NICIR

NCR DECISION MATE V

MS™ DOS
Programmer’s Manual

MACRO-86, MS-CREF, MS-LINK, MS-LIB, and MS-DOS (and its
constituent program names EDLIN and DEBUG are trademarks of
Microsoft Corporation. Microsoft is a registered trademark of Micro-
soft Corporation.

Copyright © 1983, 1984 by NCR Corporation
Dayton, Ohio
All Rights Reserved
Printed in the Federal Republic of Germany

Third Edition, August 1984

It is the policy of NCR Corporation to improve products as new
technology, componentes, software, and firmware become avail-
able. NCR Corporation, therefore, reserves the right to change
specifications without prior notice.

All features. functions, and operations described herein may not
be marketed by NCR in all parts of the world. In some instances,
photographs are of equipment prototypes. Therefore, before using
this document, consult your nearest dealer or NCR office for in-
formation that is applicable and current.

General Introduction

Chapter 1 System Calls
1.1 Introduction 1-1
1.2 Programming Considerations 1-1
1.2.1 Calling From Macro Assembler 1-1
1.2.2 Calling From a High-Level Language 1-1
1.2.3 Returning Control to MS-DOS 1-2
1.24 Console and Printer Input/Output Calls . . . 1-3
125 DiskI/O System Calls 1-3
1.3 File Control Block (FCB) 1-3
1.3.1 Fields ofthe FCB 1-4
132 Extended FCB 1-6
133 DirectoryEntry L. 1-6
134 Fieldsofthe FCB 1-7
1.4 System Call Descriptions 1-9
1.4.1 Programming Examples 1-10
1.5 Xenix-Compatible Calls 1-11
1.6 Interrupts 1-14
16H Keyboard Character Code Read 1-16
20H Program Terminate 1-17
21H Function Request 1-18
22H Terminate Address 1-19
23H CONTROL-C Exit Address 1-19
24H Fatal Error Abort Address 1-20
25H Absolute Disk Read 1-23
26H Absolute Disk Write 1-25
27H Terminate But Stay Resident 1-27
1.7 Function Requests 1-28
1.7.1 CP/M-Compatible Calling Sequence 1-28
1.7.2 Treatment of Registers 1-29
Function Requests
00H Terminate Program 1-33
01H Read Keyboard and Echo 1-34
02H Display Character 1-35
03H Auxiliary Input 1-36
04H Auxiliary Output 1-37
05H Print Character 1-38
06H Direct Console I/O0 1-40
07H Direct Console Input 1-42
08H Read Keyboard 1-43
09H Display String 1-44
0OAH Buffered Keyboard Input 1-45

OBH Check Keyboard Status 1-47

0CH
0DH
0EH
OFH
10H
11H
12H
13H
14H
15H
16H
17H
19H
1AH
21H
22H
23H
24H
25H
27TH
28H
29H
2AH
2BH
2CH
2DH
2EH
2FH
30H
31H
33H
35H
36H
38H

39H
3JAH
3BH
3CH
3DH
3EH
3FH
40H
41H

Flush Buffer, Read Keyboard 1-48
Disk Reset 1-49
Select Disk 1-50
OpenFile................ 1-50
Close File 1-53
Search for First Entry 1-55
Search for Next Entry 1-57
Delete File 1-59
Sequential Read 1-61
Sequential Write 1-63
Create File 1-65
Rename File 1-67
CurrentDisk 1-69
Set Disk Transfer Address 1-70
RandomRead 1-72
Random Write 1-74
File Size 1-76
Set Relative Record 1-78
Set Vector 1-80
Random Block Read 1-81
Random Block Write 1-84
Parse File Name 1-87
GetDate 1-90
SetDate 1-92
GetTime 1-94
SetTime 1-95
Set/Reset Verify Flag 1-97
Get Disk Transfer Address 1-99
Get DOS Version Number 1-100
Keep Process 1-101
CONTROL-C Check 1-102
Get Interrupt Vector 1-104
Get Disk Free Space 1-105
Return Country-Dependent

Information 1-106
Create Sub-Directory 1-109
Remove a Directory Entry 1-110
Change Current Directory 1-111
Createa File 1-112
OpenakPFie............... 1-113
Close a File Handle 1-115
Read From File/Device 1-116
Write to a File/Device 1-117

Delete a Directory Entry 1-118

MS-DOS PROGRAMMER’'S MANUAL CONTENTS

Chapter

42H
43H
44H
45H
46H
47H
48H
49H
4AH
4BH
4CH
4DH
4EH
4FH

54H
56H
57TH

Move a File Pointer 1-119
Change Attributes 1-120
I/0 Control for Devices 1-121
Duplicate a File Handle 1-125
Force a Duplicate of a Handle 1-126
Return Text of Current Directory . . 1-127
Allocate Memory 1-128
Free Allocated Memory 1-129
Modify Allocated Memory Blocks . . 1-130
Load and Execute a Program 1-131
Terminate a Process 1-134
Retrieve the Return Code of a Child 1-135
Find Mateh File 1-136
Step Through a Directory

Matching Files 1-138
Return Current Setting of Verify . . 1-139
Move a Directory Entry 1-140
Get/Set Date/Time of File 1-141

Macro Definitions for MS-DOS System

Call Examples (00H-S7TH) 1-142
Extended Example of MS-DOS System Calls 1-149
MS-DOS Deyvice Drivers

What is a Device Driver? 2-1
Device Headers 2-3
Pointer to Next Device Field 2-3
Attribute Field 2-4
Strategy and Interrupt Routines 2-5
Name Field 2-5
How to Create a Device Driver 2-5
Installation of Device Drivers 2-6
Request Header 2-6
UnitCode 2-7
Command Code Field 2-7
MEDIA CHECK and BUILD BPB 2-8
Status Word 2-9
Function Call Parameters 2-11
INIT 2-12
MEDIA CHECK 2-12
BUILDBPB 2-13
Media Descriptor Byte 2-15
READ OR WRITE 2-16
NON DESTRUCTIVE READ NO WAIT 2-17
STATUS 2-18
FLUSH 2-18

W

I\JNI\)N'—“—"—‘
W — RO —

The CLOCK Device 2-19

MS-DOS Technical Information

MS-DOS Initialization 3-1
The Command Processor 3-1
MS-DOS Disk Allocation 33
MS-DOS Disk Directory 3-3
File Allocation Table 3-7
How to Use the File Allocation Table 3-8
IBM 5 1/4‘“ MS-DOS Disk Formats 3-9
MS-DOS Control Blocks and Work Areas
Typical MS-DOS Memory Map 4-1
MS-DOS Program Segment 4-2

EXE File Structure and Loading

Special Features 6
Timer Interrupt Support 6
Basis Concepts of the Timer Interrupt Support 6
Initilaization 6-
I/O Control Functions 6
How to Write the Selected Values 6
How to Check the Selected Values 6
Pattern of the “Console Flags* Byte 6

Keyboard Code Charts A-1

MS-DOS PROGRAMMER’S MANUAL

General Introduction

The Microsoft (R) MS(tm)-DOS Programmer’s Reference Manual
is a technical reference manual for system programmers. This
manual contains a description and examples of all MS-DOS system
calls and interrupts (Chapter 1). Chapter 2, “MS-DOS Device
Drivers” contains information on how to install your own device
drivers on MS-DOS. Chapter 3 through 5 contain technical infor-
mation about MS-DOS,; including MS-DOS disk allocation (Chapter
3), MS-DOS control blocks and work areas (Chapter 4) and EXE
file structure and loading (Chapter 5). Chapter 6 describes special
features, such as the timer interrupt support and I/O control
functions. Appendix A provides keyboard code charts.

The term “MS-DOS” in this manual refers to MS-DOS versions
that are 2.0 or higher.

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS

Chapter 1
System Calls

1.1 INTRODUCTION

MS-DOS provides two types of system calls: interrupts and function
requests. This chapter describes the environments from which these
routines can be called, how to call them, and the processing perfor-
med by each.

1.2 PROGRAMMING CONSIDERATIONS

The system calls mean you don’t have to invent your own ways to
perform these primitive functions, and make it easier to write ma-
chine-independent programs.

