDE
This guide describes the GNX Native and Cross Support Linker. The GNX Linker is
an essential component of any Series 32000 microprocessor software development tool
set.

The GNX Linker is used to create an executable file for any Series 32000-based native
or cross application. For embedded applications, a powerful and flexible user-written
directive file can be used to control linker actions.

INTENDED AUDIENCE
This guide is for the programmer who uses GNX software development tools to gen­
erate application software for Series 32000-based systems.

HOW THIS GUIDE IS ORGANIZED
Chapter 1 is an overview of the linker. It provides information on linker input, output
and functions. Chapter 2 summarizes the linker invocation line and lists all invocation
options and arguments. The linker directive file is explained in Chapter 3. This
chapter contains an explanation of the syntax used to control linker actions. Examples
are provided to illustrate the use of the directive file.

Chapters 4, 5, and 6 describe in detail the linker operations. Chapter 4 is devoted to
the resolution of symbolic references. Chapter 5 explains the allocation of output sec­
tions. And the relocation of memory addresses is described in Chapter 6.

Appendix A defines directive file expressions. Error messages are explained in Appen­
dix B. And Appendix C is a glossary of GNX terms used in this guide.

IX

CONVENTIONS USED IN THIS GUIDE

Convention Meaning

Id { option | filename } ... Syntax descriptions show all actual user-input as
constant width. Italics indicate generic operands
that are user-supplied. Spaces are significant and
must be entered as shown. Multiple spaces and
tabs may be used in place of a single space.

{ } Large braces indicate two or more items, of which
only one must be used. The arguments are
separated by a logical OR sign (|).

Large brackets indicate that the enclosed item(s) is
optional.

Logical OR sign is used to separate items of which
only may be used.

Ellipsis indicate optional repetition of the preceding
item(s).

Note: All other characters, including small braces and brackets ({ },[]), are actual user-input.

RELATED DOCUMENTS
The following National Semiconductor documents are recommended for additional
information:
• Support Libraries Reference Manual provides details on the GNX library routines.
• COFF Programmer’s Guide describes the object file format.
• Assembler Reference Manual describes the syntax, format and function of the GNX assembly

language.

NEW AND CHANGED FEATURES
The following technical changes have been made to the GNX Linker since Version 3:
• The directive file allocation options INTO, ROMBIND and ROMINTO have been

added.
• A section can now be duplicated (i.e. have both a ROM and RAM address). The

linker will allocate memory for this section twice.
• An invocation option to request an initialization table has been added.
• Automatic generation of special symbols is now possible.
• The directive file is now processed after all other input files, regardless of invocation

position.

Chapter 1

OVERVIEW

1.1 INTRODUCTION
The GNX Linker is a tool used for the linking of object files. Object files are produced
either by the GNX Assembler and Compiler when translating source-language pro­
grams, or by the GNX Linker when creating partially linked object files to be used in a
subsequent linking operation. The linker combines object files by resolving symbolic
references, allocating output sections, and relocating memory addresses to produce an
executable object file. This file can then be executed on a Series 32000-based target sys­
tem.

The linker is controlled by the invocation line and a directive file. A default directive
file is supplied with the GNX package. A user-written directive file can be used to
override the default directive file. This ability is especially useful for embedded applica­
tions.

1.2 REASONS FOR A LINKER
The GNX Linker is an essential component of the GNX software development package.
It provides for:

• Quick and easy modular programming since separately compiled object files can be
linked together into a single executable object file.

• Control over memory allocation.

1.3 THE COMMON OBJECT FILE FORMAT
The Common Object File Format (COFF) was developed by AT&T as the standard
UNIX/SO System V format for object files. The GNX tools use this definition as the
standard object file format.

Object files are basically made up of sections. A section is a contiguous block of code or
data having common attributes, and is the smallest unit of relocation. A section can
have any name, however the standard section names that are created by default are:
• .text. The .text section contains executable code.
• .data. The .data section contains initialized data. This data is available at run­

time without any explicit assignment statement from the program.
OVERVIEW 1-1

• .bss. The .bss section contains uninitialized data. Since this data is uninitialized,
the .bss section does not occupy space in the object file. When program execution
starts, the .bss values found in memory are environmentally dependent. Most
environments initialize the .bss section to zeroes.

A more thorough review of the structure of the GNX COFF file may be found in the
COFF Programmer’s Guide.

1.4 LINKER INPUT
Input to the linker consists of simple object files produced by the assembler or compiler,
partially linked object files produced by a previous linking operation, and library files.
These input files are combined to produce an output file. The linker directive file can
also be considered as linker input.

The term "input section" is defined as a section of a linker input object file.

1.4.1 The Simple Object File
The simple object file is the most common type of linker input. It is created when the
assembler or compiler translates source-language programs into COFF. Simple object
files may contain unresolved external references. A simple object file is specified either
on the invocation line (see Sections 2.2 and 2.3) or in a directive file (see Section 3.5).

1.4.2 The Partially Linked Object File
The partially linked object file is produced by a previous linking operation. It contains
unresolved external references, and is therefore not executable. Partially linked object
files must be included as input in a subsequent linking operation that produces an exe­
cutable file.

The partially linked object file is used for many programming needs:
• A complex linking task is made easier by creating small groups of simple object

files. Each group is then linked together to create a partially linked object file.
Finally the partially linked object files can be linked to produce an executable object
file.

• A large program can be modified without having to relink the entire program.

• A set of routines can be produced for use in different application programs.

Refer to Section 2.4.7 for an explanation of the Retain Option used to create partially
linked files.

1-2 OVERVIEW

1.4.3 The Library File
The library file is a collection of simple object files, each representing a useful function.
Several library files are supplied as part of the GNX software package. You can also
create your own library file using the GNX archiver (see the Commands and Operations
Manual for details).

Library members that are referenced (by an external symbolic reference) are selected
by linker and included in the linking process. Library members that are not referenced
are not included in the linking process.

Refer to Section 2.4.3 for the invocation line option to specify a library file.

1.4.4 The Directive File
The directive file controls certain actions of the linker (specifically memory allocation).
You can exercise considerable control over the linking operation by creating your own
directive file. This feature is especially useful for embedded applications.

Chapter 3 offers a detailed description of the directive file.

1.5 LINKER OUTPUT
Output of the linker consists of executable object files and partially linked object files.
A memory map can also be considered as linker output.

The term "output section" is defined as a section of a linker output object file.

1.5.1 The Executable Object File
The executable object file is the final linker output. In an executable object file all
external symbolic references have been resolved. The executable object file is therefore
in a form that can be executed on the Series 32000-based target system.

1.5.2 Partially Linked Object File
The partially linked object file is produced by a previous linking operation. It contains
unresolved external references, and is therefore not executable. Partially linked object
files must be included as input in a subsequent linking operation that produces an exe­
cutable file.

OVERVIEW 1-3

The partially linked object file is used for many programming needs:
• A complex linking task is made easier by creating small groups of simple object

files. Each group is then linked together to create a partially linked object file.
Finally the partially linked object files can be linked to produce an executable object
file.

• A large program can be modified without having to relink the entire program.
• A set of routines can be produced for use in different application programs.

Refer to Section 2.4.7 for an explanation of the Retain Option used to create partially
linked files.

1.5.3 The Memory Map
The memory map illustrates the allocation of memory after the linking process. It also
illustrates the composition of the output sections from input sections. Section 5.6 pro­
vides a complete explanation of the memory map.

1.6 LINKER FUNCTIONS
The linker performs three basic functions: resolution of symbolic references, allocation
of output sections, and relocation of memory addresses.

1.6.1 Resolution of Symbolic References
A symbol is used either to mark a program location or to represent a data element.
Object files contain a symbol table. The symbol table is comprised of information about
symbols defined or referenced in the source program. An external symbol is a symbol
that can be referenced from any object file.

The linker resolves references to external symbols. The resolution of symbolic refer­
ences is the process by which the linker matches an external symbolic reference with
its definition. This process is described in Chapter 4.

A symbol can also be defined in a directive file. Section 3.8 explains the use of the
assignment statement for this purpose.

1-4 OVERVIEW

1.6.2 Allocation of Output Sections
The linker determines which part of memory is available for the allocation of output
sections. The linker then assembles output sections from input sections and binds each
output section to a starting memory address.

Through use of the directive file, you can specify memory configuration. The directive
file instructs the linker which parts of memory are available for allocation (see Section
3.6), how to construct output sections from input sections, and how to allocate memory
for these output sections (see Section 3.7). Control over the allocation of memory allows
you to create a memory layout for various hardware requirements.

Refer to Chapter 5 for a complete description of the allocation of output sections.

1.6.3 Relocation of Memory Addresses
Once external symbolic references have been resolved and output sections allocated to
memory, the linker assigns each symbolic reference its actual memory address.

Chapter 6 explains the relocation of memory address.

OVERVIEW 1-5

Chapter 2

THE INVOCATION LINE

2.1 INTRODUCTION
This chapter explains the GNX Linker invocation line. Linker invocation is host-
specific and is therefore different for UNIX and VMS operating system environments.

The linker is directly invoked by specifying the appropriate invocation name followed
by invocation line arguments. These arguments specify a list of object and library files
to link and linker options.

In the UNIX environment, the linker is often invoked by a a compiler driver. A com­
piler driver invokes the linker with a predetermined set of linker options. If these
options are not suitable for your needs, you can either force the compiler driver to pass
specific options to the linker, or terminate the compilation process after object file crea­
tion and invoke the linker directly.

2.2 UNIX ENVIRONMENT INVOCATION
SYNTAX FOR NATIVE LINKING:

Id { option | filename } ...

SYNTAX FOR CROSS LINKING:

nmeld { option \ filename } ...

Id or nmeld is the invocation name.
option is any valid linker invocation line option. Each option is preceded by a dash
(—), and options must be separated by a space.
filename is any valid object or library file. Object and library filenames must be
separated by a space, filename must include a complete or relative pathname if the
specified object or library file is not in your current directory.

filename and option can be placed in any order within the invocation syntax. However,
object files which contain symbolic references to a library must precede that library
filename on the invocation line. Libraries specified explicitly or through the -1 invo­
cation line option are processed as they are encountered.

THE INVOCATION LINE 2-1

Like most UNIX syntax, the linker invocation syntax is case-sensitive.

2.2.1 Libraries
Libraries can be specified through the -1 invocation line option (Section 2.4.3). The
linker searches for these libraries by directory, according to a default directory list. The
default library location for a UNIX cross environment is gnxdir/l i b (where gnxdir is
the top-level directory of the installed GNX tools). The default locations for a UNIX
native environment (i.e., SYS32/30) are gnxd ir/u sr/lib , gnxdir/l ib , /u s r / l ib , and
/ l ib .

The LIBPATH environment variable can be set to override the default directory search.

SYNTAX:

s e t e n v LIBPATH directory-search-list (c-shell)
LIBPATH=directory-search-list ; e x p o r t LIBPATH (shell)

directory-search-list is a list of library directories separated by colons.

At link-time, the linker will search the listed directories for the libraries specified with the -1
invocation line option.

2.3 VMS ENVIRONMENT INVOCATION
SYNTAX:

nmeld [option ...] filename [filename ...]

nmeld is the invocation name for the VMS environment.
option is any valid linker invocation line option. Each option is preceded by a slash (/).
filename is any valid object or library file. Object and library filenames must appear as
a comma-separated list, filename must include a complete file specification if the file is
not in your current directory (see Section 2.3.1).

A default extension, .OBJ, is assumed if a specified object filename has no extension.

option can be placed either before or after the filename list. Within the filename list,
filenames may appear in any order. However, object files which contain symbolic refer­
ence to a library must precede that library filename on the invocation line.

Like most VMS syntax, the linker invocation syntax is not case sensitive. Case-
sensitivity can be achieved by placing strings in double-quotes ("").

2-2 THE INVOCATION LINE

Libraries can be specified on the linker invocation line in the invocation syntax. Alter­
natively, the GNX$LIBRARY and GNX$LIBRARY_n logical names may be set at the
VMS invocation line to define libraries for linking.

SYNTAX:

define GNX $ LIBRAR Y library-filename
define GNX $ LI BRARY_1 library-filename
define GNX $ L I BRARY_2 library-filename

2.3.1 L ib raries

library-filename is any library filename with a complete pathname.

The logical name definitions must start with GNX $ LIBRARY, followed by the numbered
GNX $ L I BRARY_n definitions. The numbered logical name must start with 1 and
proceed upwards in sequence. When a logical name is defined for a library, it does not
have to be explicitly mentioned on the invocation line. The linker automatically
processes these libraries after all other input files.

This section describes the linker invocation options for both the UNIX and VMS
environments. Invocation options are used for controlling linking operations such as
specifying a directive file, requesting an output memory map, naming the output file,
and suppressing error and warning messages.

UNIX invocation options begin with a dash (—). VMS invocation options begin with a
slash (/). Tables 2-1 and 2-2 at the end of this chapter provide an abbreviated syntax
guide for the invocation options of each host system, respectively.

2.4.1 Specify Output Filename
This invocation option is used to specify a name for the output file that is produced by
the linker. Use of this option overrides the default output filename.

2.4 INVOCATION OPTIONS

SYNTAX:

-o filename
/ OUTPUT = filename

(UNIX)
(VMS)

filename is any valid filename.

THE INVOCATION LINE 2-3

In the UNIX environment, the default output filename is a3 2 . o u t when cross linking
and a . o u t when native linking. In the VMS environment, the default output
filename is output_filename.EXE. output Jilename is the name of the first filename on
the invocation line.

2.4.2 Specify Directive File
With the Specify Directive File invocation option you can designate a directive file to be
used by the linker in creating the executable object file. Use of this invocation option
will override the default directive file used by the linker.

filename is any valid directive file, filename must include a complete pathname if the
directive file is not in your current directory.

When a directive file is not specified in the invocation line, the linker will use the direc­
tive file specified by the L INKERF IL E parameter of the GNX Target Setup (gts) utility
program. Refer to the GNX Commands and Operations Manual (Version 4) for a
detailed discussion of the g t s utility program.

If the L INKERF I LE parameter is missing the linker uses the default directive file
l i n k e r . d e f , located in the GNX root directory on a cross environment, or the
gnxdir/b i n directory in a native environment (where gnxdir is the top-level directory
of the installed GNX tools).

If l i n k e r . d e f does not exist, the linker issues a warning message and then follows a
predefined trivial link process. You should not depend on the trivial link process to pro­
duce meaningful results.

See Chapter 3 for a full explanation of the linker directive file.

2.4.3 Specify Library Filename
The Specify Library Filename invocation option can be used to specify libraries to be
used by the linker. This option is useful for specifying system libraries and is available
only in the UNIX environment.

SYNTAX:

- d filename
/ d i r e c t i v e s =/iZemiroe

(UNIX)
(VMS)

2-4 THE INVOCATION LINE

SYNTAX:

-lx (UNIX)
Not applicable (VMS)

x is the sequence of up to nine characters that define a system library name in the
filename lib x .a .

On the invocation line the -lx option must follow the list of object files with external
references that will be resolved in the specified library. The linker will first search for
this library in the directories specified through the -L invocation line option (Section
2.4.4) and then in the default library locations (Section 2.2.1.)

2.4.4 Specify Library Directory
With this option you define the directory in which the linker will first search for a
library specified with the -1 invocation option (Section 2.4.3). This option is available
only in the UNIX environment.

SYNTAX:

-L dir (UNIX)
Not applicable (VMS)

dir is any valid directory pathname containing user libraries.

The -L option must precede any - 1 option. The linker searches for libraries specified
through the -1 invocation line option first in dir and then in the default library loca­
tions (Section 2.2.1).

2.4.5 Request Memory Map
The Request Memory Map invocation option generates a memory map of the execut­
able object file. The format and contents of the memory map are detailed in Section 5.6.

SYNTAX:

-m
/MAP [=mapJilename\

map Jilename is any valid map filename.

If you use this option in the UNIX environment, the memory map is sent to standard
output. You must redirect standard output to save the memory map to a file.

(UNIX)
(VMS)

THE INVOCATION LINE 2-5

If you use this option in the VMS environment, by default the memory map is created
as a file and named outputJilename.MAP, with output Jlename corresponding to the
name of the linker executable file that is mapped. If map Jilename is specified, it will
have the default extension .MAP.

2.4.6 Specify Program Entry Point
This option is used to indicate to the linker the entry point of your program. The entry
point is used by the operating system or the debugger as the starting point for program
execution. Entry point information is a special part of the COFF file and does not
necessarily represent the actual beginning of the .text section.

By default, the linker will look for the external symbol s t a r t as indicating the entry
point. If s t a r t is not found, the linker will look for the external symbol _main. If
_main is not found, the linker issues a warning message and sets the entry point to 0.

SYNTAX:

-e symbol (UNIX)
/ENTRY=sy/n6oZ (VMS)

symbol is an external symbol that marks the program entry point. To preserve case-
sensitivity on VMS, symbol should be enclosed in double-quotes (""). If symbol is not
found, the linker issues a warning message and sets the entry point by following the
above mentioned default procedure.

2.4.7 Retain Relocation Information
The Retain Relocation Information option must be used if the product of the linking
operation is to be a partially linked file (i.e. not all symbolic references have been
resolved) that may be used as input in a subsequent link.

SYNTAX:

- r (UNIX)
/R E T A IN (VMS)

Use of the Retain Relocation Information option ensures that the linker will retain
relocation information and not issue a linking error for unresolved external references.

2-6 THE INVOCATION LINE

This option allows you to instruct the linker to keep relocation information in your exe­
cutable object file.

SYNTAX:

-k (UNIX)
/K EEP (VMS)

Relocation information is used to calculate the actual address of a data or routine refer­
ence. Normally, executable object files do not have relocatable information since final
addresses have been calculated by the linker. However, use of the Keep Relocation
Information option instructs the linker to keep relocation information in your execut­
able object file. This may be useful on systems that implement dynamic (load-time)
address relocations.

2.4.8 K eep R elo ca tio n In form ation

2.4.9 Strip Symbolic Information
With this option you can instruct the linker to remove the symbol table and line
number information from the executable file the linker produces, thereby reducing the
size of the executable file.

SYNTAX:

- s (UNIX)
/S T R IP (VMS)

Since symbolic information is used for debugging and for relocation of memory
addresses, the strip symbolic information option should not be specified if the output
file is either to be used in debugging or is a partially linked object file.

2.4.10 Strip Local Symbolic Information
The Strip Local Symbolic Information invocation option is used to remove only local
symbolic information from the linker output file. This option is useful for reducing the
size of linker output files.

SYNTAX:

- X (UNIX)
/NOLOCAL (VMS)

Since local symbolic information is used for debugging, the strip local symbolic infor­
mation option should not be specified if the output file is to be used in debugging. How­
ever, the output file can be a partially linked object file.

THE INVOCATION LINE 2-7

2.4.11 Specify Undefined Symbol
The Specify Undefined Symbol invocation option allows you to create a "pseudo" exter­
nal reference to a symbol. This may be used to force the linker to select a library
member for the linking process. Unless this option is specified, the linker will link
library member only if they resolve an external symbolic reference from a previously
specified object file.

symbolname is any valid symbol name. To preserve case sensitivity on VMS, may be
enclosed in double-quotes (" ").

2.4.12 Request Initialization Table
The Request Initialization Table invocation option instructs the linker to create an ini­
tialization table to be used at run-time. The initialization table is used to copy code or
data from ROM to RAM, and to initialize to zero all uninitialized data (typically found
in the .bss section). The table is found in the linker created section .init.

SYNTAX:

- i (UNIX)
/IN IT T A B L E (VMS)

For a detailed description of the initialization table refer to Section 5.4.

2.4.13 Specify Fill Value for Section Gaps
This invocation option is used to specify a fill value other than zero for section gaps. By
default, the linker fills any gaps created in output sections with a zero value.

SYNTAX:

-u symbolname
/USYM ̂ symbolname

(UNIX)
(VMS)

SYNTAX:

-f int
/ f i l l =int

(UNIX)
(VMS)

int is an 2-byte unsigned integer constant.

2-8 THE INVOCATION LINE

2.4.14 Suppress Size Warning Message for Common Data
This invocation option is used to suppress the issuance of warning messages by the
linker when various references to common data are of different memory address sizes.

SYNTAX:

- t (UNIX)
/NOWARNING (VMS)

Common data are consolidated by the linker and allocated to a linker created .bss sec­
tion. Normally, every reference to common data is of the same size. However, if the
references are of different sizes, the linker will issue a warning message for each refer­
ence that is contrary to the first found common data size. In this case the linker will
use the largest size.

2.4.15 Suppress Error Message
With this option you can instruct the linker to suppress all nonfatal error messages
that describe problems encountered during the linking operation.

SYNTAX:

-S (UNIX)
/S IL E N T (VMS)

Only fatal errors cause the linking operation to abort immediately. Error messages
describing fatal errors will be issued by the linker.

2.4.16 Issue Warning for Defined Common Data
The issue warning for defined common data option causes the linker to issue a warning
whenever a common variable is defined later on in a program.

SYNTAX:

-M (UNIX)
/MULDEFS (VMS)

THE INVOCATION LINE 2-9

2.4.17 Output Linker Version Information
The Output Linker Version Information option produces information regarding the ver­
sion and revision numbers of the linker in use.

SYNTAX:

-v (UNIX)
/V ERSIO N (VMS)

Version and revision number information is useful in determining whether changes
and updates in the linker package apply to the linker you are using.

2.4.18 Specify Version Stamp
This option allows you to specify a version stamp for identifying linker output files.

SYNTAX:

-V S int (UNIX)
/STAMP=m£ (VMS)

A version stamp is a 16-bit integer constant. It is stored in a special field in the
optional header of linker output files.

2-10 THE INVOCATION LINE

T able 2-1. U nix/M S-D O S E n v iro n m en t Invocation O ptions

OPTION EXPLANATION SECTION

- k Keep relocation information in executable file Section 2.4.8

-V Output linker version information Section 2.4.17

- i Request an initialization table Section 2.4.12

- r Retain relocation information Section 2.4.7

-m Request an output memory map Section 2.4.5

- d filename Specify a directive file Section 2.4.2

-L dir Specify a directory to search for libraries Section 2.4.4

- f int Specify a fill value Section 2.4.13

- l x Specify a library file for linking Section 2.4.3

-e symbol Specify a program entry point Section 2.4.6

- u symbol Specify an undefined symbol Section 2.4.11

- o filename Specify an output filename Section 2.4.1

-vs int Specify a version stamp Section 2.4.18

- x Strip local symbolic information Section 2.4.9

- s Strip symbolic information Section 2.4.10

-S Suppress error messages Section 2.4.15

-M Issue warning for defined common data Section 2.4.16

- t Suppress size warning for common data Section 2.4.14

@ filename Read options from file filename
(MS-DOS only)

Rev 4.4 THE INVOCATION LINE 2-11

T ab le 2-2. VMS Environment Invocation Options

OPTION EXPLANATION
1

SECTION

/K EEP Keep relocation information in executable file Section 2.4.8

/V ERSION Output linker version information Section 2.4.17

/IN IT T A B L E Request an initialization table Section 2.4.12

/R E T A IN Retain relocation information Section 2.4.7

/ m a p [=filename] Request an output memory map Section 2.4.5

/D iR E C T iV E S= /iZ enam e Specify a directive file Section 2.4.2

/F lL L = m £ Specify a fill value Section 2.4.13

/ OUTPUT = filename Specify an output filename Section 2.4.1

/ ENTRY=symbol Specify a program entry point Section 2.4.6

/USYM=symbol Specify an undefined symbol Section 2.4.11

/STA M P=m f Specify a version stamp Section 2.4.18

/NOLOCAL Strip local symbolic information Section 2.4.10

/S T R IP Strip symbolic information Section 2.4.9

/S IL E N T Suppress error messages Section 2.4.15

/MULDEFS Issue warning for defined common data Section 2.4.16

/NOWARNING Suppress size warning for common data Section 2.4.14

2-12 THE INVOCATION LINE

Chapter 3

THE LINKER DIRECTIVE FILE

3.1 INTRODUCTION
The linker directive file controls certain linker functions. It mainly dictates memory
configuration, output section content, and allocation of output sections.

A default linker directive file named l i n k e r . def is supplied with the GNX software
package. It contains predefined directive definitions. In a cross environment, this file
resides in the GNX top-level directory and includes the configuration to produce an exe­
cutable object file for a Series 32000 development board. In a native environment, this
file resides in the gnxdir/lib directory (where gnxdir is the GNX top-level directory) and
includes the configuration to produce an executable object file for a Series 32000-based
native system.

You can exercise considerable control over the linking operation by creating a directive
file that contains directive definitions tailored to your unique needs. This directive file
is especially useful for embedded applications. The linker is instructed to use a user-
written directive file through the Specify Directive File invocation option (see Section
2.4.2).

This chapter provides an overview of the directive file. Section 3.2 explains the struc­
ture. Section 3.3 briefly describes the expressions used in the directive file. The
remainder of the chapter defines the various parts of the directive file, providing a
detailed description of use, syntax and examples.

3.2 STRUCTURE OF THE DIRECTIVE FILE
A directive file is made up of the following parts:
• Comments. A comment may be used for documentation purposes.
• Input file specifications. An alternative to specifying input files on the invocation

line.
• MEMORY s ta te m e n ts . A MEMORY s ta te m e n t is u se d to d efin e w h ic h p a r t s o f th e

m e m o ry a re a v a ila b le fo r a llo c a tio n o f o u tp u t sec tio n s . •

• SECTIONS statements. A SECTIONS statement is used to control the construction
of output sections from input sections and the allocation of output sections to
memory addresses.

THE LINKER DIRECTIVE FILE 3-1

• Assignment statements. An assignment statement both defines a symbol and
assigns the symbol an absolute address.

• Output file options. Controls certain output file characteristics.

The syntax of the linker directive file is case-insensitive, except when reference is made
to filenames or symbols. References to filenames or symbols must obey the rules of the
host environment. A UNIX environment is case-sensitive. A VMS environment is
case-insensitive.

3.2.1 Example of a Directive File
/* Input file specification */
a . o
b . o
c .o

/* Memory configuration */

MEMORY {
meml : origin=0xl0000, length=0x8000
mem2 : origin=0x20000, length=0x8000

/* Output section construction and allocation */

SECTIONS {
.text BIND (0x10000) : { M.text) }
.data INTO(mem2) : { *(.data) }
.bss INTO(mem2) ALIGN(64) : { *(.bss) }

/* Special symbol assignment */

end_bss = ADDR(.bss) + SIZEOF(.bss) ; /* End of .bss section */

3.3 DIRECTIVE FILE EXPRESSIONS
Directive file expressions are used as arguments for certain options and as right-hand-
side of assignment statements. Expressions consist of integer constants, operators,
special functions, and parentheses. The value of a directive file expression is always a
4-byte unsigned integer. The value generally represents a memory address.

Appendix A provides a complete description of directive file expressions.

3-2 THE LINKER DIRECTIVE FILE

3.3.1 Examples
0x1000

0x100 0 is an integer constant having the value of 1000 in hexadecimal.

ADDR(. text)+SIZEOF(. text)

This is the sum of the start address of the . te x t output section and its size. The
result is the address following the end of the .text section.

3.4 COMMENT
A comment can be placed anywhere in the directive file. Comments begin with a slash
and asterisk (/*) followed by one or more lines of text. The comment is terminated with
an asterisk and slash (*/). Comments cannot be nested.

3.5 INPUT FILE SPECIFICATION
Alternatively to specifying input files on the linker invocation line, you can specify
input files in a linker directive file. An input file is any object or library file to be
linked.

Input filenames may appear anywhere in the directive file, except within a MEMORY or
SECTIONS statement. The placement is significant because the linker processes input
files as they are encountered in the directive file. It is recommended that you place
input filenames before the SECTIONS directive so that the SECTIONS directive will be
applicable to all input files.

SYNTAX:

filename

filename is any valid input filename. An input filename may include a full or partial
pathname. A filename containing special characters should be enclosed in double­
quotes ("") to avoid conflict with the definition of special characters in the directive file.

THE LINKER DIRECTIVE FILE 3-3

3.6 MEMORY STATEMENT
The MEMORY Statement is used to specify the configured and unconfigured (i.e. nona-
vailable) areas of memory. If a MEMORY statement is not specified, the linker assumes
the maximum amount of configured memory address space (0x0 through
OxFFFFFFFF).

If one or more MEMORY statements are specified, the linker treats all memory areas not
within these statements as unconfigured. Unconfigured memory is not used in the
linker allocation process. Therefore, output sections can not be allocated within
unconfigured memory.

SYNTAX:

MEMORY
{
mem_name [(attributes)] : O RIG IN = int , l e n g t h = int

}

memjiame is any symbolic name to be associated with the specified configured
memory area.
int is a valid integer constant (in decimal, hexadecimal, or octal format).
attributes are a sequence of one or more of the following attribute letters:

I - The named memory area is initializable.
R - The named memory area is readable.
W - The named memory area is writeable.

X - The named memory area is executable.

Attribute letters can only be used to direct a section to a memory area with specified
attributes (see Section 3.7.3). Attribute letters have no other use.

A configured memory area is a contiguous block of memory. It starts at the address
specified by the value given to O RIG IN and contains the number of bytes specified as
the value of LENGTH. O RIG IN may be abbreviated to ORG, and LENGTH may be
abbreviated to LEN.

Any number of configured memory areas may be declared within one MEMORY state­
ment. However, if more than one memory area is declared, no overlap should exist
among the specified areas. A memory area overlap causes the linker to issue an error
message and terminate the linking process.

Each memory area can be referenced from the SECTIONS statement either by name or
by attribute.

3-4 THE LINKER DIRECTIVE FILE

EXAMPLE:

MEMORY {
ROM (R) : ORIGIN = 0x10000 LENGTH = 0x40000
RAM (RW) : ORIGIN = 0x80000 LENGTH = 0x100000

}

3.7 s e c t i o n s STATEMENT
The SECTIONS statement is used to specify how output sections are constructed from
input sections, and to allocate memory for output sections.

SYNTAX:

SECTIONS {
o u tpu t_sec tion _spec [o p tio n s] : [in pu t_section _spec ... }

ou tpu t_ sec tio n _ sp ec is a specification of the output section to be created. This is gen­
erally the name of the output section.
o p tio n s are a list of allocation options (Section 3.7.3) or section type options (Section
3.7.5).
in pu t_sec tion _spec is a specification of an input section. This input section is combined
with the other specified input sections to produce an output section.

EXAMPLE:

SECTIONS {
.text BIND(0x8000) : { filel.o (. text) file2.o (. text) }
.data ALIGN(16) : { filel.o (.data) file2.o (. data) }

}

Details of the use of the SECTIONS statement follow below.

3.7.1 Output Section Specification
SYNTAX:

o u tp u t js e c t io n j ia m e [MODULE {m odu le j i a m e)]

o u tp u t js e c t io n jn a m e is the name of the output section. You can give an output section
any name (up to 8 characters).
m o d u le j i a m e is any valid module name.

THE LINKER DIRECTIVE FILE 3-5

You can use the MODULE option to associate a module name with an output section.
This option only applies to systems that use the Series 32000 modularity support
feature (for further details see the GNX Language Tools Technical Notes). If an output
section has been associated with a module, only input sections of the same module or
input sections which are not associated with any module can be directed into the out­
put section.

3.7.2 Input Section Specification
Input sections are specified in the SECTIONS statement in various ways:

1. Specifying all sections of the input file.

SYNTAX:

filename

filename is any valid input filename. The filename can include a full or partial
pathname. A filename containing special characters may be enclosed in double
quotes ("") to avoid conflict with the directive syntax. If filename is a library, this
specification applies to all library members which have been selected for the link­
ing process.

EXAMPLE:

.xxx : { ab c . o }

Output section . xxx will consist of all input file abc . o sections.
2. Specifying only certain sections of the input file.

SYNTAX:

filename {section_name . ..)

EXAMPLE:

.te x t : { f i l e .o (. t e x t .data) }

Output section . te x t will consist of sections . te x t and .d a ta from f i l e .o .
3. Specifying only certain sections from all input files indicated on the invocation line or

in the directive file before the SECTIONS statement.

SYNTAX:

*{section_name...)

3-6 THE LINKER DIRECTIVE FILE

EXAMPLE:

Output section . te x t will consist of sections . te x t and .mod from all input
files.

4. Specifying the common data from the input file. The common data reside in a
linker-created .bss section.

SYNTAX:

filename [COMMON]

EXAMPLE:

.bssl : { a .o[COMMON] }

Output section .b ss l will consist of the common data from input file a .o (see
Section 4.3 for an explanation of common data).

5. Specifying the common data from all input files indicated on the invocation line or in
the directive file before the SECTIONS statement.

SYNTAX:

* [COMMON]

EXAMPLE:

.b s s l : { * [COMMON] }

Output section . b s s l will consist the common data from all input files, files.

6. Specifying the linker-created module table entry of the input file (refer to the Series 32000
Language Tools Technical Notes).

SYNTAX:

filename [MOD]

EXAMPLE:

.modi : { a .o [MOD] }

Output section .modi will consist of the linker-created module table entry of
input file a.o.

7. Specifying the linker-created module table entry of all input files indicated on the
invocation line or in the directive file before the SECTIONS statement.

. t e x t : { * (.mod) * (. t e x t) }

THE LINKER DIRECTIVE FILE 3-7

SYNTAX:

* [MOD]

EXAMPLE:

.mod : { * (.mod) * [MOD] }

Output section .mod will consist of .mod sections from all input files (user-
defined module table entries) and linker-created .mod sections (linker-created
module table entries).

8. Specifying the initialization table created by the linker. The initialization table
resides in a linker-created .init section (see Section 5.4 for an explanation of data
initialization).

SYNTAX:

* [IN IT]

EXAMPLE:

.text : { * (. text) *[INIT] }

Output section .text will consist of both the .text sections from all input files
and the linker-created .init section (which contains an initialization table).

3.7.3 Allocating a Section to Memory
Output sections can be allocated to memory by using allocation options in the following
ways:

1. Binding a section to a particular memory address by using the BIND option. This
instructs the linker to assign a configured memory address to the specified output
section.

SYNTAX:

b i n d (expression)

expression is any valid linker expression (refer to Appendix A for a complete
description of linker expressions). The expression value is a memory address to
which the output will be bound.

3-8 THE LINKER DIRECTIVE FILE

EXAMPLE:

The .text output section will be allocated at address 0x10000.
2. Directing a section to a memory area by name using the INTO option. This

instructs the linker to assign a memory address within the memory area to the
specified output section. The output section must fit in the memory area.

SYNTAX:

INTO (m e m jx a m e)

m e m jx a m e is a name that has been associated with a configured memory area
through use of the MEMORY directive (see Section 3.6).

EXAMPLE:

MEMORY {
ROM : origin=0xl000 length=0x2000
RAM : origin=0xl0000 length=0x80000

.text BIND(0x10000) : { *(.text) }

SECTIONS {
. t e x t INTO(ROM) : { * (. t e x t) }
. d a t a INTO (RAM) : { M . d a t a) }

}

The .text output section will be allocated within the ROM memory area as defined
with the MEMORY statement. The .data output section will be allocated within the
RAM memory area.

NOTE: For compatibility with older linker versions, you can also
direct a section to memory by using the > option. It must be
placed after the braces enclosing the input section list. This is
equivalent to using the INTO option.

SYNTAX:

> memjxame

THE LINKER DIRECTIVE FILE 3-9

EXAMPLE:

The .text output section will be allocated within the RAM memory area.
3. Directing a section to memory by attributes by using the INTO option. The INTO

option instructs the linker to assign a memory address, within any memory area
having the listed attributes, to the specified output section.

SYNTAX:

INTO ((attributes))

attributes is a sequence of attribute letters (I, R, W, X, meaning respectively init,
read, write and execute).

EXAMPLE:

MEMORY {
ROM1 (R) : origin=0xl000 length=0x2000
ROM2 (R) : origin=0x8000 length=0x2000
RAMI (RW) : origin=0xl0000 length=0x20000
RAM2 (RW) : origin=0x80000 length=0x20000

}

SECTIONS {
.text INTOUR)) : { M.text) }
.data INTO ((RW)) : { M.data))

.text : { M.text) } > RAM

}

The .text output section will be allocated within a memory area that has only
read attributes (ROM1 or ROM2). The .data output section will be allocated
within a memory area that has read and write attributes (RAMI or RAM2).

4. Binding or directing a ROM copy of a section to memory by using the ROMBIND
and ROMINTO options. These options are equivalent to the BIND and INTO
options, respectively. Use of the ROMBIND or ROMINTO option instructs the linker
to allocate memory for a ROM copy of the specified output section. The output
section will therefore have two addresses: a ROM address and a RAM address.
This can be used for data initialization (see Section 5.4 for details).

SYNTAX:

ROMBIND (expression)
ROMINTO (m e m jia m e)
ROMINTO((attribu tes))

3-10 THE LINKER DIRECTIVE FILE

expression is any valid linker expression.
memjiame is a name that has been associated with a configured memory area
through use of the MEMORY directive.
attributes is a sequence of attribute letters (I, R, W, X, meaning respectively init,
read, write and execute).

EXAMPLES:

.data BIND (0x10 0 00) ROMBIND(0x80 00 00) : { M.data) }

The .data output section will be allocated at address 0x10000. A copy of the .data
section will be allocated at address 0x800000. This copy is used only for initializa­
tion purposes. At run-time the .data section will be copied by an initialization rou­
tine from address 0x800000 (ROM address) to its actual (RAM) address 0x10000.

MEMORY {
ROM : origin=0xl000 length=0x2000
RAM : origin=0xl0000 length=0x80000

}

SECTIONS {
.text INTO (ROM) : { M.text) }
.data INTO (RAM) ROMINTO (ROM) : { M.data) }

}

The .text output section will be allocated within the ROM memory area as defined
with the MEMORY statement. The .data output section will be allocated within the
RAM memory area, and a copy of the .data section will be allocated within the
ROM memory area. This copy is used only for initialization purposes.

3.7.4 Aligning a Section
Aligning an output section to an alignment value ensures that the output section will
be assigned a memory address that is a multiple of the value. The ALIGN option is
used for this purpose.

SYNTAX:

align (expression)

expression is any valid linker expression (Appendix A).

THE LINKER DIRECTIVE FILE 3-11

NOTE: The ALIGN option is ignored when it appears in conjunction with
the BIND or ROMBIND allocation options, because the allocation
options are specified with a particular address.

EXAMPLES:

.text ALIGN(16) : { *(.text) }

The .text output section will be allocated anywhere within available configured
memory but its address must be a multiple of 16.

.text INTO (RAM) ALIGN (16) : { M.text) }

The .text output section will be allocated within the memory area RAM and its address
will be a multiple of 16.

3.7.5 Setting the Section Type
Section type information is stored in the section header of the COFF file. This informa­
tion indicates how the section is to be handled by the linker and the
debugger/operating system, and what category of data is contained within the section.
By default, the linker determines the type of an output section and its contents based
on the input sections comprising it. Two groups of section type options are available to
control how the output section is processed and to specify the contents of an output sec­
tion.

SYNTAX:

(typejoption)

type_option is any valid section type option from the following groups:

1. Options which control the processing of output sections
• DSECT
• NOLOAD
• COPY
• INFO
. OVERLAY
• LIB

2. Options that specify the contents of an output section

3-12 THE LINKER DIRECTIVE FILE

• TYP_TEXT

• TYP_DATA
• TYP_LINK
. TYP_BSS
. TYP_MOD

For a detailed definition of these options see the GNX COFF Programmer’s Guide.

EXAMPLE:

.mod (NOLOAD) BIND (0x10000) : { * (.mod) }

The .mod output section will be a NOLOAD section.

3.7.6 Grouping Output Sections
Several output sections may be grouped to create a contiguous block of memory by
using the GROUP option. This allows you to allocate consecutive sections without hav­
ing to specify an allocation option for each section. Although the output sections are
grouped together in memory, they remain separate.

SYNTAX:

GROUP [g r o u p _ o p t io n s] : {
o u tp u t_ s e c t io n _ s p e c [ty p e _ o p tio n] : { in p u t_ se c tio n _ sp e c ... }

}

g r o u p _ o p t io n s are the allocation options BIND, ROMBIND, INTO and ROMINTO, and
the option ALIGN.
o u tp u t_ s e c t io n _ s p e c is a specification of the output section to be created.
ty p e _ o p t io n is any section type option (see Section 3.7.F for the list of these options).
in p u t j s e c t i o n js p e c is a specification of an input section.

EXAMPLE:

.text B IN D(0x8000) : { *(.text) }
GROUP B IN D(0x10000) : {

. data : { * (. data) }

.bss : { * (.bss) }
}

The .data and .bss output sections will be grouped to a contiguous block of memory
starting at address 0x10000.

THE LINKER DIRECTIVE FILE 3-13

NOTE: Output sections that are specified within a GROUP option may be
qualified only by section type options, since all other options are
specified in GROUP level.

3.8 ASSIGNMENT STATEMENT
Symbols can be defined and assigned a memory address at link-time through use of the
assignment statement. This is useful for two reasons:
• To use link-time computed information at run-time. You can assign a symbol an

expression that is calculated by the linker, and then use it in your program.
• To bind a symbol to an address in a flexible way. If you define a symbol in a direc­

tive file and later want to change its address, you simply change the assignment in
the directive file and re-link. Therefore there is no need to recompile your program.

SYNTAX:

symbol = expression ;

symbol is any valid symbol name.
expression is any valid linker expression.

The syntax supports other assignment operators in addition to “=” (a complete list of
assignment operators can be found in Appendix A).

Since the assignment of symbols to a memory address is made at the end of the linker
allocation phase, the linker does not recognize addresses assigned previously. There­
fore, the placement of the assignment statement within a directive file is not impor­
tant, and may be placed anywhere within the directive file.

Note that the linker does not check that the memory address assigned to a symbol is
within configured memory.

EXAMPLES:

abc = 0x1000 ;

A symbol named abc will be defined and its address will be 0x1000.

sdata = ADDR(.data)

A symbol named sdata will be defined and its address will be the start address of the
.data output section.

3-14 THE LINKER DIRECTIVE FILE

3.8.1 Symbol Assignment Within SECTIONS Statement
A symbol assignment may also be used within a SECTIONS statement. Such an
assignment can use the symbol to denote the current location in memory. This
assignment should appear as part of the input section specification list.

EXAMPLE:

.te x t : { M . t e x t) xxx = . ; }

A symbol named xxx will be defined and assigned the end address of the .text output
section (the end address is the value of the current location of the assignment).

Note that this symbol assignment can also be specified outside the SECTIONS state­
ment:

xxx = ADDR(.text) + SIZEOF(. text) ;

3.8.2 Creating Gaps Within An Output Section
The current location symbol itself may be assigned a value. This can be used to create
a gap within an output section. The linker normally combines input sections in a con­
tiguous fashion when creating an output section. However, by incrementing the value
of the current location you can create a gap of unallocated space.

SYNTAX:

. + = expression

expression is any valid linker expression.

EXAMPLE:

.text : { a.o(.text) . += 0x1000 ; b.o(.text) }

The .text output section will consist of the .text section of file a.o, a gap of of
0x1000 (created by the current location assignment), and the .text section of file b . o.

By default, the linker fills the gaps created within an output section with zeros or with
a value specified with the Specify Fill Value invocation option (see Section 2.4.13).
However, you can specify a fill value for a specific output section. This overrides any
other specified fill value.

SYNTAX:

o u tp u t js e c t io n j ia m e [o p tio n s] : {in pu t_sec tion _spec ... } = f ill_ va lu e

THE LINKER DIRECTIVE FILE 3-15

fill_value is a two-byte integer constant.

EXAMPLE:

.text : { a.o(.text) . += 0x1000 ; b.o(.text) } = Oxffff

Each word in the gap created inside the .text output section will contain the value
Oxffff (i.e. the gap will be filled with l ’s).

3.9 OUTPUT FILE OPTIONS
Three characteristics of the output file can be changed through use of output file
options: the default filename, the default execution permission set, and the header
magic number.

3.9.1 Change Default Filename and Permission
By default, the linker produces an executable file for the cross environment named
a32 .out that does not have executable permission. To override this default for the
native environment, the following statement can be included anywhere within the
directive file:

OPTION NATIVE

This results in a default output file named a.out. This option also gives executable
permission to the output file. Note that in native environment, the user-written direc­
tive file must be set up to create an output file that compiles with this environment’s
conventions.

3.9.2 Optional Header Magic Number
The optional header magic number in a COFF file provides memory loading informa­
tion to the operating system in a native environment. By default, the linker sets the
optional header magic number to 0417 (octal). To override this default, the following
statement should be included anywhere within the directive file:

OPTION OMAGIC in t

int is any 16-bit integer constant.

3-16 THE LINKER DIRECTIVE FILE

Chapter 4

RESOLUTION OF SYMBOLIC REFERENCES

4.1 INTRODUCTION
A symbol is used either to mark a program location or to represent a data element. In
high-level languages, symbols represent variables, functions or labels.

An external symbol is a symbol that can be referenced from any object file. The
definition (defining point) of a symbol is a source program statement which associates
the symbol with an explicit location in a section of the object file. A symbol can be
defined only in one object file.

A symbolic reference is the use of a symbol in a statement that is not its definition. An
external symbolic reference is a reference to a symbol which is defined in another
object file.

4.1.1 Examples of Symbol Definition and Reference
In the assembly language:

.globl abc

The .globl assembler directive is used to declare the symbol abc as external.

xxx:

This assembly language label defines the symbol xxx since it is associated with an
explicit location within one of the sections.

yyy : :

A label, followed by a double colon, defines an external symbol. This example is
equivalent to:

yyy:
.globl yyy

The first statement defines the symbol yyy. The second statement declares it as exter­
nal.

RESOLUTION OF SYMBOLIC REFERENCES 4-1

movd sym,rO

This is a reference to the symbol sym. If sym is not defined in the same program, the
assembler considers this an external symbolic reference.

In the C language:

int i ;
int j = 5;
main {
extern k;

}

The variable i is an external symbol since it is declared outside any function, k is also
an external symbol because it is declared as such (by the term "extern"). And j is a
defined external symbol since it is initialized at its point of declaration. This initializa­
tion associates j with a location within the .data section.

4.1.2 Symbol Resolution Using the Symbol Table
The COFF object file contains a symbol table. The symbol table is comprised of infor­
mation about symbols defined or referenced in the source program. If a symbol was
defined in the source program, it will have a "defined" status in the object file’s symbol
table entry. If a symbol is only referenced in the source program (and not defined), it
will have an "undefined" status in the object file’s symbol table entry.

The resolution of symbolic references is the process by which the linker matches an
external symbolic reference with its definition. It does so by using the information in
the symbol tables of the object files. If a symbol has the status "undefined" in one
object file, the linker searches for the symbol’s definition in the other object files. The
linker checks that no symbol is defined more than once, and that there is no symbol left
undefined. If such a symbol is found, the linker issues an error message and ter­
minates the linking process.

4.1.3 Example
obj ect_l obj ect_2

a : defined a : undefined
b : defined b : defined
c : undefined

d : defined

4-2 RESOLUTION OF SYMBOLIC REFERENCES

When linking the two object files, the symbols a and d are resolved correctly by the
linker, a is defined in object_l and appears in object_2 as undefined, d appears
only in the object file in which it is defined. The linker will issue an error message
about symbols b and c, since b is defined twice and c is never defined.

4.2 LIBRARY PROCESSING
The resolution of external symbolic references to a library member involves a slightly
different process. A library member becomes part of the linker’s input only if it con­
tains a definition of an external symbol that has been referenced in a previous input
file or library member. This is unlike regular object files, which are completely included
in the linker’s input.

A library file is a collection of object files typically containing useful routines. When the
GNX archiver (see the GNX Commands and Operations Manual) builds a library from
object files, it creates a symbol directory as the first member of the library. The library
symbol directory is a list of all defined external symbols found in the library members.
For each such symbol, there is a pointer to the library member where the symbol is
defined. When the linker processes a library it scans the symbol directory, selecting
the definitions that resolve currently undefined external symbols.

When a library member is selected for the linking process, it may create new external
symbolic references (for example, one library member can refer to a symbol which is
defined in another library member). For this reason, the linker will scan the symbol
directory of a library repeatedly until the the definitions in the symbol directory no
longer resolve external symbols (i.e. all references to library members have been
resolved in previous passes). Therefore, for efficiency of the linking process, the order­
ing of library members should be such that a library member containing a reference to
another library member should be place first in the library. The GNX lorder utility
can be used to calculate the best ordering for library members (see the GNX Com­
mands and Operations Manual).

4.2.1 Example
Consider a main program that has only one external symbolic reference: a call to the
malloc routine found in the GNX library libc.a. The malloc routine itself calls three
additional routines from libc.a: bcopy, getpagesize and sbrk. The program is
linked by

nmeld main.o -lc (UNIX)
nmeld main.obj,gnxdir:libc.a (VMS)

The library will be processed depending on the ordering of the symbol directory.
Assume that the ordering of the symbols is ...bcopy...

RESOLUTION OF SYMBOLIC REFERENCES 4-3

malloc. . . getpagesize . . . sbrk. . . . The linker processes the symbol directory as
shown below:

Pass Symbol Resolves Current Unresolved References
Processed a Reference

0 malloc

1 bcopy no malloc
1 malloc yes bcopy, getpagesize, sbrk
1 getpagesize yes bcopy, sbrk
1 sbrk yes bcopy

2 bcopy no
2 malloc no
2 getpagesize no
2 sbrk no

Now assume that the ordering of the symbols is . . .malloc. . .bcopy. . .
getpagesize...sbrk.... . The linker processes the symbol directory as shown
below:

Pass

0

Symbol
Processed

Resolves
a Reference

Current Unresolved References

malloc
1 malloc yes bcopy, getpagesize, sbrk
1 bcopy yes getpagesize, sbrk
1 getpagesize yes sbrk
1 sbrk yes

As can be seen, in the second case one pass is sufficient to resolve all external refer­
ences to the library.

4.3 COMMON DATA PROCESSING
Common data refers to external symbols with a special attribute. This attribute
instructs the linker to not terminate the linking process even if the symbol definition is
not in any object file.

All common data is associated with a special linker created .bss section. The size of
this section is based on the combined size of all the common data. When the linker

4-4 RESOLUTION OF SYMBOLIC REFERENCES

consolidates common data, it checks that different references to the same symbol indi­
cate the same size. If the references indicate data of different sizes, the linker issues a
warning message and allocates space in memory according to the largest reference.

You can specify an input section that contains common data by use of the SECTIONS
statement’s [COMMON] notation in the directive file.

4.3.1 Examples
In the assembly language:

. comm abc,4

The .comm assembler directive is used to declare the symbol abc as a common exter­
nal symbol with a size of 4 bytes.

In the C language:

int i ;
main () {

}

The variable i is a common external symbol. In C, any variable that is declared out­
side a function, is uninitialized, and is not preceded by the extern modifier, is by
default considered as a common external variable.

In the Fortran language:

COMMON /C C C / ABC, DEF

The symbol CCC (the name of the common area) is a common external symbol. Its size
is the sum of the sizes of variables ABC and DEF.

4.4 SYMBOL DEFINITION IN THE DIRECTIVE FILE
Normally, the definition of an external symbol is found in one of the input files. How­
ever, you can also define a symbol at link time through use of the assignment state­
ment in the directive file (Section 3.8). This creates an external symbol and associates
it with an absolute address.

RESOLUTION OF SYMBOLIC REFERENCES 4-5

4.5 LINKER DEFINED SYMBOLS
Certain special symbols are referenced in useful routines and have a universal use.
These symbols have a default definition and value that is automatically assigned by
the linker. You can override the default definition and value of special symbols by sup­
plying your own definition (either in the source program or in the linker directive file).
These symbols are:

Symbol Name Meaning Default Value

_etext end address of .text section end address of .text
section

_edata end address of .data section end address of .data
section

_end start of heap next address after
highest allocated
memory address

_HEAP$_START start of heap next address after
highest allocated
memory address

_HEAP$_MAX heap limit address highest address in
configured memory

_ _STACK_START initial top of stack Oxftftftft

_ _INIT_TABLE address of initialization table address of linker-
created .init section

4.5.1 Example
In the assembly language:

lprd sp, $__STACK_START

The symbol STACK_START is used to initialize the stack pointer (sp).

4-6 RESOLUTION OF SYMBOLIC REFERENCES

Chapter 5

ALLOCATION OF OUTPUT SECTIONS

5.1 INTRODUCTION
The allocation process of the linker takes place after all input files have been read and
all external symbolic references have been resolved. This process includes constructing
output sections from input sections and assigning memory addresses to each output
section. The linker directive file can be used to exercise considerable control over the
allocation of memory.

5.2 CREATING OUTPUT SECTIONS FROM INPUT SECTIONS
Each output section is constructed from one or more input sections. The list of input
sections to be combined to produce an output section is determined in two ways:

1. Through the user-specified SECTIONS statement in the directive file (Section
3.7).

2. By the default linker rule.

The default linker rule applies to input sections that have not been associated with an
output section through use of the SECTIONS statement. Such input sections are associ­
ated with an output section that has the same name. If there is no output section with
the same name, the linker creates a new output section with the input section name
and associates the input section with the newly created output section.

5.2.1 Example
Consider two input files, a.o and b.o, each containing the input sections .text, .data,
.bss, .mod, and .link. For the following SECTIONS statement:

SECTIONS {
. text : { * (. text) }
.data : { a.o(.data) a.o(.link) }
.b s s : {}

}

Output sections will be constructed as follows (Reason 1 indicates a user specification;
Reason 2 indicates the linker default rule):

ALLOCATION OF OUTPUT SECTIONS 5-1

Output section Contents Reason

.text .text of a.o 1
.text of b.o 1

.data .data of a.o 1
.link of a.o 1
.data of b.o 2

.bss .bss of a.o 2
.bss of b.o 2

.mod .mod of a.o 2
.mod of b.o 2

.link .link of b.o 2

NOTE: When using the Series 32000 modularity support feature some
input sections are associated with a module name (for further
details see the GNX Language Tools Technical Notes). Such input
sections cannot be combined with input sections that are associated
with a different module name. They can be combined with input
sections that are associated with the same module name or with
input sections that are not associated with any module name.

5.3 ASSIGNING AN ADDRESS TO AN OUTPUT SECTION
Before assigning an address to an output section, the linker determines which parts of
memory are available for allocation. By default, the linker assumes that the maximum
amount of configured memory space, 0x0 through OxFFFFFFFF, is available for alloca­
tion. However, you can (and should) specify the areas of memory to be configured, and
therefore available for allocation, through use of the MEMORY statement in the direc­
tive file (Section 3.6).

There are four phases in the allocation process (see Section 3.7.3):
1. The linker processes all the BIND options used in the SECTIONS statement. The

BIND option has the highest priority in determining output section addresses.
2. The linker processes all the INTO options of the SECTIONS statement to direct

output sections to memory areas by name.
3. The linker processes all the INTO options of the SECTIONS statement to direct

output sections to memory areas by attributes.
4. The linker assigns memory addresses to all unallocated output sections using a

find-first-fit algorithm.

If the linker cannot process any one of the above phases, it issues an error and ter­
minates the linking process.

5-2 ALLOCATION OF OUTPUT SECTIONS

5.3.1 Example
Consider the following directive file:

MEMORY {
MEMl (R) : ORIGIN = 1000 LENGTH = 1000
MEM2 (RW) : ORIGIN = 3000 LENGTH = 1000

}

SECTIONS {
.text INTO(MEMl)
.data BIND (3 50 0)
. bss
.mod INTO ((R))

}

Assume that the size of the output section of .text is 500, of .data is 400, of .bss is 500,
and of .mod is 32.

The steps in the allocation process are as follows:
1. Output section .data is allocated at address 3500, as specified in the BIND option.
2. Output section .text is allocated within memory area MEMl. Since this area is

empty, the .text section will be allocated at its starting address 1000.
3. Output section .mod should be allocated within a memory area with an R attri­

bute. The only memory area which has an R attribute is MEMl. This section is
allocated right after the .text section, at address 1500.

4. Since there is no allocation option specified for the .bss output section, it will be
allocated in the first memory address where it fits. Though the .bss section does
not fit in memory area MEMl, it does fit in the memory area MEM2. Therefore
the .bss section will be allocated at the starting address of MEM2, 3000.

5.4 DATA INITIALIZATION SUPPORT
The linker can be used to support data initialization for an embedded environment.
The two kinds of initializations are:

• Variables that are initialized at their point of declaration rather than by assign­
ment at run-time.

• Variables that are uninitialized are automatically initialized to zero.

To implement the first kind of initialization, you must duplicate the section that con­
tains the initialized data (typically the .data section). This is done through use of the
ROMBIND and ROMINTO output section options (Section 3.7.3). These options instruct
the linker to assign a second address to the output section (a ROM address). The out­
put section should be burned on ROM and copied to RAM at run-time, in order for it to

ALLOCATION OF OUTPUT SECTIONS 5-3

: { * (. text) }
: { * (.data) }

: { * (.bss) }
: { * (.mod) }

be writable. The output section is thus allocated twice (on ROM and RAM). Refer­
ences to symbols that are defined in duplicated sections are modified by the linker
according to the section RAM address, where it resides at run-time.

To implement the second kind of initialization, the sections that contain uninitialized
data (typically the .bss section) are initialized to zero at run-time.

When invoked with the Request Initialization Table invocation option (Section 2.4.12)
the linker generates an initialization table. This table can be used by an initialization
routine. The initialization table provides two types of entries:
• One kind of entry for each duplicated section. The information in this kind of entry

may be used to copy sections from ROM to RAM.
• One entry for each section of uninitialized data (typically .bss). The information in

this kind of entry may be used to initialize sections.

The structure of an initialization table is:

Type Size Name Description

string 8 i_secname Section name

unsigned integer 4 i_srcaddr Section source (ROM) address.
N/A for sections of uninitial­
ized data and contains
OxflYfYfFf in that case.

unsigned integer 4 i_trgaddr Section target (RAM) address

unsigned integer 4 i_size Section size

unsigned integer 4 i_type Section type (identical to
COFF section header flags).

The C structure declaration for this table may be found in the i n i t t a b .h header file
supplied with the GNX package. The initialization table generated by the linker
resides in a linker-created .init input section (see Section 5.5).

5-4 ALLOCATION OF OUTPUT SECTIONS

5.4.1 Example
Consider a simple C program that uses initialized and uninitialized variables:

int i = 5 ;
int j ;
main ()
{

if (i == 5 && j == 0)
printf("PASSED \n") ;
else
printf("FAILED \n") ;

}

Initialized variables are allocated in a .data section. Uninitialized variables are allo­
cated in a .bss section. In order to run this program correctly in an embedded environ­
ment, data initialization is necessary. The .data section should be burned on ROM and
copied to RAM before program execution. The .bss section should be filled with zeroes.
By using the linker data initialization support, this process is simpler. A sample direc­
tive file for linking the program is:

MEMORY {
ROM : ORG = 0x80000 LEN = 0x20000
RAM : ORG = 0x10000 LEN = 0x40000

}

SECTIONS {
.text INTO(ROM) : { }
.data ROMINTO(ROM) INTO(RAM) : { }
.bss INTO(RAM) : { }
.init INTO(ROM) : { }

}

The .text section that contains the program code is directed to the ROM memory area.

The .data section is duplicated, and directed to the RAM and ROM memory areas.
Note that all references to the .data section will be to the the RAM copy. The ROM
copy is used only for initialization purposes and is not used after initialization is com­
pleted.

The .bss section is directed to the RAM memory area.

The .init section, which contains the initialization table, is directed to the ROM
memory area.

The program is now ready for linking. In order to take advantage of the data initializa­
tion support the Request Initialization Table invocation option must be used. This
option is -i on UNIX and /INITTABLE on VMS. The initialization table can then be

ALLOCATION OF OUTPUT SECTIONS 5-5

used by to perform the required initializations. The crtO initialization routine, provided
as part of the GNX package, can be used to perform the initialization. The invocation
line for the above program is:

nmeld gnxdir /lib/crtO.o main.o -lc -i -o prog (UNIX)

NMELD GNXDIR:CRTO.OBJ,MAIN.OBJ,GNXDIR:LIBC.A /INIT /OUT=PROG.EXE (VMS)

where gnxdir is the top-level directory of the GNX package.

The .data section should now be burned to ROM. This is done by using the nburn util­
ity (see The Commands and Operations Manual). A sample invocation of nburn (assuming
64K EPROMs) is:

nburn -x0x80000 -164 prog-o prog.hex (UNIX)

NBURN /VADDRESS=0x80000 /PROMSIZE=64 PROG.EXE /OUTPUT=PROG.HEX (VMS)

You can write your own initialization routine. A sample C initialization routine is:

#include <inittab.h>
#define UNDEF Oxffffffff
init()
{

extern INITTAB _INIT_TABLE[] ; /* _INIT_TABLE is defined by the Linker */
INITTAB *inittab_entry ; /* a pointer to the current init table

inittab_entry++) (

if (inittab_entry->i_srcaddr == UNDEF)
/* No source address - its an uninitialized data (bss) area.

Should be set to zero.
*/
memset(inittab_entry->i_trgaddr, ' inittab_entry->i_size) ;

else
/* It's an initialized data area - copy from ROM to RAM */
memcpy(inittab_entry->i_trgaddr,

entry */

for (inittab_entry = _INIT_TABLE;
inittab_entry->i_secname[0] != 0;

/* start of init table */
/* last entry is a null one */

inittab_entry->i_srcaddr,
inittab_entry->i_size) ;

5-6 ALLOCATION OF OUTPUT SECTIONS

5.5 LINKER CREATED INPUT SECTIONS
Normally, input sections are a part of input files. However, the linker sometimes
creates "dummy" input sections. These dummy input sections are added to the input
section list and participate in the allocation process like any other input section.
Dummy input sections are created when:
• the linker allocates common data. The linker creates a .bss input section (Section

4.3).
• the linker creates module table entries for the Series 32000 modularity support

feature. The linker creates a .mod input section (Section 3.7.1).
• the linker creates an initialization table for data initialization purposes. The linker

creates a .init input section.

During the allocation process, the linker treats these input sections like all other input
sections. The dummy input sections can be identified in the linker memory map by the
term "linker_defined" that replaces the filename for these sections (see Section 5.6
below).

5.5.1 Example
Consider two C programs a.c and b.c. For the program a.c:

int i ;
static int j ;
main ()
{

}

For the program b.c:

int i ;
static int j ;
foo ()
{

}

Each of the j variables is local to its module and allocated by the compiler/assembler
to a local .bss section. The i variables are common external symbols which are not
allocated at compile-time. Instead they are consolidated by the linker and allocated to
a linker-created .bss section. This .bss section is added to the input section list. The
linker will thus have three .bss input sections: two from each of the object files and one
that the linker has created. All three are input for the linker allocation process.

ALLOCATION OF OUTPUT SECTIONS 5-7

5.6 MEMORY MAP
The following information appears on the memory map (all address and size values are
in hexadecimal).
• Output section, lists each output section in the order it appears in memory. For

those output sections that have been duplicated, the ROM copy will be denoted by
(R) next to the output section name.

• Input section, lists each input section that was linked to produce the specified out­
put section.

• Memory address, denotes the starting address in memory of a particular input or
output section.

• Size of section, lists the total size of the output section and the individual size of
each input sections.

• Section contents, specifies the input file from which the input section originated.
This is either an object file or a library file. The term 'linker_defined'’ is used to
indicate that the section was created by the linker.

The term "fill space" may appear in the section contents column, and indicates a gap
created in the output section through use of the current location symbol assignment of
the directive file (Section 3.8.2). The term "UNUSED" refers to unallocated or
unconfigured memory.

5-8 ALLOCATION OF OUTPUT SECTIONS

5.6.1 Example

output input memory size section
section section address contents

. text eOOO 55c
. text eOOO 30 main .o
. text e03 0 404 libc. aimalloc.o
. text e434 24 libc. a:bcopy.o
. text e458 18 libc. a :getpagesize.c
. text e47 0 ec libc. a :sbrk.o

UNUSED e55c to fOOO

. data fOOO d4
. data fOOO 10 main.o
. data fOlO 60 libc. a:malloc.o
. data f 07 0 0 libc. a rbcopy.o
. data f 07 0 60 libc. a :getpagesize.c
. data fOdO 4 libc. a :sbrk.o

.bss f 0d4 8c
.bss f 0d4 0 main .o
.bss f 0d4 80 libc. a:malloc.o
. bss f 154 0 libc. a:bcopy.o
.bss f 154 0 libc. a :getpagesize . c
. bss f 154 0 libc. a :sbrk.o
.b s s f 154 c linker_defined

UNUSED f l6 0 to f f f f f f f f

ALLOCATION OF OUTPUT SECTIONS 5-9

Chapter 6

RELOCATION OF MEMORY ADDRESS

6.1 INTRODUCTION
Once external symbolic references have been resolved and output sections allocated to
memory, the linker calculates the final addresses of symbolic references. The linker
also modifies the contents of the holes within the code or data. Holes are small pieces
of code or data that are based symbolic references. A hole must be modified to reflect
the new address of the symbolic reference on which it is based. This process includes
not only external symbolic references, but also other symbolic references that need to
be updated (for example, a reference that uses absolute addressing).

6.2 RELOCATION INFORMATION
Relocation information is part of the COFF file. The assembler creates a relocation
table for each section of the file. Each relocation table entry provides information about
a hole that should be updated as a result of link-time section allocation. This hole may
be a machine instruction operand or data (typically address constants, module table
entries, etc.).

Each relocation entry consists of

• An address of the hole that should be updated.
• A pointer to the symbol that is associated with the reference.
• The hole type (format, size, and semantic).

Refer to the COFF Programmer’s Guide for further information.

6.2.1 Example
Consider the following assembly program:

bsr foo
movd rO,abc
. data
abc: .double 5

The first two instructions must be relocated at link-time.

RELOCATION OF MEMORY ADDRESS 6-1

The first instruction, bsr foo, refers to an external symbol (foo) whose address is
unknown at assembly-time. The assembler encoding for this instruction is

02 cO 00 00 00 (bsr *+0)

The relocation entry created by the assembler contains the following information:
• A hole address that points to the instruction’s second byte (the location of the

instruction operand).
• The index of the symbol foo in the symbol table.
• The hole type (the hole size is 4 bytes, and the hole is pc-relative).

The second instruction, movd rO, abc, has a reference to the local symbol abc. How­
ever this reference is in absolute addressing mode, and absolute addresses are
unknown at assembly time. The assembler encoding for this instruction is

57 05 cO 00 00 0c (movd r0,@12)

The relocation entry created by the assembler contains the following information:
• A hole address that points to the instruction’s third byte (the location of the

instruction’s second operand).
• The index of the symbol .data in the symbol table. The symbol abc is already

allocated in the .data section and its final address will be updated according to the
final address of the .data input section. The address of the symbol . data is also the
address of the .data input section.

• The hole type (the hole size is 4 bytes, and the hole is an absolute address).

6.3 THE RELOCATION PROCESS
During the relocation process, the linker scans the relocation table of each input sec­
tion. For each relocation entry, the linker calculates the new value of the hole. The
calculation is based on the referenced symbol’s new address, on the new address of the
hole (only when the hole is a pc-relative operand), and on the type of the hole found in
the relocation entry. The new value of the hole should fit in the size allocated to it, oth­
erwise the linker issues an error message. After the new value of the hole has been
calculated, the linker updates the hole with this new value.

6-2 RELOCATION OF MEMORY ADDRESS

6.3.1 Example
Using the example in Section 6.2.1, two holes are modified. Assume that the final
address of the symbol foo is 0x10000, and that the final address of the bsr instruc­
tion is OxeOOO. The displacement for the bsr instruction should thus be modified to
0xl0000-0xe000=0x2000. The operand is modified by the linker and the new instruc­
tion encoding is:

02 cO 00 20 00

Assume now that the final address of the symbol abc is 0x11)00. The second operand of
the movd instruction is modified to this absolute address. The new instruction encod­
ing is:

57 05 cO 00 fO 00

RELOCATION OF MEMORY ADDRESS 6-3

Appendix A

DIRECTIVE FILE EXPRESSIONS

A.1 INTRODUCTION
Directive file expressions are used as arguments for certain options and as right-hand-
side of assignment statements. Expressions consist of integer constants, operators,
special functions, and parentheses. The value of a directive file expression is always a
4-byte unsigned integer. The value generally represents a memory address.

Expressions are used in two places in the directive file:
• As arguments to the BIND, ROMBIND and ALIGN options and to the NEXT func­

tion.
• As the right-hand side of an assignment statement.

A.2 INTEGER SYNTAX
The linker accepts three radices for unsigned integer input: decimal (the default), hexa­
decimal, and octal. Integer input in the directive file syntax is denoted by the word int.
Unless otherwise noted, int represents a 4-byte unsigned integer.

A.2.1 Decimal Value Syntax
A decimal value begins with a digit in the range of 1 through 9 followed by optional
digits in the range of 0 through 9.

A.2.2 Octal Value Syntax
An octal value begins with 0 followed by digits in the range of 0 through 7.

A.2.3 Hexadecimal Value Syntax
A hexadecimal value begins with either Ox or OX, followed by digits in the range of 0
through 9 and/or letters in the range of A through F (either upper- or lower-case).

DIRECTIVE FILE EXPRESSIONS A-l

A.3 UNARY OPERATORS
The linker supports the following unary operators:

1. Logical negation
2. One’s complement
3. Two’s complement

A unary operator has a higher precedence than a binary operator in expression evalua­
tion.

A.4 BINARY OPERATORS
The linker supports the following binary operators (listed in order of precedence):

1. * (multiplication), / (division), and % (modulus)
2. + (addition) and - (subtraction)
3. » (right shift) and « (left shift)

4. > (greater than), < (less than), >= (greater than or equal), and <= (less than or
equal)

5. == (equal) and != (not equal)
6. & and I (bitwise AND and bitwise OR)
7. && and I I (logical AND and logical OR)

A.5 ASSIGNMENT OPERATORS
The value of an expression may be assigned to a symbol in one of five ways:

symbol = expr, (assign the value of expr to symbol)
symbol += expr; (equivalent to: symbol = symbol + expr)
symbol -= expr; (equivalent to: symbol = symbol - expr)

symbol *=expr; (equivalent to: symbol = symbol * expr)

symbol /-expr, (equivalent to: symbol = symbol / expr)

The assignment syntax always requires a semicolon after the expression.

A-2 DIRECTIVE FILE EXPRESSIONS

A.6 SPECIAL FUNCTIONS
Five special functions provide useful information about output sections and memory
addresses. These functions and the information they return are listed in Table A-l
below.

Table A-l. Special Functions

FUNCTION RETURNED VALUE

SIZEO F Size of a specified output section

ADDR Memory address of a specified output section

FILEADDR File address of a specified output section

NEXT Next memory address aligned to a specified value

HIGHMEMADDR Next address after highest allocated memory address

A.6.1 Size of Output Function
The size of the output function returns the number of bytes in the specified output sec­
tion. The syntax for the SIZEOF function is

SIZEO F (se c t io n j i a m e)

The SIZEOF function can return a valid value only for a section which has already
been created, otherwise it returns a zero.

If more than one section exists with the same name, the information returned will be
relevant only for the first section recognized.

DIRECTIVE FILE EXPRESSIONS A-3

A.6.2 Memory Address Function
The memory address function returns the starting address of the specified output sec­
tion. The syntax for the memory address function is

ADDR (section jiam e)

The ADDR function can return a valid value only for a section which has already been
allocated memory space, otherwise it returns zero.

If more than one section exists with the specified section name, the information
returned will be relevant only for the first section recognized.

A.6.3 File Address Function
The file address function returns the file address of a section’s raw data in the output
file. The syntax for the file address function is

f i l e a d d r (section_name)

The FILEADDR function can return a valid value only for a section which has already
been allocated file space in the output file, otherwise it returns zero.

If more than one section exists with the specified section name, the information
returned will be relevant only for the first section recognized.

A.6.4 Next Address Function
The next address function returns the next available memory address (i.e. after the
most recently allocated output section), which is a multiple of a specified value. The
syntax for the next function is

NEXT (int)

int must be greater than zero.

A.6.5 Highest Memory Address Function
The highest memory address function returns the next available memory address after
the highest address that has been allocated in memory. The syntax for the highest
memory address is

HIGHMEMADDR

A-4 DIRECTIVE FILE EXPRESSIONS

Appendix B

LINKER ERROR MESSAGES

B.l INTRODUCTION
This appendix contains a list of all linker error messages. There are five types of error
messages:
• System Error - the result of an incorrect call to the operating system. A system

error will cause immediate termination of the linking process. An explanation of the
error follows the error message.

• Warning - A warning error has no impact on the linking process.
• Severe Error - Severe errors accumulate, and eventually result in the termination

of the linking process.
• Fatal Error - A fatal error will cause an immediate termination of the linking pro­

cess.
• Internal Error - An internal error is caused by an internal problem in the linker. If

you should encounter an internal error please contact National Semiconductor
immediately. Internal error messages are not listed in this appendix.

The error messages are listed in alphabetical order. The error message type and an
explanation is also given.

B.2 ERROR MESSAGES

Cannot close f i l e filename

Type: System

Explanation: An error has been detected when closing the file.

Cannot open default directive file filename. Proceeding with default
linker processing

Type: Warning

Explanation: The default directive file cannot be opened. The linker therefore uses
a default allocation process, which assumes that the maximum amount of

LINKER ERROR MESSAGES B-l

configured memory space is available and allocates output sections contiguously
from address 0.

Cannot open specified directive f i l e filename

Type: System

Explanation: The user-specified directive file cannot be opened.

Cannot open input file filename

Type: System

Explanation: The input object or library file cannot be opened.

Cannot open output file filename

Type: System

Explanation: The output file cannot be opened with write permission.

Common symbol symbolname has an explicit definition

Type: Warning

Explanation: The common symbol which appears in one or more input files is
defined in another input file. This is not an error. All references to the symbol
are resolved according to its definition. Common symbols without a definition
are consolidated and allocated memory space by the linker.

Common symbol symbolname multiply declared with differing sizes.
Larger size used

Type: Warning

Explanation: The references to the symbol in various input files have differing
size specifications. The linker uses the largest size specified for allocation.

Directive file MEMORY statement error: overlapping memory areas meml
and mem2

Type: Fatal

Explanation: An error has been detected in the memory configuration as specified
in the directive file MEMORY statement. Two memory areas overlap.

B-2 LINKER ERROR MESSAGES

Directive file BIND/ROMBIND option error: address addr (specified
for output section secnam e) is already allocated to another out­
put section

Type: Fatal

Explanation: The directive file SECTIONS statement contains an error. The
specified argument address of the BIND/ROMBIND option is not available since
it is already allocated to another output section.

Directive file BIND/ROMBIND option error: address addr (specified
for output section secname) is not in configured memory

Type: Fatal

Explanation: The directive file SECTIONS statement contains an error. The
specified argument address of the BIND/ROMBIND option is not available since
it is not within configured memory.

Directive file BIND/ROMBIND option error: output sectionsecname does
not fit at specified address addr

Type: Fatal

Explanation: The directive file SECTIONS statement contains an error. The out­
put section does not fit at the address specified by the BIND/ROMBIND option
since there is not enough unallocated memory space at this point.

Directive file BIND/ROMBIND option is used for output section secname
This overrides any other allocation option

Type: Warning

Explanation: Both a directive file BIND/ROMBIND option and another allocation
option are specified for the output section. The linker ignores the other allocation
option, since BIND/ROMBIND options have the highest priority.

Directive file INTO/ROMINTO option error: cannot direct output sec­
tion secname to a memory area - no memory area with the specified
attributes was defined

Type: Fatal

Explanation: The directive file SECTIONS statement contains an error. The out­
put section is directed by attributes to a memory area but no memory area with
the requested attributes was defined in the MEMORY statement.

LINKER ERROR MESSAGES B-3

Directive file INTO/ROMINTO option error: memory area mem, speci­
fied for output section secnam e, is undefined

Type: Fatal

Explanation: The directive tile SECTIONS statement contains an error. The out­
put section is directed to a named memory area which was not defined in the
MEMORY statement.

Directive file INTO/ROMINTO option error: output section secname
(size size) cannot fit in any memory area having the specified
attributes

Type: Fatal

Explanation: The directive file SECTIONS statement contains an error. The out­
put section is directed by attributes to a memory area but there is not enough
space left for this output section in any memory area that has the specified attri­
butes.

Directive file INTO/ROMINTO option error: output section secname
(size size) does not fit in memory a r e a mem

Type: Fatal

Explanation: The directive file SECTIONS statement contains an error. The out­
put section is directed to a named memory but there is not enough space left for
this output section in the memory area.

Directive file error: input file filename specified inside SECTIONS
statement not found in input file list

Type: Fatal

Explanation: The directive file SECTIONS statement contains an error. The file
name specified as part of an input section specification is not in the input file list.
The input file list includes all input files specified in the invocation line and in the
directive file before the SECTIONS statement.

Directive file error: integer constant too big near l i n e num

Type: Fatal

Explanation: The directive file contains an invalid integer constant. Integer con­
stants must be in the range 0 - (2**32)-l.

B-4 LINKER ERROR MESSAGES

Directive file error: invalid memory attribute a t tspecified. Will be
ignored

Type: Warning

Explanation: The directive file contains an invalid memory attribute letter. This is
ignored by the linker.

Directive file error: current location symbol (.) decremented
inside output section secname specification

Type: Fatal

Explanation: The directive file SECTIONS statement contains an error. The
current location symbol (.) is used incorrectly in the output section specification,
such that its new value is less than its old value. The current location symbol
may never be decremented.

Directive file error: current location symbol (.) used not inside
SECTIONS statement, near line linenum

Type: Fatal

Explanation: The current location symbol (.) is used outside the SECTIONS state­
ment of the directive file. The current location symbol may be used only in an
assignment statement that appears as part of an input section list in a SEC­
TIONS statement.

Directive file error: optional header magic number, specified for
OPTION OMAGIC, exceeds 16 bits

Type: Fatal

Explanation: An invalid integer constant is specified as an argument for the direc­
tive file OPTION OMAGIC statement. The argument should not exceed 16 bits
(greater than 65535).

Directive file error: specified MEMORY area mem exceeds 32 bit
address range

Type: Fatal

Explanation: The directive file MEMORY statement contains an error. The
memory area is specified with an address range that exceeds 32 bits (i.e. the
starting address plus length exceeds the value 2**32).

LINKER ERROR MESSAGES B-5

Directive file expression error: output section secname, used as an
argument for SIZEOF, FILEADDR or ADDR function, is not found

Type: Fatal

Explanation: The directive file expression contains an error. The output section
that was specified as an argument to the SIZEOF, FILEADDR or ADDR function
is not found.

Directive file expression error: symbol symboIname not found

Type: Fatal

Explanation: The directive file assignment statement contains an error. The sym­
bol that was specified as part of the right-hand-side of an assignment statement
is not found.

Directive file parse error: err near line number linenum

Type: Fatal

Explanation: The directive file contains a parsing error. This is typically a syntax
error. The parsing error type is denoted by err.

Directive file syntax error: ending quote expected near l in e num

Type: Fatal

Explanation: The directive file contains a syntax error. A string is missing the end
quote.

Directive file syntax error: unrecognized keyword after OPTION near
line linenum

Type: Fatal

Explanation: The directive file contains a syntax error. An invalid keyword is
specified after the OPTION keyword.

Dynamic memory allocation failed (num bytes required)

Type: Fatal

Explanation: A system request for the dynamic allocation of num bytes has
failed.

B-6 LINKER ERROR MESSAGES

Entry point is not specified and default entry point symbols (start
or _main) cannot be found. Entry point will be set to 0.

Type: Warning

Explanation: The linker failed to determine the program entry point either
because it was not specified explicitly through the Specify Entry Point invocation
option, or the symbols that mark the entry point by default (start or _main)
were not defined in any input file. Therefore the linker will set the entry point to
the address 0.

External procedure descriptor (xpd) refers to a symbol which is
defined in module that does not have a module table entry.
Reference to symbol symbolname (index num) from section secname in
filename

Type: Severe

Explanation: Applicable only for 32000 modularity. During the relocation process,
an external procedure descriptor (see the Assembler .xpd directive) referring to a
symbol without a module table entry is detected (the Assembler .module directive
was not used for this module). Therefore the linker is unable to modify the con­
tents of xpd.

Inconsistent type declarations of common external symbol symbolname

Type: Warning

Explanation: The common symbol has differing type specifications in various
modules. Since the symbol is common, no module has precedence. The linker uses
the first type specification.

Initialization table requested for a non-executable output file.
Request ignored.

Type: Warning

Explanation: The Request Initialization Table and Retain Relocation Information
invocation options were specified at the same time. Since the output object file is
not executable (being only partially linked), an initialization table cannot be
created.

Input file filename is not in proper COFF format (bad magic number)

Type: Fatal

LINKER ERROR MESSAGES B-7

Explanation: The magic number is incorrect. The magic number resides in the
first two bytes of any object files. If these two bytes contain an invalid value, the
file is not recognized as a COFF file and is not processed by the linker.

Instruction operand or address constant cannot fit in space after
relocation. Reference to symbol symbolname (index num) from sec­
tion secname , in filename

Type: Severe

Explanation: A piece of code or data (hole), based on a symbolic reference, cannot
be modified because its value after relocation does not fit its space. This may be
the result of using byte/word displacements or absolute addresses.