1.2.1 Calling From Macro Assembler

The system calls can be invoked from Macro Assembler simply by
moving any required data into registers and issuing an interrupt.
Some of the calls destroy registers, so you may have to save registers
before using a system call. The system calls can be used in macros
and procedures to make your programs more readable; this technique
is used to show examples of the calls.

1.2.2 Calling From A High-Level Language

The system calls can be invoked from any high-level language whose
modules can be linked with assembly-language modules.

Calling from Microsoft Basic: Different techniques are used to invoke
system calls from the compiler and interpreter. Compiled modules
can be linked with assembly-language modules; from the interpreter,
the CALL statement or USER function can be used to execute the
appropriate 8086 object code.

1-1

Calling from Microsoft Pascal: In addition to linking with an assembly-
language module, Microsoft Pascal includes a function (DOSXQQ)
that can be used directly from a Pascal program to call a function
request.

Calling from Microsoft FORTRAN: Modules compiled with Microsoft
FORTRAN can be linked with assembly-language modules.

1.2.3 Returning Control To MS-DOS

Control can be returned to MS-DOS in any of four ways:

1. Call Function Request 4CH

MOV AH,4CH
INT 21H

This is the preferred method.
2. Call Interrupt 20H:
INT 20H
3. Jump to location 0 (the beginning of the Program Segment Prefix):
JMP 0
Location 0 of the Program Segment Prefix contains an INT 20 H
}‘flrs;tzuction, so this technique is simply one step removed from the

4. Call Function Request 00H:

MOV AH,00H
INT 21H

This causes a jump to location 0, so it is simply one step removed
from technique 2, or two steps removed from technique 1.

1-2

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS
1.2.4 Console And Printer Input/Output Calls

The console and printer system calls let you read from and write to
the console device and print on the printer without using any ma-
chine-specific codes. You can still take advantage of specific capa-
bilities (display attributes such as positioning the cursor or erasing the
screen, printer attributes such as double-strike or underline, etc.) by
using constants for these codes and reassembling once with the
correct constant values for the attributes.

1.2.5 Disk 170 System Calls

Many of the system calls that perform disk input and output require
placing values into or reading values from two system control blocks:
the File Control Block (FCB) and directory entry.

1.3 FILE CONTROL BLOCK (FCB)

The Program Segment Prefix includes room for two FCBs at offsets
5CH and 6CH. The system call descriptions refer to unopened and
opened FCBs. An unopened FCB is one that contains only a drive
specifier and filename, which can contain wild card characters (* and
7). An opened FCB contains all fields filled by the Open File system
call (Function OFH). Table 1.1 describes the fields of the FCB.

1-3

Table 1.1 Fields of File Control Block (FCB)

Size Offset
Name (bytes) Hex Decimal
Drive number 1 00H 0
Filename 8 01-08H 1-8
Extension 3 09-0BH 9-11
Current block 2 0CH,0DH 12,13
Record size 2 0EH,0FH 14,15
File size 4 10-13H 16-19
Date of last write 2 14H,15H 20,21
Time of last write 2 16H,17H 2223
Reserved 8 18-1FH 24-31
Current record 1 20H 32
Relative record 4 21-24H 33-36

1.3.1 Fields Of The FCB

Drive Number (offset 00H): Specifies the disk drive; 1 means drive A:
and 2 means drive B:. If the FCB is to be used to create or open a file,
this field can be set to 0 to specify the default drive; the Open File
system call Function (OFH) sets the field to the number of the default
drive.

Filename (offset 01H): Eight characters, left-aligned and padded (if
necessary) with blanks. If you specify a reserved device name (such as
LPT1), do not put a colon at the end.

Extension (offset 09H): Three characters, left-aligned and padded (if
necessary) with blanks. This field can be all blanks (no extension).

Current Block (offset 0CH): Points to the block (group of 128 records)
that contains the current record. This field and the Current Record
field (offset 20H) make up the record pointer. This field is set to 0 by
the Open File system call.

Record Size (offset 0EH): The size of a logical record, in bytes. Set to
128 by the Open File system call. If the record size is not 128 bytes,
you must set this field after opening the file.

1-4

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS

File Size (offset 10H): The size of the file, in bytes. The first word of
this 4-byte field is the low-order part of the size.

Date of Last Write (offset 14H): The date the file was created or last
updated. The year, month, and day are mapped into two bytes as
follows:

Offset 15H
Y I YIYIYIY!IYIYIMI
15 9 8
Offset 14H
IMIMIMIDIDIDIDID|

54 0

Time of Last Write (offset 16H): The time the file was created or last
updated. The hour, minutes, and seconds are mapped into two bytes
as follows:

Offset 17H

I HIHIHIHIHIMIMIM|I
15 11 10

Offset 16H
IMIMIMISISISISISI

54 0
Reserved (offset 18H): These fields are reserved for use by MS-DOS.

Current Record (offset 20H): Points to one of the 128 records in the
current block. This field and the Current Block field (offset 0CH)
make up the record pointer. This field is not initialized by the Open
File system call. You must set it before doing a sequential read or
write to the file.

Relative Record (offset 21H): Points to the currently selected record,
counting from the beginning of the file (starting with 0). This field is
not initialized by the Open File system call. You must set it before
doing a random read or write to the file. If the record size is less than
64 bytes, both words of this field are used; if the record size ist 64
bytes or more, only the first three bytes are used.

1-5

NOTE

If you use the FCB at offset SCH of the
Program Segment Prefix, the last byte of the
Relative Record field is the first byte of the
unformatted parameter area that starts at
offset 80H. This is the default Disk Transfer
Address.

1.3.2 Extended FCB

The Extended File Control Block is used to create or search for
directory entries of files with special attributes. It adds the following
7-byte prefix to the FCB:

Size Offset
Name (bytes) (Decimal)
Flag byte (255, or FFH) 1 -7
Reserved 5 -6
Attribute byte: 1 -1

02H = Hidden file
04H = System file
1.3.3 Directory Entry

A directory contains one entry for each file on the disk. Each entry is
32 bytes; Table 1.2 describes the fields of an entry.

Table 1.2 Fields of Directory Entry

Size Offset
Name (bytes) Hex Decimal
Filename 8 00-07TH 0-7
Extension 3 08-0AH 8-10
Attributes 1 0BH 11
Reserved 10 0C-15H 12-21
Time of last write 2 16H,17H 22,23
Date of last read 2 18H,19H 2425
Reserved 2 1AH,1BH 26,27
File size 4 1C-1FH 28-31

1-6

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS
1.3.4 Fields Of The FCB

Filename (offset 00H): Eight characters, left-aligned and padded (if
necessary) with blanks. MS-DOS uses the first byte of this field for
two special codes:

OOH (0) End of allocated directory
ESH (229) Free directory entry

Extension (offset 08H): Three characters, left-aligned and padded (if
necessary) with blanks. This field can be all blanks (no extension).

Attributes (offset 0BH): Attributes of the file:

Value
Hex Binary Dec Meaning
01H 0000 0001 1 Read-only
02H 0000 0010 2 Hidden
04H 0000 0100 4 System
07H 0000 0111 7 Changeable with CHGMOD
08H 0000 1000 8 Volume-ID
10H 0001 0000 16 Directory
16H 0001 0110 22 Hard attributes for FINDENTRY
20H 0010 0000 32 Archive

Reserved (offset 0CH): Reserved for MS-DOS.
Time of Last Write (offset 16H): The time the file was created or last

updated. The hour, minutes, and seconds are mapped into two bytes
as follows:

Offset 17H
IHIHIHIHIHIMIMIMI
15 11 10

Offset 16H
IMIMIMISISISISISI

54 0
Date of Last Write (offset 18H): The date the file was created or last

updated. The year, month, and day are mapped into two bytes as
follows:

1-7

Offset 19H
Yl YIYIYIYIYIYIM]

15 98

Offset 18H

IMIMIMIDIDIDIDID|
54 0

File Size (offset 1CH): The size of the file, in bytes. The first word of
this 4-byte field is the low-order part of the size.

1-8

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS
1.4 SYSTEM CALL DESCRIPTIONS

Many system calls require that parameters be loaded into one or
more registers before the call is issued; most calls return information
in the registers (usually a code that describes the success or failure of
the operation). The description of system calls 00H-2EH includes the
following:

A drawing of the 8088 registers that shows their contents before
and after the system call.

A more complete description of the register contents required
before the system call.

A description of the processing performed.