Insufficient invocation line arguments

Type: Fatal

Explanation: This message is applicable for UNIX systems only. The linker was
invoked without any invocation arguments or options.

Integer constant in t , specified as an argument to an invocation
option, is too big

Type: Warning

Explanation: An argument to the Specify Fill Value or Specify Version Stamp invo­
cation option is out of range. The argument must be in the range 0-2**16-l.

Invalid integer constant int, specified as an argument to an invoca­
tion option

Type: Fatal

Explanation: An invalid integer constant value is used for the invocation options
Specify Fill Value or Specify Version Stamp. This is either an invalid integer con­
stant specification or the integer constant is not within the legal range (greater
than 65535).

Invocation option opt requires an argument

Type: Fatal

Explanation: This message is applicable for UNIX systems only. The invocation
option is specified without the required argument. Note that some invocation
options may require a space before the argument.

B-8 LINKER ERROR MESSAGES

Library file filename, specified with -1 invocation option, not found

Type: Fatal

Explanation: This message is applicable for UNIX systems only. The library file
specified with the -1 invocation option is not found in any directory in the library
search path.

Library f i l e filenam e has no symbol directory. The GNX archiver util­
ity may be used to restore it

Type: Fatal

Explanation: The input library file does not contain a symbol directory. This file
therefore cannot be processed. The symbol directory may not exist because the
library file has been stripped. The GNX archiver (n)ar may be used to rebuild the
symbol directory.

Link table entry offset not divisable by 4 after
relocation. Reference to symbol symbolname (index num) from sec­
tion secname, in filename

Type: Severe

Explanation: This error message is applicable only for 32000 modularity. The
link table entry offset, used as an operand of the Series 32000 exp, must be a mul­
tiple of 4.

Module address in external procedure descriptor is out of range
(greater than 65535) after relocation. Reference to symbol sym­
bolname (ind ex num) from section secname, in filename

Type: Severe

Explanation: This error message is applicable only for 32000 modularity. The
module table entry address field of an external procedure descriptor (generated by
the Assembler .xpd directive) is not within the legal range and therefore cannot
be modified. This error may be the result of a module table entry located outside
the first 64 Kbytes of the memory.

Module table entry located outside the first 64K (address addr) , in
output section secname

Type: Warning

Explanation: A module table entry was bound to an address which is not within

LINKER ERROR MESSAGES B-9

the first 64K of memory. This may result an error since a module table entry
address is limited to 16 bits. Additional linker errors may be issued as a result of
this error.

More than one directive file allocation option is used for output
sect ion se c n a tn e. Using allocation option priority rules.

Type: Warning

Explanation: The SECTIONS statement of the directive file has more than one
allocation option specified. The linker uses the allocation option with the highest
priority.

More than one directive file specified

Type: Fatal

Explanation: More than one directive file is specified. Only one directive file can be
specified as linker input.

Multiply defined symbol symnam e, defined in filename! already defined
in filename2

Type: Fatal

Explanation: The symbol has more than one definition. A symbol may have only
one definition.

No input object files specified

Type: Fatal

Explanation: No input object files have been specified for the linking process.

Object files being linked are not entirely modular or not entirely
relocatable

Type: Warning

Explanation: The input object files have different magic numbers. Object files that
use the modularity feature have a different magic number. It is not recom­
mended to mix relocatable and modular object files in one link process.

Output section secname (size size) cannot fit in remaining unallocated
configured memory

B-10 LINKER ERROR MESSAGES

Type: F a ta l

Explanation: Refers to an output section without an allocation option specified in
the directive file. The linker is unable to fit the output section into the remaining
unallocated configured memory since there is not enough space left for it.

Program base relative offset in an external procedure descriptor is
out of range (greater than 65535). Reference to symbol symbolname
(index num) from section secnam e, in filename

Type: Severe

Explanation: This error message is applicable only the modularity feature. The
program base relative offset field of an external procedure descriptor (generated
by the Assembler .xpd directive) is out of range and therefore cannot be modified.
This error may be caused when calling a procedure which is located more than
64K after its module program base.

Read error on f i l e filename

Type: Fatal

Explanation: An error was detected when trying to read from the file.

Seek error on file filename

Type: System

Explanation: An error was detected when trying to perform a seek operation on
the file.

Specified entrypoint symbol symbolname does not exist. Using default
entrypoint

Type: Warning

Explanation: The symbol specified as the program entry point on the invocation
line cannot be found. Therefore a default entry point is determined according to
the linker’s default rules.

LINKER ERROR MESSAGES B-11

Specified undefined symbol symbolname never resolved

Type: Severe

Explanation: The definition of the symbol is not found in any of the input object
files or in the directive file.

Unable to recover from previous errors

Type: Fatal

Explanation: The linking process is aborted because of previously reported severe
errors.

Undefined symbol symbolname, first referenced in file filename

Type: Severe

Explanation: The definition of the symbol that is referenced in the input object file
is not found any input object file or in the directive file.

Unknown invocation option opt

Type: Fatal

Explanation: This message is applicable for UNIX systems only. An unrecognized
invocation option is specified.

Write error on f i l e filename

Type: System

Explanation: An error w as detected when tryping to write on the file.

B-12 LINKER ERROR MESSAGES

Appendix C

GLOSSARY

.gnxrc (gnx.ini on VMS) A GNX target specification file that is used by GNX tools
to obtain the CPU, FPU, MMU, system bus-width, and OS target specifications.

.bss section A COFF file section. It normally contains uninitialized data.

.data section A COFF file section. The .data section contains initialized data.

.text section A COFF file section. The .text section contains executable code.

Allocation The process by which the linker constructs output sections from input
sections and allocates memory for the output sections.

COFF Acronym for the Common Object File Format. This is the standard object file
format for the Unix System V operating system, and for the GNX software tools. A
COFF file contains machine code and data and additional information for relocation
and debugging purposes.

Common data Refers to external symbols that are not defined in any input object
file, but are instead consolidated and allocated by the linker. Examples of common data
include symbols that are declared with the .comm assembler directive, uninitialized
variables declared in C outside any function, and Fortran COMMONS.

Cross configuration When the compilation and execution of the compiled program
are done on different machines (the host and target machines are different).

Directive file The directive file controls certain actions of the linker (especially
memory configuration and allocation). A directive file to be used as input for the link­
ing process may be specified on the linker invocation line.

Entry point The starting point of program execution. The entry point address is
part of the information saved in an executable object file. A symbol to mark the entry
point may be specified on the linker invocation line.

Executable object file An executable object file is the final product of a linking pro­
cess. In an executable object file all external symbolic references have been resolved.
The executable object file is therefore in a form that can be executed on the Series
32000-based target system.

External symbol A symbol that is recognized by all modules. Such a symbol can be
defined in one module but referenced from any module.

GLOSSARY C-l

Initialization table A table created by the linker to support data initialization. This
table may be used by programs requiring initialized data in an embedded environment.
The initialized data is copied from ROM to RAM at run-time. The initialization table
provides information about memory segments to be copied from ROM to RAM or to be
filled with zeros at run-time. This information is used by both the standard C initiali­
zation routine (crtO) or by a user-initialization routine.

Input section A COFF section of a linker input object file. The linker combines
input sections to create output sections. By default input sections of the same name are
combined to create one output section having this name in the output file.

Library file A collection of object files that typically contains useful routines. The
linker selects from a specified library file those object files which resolve external refer­
ences.

Memory map A description of the memory layout after the linking process. A
memory map is an optional output of the linker.

Object file A file that is the output of either the assembler or the linker. An object
file contains compiled code and data and additional information for relocation and
debugging purposes.

Option The UNIX term for a parameter, specified on the command line, that is used
to control the utility.

Output section A COFF section of a linker output object file. The linker combines
input sections to create output sections. By default input sections of the same name are
combined to create one output section having this name in the output file.

Partially linked object file An object file created by the linker, which is unexecut­
able since it contains unresolved external references. A partially linked object file may
be used as input for a subsequent linking process.

Qualifier The VMS term for a parameter, specified on the command line, that is
used to control the utility.

Relocation information A part of the object file that is used by the linker in the
relocation process. Relocation information contains information on symbolic references
that require modification of pieces of code or data (holes) at link time. The linker uses
this information to calculate the final value of the holes.

Relocation process The process by which the linker modifies pieces of code or data
(holes) that cannot be calculated before link-time. These holes are typically addresses
or displacements that are created as a result of symbolic references. After the alloca­
tion process is completed the linker assigns final values to these holes, using relocation
information (part of the COFF file) from the input object files.

Resolution of symbolic references The process by which the linker matches

C-2 GLOSSARY

external symbolic references with their definition.

Section A contiguous block of code or data having common attributes. In the COFF
file code and data are separated to sections. Typically there are three types of sections:
the .text section, containing machine code; the .data section, containing initialized
data; and the .bss section, containing uninitialized data.

Symbol A symbol is used either to mark a program location or to represent a data
element. Each symbol is associated with a memory address after the linking process.

Symbol directory Part of a library file. The symbol directory contains information
on the external symbols which are defined in library members. The linker uses the
symbol directory to select the correct library member for the linking process.

Symbol table Part of the object file. The symbol table contains information about
symbols defined or referenced in the source program(s), and is used for various pur­
poses such as resolution of external references (by the linker) and symbolic debugging.

Symbolic reference The use of a symbol in a statement other than its definition.
An external symbolic reference is a reference to a symbol which is defined outside the
module in which it resides.

GLOSSARY C-3

INDEX

A D

Aligning, output section 3-11 .data section 1-1
Allocation of output sectionOPs 3-1 Directive file 1-3, 1-5, 2-4, 3-1, 4-5, 5-1
Allocation of output sections 1-5, 3-1, 3-8, 5-1 assignment statement 3-14

assigning an address 5-2 comment 3-3
creating output sections 5-1 SECTIONS statement 3-5
linker created input sections 5-7 MEMORY statement 3-4
memory map 5-8 output file options 3-16
options 3-8 specification 3-3

Allocation options 3-8 structure 3-1
BIND 3-8
INTO 3-8
ROMBIND 3-8 E
ROMINTO 3-8

Assigning a memory address 5-2 Entry point 2-6
Assignment operators A-2 Error messages B-l
Assignment statement 3-2, 3-14 Executable object file 1-1, 1-3

operators A-2 default filename and permission 3-16
within SECTIONS statement 3-15 linker output 1-3

Attribute letter 3-4 memory map 2-5
relocation information 2-7
strip symbolic information 2-7

B Expressions, directive file 3-2, 3-14, A-l
assignment operators A-2

Binary operators A-2 binary operators A-2
BIND, allocation option 3-8, 5-2 integer syntax A-l
.bss section 1-1, 2-9, 3-8, 4-4, 5-7 special functions A-3

unary operators A-2

COFF file 1-1, 2-6, 3-12, 3-16, 4-2, 6-1
F

.bss section 1-1 Function, linker 1-3, 1-4

.data section 1-1 allocation of output sections 1-5, 3-1, 5-1
entry point 2-6 relocation of memory address 1-5, 6-1
header magic number 3-16 resolution of symbolic references 1-4, 4-1
relocation information 6-1
section header 3-12
symbol table 4-2 G
.text section 1-1

Comment 3-1, 3-3 Gaps, creating 3-15
Common data 2-9, 3-7, 4-4 GNX Target Setup (gts) 2-4

.bss section 1-1, 2-9, 3-8, 4-4, 5-7 Grouping output sections 3-13
Configuration

cross C-l
Creating gaps 3-15 H
Creating output sections 5-1
Current location symbol 3-15 Header magic number 3-16

INDEX 1

I M

Initialization table 2-8, 3-8, 5-7 Memory
Input file specification 2-4, 2-5, 2-6, 3-1, 3-3 allocation 1-1, 1-3, 1-5, 3-7, 4-4, 5-2
Input, linker 1-2 configuration 1-5, 3-1, 3-4, 5-2

directive file 1-3 Memory address 1-1, 1-4, 3-1, 3-4
library file 1-3 assign 3-9, 3-10, 3-11, 3-14, 5-1, 5-2
partially linked object file 1-2 relocation 1-5,6-1
simple object file 1-2 Memory map 1-3, 1-4, 5-8

Input section 1-2, 3-1, 3-5, 5-1, 5-8, 6-2 specification 2-5
specification 3-6 MEMORY statement 3-1, 3-4, 3-14, 5-2

Integer syntax A-l attribute letter 3-4
decimal A-l Modularity support 5-2
hexadecimal A-l Module table 5-7
octal A-l entry 3-7,6-1

INTO, allocation option 3-9, 5-2
Invocation line 2-1

options 2-3 O
UNIX environment 2-1
VMS environment 2-2 Options, allocation 3-8

Invocation options 2-3 BIND 3-8
issue 2-9 INTO 3-8
keep relocation information 2-7 ROMBIND 3-8
request initialization table 2-8 ROMINTO 3-8
request memory map 2-5 Options, invocation 2-3
retain relocation information 2-6 issue warning for defined common data 2-9
specify directive file 2-4 keep relocation information 2-7
specify entry point 2-6 request initialization table 2-8
specify fill value 2-8 request memory map 2-5
specify library directory 2-5 retain relocation information 2-6
specify library filename 2-4 specify directive file 2-4
specify output filename 2-3 specify entry point 2-6
specify undefined symbol 2-8 specify fill value 2-8
specify version stamp 2-10 specify library directory 2-5
strip symbolic information 2-7 specify library filename 2-4
suppress error message 2-9 specify output filename 2-3
suppress warning message 2-9 specify undefined symbol 2-8
version information 2-10 specify version stamp 2-10

Issue warning for defined common data 2-9 strip symbolic information 2-7
suppress error message 2-9
suppress warning message 2-9

L version information 2-10
Options, output file 3-2, 3-16

Library file 1-2, 1-3, 2-1, 4-3 default filename and permission 3-16
directory search 2-5 header magic number 3-16
member 2-8, 4-3 Output file
specification 2-4, 3-3 options, specifying 3-16
symbol directory 4-3 Output, linker 1-3
UNIX specification 2-2 executable object file 1-3
VMS specification 2-3 memory map 1-4

Line number information 2-7 options 3-2,3-16
Linker partially linked object file 1-3

error messages B-l specification 2-3,2-5
functions 1-4 Output section 1-3
input 1-2 aligning 3-11
introduction 1-1 allocation 1-5, 3-1, 3-4, 3-5, 3-8, 5-1
output 1-3 assigning an address 5-2

linker.def file 2-4 creating 3-1, 3-5, 5-1
creating gaps 3-15

2 INDEX

grouping 3-13
specification 3-5

P

Partially linked object file 1-2
linker input 1-2
linker output 1-3
specification 2-6, 3-3

R

Relocation information 2-6, 6-1
keep relocation information 2-7

Relocation of memory address 1-5, 6-1
Relocation table 6-1
Request initialization table 2-8,2-11,2-12
Request memory map 2-5
Request output memory map 2-11, 2-12
Resolution of symbolic references 1-4, 4-1
Retain invocation line option 2-6
Retain relocation information 2-6,2-11,2-12

S

Section 1-1
Section gaps 2-8
Section header 3-12
SECTIONS statement 3-1, 3-5, 3-14, 4-5, 5-1,

5-2
aligning a section 3-11
allocating a section to memory 3-8
grouping output sections 3-13
input section specification 3-6
output section specification 3-5
setting the section type 3-12
symbol assignment 3-15

Setting the section type 3-12
Simple object file 1-2

linker input 1-2
specification 3-3

Special functions A-3
file address function A-4
highest memory address function A-4
memory address function A-4
next address function A-4
size of output function A-3

Specify directive file 2-4,2-11,2-12
Specify fill value 2-8,2-11, 2-12
Specify library directory 2-5,2-11
Specify library filename 2-4,2-11
Specify output filename 2-3,2-11,2-12
Specify program entry point 2-6,2-11,2-12
Specify undefined symbol 2-8,2-11, 2-12
Specify version stamp 2-10, 2-11, 2-12
Strip symbolic information 2-7, 2-11, 2-12

Suppress error message 2-9, 2-11, 2-12
Suppress size warning 2-9, 2-11, 2-12
Symbol 1-4, 3-14, 4-1

assignment 3-15
directive file 4-5
external 1-4, 2-8, 4-1, 4-5
library file 4-3
linker defined 4-6

Symbol directory 4-3
Symbol table 1-4, 2-7, 4-2
Symbolic reference 6-1

common data 4-4
resolution 1-1, 1-4, 4-1

T

.text section 1-1, 2-6

u

Unary operators A-2

V

Version information 2-10, 2-11, 2-12
Version invocation line option 2-10

INDEX 3

Series 32000®

GNX — Version 4.4
Support Libraries
Reference Manual

Customer Order Number 424010508-004

June 1992

REVISION RECORD

VERSION RELEASE DATE SUMMARY OF CHANGES

4.0 May 1990 First Release.
Addition of the rename
calls.

and getenv system

4.1 September 1990 Bug fixing.

4.2 February 1991 Synchronization revision. No changes.

4.3 August 1991 Synchronization revision. No changes.

4.4 June 1992 Synchronization revision. No changes.

iii

PREFACE

This manual describes the GNX (GENIX™ Native and Cross-Support) Libraries and
library routines, which provide run-time support for the development of software for
National Semiconductor’s Series 32000® microprocessor family.

The information contained in this manual is for reference only and is subject to change
without notice.

No part of this document may be reproduced in any form or by any means without the
prior written consent of National Semiconductor Corporation.

A complete list of National Semiconductor’s international offices may be found on the
inside back cover of this manual.

ISE, SYS32 and GENIX are trademarks of National Semiconductor Corporation.

Series 32000 is a registered trademark of National Semiconductor Corporation.

Portions of this document are derived from AT&T copyrighted material and reproduced under license
from AT&T; portions are based in part on the Fourth Berkeley Software Distribution under license
from The Regents of the University of California.
UNIX is a registered trademark of AT&T.
VAX, VMS, and DEC are trademarks of Digital Equipment Corporation.

IV

REVISION RECORD

VERSION RELEASE DATE SUMMARY OF CHANGES

4.0 May 1990 First Release.
Addition of the rename and getenv system
calls.

4.1 September 1990 Bug fixing.

4.2 February 1991 Synchronization revision. No changes.

4.3 August 1991 Synchronization revision. No changes.

iii

PREFACE

This manual describes the GNX (GENIX™ Native and Cross-Support) Libraries and
library routines, which provide run-time support for the development of software for
National Semiconductor’s Series 32000® microprocessor family.

The information contained in this manual is for reference only and is subject to change
without notice.

No part of this document may be reproduced in any form or by any means without the
prior written consent of National Semiconductor Corporation.

A complete list of National Semiconductor’s international offices may be found on the
inside back cover of this manual.

ISE, SYS32 and GENIX are trademarks of National Semiconductor Corporation.

Series 32000 is a registered trademark of National Semiconductor Corporation.

Portions of this document are derived from AT&T copyrighted material and reproduced under license
from AT&T; portions are based in part on the Fourth Berkeley Software Distribution under license
from The Regents of the University of California.
UNIX is a registered trademark of AT&T.
VAX, VMS, and DEC are trademarks of Digital Equipment Corporation.

IV

CONTENTS

Chapter 1 OVERVIEW
1.1 INTRODUCTION.. 1-1
1.2 OPERATING SYSTEM CALL SIMULATION.............................. 1-2
1.3 MANUAL ORGANIZATION ... 1-2
1.4 DOCUMENTATION CONVENTIONS.. 1-3

1.4.1 General Conventions.. 1-3
1.4.2 Conventions in Syntax Descriptions.............................. 1-3
1.4.3 Example Conventions.. 1-4

Chapter 2 SYSTEM CALLS
2.1 INTRODUCTION.. 2-1
2.2 DESCRIPTION OF SYSTEM CALLS .. 2-3

2.2.1 Routines that Do Not Require System Calls.................. 2-3
2.2.2 Routines that Use Simulated System C a lls 2-3

2.3 SYSTEM CALL SUMMARIES.. 2-3
2.3.1 C lose... 2-7
2.3.2 C rea t... 2-8
2.3.3 _ E x it.. 2-10
2.3.4 G etdtablesize.. 2-11
2.3.5 G etenv... 2-12
2.3.6 Lseek.. 2-13
2.3.7 O pen .. 2-15
2.3.8 R e a d ... 2-17
2.3.9 R en am e .. 2-18
2.3.10 S b r k ... 2-19
2.3.11 U n link ... 2-20
2.3.12 W rite.. 2-22

Chapter 3 GNX DB SUPPORT LIBRARY ROUTINES
3.1 INTRODUCTION.. 3-1
3.2 ABORT.. 3-2
3.3 A BS.. 3-3
3.4 ATOF... 3-4
3.5 B STRING... 3-5
3.6 C T IM E .. 3-7
3.7 ECVT... 3-9

CONTENTS v

3.8 E X IT ... 3-10
3.9 FC LO SE... 3-11
3.10 FERROR... 3-12
3.11 FLOOR.. 3-13
3.12 FO PEN .. 3-14
3.13 FREAD.. 3-16
3.14 FR EX P.. 3-17
3.15 F S E E K .. 3-18
3.16 GETC... 3-19
3.17 G E T S... 3-21
3.18 IN SQ U E ... 3-22
3.19 ISATTY.. 3-23
3.20 MALLOC... 3-24
3.21 MEMORY .. 3-26
3.22 PERROR... 3-28
3.23 PRINTF.. 3-29
3.24 PU TC... 3-32
3.25 P U T S ... 3-34
3.26 QSORT.. 3-35
3.27 RANDOM... 3-36
3.28 REGEX.. 3-38
3.29 SCANF.. 3-40
3.30 SETB U F... 3-44
3.31 S E T JM P ... 3-46
3.32 STRING ... 3-47
3.33 SWAB... 3-49
3.34 UNGETC... 3-50

Chapter 4 FLOATING-POINT LIBRARY
4.1 INTRODUCTION.. 4-1
4.2 DETAILS AND USE OF THE MATH LIBRARY........................... 4-2

4.2.1 Number F o rm a ts .. 4-2
4.2.2 Integer Form ats... 4-2
4.2.3 Floating-point Form ats... 4-3
4.2.4 Reserved Operand Values and Operations..................... 4-6
4.2.5 Not a Number (NAN).. 4-7
4.2.6 Infinity... 4-8

vi CONTENTS

4.2.7 Denormalized Numbers... 4-8
4.2.8 Math Environment Control F u n c tio n 4-9
4.2.9 Using the Math Environment Functions.............. 4-9
4.2.10 Accessing the Math Library Functions.................. 4-10

Chapter 5 FPEE LIBRARY
5.1 INTRODUCTION.. 5-1
5.2 FPEE LIBRARY CONFIGURATIONS.. 5-2
5.3 INTEGRATING FPEE WITH AN APPLICATION........................ 5-2

5.3.1 Integrating FPEE with Series 32000/UNIX Applications 5-2
5.3.2 Cross Application FPEE Integration..................... 5-3
5.3.3 FPEE Library and the Math Library Integration 5-3
5.3.4 FPEE Error Handling R o u tin es 5-4

5.4 FPEE OPERATIONAL DETAILS... 5-4
5.4.1 Operational Overview.. 5-5
5.4.2 FPEE Enhancements to the FPU 5-6
5.4.3 NS32081 FPU, NS32381 FPU and F P E E 5-7
5.4.4 FPEE Program Control... 5-8
5.4.5 FPEE Comparisons... 5-10
5.4.6 FPEE Exception H andling ... 5-11
5.4.7 FPEE Rounding M odes... 5-13

Chapter 6 1 ibHf p - HIGH-SPEED FP EMULATION LIBRARY
6.1 INTRODUCTION.. 6-1
6.2 THE 1 ibHf p LIBRARY VS THE FPEE LIBRARY..................... 6-1
6.3 HOWTO USE THE 1 ibHfp LIBRARY....................................... 6-2
6.4 libHfp TECHNICAL SPECIFICATIONS.................................... 6-3

6.4.1 Compatibility and Conformity to IEEE/754 Standards . 6-4
6.4.2 Use of the Mathematical Library.................................... 6-5
6.4.3 The libHfp In te rfa ce ... 6-5
6.4.4 Exception H andling... 6-8

6.5 EXAMPLES... 6-11

Appendix A SERIES 32000 STANDARD CALLING CONVENTIONS
A.l INTRODUCTION.. A-l
A.2 CALLING CONVENTION ELEMENTS.. A-l

FIGURES

Figure 4-1. Maximum and Minimum Values for Floating-point Numbers . 4-5

CONTENTS vii

TABLES

Table 2-1. Routines that Do Not Require System Calls.............................. 2-4
Table 2-2. Routines that Use Simulated System C a lls 2-5
Table 4-1. Minimum and Maximum Values.. 4-4
Table 5-1. Instruction C odes.. 5-5
Table 5-2. FPEE Library-Implemented IEEE 754 Operations................... 5-7
Table 5-3. Default Return Values for Overflow Exceptions......................... 5-14
Table 6-1. Instructions Emulated By Calls to libHfp Routines 6-7
Table 6-2. Instructions Emulated Inline... 6-8
Table 6-3. Mapping of Floating-Point Registers... 6-8
Table 6-4. Exception Handling Routines .. 6-9

INDEX

viii CONTENTS

Chapter 1

OVERVIEW

1.1 INTRODUCTION
The GNX—Version 4 Support Libraries provide run-time support for the C, Pascal, and
FORTRAN language compilers. The GNX Development Board (DB) library also facili­
tates debugging by providing input/output capability with the user terminal or host
system files. Programs linked with these libraries can run on a SPLICE system con­
nected to a target or on a Series 32000 development board with monl6, mon32,
mon332, mon332b, mon532, moncgl6, moncgl60, mongx32, mongx320, or
mongx3 2 e monitors respectively.

The Floating-point Enhancement and Emulation (FPEE) library enhances the
Floating-point Unit (FPU) by providing additional functionality (as recommended by
the ANSI/IEEE task proposal 754) for binary floating-point arithmetic. The Math
Library when used with the FPEE library, provides a full IEEE 754 math environ­
ment.

The High-speed Floating-Point Emulation Library (libHfp) is a library of very fast
floating-point routines that provide an efficient low-cost floating-point solution on
FPU-less systems, by emulating the NS32081 and NS32381 floating-point instructions
in software.

The location and the names of these libraries may vary with the host operating system
and are discussed in the Series 32000 GNX — Version 4 Commands and Operations
Manual provided with the GNX tools.

These libraries are similar to the standard C, Pascal, or FORTRAN libraries of a
UNIX® operating system. The GNX libraries and the host libraries differ in that sys­
tem calls, such as fork, have been removed from the GNX library because they are not
executable on a development board. Some of the other host system calls have been
replaced by their simulations or implemented using the virtual I/O feature of the moni­
tor and debugger DBUG (such as open, read, write, etc.) These libraries support
most of the common F0 operations.

OVERVIEW 1-1

1.2 OPERATING SYSTEM CALL SIMULATION
The libraries provide most of the common functions of C, Pascal, and FORTRAN.
These libraries are implemented by providing a low-level simulation of some important
UNIX operating system calls. This allows programs to be compiled and tested without
extensive rewriting.

The system calls implemented in this release Eire open, close, creat, read,
write, _exit, getdtablesize, lseek, rename, sbrk, and unlink. These sys­
tem calls are dependent on the development board monitors, DBUG and the host
operating system. The user may use the routines for debugging during the program
development phase (e.g., writing error messages to the terminal, storing and retrieving
results from files, etc.); however, programs that depend on these system calls will not
work in any other target system.

Several system calls have been given dummy implementations, that is, rather than
asking the host operating system to provide actual data, the calls will always return
the same values. This allows existing user-developed programs to be run on the
development board with less modification but there are some restrictions.

The following is a list of dummy routines:

access geteuid getpid sethostid signal time
execl gethostid gettimeofday sethostname stat wait
fork gethostname getuid setitimer settimeofday
fstat getitimer pause setreuid system

The following is a list of restrictions in the use of dummy calls:
isatty Always returns “1” for stdin, stdout and stderror, and a “0” for all

other streams.
t imezone Does not look for environment variable TZNAME.

1.3 MANUAL ORGANIZATION
Chapter 1 provides an overview of the GNX support libraries, describes the operating
system call simulation and provides the documentation conventions.

Chapter 2 describes system calls.

Chapter 3 describes the C library routines.

Chapter 4 describes the math library routines.

Chapter 5 describes the floating-point enhancement and emulation library.

Chapter 6 describes the High-speed floating-point emulation library.

1-2 OVERVIEW

Appendix A describes the Series 32000 standard calling conventions.

See the Series 32000 GNX — Version 4 Pascal Optimizing Compiler Reference Manual,
or the Series 32000 GNX — Version 4 FORTRAN 77 Optimizing Compiler Reference
Manual for a description of the functions for Pascal, or FORTRAN.

1.4 DOCUMENTATION CONVENTIONS
The following documentation conventions are used in text, syntax descriptions, and
examples in describing commands and parameters.

1.4.1 General Conventions
Nonprinting characters are indicated by enclosing a name for the character in angle
brackets < >. For example, < CR> indicates the RETURN key, < ctrl/B> indicates the
character input by simultaneously pressing the control key and the B key.

Constant-width type is used within text for filenames, directories, command names and
program listings; it is also used to highlight individual numbers and letters. For exam­
ple,

the C preprocessor, cpp, resides in the GNXDIR/lib directory.

1.4.2 Conventions in Syntax Descriptions
The following conventions are used in syntax descriptions:

Constant-width boldface type indicates actual user input.
Italics indicate user-supplied items. The italicized word is a generic term
for the actual operand that the user enters. For example,

cc [[option] ... [filename]...]...

Spaces or blanks, when present, are significant; they must be entered as
shown. Multiple blanks or horizontal tabs may be used in place of a single
blank.
{ } Large braces enclose two or more items of which one, and only one,

must be used. The items are separated from each other by a logical
OR sign “ | .”

Large brackets enclose optional item(s).
Logical OR sign separates items of which one, and only one, may be
used.

OVERVIEW 1-3

... Three consecutive periods indicate optional repetition of the preced­
ing item(s). If a group of items can be repeated, the group is
enclosed in large parentheses “().”

,,, Three consecutive commas indicate optional repetition of the preced­
ing item. Items must be separated by commas. If a group of items
can be repeated, the group is enclosed in large parentheses “().”

() Large parentheses enclose items which need to be grouped together
for optional repetition. If three consecutive commas or periods follow
an item, only that item may be repeated. The parentheses indicate
that the group may be repeated.

!_i Indicates a space. u is only used to indicate a specific number of
required spaces.

All other characters or symbols appearing in the syntax must be entered as
shown. Brackets, parentheses, or braces which must be entered, are smaller
than the symbols used to describe the syntax. (Compare user-entered [],
with [] which show optional items.)

1.4.3 Example Conventions
In interactive examples where both user input and system responses are shown, the
machine output is in constant-width regular type; user-entered input is in constant-
width boldface type. Output from the machine which varies (e.g. , the date) is in italic
type. For example,

(dbug) <CR>
Breakpoint 2 reached at filename _main: .3
.3 printf("hello\r\n");

1-4 OVERVIEW

Chapter 2

SYSTEM CALLS

2.1 INTRODUCTION
This chapter describes all of the system calls. Most of these calls have one or more
error returns. An error condition is indicated by an otherwise impossible return value.
This is almost always -1; the individual descriptions contain detailed information.

All return codes and values from functions are of type integer unless otherwise noted.
An error number is also made available in the external variable errno, which is not
cleared on successful calls. Thus, errno should be tested only after the program has
determined that an error has occurred.

The following is a complete list of the errors and their names as given in errno.h and a
description of each error; these errors appear as they would on a UNIX host system:

1 EPERM Not owner
Typically, this error indicates an attempt has been made to modify a file by some­
one other than its owner.

2 ENOENT No such file or directory
This error occurs when a filename is specified and the file should exist but doesn’t,
or when one of the directories in a pathname does not exist.

5 EIO I/O error
A physical I/O error occurs during a read or write. This error may in some
cases occur on a call following the one to which it actually applies.

6 ENXIO No such device or address
I/O on a special file refers to a subdevice which does not exist or is beyond the lim­
its of the device. It may also occur when, for example, an illegal tape drive unit
number is selected or a disk pack is not loaded on a drive.

9 EBADF Bad file number
Either a file descriptor refers to no open file, or a read (respectively write) request
is made to a file which is open only for writing (respectively reading).

12 ENOMEM Not enough core
During sbrk, a program asks for more memory than can be supplied by the
development board.

13 EACCES Permission denied
An attempt is made to access a file in a way forbidden by the protection system.

SYSTEM CALLS 2-1

14 EFAULT Bad address
The system encounters a hardware fault in attempting to access the arguments of
a system call.

15 ENOTBLK Block device required
A file is mentioned where a block device is required.

16 EBUSY Mount device busy
An attempt to mount a device that is already mounted or an attempt is made to
dismount a device on which there is an active file directory.

17 EEXIST File exists
An existing file is mentioned in an inappropriate context.

19 ENODEV No such device
An attempt is made to apply an inappropriate system call to a device; e.g. , read a
write-only device.

20 ENOTDIR Not a directory
A nondirectory is specified where a directory is required.

21 EISDIR Is a directory
An attempt to write on a directory.

22 EINVAL Invalid argument
Some invalid argument: reading or writing a file for which lseek has generated
a negative pointer. Also set by math functions.

23 ENFILE File table overflow
The system’s table of open files is full and temporarily no more opens can be
accepted.

24 EMFILE Too many open files
Limit is 24.

25 ENOTTY Not a typewriter
The file mentioned is not a terminal or one of the other devices to which these
calls apply.

26 ETXTBSY Text file busy
An attempt to execute a pure-procedure program which is currently open for writ­
ing (or reading). Also, an attempt to open for writing a pure-procedure program
that is being executed.

27 EFBIG File too large
The size of a file exceeded the maximum (about ERROR in line number 208
incorrect number of fields line is: .if t 10 ERROR in line number 209 incorrect
number of fields line is: .if n 1.0E9 bytes).

28 ENOSPC No space left on device
During a write to an ordinary file, there is no free space left on the device.

30 EROFS Read-only file system
An attempt to modify a file or directory is made on a device mounted read-only.

2-2 SYSTEM CALLS

33 EDOM Math argument
The argument of a function in the math package is out of the domain of the func­
tion.

62 ELOOP Too many levels of symbolic links
A pathname lookup involved more than 8 symbolic links.

63 ENAMETOOLONG Filename too long
A component of the pathname or an entire pathname that exceeds the host sys­
tem limitations.

2.2 DESCRIPTION OF SYSTEM CALLS
As mentioned earlier, the GNX DB support library has dummy implementations of
some GENIX 4.2 system calls. These calls return dummy values within the valid range
for a GENIX 4.2 operating system. For example, the getpidO call always returns a
fixed number.

The GENIX 4.2 operating system concept of process ID, group ID, user ID, etc., is main­
tained in the DB support library. However, this document does not attempt to define
these concepts. They are relevant only if a program that runs on UNIX or GENIX
operating system is ported to a development board, in which case the user should con­
sult the corresponding development board manuals for a complete description.

2.2.1 Routines that Do Not Require System Calls
The routines listed in Table 2-1 do not require support from the debugger. They are
self-contained, or at most, call routines that are self-contained.

2.2.2 Routines that Use Simulated System Calls
The routines listed in Table 2-2 use at least one simulated system call.

2.3 SYSTEM CALL SUMMARIES
This section describes the simulated system calls in the GNX DB support library.
These calls provide the user with a virtual machine very much like the GENIX 4.2 or
UNIX 4.2/4.3 operating systems, so that many user programs and libraries of these sys­
tems can be directly ported to a development board.

All I/O is performed via file descriptors which are small integer numbers. When a pro­
gram starts, the file descriptor 0 is associated with the console terminal in read mode
(i.e., the keyboard) and the file descriptors 1 and 2 are associated to the console termi­
nal in write mode (i.e., the screen). All other file descriptors are undefined or closed.

SYSTEM CALLS 2-3

Table 2-1. Routines that Do Not Require System Calls

ROUTINE SECTION ROUTINE SECTION ROUTINE SECTION

abort 3.2 abs 3.3 asctime 3.6

atof 3.4 atoi 3.4 atol 3.4

bcopy 3.5 bcmp 3.5 bzero 3.5

ceil 3.11 clearerr 3.10 ctime 3.6

ecvt 3.7 fabs 3.11 fcvt 3.7

feof 3.10 ferror 3.10 ffs 3.5

fileno 3.10 floor 3.11 free 3.20

frexp 3.14 gcvt 3.7 gmtime 3.6

index 3.31 insque 3.18 isatty 3.19

ldexp 3.14 local time 3.6 longjmp 3.30

malloc 3.20 printf 3.21 putchar 3.22

memccpy 3.21 memchr 3.21 memcmp 3.21

memcpy 3.21 memset 3.21 modf 3.14

perror 3.22 qsort 3.26 random 3.27

re_comp 3.28 re_exec 3.28 remque 3.18

rindex 3.32 setbuf 3.30 setbuffer 3.30

setjmp 3.31 srandom 3.27 strcat 3.32

strchr 3.32 strrchr 3.32 strcmp 3.32

strcpy 3.32 strlen 3.32 stmcat 3.32

stmcmp 3.32 stmcpy 3.32 swab 3.33

sys_errlist 3.22 sys_nerr 3.22

2-4 SYSTEM CALLS

T able 2-2. Routines that Use Simulated System Calls

ROUTINE SECTION ROUTINE SECTION ROUTINE SECTION

calloc 3.20 exit 3.8 fclose 3.9

fdopen 3.12 fflush 3.9 fgetc 3.16

fgets 3.17 fopen 3.12 fprintf 3.21

fputc 3.22 fputs 3.23 fread 3.13

freopen 3.12 fscanf 3.27 fseek 3.15

ftell 3.15 fwrite 3.13 getchar 3.16

gets 3.17 getw 3.16 initstate 3.25

puts 3.23 putw 3.22 realloc 3.20

rewind 3.15 scanf 3.27 setlinebuf 3.28

setstate 3.25 sprintf 3.21 sscanf 3.27

timezone 3.6 ungetc 3.32

SYSTEM CALLS 2-5

Programs open files on the host system by using the open () or creat () system calls.
A file is opened with the aid of the debugger. I/O to the file goes through the debugger.
File descriptors higher than 2 are used. Programs can terminate by doing an exit ()
call, which will close all files. The exit call communicates to the debugger, which in
turn informs the user that the program has ended and waits for the next command.

The simulated system calls allow most of the commonly used C library functions to be
used, though some of them have restrictions.

While these simulated system calls and the libraries built on them provide a very easy
and conceptually clean interface, they may be too bulky for applications which do not
require extensive I/O support. For such applications users must trim the library
according to their needs.

The system calls documented here work only in conjunction with the dbg32 and DBUG
debuggers. The system calls use the debugger to do I/O on the host file system. For
independent programs, users need to make their own routines for I/O. They can be
used as guide lines for making a system-dependent set of routines for any system. The
rest of the library will function correctly as long as the simulated system calls are
replaced with compatible routines.

2-6 SYSTEM CALLS

Close

2.3.1 Close
NAME

clo se — closes a file

SYNOPSIS

close (fildes)
int fildes;

DESCRIPTION

The c lo se call closes the file on the host system with a descriptor of fildes.

A clo se of all of the files is automatic on e x it, but since there is a limit to the
number of active files per process (the lower of the value returned by g e td ta -
b le s iz e and the limitations imposed by the host operating system), c lo se is
necessary for programs which deal with many fildes.

RETURN VALUE

Upon successful completion, a value of 0 is returned. Otherwise, a value of-1 is
returned and the global integer variable errno is set to indicate the error.

ERRORS

Close fails if:
[EBADF] Fildes is not an active descriptor.

SEE ALSO

open

SYSTEM CALLS 2-7

Creat

2.3.2 Creat
NAME

c re a t — creates a new file

SYNOPSIS

creat(name, mode)
char *name;

DESCRIPTION

Creat creates a new file on the host system or prepares to rewrite an existing
file called name, given as the address of a null-terminated string. If the file did
not exist, it is given mode mode.

To construct mode, OR the following:

0x400 read by owner
0x200 write by owner
0x100 execute by owner
0x070 read, write, execute by group
0x007 read write, execute by others

If the file did exist, its mode and owner remain unchanged but it is truncated to
0 length. The file is also opened for writing, and its file descriptor is returned.

Syntax of the name depends on the host system, for example, on a UNIX operat­
ing system enter:

creat("/u/user/test/prog.c",0x777);

and on a VMS operating system enter:

creatC'drO:[user.testlprog.c",0x777):

RETURN VALUE

The value -1 is returned if an error occurs. Otherwise, the call returns a non­
negative descriptor which permits only writing.

2-8 SYSTEM CALLS

Creat (Cont)

ERRORS

Creat will fail and the file will not be created or truncated if one of the following
occurs:
[EPERM] The argument contains a byte with the high-order bit set.
[ENOTDIR] A component of the path prefix is not a directory.
[EACCES] A needed directory does not have search permission.
[EACCES] The file does not exist and the directory in which it is to be

created is not writable.
[EACCES] The file exists, but it is imwritable.
[EISDIR] The file is a directory.
[EMFILE] There are already too many files open.
[EROFS] The named file resides on a read-only file system.
[ENXIO]

SEE ALSO

The file is a character special or block special file, and the associ­
ated device does not exist.

open, write and close

SYSTEM CALLS 2-9

Exit

2.3.3 _Exit
NAME

_exit - terminates a process

SYNOPSIS

_ ex it(s ta tu s)
in t s ta tu s ;

DESCRIPTION

_exit terminates a process with the following consequences:

All of the descriptors opened in the calling process are closed.

Most C programs call the library routine exit (see Section 3.8) which performs
cleanup actions before calling _exit.

RETURN VALUE

This call never returns.

SEE ALSO

exit in Chapter 3

2-10 SYSTEM CALLS

Getdtablesize

2.3.4 Getdtablesize
NAME

getdtablesize - gets the size of the descriptor table

SYNOPSIS

nds = getdtablesize()
int nds;

DESCRIPTION

Each process has a fixed-size descriptor table which is guaranteed to have at
least 20 slots. The entries in the descriptor table are numbered with small
integers starting at 0. The call getdtablesize returns the size of this table.

SEE ALSO

close and open

SYSTEM CALLS 2-11

Getenv

2.3.5 Getenv
NAME

getenv - get the value of an environmental name

SYNOPSIS

char *getenv(name)
char *name;

DESCRIPTION

The getenv function searches an environment list, provided by the host
environment, for a string that matches the string pointed to by name.

The getenv function returns a pointer to a string associated with the matched
list member. The array pointed to shall not be modified by the program, but
may be overwritten by a subsequent call to the genenv function. If the
specified name cannot be found, a null pointer is returned.

2-12 SYSTEM CALLS

Lseek

2.3.6 Lseek
NAME

lseek - moves the read/write pointer

SYNOPSIS

#define L_SET 0
#define L_INCR 1
#define L_XTND 2

/* set the seek pointer */
/* increment the seek pointer */
/* extend the file size */

pos = lseek(fildes, offset, whence)
int pos;
int fildes, offset, whence;

DESCRIPTION

The descriptor fildes refers to a file on the host system or device open for reading
and/or writing. Lseek sets the file pointer of fildes as follows:

If whence is L_SET, the pointer is set to offset bytes.
If whence is L_INCR, the pointer is set to its current location plus offset.

If whence is L_XTND, the pointer is set to the size of the file plus offset.

Upon successful completion, the resulting pointer location as measured in bytes
from the beginning of the file is returned.

Seeking far beyond the end of a file, then writing, creates a gap or “hole,” which
occupies no physical space and reads as zeros.

RETURN VALUE

Upon successful completion, a non-negative integer, the current file pointer
value, is returned. Otherwise, a value of -1 is returned and errno is set to indi­
cate the error.

NOTES

SYSTEM CALLS 2-13

Lseek (Cont)

ERRORS

Lseek fails and the file pointer remains unchanged if:
[EBADF] Fildes is not an open file descriptor.
[EINVAL] Whence is not a proper value.
[EINVAL]

SEE ALSO

The resulting file pointer will be negative.

open

2-14 SYSTEM CALLS

Open

2.3.7 Open
NAME

open — opens a file for reading or writing or creates a new file

SYNOPSIS

in c lu d e < s y s / f i l e .h >

open (p ath , f la g s , mode)
char *path;
in t f l a g s , mode;

DESCRIPTION

Open opens the file path for reading and/or writing on the host system, as
specified by the flags argument, and returns a descriptor for that file. The flags
argument may indicate that the file is to be created if it does not already exist
(by specifying the 0_CREAT flag), in which case the file is created with mode
mode as described in creat.

Path is the address of a string of ASCII characters representing a pathname, ter­
minated by a null character. To form the flags specified, OR the following
values:

o_rd o n ly
O.WRONLY
0_RDWR
0_NDELAY
0_APPEND
0_CREAT
0_TRUNC
0_EXCL

opens for reading only
opens for writing only
opens for reading and writing
does not block on open
appends on each write
creates file if it does not exist
truncates size to 0
error if create and file exists

Opening a file with 0_APPEND set appends each write on the file to the end. If
0_TRUNC is specified and the file exists, the file is truncated to zero length. If
0_EXCL is set with 0_CREAT, and the file already exists, the open returns an
error. This can be used to implement a simple exclusive access-locking mechan­
ism. If the 0_NDELAY flag is specified and the open call blocks the process
(e.g., waiting for carrier on a dialup line), the open returns immediately.

Upon successful completion, a non-negative integer termed a “file descriptor” is
returned. The file pointer used to mark the current position within the file is set
to the beginning of the file.

SYSTEM CALLS 2-15

Open (Cont)

No process may have more than g e t d t a b l e s i z e O file descriptors open simul­
taneously.

ERRORS

The named file is opened unless one or more of the following are true:
[EPERM] The pathname contains a character with the high-order bit set.
[ENOTDIR] A component of the path prefix is not a directory.
[ENOENT] 0_CREAT is not set and the named file does not exist.
[EACCES] A component of the path prefix denies search permission.

[EACCES] The required permissions (for reading and/or writing) are denied
for the named file.

[EISDIR] The named file is a directory, and the arguments specify it is to
be opened for writing.

[EROFS] The named file resides on a read-only file system, and the file is
to be modified.

[EMFILE] Too many open files.

[ENXIO] The named file is a character special or block special file, and
the device associated with this special file does not exist.

[ETXTBSY] The file is a pure procedure (shared text) file that is being exe­
cuted, and the o p e n call requests write access.

[EFAULT] Path points outside the process’s allocated address space.
[EEXIST]

SEE ALSO

0_EXCL has been specified and the file exists.

close, Iseek, read and write

2-16 SYSTEM CALLS

2.3.8 Read
NAME

Read

read - reads input

SYNOPSIS
cc = rea d (fild es , buf, nbytes)
in t cc, f i ld e s ;
char *buf;
in t nbytes;

DESCRIPTION
Read attempts to read nbytes of data from the object referenced by the descriptor
fildes into the buffer pointed to by buf.

The read starts at a position given by the pointer associated with fildes, see
Iseek. Upon return from read, the pointer is incremented by the number of
bytes actually read.
Upon successful completion, read returns the number of bytes actually read
and placed in the buffer. The system guarantees to read the number of bytes
requested if the descriptor references a file which has that many bytes remain­
ing before the end-of-file, but in no other cases.
If the returned value is 0, then end-of-file has been reached.

RETURN VALUE
If successful, the number of bytes actually read is returned. Otherwise, a -1 is
returned and the global variable errno is set to indicate the error.

ERRORS
Read fails if one or more of the following are true:
[EBADF] Fildes is not a valid file descriptor open for reading.
[EFAULT] Buf points outside the allocated address space.

SEE ALSO

open

SYSTEM CALLS 2-17

Rename

2.3.9 Rename
NAME

rename - changes the name of a file

SYNOPSIS
in t renam e(old , new)
char *old;
char *new;

DESCRIPTION
Rename causes the file whose name is the string pointed to by old to be hen­
ceforth known by the name given by the string pointed to by new. The file
named old is effectively removed. If a file named by the string pointed to by new
exists prior to the call to the rename function, the behavior is undefined.

RETURN VALUE
The rename function returns zero if the operation succeeds, nonzero if it fails.
The global variable errno indicates the reason for the failure.

2-18 SYSTEM CALLS

Sbrk

2.3.10 Sbrk
NAME

s b r k - allocate memory in heap

SYNOPSIS

char *sbrk(incr)
int incr;

DESCRIPTION

S b r k allocates incr bytes of memory from the unallocated memory heap and
returns the address of its lowest byte. The heap is defined as a continuous area
which resides between the addresses of two dummy symbols: _HEAP$_START
and _HEAP$_MAX. These two symbols may be redefined in a linker-directive file
by the user. By default, _HEAP$_START is set to the first memory location
above the program data area (_ e n d) and _HEAP$_MAX is set to the value
OxOOffffff. Allocated memory can not exceed the address of _HEAP$_MAX. Also,
when the stack pointer value is between _HEAP$_START and _HEAP$_MAX, the
upper limit of the heap must be at least 1024 bytes below the current value of
the stack pointer. S b r k checks if memory exists, writing and verifying the con­
tents of the highest byte allocated. There is no way to de-allocate this memory.

RETURN VALUE

S b r k returns a pointer to the start of the newly allocated area. A value of -1 is
returned if incr bytes cannot be allocated.

ERRORS

S b r k fails and no additional memory is allocated if the following is true:
[ENOMEM] Insufficient memory exists to support the expansion (either

_HEAP $_MAX will be exceeded or the heap will encroach on the
stack).

SEE ALSO

malloc, nmeld (the linker-directive language and file).

SYSTEM CALLS 2-19

Unlink

2.3.11 Unlink
NAME

unlink - removes directory entry of a file

SYNOPSIS

unlink(path)
char *path;

DESCRIPTION

Unlink removes the file on the host system whose name is given by path.

RETURN VALUE

Upon successful completion, a value of 0 is returned. Otherwise, a value of-1 is
returned and errno is set to indicate the error.

ERRORS

The unlink succeeds unless:
[EPERM] The path contains a character with the high-order bit set.

[ENOENT] The pathname is too long.

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] The named file does not exist.
[EACCES] Search permission is denied for a component of the path prefix.
[EACCES] Write permission is denied on the directory containing the link

to be removed.
[EPERM]

[EBUSY]

[EROFS]
[EFAULT]
[ELOOP]

The named file is a directory and the effective user ID of the pro­
cess is not the superuser.
The entry to be unlinked is the mount point for a mounted file
system.
The named file resides on a read-only file system.

Path points outside the process’s allocated address space.
Too many symbolic links have been encountered in translating
the pathname.

2-20 SYSTEM CALLS

Unlink (Cont)

SEE ALSO

close

SYSTEM CALLS 2 -2 1

Write

2.3.12 Write
NAME

write - writes on a file

SYNOPSIS

write(fildes, buf, nbytes)
int fildes;
char *buf;
int nbytes;

DESCRIPTION

Write attempts to write nbytes of data to the object referenced by the descriptor
fildes from the buffer pointed to by buf.

The write starts at a position given by the pointer associated with fildes, see
Iseek. Upon return from write, the pointer is incremented by the number of
bytes actually written.

RETURN VALUE

Upon successful completion, the number of bytes actually written is returned.
Otherwise, a -1 is returned and errno is set to indicate the error.

ERRORS

Write fails and the file pointer remains unchanged if one or more of the follow­
ing are true:
[EBADF] Fildes is not a valid descriptor open for writing.

[EFBIG] An attempt is made to write a file that exceeds the process’ file
size limit or the maximum file size.

SEE ALSO

Iseek and open

2-22 SYSTEM CALLS

Chapter 3

GNX DB SUPPORT LIBRARY ROUTINES

3.1 INTRODUCTION
This chapter provides a summary of the GNX DB support library routines in alphabeti­
cal order. Notice that in some cases more than one routine is described in a section.
The location and name of this library may vary with each host operating system. For
the location and name of this library, refer to the Series 32000 GNX — Version 4 Com­
mands and Operations Manual.

GNX DB SUPPORT LIBRARY ROUTINES 3-1

ABORT

3.2 ABORT
NAME

abort - generates a fault

SYNOPSIS

abort ()
DESCRIPTION

Abort executes an instruction which is illegal in User mode. This causes a trap
that normally terminates the program execution and returns control to the
debugger with a message “Flag trap (out of range)...”.

SEE ALSO

exit

3-2 GNX DB SUPPORT LIBRARY ROUTINES

3.3 ABS
NAME

ABS

abs - integer absolute value

SYNOPSIS

abs(i)
int i ;

DESCRIPTION

Abs returns the absolute value of its integer operand.

SEE ALSO

fabs in Section 3.11

CAVEATS

Applying the abs function to the most negative integer generates a result which
is the most negative integer. That is,

"abs(0x8 0 0 0 0 0 0 0)"

returns 0x80000000 as a result.

GNX DB SUPPORT LIBRARY ROUTINES 3-3

ATOF

3.4 ATOF
NAME

atof, atoi, atol — convert ASCII to numbers

SYNOPSIS

double atof(nptr)
char *nptr;
atoi(nptr)
char *nptr;
long atoi(nptr)
char *nptr;

DESCRIPTION

These functions convert a string pointed to by nptr to floating, integer, and long
integer representation respectively. The first unrecognized character ends the
string.

Atof recognizes an optional string of spaces, then an optional sign, then a string
of digits optionally containing a decimal point, then an optional e or E followed
by an optionally signed integer.

Atoi and atoi recognize an optional string of spaces, then an optional sign,
then a string of digits.

SEE ALSO

scanf

CAVEATS

There are no provisions for overflow.

3-4 GNX DB SUPPORT LIBRARY ROUTINES

BSTRING

3.5 BSTRING
NAME

bcopy, bcmp, bzero, f f s — bit and byte string operations

SYNOPSIS

bcopy(bl, b2, length)
char *bl, *b2;
int length;
bcmp(bl, b2, length)
char *bl, *b2;
int length;
bzero(b, length)
char *b;
int length;
ffs(i)
int i ;

DESCRIPTION

The functions bcopy, bcmp, and bzero operate on variable length strings of
bytes. They do not check for null bytes as the routines in string do.

Bcopy copies length bytes from string bl to the string b2.

Bcmp compares byte string bl against byte string o2, returning zero if they are
identical, nonzero otherwise. Both strings are assumed to be length bytes long.

Bzero places length 0 bytes in the string b l .

Ff s finds the first bit set passed it in the argument and returns the index of that
bit. Bits are numbered starting at 1. A return value of -1 indicates the value
passed is zero.

GNX DB SUPPORT LIBRARY ROUTINES 3-5

BSTRING (Cont)

CAVEATS

The bcmp and bcopy routines take parameters backwards from strcmp and
stropy.

3-6 GNX DB SUPPORT LIBRARY ROUTINES

CTIME

3.6 CTIME
NAME

ctime, localtime, gmtiine, asctime, timezone — convert date and time to
ASCII

SYNOPSIS

char *ctime(clock)
long *clock;
#include <sys/time.h>
struct tm *localtime(clock)
long *clock;
struct tm *gmtime(clock)
long *clock;
char *asctime(tm)
struct tm *tm;
char *timezone(zone, dst)

DESCRIPTION

Ctime converts a time pointed to by clock such as returned by time into ASCII
and returns a pointer to a 26-character string in the following form. All fields
have constant width.

Sun Sep 16 01:03:52 1973\n\0

Local time and gmtime return pointers to structures containing the broken-
down time. Localtime corrects for the time zone and possible daylight-saving
time; gmtime converts directly to Greenwich mean time (GMT), which is the
time UNIX operating systems use. Asctime converts a broken-down time to
ASCII and returns a pointer to a 26-character string.

GNX DB SUPPORT LIBRARY ROUTINES 3-7

CTIME (Cont)

The structure declaration from the include file is:

struct tm {
int tm_sec;
int tm_min;
int tm_hour;
int tm_mday ;
int tm_mon;
int tm_year;
int tm_wday;
int tm_yday ;
int tm_isdst;

};

These quantities give the time on a 24-hour clock, day of month (1-31), month of
year (0-11), day of week (Sunday = 0), year (19rae), day of year (0-365), and a flag
that is nonzero if daylight-saving time is in effect.

When local time is called for, the program consults the system to determine the
time zone and whether the U.S.A., Australian, Eastern European, Middle Euro­
pean, or Western European daylight-saving time adjustment is appropriate. The
program knows about various peculiarities in time conversion over the past
10-20 years; if necessary, this understanding can be extended.

Timezone returns the name of the time zone associated with its first argument,
which is measured in minutes westward from Greenwich. If the second argu­
ment is 0, the standard name is used; otherwise, the daylight-saving version is
used. If the required name does not appear in a table built into the routine, the
difference from GMT is produced; e.g. , in Afghanistan, timezone (-(60*4+30),0)
is appropriate because it is four hours and thirty minutes (4:30) ahead of GMT,
and the string GMT+4 :3 0 is produced.

3-8 GNX DB SUPPORT LIBRARY ROUTINES

EC VT

3.7 ECVT
NAME

ecvt, fcvt, gcvt — output conversion

SYNOPSIS
char *ecvt(value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *sign;
char *fcvt(value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *sign;
char *gcvt(value, ndigit, buf)
double value;
char *buf;

DESCRIPTION
Ecvt converts the value to a null-terminated string of ndigit ASCII digits and
returns a pointer to that string. The position of the decimal point relative to the
beginning of the string is stored indirectly through decpt (negative means to the
left of the returned digits). If the sign of the result is negative, the word pointed
to by sign is nonzero, otherwise it is zero. The low-order digit is rounded.

Fcvt is identical to ecvt, except that the correct digit has been rounded for
FORTRAN F format output of the number of digits specified by ndigits.
Gcvt converts the value to a null-terminated ASCII string in buf and returns a
pointer to buf. It attempts to produce ndigit significant digits in FORTRAN F
format if possible (otherwise E format) ready for printing. Trailing zeros may be
suppressed.

SEE ALSO
printf

CAVEATS
The return values point to static data whose content is overwritten by each call.

GNX DB SUPPORT LIBRARY ROUTINES 3-9

EXIT

3.8 EXIT
NAME

exit - terminates a process after flushing any pending output

SYNOPSIS

exit(status)
int status;

DESCRIPTION

Exit terminates a process after calling the library function ff lush to flush any
buffered output. Exit never returns.

3-10 GNX DB SUPPORT LIBRARY ROUTINES

FCLOSE

3.9 FCLOSE
NAME

f close, ff lush — close or flush a stream

SYNOPSIS

#include <stdio.h>
fclose(stream)
FILE *stream;
fflush(stream)
FILE *stream;

DESCRIPTION

Fclose causes any buffers for the named stream to be emptied and the file to be
closed. Buffers allocated by the standard input/output system are freed.

Fclose is performed automatically upon calling exit.

Ff lush causes any buffered data for the named output stream to be written to
that file. The stream remains open.

SEE ALSO

fopen and setbuf

DIAGNOSTICS

These routines return EOF if stream is not associated with an output file or if
buffered data cannot be transferred to that file.

GNX DB SUPPORT LIBRARY ROUTINES 3-11

FERROR

3.10 FERROR
NAME

f error, feof, clearerr, fileno - stream status inquiries

SYNOPSIS

#include <stdio.h>
feof(stream)
FILE *stream;
ferror (stream)
FILE *stream
clearerr(stream)
FILE *stream
fileno(stream)
FILE ‘stream;

DESCRIPTION

Feof returns nonzero when end-of-file is read on the named input stream, other­
wise it returns zero.

Ferror returns nonzero when an error has occurred reading or writing the
named stream, otherwise it returns zero. Unless cleared by clearerr, the
error indication lasts until the stream is closed.

Clearerr resets the error indication on the named stream.

Fileno returns the integer file descriptor associated with the stream, see open.

These functions are implemented as macros in ldfcn.h; they cannot be rede­
clared.

SEE ALSO

fopen and open

3-12 GNX DB SUPPORT LIBRARY ROUTINES

FLOOR

3.11 FLOOR
NAME

fabs, floor, ceil — absolute value, floor, ceiling functions

SYNOPSIS

#include <math.h>
double floor(x)
double x;
double ceil(x)
double x;
double fabs(x)
double x;

DESCRIPTION

Fabs returns the absolute value I x I.

Floor returns the largest integer not greater than x.

Ceil returns the smallest integer not less than x.

SEE ALSO

abs

GNX DB SUPPORT LIBRARY ROUTINES 3-13

FOPEN

3.12 FOPEN
NAME

fopen, f reopen, f dopen - open a stream

SYNOPSIS

#include <stdio.h>
FILE *fopen(filename, type)
char *filename, *type;
FILE *freopen(filename, type, stream)
char *filename, *type;
FILE ‘stream;
FILE *fdopen(fildes, type)
char *type;

DESCRIPTION

Fopen opens the file named by filename and associates a stream with it.
Fopen returns a pointer to be used to identify the stream in subsequent opera­
tions.

Type is a character string having one of the following values:
r opens for reading,

w creates for writing.

a appends: open for writing at end-of-file, or create for writing.

In addition, each type may be followed by a “+” to have the file opened for read­
ing and writing. The r+ positions the stream at the beginning of the file, w+
creates or truncates it, and a+ positions it at the end. Both reads and writes
may be used on read/write streams, with the limitation that an fseek,
rewind, or reading an end-of-file must be used between a read and a write or
vice-versa.

Freopen substitutes the named file in place of the open stream. It returns the
original value of stream. The original stream is closed.

Freopen is typically used to attach the preopened constant names, stdin,
stdout, stderr, to specified files.

3-14 GNX DB SUPPORT LIBRARY ROUTINES

FOPEN (Cont)

Fdopen associates a stream with a file descriptor obtained from open, or
creat. The type of the stream must agree with the mode of the open file.

SEE ALSO

fclose

DIAGNOSTICS

Fopen and f reopen return the null pointer if filename cannot be accessed.

GNX DB SUPPORT LIBRARY ROUTINES 3-15

FREAD

3.13 FREAD
NAME

f read, f wr i t e — buffered binary input/output

SYNOPSIS

#include <stdio.h>
freadfptr, sizeof(*ptr), nitems, stream)
FILE *stream;
fwrite(ptr, sizeof(*ptr), nitems, stream)
FILE ‘stream;

DESCRIPTION

Fread reads, into a block beginning at p t r , n ite m s of data of the type * p tr from
the named input s tr e a m . It returns the number of items actually read.

If s tr e a m is stdin and the standard output is line buffered, then any partial
output line will be flushed before any call to read to satisfy the fread.

Fwrite appends at most n item s of data of the type * p tr beginning at p t r to the
named output s tr e a m . It returns the number of items actually written.

SEE ALSO

fo p e n, g e tc, p u tc, g e t s, p u t s , p r in tf , s c a n f

DIAGNOSTICS

Fread and fwrite return 0 upon end-of-file or error.

3-16 GNX DB SUPPORT LIBRARY ROUTINES

3.14 FREXP
NAME

FREXP

f rexp, ldexp, modf - split into mantissa and exponent

SYNOPSIS

double frexp(value, eptr)
double value;
int *eptre­
double ldexp(value, exp)
double value;
double modf(value, iptr)
double value, *iptr;

DESCRIPTION

Frexp returns the mantissa of a double value as a double quantity (x) of magni­
tude less than 1 and stores an integer n such that value = x*2n indirectly
through eptr.

Ldexp returns the quantity value * 2exP.

Modf returns the positive fractional part of value and stores the integer part
indirectly through iptr.

GNX DB SUPPORT LIBRARY ROUTINES 3-17

FSEEK

3.15 FSEEK
NAME

f seek, f tell, rewind - reposition a stream

SYNOPSIS

#include <stdio.h>
fseek(stream, offset, ptrname)
FILE ‘stream;
long offset;
long ftell(stream)
FILE ‘stream;
rewind (stream)
FILE ‘stream;

DESCRIPTION

Fseek sets the position of the next input or output operation on the stream. The
new position is at the signed distance offset bytes from the beginning, the
current position, or the end of the file, if ptrname has the value 0, 1, or 2.

Fseek undoes any effects of ungetc.

Ft ell returns the current value of the offset relative to the beginning of the file
associated with the named stream. It is measured in bytes.

Rewind(s£reara) is equivalent to fseek {stream, 0L, 0).

SEE ALSO

fopen

DIAGNOSTICS

Fseek returns -1 for improper seeks.

3-18 GNX DB SUPPORT LIBRARY ROUTINES

GETC

3.16 GETC
NAME

getc, getchar, fgetc, getw - get character or word from stream

SYNOPSIS

#include <stdio.h>
int getc(stream)
FILE »stream;
int getchar()
int fgetc(stream)
FILE »stream;
int getw(stream)
FILE »stream;

DESCRIPTION

Getc returns the next character from the named input stream.

GetcharO is identical to getc (stdin).

Fgetc behaves like getc but is a genuine function, not a macro; it may be used
to save object text.

Getw returns the next word (in a 32-bit integer) from the named input stream.
It returns the constant EOF upon end-of-file or error, but since that is a good
integer value, feof should be used to check the success of getw. Getw
assumes no special alignment in the file.

SEE ALSO

fopen,putc, scanf, fread, ungetc

DIAGNOSTICS

These functions return the integer constant EOF at end-of-file or upon read
error.

GNX DB SUPPORT LIBRARY ROUTINES 3-19

GETC (Cont)

CAVEATS

The end-of-file return from getchar is incompatible with that in UNIX editions
1 through 6.

Because it is implemented as a macro, getc treats a stream argument with side
effects incorrectly. In particular, the getc (*f++) ; expression is not equivalent
to the ch=*f++;getc (ch) expression.

3-20 GNX DB SUPPORT LIBRARY ROUTINES

GETS

3.17 GETS
NAME

gets, fgets - get a string from a stream

SYNOPSIS

#include <stdio.h>
char *gets(s)
char *s;
char *fgets(s, n, stream)
char *s;
FILE *stream;

DESCRIPTION

Gets reads a string into s from the standard input stream stdin. The string is
terminated by a newline character, which is replaced in s by a null character.
Gets returns its argument.

Fgets reads n-1 characters or up to a newline character, whichever comes first,
from the stream into the string s . The last character read into s is followed by a
null character. Fgets returns its first argument.

SEE ALSO

puts,getc, scanf, and fread

DIAGNOSTICS

Gets and fgets return the constant null pointer upon end-of-file or error.

CAVEATS

Gets deletes a newline, fgets keeps it.

GNX DB SUPPORT LIBRARY ROUTINES 3-21

INSQUE

3.18 INSQUE
NAME

insque, remque — insert/remove element from a queue

SYNOPSIS

struct qelem
struct
struct
char

>;
insque(elem,
struct qelem
remque(elem)
struct qelem

DESCRIPTION

Insque and remque manipulate queues built from double-linked lists. Each
element in the queue must be in the form of struct qelem. Insque inserts
elem in a queue immediately after pred; remque removes an entry elem from a
queue.

{
qelem *q_forw;
qelem *q_back;
q_data[];

pred)
*elem, *pred;

*elem;

3-22 GNX DB SUPPORT LIBRARY ROUTINES

3.19 ISATTY
NAME

ISATTY

isatty - finds name of a terminal

SYNOPSIS

isatty(filedes)
DESCRIPTION

Isatty returns 1 if filedes is associated with a stdin, stdout or stderr; otherwise,
it returns 0.

GNX DB SUPPORT LIBRARY ROUTINES 3-23

MALLOC

3.20 MALLOC
NAME

malloc, free, realloc, calloc — memory allocator

SYNOPSIS

char *malloc(size)
unsigned size;
free(ptr)
char *ptr;
char *realloc(ptr, size)
char *ptr;
unsigned size;
char *calloc(nelem, elsize)
unsigned nelem, elsize;

DESCRIPTION

Malloc and free provide a simple general-purpose memory allocation package.
Malloc returns a pointer to a block of at least size bytes beginning on a word
boundary.

The argument to free is a pointer to a block previously allocated by malloc;
this space is made available for further allocation, but its contents are left undis­
turbed. (Severe disorder will result if the space assigned by malloc is overrun
or if some random number is handed to free.)

Malloc maintains multiple lists of free blocks according to size, allocating space
from the appropriate list. It calls sbrk (see sbrk) to get more memory from
the system when there is no suitable space already free.

Realloc changes the size of the block pointed to by ptr to size bytes and returns
a pointer to the (possibly moved) block. The contents will be unchanged up to
the lesser of the new and old sizes.

For compatibility with older versions, realloc also works if ptr points to a
block freed since the last call of malloc, realloc, or calloc.

Calloc allocates space for an array of nelem elements of size elsize. The space
is initialized to zeros.

3-24 GNX DB SUPPORT LIBRARY ROUTINES

MALLOC (Cont)

Each of the allocation routines returns a pointer to a space suitably aligned
(after possible pointer coercion) for storage of any type of object.

DIAGNOSTICS

Malloc, realloc, and calloc return a null pointer (0) if there is no available
memory or if the arena has been detectably corrupted by storing outside the
bounds of a block. Malloc may be recompiled to check the arena very
stringently on every transaction; those sites with a source code license may
check the source code to see how this can be performed.

CAVEATS

When realloc returns 0, the block pointed to by ptr may be destroyed.

GNX DB SUPPORT LIBRARY ROUTINES 3-25

MEMORY

3.21 MEMORY
NAME

memccpy, memchr, memcmp, memcpy, memset — memory operations

SYNOPSIS

#include <memory.h>
char *memccpy (sl, s2, c, n)
char *sl, *s2;
int c, n;
char *memchr (s, c, n)
char *s;
int c, n;
int memcmp (sl, s2, n)
char *sl, *s2;
int n;
char *memcpy (sl, s2, n)
char *sl, *s2;
int n;
char *memset (s, c, n)
char *s;
int c, n;

DESCRIPTION

These functions operate as efficiently as possible on memory areas (arrays of
characters bounded by a count, not terminated by a null character). They do not
check for the overflow of any receiving memory area.

Memccpy copies characters from memory area s2 into s l, stopping after the
first occurrence of character c has been copied, or after n characters have been
copied, whichever comes first. It returns a pointer to the character after the
copy of c in s l, or a null pointer if c has not been found in the first n charac­
ters of s2.

Memchr returns a pointer to the first occurrence of character c in the first n
characters of memory area s, or a null pointer if c does not occur.

3-26 GNX DB SUPPORT LIBRARY ROUTINES

MEMORY (Cont)

Memcmp compares its arguments, looking at the first n characters only, and
returns an integer less than, equal to, or greater than 0, if an s i is lexicographi­
cally less than, equal to, or greater than s2.

Memcpy copies n characters from memory area s2 to si. It returns si.

Memset sets the first n characters in memory area s to the value of character
c. It returns s.

For user convenience, all these functions are declared in the optional
cmemory. h> header file.

GNX DB SUPPORT LIBRARY ROUTINES 3-27

PERROR

3.22 PERROR
NAME

perror, sys_errlist, sys_nerr — system error messages

SYNOPSIS

perror(s)
char *s ;
int sys._nerr;
char *sys_errlist[];

DESCRIPTION

On the standard error file, perror produces a short error message describing
the last error encountered during a call to the system from a C program. First
the argument string s is printed, then a colon, then the message and a new-line.
The argument string is the name of the program which incurred the error. The
error number is taken from the external variable errno, which is set when errors
occur but not cleared when non-erroneous calls are made.

To simplify variant formatting of messages, the vector of message strings
sysjerrlist is provided; errno can be used as an index in this table to get the mes­
sage string without the new-line. Sysjierr is the number of messages provided
for in the table; it should be checked because new error codes may be added to
the system before they are added to the table.

3-28 GNX DB SUPPORT LIBRARY ROUTINES

PRINTF

3.23 PRINTF
NAME

printf, fprintf, sprintf - formatted output conversion

SYNOPSIS

#include <stdio.h>
printf(format [, arg] ...)
char *format;
fprintf(stream, format [, arg] ...)
FILE ‘stream;
char *format;
sprintf(s, format [, arg] ...)
char *s, format;

DESCRIPTION

Printf places output on the standard output stream stdout. Fprintf
places output on the named output stream. Sprintf places “output” in the
string s, followed by the “\0 ” character.

Each of these functions converts, formats, and prints its arguments after the
first argument under control of the format argument. The format argument is a
character string which contains two types of objects: plain characters, which are
simply copied to the output stream, and conversion specifications, each of which
causes conversion and printing of the next successive arg.

Each conversion specification is introduced by the character %. Following the %,
there may be

• An optional minus sign which specifies left adjustment of the converted
value in the indicated field.

• An optional digit string specifying a field width; if the converted value has
fewer characters than the field width, it will be blank-padded on the left (or
right, if the left-adjustment indicator has been given) to make up the field
width; if the field width begins with a zero, zero-padding will be performed
instead of blank-padding.

GNX DB SUPPORT LIBRARY ROUTINES 3-29

PRINTF (Cont)

In no case does a non-existent or small field width cause truncation of a
field; padding takes place only if the specified field width exceeds the actual
width. Characters generated by print f are printed by putc.

• An optional period which serves to separate the field width from the
next digit string.

• An optional digit string specifying a precision which specifies the number of
digits to appear after the decimal point, for e- and f-conversion, or the max­
imum number of characters to be printed from a string.

• An optional “#” character specifying that the value should be converted to
an alternate form. For c, d, s, and u conversions, this option has no
effect. For o conversions, the precision of the number is increased to force
the first character of the output string to a zero. For x(X) conversion, a
nonzero result has the string Ox (OX) added to the front. For e, E, f, g,
and G conversions, the result will always contain a decimal point, even if
no digits follow the point (normally, a decimal point appears only in the
results of those conversions if a digit follows the decimal point). For g and
G conversions, trailing zeros are not removed from the result as they would
otherwise be.

• The character 1 specifying that a following d, o, x, or u corresponds to a
long integer arg.

• A character which indicates the type of conversion to be applied.

A field width or precision may be instead of a digit string. In this case, an
integer arg supplies the field width or precision.

The conversion characters and their meanings are:

dox The integer arg is converted to decimal, octal, or hexadecimal nota­
tion respectively.

f The float or double arg is converted to decimal notation in the style
“ [-] ddd. ddd” where the number of d’s after the decimal point is
equal to the precision specification for the argument. If the precision
is missing, 6 digits are given; if the precision is explicitly 0, no digits
and no decimal point are printed.

e The float or double arg is converted in the style “ [-] d . dddeidd”
where there is one digit before the decimal point and the number
after is equal to the precision specification for the argument; when
the precision is missing, 6 digits are produced.

g The float or double arg is printed in style d, in style f, or in style e,
whichever gives full precision in minimum space.

3-30 GNX DB SUPPORT LIBRARY ROUTINES

PRIN TF (Cont)

c The character arg is printed.
s Arg is taken to be a string (character pointer), and characters from

the string are printed until a null character or until the number of
characters indicated by the precision specification is reached; how­
ever, if the precision is 0 or missing, all characters up to a null are
printed.

u The unsigned integer arg is converted to decimal and printed (the
result will be in the range 0 through MAXUINT, where MAXUINT
equals 4294967295 on a VAX-11 and 65535 on a PDP-11).

% Print a percent sign; no argument is converted.

Example: To print a date and time in the form Sunday, July 3, 10 :02, where
weekday and month are pointers to null-terminated strings:

printf("%s, %s %d, %02d:%02d", weekday, month, day, hour, min);

To print ERROR in line number 1386 incorrect number of fields line is:
.if n pi ERROR in line number 1387 incorrect number of fields line is: .if
17i to 5 decimals:

printf("pi = %.5f", 4*atan(1.0));

SEE ALSO

gute, scanf, ecvt

CAVEATS

Very wide fields (>128 characters) fail.

GNX DB SUPPORT LIBRARY ROUTINES 3-31

PUTC

3.24 PUTC
NAME

putc, putchar, fputc, putw — put character or word on a stream

SYNOPSIS

#include <stdio.h>
int putc(c, stream)
char c;
FILE *stream;
putchar(c)
fputc(c, stream)
FILE ‘stream;
putw(w, stream)
int w;
FILE *stream;

DESCRIPTION

Putc appends the character c to the named output stream. It returns the char­
acter written.

Putchar (c) is defined as putc(c, stdout).

Fputc behaves like putc, but is a genuine function rather than a macro.

Putw appends word (that is, int) w to the output stream. It returns the word
written. Putw neither assumes nor causes special alignment in the file.

SEE ALSO

fopen, fclose, getc, puts, printf, fread

DIAGNOSTICS

These functions return the constant EOF upon error.

3-32 GNX DB SUPPORT LIBRARY ROUTINES

PUTC (Cont)

CAVEATS

Because it is implemented as a macro, putc improperly treats a stream argu­
ment with side effects. In particular,

putc(c, *f++);
doesn’t work logically.

Errors can occur long after the call to putc.

GNX DB SUPPORT LIBRARY ROUTINES 3-33

PUTS

3.25 PUTS
NAME

puts, fputs - put a string on a stream

SYNOPSIS

ttinclude <stdio.h>
puts(s)
char *s;
fputs(s, stream)
char *s;
FILE ‘stream;

DESCRIPTION

Puts copies the null-terminated string s to the standard output stream stdout
and appends a newline character.

Fput s copies the null-terminated string s to the named output stream.

Neither routine copies the terminal null character.

SEE ALSO

fopen, gets, putc, printf, and fwrite

CAVEATS

Puts appends a newline, fputs does not.

3-34 GNX DB SUPPORT LIBRARY ROUTINES

QSORT

3.26 QSORT
NAME

qsort - quicker sort

SYNOPSIS

qsort(base, nel, width, compar)
char *base;
int nel,width;
int (*compar)();

DESCRIPTION

Qsort is an implementation of the quicker sort algorithm. The first argument is
a pointer to the base of the data, the second is the number of elements, the third
is the width of an element in bytes, and the last is the name of the comparison
routine to be called. Qsort contains two arguments which are pointers to the
elements being compared. The routine must return an integer less than, equal
to, or greater than 0 according to whether the first argument is less than, equal
to, or greater than the second.

GNX DB SUPPORT LIBRARY ROUTINES 3-35

RANDOM

3.27 RANDOM
NAME

random, srandom, initstate, setstate — random number generator; rou­
tines for changing generators

SYNOPSIS

long random()

srandom(seed)
int seed;

char *initstate(seed, state, n)
unsigned seed;
char *state;
int n;

char *setstate(state)
char *state;

DESCRIPTION

Random uses a nonlinear additive feedback random number generator employing
a default table of size 31 long integers to return successive pseudo-random
numbers in the range of 0 to 231-1. The period of this random number generator
is very large, approximately 16*(231-1).

All the bits generated by random are usable. For example, random()&01 will
produce a random binary value.

Random will by default produce a sequence of numbers that can be duplicated by
calling srandom with 1 as the seed.

The initstate routine allows a state array, passed in as an argument, to be ini­
tialized for future use. The size of the state array (in bytes) is used by init­
state to decide how sophisticated a random number generator it should use -
the more state, the better the random numbers will be. (Current “optimal”
values for the amount of state information are 8, 32, 64, 128, and 256 bytes;
other amounts will be rounded down to the nearest known amount. Using less
than 8 bytes will cause an error.) The seed for the initialization (which specifies
a starting point for the random number sequence and provides for restarting at
the same point) is also an argument. Initstate returns a pointer to the pre­
vious state information array.

3-36 GNX DB SUPPORT LIBRARY ROUTINES

RANDOM (Cont)

Once a state has been initialized, the setstate routine provides for rapid
switching between states. Setstate returns a pointer to the previous state
array; its argument state array is used for further random number generation
until the next call to initstate or setstate.

Once a state array has been initialized, it may be restarted at a different point
either by calling initstate (with the desired seed, the state array, and its
size), or by calling both setstate (with the state array) and srandom (with
the desired seed). The advantage of calling both setstate and srandom is
that the size of the state array does not have to be remembered after it is initial­
ized.

With 256 bytes of state information, the period of the random number generator
is greater than 269, which should be sufficient for most purposes.

DIAGNOSTICS

If initstate is called with less than 8 bytes of state information, or if set-
state detects that the state information has been garbled, error messages are
printed on the standard error output.

GNX DB SUPPORT LIBRARY ROUTINES 3-37

REGEX

3.28 REGEX
NAME

re_comp, re_exec — regular expression handler

SYNOPSIS

char *re_comp(s)
char *s;

re_exec(s)
char *s;

DESCRIPTION

Re_comp compiles a string into an internal form suitable for pattern matching.
Re_exec checks the argument string against the last string passed to re_comp.

Re_comp returns 0 if the string s is compiled successfully; otherwise a string
containing an error message is returned. If re_comp is passed 0 or a null
string, it returns without changing the currently compiled regular expression.

Re_exec returns 1 if the string s matches the last compiled regular expression,
0 if the string s failed to match the last compiled regular expression, and -1 if
the compiled regular expression is invalid (indicating an internal error).

The strings passed to both re_coinp and re_exec may have trailing or embed­
ded newline characters; they are terminated by nulls.

DIAGNOSTICS

Re_exec returns -1 for an internal error.

3-38 GNX DB SUPPORT LIBRARY ROUTINES

REGEX (Cont)

Re_comp returns one of the following strings if an error occurs:

No previous regular expression,
Regular expression too long,
unmatched \(,
missing] ,
too many \(\) pairs,
unmatched \).