A more complete description of the register contents after the
system call.

An example of its use.
The description of system calls 2FH-57H includes the following:

A drawing of the 8088 registers that shows their contents before
and after the system call.

A more complete description of the register contents repuired
before the system call.

A description of the processing performed.
Error returns from the system call.
An example of its use.

Figure 1 is an example of how each system call is described. Function
27H, Random Block Read, is shown.

1-9

Call

AH = 27H
DS:DX
Opened FCB
CX
Number of blocks to read
Return
AL
0= Read completed successfully
1=EOF

2 =End of segment

3 =EOF, partial record
CX

Number of blocks read

Figure 1. Example of System Call Description

1.4.1 Programming Examples

A macro is defined for each system call, then used in some examples.
In addition, a few other macros are defined for use in the examples.
The use of macros allows the examples to be more complete pro-
grams, rather than isolated uses of the system calls. All macro defini-
tions are listed at the end of the chapter.

The examples are not intended to represent good programming
practice. In particular, error checking and good human interface
design have been sacrificed to conserve space. You may, however,
find the macros a convenient way to include system calls in your
assembly language programs.

A detailed description of each system call follows. They are listed in
numeric order; the interrupts are described first, then the function
requests.

NOTE

Unless otherwise stated, all numbers in the
system call descriptions - both text and
code - are in hex.

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS
1.5 XENIX COMPATIBLE CALLS

MS-DOS supports hierarchical (i.e., tree-structured) directories,
similar to those found in the Xenix operating system. (For informa-
tion on tree-structured directories, refer to the MS-DOS User’s
Guide.)

The following system calls are compatible with the Xenix system:

Function 39H Create Sub-Directory
Function 3AH Remove a Directory Entry
Function 3BH Change the Current Directory
Function 3CH Create a File

Function 3DH Open a File

Function 3FH Read From File/Device
Function 40H Write to a File or Device
Function 41H Delete a Directory Entry
Function 42H Move a File Pointer

Function 43H Change Attributes

Function 44H 1/0 Control for Devices
Function 45H Duplicate a File Handle
Function 46H Force a Duplicate of a Handle
Function 4BH Load and Execute a Program
Function 4CH Terminate a Process

Function 4DH Retrieve Return Code of a Child

There is no restriction in MS-DOS on the depth of a tree (the
length of the longest path from root to leaf) except in the number of
allocation units available. The root directory will have a fixed number
of entries (64 for the single sided disk). For non-root directories, the
number of files per directory is only limited by the number of alloca-
tion units available.

Pre-2.0 disks will appear to MS-DOS as having only a root directo-
ry with files in it and no subdirectories.

Implementation of the tree structure is simple. The root directory is
the pre-2.0 directory. Subdirectories of the root have a special attri-
bute set indicating that they are directories. The subdirectories them-
selves are files, linked through the FAT as usual. Their contents are
identical in character to the contents of the root directory.

Pre-2.0 programs that use system calls not described in this chapter
will be unable to make use of files in other directories. Those files not
necessary for the current task will be placed in other directories.

Attributes apply to the tree-structured directories in the following
manner:

MS-DOS PROGRAMMER'S MANUAL

Attribute

volume-id

directory

read-only

archive

hidden/
system

Meaning/Function
for files

Present at the root.
Only one file may have
this set.

Meaningless.

Old
Create,
new open (for write or
read/write) will fail.

fcb-create, new

Set when file is written.
Set/reset via Function
43H.

Prevents file from being
found in search first/se-
arch next. Old open will
fail.

SYSTEM CALLS

Meaning/Function
for directories

Meaningless.

Indicates that the direc-
tory entry is a directory.
Cannot be changed with
43H.

Meaningless.

Meaningless.

Prevents directory entry
from being found. Func-
tion 3BH will still work.

1.6 INTERRUPTS

MS-DOS reserves interrupts 20H through 3FH for its own use. The
table of interrupt routine addresses (vectors) is maintained in loca-
tions 80H-FCH. Table 1.3 lists the interrupts in numeric order; Table
1.4 lists the interrupts in alphabetic order (of the description). User
programs should only issue Interrupts 20H, 21H, 25H, 26H, and 27H.
(Function Requests 4CH and 31H are the preferred method for
Interrupts 20H and 27H for versions of MS-DOS that are 2.0 and
higher.)

NOTE
Interrupts 22H, 23H, and 24H are not inter-
rupts that can be issued by user programs;

they are simply locations where a segment
and offset address are stored.

1-14

MS-DOS PROGRAMMER’S MANUAL

Table 1.3 MS-DOS Interrupts, Numeric Order

Interrupt
Hex Dec
16H 22
20H 32
21H 33
22H 34
23H 35
24H 36
25H 37
26H 38
27H 39

28-40H 40-64

Description

Keyboard Character Code Read
Program Terminate

Function Request

Terminate Address

<CTRL-C> Exit Address

Fatal Error Abort Address
Absolute Disk Read

Absolute Disk Write _
Terminate But Stay Resident
RESERVED - DO NOT USE

Table 1.4 MS-DOS Interrupts, Alphabetic Order

Interrupt
Description Hex Dec
Absolute Disk Read 25H 37
Absolute Disk Write 26H 38
<CTRL-C> Exit Address 23H 35
Fatal Error Abort Address 24H 36
Function Request 21H 33
Keyboard Character Code Read 16H 22
Program Terminate 20H 32
RESERVED - DO NOT USE 2840H 40-64
Terminate Address 22H 34

Terminate But Stay Resident 27H 39

SYSTEM CALLS

Keyboard Character Code Read (Interrupt 16H)

1.

Interrupt 16H allows keyboard read. 00 in register AH leads to a
normal read — that means the program waits for a character to be
typed, then returns it in AL and AH. Ol in Register AH leads to a
non-destructive read, that is, the code read remains in the key-

Normal Read

Call
AH=00H

Return
AH=AL
Character code from keyboard

. Non-destructive Read

Call
AH=01H

Return
AH=AL
Character code from keyboard

Zero flag set means there was not a character to get; Zero flag
not set means AL and AH contain the character code from the

keyboard.

board buffer.

1-16

NOTE

Interrupt 16H gets the original keyboard
codes (No translation to ASCII is made;
the function keys are disabled). Turn to
Appendix A for the US-English and Inter-
national English + UK keyboard code charts.
All registers except AX are preserved. There
is no check for CONTROL-C.

MS-DOS PROGRAMMER’'S MANUAL SYSTEM CALLS

Program Terminate (Interrupt 20H)

Call

CS
Segment address of Program Segment
Prefix

Return
None

Interrupt 20H causes the current process to terminate and returns
control to its parent process. All open file handles are closed and
the disk cache is cleaned. This interrupt is almost always used in
old .COM files for termination.

The CS register must contain the segment address of the Program
Segment Prefix before you call this interrupt.

The following exit addresses are restored from the Program Seg-
ment Prefix:

Exit Address Offset
Programm Terminate OAH
CONTROL-C OEH
Critical Error 12H

All file buffers are flushed to disk.

NOTE

Close all files that have changed in length
before issuing this interrupt. If a changed
file is not closed, its length is not recorded
correctly in the directory. See Functions
10H and 3EH for a description of the
Close File system calls.

Interrupt 20H is provided for compatibility with versions of MS-
DOS prior to 2.0. New programs should use Function Request
4CH, Terminate a Process.

Macro Definition: terminate macro

int 20H
endm
Example
;CS must be equal to PSP values given at program start
+(ES and DS values)
INT 20H

sThere is no return from this interrupt

Function Request (Interrupt 21H)

Call
AH
Function number
Other registers as specified in individual
function

Return
As specified in individual function

The AH register must contain the number of the system function.
See Section 1.7. ”Function Requests”, for a description of the
MS-DOS system functions.

Example

NOTE

No macro is defined for this interrupt,
because all function descriptions in this
chapter that define a macro include Inter-
rupt 21H.

To call the Get Time function:

mov ah,2CH ;:Get Time is Function 2CH

21H ;THIS INTERRUPT

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS

Terminate Address (Interrupt 22H)
CONTROL-C Exit Address (Interrupt 23H)
Fatal Error Abort Address (Interrupt 24H)

These are not true interrupts, but rather storage locations for a seg-
ment and offset address. The interrupts are issued by MS-DOS under
the specified circumstance. You can change any of these addresses
with Function Request 25H (Set Vector) if you prefer to write your
own interrupt handlers.

Interrupt 22H -- Terminate Address

When a program terminates, control transfers to the address at offset
0AH of the Program Segment Prefix. This address is copied into the
Program Segment Prefix, from the Interrupt 22H vector, when the
segment is created.

Interrupt 23H - CONTROL-C Exit Address

If the user types CONTROL-C during keyboard input or display
output, control transfers to the INT 23H vector in the interrupt table.
This address is copied into the Program Segment Prefix, from the
Interrupt 23H vector, when the segment is created.

If the CONTROL-C routine preserves all registers, it can end with an
IRET instruction (return from interrupt) to continue program execu-
tion. When the interrupt occurs, all registers are set to the value they
had when the original call to MS-DOS was made. There are no re-
strictions on what a CONTROL-C handler can do - including
MS-DOS function calls - so long as the registers are unchanged if
IRET is used.

If Function 09H or 0AH (Display String of Buffered Keyboard Input)
is interrupted by CONTROL-C, the three-byte sequence 03H-0DH-
0AH (ETX-CR-LF) is sent to the display and the function resumes at
the beginning of the next line.

If the program creates a new segment and loads a second program
that changes the CONTROL-C address, termination of the second
program restores the CONTROL-C address to its value before execu-
tion of the second program.

1-19

Interrupt 24H - Fatal Error Abort Address

If a fatal disk error occurs during execution of one of the disk I/0
function calls, control transfers to the INT 24H vector in the vector
table. This address is copied into the Program Segment Prefix, from
the Interrupt 24H vector, when the segment is created.

BP:SI contains the address of a Device Header Control Block from
which additional information can be retrieved.

NOTE

Interrupt 24H is not issued if the failure
occurs during execution of Interrupt 25H
(Absolute Disk Read) or Interrupt 26H
(Absolute Disk Write). These errors are
usually handled by the MS-DOS error
routine in COMMAND.COM that retries
the disk operation, then gives the user the
choice of aborting, retrying the operation, or
ignoring the error. The following topics give
you the information you need about inter-
preting the error codes, managing the regi-
sters and stack, and controlling the system’s
response to the error in order to write your
own error-handling routines.

Error Codes

When an error-handling program gains control from Interrupt 24H,
the AX and DI registers can contain codes that describe the error. If
Bit 7 of AH is 1, the error is either a bad image of the File Allocation
Table or an error occurred on a character device. The device header
passed in BP:SI can be examined to determine which case exists. If
the attribute byte high order bit indicates a block device, then the
error was a bad FAT. Otherwise, the error is on a character device.

1-20

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS

The following are error codes for Interrupt 24H:

Error Code

AP OO AANNE W —O

Description

Attempt to write on write-protected disk
Unknown unit

Drive not ready

Unknown command

Data error

Bad request structure length
Seek error

Unknown media type
Sector not found

Printer out of paper

Write fault

Read fault

General failure

The user stack will be in effect (the first item described below is at the
top of the stack), and will contain the following from top to bottom:

IP
CS

MS-DOS registers from
issuing INT 24H

FLAGS

AX
BX
CX
DX
S1
DI
BP
DS
ES

IP
CS

User registers at time of original
INT 21H request

From the original INT 21H
from the user to MS-DOS

FLAGS

The registers are set such that if an IRET is executed, MS-DOS will
respond according to (AL) as follows:

(AL)=0 ignore the error

=1 retry the operation
=2 terminate the program via INT 23H

1-21

Notes:

1. Before giving this routine control for disk errors, MS-DOS per-
forms five retries.

2. For disk errors, this exit is taken only for errors occurring during

an Interrupt 21H. It is not used for errors during Interrupts 25H or

26H.

This routine is entered in a disabled state.

The SS, SP, DS, ES, BX, CX, and DX registers must be preserved.

This interrupt handler should refrain from using MS-DOS func-

tion calls. If necessary, it may use calls 01H through OCH. Use of

any other call will destroy the MS-DOS stack and will leave MS-

DOS in an unpredictable state.

6. The interrupt handler must not change the contents of the device
header.

7. If the interrupt handler will handle errors rather than returning to
MS-DOS, it should restore the application program’s registers
from the stack, remove all but the last three words on the stack,
then issue an IRET. This will return to the program immediately
after the INT 21H that experienced the error. Note that if this is
done, MS-DOS will be in an unstable state until a function call
higher than 0CH is issued.

0 = b

1-22

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS

Absolute Disk Read (Interrupt 25H)

Call
AL
Drive number
DS:BX
Disk Transfer Address
CX
Number of sectors
DX
Beginning relative sector

Return
AL
Error code if CF =1
FlagsL
CF = 0 if successful
= 1 if not successful

The registers must contain the following:

AL
BX

CX
DX

Drive number (0= A, 1 =B, etc.).

Offset of Disk Transfer Address (from segment address
in DS).

Number of sectors to read.

Beginning relative sector.

This interrupt transfers control to the MS-DOS BIOS. The number of
sectors specified in CX is read from the disk to the Disk Transfer
Address. Its requirements and processing are identical to Interrupt
26H, except data is read rather than written.

NOTE

All registers except the segment registers are
destroyed by this call. Be sure to save any
registers your program uses before issuing
the interrupt.

The system pushes the flags at the time of the call; they are still there
upon return. (This is necessary because data is passed back in the
flags.) Be sure to pop the stack upon return to prevent uncontrolled

growth.

1-23

If the disk operation was successful, the Carry Flag (CF) is 0. If the
disk operation was not successful, CF is 1 and AL contains the MS-
DOS error code (see Interrupt 24H earlier in this section for the codes
and their meaning).

Macro Definition:

abs-disk-read

Example

macro disk,buffer,num-sectors,start
mov al, disk

mov bx,offset buffer

mov cx,nume-sectors

mov dh,start

int 25H

endm

The following program copies the contents of a single-sided disk in
drive A: to the disk in drive B:. It uses a buffer of 32K bytes:

prompt

start
buffer

int-25H:

copy:

1-24

db “Source in A, target in B”,13,10
db “Any Key to start. $”
dw 0

db 64 dup (512 dup (7)) ;64 sectors

display prompt ;see Function 09H

read-kbd :see Function 08H
mov cx,5 ;copy 5 groups of

;64 sectors
push cx ;save the loop counter

abs-disk-read 0,buffer,64,start ;THIS INTERRUPT
abs-disk-write 1,buffer,64,start ;see INT 26H

add start,64 ;do the next 64 sectors

pop cx ;restore the loop counter

loop copy

MS-DOS PROGRAMMER'’S MANUAL SYSTEM CALLS

Absolute Disk Write (Interrupt 26H)

Call
AL
Drive number
DS:BX
Disk Transfer Address
CX
Number of sectors
DX
Beginning relative sector

Return
AL
Error code if CF =1
FLAGSL
CF = 0 if successful
= 1 if not successful

The registers must contain the following:

AL
BX

CX
DX

Drive number (0 = A, 1 =B, etc.).
Offset of Disk Transfer Address
(from segment address in DS).
Number of sectors to write.
Beginning relative sector.

This interrupt transfers control to the MS-DOS BIOS. The number of
sectors specified in CX is written from the Disk Transfer Address to
the disk. Its requirements and processing are identical to Interrupt
25H, except data is written to the disk rather than read from it.

NOTE

All registers except the segment registers are
destroyed by this call. Be sure to save any
registers your program uses before issuing
the interrupt.

The system pushes the flags at the time of the call; they are still there
upon return. (This is necessary because data is passed back in the
flags.) Be sure to pop the stack upon return to prevent uncontrolled

growth.

1-25

If the disk operation was successful, the Carry Flag (CF) is 0. If the
disk operation was not successful, CF is 1 and AL contains the MS-
DOS error code (see Interrupt 24H for the codes and their meaning).