GNX DB SUPPORT LIBRARY ROUTINES 3-39

SCANF

3.29 SCANF
NAME

scanf, fscanf, sscanf - formatted input conversion

SYNOPSIS

ttinclude <stdio.h>

scanf(format [, pointer] ...)
char *format;

fscanf(stream, format [, pointer] ...)
FILE *stream;
char *format;

sscanf(s, format [, pointer] ...)
char *s, *format;

DESCRIPTION

Scanf reads from the standard input stream stdin. Fscanf reads from the
named input stream. Sscanf reads from the character string s. Each func­
tion reads characters, interprets them according to a format, and stores the
results in its arguments. Each expects arguments as a control string format,
described below, and a set of pointer arguments indicating where the converted
input should be stored.

The control string normally contains conversion specifications, which are used to
direct interpretation of input sequences. The control string may contain:

1. Blanks, tabs, or newlines, which match optional white space in the
input.

2. An ordinary character (not %) which must match the next character
of the input stream.

3. Conversion specifications, consisting of the character %, an optional
assignment suppressing character *, an optional numerical max­
imum field width, and a conversion character.

3-40 GNX DB SUPPORT LIBRARY ROUTINES

SCANF (Cont)

A conversion specification directs the conversion of the next input field; the
result is placed in the variable pointed to by the corresponding argument, unless
assignment suppression has been indicated by *. An input field is defined as a
string of nonspace characters; it extends to the next inappropriate character or
until the field width, if specified, is exhausted.

The conversion character indicates the interpretation of the input field; the
corresponding pointer argument must normally be of a restricted type. The fol­
lowing conversion characters are legal:

% a single “%” is expected in the input at this point; no assignment is
performed.

d a decimal integer is expected; the corresponding argument should be
an integer pointer.

o an octal integer is expected; the corresponding argument should be an
integer pointer.

x a hexadecimal integer is expected; the corresponding argument
should be an integer pointer.

s a character string is expected; the corresponding argument should be
a character pointer pointing to an array of characters large enough to
accept the string and a terminating “\0 ,” which will be added. The
input field is terminated by a space character or a newline.

c a character is expected; the corresponding argument should be a char­
acter pointer. The normal skip over space characters is suppressed in
this case; to read the next nonspace character, try “%ls.” If a field
width is given, the corresponding argument should refer to a charac­
ter array, and the indicated number of characters is read.

f or e
a floating-point number is expected; the next field is converted accord­
ingly and stored through the corresponding argument, which should
be a pointer to a float. The input format for floating-point numbers is
an optionally signed string of digits, possibly containing a decimal
point, followed by an optional exponent field consisting of an E or e
followed by an optionally signed integer.

[indicates a string not to be delimited by space characters. The left
bracket is followed by a set of characters and a right bracket; the
characters between the brackets define a set of characters making up
the string. If the first character is not circumflex (A), the input field
is all characters until the first character not in the set between the
brackets. If the first character after the left bracket is A, the input

GNX DB SUPPORT LIBRARY ROUTINES 3-41

SCANF (Cont)

field is all characters until the first character which is in the remain­
ing set of characters between the brackets. The corresponding argu­
ment must point to a character array.

The conversion characters d, o, and x may be capitalized or preceded by 1 to
indicate that a pointer to long rather than to int is in the argument list.
Similarly, the conversion characters e or f may be capitalized or preceded by 1
to indicate a pointer to double rather than to float. The conversion charac­
ters d, o, and x may be preceded by h to indicate a pointer to short rather
than to int.

The scanf functions return the number of successfully matched and assigned
input items. This can be used to decide how many input items have been found.
The constant EOF is returned upon end-of-input; note that this is different from
0, which means that no conversion has been performed; if conversion had been
intended, it has been frustrated by an inappropriate character in the input.

For example, the call

int i; float x; char name[50];
scanf ("%d%f%s", &i, &x, name);

with the input line

25 54.32E-1 thompson
will assign to i the value 25, x the value 5.432, and name will contain thomp-
son\0. Or,

int i; float x; char name[50];
scanf("%2d%f%*d%[1234567890]", &i, &x, name);

with input

56789 0123 56a72
will assign 56 to i, 789.0 to x, skip “0123,” and place the string 56\0 in name.
The next call to getchar will return a.

SEE ALSO

atof, getc, printf

3-42 GNX DB SUPPORT LIBRARY ROUTINES

SCANF (Cont)

DIAGNOSTICS

The scanf functions return EOF on end-of-input and a short count for missing
or illegal data items.

CAVEATS

The success of literal matches and suppressed assignments is not directly deter­
minable.

GNX DB SUPPORT LIBRARY ROUTINES 3-43

SETBU F

3.30 SETBUF
NAME

setbuf, setbuffer, set 1 inebuf — assign buffering to a stream

SYNOPSIS

#include <stdio.h>
setbuf(stream, buf)
FILE *stream;
char *buf;
setbuffer(stream, buf, size)
FILE ‘stream;
char *buf;
int size;
set1inebuf(stream)
FILE *stream;

DESCRIPTION

The three types of buffering available are unbuffered, block buffered, and line
buffered. When an output stream is unbuffered, information appears on the des­
tination file or terminal as soon as written; when it is block buffered, many char­
acters are saved up and written as a block; when it is line buffered, characters
are saved up until a newline is encountered or input is read from stdin.
Ff lush (see f close) may be used to force the block out early. Normally all
files are block buffered. A buffer is obtained from malloc upon the first getc
or putc on the file. If the standard stream stdout refers to a terminal, it is
line buffered. The standard stream stderr is always unbuffered.

Setbuf is used after a stream has been opened but before it is read or written.
The character array buf is used instead of an automatically allocated buffer. If
buf is the constant null pointer, input/output will be completely unbuffered. A
manifest constant BUFSIZ tells how big an array is needed:

char buf[BUFSIZ];

3-44 GNX DB SUPPORT LIBRARY ROUTINES

SETBU F (Cont)

Setbuffer, an alternate form of setbuf, is used after a stream has been
opened but before it is read or written. The character array buf whose size is
determined by the size argument is used instead of an automatically allocated
buffer. If buf is the constant null pointer, input/output will be completely unbuf­
fered.

Setlinebuf is used to change stdout or stderr from block buffered or unbuffered
to line buffered. Unlike setbuf and setbuf fer, it can be used at any time
that the file descriptor is active.

A file can be changed from unbuffered or line buffered to block buffered by using
f reopen (see f open). A file can be changed from block buffered or line buffered
to unbuffered by using f reopen followed by setbuf with a buffer argument of
null.

SEE ALSO

fopen, getc, putc, malloc, fclose, puts, printf, fread

CAVEATS

The standard error stream should be line buffered by default.

GNX DB SUPPORT LIBRARY ROUTINES 3-45

SETJM P

3.31 SETJMP
NAME

setjmp, longjmp - nonlocal goto

SYNOPSIS

ttinclude <setjmp.h>
setjmp(env)
jmp_buf env;

longjmp(env, val)
jmp_buf env;

DESCRIPTION

These routines are useful for dealing with errors and interrupts encountered in a
low-level subroutine of a program.

Setjmp saves its stack environment in env for later use by longjmp. It
returns value 0.

Longjmp restores the environment saved by the last call of setjmp. It then
returns in such a way that execution continues as if the call of setjmp had just
returned the value val to the function that invoked setjmp. (Setjmp must
not have returned in the interim.) All accessible data have values as soon as
longjmp is called.

CAVEATS

Setjmp does not save current notion of whether the process is executing on the
user stack or interrupt stack. If set jmp and longjmp are performed while the
process is executing on different stacks, the result will be unpredictable.

3-46 GNX DB SUPPORT LIBRARY ROUTINES

STRING

3.32 STRING
NAME

index, rindex, strcat, strncat, strcmp, strncmp, strcpy, strncpy,
strlen, strchr, strrchr — string operations

SYNOPSIS

#include <strings.h>

char *strcat(sl, s2)
char *sl, *s2;

char
char

*strncpy(sl, s2,
*sl, *s2;

char *strncat(sl, s2, n)
char *sl, *s2;

strlen(s)
char *s;

strcmp(si, s2)
char *sl, *s2;

char
char

*strchr(s, c)
*s, c;

strncmp(si, s2, n)
char *sl, *s2;

char
char

*strrchr(s, c)
*s, c;

char *strcpy(sl, s2)
char *sl, *s2;

char
char

♦index(s, c)
*s, c;

char *rindex(s, c)
char *s, c;

DESCRIPTION

These functions operate on null-terminated strings. They do not check for
overflow of any receiving string.

Strcat appends a copy of string s2 to the end of string s i . Strncat copies at
most n characters. Both return a pointer to the null-terminated result.

Strcmp compares its arguments and returns an integer greater than, equal to,
or less than 0, if an si is lexicographically greater than, equal to, or less than s2.
Strncmp makes the same comparison but looks at most n characters.

Strcpy copies string s2 to si, stopping after the null character has been moved.
Strncpy copies exactly n characters, truncating or null-padding s2; the target
may not be null-terminated if the length of s2 is n or more. Both return s i .

GNX DB SUPPORT LIBRARY ROUTINES 3-47

STRING (Cont)

Strien returns the number of non-null characters in s.

Strchr (strrchr) returns a pointer to the first (last) occurrence of character c in
string s, or zero if c does not occur in the string. The null character terminating
a string is considered to be part of the string.

Index (rindex) returns a pointer to the first (last) occurrence of character c in
string s, or zero if c does not occur in the string.

3-48 GNX DB SUPPORT LIBRARY ROUTINES

SWAB

3.33 SWAB
NAME

swab - swaps bytes

SYNOPSIS

swab(from, to, nbytes)
char *from, *to;

DESCRIPTION

Swab copies nbytes bytes pointed to by from to the position pointed to by to,
exchanging adjacent even and odd bytes. It is useful for carrying binary data
between PD Pll’s and other machines. Nbytes should be even.

GNX DB SUPPORT LIBRARY ROUTINES 3-49

UNGETC

3.34 UNGETC
NAME

ungetc - pushes character back into input stream

SYNOPSIS

#include <stdio.h>

ungetc(c, stream)
FILE *stream;

DESCRIPTION

Ungetc pushes the character c back on an input stream. That character will be
returned by the next getc call on that stream. Ungetc returns c.

One character of pushback is guaranteed provided something has been read
from the stream and the stream is actually buffered. Attempts to push EOF are
rejected.

Fseek erases all memory of pushed back characters.

SEE ALSO

getc, setbuf, fseek

DIAGNOSTICS

Ungetc returns EOF if it can’t push a character back.

3-50 GNX DB SUPPORT LIBRARY ROUTINES

Chapter 4

FLOATING-POINT LIBRARY

4.1 INTRODUCTION
This chapter describes the single-precision and double-precision math library functions
for the NS32081, NS32181 and NS32381 floating-point units. The math libraries,
libm.a, libXm.a, lib3 81m.a, and libX3 81m.a contain the same standard math
functions. The functions in libm.a and libXm. a support the NS32081 and NS32181
floating-point unit. The functions in lib3 81m.a and libX3 81m.a support the
NS32381 floating-point unit. Throughout this manual, the term “math library” refers
to libm.a, libXm.a, lib381m. a, and libX381m.a.

There are separate implementations for single-precision and double-precision floating­
point arithmetic. The names of the double-precision functions are listed below; the
names of the single-precision functions are the same as the double-precision functions
prefixed with an f. For example, the single-precision version of sin is fsin. There
is one exception to this naming convention, nextdouble (double-precision) and
next float (single-precision).

acos cabs drem floor loglp rint
acosh cbrt erf fmod log2 sin
asin ceil exp fmodf neg sinh
asinh compound exp2 hypot pi sqrt
atan copysign expml inf pow tan
atan2 cos fabs log relation tanh
atanh cosh finite loglO rem

The following functions are common to both the single- ai i double-precision libraries:

gamma bessel randomx

The following environment access functions are also common to both the single- and
double-precision arithmetic:

fp_getexptn
fp_getround
fp_gettrap
fp _gmathenv
fpgtrpvctr

fp_procentry
fp_procexit
fp_setexptn
fp_setround
fp_settrap

fp_smathenv
fpstrpvctr
fp_testtrap
fp_tstexptn

FLOATING-POINT LIBRARY 4-1

See Sections 4.2.10 and 4.3, describing the use of these functions from a program writ­
ten in C, Pascal, or FORTRAN.

The standard calling conventions as described in Appendix A are used to call math
library functions. This protocol includes the convention of passing only double­
precision floating-point arguments in external procedure and function calls. Because of
this, when a single-precision procedure or function is called, a hardware instruction is
invoked whenever it is necessary to convert an argument from single-precision to
double-precision. If this instruction is executed with a reserved operand, the result is
an immediate invalid-operation trap. It is not possible for the user to disable this trap;
therefore, with the combination of the math library and the floating-point emulation
library, the user may achieve compliance with only the IEEE 754 Standard for
Floating-Point Arithmetic for double-precision arithmetic.

Major problems result when the user is unable to effectively use the single-precision
version of the relation function; frelation returns “unordered” when passed a
quiet NAN as an argument, and f finite returns a zero when passed an infinity or a
NAN as an argument. These routines, if the source code is available, can be included
in a program as local routines to avoid the conversion problem.

4.2 DETAILS AND USE OF THE MATH LIBRARY
This section describes integer and floating-point number formats, reserved operand
values and conditions, and techniques for handling floating-point error situations
according to the ANSI/IEEE “Standard for Binary Floating-point Arithmetic”
(ANSI/IEEE Std 754-1985).

4.2.1 Number Formats
The Series 32000 architecture implements three lengths for integers and two lengths
for floating-point numbers. Reserved operand values are floating-point numbers that
represent values outside the Series 32000 architecturally possible range.

4.2.2 Integer Formats
The most significant bit in the integer format is a sign bit used to implement negative
integers in two’s-complement representation. The math library operates on integers in
three formats.

Byte Format:

7 0

4-2 FLOATING-POINT LIBRARY

B yte format represents values from negative 128 through positive 127.

Word Format:

15 8 7 0
» ■_____■ 1 ■ » » *_____I I I I I_____I-------

Word format represents values from negative 32768 through positive 32767.

Double-word Format:

31 2423 1615 8 7 0

Double-word format represents values from negative 2147483648 through positive
2147483647.

4.2.3 Floating-point Formats
The math library operates on single-precision and double-precision floating-point
numbers. Single-precision and double-precision formats have three parts:

• Sign
• Exponent
• Fraction

Single-precision numbers have a 1-bit sign, an 8-bit exponent (between -126 and +127),
and a 23-bit fraction, as follows:

31 30 23 22
..................

Single-precision math functions return a single-precision number as the result.

Double-precision numbers have a 1-bit sign, an 11-bit exponent (between -1022 and
+1023), and a 52-bit fraction, as follows:

63 62 52 51 0

Double-precision math functions return a double-precision number as the result.

The math library operates on the valid range of floating-point numbers. All valid
floating-point numbers are normalized numbers. Normalized numbers have two
characteristics which distinguish them from invalid floating-point range numbers
(reserved operands). Normalized numbers have an assumed leading 1 in the fraction
part of the format and the exponent is neither all 0’s nor all Ts. The mantissa of a
floating-point number is formed by prefixing a 1 to the fraction. For example, a single-

FLOATING-POINT LIBRARY 4-3

precision floating-point fraction 11000000111011111010010 after prefixing a 1 to the
mantissa becomes 1.11000000111011111010010. The binary point is between the
assumed first bit and the most significant bit of the fraction. A bias value is added to
the exponent before it is stored in the exponent field of the floating-point number. The
bias value added to each exponent is:

127 for single-precision
1023 for double-precision

The minimum and maximum decimal and hexadecimal values for single- and double­
precision floating-point numbers are given in Table 4-1 and shown on a number line in
Figure 4-1.

Though zero is a valid floating-point number, it is not a normalized number. A zero is
represented by all 0’s in the exponent and fraction. The sign bit can be either 0 (posi­
tive zero) or 1 (negative zero). Normally, positive and negative zero are equivalent, but
in special cases, such as divide by zero, they are distinguishable.

Table 4-1. Minimum and Maximum Values

HEXADECIMAL VALUE DECIMAL NUMBER VALUE

DOUBLE-PRECISION

Max(normal)
Min(normal)
Min(denormal)

7FEFFFFF FFFFFFFF
00100000 00000000
00000000 00000001

1.797693134862316 E 308
2.225073858507201 E -308
4.940656458412465 E -324

SINGLE-PRECISION

Max(normal)
Min(normal)
Min(denormal)

7F7FFFFF
00800000
00000001

-3.4028235 E 38
-1.1754943 E -38
-1.4012984 E -45

NOTE: 1. These values are positive. The sign bit does not affect the absolute
magnitude of the limits. The negative limits can be determined by
adding a sign bit to the hexadecimal value and affixing a negative
sign in front of the floating-point value.

2. The binary exponent is the value of the exponent within the given
hexadecimal value. The maximum value is represented by all bits set
within the exponent field. For both single-precision and double­
precision formats, this value indicates not-a-number or infinity.

4-4 FLOATING-POINT LIBRARY

+oo

3.4028235 E 38 -

1.1754943 E -38 -

ZERO -

-1.1754943 E -38 -

-3.4028235 E 38 -

OVERFLOW

' UNDERFLOW

OVERFLOW

PRECISION = 2'23 = 1.192 092 9 E -7

SINGLE-PRECISION

\ OVERFLOW
1.797693134862316 E 308 - | '

2.225073858507201 E -308 -

ZERO - i UNDERFLOW

2.225073858507201 E -308 - '

-1.797693134862316 E 308
OVERFLOW

PRECISION = 2"52 = 2.2204460492503132 E -52

DOUBLE-PRECISION

HM-01-0-U

Figure 4-1. Maximum and Minimum Values for Floating-point Numbers

FLOATING-POINT LIBRARY 4-5

4.2.4 Reserved Operand Values and Operations
Reserved operand values represent values and situations outside the architecturally
legal range of floating-point numbers. The architecturally legal range is a function of
the size of both the exponent field and the fraction field. There are three types of
reserved operands:

• Not-a-Number (NAN)
• Infinity (plus or minus)
• Denormalized number

For double-precision arithmetic, the math library implements some functions from the
ANSI/IEEE-754 Standard for handling reserved operand situations. Full IEEE 754
functionality for double-precision is achieved only when the math library is used in
conjunction with Series 32000 Floating-point Enhancement and Emulation Library
(FPEE Libraries). The name of the FPEE library varies with host system; see Chapter
5 for the name of the FPEE library for each specific host and to gain a full understand­
ing of GNX floating-point support. The key distinctions and differences between the
math library and the FPEE libraries follow the brief description of the IEEE 754
floating-point system.

IEEE 754 requires that exceptions (arithmetic operations on reserved operands) cause
a signal. The signal may be either the setting of an exception status flag, or taking a
trap, or both. The exact action must be under control of the application program. For
example, the application program can specify setting the exception status flag, but no
trapping, for a specific type of exception. In this case, program execution continues
despite the exception, and the numerical result of the operation causing the exception
is the appropriate IEEE 754 recommended value, typically either a NAN, or a signed
infinity. If trapping is disabled, the application program can look at the exception
status flags to determine if an exception occurred. The propagation of numerically
meaningless values (i.e., NANs or infinities) is strictly for retrospective diagnostic rea­
sons and rarely serves any meaningful purpose for the real world. A finished applica­
tion most likely runs with all traps enabled since any trap is cause for concern, and
program execution stops as soon as possible after the exception. The GNX floating­
point support meets these requirements for double-precision arithmetic.

IEEE 754 defines five types of exceptions: underflow, overflow, divide by zero, inexact
result, and invalid operation. IEEE 754 requires functions to enable/disable each of
the five traps and functions to read/clear each of the five exception status flags. These
traps and exceptions called math environment variables are controlled by a series of
functions provided in the math library. These functions are named injunction,jiame,
where functionjiame is a descriptive phrase.

The Series 32000 FPUs (i.e., NS32081, NS32181 and NS32381) provide flags only for
underflow, inexact trap enable, and inexact trap status. The FPU always traps for
overflow, divide by zero, and invalid operation exceptions. In no case do the
Series 32000 FPUs handle a trap. A trap halts application program execution.

The math library alone provides the functions to access and control the IEEE 754 math
environment variables, but it is the FPEE libraries which implement the trap handling
functionality. An application that uses only the math library cannot rightfully be con­
sidered in compliance with IEEE 754. An application that uses both the math library
4-6 FLOATING-POINT LIBRARY

and an FPEE library for double-precision arithmetic is in compliance with IEEE 754
math environment requirements.

The remainder of this section describes the reserved operand format and pertinent
information.

4.2.5 Not a Number (NAN)
Not a Number (NAN) is the result of an invalid operation. Invalid operations include
zero multiplied by infinity, division of infinity by infinity, and any arithmetic operation
on a NAN.

There are two types of NANs: Quiet and Signaling. The quiet NAN (QNAN) does not
cause a trap or set the invalid operation status flag. The QNAN is propagated quietly
through floating-point operations and is useful for retrospective diagnosis.

The quiet NAN verses signaling NAN (SNAN) distinction is implemented in the FPEE
library. Many of the math library mathematical functions can return QNANs, but this
value propagates through subsequent calculations only if the FPEE library is used.
The FPEE library implements the trap handler which processes QNANs and resumes
application program execution after a QNAN causes an FPU trap. QNANs always
cause an FPU trap since the Series 32000 FPUs do not distinguish between QNANs
and SNANs.

Signaling Quiet

sign 0 or 1 0 or 1

exponent All Is All Is

fraction 1 followed by
any combination
of Os and Is

0 followed by any combi­
nation of Os and Is where
at least one of the fol­
lowing bits must be a 1

FLOATING-POINT LIBRARY 4-7

4.2.6 Infinity
Some operations (i.e., those which cause overflow) produce a value representing
infinity. When the FPEE library is used, it allows infinity to be used in operations
such as comparison and multiplication. Infinity has the following formats:

Positive Infinity Negative Infinity

sign 0 1

exponent All Is All Is

fraction All Os All Os

The FPEE library supports a number system in which two infinities exist: a positive
infinity at the positive end of the number line and a negative infinity at the negative
end of the number line.

4.2.7 Denormalized Numbers
A denormalized number is a value for numbers which are too small to be correctly
represented in standard single- or double-precision format. These numbers are pro­
duced to avoid underflow (they actually allow a gradual underflow which decreases the
region shown in Figure 4-1). Denormalized numbers are characterized by an assumed
0 instead of 1 at the beginning of the fraction. Operations such as division can gen­
erate denormalized numbers. Denormalized numbers have the following format:

sign 0 or 1

exponent All Os

fraction Any combination of Os and Is but it is read as less than 1

Any operation that causes underflow creates a denormalized number and sets the
underflow status flag. The underflow does not cause a trap unless the underflow trap
enable flag is set. A subsequent operation using the denormalized number causes an
invalid operation trap because it is an operation on a reserved operand. The FPEE
library exception trap handler normalizes the underflowed number by shifting the frac­
tion to the left and setting the exponent to its minimum, and if the invalid operation
exception trap is disabled, program execution continues with a very small value that is
not a reserved operand and therefore is suitable for floating-point numerical opera­
tions. It is the responsibility of the application program to check the exception flags in
the floating-point status register to determine if underflow and an operation on a
denormalized value (invalid operation) occurred. The FPUs return 0.0 if the underflow
trap enable flag is not set.

4-8 FLOATING-POINT LIBRARY

4.2.8 Math Environment Control Function
The math library provides a number of math environment control functions which
when used in conjunction with the FPEE library, provide the full range of IEEE 754
features. All of the math environment control functions begin with “fp_” followed by a
descriptive phrase. These functions provide control over the three basic set of math
environment variables:

• Exception trap enable/disable
• Exception status flags
• Rounding mode

The exception trap enable/disable functions provide application program access to the
FPU’s floating-point status register fields which enable or disable traps on exceptions.
These functions control trapping for the five exceptions: overflow, underflow, divide by
zero, inexact result, and invalid operation. If the FPEE library is not used, only
underflow and inexact result traps are meaningful, but only in a minimal sense since
no trap handler is available to handle invalid operation exceptions. Without the FPEE
trap handler, the first underflow or inexact result effectively prevents further program
execution irrespective of the trap enable/disable setting, since a subsequent operation
in the application program that uses the underflowed or inexact result value causes an
invalid operation trap.

The exception status flag functions provide application program access to the FPU’s
floating-point status register fields which report whether an exception has occurred.
These functions can either report the value of the field {i.e. flag status), or set it to
either a 1 or a 0. There are five status flags: one for each of the five exceptions. Once
an exception sets its status flag, the flag stays set until explicitly reset by the applica­
tion program.

The FPEE library implements most of the functionality associated with the exception
traps and status fields. The FPEE library uses the software field of the FPU’s floating­
point status register to implement the trap enable/disable and exception status for
overflow, divide by zero, and invalid result exceptions.

The functions for rounding mode are applicable whether the FPEE library is used or
not.

4.2.9 Using the Math Environment Functions
Using math environment functions is not mandatory. If the math environment func­
tions are not used, the application program rims with whichever default conditions the
run-time system provides. The default conditions are system dependent and may vary.
Typically, these are minimal and not IEEE 754-based, but are adequate for many
applications.

Mathematically sophisticated applications do require the discipline provided by the
math environment functions. An IEEE 754 math-environment-based application
begins execution by first calling fp_procentry () before any application calculations.
The fp_procentry () function saves the current math environment (exception status
flags, Rounding mode, and trap flags) and sets the FPU’s floating-point status register

FLOATING-POINT LIBRARY 4-9

to the IEEE 754 default (clears all exception status flags, sets Rounding mode to
nearest, and disables all traps). The saved math environment is kept for restoration
when the application program completes (fp_procexit () is used as the last state­
ment in the application program). At critical points along the application program’s
execution, checking for exceptions is performed using an appropriate function such as
fp_getexptn (). If an exception is found, application program error functions provide
whatever service is necessary.

The fp_procentry () and fp_procexit () functions surround any atomic region of
code, and the pair may be used as often as required to simplify or implement any spe­
cial error handling functions. Though fp_procentry () s and fp_procexit () s may
be linearly nested, this normally complicates tracking the last saved math environ­
ment; therefore, this practice is not recommended.

The command summaries provide specific information on all the math environment
functions.

4.2.10 Accessing the Math Library Functions
High-Level Languages (HLL) access the math library functions in one of two ways.

In languages like C ERROR in line 888 String notation in .if didn’t parse line:.if
’Modula’true’ , that do not have a predefined list of math function names, programs
call the math library functions directly.

4-10 FLOATING-POINT LIBRARY

Chapter 5

FPEE LIBRARY

5.1 INTRODUCTION
When a Floating-Point Unit (FPU) is not present, the Floating-Point Enhancement and
Emulation (FPEE) library provides low-cost floating-point support by emulating the
Series 32000 FPU instructions. When an FPU is present, FPEE enhances the
Series 32000 FPU by providing additional functionality as recommended by Draft 10 of
the ANSI/IEEE Task 754 Proposal for Binary Floating-point Arithmetic (IEEE 754).
FPEE meets the IEEE 754 standard for double-precision arithmetic.

To maximize the efficiency of execution of external procedures and function calls, we
have adopted the convention of passing only double-precision floating-point arguments
and results. Because of this, when a single-precision procedure or function is called, a
hardware instruction is invoked whenever it is necessary to convert an argument from
single-precision to double-precision. If this instruction is executed with a reserved
operand, the result is an immediate invalid-operation trap. It is not possible for the
user to disable this trap; therefore, with the combination of the math library and the
floating-point emulation library, the user may achieve compliance only with the IEEE
754 Standard for Floating-Point Arithmetic for double-precision arithmetic.

Major problems result when the user is unable to effectively use the frelation func­
tion; frelation returns “unordered” when passed a quiet NAN as an argument, and
f finite returns a zero when passed an infinity or a NAN as an argument. These rou­
tines, if the source code is available, can be included in a program as local routines to
avoid the conversion problem.

ERROR in line 41 String notation in .if didn’t parse line: i f ’0811ib’supported’The FPEE
library is provided in source form and as a binary The FPEE library is provided as a
binary library suitable for its particular GNX tool-set environment. The FPEE library
is configured to enhance/emulate the NS32381 FPU and the NS32081 FPU (see Section
5.4.3).

This chapter describes the FPEE library’s interaction with the NS32081 FPU and the
NS32381 FPU, how to use and integrate the FPEE library with an application pro­
gram, and the basic FPEE library operational details.

Before proceeding, the information presented in Section 4.2 should be reviewed. This
information describes the Series 32000 floating-point number formats and special
values and defines floating-point arithmetic terminology.

FPEE LIBRARY 5-1

5.2 FPEE LIBRARY CONFIGURATIONS
ERROR in line 70 String notation in .if didn’t parse line:.if ’0811ib’supported’All FPEE
binary libraries provided with the GNX development All FPEE binary libraries pro­
vided with the GNX development tool-set are configured for the NS32381 (see Section
5.4.3).

ERROR in line 76 String notation in .if didn’t parse line:.if’0811ib’supported’

5.3 INTEGRATING FPEE WITH AN APPLICATION
The integration of the FPEE library imposes two mandatory requirements upon the
application.

First, the application must initialize the FPU’s status register (FSR). See Section 5.3.1
and Section 5.3.2 for details. This is especially critical if the FPEE library is enhanc­
ing the FPU. Initializing the FSR (Floating-point Status Register) synchronizes the
FPU’s hardware FSR with that of the FSR’s software image in the FPEE library.

Second, CPU exception dispatch-table trap-descriptors for FPU (slave) and undefined
instructions must be set to their corresponding entry points in the FPEE library. Use
the fpgtrpvctr and fpstrpvctr functions to fetch and set the FPU trap handler
(see Sections 4.3.30 and 4.3.37).

Only applications that require full FPU emulation (no FPU present) use the undefined
instruction trap. Those applications that use the FPEE library to enhance the FPU
need only the FPU trap, and the undefined trap initialization code may be removed
from the source.

5.3.1 Integrating FPEE with Series 32000/UNIX Applications
The user can link an application program with the FPEE library and execute code in a
G EN IX V development environment. This may be of use to customers that want to do
some initial checkup of their application.

Native applications call a special initialization routine provided with the FPEE library
libfpe.a. Libfpe. a must be installed in /lib before linking.

In the application program just after declarations, a call is made to fprinit, an
FPEE initialization routine which sets the GENIX V signals (traps) for both the
undefined instruction and the FPU trap. Upon return from this routine, the FSR is ini­
tialized and then the application program is called. (The source to fprint is in the
fpinit.c file of the FPEE sources.) Normally, fpinit is called with an assembly
instruction(e.g., asm("bsr _fpinit_") ;).

5-2 FPEE LIBRARY

5.3.2 Cross Application FPEE Integration
In cross-development mode, the FPEE library is supported by several functions from
the Series 32000 Development Board Monitors.

On a VAX/UNIX development host, a cross-application must either include a call to the
INIT__routine (in source file fpinitx.s) prior to any floating-point operations or
use the - f flag on the compiler invocation line to link with FPEE. The following two
examples link FPEE to an application program in the file yourprog. c:

rnncc (mif yourprog.c
or

rnncc (mic yourprog.c
nmeld GNXDIR/lib/fcrtO.o yourprog.o -lfpe -lc

On a VAX/VMS development host, the linking is done in the following two steps:

nmcc yourprog.c
nmeld gnxdir:fcrtO.obj,yourprog.obj,gnxdir:libfpe.a,gnxdir:libc.a

On a Series 32000/UNIX system, cross-application linking to FPEE must be explicitly
requested. For example,

cc -c yourprog.c
Id GNXDIR/lib/db_fcrtO.o yourprog.o -ldb_fpe -ldb_c

5.3.3 FPEE Library and the Math Library Integration
The math library routines, when used with the FPEE library, provide a full IEEE 754
math environment. The math library provides many routines that control the FPEE
library actions by providing high-level language routines to manipulate the FPU’s
FSR. Section 4.2.10 completely details the IEEE 754 math environment requirements
and its relationship to the FPEE library.

An important difference between the math library and the FPEE library is the initial
value of the FSR. The FPEE library initialization routine (i.e. INIT__for cross­
development; fpinit for execution under GENIX V) initializes the FSR to a value that
does not assume presence of the FPEE software. This FSR value does not enable the
complete IEEE 754 math environment functionality. To initialize the FSR to the IEEE
754 specified default, use the the fp_procentry function in the math library. This
function assumes the presence of the FPEE software but does not require it for opera­
tion. If FPEE is not used, the only effect is the loss of the FPEE software-supported
features.

FPEE LIBRARY 5-3

5.3.4 FPEE Error Handling Routines
The FPEE library provides the application with five FPU trap-exception routines.
There are routines for the following FPU traps: underflow, overflow, inexact result,
invalid operation, and divide by zero. Application program execution is transferred to
the appropriate routine when the application performs an operation which results in
an exception and that exception’s FSR trap-enable flag is set.

As provided with the FPEE library, these routines simply output an error message and
then halt the application program execution. This is the minimum, generic IEEE 754
requirement; elaboration of these routines is application-specific and the responsibility
of the application program. Typically, an application program elaborates error routine
after determining which type of floating-point operation caused the exception and then
returns a value which allows the application program to continue execution.

The FPEE library implements a technique that allows an application program to
quickly determine the error-causing floating-point instruction. Upon entry to one of
these routines, a coded integer value is available which identifies the offending
floating-point instruction. (Table 5-1 provides the value-mapping code). From this
information, the application program can determine the type of error causing operand
(i.e. byte, word, double-word, single- or double-precision floating-point) and, therefore,
return the correct type of result.

This FPEE error mechanism is implemented in a generic fashion and requires
modification before integration with any special application needs. The default error
routines for native applications are in the source file fperrn. c; the error routines for
cross applications are in the source file fperrx. s.

5.4 FPEE OPERATIONAL DETAILS
Floating-point operations for the Series 32000 family may be implemented with the
Series 32000 FPUs alone or with the FPEE library alone; however, the fastest and
greatest variety of operations are provided when both the FPEE library and the
Series 32000 FPUs are present in a system. The Series 32000 FPUs provide fast execu­
tion but do not fully meet the IEEE 754 requirements. The FPEE library does not have
the speed of the Series 32000 FPUs, but the library does provide additional functional­
ity necessary to fulfill IEEE 754 requirements. Complete IEEE 754 conformance is
achieved for double-precision arithmetic when the application program uses both the
FPEE library and the math library (the math library provides the interface routines to
control the IEEE 754 specified math environment).

5-4 FPEE LIBRARY

Table 5-1. Instruction Codes

INSTRUCTION CODE INSTRUCTION CODE

addf 33 movlf 18
addl 32 movwf 17
absf 15 movwl 16
ab si 14 mulf 43
cmpf 27 mull 42
cmpl 26 negf 13
divf 29 negl 12
divl 28 polyf 59
dotf 61 polyl 58
dotl 60 roundfb 5
floorfb 9 roundlb 4
floorlb 8 roundfw 21
floorfw 25 roundlw 20
floorlw 24 roundfd 35
floorfd 39 roundld 34
floorld 38 sfsr 3
lfsr 2 scalbf 63
logbf 65 scalbl 62
logbl 64 subf 41
movbf 1 subl 40
movbl 0 truncfb 7
movdf 31 trunclb 6
movdl 30 truncfw 23
movf 11 trunclw 22
movfl 19 truncfd 37
movl 10 truncld 36

FPEE LIBRARY 5-5

The FPEE library interfaces with the Series 32000 FPU (when present) and a
Series 32000 CPU to execute or enhance floating-point operations. When the CPU
encounters a floating-point instruction, it checks the Configuration register (CFG) and
if the FPU is present, it transfers control to the FPU. If the FPU is not present, control
transfers to the undefined instruction trap handler in the FPEE library. The FPEE
library undefined instruction trap handler emulates the floating-point instruction.

If an FPU is present and a floating-point exception occurs (such as a floating-point
divide-by-zero operation), the CPU generates a floating-point trap and control is
transferred to the floating-point (FPU) trap handler in the FPEE library. The FPEE
FPU trap handler takes appropriate action, such as returning a NAN or infinity as the
result or halting execution at a specified error routine.

The transfer of control between the FPEE library, the Series 32000 CPU, and the
Series 32000 FPU is completely application-program transparent.

5.4.1 O p eration a l O verv iew

5.4.2 FPEE Enhancements to the FPU
IEEE 754 requires that exceptions (arithmetic operations on reserved operands) cause
a signal. The signal may be either setting a status flag, or taking a trap, or both. The
exact action must be under control of the application program. For example, the appli­
cation program can specify setting a flag, but no trapping, for a specific type of excep­
tion. In this case, program execution continues despite the exception, and the numeri­
cal result of the operation causing the exception is the appropriate IEEE 754 recom­
mended value, typically either a NAN or a signed infinity.

IEEE 754 defines five types of exceptions: underflow, overflow, divide by zero, inexact
result, and invalid operation. The NS32081 and NS32381 FPUs provide status flags
only for underflow and inexact result but traps for the other exceptions. In no case
does the FPU allow continued execution after an exception trap.

The FPEE library implements status flags for overflow, invalid operation, and divide
by zero and allows the application program to enable or disable trapping for these
exceptions by using routines provided in the math library. The implementation is
transparent to the application program because the Series 32000 FPU’s floating-point
status register (FSR) contains bits which are under the FPEE library’s software control
(the FSR’s Software Field Bits). The application program need only consult the value
of the FSR to determine the status of FPEE software-supported flags and FPU
hardware-supported flags.

The IEEE 754 enhancements to the FPU are implemented in the FPU trap handler in
the FPEE library. The FPEE library FPU trap handler examines the trap enable flags
to determine whether application program execution should continue. If the trap for a
specific exception is disabled, the trap handler simply sets the appropriate FSR flag
signaling the exception, makes sure that the correct special value is returned as the
result (typically NAN or a signed infinity), and resumes execution of the application

5-6 FPEE LIBRARY

program.

Table 5-2 lists the functions implemented by the FPEE library.

Table 5-2. FPEE Library-Implemented IEEE 754 Operations

FPEE library implements these required IEEE Standard
operations for double-precision arithmetic:
Special Values

Plus and minus zero
Denormalized numbers
Plus and minus infinity
Signaling and quiet NANs

Special Operations

Infinities
NANs
Denormalized values

Comparisons
Unordered

Exception Handling

Underflow
Overflow
Divide by Zero
Invalid Operand
Inexact Result

5.4.3 NS32081 FPU, NS32381 FPU and FPEE
There are a few differences between the NS32081 FPU and the NS32381 FPU which
require consideration when using the FPEE library. The NS32381 FPU implements
four additional floating-point instructions (scalb, logb, dot, and poly) and a floating­
point register modified bit (RMB) in the FSR. The NS32381 FPU has eight 64-bit
floating-point registers instead of eight 32-bit floating-point registers.

ERROR in line 515 String notation in .if didn’t parse line:.if ’0811ib’supported’The
FPEE library does distinguish between NS32081 FPU instruction emulation

FPEE LIBRARY 5-7

The FPEE library enhances/emulates the NS32381.

The NS32381 FPU FPEE library implements eight 64-bit registers and supports the
RMB bit of the FSR. The 64-bit registers might cause some problems for assembly
language routines written for the NS32081 FPU that move a 64-bit value from register
to memory using two 32-bit move instructions, rather than the appropriate single 64-
bit instruction. This technique does not work with the NS32381 because the NS32381
does not concatenate two adjacent 32-bit registers to form a 64-bit register; all eight
NS32381 registers are 64-bit. A single 64-bit move instruction must be used to
transfer register contents to memory.

5.4.4 FPEE Program Control
The FPEE software implements the full IEEE 754 math environment by using the
software field in the FSR. Between the FPEE-implemented FSR bits and those of the
FPU, an application can enable or disable any of the five traps (overflow, underflow,
inexact result, invalid operation, and divide by zero) and check any of the five exception
status flags. The FPU maintains the lower nine bits of the FSR while seven higher
bits are implemented by the FPEE software. The remainder of the bits 17-31 are
reserved, bit 16 is used only by the NS32381.

The FPEE library implements the software field FSR bits (9-15) for exception trap
enable and exception status.