Macro Definition:
abs-disk-write macro disk,buffer,num-sectors,start
mov al,disk

mov bx,offset buffer
mov cx,num-sectors
mov dh,start

int 26H

endm

Example

The following program copies the contents of a single-sided disk in
drive A: to the disk in drive B:, verifying each write. It uses a buffer of
32K bytes:

off equ 0
on equ 1
prompt db “Source in A, target in B”,13,10
db “Any key to start. $”
start dw 0
buffer db 64 dup (512 dup (7)) ;64 sectors
int-26H: display prompt ;see Function 09H
read-kbd ;see Function 08H
verify on ;see Function 2EH
mov cX,5 ;copy 5 groups of 64 sectors
copy: push cx ;save the loop counter

abs-disk-read 0,buffer,64,start ;see INT 25H
abs-disk-write 1,buffer,64,start ;THIS INTERRUPT
add start,64 ;do the next 64 sectors

pop cx ;restore the loop counter
loop copy
verify off ;see Function 2EH

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS
Terminate But Stay Resident (Interrupt 27H)

Call

CS:DX
First byte following
last byte of code

Return
None

The Terminate But Stay Resident call is used to make a piece of code
remain resident in the system after its termination. Typically, this call
is used in .COM files to allow some device-specific interrupt handler
to remain resident to process asynchronous interrupts.

DX must contain the offset (from the segment address in CS) of the
first byte following the last byte of code in the program. When Inter-
rupt 27H is executed, the program terminates but is treated as an
extension of MS-DOS; it remains resident and is not overlaid by
other programs when it terminates.

This interrupt is provided for compatibility with versions of MS-DOS
prior to 2.0. New programs should use Function 31H, Keep Process.

Macro Definition:
stay-resident macro last-instruc

mov dx,offset last-instruc
inc dx

int 27TH

endm

Example

;:CS must be equal to PSP values given at program start
; (ES and DS values)

mov DX, LastAddress

int 27H
;There is no return from this interrupt

1-27

1.7 FUNCTION REQUESTS

Most of the MS-DOS function calls require input to be passed to
them in registers. After setting the proper register values, the function
may be invoked in one of the following ways:

1.

Place the function number in AH and execute a long call to offset
S0H in your Program Segment Prefix. Note that programs using
this method will not operate correctly on versions of MS-DOS that
are lower than 2.0.

. Place the function number in AH and issue Interrupt 21H. All of

the examples in this chapter use this method.

An additional method exists for programs that were written with
different calling conventions. This method should be avoided for
all new programs. The function number is placed in the CL register
and other registers are set according to the function specification.
Then, an intrasegment call is made to location 5 in the current
code segment. That location contains a long call to the MS-DOS
function dispatcher. Register AX is always destroyed if this me-
thod is used; otherwise, it is the same as normal function calls.
Note that this method is valid only for Function Requests 00H
through 024H.

1.7.1 CP/M(R)-Compatible Calling Sequence

A different sequence can be used for programs that must conform to
CP/M calling conventions:

1.

2.
3. Execute an intrasegment call to location 5 in the current code

Move any required data into the appropriate registers (just as in the
standard sequence).
Move the function number into the CL register.

segment.

This method can only be used with functions 00H through 24H that
do not pass a parameter in AL. Register AX is always destroyed when
a function is called in this manner.

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS
1.7.2 Treatment Of Registers

When MS-DOS takes control after a function call, it switches to an
internal stack. Registers not used to return information (except AX)
are preserved. The calling program’s stack must be large enough to
accommodate the interrupt system - at least 128 bytes in addition to
other needs.

IMPORTANT NOTE
The macro definitions and extended exam-
ple for MS-DOS system calls 00H through
2EH can be found at the end of this chapter.

Table 1.5 lists the function requests in numeric order; Table 1.6 lists
the function requests in alphabetic order (of the description).

Table 1.5 MS-DOS Function Requests, Numeric Order

Function

Number Function Name
O0OH Terminate Program
O1H Read Keyboard and Echo
02H Display Character
03H Auxiliary Input
04H Auxiliary Output
O5H Print Character
06H Direct Console 1/0
O07H Direct Console Input
08H Read Keyboard
09H Display String
OAH Buffered Keyboard Input
OBH Check Keyboard Status
OCH Flush Buffer, Read Keyboard
ODH Disk Reset
OEH Select Disk
OFH Open File
10H Close File
11H Search for First Entry
12H Search for Next Entry
13H Delete File
14H Sequential Read
15H Sequential Write

1-29

1-30

16H
17H
19H
1AH
21H
22H
23H
24H
25H
27H
28H
29H
2AH
2BH
2CH
2DH
2EH
2FH
30H
31H
33H
35H
36H
38H
39H
3AH
3BH
3CH
3DH
3EH
3FH
40H
41H
42H
43H
44H
45H
46H
47H
48H
49H
4AH
4BH
4CH

Create File

Rename File

Current Disk

Set Disk Transfer Address
Random Read

Random Write

File Size

Set Relative Record

Set Vector

Random Block Read

Random Block Write

Parse File Name

Get Date

Set Date

Get Time

Set Time

Set/Reset Verify Flag

Get Disk Transfer Address
Get DOS Version Number
Keep Process

CONTROL-C Check

Get Interrupt Vector

Get Disk Free Space

Return Country-Dependent Info.
Create Sub-Directory
Remove a Directory Entry
Change the Current Directory
Create a File

Open a File

Close a File Handle

Read From File/Device
Write to a File/Device
Delete a Directory Entry
Move a File Pointer

Change Attributes

1/0 Control for Devices
Duplicate a File Handle
Force a Duplicate of a Handle
Return Text of Current Directory
Allocate Memory

Free Allocated Memory
Modify Allocated Memory Blocks
Load and Execute a Program
Terminate a Process

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS

4DH Retrieve the Return Code of a Child
4EH Find Match File

4FH Step Through a Directory Matching Files
54H Return Current Setting of Verify

56H Move a Directory Entry

57H Get/Set Date/Time of File

Table 1.6 MS-DOS Function Requests, Alphabetic Order

Function Name Number
Allocate Memory 48H
Auxiliary Input 03H
Auxiliary Output 04H
Buffered Keyboard Input OAH
Change Attributes 43H
Change the Current Directory 3BH
Check Keyboard Status 0BH
Close a File Handle 3EH
Close File 10H
CONTROL-C Check 33H
Create a File 3CH
Create File 16H
Create Sub-Directory 39H
Current Disk 19H
Delete a Directory Entry 41H
Delete File 13H
Direct Console Input 07H
Direct Console 170 06H
Disk Reset ODH
Display Character 02H
Display String O09H
Duplicate a File Handle 45H
File Size 23H
Find Match File 4EH
Flush Buffer, Read Keyboard OCH
Force a Duplicate of a Handle 46H
Free Allocated Memory 49H
Get Date 2AH
Get Disk Free Space 36H
Get Disk Transfer Address 2FH
Get DOS Version Number 30H

Get Interrupt Vector 35H

1-31

1-32

Get Time

Get/Set Date/Time of File

I/D Control for Devices

Keep Process

Load and Execute a Program
Modify Allocated Memory Blocks
Move a Directory Entry

Move a File Pointer

Open a File

Open File

Parse File Name

Print Character

Random Block Read

Random Block Write

Random Read

Random Write

Read From File/Device

Read Keyboard

Read Keyboard and Echo
Remove a Directory Entry
Rename File

Retrieve the Return Code of a Child
Return Current Setting of Verify
Return Country-Dependent Info.
Return Text of Current Directory
Search for First Entry

Search for Next Entry

Select Disk

Sequential Read

Sequential Write

Set Date

Set Disk Transfer Address

Set Relative Record

Set Time

Set Vector

Set/Reset Verify Flag

Step Through a Directory Matching
Terminate a Process

Terminate Program

Write to a File/Device

2CH
57H
44H
31H
4BH
4AH
56H
42H
3DH
OFH
29H
05H
27H
28H
21H
22H
3FH
08H
01H
3AH
17H
4DH
54H
38H
47H
11H
12H
OEH
14H
15H
2BH
1AH
24H
2DH’
25H
2EH
4FH
4CH
00H
40H

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS

Terminate Program (Function 00H)
Call
AH = 00H
CS
Segment address of
Program Segment Prefix

Return
None

Function 00H is called by Interrupt 20H; it performs the same proces-
sing.

The CS register must contain the segment address of the Program
Segment Prefix before you call this interrupt.

The following exit addresses are restored from the specified offsets in
the Program Segment Prefix:

Program terminate O0AH
CONTROL-C OEH
Critical error 12H

All file buffers are flushed to disk.

Warning: Close all files that have changed in length before calling this
function. If a changed file is not closed, its length is not recorded
correctly in the directory. See Function 10H for a description of the
Close File system call.

Macro Definition: terminate-program macro

xor ah,ah
int 21H
endm

Example

;:CS must be equal to PSP values given at program start
:(ES and DS values)

mov ah,0

int 21H
;There are no returns from this interrupt

Read Keyboard and Echo (Function 01H)

Call

AH = 01H
Return

AL

Character typed
Function 01H waits for a character to be typed at the keyboard, then
echoes the character to the display and returns it in AL. If the charac-
ter is CONTROL-C, Interrupt 23H is executed.

Macro Definition: read-kbd-and-echo macro

mov ah, 01H
int 21H
endm

Example

The following program boths displays and prints characters as they
are typed. If <NEW LINE> is pressed, the program sends Line
Feed-Carriage Return to both the display and the printer:

func-01H: read-kbd-and-echo ;THIS FUNCTION
print-char al ;see Function 05H
cmp al,0DH ;is it a CR?
jne func-01H ;no, print it
print-char 10 ;see Function 05H
display-char 10 ;see Function 02H
jmp func-01H ;get another character

1-34

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS
Display Character (Function 02H)

Call
AH = 02H
DL
Character to be displayed

Return
None

Function 02H displays the character in DL. If CONTROL-C is typed,
Interrupt 23H is issued.

Macro Definition: display-char macro character
mov dl,character

mov ah, 02H
int 21H
endm

Example

The following program converts lowercase characters to uppercase
before displaying them:

func-02H: read-kbd ;see Function 08H
cmp al,“a”
jl uppercase ;don’t convert
cmp al,“z”
g uppercase ;don’t convert
sub al,20H ;convert to ASCII code
;for uppercase
uppercase: display-char al ;THIS FUNCTION
jmp func-02H: ;get another character

1-35

Auxiliary Input (Function 03H)

Call

AH = 03H
Return

AL

Character from auxiliary device

Function 03H waits for a character from the auxiliary input device,
then returns the character in AL. This system call does not return a
status or error code.

If a CONTROL-C has been typed at console input, Interrupt 23H is
issued.

Macro Definition: aux-input macro
mov ah,03H
int 21H
endm

Example

The following program prints characters as they are received from the
auxiliary device. It stops printing when an end-of-file character
(ASCII 1AH, or CONTROL-Z) is received:

func-03H: aux-input ;THIS FUNCTION
cmp al,1AH ;end of file?
je continue ;yes, all done
print-char al ;see Function 05SH
jmp func-03H ;get another character
continue:

1-36

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS
Auxiliary Output (Function 04H)

Call
AH = 04H
DL
Character for auxiliary device

Return
None

Function 04H sends the character in DL to the auxiliary output
device. This system call does not return a status or error code.

If a CONTROL-C has been typed at console input, Interrupt 23H is
issued.

Macro Definition: aux-output macro character
mov dl,character

mov ah,04H
int 21H
endm

Example

The following program gets a series of strings of up to 80 bytes from
the keyboard, sending each to the auxiliary device. It stops when a
null string (CR only) is typed:

string db 81 dup(?) ;see Function 0AH
func-04H: get-string 80,string ;see Function 0AH
cmp string[1],0 ;null string?
je continue ;yes, all done
mov c¢x, word ptr string[1] ;get string length
mov bx,0 ;set index to 0
send-it: aux-output string[bx+2] ;THIS FUNCTION
inc bx ;bump index
loop send-it ;send another character
jmp func-04H ;get another string
continue:

Print Character (Function 05H)

Call
AH = 05H
DL
Character for printer

Return
None

Function 05H prints the character in DL on the standard printer
device. If CONTROL-C has been typed at console input, Interrupt
23H is issued.

Macro Definition: print-char macro character

mov dl,character
mov ah,05SH

int 21H

endm

Example

The following program prints a walking test pattern on the printer. It
stops if CONTROL-C is pressed.

line-num db 0
func-05H: mov cx,60 ;print 60 lines
start-line: mov bl,33 sfirst printable ASCII
;character (!)
add blline-num ;to offset ne character
push cX ;save number-of-lines counter
mov cx,80 ;loop counter for line
print-it: print-char bl ;THIS FUNCTION
inc bl ;move to next ASCII character
cmp bl, 126 ;last printable ASCII
:character ()
jl no-reset ;not there yet
mov bl.33 ;start over with (!)

1-38

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS

no-reset: loop print-it ;print another character
print-char 13 ;carriage return
print-char 10 ;line feed
inc line-num ;to offset 1st char. of line
pop cX ;restore #-of-lines counter
loop start-line; ;print another line

1-39

Direct Console I/0 (Function 06H)

Call
AH = 06H
DL

See text
Return
AL

If DL = FFH (255) before call, then Zero
flag not set means AL has character from
keyboard.

Zero flag set means there was not a cha-
racter to get, and AL =0

The processing depends on the value in DL when the function is
called:

DL is FFH (255) - If a character has been typed at the key-
board, it is returned in AL and the Zero flag is 0; if a character
has not been typed, the Zero flag is 1.

DL is not FFH - The character in DL is displayed.

This function does not check for CONTROL-C.

Macro Definition: dir-console-io macro switch
mov dl,switch

mov ah,06H
int 21H
endm

1-40

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS
Example

The following program sets the system clock to 0 and continuously
displays the time. When any character is typed, the display stops
changing; when any character is typed again, the clock is reset to 0 and
the display starts again:

time db “00:00:00.00”,13,10,“¢” ;see Function 09H

: ;for explanation of $

ten db 10

func-06H: set-time 0,0,0,0 ;see Function 2DH

read-clock: get-time ;see Function 2CH
convert ch,ten,time ;see end of chapter

convert clten,time[3] ;see end of chapter
convert dh,tentime[6] ;see end of chapter
convert dlten,time[9] ;see end of chapter

display time ;see Function 09H
dir-console-io FFH ;THIS FUNCTION
jne stop ;yes, stop timer
jmp read-clock :no, keep timer
;running
stop: read-kbd ;see Function 08H

jmp func-06H ;start over

Direct Console Input (Function 07H)

Call

AH = 07H
Return

AL

Character from keyboard

Function 07H waits for a character to be typed, then returns it in AL.
This function does not echo the character or check for CONTROL-C.
(For a keyboard input function that echoes or checks for CONTROL-
C, see Functions 01H or 08H.)

Macro Definition: dir-console-input macro

mov ah,07H
int 21H
endm

Example

The following program prompts for a password (8 characters maxi-
mum) and places the characters into a string without echoing them:

password db 8 dup(?)
prompt db “Password: $” ;see Function 09H for
;explanation of $
func-07H: display prompt ;see Function 09H
mov cx,8 ;maximum length of password
Xor bx,bx ;50 BL can be used as index
get-pass: dir-console-input ;THIS FUNCTION
cmp al,0DH ;was it a CR?
je continue ;yes, all done
mov password[bx],al ;no, put character in string
inc bx ;bump index
loop get-pass ;get another character

continue: - ;BX has length of password+1

1-42

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS

Read Keyboard (Function 08H)

Call

AH = 08H
Return

AL

Character from keyboard

Function 08H waits for a character to be typed, then returns it in AL.
If CONTROL-C is pressed, Interrupt 23H is executed. This function
does not echo the character. (For a keyboard input function that
echoes the character or does not check for CONTROL-C, see Func-
tions 01H or 07H.)

Macro Definition: read-kbd macro
mov ah,08H
int 21H
endm

Example

The following program prompts for a password (8 characters max-
imum) and places the characters into a string without echoing them:

password db 8 dup(?)
prompt db “Password: $” ;see Function 09H
;for explanation of $
func-08H: display prompt ;see Function 09H
mov cx,8 ;maximum length of password
Xor bx,bx ;BL can be an index
get-pass: read-kbd ;THIS FUNCTION
cmp al,0DH ;was it a CR?
je continue ;yes, all done
mov password[bx],al ;no, put char. in string
inc bx ;bump index
loop get-pass ;get another character

continue: - ;BX has length of password+1

1-43

Display String (Function 09H)

Call
AH = 09H
DS:DX
String to be displayed

Return
None

DX must contain the offset (from the segment address in DS) of a
string that ends with “$”. The string is displayed (the $ is not dis-
played).