The FPEE software-implemented and supported FSR contains:

Bit: Purpose:
0-2 Trap type
3 Underflow trap-enable flag
4 Underflow status flag
5 Inexact-result trap-enable flag
6 Inexact-result status flag
7-8 Rounding mode
9 FPU
10 Invalid-operation trap-enable flag
11 Invalid-operation status flag
12 Division-by-zero trap-enable flag
13 Division-by-zero status flag
14 Overflow trap-enable flag
15 Overflow status flag
16 Register Modified Bit (NS32381 Only)
17-31 Reserved for future use

5-8 FPEE LIBRARY

Trap Type
The Trap type bits indicate the type of floating-point exception which occurred:

000 No trap
001 Underflow
010 Overflow
011 Division-by-zero
100 Illegal-instruction
101 Invalid-operation
110 Inexact-result
111 Reserved for future use

Rounding Mode
Rounding mode bits indicate how floating-point operations are rounded:

00 Toward nearest *
01 Toward zero
10 Toward positive infinity
11 Toward negative infinity

* if two values are equally near, towards the even value

The exception status flags, once set, remain set until explicitly cleared by writing a 0.

The FPU bit selects either FPU (NS32081 or NS32381) compatible mode of operation
or IEEE 754 mode of operation. If the FPU bit is 1, the library emulates the FPU chip
exactly. In IEEE 754 mode (FPU bit is 0) for double-precision arithmetic, the library
operates according to the IEEE 754 Standard. Results of operations and exceptions
when the FPU bit is set or cleared are given in the following paragraphs. In each case,
the value of the FSR is presented with significant bits shown as either 1 or 0; “don’t
care” bits are shown as X.

Underflow exception:
X X X X X X 0 X X X X 1 X X X X
X X X X X X 0 X X X X 1 1 X X X
X X X X X X 1 X X X X I o x x x
X X X X X X 1 X X X X 1 1 X X X

Inexact result exception:
X X X X X X X X X 1 0 X X X X X
X X X X X X X X X 1 1 X X X X X

Return a denormalized number
Underflow trap
Return zero (non-IEEE 754 standard)
Underflow trap

Return an inexact result
Inexact result trap

FPEE LIBRARY 5-9

Invalid operation exception:

X X X X 1 X 1 X X X X X X X X X
X X X X 1 0 0 X x x x x x x x x
X X X X 1 1 0 X x x x x x x x x

Invalid Operation trap
Return NAN **
Invalid-Operation trap

** If the invalid operand is a denormalized number, the FPEE software
returns a normalized value.

Division by zero exception:
xx ixxx i x xxxxxxxx
xxioxxox xxxxxxxx
x x n x x o x xxxxxxxx

Overflow signaled:
1 XXX X X1 X x x x x x x x x
1 0 X X X X 0 X x x x x x x x x
1 1 X X X X 0 X x x x x x x x x

Division by zero trap
Return infinity
Division by zero trap

Overflow trap
Result according rounding mode
Overflow trap

See Section 5.4.7 on rounding mode for results.

Overflow on conversion from float to integer:
X XX X X X 1 X xxxxxxxx
xxxxxoox xxxxxxxx
X X X X X 1 0 X xxxxxxxx

Overflow trap (non-IEEE 754 Standard)
Return -1
Invalid-operation trap

5.4.5 FPEE Comparisons
Floating-point comparisons differ from integer comparisons because there are four pos­
sible results: unordered result, greater than, equal to, and less than. The unordered
result occurs from comparisons of operands such as NANs.

5-10 FPEE LIBRARY

The FPEE software sets bits in the Processor Status Register (PSR) of the Series 32000
CPU to indicate the result of a floating-point comparison. The FPEE library uses the
N, Z, and L bits:

Comparison Result Bit Set Bits Cleared

Operands are equal Z NandL

Operandi is less than
Operand2

None Z, N, and L

Operand2 is less than
Operandi

N Z and L

Unordered L Z and N

All comparisons with an unordered result use the FPEE library since the NS32081 and
NS32381 FPUs generate an FPU trap when one of the operands of a comparison is a
reserved operand.

5.4.6 FPEE Exception Handling
The FPEE library implements six exception handling routines:

• Invalid-operation

• Division-by-zero
• Overflow

• Underflow
• Inexact-result
• Illegal-instruction

Library handling of these exceptions is internal and transparent to the application.

These floating-point exceptions lead to a run-time error or to results specified by the
IEEE 754 Standard. Note that the NS32081 and NS32381 FPUs (and emulation in
FPU mode) do not handle exceptions for underflow according to the IEEE standards.
For underflow, the FPUs return zero.

If an exception occurs and its trap enable flag in the FSR is set, application program
execution is transferred to the appropriate error handling routine.

If an exception occurs and its trap enable flag in the FSR is not set, application pro­
gram execution continues after the FPU trap handler services the exception by setting
the exception status flag and returning the IEEE 754 specified result. It is the applica­
tion program’s responsibility to check for set exception status flags in the FSR.

FPEE LIBRARY 5-11

Invalid operation exceptions occur when a floating-point operation (other than a move)
is attempted on a reserved operand. The following are operations which cause an
invalid operation exception:

• An operand which is a NAN
• A result of a remainder operation, x REM y (remainder of x divided by y), where y

is zero or x is infinity
• Infinity plus negative infinity or infinity minus infinity
• Multiplying zero by infinity
• Dividing zero by zero
• Dividing infinity by infinity
• The operand is a denormalized number. If the invalid operation trap is disabled,

the FPEE software returns a normalized number.
• Comparing with “<” or “>” when the relation is unordered

The Division-by-zero exception occurs when the divisor of a floating-point operation is
zero and the dividend is a finite nonzero number.

The Overflow exception occurs when the result of a floating-point operation is finite but
too large to be represented in the given format. Any decimal value whose magnitude is
larger than the following causes the Overflow exception:

• 3.4028235 E 38 for single-precision
• 1.797693134862316 E 308 for double-precision

The Underflow exception occurs when the result of a floating-point operation is not zero
and the exponent is too small to be represented in the given format. This exception
may also occur for denormalized numbers. Any decimal value whose magnitude is
smaller than the following causes the Underflow exception:

• 1.1754943 E -38 for single-precision
• 2.225073858507201 E -308 for double-precision

The Inexact-result exception occurs when the rounded result of a floating-point is not
exact or when an overflow occurs and the overflow trap is not enabled.

Non-implemented operation codes cause the Illegal-Instruction exception.

5-12 FPEE LIBRARY

5.4.7 FPEE Rounding Modes
The rounding modes affect normal calculations which require rounding and the
returned result for the overflow exception.

The FPEE library implements overflow-exception-retumed results. If the overflow
exception trap is disabled, the results returned are shown in Table 5-3.

FPEE LIBRARY 5-13

Table 5-3. Default Return Values for Overflow Exceptions

ROUNDING MODE
SIGN OF THE

INTERMEDIATE
RESULT

RESULT RETURNED
BY THE FPEE

SUPPORT LIBRARY

Toward Nearest + Positive Infinity

- Negative Infinity

Toward Zero + +3.4028235 E 38
(single-precision)
+1.797693134862316 E 308
(double-precision)

-3.4028235 E 38
(single-precision)
-1.797693134862316 E 308
(double-precision)

Toward Negative Infinity + +3.4028235 E 38
(single-precision)
+1.797693134862316 E 308
(double-precision)

- Negative Infinity

Toward Positive Infinity + Positive Infinity

-3.4028235 E 38
(single-precision)
-1.797693134862316 E 308
(double-precision)

5-14 FPEE LIBRARY

Chapter 6

l i b H f p - HIGH-SPEED FP EMULATION LIBRARY

6.1 INTRODUCTION

The High-Speed FP Emulation Library (libHfp) is used to create floating-point pro­
grams for those Series 32000 systems that lack floating-point unit hardware (FPU).
The libHfp is a library of very fast floating-point routines. It provides an efficient
low-cost floating-point solution for systems without an FPU, by emulating the
NS32081/NS32181/NS32381 floating-point instructions in software.

The high-speed libHfp emulation library is approximately ten times faster than the
the FPEE library, which is also used for floating-point emulation. This is because
unlike the FPEE library routines, which are invoked through a hardware trap mechan­
ism, the libHfp routines are invoked by procedure calls embedded in your software
programs by the assembler at compile-time. Thus by using the libHfp you do not
incur the runtime cost associated with the FPEE library.

This chapter describes the libHfp library. Sections 6.2 and 6.3 explain when and
how to use the libHfp library. Section 6.4 describes technical details, compatibility
issues and exception handling. Section 6.5 presents several examples of usage.

6.2 THE l i b H f p LIBRARY VS THE FPEE LIBRARY

The high-speed libHfp emulation library provides the same precision and functional­
ity as the NS32081/NS32181/NS32381 floating-point hardware (except for the condi­
tions mentioned below), providing the best solution for floating-point code generation
for those Series 32000-based systems without an FPU.

However, the libHfp does not support the full flexibility advocated by the ANSI
“IEEE Standard for Binary Floating-Point Arithmetic” (ANSI/IEEE Std 754-1985),
such as a selection of four rounding modes. Issues of compatibility and conformity to
IEEE/754 standards are discussed in Section 6.4.1. If IEEE/754 functionality is
required, either the FPEE library can be used or the libHfp can be used in conjunc­
tion with the FPEE library.

The FPEE library, described in Chapter 5, is an enhanced binary compatible emulation
of the NS32081 and NS32381 floating-point units. As a high-level language program­
mer (or a writer of assembly code), you do not need to know if an FPU is installed on
your target-system. All you need to do is link the FPEE library with your object code.
If the resulting execuTable program is then run on a system with an FPU, the

libHfp - HIGH-SPEED FP EMULATION LIBRARY 6-1

floating-point instructions are executed by the FPU. If on the other hand the program
runs on a system that has no FPU, the Series 32000 trap mechanism catches the
floating-point instructions (ILL, illegal trap) and the floating-point operation is then
performed by software. This trap mechanism has a significant runtime performance
cost. The enhancements of the FPEE library to be fully conformant to ANSI/IEEE 754
even increase this cost. FPEE emulation time is 70-120 times slower than FPU execu­
tion time.

On the other hand, the High-speed libHfp library was designed to avoid any unneces­
sary performance penalties. The emulation routines were rewritten for optimal perfor­
mance. libHfp emulation time is only 6-9 times that of the FPU, or about 10-12
times faster than FPEE emulation.

Using libHfp has its price: the program object code size increases. Each floating-point
instruction in your program roughly triples in size, not counting the one-time cost of
the libHfp library itself (3 - 6K bytes). Overall, code-size increases by 10 - 50%.
Therefore, if code-size is more important than execution speed, the FPEE library will
perhaps yield a smaller execuTable file.

For most uses, libHfp is an efficient and adequate solution.

There is currently no modular version of libHfp.

6.3 HOW TO USE THE l i b H f p LIBRARY

In order to use libHfp, you need to re-compile (or re-assemble) your source program
with the emulation option. This option instructs the GNX assembler to replace
floating-point instructions in your program by integer instructions and by calls to
libHfp emulation routines. This makes the transition from an FPU chip or from
FPEE to the use of libHfp relatively painless, even for assembly programs; a pro­
gram source file requires no changes and needs only to be re-assembled. The resulting
execuTable program will run the same way, whether or not an FPU is installed.

You have the following three options to create your execuTable program:
1. Use only the libHfp library, as follows. This is the simplest option, and will

result in the fastest solution.
a. Compile (or assemble) your source program with the emulation option, in

one of two ways. You can use the GTS utility1 to set the FPU entry in the
GNX target configuration file to emulation. Or you can compile (or
assemble) with the appropriate command-line switch:

1. See Chapter 4 of the "GNX Commands and Operations Manual"

6-2 libHfp - HIGH-SPEED FP EMULATION LIBRARY

under UNIX: - K F e m u l a t i o n
under VMS: /TARGET= (FPU=EMULATION) .

b. Link your code with libHfp and other floating-point emulating language
libraries. The libHfp library is called libHfp . a; the other libraries have
an additional "H” in their name, i.e. libc . a becomes libHc.a, libm.a
becomes 1 ibHm. a, etc.

If you use a GNX cross-compiler to compile and link your program under
UNIX, then the compiler will automatically determine for you which
libraries are appropriate. You can inspect this with the -v or -vn
switches.

For a detailed example, please see example 1 in Section 6.5.

2. If you need the full functionality of the FPEE library, or if you have object pro­
grams that already contain floating-point instructions, then you can use the
FPEE mechanism; compile (or assemble) your source program as if an FPU
were present, link your program with the FPEE library, and rely on hardware
traps to emulate the floating-point instructions (if you use a GNX compiler on
UNIX to compile, assemble and link, all this is accomplished with the - f
switch). You will find more details in Chapter 5.

3. Use a combination of both libraries. Compile performance-critical code under
emulation, and link with both the libHfp and the FPEE libraries. The
performance-critical code will thus use the efficient libHfp emulation, and the
rest will trap into the FPEE routines as described before.

Example 2 in Section 6.5 describes a possible scenario.

6.4 l i b H f p TECHNICAL SPECIFICATIONS

The libHfp library consists of fast emulation routines for the Series 32000 floating­
point instructions, global variables to which floating-point registers are mapped, and
replaceable exception-handling routines.

When a program is compiled (assembled) with the emulation option, the GNX assem­
bler replaces each floating-point instruction with a sequence of integer instructions.
Simple instructions (such as movf and movl) are emulated inline, but most instruc­
tions are replaced by procedure-calls to the libHfp routines that emulate the instruc­
tion. Floating-point registers are mapped onto global variables in memory. You can
examine these transformations, summarized in Tables 6-1 to 6-3, by using the
assembler’s List (-L) switch.

The emulation routines are re-entrant; floating-point code may therefore be used in sig­
nal and interrupt handlers.

libHfp - HIGH-SPEED FP EMULATION LIBRARY 6-3

6.4.1 Compatibility and Conformity to IEEE/754 Standards

The libHfp library is arithmetically compatible to the round-to-nearest rounding
mode of the NS32081/NS32181/NS32381 FPU. It implements single and double preci­
sion floating-point numbers, using the NS32081/NS32181/NS32381 formats, obtaining
the same results as the FPU.

In particular, the following NS32081/NS32181/NS32381 and ANSI/IEEE 754 features
are emulated:

• basic single precision format (float)
• basic double precision format (long)
• signed zero
• round to nearest
• division-by-zero exception
• invalid operation exception
• overflow exception
• underflow exception
• exception handling for division by zero, reserved operands, overflow and underflow

(see further Section 6.4.4).

Following are the IEEE/754 features that are not supported by libHfp. If correct exe­
cution of your program depends on any of these, libHfp should be used in combina­
tion with FPEE, as discussed in Section 6.3.

• special (NaN, denormalized, infinity) arithmetic (this is also not supported by the
NS32081/NS32181/NS32381)

• round towards + round towards - °°, round towards zero
• unordered compare
• inexact exception
• reserved operand exception by the empfand cmpl instructions

In addition, the libHfp emulation routines have several other attributes which may
impact the way your code works:

1. Floating-point emulation is reentrant and interrupTable. This means that
interrupt handlers may use floating-point instructions too. However, the
access to double precision floating-point variables is not always an atomic
operation. This means that some code (such as an interrupt handler) may
cease to work, if it relies on the fact that the high-order four bytes and the
low-order four bytes of a global double precision variable are atomically con­
sistent (Floating-point data cannot have the volatile property).

2. Most floating-point instructions are emulated by libHfp routine calls. This
means that the stack above the stack-pointer will be corrupted. This is nor­
mally not a problem, of course.

6-4 libHfp - HIGH-SPEED FP EMULATION LIBRARY

3. Floating-point emulated code size is significantly larger than the original.
Beware of displacement overflow in your assembly code, such as in caseb
instructions.

4. The following NS32381/NS32181 instructions dotf, dotl, polyf and
polyl are accurate to within 1 ulps (units in least place of floating point
number) with regards to the FPU hardware.

5. The emulation code for fsqrt (single precision square root) and sqrt (dou­
ble precision square root) uses a different algorithm from the respective
floating-point square root routines in the mathematical library (libm). They
may occasionally compute results that differ in the least-significant bit.

6. The FSR register is not updated by libHfp. In fact, the lfsr and sfsr
instructions do not affect the state of computation.

7. The global library names, ending with two underscore characters (such as
addf__) are reserved. A complete list of reserved names is found in Tables 6-
1, 6-3 and 6-4.

6.4.2 Use of the Mathematical Library

Chapter 4 of this manual describes the GNX mathematical library (libm). When using
emulation mode and the libHfp library, all of the following routines may be used:

acos, acosh, asin, asinh, atan, atan2, atanh,
cabs, cbrt, ceil, compound, copysign, cos, cosh, drem,
erf, exp, exp2, expml, fabs, facos, facosh, fasin, fasinh,
fatan, fatan2, fatanh, fcabs, fcbrt, fceil, fcompound,
fcopysign, fcos, fcosh, fdrem, ferf, fexp, fexp2, fexpml,
ffabs, ffinite, ffloor, ffmod, fhypot, finf, finite,
flog, floglO, floglp, flog2, floor, fmod, fmodf, fneg,
fpi, fpow, frelation, frem, frint, fsin, fsinh, fsqrt,
ftan, ftanh, gamma, hypot, inf, initrand, j0, jl, jn, log,
loglO, loglp, log2, neg, nextdouble, nextfloat, pi, pow,
randomx, relation, rem, rint, sin, sinh, sqrt, tan, tanh

In order to use other libm routines, your code must be linked with the FPEE library.

6.4.3 The l i b H f p Interface

The GNX assembler calls the libHfp routines in the following manner:
1. The operands of the floating-point instruction are pushed on top of the user-

stack, first the right operand (often the destination), then the left (source)
operand. If the operand has access-class write or rmw, then its address is
pushed, otherwise (access-class read), its value is pushed. Values smaller than

libHfp - HIGH-SPEED FP EMULATION LIBRARY 6-5

4 bytes are sign-extended and aligned to a full double-word. Four-byte values
are pushed using one movd instruction, eight-byte values by two movds.

2. The appropriate emulation routine is called. Before returning it writes the
result into the expected location and clears the parameters off the stack.

Example:

Example:

roundfw 16(fp), _i
is transformed into:
addr _i, tos
movd 16(fp), tos
bsr roundfw__

addl tos, _j
is transformed into:
addr _j, tos
movd 8(sp), tos
movd 8(sp), tos
bsr addl___
adjspb $-8

push the address of the destination
push the value of the source
call the emulation routine

push the address of the destination
push low bytes of source
push high bytes of source
call the emulation routine
pop the stack as required

Note the complex interaction between tos and sp-relative addresses.

The floating-point instructions mentioned in Table 6-2 are emulated inline.

Example: movi $0.0, xyz
is transformed into
movqd $0, xyz+4 # copy the high-order part
movqd $0, xyz # copy the low-order part

Table 6-3 lists the names of the variables that serve as registers under emulation.
These names are reserved by the libHfp package. Note that these are the same
names as used by FPEE.

Example: movf fl, _a[r2:d]
is transformed into
movd Fl__, _a[r2:d]XUX

6-6 libH fp - HIGH-SPEED FP EMULATION LIBRARY

Table 6-1. Instructions Emulated By Calls to libHfp Routines

EMULATED EMULATION EMULATED EMULATION
INSTRUCTION ROUTINE INSTRUCTION ROUTINE
addf addf_ mulf mulf_
addl addl_ mull mull_
cmpf cmpf__ polyf polyf_
cmpl cmpl__ polyl polyl__
divf divf_ roundfw roundfw_
divl divl_ roundfw roundfw
dotf dotf_ roundfd roundfd_
dotl dotl__ roundlb roundlb_
floorfb floorfb_ roundlw roundlw_
floorfw floorfw_ roundld roundld
floorfd floorfd_ scalbf scalbf_
floorlb floorlb_ scalbl scalbl_
floorlw floorlw_ _ subf subf
floorld floorld subl subl
logbf logbf_ _ truncfb truncfb_
logbl logbl_ _ truncfw truncfw_
movbf movbf_ _ trimcfd truncfd
movwf movwf trimclb trunclb_
movdf movdf_ _ trunclw trunclw_
movbl movbl_ truncld truncld_
movwl movwl_ _
movdl movdl_
movfl movfl__ - _fsqrt
movlf movlf_ - _sqrt

libHfp - HIGH-SPEED FP EMULATION LIBRARY 6-7

Table 6-2. Instructions Emulated Inline

INSTRUCTION INSTRUCTION
absf negf
absl negl
movf lfsr
movl sfsr

Table 6-3. Mapping of Floating-Point Registers

REGISTER VARIABLE
fsr FSR_
ft) F0_
fl Fl

f7 F7_
10 F0_
11 LI

17 L7__

6.4.4 Exception Handling

libHfp recognizes the following exceptions:
• An operation is attempted with an invalid operand (such as divide by zero).
• A computation results in overflow.
• A computation results in underflow.

When an exception is detected by a libHfp routine, it calls an exception routine
whose name corresponds to the exception (e.g. overtlow_in_addf). Default
exception handling routines that handle these exception in a way similar to the emu­
lated hardware, are provided as part of the libHfp library (see Table 6-4). A
hardware trap is generated artificially by executing the bpt instruction. You can
suppress these default exception handlers with your own code, by linking routines of
the same name with your program. See example 3 in Section 6.5.

6-8 libHfp - HIGH-SPEED FP EMULATION LIBRARY

overflow_in_mulf__: :
overflow is not supposed to happen
bpt # abort execution
ret $(0)

underflow_in_mull__: :

The following are two of the default exception handlers:

. set SIGN_BIT, 0x80000000

save [r0] # SAVE scratch register rO
sprd upsr,tos # SAVE psr

. set SP_OFFSET, 12 # stack-offset of first param: 12 =
4 psr + 4 rO + 4 return address

dest := src.sign xor dest.sign (+0 or -0)
movd SP_OFFSET+4(sp), rO # take src.hi
xord 4 (SP_OFFSET+8(sp)), rO # xor with dest.hi
andd $SIGN_BIT, rO # leave only sign (set rest to zeroi
movd rO, 4 (SP_OFFSET+8(sp)) # copy result to dest.hi
movqd $0, 0(SP_OFFSET+8(sp)) # set dest.lo to zero

lprd upsr, tos # restore psr
restore [rO]
ret $(0)

Table 6-4. Exception Handling Routines
Sheet 1 of 2

FUNCTION CALLED DEFAULT
NAMEt FROM ACTION/RESULT

overflow in addf addf__, subf__ abort
underflow in addf addf__, subf__ ± 0
reserved to addf addf__, subf__ abort
overflow in addl addl__, subl__ abort
underflow in addl addl__, subl__ ± 0
reserved_to_addl__ addl__, subl__ abort

overflow in divf divf abort
underflow in divf divf ± 0
reserved to divf divf abort
zero divisor to divf divf abort
overflow in divl divl abort
underflow in divl divl ± 0
reserved to divl divl abort
zero_divisor_to_divl__ divl__ abort
overflow in floorfl floorfl abort
reserved to floorfl floorfl abort
overflow in floorll floorll abort
reserved_to_floorlI__ floorlI__ abort

t In the above Table "I" stands for "b", "w" or "d" respectively.

libHfp - HIGH-SPEED FP EMULATION LIBRARY 6-9

Table 6-4. Exception Handling Routines
Sheet 2 of 2

FUNCTION
NAMEt

CALLED
FROM

DEFAULT
ACTION/RESULT

overflow_in_logbf_ _ logbf_ _ abort
underflow_in_logbf__ logbf__ ± 0
reserved_to_logbf__ logbf__ abort
overflow_in_logbl_ _ logbl__ abort
underflow_in_logbl_ _ logbl__ ± 0
reserved_to_logbl_ _ logbl__ abort
reserved_to_movfl__ movfl__ abort

overflow in movlf movlf abort
underflow in movlf movlf ± 0
reserved_to_movlf__ movlf__ abort
overflow in mulf mulf abort
underflow in mulf mulf ± 0
reserved to mulf mulf abort
overflow in mull mull abort
underflow in mull mull ± 0
reserved_to_mull_ _ mull__ abort

overflow in roundfl roundfl abort
reserved to roundfl roundfl abort
overflow in roundll roundll abort
reserved_to_roundlI__ roundll__ abort

overflow in mulf mulf abort
underflow in mulf mulf ± 0
reserved to mulf mulf abort
overflow in mull mull abort
underflow in mull mull ± 0
reserved_to_mull__ mull__ abort

overflow in scalbf scalbf abort
underflow in scalbf scalbf ± 0
reserved to scalbf scalbf abort
overflow in scalbl scalbl abort
underflow in scalbl scalbl ± 0
reserved_to_scalbl__ scalbl__ abort

neg_to_fsqrt__ fsqrt__ abort
neg_to_sqrt__ sqrt__ abort
reserved_to_sqrt__ sqrt__ abort

overflow in truncfl truncfl abort
reserved to truncfl truncfl abort
overflow in truncll truncll abort
reserved_to_trunclI__ truncll__ abort

6-10 libH fp - HIGH-SPEED FP EMULATION LIBRARY

6.5 EXAMPLES

1. Compile and link the whetstone, c benchmark program with libHfp.
UNIX (cross-compiler)
nmcc whetstone.c -O -KFemulation -o whetstone

VMS
nmcc /optimize /target=(fpu=emulation) whetstone.c
nmeld whetstone.obj, gnxdir:crtO, -

gnxdir:libHm.a,gnxdir:libHc. a ,gnxdir:libHfp. a

2. Emulate the main algorithm with the libHfp, while the assembly floating­
point code is emulated by the FPEE library. Assume that you have a Fortran
main program to be linked with a special purpose assembly routine. This rou­
tine performs NS32381 floating point computations in a rounding mode not
supported by libHfp (for instance, rounding towards + °o). This can be done
by:

UNIX (cross-compiler)
nasm -KF381 special.s
nf77 -f -KFemulation fft.f special.o

UNIX (SYS32)
as -KF381 special.s
nf77 -f -KFemulation fft.f special.o

VMS
nasm/target=(fpu=381) special
nf77 /target=(fpu=emulation) fft
nmeld/exe=fft fft, special, gnxdir:fcrtO, gnxdir:libHF77.a, -

gnxdir:libHI77.a, gnxdir:libHm.a, gnxdir:libfpe. a,-
gnxdir:libHc.a, gnxdir:libHfp.a

3. Replace an exception handler. The normal, default action of libHfp is to
abort in case of an overflow exception. Say, that you want to avoid this abor­
tion in case of mulf, and instead return oo or as required by IEEE 754.
Write your own exception handler (see below), pud then compile and link as
follows:

UNIX (cross-compiler)
nmcc my_program.c ovf_handler.s IEEE_ovf.c \

-KFemulation -o my program

VMS
nmcc /target=(fpu=emulation) my_program.c
nmcc /targets (fpu=emulation) lEEE_ovf.c
nasm /targets (fpu=emulation) ovf_handler. asm
nmeld my_program.obj, ovf_handler.obj, IEEE_ovf.obj, -

gnxdir:crtO.obj, gnxdir:libHm.a, -
gnxdir:libHc.a, gnxdir:libHfp.a

libHfp - HIGH-SPEED FP EMULATION LIBRARY 6-11

Here is how your exception handler may look:

#--------------------
ove r f1ow_i n_mu1f.
#---------------

.set NUM_REGS, 3 # No. of regs to be pushed

.set SP_OFFSET, 4*NUM_REGS+4+4 # sp-offset of first parara (4 bytes
per register plus PSR plus return
addr to emulation routine, mulf__

save [rO,rl,r2] # SAVE scratch registers
sprd upsr, tos # SAVE psr
movd SP_OFFSET+8(sp), tos # push second param (addr of dest)
movd SP_OFFSET+8(sp), tos # push first param (src)

bsr my_ovf_handler # C routine that computes result
adj spb $(-8) # clear the operand stack

lprd upsr, tos # restore psr
restore [rO,rl,r2] # restore scratch registers
ret $(0)

This is how the corresponding _my_ovf_handler will look:

/*--
* my_ovf_handler: return plus/minus infinity in case of overflow.
* __* j

typedef union {
long hex;
float val;

} FL0AT_0F_3 2 000;

#define SIGNMASK 0x80000000
#define INFINITY 0x7fffffff

my_ovf_handler(src, dest)
FLOAT_OF_320 0 0 src;
FLOAT_OF_32000 *dest; /* address of destination */

{
dest->hex = ((src.hex A dest->hex) &SIGNMASK) I INFINITY;

}

6-12 libHfp - HIGH-SPEED FP EMULATION LIBRARY

Appendix A

SERIES 32000 STANDARD CALLING CONVENTIONS

A.1 INTRODUCTION
The main goal of standard calling conventions is to enable the routines of one program
to communicate with different modules, even when written in multiple programming
languages. The Series 32000 standard calling conventions support various special
language features (such as the ability to pass a variable number of arguments, which is
allowed in C), by using the different calling mechanisms of the Series 32000 architec­
ture. These conventions are employed only to call “externally visible” routines. Calls
to internal routines may employ even faster calling sequences by passing arguments in
registers, for instance.

Basically, the calling sequence pushes arguments on top of the stack, executes a call
instruction, and then pops the stack, using the fewest possible instructions to execute
at the maximum speed. The following sections discuss the various aspects of the
Series 32000 standard calling conventions.

A.2 CALLING CONVENTION ELEMENTS
Elements of the standard calling sequence are as follows:

• The Argument Stack
Arguments are pushed on the stack from right to left; therefore, the leftmost
argument is pushed last. Consequently, the leftmost arguments are always at
the same offset from the frame pointer, regardless of how many arguments are
actually passed. This allows functions with a variable number of arguments to be
used.

NOTE: This does not imply that the actual parameters are always
evaluated from right to left. Programs cannot rely on the
order of parameter evaluation.

The run-time stack must be aligned to a full double-word boundary. Argument
lists always use a whole number of double-words; pointer and integer values use a
double-word (by extension, if necessary), floating-point values use eight bytes and
are represented as long values;

structures/imions use a multiple of double-words.

SERIES 32000 STANDARD CALLING CONVENTIONS A-l

NOTE: Stack alignment is maintained by all GNX — Version 4 com­
pilers through aligned allocation and de-allocation of local
variables. Interrupt routines and other assembly-written
interface routines are advised to maintain this double-word
alignment.

The caller routine must pop the arguments off the stack upon return from the
called routine.

NOTE: The compiler uses a more efficient organization of the stack
frame if the -OF (FIXED_FRAME in VMS) optimization is
enabled. In that case, programs should not rely on the organi­
zation of the stack frame.

• Saving Registers
General registers RO, Rl, and R2 and floating registers F0, Fl, F2, and F3 are
temporary or scratch registers whose values may be changed by a called routine.
Also included in this list of scratch registers is the long register LI of the
NS32181/NS32381/NS32580 FPU. It is not necessary to save these registers on
procedure entry or restore them before exit. If the other registers (R3 through
R7, F4 through F7, and L3 through L7 of the NS32181/NS32381/NS32580) are
used, their values should be saved (onto the stack or in other memory locations)
by the called routine immediately upon procedure entry and restored just before
executing the return instruction. This should be performed because the caller
routine may rely on the values in these registers not changing.

NOTE: Interrupt and trap service routines are required to
save/restore all registers that they use. If the service routine
calls another routine it must save scratch registers as well.

• Returned Value
An integer or a pointer value that returns from a function, returns in (part of)
register RO.

Floating-point values return in floating point registers: A float value is
returned in register F0. A double value is returned in register pair F0-F1.

If a function returns a structure or union, the calling function passes an addi­
tional argument at the beginning of the argument list. This argument points to
where the called function returns the structure. The called function copies the
structure into the specified location just before returning from the function. Note
that functions that return such types must be correctly declared as such, even if
the return value is ignored. For details see Chapter 4.

A-2 SERIES 32000 STANDARD CALLING CONVENTIONS

Example:
int iglob;
m()
{

int loc;
a = ifxinc (loc) ;

}
ifunc(pi)
int pi;
{

int i, j , k;
j = 0;
for (i = 1; i <= pi; i++)

j = j + f (i) ;
return (j) ;

}

The compiler may generate the following code:

_m:
enter [] ,4 # Allocate local variable
movd -4 (fp),tos # Push argument
bsr _ifunc
adjspb $(-4) # Pop argument off stack
movd
exit

r0,_iglob
[]

Save return value
ret $ (0)

_ifunc:
enter [r3,r4,r5],0 # Save safe registers
movd 8(fp),r5 # Load argument to temp register
movqd $(0),r4 # Initialize j
empqd $(1),r5
bgt . LLl
movqd $(1),r3 # Initialize i

. LL2 :
movd r3,tos # Push argument
bsr _f
adjspb $ (-4) # Pop argument off stack
addd rO , r4 # Add return value to j
addqd $(1),r3 # Increment i
empd r3,r5
ble . LL2

. LL1:
movd r4 , rO # Return value
exit [r3,r4,r5] # Restore safe registers
ret $ (0)

SERIES 32000 STANDARD CALLING CONVENTIONS A-3

After the enter instruction is executed by ifunc () , the stack will look like this:

HIGH MEMORY

loc

value of loc
return address

saved fp
saved r3
saved r4
saved r5

caller’s stack frame

callee’s stack frame

< - - f p

< -- sp

LOW MEMORY

A-4 SERIES 32000 STANDARD CALLING CONVENTIONS

INDEX

32 - b it move instruction 5-8
64 - b it move instruction 5-8

A

abort routine 3-2
abs routine 3-3
Absolute

ceiling 3-13
floor 3-13
value 3-13

Absolute value 3-3
Allocate memory in heap 2-19
A rgum ent stack

in calling sequence A -l
asctim e 3-7
Assign buffering to a stream 3-44
atoi routine 3-4
atol routine 3-4

B

Bad address 2-2
Bad file num ber 2-1
bcmp routine 3-5
bcopy routine 3-5
Bias 4-4
Bit and byte string operations 3-5
Block device required 2-2
bstring routines 3-5

bcmp 3-5
bcopy 3-5
bzero 3-5
ffs 3-5

Buffered b inary I/O 3-16
Byte form at 4-2
bzero routine 3-5

C

Calling conventions
standard A -l

calloc routine 3-24
ceil routine 3-13
clearerr 3-12
Close

or flush a stream 3-11
Close a file 2-7
close system call 2-7
Com patibility 6-4
Conversion 3-9

Convert
ASCII to num bers 3-4
date and tim e to ASCII 3-7

CPU
generates 5-6

creat
system call 2-8

crea t call 2-6
C reate a new file 2-8
Cross application

FPEE integration 5-3
ctime routine 3-7

asctim e 3-7
gm tim e 3-7
localtime 3-7
tim ezone 3-7

D

DB library 1-1,2-3, 3-1
Denorm alized num bers 4-8
descriptor tab le size 2-11
Divide by zero 4-6

exception 5-12
Division by zero

exception 5-10
D ocum entation conventions 1-3
Double-precision num bers 4-3
Double-word form at 4-3
Dummy

call restric tions 1-2
routines, lis t of 1-2

Dummy im plem entations 1-2, 2-3

E

EACCES 2-1
EBADF 2-1
EBUSY 2-2
ecvt routine 3-9

fcvt 3-9
gcvt 3-9

EDOM 2-3
EEXIST 2-2
E FAULT 2-2
EFBIG 2-2
EINVAL 2-2
EIO 2-1
EISDIR 2-2
ELOOP 2-3
EMFILE 2-2
ENAMETOOLONG 2-3

INDEX 1

ENFILE 2-2 F
ENODEV 2-2
ENOENT 2-1 fabs routine 3-13
ENOM EN 2-1 fclose routine 3-11
ENOSPC 2-2 fflush 3-11
ENOTBLK 2-2 fcvt routine 3-9
ENOTDIR 2-2 fdopen routine 3-14
ENOTTY 2-2 feof routine 3-12
E nvironm ent ferror routine 3-12

control functions 4-9 clearerr 3-12
ENXIO 2-1 feof 3-12
EPERM 2-1 fileno 3-12
EROFS 2-2 fflush routine 3-11
errno 2-1 ffs routine 3-5
E rrors fgetc routine 3-19

EACCES 2-1 fgets routine 3-21
EBADF 2-1 File descriptor 2-3
EBUSY 2-2 File exists 2-2
EDOM 2-3 File table overflow 2-2
EEXIST 2-2 File too large 2-2
E FAULT 2-2 Filenam e too long 2-3
EFBIG 2-2 fileno 3-12
EINVAL 2-2 Find nam e of a term inal 3-23
EIO 2-1 Floating-point
EISDIR 2-2 comparisons 5-10
ELOOP 2-3 divide by zero 4-6
EMFILE 2-2 em ulation 6-1
ENAMETOOLONG 2-3 em ulation library 1-1
ENFILE 2-2 enhancem ent and em ulation 5-1
ENODEV 2-2 exception handling 5-11
ENOENT 2-1 exceptions 5-11, 6-8
ENOMEN 2-1 form at 4-3
ENOSPC 2-2 inexact re su lt 4-6
ENOTBLK 2-2 invalid operation 4-6
ENOTDIR 2-2 library 6-1
ENOTTY 2-2 overflow 4-6
ENXIO 2-1 range 4-4
EPERM 2-1 underflow 4-6
EROFS 2-2 Floating-point num bers
ETXTBSY 2-2 Reserved operand values 4-6
list of 2-1 floor routine 3-13

ETXTBSY 2-2 ceil 3-13
Exception fabs 3-13

checking 4-10 fopen routine 3-14
sta tu s flag functions 4-9 fdopen 3-14
sta tu s flags 5-9 freopen 3-14
trap functions 4-9 Form atted conversion
trap s 4-9 inpu t 3-40

Exception handler 6-8 output 3-29
Exceptions 4-6, 6-8 FPEE 5-1
exit call 2-6 and m ath lib rary in tegration 5-3
exit routine 3-10 enhancem ents to FPU 5-6
_exit system call 2-10 error handling 5-4

error m echanism 5-4
library im plem ents 5-6, 5-8
operation, overview of 5-6
operations 5-4
program control 5-8
rounding modes 5-13

2 INDEX

FPEE library gmtime routine 3-7
configurations 5-2 Group ID 2-3
cross application 4-6
im plem ents 5-13
native application 4-6 I
support of infinity 4-8

FPEE trap hand ler 4-9 IEEE 754 5-1, 5-3, 6-4
fperrn.c 5-4 compliance 4-6
fperrx.s 5-4 enhancem ents to FPU 5-6
fp_getexptn function 4-10 Im plem ented IEEE 754 operations, list of 5-7
fpinit 5-3 index routine 3-47

routine 5-2 Inexact resu lt 4-6
fp_procentry function 4-9, 5-3 exception 5-12
fp rin tf routine 3-29 Inexact re su lt exception 5-9
FPU Infinity 4-8

b it selects 5-9 INIT__ 5-3
provides 5-6 Initialize the FSR 5-3
Trap 4-6 in its ta te routine 3-36
trap hand ler 5-6 Insert/rem ove elem ent from queue 3-22
trap s for 4-6 insque routine 3-22

fputc routine 3-32 Instruction
fputs routine 3-34 codes, lis t of 5-5
Fraction 4-3 Integer
fread routine 3-16 form at 4-2

fwrite 3-16 Integer form ats
free routine 3-24 byte form at 4-2
freopen routine 3-14 double-word form at 4-3
frexp routine 3-17 word form at 4-3

ldexp 3-17 In te rru p t h and ler 6-4
modf 3-17 Introduction, high-speed fp em ulation

fscanf routine 3-40 library 6-1
fseek routine 3-18 Introduction, m ath library 4-1

ftell 3-18 Invalid
rewind 3-18 operation exception 5-10, 5-12

fsqrt 6-5 Invalid argum ent 2-2
FSR 6-5 Invalid operation 4-6
ftell routine 3-18 I/O error 2-1
Function re tu rn value A-2 Is a directory 2-2
fwrite routine 3-16 isa tty routine 3-23

G L

gcvt routine 3-9 ldexp routine 3-17
G enerate a fau lt 3-2 libfpe.a 5-2
Get a s tring from a stream 3-21 installed in 5-2
Get a value of an nam e 2-12 LibHfp 6-1
Get character or word from stream 3-19 Library
getc routine 3-19 handling of exceptions 5-11

fgetc 3-19 localtime routine 3-7
getchar 3-19 longjmp routine 3-46
getw 3-19 lseek system call 2-13

getchar routine 3-19
getdtablesize 2-7, 2-16

system call 2-11
getenv system call 2-12
getpid call 2-3
gets routine 3-21
getw routine 3-19

INDEX 3

M NS32580 instructions 6-5
N um ber form ats 4-2

malloc routine 3-24 double-precision num bers 4-3
calloc 3-24 floating-point form at 4-3
free 3-24 integer form at 4-2
realloc 3-24 single-precision num bers 4-3

M antissa 4-3
M ath

environm ent variables 4-6 O
M ath argum ent 2-3
M ath environm ent function 4-9 Open
M ath library 1-1, 4-1 a stream 3-14

provides 4-6, 5-3, 5-4 open
M ath library functions system call 2-15

access 4-10 open call 2-6
M aximum floating-point values 4-4 O perating system
memccpy routine 3-26 call sim ulation 1-2
m em chr routine 3-26 Overflow 4-6, 6-8
memcmp routine 3-26 exception 5-12
memcpy routine 3-26 exceptions re tu rn ed values, lis t of 5-14
Memory allocator 3-24 on conversion from float to integer 5-10
Memory routines signaled 5-10

memccpy 3-26
m em chr 3-26
memcmp 3-26 P
memcpy 3-26
m em set 3-26 Perm ission denied 2-1

m em set routine 3-26 perror routine 3-28
M inimum floating-point values 4-4 p rin tf routine 3-29
Min/max fp rin tf 3-29

floating-point values, figure of 4-5 sp rin tf 3-29
values, table of 4-4 Process ID 2-3

m odf routine 3-17 Push character back into in p u t stream 3-50
M ount device busy 2-2 P u t a string on a stream 3-34
Move read/w rxite pointer 2-13 P u t character/w ord on a stream 3-32

putc routine 3-32
fputc 3-32

N putchar 3-32
putw 3-32

Native putchar routine 3-32
application FPEE integration 5-2 pu ts routine 3-34

No space left on device 2-2 fputs 3-34
No such device 2-2 putw routine 3-32
No such device or address 2-1
No such file or directory 2-1
Non-local goto 3-46 Q
Norm alized floating-point num ber 4-3
Not a directory 2-2 qsort routine 3-35
Not a N um ber (NAN) 4-7 Quicker sort 3-35
Not a typew riter 2-2 Q uiet NAN 4-7
Not enough core 2-1
Not owner 2-1
NS32081 R

and NS32381 differences 5-7
NS32081/NS32381 and FPEE 5-7 Random num ber generator 3-36
NS32381 random routine 3-36

has 5-7 in its ta te 3-36
im plem ents 5-7 se tstä te 3-36

NS32381 instructions 6-5 srandom 3-36

4 INDEX

Read inpu t 2-17 fputc 3-32
Read mode 2-3 fputs 3-34
read system call 2-17 fread 3-16
Read-only file system 2-2 free 3-24
realloc routine 3-24 freopen 3-14
re_comp routine 3-38 frexp 3-17
Reentrancy 6-4 fscanf 3-40
re_exec routine 3-38 fseek 3-18
R egisters ftell 3-18

saving A-2 fwrite 3-16
R egular expression hand ler 3-38 gcvt 3-9
R egular expression routines getc 3-19

re_comp 3-38 getchar 3-19
re_exec 3-38 gets 3-21

Remove directory entry of a file 2-20 getw 3-19
rem que routine 3-22 gm tim e 3-7
Renam e inpu t 2-18 index 3-47
renam e system call 2-18 in its ta te 3-36
Reposition a stream 3-18 insque 3-22
Reserved operand values 4-2 isatty 3-23

denorm alized num bers 4-8 ldexp 3-17
infinity 4-8 localtime 3-7
Not a N um ber (NAN) 4-7 longjmp 3-46

Reserved operand values and operations 4-6 malloc 3-24
R eturn codes 2-1 memccpy 3-26
R eturned value A-2 m em chr 3-26
rewind routine 3-18 memcmp 3-26
rindex routine 3-47 memcpy 3-26
Rounding mode 5-9, 6-4 m em set 3-26
Routines modf 3-17

abort 3-2 perror 3-28
abs 3-3 p rin tf 3-29
asctime 3-7 putc 3-32
atof 3-4 pu tchar 3-32
atoi 3-4 puts 3-34
atol 3-4 putw 3-32
bcmp 3-5 qsort 3-35
bcopy 3-5 random 3-36
bzero 3-5 realloc 3-24
calloc 3-24 re_comp 3-38
ceil 3-13 re_exec 3-38
clearerr 3-12 rem que 3-22
ctime 3-7 rewind 3-18
ecvt 3-9 rindex 3-47
exit 3-10 scanf 3-40
fabs 3-13 setbuf 3-44
fclose 3-11 setbuffer 3-44
fcvt 3-9 setjm p 3-46
fdopen 3-14 setlinebuf 3-44
feof 3-12 sets tä te 3-36
terror 3-12 sp rin tf 3-29
{flush 3-11 srandom 3-36
ffs 3-5 sscanf 3-40
fgetc 3-19 strca t 3-47
fgets 3-21 strchr 3-47
fileno 3-12 strcm p 3-47
floor 3-13 strcpy 3-47
fopen 3-14 strlen 3-47
fp rin tf 3-29 stm ca t 3-47

INDEX 5

strncm p 3-47 Support libraries 1-1
strncpy 3-47 swab routine 3-49
strrch r 3-47 Swap bytes 3-49
swab 3-49 sys_errlist routine 3-28
sys_errlist 3-28 System
timezone 3-7 call dependencies 1-2
ungetc 3-50 System calls 1-1, 2-1, 2-3

Routines for changing generators 3-36 close 2-7
creat 2-6, 2-8
dum m y im plem entations 1-2

S exit 2-6
_exit 2-10

Saving registers A-2 getdtablesize 2-11
sbrk system call 2-19 getenv 2-12
scan t routine 3-40 im plem ented 1-2

fscanf 3-40 lseek 2-13
sscanf 3-40 open 2-6, 2-15

se tbu f routine 3-44 read 2-17
setbuffer 3-44 renam e 2-18
setlinebuf 3-44 routines th a t do n 't require 2-4

setbuffer routine 3-44 routines th a t use sim ulated 2-5
setjm p routine 3-46 sbrk 2-19

longjmp 3-46 sim ulated 2-6
setlinebuf routine 3-44 sum m ary of 2-3
se tsta te routine 3-36 unlink 2-20
Signals 4-6 write 2-22
Sim ulated system calls 2-6
Single-precision num bers 4-3
Split into m an tissa and exponent 3-17 T
sp rin tf routine 3-29
sq rt 6-5 T erm inate a process 2-10
srandom routine 3-36 T erm inate a process a fter flushing ou tpu t 3-10
sscanf routine 3-40 Text file busy 2-2
Stack timezone 3-7

in calling sequence A -l Too m any levels of symbolic links 2-3
S tandard calling convention A -l Too m any open files 2-2
strca t routine 3-47 Trap 4-6
strch r routine 3-47 hand ler 4-7
strcm p routine 3-47 type 5-9
strcpy routine 3-47
Stream s ta tu s inquiries 3-12
S tring operations 3-47 U
String routines 3-47

index 3-47 Underflow 4-6, 6-8
rindex 3-47 Underflow exception 5-9, 5-12
strcat 3-47 ungetc routine 3-50
strchr 3-47 unlink system call 2-20
strcm p 3-47 U ser ID 2-3
strcpy 3-47
strlen 3-47
strn ca t 3-47 V
strncm p 3-47
strncpy 3-47 Values from functions 2-1
strrch r 3-47 Volatile 6-4

strlen routine 3-47
strn ca t routine 3-47
strncm p routine 3-47
strncpy routine 3-47
strrch r routine 3-47

6 INDEX

w
Word form at 4-3
W rite mode 2-3
W rite on a file 2-22
write system call 2-22

INDEX 7

Series 32000*

GNX — Version 4.4
COFF Programmer’s Guide

Customer Order Number 424010507-004

June 1992

REVISION RECORD

VERSION RELEASE DATE SUMMARY OF CHANGI

4.0 May 1990 First Release.
Series 32000® GNX — Version 4.0
COFF Programmer’s Guide

4.1 Sept 1990 No updates.
Version synchronization

4.2 Feb 1991 No updates.
Version synchronization

4.3 Au g 1991 No updates.
Version synchronization

4.4 June 1992 MS-DOS support added

PREFACE

This manual describes the GNX (GENIX™ Native and Cross-Support) implementation
of the Common Object File Format (COFF). The intended audience of this manual is
the implementor of language tools or operating systems for the Series 32000®
microprocessor family. This audience includes writers of compilers, assemblers, link­
ers, debuggers, kernels, or other tools which must create or access object code informa­
tion. This manual aids in understanding the object file format, which lies at the heart
of the implementation of the GNX Language Tools. This manual is also useful for
creating new tools and modifying existing GNX tools.

The information contained in this manual is for reference only and is subject to change
without notice.

No part of this document may be reproduced in any form or by any means without the
prior written consent of National Semiconductor Corporation.

A complete list of National Semiconductor’s international offices may be found on the
inside back cover of this manual.

ISE, SYS32 and GENIX are trademarks of National Semiconductor Corporation.

Series 32000 is a registered trademark of National Semiconductor Corporation.

Portions of this document are derived from AT&T copyrighted material and reproduced under license
from AT&T; portions are based in part on the Fourth Berkeley Software Distribution under license
from The Regents of the University of California.
UNIX is a registered trademark of AT&T.
VAX, VMS, and DEC are trademarks of Digital Equipment Corporation.
IBM is a registered trademark of International Business Machines Corporation.

IV

CONTENTS

Chapter 1 OVERVIEW
1.1 INTRODUCTION.. 1-1
1.2 GENERAL.. 1-2
1.3 DEFINITIONS AND CONVENTIONS.. 1-3

1.3.1 S ections.. 1-3
1.3.2 H ead e rs .. 1-3
1.3.3 Physical and Virtual Addresses 1-3
1.3.4 Target M achine... 1-4

Chapter 2 HEADERS
2.1 INTRODUCTION.. 2-1
2.2 FILE HEADER.. 2-1

2.2.1 Description of the Fields of the File H eader.................. 2-2
2.2.2 Contents of the File Header F la g s 2-2
2.2.3 Description of the File Header F lags.............................. 2-2
2.2.4 Guidelines for Using the File Header F la g s 2-2

2.3 OPTIONAL HEADER INFORMATION....................................... 2-4
2.3.1 Guidelines for Using the Optional H eader..................... 2-5
2.3.2 The Optional Header Magic N um bers........................... 2-5
2.3.3 The Optional Header F lags... 2-6

2.4 SECTION HEADERS... 2-8
2.4.1 Use of the Section H e a d e r ... 2-8
2.4.2 Section Header F la g s .. 2-9
2.4.3 .bss Section H eader... 2-9

Chapter 3 SECTIONS
3.1 INTRODUCTION.. 3-1
3.2 LOADING A FILE WITH MODULAR FEATURES..................... 3-1

Chapter 4 RELOCATION INFORMATION
4.1 INTRODUCTION.. 4-1
4.2 RELOCATION EN TRY .. 4-1
4.3 COFF RELOCATION ENTRY STRUCTURE.............................. 4-2
4.4 SEMANTICS... 4-4

CONTENTS v

Chapter 5 LINE NUMBERS
5.1 INTRODUCTION.. 5-1
5.2 USING LINE NUMBERS... 5-2

Chapter 6 SYMBOL TABLE
6.1 INTRODUCTION.. 6-1
6.2 SPECIAL SYMBOLS... 6-1

6.2.1 Inner Blocks... 6-4
6.3 SYMBOLS AND FUNCTIONS.. 6-6
6.4 SYMBOL TABLE ENTRIES ... 6-7

6.4.1 Symbol Names ... 6-8
6.4.2 Storage C lasses... 6-9
6.4.3 Storage Classes for Special Symbols............................... 6-11
6.4.4 Symbol Value F ie ld ... 6-11
6.4.5 Section Number F ield .. 6-13
6.4.6 Section Numbers and Storage Classes........................... 6-13
6.4.7 Type Entry... 6-14
6.4.8 Symbol Interpretation Environment.............................. 6-18
6.4.9 Type Entries and Storage C lasses 6-18
6.4.10 Structure for Symbol Table E n tr ie s 6-20

6.5 AUXILIARY TABLE ENTRIES.. 6-20
6.5.1 F ilenam es... 6-20
6.5.2 Sections.. 6-22
6.5.3 Tagnam es... 6-22
6.5.4 Structures, Unions, and Enum erations........................ 6-23
6.5.5 F unctions... 6-24
6.5.6 A rray s ... 6-24
6.5.7 End of Blocks and Beginning and End of Functions . . . 6-24
6.5.8 Beginning of Blocks... 6-25
6.5.9 Auxiliary Entry D eclaration.. 6-26

6.6 LINKED LISTS IN THE SYMBOL T A B L E 6-26
6.7 STRING TABLE... 6-28

FIGURES

Figure 1-1. GNX Common Object File F o rm at.. 1-2
Figure 2-1. File Header C ontents.. 2-1
Figure 2-2. Optional Header C on ten ts .. 2-4
Figure 2-3. Section Header C ontents... 2-8

Figure 4-1. Relocation Section C o n ten ts ... 4-2

vi CONTENTS

Figure 5-1. Line Number Grouping.. 5-1
Figure 5-2. Line Number Structure Lineno ... 5-2
Figure 6-1. GNX COFF Symbol Table .. 6-2
Figure 6-2. Special Symbols (.bb and .eb)... 6-4
Figure 6-3. Nested B locks... 6-5
Figure 6-4. Symbol T a b le ... 6-6
Figure 6-5. Symbols for F u n c tio n s.. 6-6
Figure 6-6. The Special Symbol .ta rg e t.. 6-7
Figure 6-7. Symbol Table Entry F o rm a t... 6-8

Figure 6-8. Name F ie l d .. 6-9
Figure 6-9. Auxiliary Entry for F ilenam es.. 6-22
Figure 6-10. Auxiliary Entry for Sections... 6-22
Figure 6-11. Auxiliary Entry for Tagnam es.. 6-23
Figure 6-12. Auxiliary Entry for Structures, Unions and Enumerations . . . 6-23
Figure 6-13. Auxiliary Entry for F unctions.. 6-24

Figure 6-14. Auxiliary Entry for A rray s .. 6-25
Figure 6-15. Auxiliary Entry for Beginning of Function and End of

Block/Function .. 6-25
Figure 6-16. Auxiliary Entry for Beginning of B lo c k 6-26
Figure 6-17. Linked List Structures in the Symbol Table................................ 6-27
Figure 6-18. String T able... 6-28

TABLES

Table 2-1. File Header F lag s .. 2-3
Table 2-2. Optional Header Magic N u m b ers ... 2-6

Table 2-3. Optional Header F la g s ... 2-7
Table 2-4. Flags for Section H andling... 2-10
Table 2-5. Flags for Type of Data Contained in Section 2-10
Table 4-1. Relocation Type Flag Definitions.. 4-3

Table 6-1. Special Symbols in the Symbol T a b le 6-3
Table 6-2. Storage C lasses... 6-10

CONTENTS vii

Table 6-3. Storage Class by Special Sym bols.. 6-11
Table 6-4. Storage Class and V a lu e ... 6-12
Table 6-5. Section N um ber.. 6-13
Table 6-6. Section Number and Storage Class ... 6-14
Table 6-7. Fundamental Types.. 6-16
Table 6-8. Derived Types... 6-17
Table 6-9. Type Entries by Storage C la ss .. 6-19
Table 6-10. Auxiliary Symbol Table E n tr ie s ... 6-21

INDEX

viii CONTENTS

Chapter 1

OVERVIEW

1.1 INTRODUCTION
This manual describes the GNX Language Tools’ implementation of the Common
Object File Format (COFF) for Series 32000 microprocessor-based systems, and it
serves as a “how to” guide for implementors of language tools. Because National’s
GNX COFF is derived from AT&T’s UNIX® COFF, the word “common” is descriptive
and widely accepted.

There are two kinds of GNX COFF files: relocatable and executable. Relocatable files,
or object files as they are normally called, are produced by the assembler and may con­
tain unresolved external references. One or more object files are combined by the
linker to produce an executable file which has no unresolved references and may con­
tain additional symbolic information for the debugger.

The assembler creates the object file, and assembler directives control the creation of
specific sections in the object files. For example, .text denotes the start of a text sec­
tion. Generally, a High-Level Language (HLL) compiler generates the assembly source
code. Thus, there is an extremely strong interaction between the compilers and the
assembler and linker which must support the compilers.

Because of compatibility with other operating systems using COFF, some symbols and
fields are included in the format to maintain commonality. GNX COFF allows the use
of all the hardware features of this microprocessor (notably, modular relocation capa­
bilities.)

The content of the object file is determined at compile time with command line options
to the assembler, linker and compiler. These options vary depending on the host
operating system. The examples of options given in this manual are for a UNIX/MS-
DOS host.
For the options to the assembler, linker, and compiler for your specific host, see the
Series 32000 GNX — Version 4 Commands and Operations Manual.

GNX COFF is structurally general and extensible. This manual describes how to:
• Add system-dependent information to the object file without obsoleting access

utilities.
• Access symbolic information used for debuggers and other applications.

Rev 4.4 OVERVIEW 1-1

1.2 GENERAL
The overall structure of a GNX COFF file is shown in Figure 1-1. Sections 1 through n
may be user-defined. Extensive information is included for symbolic software debug­
ging.

FILE HEADER

OPTIONAL HEADER

Section 1 Header

Section n Header

Raw Data for Section 1

Raw Data for Section n

Relocation Info for Section 1

Relocation Info for Section n

Line Numbers for Section 1

Line Numbers for Section n

SYMBOL TABLE

STRING TABLE

Figure 1-1. GNX Common Object File Format

The last three types of information (fine numbers, symbol table, and string table) may
be empty if the program is linked with the “strip” option of the linker or if the symbol
table is removed by the “strip” command. The line number information does not appear
unless the program compiles with the compiler option to produce additional symbol
table information (e.g., -g). In addition, if there are no unresolved external references
after linking, then the relocation information is no longer needed and is absent. The
string table may also be absent if the source file does not contain any symbols with
names longer than eight characters.

1-2 OVERVIEW

The term “executable” refers to an object file that contains no errors or unresolved
references. Specific target operating systems may place additional constraints on an
executable file such as requiring the presence of an optional header.

1.3 DEFINITIONS AND CONVENTIONS
Before proceeding, the user should become familiar with the terms and conventions of
sections, physical addresses, virtual addresses and target machines.

1.3.1 Sections
A section is the smallest portion of an object file that is relocated and treated as one
separate and distinct entity. Each section defines raw data, relocation information for
the raw data, and line numbers for the section. Raw data, relocation information, or
line numbers may be absent when not needed. Symbolic information in the symbol
table contains references to sections. In addition to the sections .text, .data, .bss,
.mod, .link, .static, .lib and .comment, user-defined sections are also supported by the
assembler and the linker.

NOTE: It is a mistake to assume that every GNX COFF file has a certain
number of sections, or to assume characteristics of sections such as
their order, location in the file, or load address in memory. This
information must be obtained through access of the appropriate
data fields after the GNX COFF file has been created. This informa­
tion is contained in the file and section headers.

1.3.2 Headers
Headers contain file pointers that are used to locate the various components of the
COFF file. File pointers are byte offsets from the beginning of the file that can be used
to directly locate the symbol table, raw data, relocation, or line number information.
File pointers can be used readily with the standard C library function fseek.

1.3.3 Physical and Virtual Addresses
The terms “physical address” and “virtual address” are considered the same in this
document. They both refer to an object’s location in the program’s memory space. For
targets with a Memory Management Unit (MMU), this address is not necessarily the
same as the address of that object in physical memory. The latter is usually known as
the physical address and generates from the virtual address by the MMU. This
address is unknown to the program and is irrelevant to the object file format.

For historical reasons, some of the data structures in the object file contain fields for
both virtual and physical addresses. Usually, they have the same values, but some­
times GNX COFF programs use only one of these fields and the other is invalid.

OVERVIEW 1-3

1.3.4 Target Machine
The term “target machine” refers to the machine on which the object file is destined to
run. For a native set of tools this is the same machine as the one on which the code
was developed. Generally, the GNX cross tools cross-compile when the target and
development machine differ. This document describes the use of GNX COFF in both
cases.

1-4 OVERVIEW

Chapter 2

HEADERS

2.1 INTRODUCTION
Three types of headers describe the overall content of the object file: the file header, the
optional header, and the section headers. The file header describes the style of code
and the number of sections. The optional header describes the attributes, size, and
location of the .text, .data, and .bss sections in memory.* The section headers describe
each section and the data location for the section in the file.

2.2 FILE HEADER
The file header describes the style of code and the number of sections. Figure 2-1
shows the contents of the file header.

Bytes Declaration Name
0-1 unsigned short fmagic
2-3 unsigned short f_nscns
4-7 long int f_timdat
8-11 long int f_symptr
12-15 long int f_nsyms
16-17 unsigned short f_opthdr
18-19 unsigned short f_flags

Description
magic number
number of section headers
time and date stamp
file pointer to the start of the symbol table
number of entries in the symbol table
number of bytes in the optional header
flags (see Table 2-1)

Figure 2-1. File Header Contents

NOTE: The corresponding C structure definition for this file may be found
in the header file f i le h d r .h . This header file maps correctly to
the structure in Figure 2-1 when it compiles with the GNX C com­
piler.

* The current optional header is specifically for a UNIX/MS-DOS operating system and may vary for
different targets in the future.

Rev 4.4 HEADERS 2-1

2.2.1 Description of the Fields of the File Header
• fjmagic — The magic number specifies the style of code for a particular operating

system or down-load program. The mnemonic NS32GMAGIC = 0524 octal is used
for all fully relocatable GNX COFF files; NS32SMAGIC = 0525 octal is used for
GNX COFF files that contain modular code.

• f_nscns — Indicates the number of section headers which equals the number of
sections.

• f_timdat — The time and date stamp indicates when the file was created
expressed in terms of the number of elapsed seconds since 00:00:00 GMT, Janu­
ary 1, 1970. (This value is host operating system dependent.)

• f_symptr — The file pointer contains the starting address of the symbol table.
• f_nsyms — Number of entries in the symbol table (includes symbols and their

auxilliaries).
• f_opthdr — Number of bytes in the optional header. This is used by all referenc­

ing programs that seek to the beginning of the section header table. This ensures
compatibility of a utility across differing target operating systems and future ver­
sions of COFF.

• f_flags — Flags (see Table 2-1). These last 2 bytes (f_flags field) are used by the
linker and the object file utilities.

2.2.2 Contents of the File Header Flags
The last 2 bytes of the file header are flags that describe the type of the object file.
Some of these flags are no longer used but are kept to maintain commonality. The
currently defined flags are given in Table 2-1.

2.2.3 Description of the File Header Flags
In general, COFF is designed to work with either left-to-right or right-to-left byte ord­
ering. However, Series 32000 COFF files always use the F_AR32WR flag. The flags
F.MINMAL, FJJPDATE, F.SWABD, F.AR16WR, F_AR32W, and F_PATCH specify
other architectures and are never used by the GNX tools.

2.2.4 Guidelines for Using the File Header Flags
F_RELFLG — The linker normally strips relocation information from the file after all
references resolve in the linking process. The -r option retains this information for
further linking.

F_EXEC — The linker turns this on when it finds no unresolved external references.

F_LNNO and F_LSYMS — The strip utility or the - s linker option strip line numbers
and local symbols from the file.

2-2 HEADERS

Table 2-1. File Header Flags

MNEMONIC FLAG DESCRIPTION

f _r e l fl g 00001 Relocation information stripped from the file.

F_EXEC 00002 File is executable {i.e., no unresolved external references).

F_LNNO 00004 Line numbers stripped from the file.

F_LSYMS 00010 Local symbols stripped from the file.

F_MINMAL 00020 Not used by the GNX Language tools.

F_UPDATE 00040 Not used by the GNX Language tools.

F_SWABD 00100 Not used by the GNX Language tools.

F_AR16WR 00200 File has the byte ordering used by the PDP™-11/70 pro­
cessor. Not used on Series 32000 COFF files.

F_AR32WR 00400 File has the byte ordering used by the VAX™-11/780 and
the Series 32000 (i.e., 32 bits per word, least significant
byte first).

F_AR32W 01000 File has the byte ordering used by the 3B 20S computers
{i.e., 32 bits per word, most significant byte first). Not
used on Series 32000 COFF files.

F_PATCH 02000 Not used by the GNX Language tools.

NOTE: Flags F_MINMAL, F_UPDATE, F_SWABD, F_AR16WR,
F_AR32W, and F_PATCH are reserved for use by other
implementations. Effects are undefined if set.

HEADERS 2-3

F_AR32WR — File has the byte ordering used by the VAX-11/780 and the Series 32000
(i.e., 32 bits per word, least significant byte first). Currently, this flag is always used. If
the GNX tools port to other host architectures in the future, other values such as
AR32W may be used.

2.3 OPTIONAL HEADER INFORMATION
The optional header contains system-dependent information about the object file.
(Currently all executable object files produced by the linker contain the optional
header.) The fields of the Series 32000 version of the optional header are described in
Figure 2-2.

NOTE: The corresponding C structure definition for this header may be
found in the aouthdr.h header file. This header file maps
correctly to the structure (as shown in Figure 2-2) when it compiles
with the GNX C compiler.

Bytes Declaration Name Description
0-1 short magic magic number (see Section

2.3.2)
2-3 short vstamp version stamp
4-7 long int tsize size of text in bytes
8-11 long int dsize size of initialized data in bytes
12-15 long int bsize size of uninitialized data in

bytes
16-19 long int msize size of module table in bytes
20-23 long int mod_start start address of module table
24-27 long int entry entry point memory address
28-31 long int text_start base address of first text section
32-35 long int data_start base address of first data section
36-37 unsigned short entry_mod memory address of the module

table entry of the module con­
taining the entry point

38-39 unsigned short flags see Section 2.3.3

Figure 2-2. Optional Header Contents

The size entries in the optional header of a section are calculated as the difference
between the starting address of the first section of that name and the ending address of
the last section of that name. If a section of a different type intervenes the sections

2-4 HEADERS

whose addresses are being calculated, the size does include the intervening section.
Therefore, size is most meaningful when sections are grouped (i.e., no intervening sec­
tions).

The field tsize is computed as the difference between the next address following the
last non-empty .text or .link section and the base address of the first such section.
Field dsize is computed as the difference between the next address following the last
non-empty .data or .static section and the base address of the first such section. Fields
bsize and msize are computed similarly based on sections .bss and .mod.

2.3.1 Guidelines for Using the Optional Header
General utility programs such as the symbol table access library functions are not con­
cerned with the contents of the optional header. Such utilities seek past this record by
using the size of optional header information in the file header (the f_opthdr field) or,
preferably, by using the standard access routines to seek to the desired location.

By default, the linker sets Vstamp to zero. A user can set the version number at linker
invocation with -VS version jium ber, where versionjiumber is a C short (16-bit) value.
See the Series 32000 GNX — Version 4 Linker User’s Guide for details.

2.3.2 The Optional Header Magic Numbers
In general, magic numbers provide a quick way for utilities to check how a file has
been processed. The magic number in the optional header supplies operating system
dependent information about the object file. See the aouthdr.h header file for this
set of machine-dependent values. Whereas the magic number in the file header
specifies the type of machine on which the object file runs, the magic number in the
optional header supplies information telling the operating system on that machine how
that file should load. (Specifically, it indicates how the Series 32000 kernel processes a
COFF file when loading it to produce a process image. See Section 3.2 for further
details.)

The magic numbers recognized by the operating system are given in Table 2-2.

HEADERS 2-5

Table 2-2. Optional Header Magic Numbers

VALUE DESCRIPTION

0407 The text section is not
write-protected or sharable;
the data section is contigu­
ous with the text section.

0410 The data section starts at
the next segment following
the text section; the text sec­
tion is write protected.

0413 The data section starts at
the next segment following
the text section; the text sec­
tion is write protected. Relo­
cation and alignment within
the file are appropriate for
paging.

0417 Do not use the optional
header for loading; Use sec­
tion headers instead.

0443 The object file is configured
for shared libraries. (GENIX
V .3 only.)

Typical segment sizes are 64-Kbyte or 1-Mbyte. These are controlled by the linker
directives language.

2.3.3 The Optional Header Flags
The flags field of the COFF GNX version records the alignment granularity and the
protections to be assigned sections when loaded. Flags are also reserved for distin­
guishing between system types. Alignment granularity positions the raw data for sec­
tions with respect to the beginning of the containing COFF file. The meaning of the
flags for both alignment granularity and the protections to be assigned sections when
loaded, according to the definitions in Table 2-3.

2-6 HEADERS

Table 2-3. Optional Header Flags

FIELD NAME MNEMONIC FLAG MEANING

U_AL (mask 0x07)
U_AL_NONE 0x00

section alignment
full-word alignment

U_AL_512 0x01 512-byte alignment
U_AL_1024 0x02 1-Kbyte alignment
U_AL_2048 0x03 2-Kbyte alignment
U_AL_4096 0x04 4-Kbyte alignment
U_AL_8192 0x05 8-Kbyte alignment

0x06 reserved
0x07 reserved

U_PR (mask 0x38)

U_PR_DATA 0x08

section protections (“1” if writable
and “0” if it is read only.)
data section

U_PR_TEXT 0x10 text section
U_PR_MOD 0x20 module section

0x40 reserved
0x80 reserved

U_SYS
U_SYS_5 0x100

system type
(reserved for future expansion;
do not use)

U_SYS_42 0x200 (reserved for future expansion;
do not use)

HEADERS 2-7

2.4 SECTION HEADERS
Every object file has section headers that specify the data layout within the file. There
is one section header for every section in the file. The section header is described in
Figure 2-3.

Bytes Declaration Name
0-7 char s_name
8-11 long int s_paddr
12-15 long int s_vaddr
16-19 long int s_size

20-23 long int s_scnptr
24-27 long int s_relptr
28-31 long int s_lnnoptr
32-33 unsigned short s_nreloc
34-35 unsigned short s_nlnno
36-39 long int flags
40-43 long int s_modsym

44-45 unsigned short s_modno

46-47 short s_pad

Description
8-character null-padded section name
physical address of section
virtual address of section
section size in bytes (due to padding,
this value is always a multiple of 4
bytes)
file pointer to raw data
file pointer to relocation entries
file pointer to line number entries
number of relocation entries
number of line number entries
s_flags (see Section 2.4.2)
symbol table index (if sjmodsym is
greater than 0, then this field indi­
cates the symbol index which contains
the section; if there is no mod symbol,
then s_modsym = -1)
memory address of the module table
entry associated with this section
padding to 4-byte multiple

Figure 2-3. Section Header Contents

NOTE: The corresponding C structure definition for this header may be
found in the scnhdr. h include file. This header file maps correctly
to the structure shown in Figure 2-3 when compiled with the GNX
C compiler.

2.4.1 Use of the Section Header
The file pointers in the Section Header are byte offsets from the beginning of the file
that directly locate the start of data, relocation, line number, or symbol table entries
for the section. Because of this definition, they can be readily used with the standard C
library function fseek. For example, fseek may be called with s_scnptr to prepare a
program to read the raw data section of the file.

2-8 HEADERS

The lower 12 bits of the flags field indicate a section type. The bit definitions are
shown in Tables 2-4 and 2-5. Table 2-4 shows the flags which define the handling of
the section by the linker; these flags are mutually exclusive. Table 2-5 shows the flags
which specify the data type in a section.

The following three paragraphs define the terms used in Table 2-4.

The term “allocated” indicates that the section does use space in configured memory, is
a unique memory area, and shows up in the linker’s output map.

The term “relocated” indicates that relocation information applies to the section so that
the section symbols appear appropriately updated in the symbol table.

The term “loaded” indicates that the section is included in the linker’s output file and
should load into memory by the operating system or down-load program. The raw data
of nonloaded sections are not included in the linker’s output.

The STYP flags are interpreted by the GNX linker in the following manner:
• GROUP, RELOC, COLLAPSE, PROT, and PAD are not used in GNX.
• REG means that the section is not one of the following: DSECT, NOLOAD,

COPY, INFO, OVER, or LIB. A REG section may be TEXT, DATA, BSS, MOD, or
LINK.

• BSS is regular except that its does not have raw data. The pointer to raw data
(s_scnptr) is 0. The BSS flag is mutually exclusive with TEXT, DATA, MOD, or
LINK.

• TEXT means that the section contains code. DATA means that the section con­
tains initialized data. MOD means that the section contains module tables.
LINK means that the section contains link table entries. These flags are not
mutually exclusive.

• A LIB section cannot combine with anything other than a LIB section. NOLOAD
sections cannot combine at all. OVERLAY sections are not allowed as input to
the linker.

• If a BSS section combines with any other section, its contents become all zeroes
and it changes to a DATA section.

2.4.2 S ec tio n H ead er F lags

2.4.3 .bss Section Header
The entry for uninitialized data in a .bss section deviates from the normal rule in the
section header table. A .bss section has a size, symbols that refer to it, and symbols
that are defined in it. At the same time, a .bss section has no relocation entries, no line
number entries, and no data. Therefore, a .bss section has an entry in the section
header table but occupies no space elsewhere in the file. In this case, the number of
relocation and line number entries, as well as all file pointers in a .bss section header,

HEADERS 2-9

is zero.

The section header flag indicating .bss data is mutually exclusive with the other flags
in Table 2-5. If a .bss section combines with any other section, its type becomes
STYP_DATA, and its data is set to all zeroes.

Table 2-4. Flags for Section Handling

MNEMONIC FLAG DESCRIPTION ALLOCATED RELOCATED LOADED

STYP_REG 0x00 regular section yes yes yes
STYP_DSECT 0x01 dummy section no yes no
STYP.NOLOAD 0x02 noload section yes yes no
STYP_COPY 0x10 copy section

(relocation and
line number
entries pro­
cessed normally)

no yes no

STYPJNFO 0x4000 comment section no no no
STYP_OVER 0x8000 overlay section no yes no
STYP.LIB 0x10000 for .lib section

(shared library),
treated the same
as INFO

no no no

Table 2-5. Flags for Type of Data Contained in Section

MNEMONIC FLAG DESCRIPTION

STYP.TEXT 0x20 section contains executable text
STYP_DATA 0x40 section contains initialized data
STYP_BSS 0x80 section contains only uninitialized data
STYP_MOD 0x100 section contains module table
STYP.LINK 0x200 section contains link table

2-10 HEADERS

Chapter 3

SECTIONS

3.1 INTRODUCTION
The section is the basic unit for defining the contents of an area of memory. Each sec­
tion is described by its section header. Raw data, relocation information, and line
numbers for each section occur after the section headers. Figure 1-1 shows that section
headers are followed by the appropriate number of bytes of text or data. If the optional
header is present, the beginning of the section aligns in the file at the alignment boun­
dary given by the U_AL part of the optional header flags field.

Files produced by the GNX compilers, the assembler, and the linker may contain sec­
tions for code, data, and uninitialized data plus additional sections for Series 32000
modularity. The .text section contains the instruction text (i.e., executable code), the
.data section contains initialized data variables, and the .bss section contains unini­
tialized data variables. In support of the Series 32000 modularity features, a module
table is contained in a .mod section, link tables are contained in .link sections, and
static-base-relative data are in .static sections.

The linker’s “SECTIONS” directive described in the Series 32000 GNX — Version 4
Linker User’s Guide allows users to:

• Describe how input sections combine.
• Direct the placement of output sections.

If no SECTIONS directives are given, each input section appears in an output section
of the same name. For example, if a number of object files from the compiler link
together, each containing the three sections .text, .data, and .bss, then the output
object file also contains the same three sections.

3.2 LOADING A FILE WITH MODULAR FEATURES
A GNX COFF file normally loads with the information in the section headers. The
loading process may be hastened by the use of the information in the optional header.
However, use of the linker command language or modular features of the Series 32000
architecture may result in section configurations which invalidate the contents of the
optional header. In these cases, the optional header information cannot load the object
file.

SECTIONS 3-1

In addition, various specializations of this general structure are possible.
• If modular software features are not used, the linker can combine files by using

traditional relocation, resulting in only one module and a nearly “standard” file
organization.

• The linker can link certain sections to appear consecutively in the resulting
memory image. The operating system can load each such aggregate section as an
undivided whole, obtaining starting addresses and lengths from the optional
header. Many variations of this scheme are possible.

• When the optional header obtains loading information, its magic and flag fields
discriminate among the different possibilities.

3-2 SECTIONS

Chapter 4

RELOCATION INFORMATION

4.1 INTRODUCTION
Since a COFF section may be relocated by a linker, references to symbols of that sec­
tion must also be relocatable. The relocation entries contain sufficient information to
properly update each reference when the referenced section relocates.

4.2 RELOCATION ENTRY
The relocation entries describe a reference and a referenced memory location. The
reference is the area in a section which contains code bytes for accessing the referenced
memory location. The referenced memory location is the (relocatable) memory being
accessed.

The relocation entry describes the reference and its relationship to the referenced
memory location. During the link process, the reference may move, the referenced
memory location may move, or (typically) both may move.

In order to implement this, each section with relocatable references contains a list of
relocation entries. Each relocation entry is composed of:

• the address of the reference in memory. These addresses always fall within the
boundaries of the section. •

• a symbol table index. The value of this symbol defines the address of the refer­
enced memory location.

• the addressing type of this reference.
• the relative addressing mode of the reference to the referenced memory location.
• the data format of the reference.
• the size of the reference.

RELOCATION INFORMATION 4-1

4.3 COFF RELOCATION ENTRY STRUCTURE
Figure 4-1 shows the structure of the 10-byte COFF record representing the relocation
entry. Item 1 is represented by the r_vaddr field. Item 2 is a r_symndx field. Items 3
through 6 are represented in the r_type field.

Bytes Declaration Name Description
0-3 long int r_vaddr (virtual) address of reference
4-7 long int r_symndx symbol table index
8-9 unsigned short r_type relocation type (see below)

10-11 short dummy dummy padding bytes

Figure 4-1. Relocation Section Contents

NOTE: The C structure declaration for this file may be found in the
r e l o c . h header file.

The relocation entries are actually packed one per 10-byte field in the object. Therefore,
use macro definition RELSZ (which is currently 10) to determine the size of each relo­
cation entry. Do not use sizeof (RELOC) since this returns 12 due to padding field
“dummy.”

In GNX COFF, r_type field is partitioned into four subfields given by the bit-mask
definitions in Table 4-1.

4-2 RELOCATION INFORMATION

Table 4-1. Relocation Type Flag Definitions

FIELD MNEMONIC MASK/VALUE FIELD DESCRIPTION/MEANING

R_ADDRTYPE OxOOOf address type of reference
R NOTHING 0x0000 no relocation to be performed
R ADDRESS 0x0001 normal memory addressing
R LINKENTRY 0x0002 link table index (prescaled by 4)
R STATIC SEC 0x0003 default static section base address
R LINK SEC 0x0004 default link section base address
R_TEXT_SEC 0x0005 default text section base address

R_RELTO OxOOfO the addressing mode
R_ABS 0x0000 absolute addressing
R PCREL 0x0010 pc relative addressing
R_SBREL 0x0020 static base relative

R FORMAT OxOfOO the format of the address
R_NUMBER 0x0000 a two’s complement number (low

order to high order)
R_DISPL 0x0100 Series 32000 displacement (high

order to low order with Huffman
encoding bits)

R_PROCDES 0x0200 Series 32000 procedure descriptor
(16-bit module followed by 16-bit
offset)

R_IMMED 0x0300 a two’s complement number (high
order to low order)

RJ3IZESP 0x1000 the size of the reference
R S 08 0x0000 1 byte long
R S_16 0x1000 2 bytes long
R S 32 0x2000 4 bytes long

RELOCATION INFORMATION 4-3

4.4 SEMANTICS

The R_ADDRTYPE (OxOOOf) subfield specifies the type of addressing for the reference.

R_NOTHING (0x0000) flag indicates that no action is required by the
linker.

R_ADDRESS (0x0001) flag is the normal value for any memory reference.

R_LINKENTRY (0x0002) flag is used when the reference is an index off of
the link base. (See the modsym field of the section header.)

This instructs the linker that the reference is scaled by 4 (as is appropriate
for External-addressing mode and the index provided on the CXP instruc­
tion).

If the link base of the referenced memory location changes, the linker
adjusts the reference appropriately. (For RJLINKENTRY, R_RELTO is
always R_ABS).

The R_RELTO (OxOOfO) subfield indicates how the linker must relocate the reference
when one or both of the sections involved are moved.

R_STATIC_SEC (0x0003) flag is used for the default static base of a module.
The symbol is the name of the module. The reference is relocated relative to
the movement of the base of the .static section.

R_LINK_SEC (0x0004) flag is used for the default link base of a module.
The symbol is the name of the module. The reference is relocated relative to
the movement of the base of the .link section.

R_TEXT_SEC (0x0005) flag is used for the default program base of a
module. The symbol is the name of the module. The reference is relocated
relative to the movement of the base of the .text section.

R_ABS (0x0000) indicates that the reference is relative to the beginning of
memory. Therefore, the linker will adjust the reference (up/down) when the
referenced memory location is moved (up/down).

R_PCREL (0x0010) indicates that the reference is the offset from the PC of
the current instruction to the referenced memory location. In this case the
linker adjusts the reference (down) as the PC of the reference moves (up).
The linker also adjusts the reference (up/down) when the referenced
memory location moves (up/down).