Macro Definition: display macro string

mov dx,offset string
mov ah 09H

int 21H

endm

Example

The following program displays the hexadecimal code of the key that
is typed:

table db “0123456789ABCDEF”
sixteen db 16
result db “ - 00H”,13,10,“$” ;see text for

:explanation of $

func-09H: read-kbd-and-echo ;see Function 01H

convert al, sixteen, result{3] ;see end of chapter
display result ;THIS FUNCTION
jmp func-09H ;do it again

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS
Buffered Keyboard Input (Function 0AH)
Call
AH = 0AH
DS:DX
Input buffer

Return
None

DX must contain the offset (from the segment address in DS) of an
input buffer of the following form:

Byte Contents

1 Maximum number of characters in buffer, including the
CR (you must set this value).
2 Actual number of characters typed, not counting the CR

(the function sets this value).
3-h Buffer; must be at least as long as the number in byte 1.

This function waits for characters to be typed. Characters are read
from the keyboard and placed in the buffer beginning at the third
byte until <NEW LINE> is typed. If the buffer fills to one less
than the maximum, additional characters typed are ignored and
ASCII 7 (BEL) is sent to the display until <NEW LINE> is pressed.
The string can be edited at it is being entered. If CONTROL-C is
typed, Interrupt 23H is issued.

The second byte of the buffer is set to the number of characters
entered (not counting the CR).

Macro Definition: get-string macro limit,string
mov dx,offset string
mov string,limit
mov ah,0AH
int 21H
endm

1-45

Example

The following program gets a 16-byte (maximum) string from the
keyboard and fills a 24-line by 80-character screen with it:

buffer label byte

max-length db i ;maximum length

chars-entered db ? ;number of chars.

string db 17 dup (7) ;16 chars + CR

strings-per-line dw 0 ;how many strings
;fit on line

crlf db 13,10,$“

func-0AH: get-string 17,buffer ;THIS FUNCTION
xor bx,bx ;80 byte can be
;used as index
mov bl,chars-entered ;get string length
mov buffer[bx+2],”$*“ ;see Function 09H

mov al,5S0H ;columns per line

cbw

div chars-entered ;times string fits

;on line

xor ah,ah ;clear remainder

mov strings-per-line,ax ;save col. counter

mov ¢x,24 ;TOW counter
display-screen: push cx ;save it

mov cx, strings-per-line ;get col. counter
display-line: display string ;see Function 09H

loop display-line

display crif ;see Function 09H

pop cX ;get line counter

loop display-screen display 1 more line

1-46

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS

Check Keyboard Status (Function 0BH)

Call

AH = 0BH

Return

AL
255 (FFH) = characters in type-ahead
buffer
0 = no characters in type-ahead

buffer
Checks whether there are characters in the type-ahead buffer. If so,
AL returns FFH (255); if not, AL returns 0. If CONTROL-C is in the
buffer, Interrupt 23H is executed.

Macro Definition: check-kbd-status macro

mov ah,0BH
int 21H
endm

Example

The following program continuously displays the time until any key is
pressed.

time db ”00:00:00.00“,13,10,”$

ten db 10
func-O0BH: get-time ;see Function 2CH
convert ch,ten,time ;see end of chapter

convert clten,time[3] ;see end of chapter
convert dh,ten,time[6] ;see end of chapter
convert dlten,time[9] ;see end of chapter

display time ;see Function 09H

check-kbd-status ;:THIS FUNCTION

cmp al, FFH ;has a key been typed?

je all-done ;yes, go home

jmp func-0BH ;no, keep displaying
;time

1-47

Flush Buffer, Read Keyboard (Function 0CH)

Call

AH = 0CH

AL
1, 6, 7, 8, or 0AH = The corresponding
function is called.
Any other value = no further processing.

Return

AL
0 = Type-ahead buffer was flushed; no
other
processing performed.

The keyboard type-ahead buffer is emptied. Further processing
depends on the value in AL when the function is called:

1, 6,7, 8, or 0AH - The corresponding MS-DOS
function is executed.

Any other value - No further processing; AL returns 0.

Macro Definition: flush-and-read-kbd macro switch

mov al,switch
mov ah,0CH
int 21H
endm

Example

The following program both displays and prints characters as they
are typed. If <NEW LINE> is pressed, the program sends Carriage
Return-Line Feed to both the display and the printer.

func-0CH: flush-and-read-kbd 1 ;THIS FUNCTION
print-char al ;see Function 05SH
cmp al,0DH ;is it a CR?
jne func-0CH :no, print it
print-char 10 ;see Function 05SH
display-char 10 ;see Function 02H
jmp func-0CH ;get another character

1-48

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS
Disk Reset (Function 0DH)

Call
AH = 0DH

Return
None

Function 0DH is used to ensure that the internal buffer cache mat-
ches the disks in the drives. This function writes out dirty buffers
(buffers that have been modified), and marks all buffers in the inter-
nal cache as free.

Function ODH flushes all file buffers. It does not update directory
entries; you must close files that have changed to update their directo-
ry entries (see Function 10H, Close File). This function need not be
called before a disk change if all files that changed were closed. It is
generally used to force a known state of the system; CONTROL-C
interrupt handlers should call this function.

Macro Definition: disk-reset macro disk
mov ah,0DH
int 21H
endm

Example

mov ah,0DH
int 21H

;There are no errors returned by this call.

1-49

Select Disk (Function 0EH)

Call

AH = 0EH

DL
Drive number
(0=A: 1=Betc)

Return
AL
Number of logical drives

The drive specified in DL (0 = A:, 1 = B:, etc.) is selected as the
default disk. The number of drives is returned in AL.

Macro Definition: select-disk macro disk
mov dl,disk[-64]
mov ah, 0OEH
int 21H
endm

Example
The following program selects the drive not currently selected in a
2-drive system: '

func-0EH: current-disk ;see Function 19H
cmp al,00H ;drive A: selected?
je select-b ;yes, select B
select-disk ”A“ ;THIS FUNCTION
jmp continue

select-b: select-disk "B ;THIS FUNCTION

Continue:

1-50

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS
Open File (Function 0FH)

Call

AH = O0FH

DS:DX
Unopened FCB

Return
AL
0 = Directory entry found
255 (FFH) = No directory entry found

DX must contain the offset (from the segment address in DS) of an
unopened File Control Block (FCB). The disk directory is searched
for the named file.

If a directory entry for the file is found, AL returns 0 and the FCB is
filled as follows:

If the drive code was 0 (default disk), it is changed to the actual
disk used (1 = A:, 2 =B:, etc.). This lets you change the default
disk without interfering with subsequent operations on this file.
The current Block field (offset OCH) is set to zero. (This is
true only for MS-DOS versions that are higher than 2.0.)
The Record Size (offset 0EH) is set to the system default of 128.
The File Size (offset 10H), Date of Last Write (offset 14H), and
Time of Last Write (offset 16H) are set from the directory
entry.

Before performing a sequential disk operation on the file, you must
set the Current Record field (offset 20H). Before performing a ran-
dom disk operation on the file, you must set the Relative Record field
(offset 21H). If the default record size (128 bytes) is not correct, set it
to the correct length.

1-51

If a directory entry for the file is not found, AL returns FFH (255).

Macro Definition: open macro fcb
mov dx,offset fcb
mov ah,0FH
int 21H
endm

Example

The following program prints the file named TEXTFILE.ASC that is
on the disk in drive B:. If a partial record is in the buffer at end-of-file,
the routine that prints the partial record prints characters until it
encounters an end-of-file mark (ASCII 26, or CONTROL-Z):

fcb db 2,"TEXTFILEASC”
db 25dup ()
buffer db 128 dup (?)
func-OFH: set-dta buffer ;see Function 1AH
open fcb ;THIS FUNCTION
read-line: read-seq fcb ;see Function 14H
cmp al,02H ;end of file?
je all-done ;yes, go home
cmp al,00H ;more to come?
jg check-more ;no, check for partial
;record
mov cx,128 ;yes, print the buffer
xor si,si ;set index to 0
print-it: print-char buffer[si] ;see Function 0SH
inc si ;bump index
loop print-it ;print next character
jmp read-line ;read another record
check-more: cmp al,03H ;part. record to print?
jne all-done ;N0
mov cx,128 ;yes, print it
xor si,Si ;set index to 0
find-eof: cmp buffer(si},26 ;end-of-file mark?
je all-done ;yes
print-char buffer[si] ;see Function 05SH
inc si ;bump index to next
:character
loop find-eof
all-done: close fcb ;see Function 10H

1-52

MS-DOS PROGRAMMER'’S MANUAL SYSTEM CALLS
Close File (Function 10H)

Call

AH=10H

DS:DX
Opened FCB

Return
AL
0 = Directory entry found
FFH (255) = No directory entry found

DX must contain the offset (to the segment address in DS) of an
opened FCB. The disk directory is searched for the file named in the
FCB. This function must be called after a file is changed to update the
directory entry.