4-4 RELOCATION INFORMATION

R_SBREL (0x0020) indicates that the reference is relative to the static base
of the referenced memory location. The linker updates the reference when
the static base of the referenced memory location changes during linking.
(This occurs when two or more .static sections combine.) The static base of
the reference is known from the current module associated with the
referencing section. (See the modsym field of the section header.)

The R_FORMAT (OxOfOO) subfield indicates the data format for this reference.

R_NUMBER (0x0000) indicates the reference is represented as a two’s com­
plement number with the low-order byte first.

R_DISPL (0x0100) indicates the reference is represented as a Series 32000
displacement with Huffman encoding bits and a signed displacement in high
to low order.

R_PROCEDES (0x0200) indicates the reference is a Series 32000 procedure
descriptor consisting of a 16-bit module number (low byte, high byte) fol­
lowed by a 16-bit procedure offset (low byte, high byte). Both values are
unsigned.

R_IMMEDIATE (0x0300) indicates the address is kept as a Series 32000
immediate value with the most significant byte first.

The R_SIZE (OxfOOO) subfield indicates the size of reference.

R_S_08 (0x0000) flag indicates a 1-byte reference.

R_S_16 (0x1000) flag indicates a 2-byte reference.

R_S_32 (0x2000) flag indicates a 4-byte reference.

RELOCATION INFORMATION 4-5

Chapter 5

LINE NUMBERS

5.1 INTRODUCTION
When invoked with the proper option, the compilers generate an entry in the object file
for every source line where a breakpoint can be inserted. Users can then reference line
numbers when using a software debugger. All line numbers in a section are grouped by
function, as shown in Figure 5-1.

Line number = 0 and Symbol Index to first function
Line number > 0 and Address
Line number > 0 and Address

Line number = 0 and Symbol Index to second function
Line number > 0 and Address
Line number > 0 and Address

the address entry (l_paddr). What the field actually represents is determined by the
value of the line number field (l_lnno). A line number of zero indicates that the entry
is a Symbol Index. A nonzero line number indicates that the entry is the address of the
beginning of that line in memory. The line numbers are relative to the beginning of
the function.

NOTE: The C declaration for this structure may be found in the
linenum.h header file. The declaration correctly maps to the
structure in Figure 5-2 when it is compiled with the GNX language
tools.

Figure 5-1. Line Number Grouping

As shown in Figure 5-2, the symbol index entry (l_symndx) occupies the same field as

LINE NUMBERS 5-1

Bytes Declaration Name Description
0-3 long l_symndx symbol table index of the function name

(for l_lnno = 0)
0-3 long l_paddr address of the line number in memory

(for l_lnno > 0)
4-5 unsigned short l_lnno line number (or 0)
6-7 short dummy dummy padding bytes

Figure 5-2. Line Number Structure Lineno

5.2 USING LINE NUMBERS
The line number entries appear in increasing order of address.

The size of these entries is indicated by the macro definition LINESZ (which is
currently 6). Using sizeof (LINENO) returns an inappropriate value (currently 8) due
to the padding of field “dummy.”

The auxiliary entry for the function’s .bf special symbol contains a C-source absolute
line number which may be used with relative line numbers to get absolute line
numbers within the function.

5-2 LINE NUMBERS

Chapter 6

SYMBOL TABLE

6.1 INTRODUCTION
The purpose of the symbol table is two-fold. First, the symbol table contains essential
information about the object file such as names of files, names of sections, and defined
and undefined global symbols. The second optional purpose is to produce the complete
description of the program symbols for symbolic debugging purposes.

This chapter describes the case when the complete symbol information is generated by
the compiler, when invoked by the C compiler’s -g option. The compiler generates
assembly code which directs the creation of the symbol table. Sections 6.1, 6.2, and 6.3
describe the overall structure of the symbol table. Sections 6.4, 6.5, and 6.6 describe
the details of the entry for each symbol.

The symbol table is a sequence of symbols. Because of symbolic debugging require­
ments, the order of symbols in the symbol table is very important. Symbols appear
sequentially as shown in Figure 6-1. Note that some older tools may not adhere
strictly to the standard given; the kernel, for instance is very forgiving.

The word “statics” in Figure 6-1 means static symbols defined “static” outside any func­
tion. Static symbols may be local or external. Local static symbols provide permanent
storage local to that functon, whereas external static symbols allow functions from
separate object files to share information without passing it explicitly. The symbol
table consists of at least one fixed-length entry per symbol, with some symbols followed
by auxiliary entries of the same size. The entry for each symbol is a structure that
holds either the name itself (if the name is short enough) or an offset in the string table
for the name, the value, and other information.

6.2 SPECIAL SYMBOLS
The symbol table contains some special symbols that are generated by the compiler,
assembler and linker. These symbols are given in Table 6-1.

Six of these special symbols occur in pairs. The .bb and .eb symbols indicate the boun­
daries of inner blocks; a .bf and .ef pair brackets each function; and a .xfake and .eos
pair names and defines the limit of structures, unions, and enumerations that were not
named. The .eos symbol also terminates the declaration of named structures, unions,
and enumerations.

When a structure, union, or enumeration has no tag name, the compiler must invent a
name to use in the symbol table. The name chosen for the symbol table is .xfake,

SYMBOL TABLE 6-1

where x is an integer. If there are three unnamed structures, unions, or enumerations
in the source, their tag names are “.Ofake,” “.lfake,” and “.2fake.”

Each of the special symbols has different information stored in the symbol table entry
as well as the auxiliary entry.

filename 1

function 1

local symbols
for function 1

function 2

local symbols
for function 2

statics for file 1

filename n

function m

local symbols
for function m

statics for file n

defined global
symbols

undefined global
symbols

Figure 6-1. GNX COFF Symbol Table

6-2 SYMBOL TABLE

Table 6-1. Special Symbols in the Symbol Table

SYMBOL MEANING

.file filename

.text text section address

.data data section address

.mod module table address

.static static section address

.link link section address

.bss bss section address

.bb start of inner block address

.eb end of inner block address

.bf start of function address

.ef end of function address

.target pointer to the structure or union returned by a function

.xfake dummy tag name for structure, union, or enumeration

.eos end of members of structure, union, or enumeration

.sb sb register initialization value

_etext, etext next available address after the end of the
last text output section

_edata, edata next available address after the end of the
last data output section

_end, end next available address after the end of the
last output section

SYMBOL TABLE 6-3

6.2.1 Inner Blocks
The special symbols .bb and .eb respectively begin and end “blocks” which delineate the
scope of subsequent symbol definitions. All symbol definitions following the .bb special
symbol and before the matching .eb symbol are considered local to that block. For
example, the C language defines a block as a compound statement that begins with a
left brace ({) and ends with a right brace (}). An “inner block” is a block that occurs
within a function (which is also a block).

For each inner block that has local symbols defined, a special symbol .bb is put in the
symbol table immediately before the first local symbol of that block. In addition, a spe­
cial symbol .eb is put in the symbol table immediately after the last local symbol of
that block. The sequence is shown in Figure 6-2.

.bb

local symbols
for that block

.eb

Figure 6-2. Special Symbols (.bb and .eb)

Note that external functions are stored with the local symbols in order to retain local
context. Because inner blocks can be nested by several levels, the .bb-.eb pairs and
associated symbols may also be nested. For a relevant example in C, see Figure 6-3.

6-4 SYMBOL TABLE

{ /* block 1 */
int i;
char c;

{
long a;

/* block 2 */

{ /* block 3 */

}

int x;

} /* block 3 */
/* block 2 */

{ /* block 4 */

}
}

long i;

/* block 4 */
/* block 1 */

Figure 6-3. Nested Blocks

SYMBOL TABLE 6-5

An example of a symbol table is shown in Figure 6-4.

.bb for block 1

i

c

.bb for block 2

a

.bb for block 3

x

.eb for block 3

.eb for block 2

.bb for block 4

i

.eb for block 4

.eb for block 1

Figure 6-4. Symbol Table

6.3 SYMBOLS AND FUNCTIONS
For each function, a special symbol .bf is put between the function name and the first
local symbol of the function in the symbol table. In addition, a special symbol .ef is put
immediately after the last local symbol of the function in the symbol table. The
sequence is shown in Figure 6-5.

function name

.bf

local symbols

.ef

Figure 6-5. Symbols for Functions

6-6 SYMBOL TABLE

If the return value of the function is a structure or union, a special symbol .target is
put between the function name and the .bf. The sequence is shown in Figure 6-6.

function name

.target

.bf

local symbols

.ef

Figure 6-6. The Special Symbol .target

The GNX system compilers invent .target to store the function-returned structure or
union. The symbol .target is an automatic variable with “pointer” type. Its value field
in the symbol table entry is always zero.

6.4 SYMBOL TABLE ENTRIES
All symbols, regardless of storage class and type, have the same format for their
entries in the symbol table. The symbol table entries each contain the following 20
bytes of information. The meaning of each of the fields in the symbol table entry is
described in Figure 6-7.

SYMBOL TABLE 6-7

Bytes Declaration Name Description
0-7 (see Section

6.4.1)
_n these eight bytes contain either

the name of a symbol or the offset
of the symbol name in the string
table

8-11 long int n_ value symbol value; storage class depen­
dent

12-13 short n_ scnum section number of symbol
14-15 unsigned short n_type basic and derived type

specification
16 char n_sclass storage class of symbol
17 char n_ numaux number of auxiliary entries
18 char n_env symbol interpretation environment
19 char n_ dummy currently unused

Figure 6-7. Symbol Table Entry Format

It should be noted that indices for symbol table entries begin at zero and count upward.
Each auxiliary entry also counts as one symbol.

6.4.1 Symbol Names
The first 8 bytes in the symbol table entry are a union of a character array and two
longs. If the symbol name is eight characters or less, the (null-padded) symbol name is
stored there. If the symbol name is longer than eight characters, then the entire sym­
bol name is stored in the string table.

In this case, the 8 bytes contain two long integers; the first is zero, and the second is
the offset (relative to the beginning of the string table) of the name in the string table.
Since there can be no symbols with a null name, the zeroes on the first 4 bytes serve to
distinguish a symbol table entry with an offset from one with a name in the first 8
bytes as shown in Figure 6-8.

6-8 SYMBOL TABLE

Bytes Declaration Name Description

0-7 char n_ name 8-character null-padded symbol name
0-3 long n_ zeroes zero in this field indicates the name

is in the string table
4-7 long n_ offset offset of the name in the string table

Figure 6-8. Name Field

Some special symbols are generated by the compiler and linker as discussed in Section
6.2. The compiler attaches an underscore (_) to all the user-defined symbols it gen­
erates.

6.4.2 Storage Classes
The following discussion of the storage class field assumes that the standard symbol
interpretation environment is in effect (n_ env == 0). In other environments the type
field may be interpreted differently.

The storage class field has one of the values described in Table 6-2. These “defines”
may be found in the storclass .h header file.

All of these storage classes except for C_ ALIAS and C_ HIDDEN are generated by the
compiler or assembler. The storage classes C_ ALIAS and C_ HIDDEN are not used by
the GNX language tools.

Some of these storage classes are “dummies,” used only internally by the compiler and
the assembler. These storage classes are C_EFCN, C_EXTDEF, C_ULABEL,
C_USTATIC, and C_LINE.

SYMBOL TABLE 6-9

Table 6-2. Storage Classes

MNEMONIC VALUE STORAGE CLASS

C_EFCN -1 physical end of function
C.NULL 0
C_AUTO 1 automatic variable
C_EXT 2 external symbol
C_ STAT 3 static
C_REG 4 register variable
C_EXTDEF 5 external definition
C_LABEL 6 label
C_ULABEL 7 undefined label
C_MOS 8 member of structure
C_ARG 9 function argument
C_ STRTAG 10 structure tag
C_MOU 11 member of union
C_ UNTAG 12 union tag
C.TPDEF 13 type definition
C_USTATIC 14 undefined static
C_ENTAG 15 enumeration tag
C_MOE 16 member of enumeration
C.REGPARM 17 register parameter
C_ FIELD 18 bit field
C_BLOCK 100 beginning and end of block
C_FCN 101 beginning and end of function
C_EOS 102 end of structure
C_ FILE 103 filename
C_ LINE 104 used only by utility programs
C_ ALIAS 105 duplicated tag
C_ HIDDEN 106 like static, used to avoid

name conflicts

6-10 SYMBOL TABLE

6.4.3 Storage Classes for Special Symbols
Some special symbols are restricted to certain storage classes as given in Table 6-3.

Table 6-3. Storage Class by Special Symbols

SPECIAL SYMBOL STORAGE CLASS

.file C.FILE

.bb C_BLOCK

.eb C_BLOCK

.bf C_FCN

.ef C_FCN

.target C_AUTO

.xfake C_ STRTAG, C_ UNTAG, C_ ENTAG

.eos C_EOS

.text C_ STAT

.data C_ STAT

.bss C_ STAT

6.4.4 Symbol Value Field
The meaning of the “value” of a symbol depends on its storage class. This relationship
is summarized in Table 6-4 (note that null has a value of zero).

If a symbol has storage class C_FILE, the value of that symbol equals the symbol table
entry index of the next .file symbol. That is, the .file entries form a one-way linked list
in the symbol table. If there are no more .file entries in the symbol table, the value of
the symbol is the index of the first global symbol.

Relocatable symbols have a value equal to the virtual address of that symbol. When
the linker relocates the section, the value of these symbols changes.

SYMBOL TABLE 6-11

Table 6-4. Storage Class and Value

STORAGE CLASS MEANING OF VALUE

C_AUTO stack offset in bytes

C_EXT relocatable address

C_ STAT relocatable address

C_REG register number

C_LABEL relocatable address

C_MOS offset in bytes from base of structure

C_ARG stack offset in bytes from frame pointer

C_ STRTAG null

C_MOU offset in bytes from base of union

C_ UNTAG null

C.TPDEF null

C_ ENTAG null

C_MOE enumeration value

C.REGPARM register number

C_ FIELD bit displacement

C_ BLOCK relocatable address of executable image

C_FCN relocatable address of executable image

C_EOS size of structure or union which this
symbol terminates

C_FILE see Section 6.4.4

C_ ALIAS tag index

C_ HIDDEN relocatable address

6-12 SYMBOL TABLE

6.4.5 S ec tio n N um ber F ie ld
Section numbers are listed in Table 6-5. A special section number (-2) marks symbolic
debugging symbols, including structure/union/enumeration tag names, typedefs, and
the filename. A section number of -1 indicates that the symbol has a value but is not
relocatable. Examples of absolute-valued symbols include automatic and register vari­
ables, function arguments, and .eos symbols. The .text, .data, and .bss symbols default
to section numbers are positive integers starting at 1.

Table 6-5. Section Number

MNEMONIC SECTION NUMBER MEANING

N_DEBUG -2 special symbolic debugging symbol

N_ABS -1 absolute symbol

N_ UNDEF 0 undefined external symbol

N_ SCNUM 1-077767 section number where symbol has
been defined

With one exception, a section number of zero indicates a relocatable external symbol
that is undefined in the current file. The one exception is a multiply-defined external
symbol (i.e., FORTRAN common or an uninitialized variable defined external to a func­
tion in C). In the symbol table of each file where the symbol is defined, the section
number of the symbol is zero and the value of the symbol is a positive number giving
the size of the symbol. When the files are combined, the linker combines all input sym­
bols into one symbol with the .bss section number. The maximum size of all input sym­
bols with the same name allocates space for the symbol, and the value becomes the
symbol’s address. This is the only case in which a symbol has a section number of zero
and a nonzero value.

6.4.6 Section Numbers and Storage Classes
Symbols with certain storage classes are also restricted to certain section numbers.
They are summarized in Table 6-6.

SYMBOL TABLE 6-13

Table 6-6. Section Number and Storage Class

STORAGE
CLASS

......... S l^ r .T T fW MTmiTUTIl?..-.

N_ ABS N_ UNDEF N_ SCNUM N_ DEBUG

C_ AUTO yes no no no

C_EXT yes yes yes no

C_ ST AT no no yes no

C_REG yes no no no

C_LABEL no yes yes no

C_MOS yes no no no

C_ARG yes no no no

C.STRTAG no no no yes

C_MOU yes no no no

C_ UNTAG no no no yes

C.TPDEF no no no yes

C.ENTAG no no no yes

C_MOE yes no no no

C_REGPARM yes no no no

C_ FIELD yes no no no

C_BLOCK no no yes no

C_FCN no no yes no

C_EOS yes no no no

C_FILE no no no yes

C_ ALIAS no no no yes

6-14 SYMBOL TABLE

The type of a symbol determines the meaning of the value found in the value field for
that symbol. The following discussion of the type field assumes that the standard sym­
bol interpretation environment is in effect (n_env == 0). In other environments, the
type field may be interpreted differently.

The type field in the symbol table entry contains information about the basic and
derived type for the symbol. The compiler generates this information only if the option
to produce additional symbol table information is used. Each symbol has exactly one
basic or fundamental type but can have more than one derived type. The format of the
16-bit type entry is as follows:

6.4.7 T ype E n try

d6 d5 d4 d3 d2 dl typ

Bits 0-3, called “typ,” indicate one of the following fundamental types given in Table 6-
7.

SYMBOL TABLE 6-15

Table 6-7. Fundamental Types

MNEMONIC VALUE TYPE

T_NULL 0 type not assigned

T_CHAR 2 character

T_ SHORT 3 short integer

T_INT 4 integer

T_LONG 5 long integer

T_ FLOAT 6 floating-point

T_ DOUBLE 7 double-word

T_ STRUCT 8 structure

T_ UNION 9 union

T_ENUM 10 enumeration

T_MOE 11 member of enumeration

T_UCHAR 12 unsigned character

T_ USHORT 13 unsigned short

T_ UINT 14 unsigned integer

T_ULONG 15 unsigned long

6-16 SYMBOL TABLE

Note that T_MOE is redundant, as C_MOE (refer to Table 6-2) will always suffice.

Bits 4-15 are arranged as six 2-bit fields marked “d l” through “d6.” These d fields
represent levels of the derived types given in Table 6-8.

Table 6-8. Derived Types

MNEMONIC VALUE TYPE

DT_NON 0 no derived type

DT_ PTR 1 pointer

DT_FCN 2 function

DT_ ARY 3 array

The following examples demonstrate the interpretation of the symbol table entry
representing type.

char *func();

Here func is the name of a function that returns a pointer to a character. The funda­
mental type of func is 2 (character), the dl field is 2 (function), and the d2 field is 1
(pointer). Therefore, the type word in the symbol table for func contains the hexade­
cimal number 0x62, which is interpreted as “function that returns a pointer to a char­
acter.”

short *tabptr[10][25][3];

Here tabptr is a three dimensional array of pointers to short integers. The fundamen­
tal type of tabptr is 3 (short integer); the dl, d2, and d3 fields each contain a 3 (array),
and the d4 field is 1 (pointer). Therefore, the type entry in the symbol table contains
the hexadecimal number 0x7f3, indicating a “three dimensional array of pointers to
short integers.”

SYMBOL TABLE 6-17

The meaning of symbol table entries and their auxiliaries is affected by the value of the
symbol interpretation environment field. The environment designated by a zero value
in this field is distinguished as the “standard” environment; the descriptions given else­
where in this document pertain only to this environment. The standard environment
is well-suited for recording symbol information from C programs. Other environments
and corresponding environment-specific symbol table entry formats may be used for
recording symbol information arising from other languages.

The length of symbol table entries and auxiliary entries is independent of the symbol
interpretation environment. Moreover, the partitioning of “main” symbol table entries
into fields is independent of the environment, although the specific meaning assigned
to the value, type, and storage class fields may depend on the environment field.

6.4.8 Sym bol In terp reta tio n E n v iron m en t

6.4.9 Type Entries and Storage Classes
Table 6-9 shows the type entries that are legal for each storage class.

6-18 SYMBOL TABLE

Table 6-9. Type Entries by Storage Class

STORAGE
CLASS

_______ “TV’ F,M TT?V. “TYP” ENTRY
BASIC TYPEFUNCTION? ARRAY? POINTER?

C_AUTO no yes yes Any
C_EXT yes yes yes Any
C_ STAT yes yes yes Any
C_REG no no yes Any
C_LABEL no no no T_ NULL
C_MOS no yes yes Any
C_ARG yes no yes Any
C_ STRTAG no no no T_ STRUCT
C_MOU no yes yes Any
C_ UNTAG no no no T_ UNION
C_ TPDEF no yes yes Any
C.ENTAG no no no T_ENUM
C_MOE no no no T_MOE
C.REGPARM no no yes Any
C_ FIELD no no no T_ENUM,

T_UCHAR,
T_USHORT,
T_UNIT,
T_ULONG

C_BLOCK no no no T_NULL
C_FCN no no no T_NULL
C_EOS no no no T_ NULL
C_FILE no no no T_NULL
C_ ALIAS no no no T_ STRUCT,

T_ UNION,
T_ENUM

SYMBOL TABLE 6-19

Conditions for the d entries apply to dl through d6, except that it is impossible to have
two consecutive derived “function” types.

Although function arguments can be declared as arrays, they are changed to pointers
by default. Therefore, no function argument can have “array” as its derived type.

6.4.10 Structure for Symbol Table Entries
The C language structure declaration for the symbol table entry may be found in the
syms . h header file.

6.5 AUXILIARY TABLE ENTRIES
Zero or more auxiliary entries are possible as indicated by the n_numaux field of the
symbol entry.* Auxiliary entries immediately follow the associated symbol table entry.
Each auxiliary table entry contains the same number of bytes as the symbol table
entry. However, unlike symbol table entries, the format of an auxiliary table entry of a
symbol depends on its type, storage class, and the symbol interpretation environment
designated in the main symbol table entry. Auxiliaries for the standard environment
are summarized in Table 6-10.

In Table 6-10, tagname means any symbol name including the special symbol .xfake,
and fcname and armame represent any symbol name.

Any symbol that satisfies more than one condition in Table 6-10 should have a union
format in its auxiliary entry. Symbols that do not satisfy any of the following condi­
tions should not have any auxiliary entry.

6.5.1 Filenames
The format for filenames is shown in Figure 6-9.

If a filename is more than 14 characters long, it has a nonzero x_foff value and is
stored in the string table at the indicated offset. Otherwise, x_foff is zero and the
filename resides in the x_ fname field.

* C urrently no more th an one auxiliary entry is used by any tool. AT&T’s COFF also includes the
possibility of more th an one auxiliary entry. E arlier tool se ts which did not allow th is possibility are
considered to be in error.

6-20 SYMBOL TABLE

Table 6-10. Auxiliary Symbol Table Entries

NAME STORAGE
CLASS

TYPE
D1

ENTRY
TYP

AUXILIARY
ENTRY FORMAT

.file C_FILE DT_NON T_NULL filename

.text, .data C_ STAT DT_NON T_NULL section

tagname C_ STRTAG
C_ UNTAG
C.ENTAG

DT_NON T_ NULL tagname

.eos C_EOS DT_NON T_ NULL end-of-structure

fcname C_EXT
C_ STAT

DT_FCN (See Note.)
any

function

arrname (See Note.) DT_ARY (See Note.)
any

array

.bb C_BLOCK DT_NON T_NULL beginning-of-block

.eb C_BLOCK DT_NON T_NULL end-of-block

.bf, .ef C_FCN DT_NON T_NULL beginning- and
end- of- function

name related
to structure,
union,
enumeration

(See Note.) DT_ PTR,
DT_ ARR,
DT_NON

T_ STRUCT,
T_ UNION,
T_ENUM

name related
to structure,
union,
enumeration

NOTE: C_AUTO, CJ3TAT, C_MOS, C_MOU, C.TPDEF

SYMBOL TABLE 6-21

Bytes Declaration Name Description
0-13 char[] x_ fname filename

14-15 - - unused (filled with zeroes)
16-19 long x_foff string table offset of

filename (when > 14 long)

Figure 6-9. Auxiliary Entry for Filenames

6.5.2 Sections
The auxiliary table entries for sections have the format shown in Figure 6-10.

Bytes Declaration Name Description
0-3 long int x_ scnlen section length

4-5 unsigned short x_nreloc number of relocation entries

6-7 unsigned short x_nlinno number of line numbers

8-11 long x_linoptr pointer to line number
entries for this section

12-19 - - unused (filled with zeroes)

Figure 6-10. Auxiliary Entry for Sections

6.5.3 Tagnames
The auxiliary table entries for tagnames have the format shown in Figure 6-11.

6-22 SYMBOL TABLE

Bytes Declaration Name Description

0-5 - - unused (filled with zeros)
6-7 unsigned short x_ size size of struct, union, and

enumeration in bytes
8-11 - - unused (filled with zeroes)
12-15 long int x_ endndx index of next entry

beyond this structure,
union, or enumeration

16-19 - - unused (filled with zeroes)

Figure 6-11. Auxiliary Entry for Tagnames

6.5.4 Structures, Unions, and Enumerations
The auxiliary table entries for structure, union, enumeration, and end-of-structure
symbols have the format shown in Figure 6-12.

Bytes Declaration Name Description

0-3 long int x_ tagndx tag index (points to the
symbol which names the
structure)

4-5 - - unused (filled with zeroes)

6-7 unsigned short x_ size size of struct, union, or
enumeration

8-19 - - unused (filled with zeroes)

Figure 6-12. Auxiliary Entry for Structures, Unions and Enumerations

SYMBOL TABLE 6-23

6.5.5 Functions
The auxiliary table entries for functions have the format shown in Figure 6-13.

Bytes Declaration Name Description
0-3 long int x_ tagndx tag index (points to a tag for the

return value of the function, e.g.,
a structure)

4-7 long int x_ fsize size of function in bytes
8-11 long int x_lnnoptr file pointer to line number entries
12-15 long int x_ endndx index of next entry beyond this

function
16-17 unsigned short x_ callseq calling sequence information
18-19 unsigned short x_ level function nesting level

Figure 6-13. Auxiliary Entry for Functions

6.5.6 Arrays
The value of an array is a memory pointer to the 0th entry (i.e., [0, 0, ..., 0]) of the
array, even if the array has negative indices.

The auxiliary table entries for arrays have the format shown in Figure 6-14.

6.5.7 End of Blocks and Beginning and End of Functions
The auxiliary table entries for the end of blocks and the beginning and end of functions
have the format shown in Figure 6-15.

The field x_plude is a prelude for the .bf and a postlude for the .ef special symbol.
Some programming languages require code at the beginning or end of a function to
manipulate the stack. During these manipulations, the contents of the stack are unin­
telligible to the debugger. The x_plude field allows the compiler to tell the debugger
not to access the stack during this prelude or postlude.

6-24 SYMBOL TABLE

Bytes Declaration Name Description
0-3 long int x_ tagndx tag index (points to the tag symbol

for the array, if any)
4-5 unsigned short x_lnno line number of declaration
6-7 unsigned short x_ size size of the array in bytes
8-9 unsigned short x_ dimen [0] first dimension (number of elements)
10-11 unsigned short x_ dimen [1] second dimension
12-13 unsigned short x_ dimen [2] third dimension
14-15 unsigned short x_ dimen [3] fourth dimension
16-19 - - unused (filled with zeroes)

Figure 6-14. Auxiliary Entry for Arrays

Bytes Declaration Name
0-3 - -
4-5 unsigned short x_lnno

6-17
18-19 unsigned short x_ pludt

Description
unused (filled with zeroes)
C-source line number
.bf - line number within the file
.ef or .eb - line number relative
to the corresponding .bf or .bb
unused (filled with zeroes)
prelude or postlude size (length
of code for which stack is
invalid)

Figure 6-15. Auxiliary Entry for Beginning of Function and End of Block/Function

6.5.8 Beginning of Blocks
The auxiliary table entries for the beginning of blocks have the format shown in Figure
6-16.

SYMBOL TABLE 6-25

Bytes Declaration Name Description
0-3 - - unused (filled with zeroes)
4-5 unsigned short x_ lnno C-source line number
6-11 - - unused (filled with zeroes)
12-15 long int x endndx index of next entry past

this block
16-19 - - unused (filled with zeroes)

Figure 6-16. Auxiliary Entry for Beginning of Block

6.5.9 Auxiliary Entry Declaration
The C language structure declaration for an auxiliary symbol table entry may be found
in the syms . h header file.

6.6 LINKED LISTS IN THE SYMBOL TABLE
The following example serves to illustrate the use of the n_value, n_endndx, and
n_tagndx fields in building linked list structures in the symbol table.

The following C fragment has been compiled using the -g and -c flags. Figure 6-17
shows the resulting link list structures in the symbol table of filel.o. The C program
shows examples of tagged and untagged structure declarations and a function return­
ing a structure.

int globall;
struct foo_tag

{
char a;
int b;

} foo;
struct

{
int i ;
char ch;

} flop;
struct foo_tag fun ()

{
}

6-26 SYMBOL TABLE

KEY :
n_vaiue field of the
symbol entry

n_endndx of an
auxiliary entry

n_tagndx of an
auxiliary entry

GG-01-0-U

Figure 6-17. Linked List Structures in the Symbol Table

SYMBOL TABLE 6-27

In general, a tag index points back to a referenced structure or enumeration and an
end index points around a structure or function to the next symbol. Occasionally the
n_value field is used as a tag index or an end index (as shown with the . file symbol
in Figure 6-17).

6.7 STRING TABLE
Symbol table names longer than eight characters are stored contiguously in the string
table with each symbol name delimited by a null byte. The first four bytes of the string
table are the size of the string table in bytes; therefore, offsets into the string table are
greater than or equal to four. This size value includes the 4 bytes of the size itself so
that the minimum value for an empty string table is size 4.

For example, given a file containing two symbols (with names longer than eight charac­
ters, long_name_l and another_one) the string table has the format as shown in
Figure 6-18.

The index of long_name_l in the string table is 4 and the index of another_one is
16.

0 1 2 3 4 5 6 7 8 9 10 11 12 13
28 1 0 n _ g _ — n a m e —

14 15 16 17 18 19 20 21 22 23 24 25 26 27
1 \0 a n 0 t h e r — 0 n e \0

Figure 6-18. String Table

6-28 SYMBOL TABLE

INDEX

A target machine 1-4
virtual address 1-3

allocated 2-9 Derived type entries 6-15
aouthdr.h 2-4, 2-5 Derived types, list of 6-17
Arrays 6-24
Auxiliary entry

and enumerations 6-23 E
end of block/function 6-25
for arrays 6-25 .eb 6-1, 6-4
for beginning of block 6-26 ,ef 6-1,6-6
for beginning of functions 6-25 End index 6-28
for filenames 6-22 End of blocks 6-24
for functions 6-24 End of structures 6-23
for sections 6-22 Enumerations 6-23
for structure, unions 6-23 .eos 6-1
for tagnames 6-23 Executable 1-3

Auxiliary symbol table entries, list of 6-21
Auxiliary table entries 6-20

arrays 6-24 F
blocks, beginning of 6-25
declaration 6-26 File header flags
end of blocks 6-24 contents of 2-2
end of structures 6-23 description of 2-2
filenames 6-20 guidelines for use 2-2
functions 6-24 list of 2-3
functions, beginning of 6-24 File headers 2-1
functions, end of 6-24 contents of 2-1
sections 6-22 fields of 2-2
tagnames 6-22 Filenames 6-20

Flags 2-9
Functions 6-24

B beginning of 6-24
end of 6-24

Basic type entries 6-15 Fundamental type entries 6-15
.bb 6-1, 6-4 Fundamental types, list of 6-16
.bf 5-2, 6-1, 6-6
Block 6-4
Blocks, beginning of 6-25 G
.bss section 3-1
.bss section header 2-9 GNX common object file format

figure 1-2

C
H

.comment 1-3
Headers 2-1

use of 1-3
D

.data section 3-1
declaration 6-26
Definitions and conventions 1-3

physical address 1-3
sections 1-3

INDEX 1

I R
Inner blocks 6-4 Relocatable symbols 6-11

relocated 2-9
Relocation Information 4-1

L Relocation section, contents of 4-2
Relocation type flag definitions 4-3

.lib 1-3 reloc.h 4-2
Line numbers 1-2, 5-1

grouping of 5-1
structure of 5-2 S
using 5-2

lineno, structure of 5-2 scnhdr.h 2-8
linenum.h 5-1 Section header flags 2-9
LINESZ 5-2 list of 2-10
Link editor 6-13 Section headers 2-1,2-8 , 2-9, 3-1
.link section 3-1 contents of 2-8
Linked list structures in the symbol table, use of 2-8

figure of 6-27 Section number and storage classes
Linked lists 6-26 list of 6-14
loaded 2-9 Section number field

Section numbers
6-13

list of 6-13
M storage classes 6-13

Sections 1-3, 3-1, 6-22
Magic number 2-2, 2-5 SECTIONS directive 3-1
MMU 1-3 Special symbols 6-1, 6-9, 6-11
.mod section 3-1 .bb 6-1, 6-4
Modular features .bf 6-1, 6-6

loading a file with 3-1 .eb 6-1, 6-4
.ef 6-1, 6-6
.eos 6-1

N in the symbol table 6-3
sequence of 6-4, 6-7

Name field, figure of 6-9 .target 6-7
Nested blocks, figure of 6-6 .xfake 6-1
n_value 6-28 .static section 3-1

statics 6-1
Storage class and value 6-12

0 Storage classes 6-9, 6-11
section numbers 6-13

Optional header 2-1, 2-4, 3-1 special symbols of 6-11
contents of 2-4 type entries 6-18
guidelines for use 2-5 value of 6-10

Optional header flags 2-6 storclass.h 6-9
list of 2-7 String table 1-2, 6-28

Optional header magic numbers 2-5 figure of 6-28
list of 2-6 Structure for symbol table entries 6-20

Overview 1-1 Structures 6-23
Symbol interpretation environment 6-18
Symbol name 6-8

P Symbol table 1-2, 6-1, 6-6
list of entry fields 6-8

Physical address 1-3 order of symbols 6-2
Symbol table entries 6-7, 6-20
Symbol value field 6-11
Symbols and functions 6-6
Symbols for functions, sequence of 6-6
syms.h 6-20

2 INDEX

T
Tag index 6-28
Tagnames 6-22
.target 6-7
Target machine 1-4
.text section 3-1
Type entries 6-15

basic 6-15
derived 6-15
fundamental 6-15
list by storage class 6-19
storage classes 6-18

Type field 6-15

U
Unions 6-23

V
Virtual address 1-3
Vstamp 2-5

X
.xfake 6-1

INDEX 3

NATIONAL SEMICONDUCTOR CORPORATION
GNX LANGUAGE TOOLS BINARY USER AGREEMENT

CAREFULLY READ ALL OF THE TERMS AND CONDITIONS OF THIS LICENSE
AGREEMENT PRIOR TO OPENING THIS PACKAGE. BY OPENING THIS SEALED
PACKAGE, YOU, THE END USER, ACCEPT THE TERMS AND CONDITIONS OF
THIS AGREEMENT. IF YOU DO NOT AGREE TO BE BOUND BY THE TERMS AND
CONDITIONS OF THIS AGREEMENT, DO NOT OPEN/BREAK THE SEAL ON THIS
PACKAGE. PROMPTLY RETURN THE UNOPENED PACKAGE TO THE PLACE
WHERE YOU OBTAINED IT FOR A FULL REFUND.

1. GRANT OF LICENSE: In consideration of the payment of the License Fee, which is a pan of the price you paid for the
product, National Semiconductor Corporation, as Licensor ("NSC"), grants you, as Licensee, a personal, nontransferable,
nonexclusive right to use and display the enclosed Licensed Software program on a single CPU.

2. OWNERSHIP OF SOFTWARE: As the Licensee. you own the media on which the Licensed Software has been recorded.
However, NSC retains title and ownership of the Licensed Software. Home, whole or partial copies of the Licensed Software, in any
form or on any media made by Licensee shall also be the property of NSC.

3. COPY RESTRICTIONS: Both the Licensed Software and the accompanying printed materials are copyrighted Unauthorized
copying of the Licensed Software or any portion thereof. including Licensed Software that has been modified, merged. or included
with other software programs or of the printed materials is expressly prohibited. However, you may make a reasonable number of
copies of the Licensed Software solely for back-up or archival purposes. In any such copies, you must reproduce all copyright notices
and other identifying or restrictive legends that appear on the Licensed Software as received.

4. TRANSFER RFSI‘RICTIONS: This Software has been licensed to you, the end user, and may not be transferred or assigned
to anyone else without obtaining the prior written consent of NSC. An authorized recipient of this Licmsed Software must agree to be
bound by the terms and conditions of this Agreement.

5. USE RESTRICTIONS: Licensee may physically transfer the Licensed Software from one of Licensee‘s CPUs to another
provided that the Licensed Software is used on only one CPU at a time. You may not electronically transfer licensed Software from
one CPU to another.

6. REGISTRATION CARD: Licensee must complete and return or telefax the enclosed Software Registration Card within
seven ('7) days of opening this package. Registration Cards on file will insure prompt service to Licensee. ‘

7. TERMINATION: Provided that you complete and retum the Registration Card, this License Agreemmt is perpetual until
terminated. You may terminate this Agreement, at any time, by either returning the Licensed Software, printed materials and all copies
thereof, or certifying the destruction of same to NSC. This Agreement will terminate automatically if you fail to comply with any of its
provisions. In that event, you agree to return the Licensed Software, printed materials and all copies thereof or certify their destruction.

8. DISCLAIMER OF WARRANTY: NSC provides the Licensed Software "AS IS" without warranty of any kind. Further, NSC
shall not be liable to Licensee or Licensee's customers for any direct, indirect, special, incidential, consequential, or other damages
arising from the use of the Licensed Software. NSC expressly disclaims any impled warranties of merchantability and/or fitness for a
particular purpose

9. EXPORT: Licensee shall not export or re-export Licensed Software without the appropriate United States Department of
Commerce or Department of State and foreign government licenses.

10. APPLICABLE LAW: This License Agreement shall be governed by the laws of the State of Califomia.

Should you have any questions conceming this License Agreement please contact NSC in writing at:

National Semiconductor GmbH
Ann: Office Automation Software Marketing M/S 024
Industriestrasse 10
8080 Fucmcnfeldbmck
Federal Republic of Germany
Telefax: Germany + 8141- 103 304

4235 10786-001 C

	TOP
	GNX - Version 4.4 Commands and Operations Manual for UNIX® and MS-DOS® Operating Systems
	REVISION RECORD
	PREFACE
	CONTENTS
	Chapter 1 OVERVIEW
	Chapter 2 USING THE GNX LANGUAGE TOOLS
	Chapter 3 CROSS DEVELOPMENT
	Chapter 4 GNX TARGET SETUP
	4.1 INTRODUCTION
	4.2 GNX TARGET SETUP (GTS
	4.3 TARGET CONFIGURATION FILE CONTENT
	4.4 TARGET CONFIGURATION FILE LOCATION
	4.5 GNXENV.H
	4.6 OVERRIDING THE TARGET CONFIGURATION F IL
	4.7 TARGET CONFIGURATION FILES AND GNX TOOLS
	4.8 USING THE GTS MENUS

	Chapter 5 COMMAND SUMMARIES
	Appendix A GLOSSARY
	INDEX

	GNX - Version 4.4 Linker User’s Guide
	REVISION RECORD
	CONTENTS
	HOW TO USE THIS MANUAL
	Chapter 1 OVERVIEW
	Chapter 2 THE INVOCATION LINE
	Chapter 3 THE LINKER DIRECTIVE FILE
	Chapter 4 RESOLUTION OF SYMBOLIC REFERENCES
	Chapter 5 ALLOCATION OF OUTPUT SECTIONS
	Chapter 6 RELOCATION OF MEMORY ADDRESS
	Appendix A DIRECTIVE FILE EXPRESSIONS
	Appendix B LINKER ERROR MESSAGES
	Appendixe GLOSSARY
	INDEX

	GNX - Version 4.4 Support Libraries Reference Manual
	REVISION RECORD
	PREFACE
	REVISION RECORD old
	PREFACE old
	CONTENTS
	Chapter 1 OVERVIEW
	Chapter 2 SYSTEM CALLS
	Chapter 3 GNX DB SUPPORT LIBRARY ROUTINES
	Chapter 4 FLOATING-POINT LIBRARY
	Chapter 5 FPEE LIBRARY
	Chapter 6 LibHfp - HIGH-SPEED FP EMULATION LIBRARY
	Appendix A SERIES 32000 STANDARD CALLING CONVENTIONS
	INDEX

	GNX - Version 4.4 COFF Programmer’s Guide
	REVISION RECORD
	PREFACE
	CONTENTS
	Chapter 1 OVERVIEW
	Chapter 2 HEADERS
	Chapter 3 SECTIONS
	Chapter 4 RELOCATION INFORMATION
	Chapter 5 LINE NUMBERS
	Chapter 6 SYMBOL TABLE
	INDEX

	NATIONAL SEMICONDUCTOR CORPORATION GNX LANGUAGE TOOLS BINARY USER AGREEMENT
	Bottom