If a directory entry for the file is found, the location of the file is
compared with the corresponding entries in the FCB. The directory
entry is updated, if necessary, to match the FCB, and AL returns 0.

If a directory entry for the file is not found, AL returns FFH (255).

Macro Definition: close macro fcb
mov dx,offset fcb
mov ah,10H
int 21H
endm
Example

The following program checks the first byte of the file named MOD1 .-
BAS in drive B: to see if it is FFH, and prints a message if it is:

message db ”Not saved in ASCII format“,13,10,”$“

fcb db 2”’MOD1 BAS*
db 25 dup (?)

buffer db 128 dup (?)

func-10H: set-dta buffer ;see Function 1AH
open fcb :see Function 0OFH
read-seq fcb ;see Function 14H

all-done:

cmp buffer,FFH

jne all-done
display message
close fcb

;is first byte FFH?
;no

;see Function 09H
;THIS FUNCTION

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS
Search for First Entry (Function 11H)

Call

AH = 11H

DS:DX
Unopened FCB

Return
AL
0 = Directory entry found
FFH (255) = No directory entry found

DX must contain the offset (from the segment address in DS) of an
unopened FCB. The disk directory is searched for the first matching
name. The name can have the ? wild card character to match any
character. To search for hidden or system files, DX must point to the
first byte of the extended FCB prefix.

If a directory entry for the filename in the FCB is found, AL returns 0
and an unopened FCB of the same type (normal or extended) is
created at the Disk Transfer Address.

If a directory entry for the filename in the FCB is not found, AL
returns FFH (255).

Notes:
If an extended FCB is used, the following search pattern is used:

1. If the FCB attribute is zero, only normal file entries are found.
Entries for volume label, sub-directories, hidden, and system files
will not be returned.

2. If the attribute field is set for hidden or system files, or directory
entries, it is to be considered as an inclusive search. All normal file
entries plus all entries matching the specified attributes are retur-
ned. To look at all directory entries except the volume label, the
attribute byte may be set to hidden + system + directory (all 3 bits
on).

1-55

3. If the attribute field is set for the volume label, it is considered an
exclusive search, and only the volume label entry is returned.

Macro Definition: search-first macro fcb
mov dx,offset fcb

mov ah,11H
int 21H
endm

Example
The following program verifies the existence of a file named
REPORT.ASM on the disk in drive B::

yes db ”FILE EXISTS.$“

no db "FILE DOES NOT EXIST.$“

fcb db 2,”"REPORT ASM*
db 25 dup (7)

buffer db 128 dup (?)

func-11H: set-dta buffer ;see Function 1AH
search-first fcb ;THIS FUNCTION
cmp al,FFH ;directory entry found?
je not-there :no
display yes ;see Function 09H
jmp continue

not-there: display no ;see Function 09H

continue: display crlf ;see Function 09H

1-56

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS
Search for Next Entry (Function 12H)

Call

AH = 12H

DS:DX
Unopened FCB

Return
AL
0 = Directory entry found
FFH (255) = No directory entry found

DX must contain the offset (from the segment address in DS) of an
FCB previously specified in a call to Function 11H. Function 12H is
used after Function 11H (Search for First Entry) to find additional
directory entries that match a filename that contains wild card charac-
ters. The disk directory is searched for the next matching name. The
name can have the ? wild card character to match any character. To
search for hidden or system files, DX must point to the first byte of
the extended FCB prefix.

If a directory entry for the filename in the FCB is found, AL returns 0
and an unopened FCB of the same type (normal or extended) is
created at the Disk Transfer Address.

If a directory entry for the filename in the FCB is not found, AL
returns FFH (255).

Macro Definition: search-next macro fcb
mov dx,offset fcb

mov ah,12H
int 21H
endm

Example
The following program displays the number of files on the disk in
drive B:

message db ”No files“,10,13.”$"*
files db 0
ten db 10
fcb db 2,°27772779277¢
db 25 dup (7
buffer db 128 dup (?)

func-12H: set-dta buffer ;see Function 1AH

search-first fcb ;see Function 11H
cmp al,FFH :directory entry found?
je all-done ;no, no files on disk
inc files ;yes, increment file
ycounter
search-dir: search-next fcb ;THIS FUNCTION
cmp al,FFH ;directory entry found?
je done ;no
inc files ;yes, increment file
;counter
jmp search-dir ;check again
done: convert files,ten,message ;see end of chapter
all-done: display message ;see Function 09H

1-58

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS
Delete File (Function 13H)

Call

AH = 13H

DS:DX
Unopened FCB

Return
AL
0 = Directory entry found
FFH (255) = No directory entry found

DX must contain the offset (from the segment address in DS) of an
unopened FCB. The directory is searched for a matching filename.
The filename in the FCB can contain the ? wild card character to
match any character.

If a matching directory entry is found, it is deleted from the directory.
If the ? wild card character is used in the filename, all matching direc-
tory entries are deleted. AL returns 0.

If no matching directory entry is found, AL returns FFH (255).

Macro Definition: delete macro fcb
mov dx,offset fcb
mov ah,13H
int 21H
endm
Example

The following program deletes each file on the disk in drive B: that
was last written before December 31, 1982:

year dw 1982

month db 12

day db 31

files db 0

ten db 10

message db ”NO FILES DELETED.”,13,10,”$“
;see Function 09H for
;explanation of $

fcb db 2,7972777727779«

db 25 dup (7)

buffer

func-13H:

compare:

next:

all-done:

db 128 dup (?)

set-dta buffer ;see Function 1AH

search-first fcb ;see Function 11H

cmp al, FFH ;directory entry found?

je all-done :no, no files on disk

convert-date buffer ;see end of chapter

cmp cx,year ;next several lines

g next ;check date in directory

cmp dl,month ;entry against date

jg next ;above & check next file

cmp dh,day ;if date in directory

jge next ;entry isn’t earlier.

delete buffer ;THIS FUNCTION

inc files ;bump deleted-files
;counter

search-next fcb ;see Function 12H

cmp al,00H ;directory entry found?

je compare ;yes, check date

cmp files,0 ;any files deleted?

je all-done ;no, display NO FILES
;message.

convert files,ten,message ;see end of chapter

display message ;see Function 09H

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS

Sequential Read (Function 14H)

Call

AH = 14H

DS:DX
Opened FCB

Return

AL
0 =Read completed successfully
1=EOF

2=DTA too small
3 = EOF, partial record

DX must contain the offset (from the segment address in DS) of an
opened FCB. The record pointed to by the current block (offset 0CH)
and Current Record (offset 20H) fields is loaded at the Disk Transfer
Address, then the Current Block and Current Record fields are
incremented.

The record size is set to the value at offset 0OEH in the FCB.

AL returns a code that descfibes the processing:

Code Meaning
0 Read completed successfully.
1 End-of-file, no data in the record.
2 Not enough room at the Disk Transfer Address to read
one record; read canceled.
3 End-of-file; a partial record was read and padded to the
record length with zeros.

Macro Definition: read-seq macro fcb
mov dx,offset fcb
mov ah,14H
int 21H
endm
Example

The following program displays the file named TEXTFILE.ASC that
is on the disk in drive B:; its function is similar to the MS-DOS TYPE
command. If a partial record is in the buffer at end of file, the routine

that displays the partial record displays characters until it encounters
an end-of-file mark (ASCII 26, or CONTROL-Z):

1-61

fcb

buffer

func-14H:

read-line:

check-more:

find-eof:

all-done

1-62

db 2 TEXTFILEASC*

db 25 dup (7)

db 128 dup (?),”$“

set-dta buffer

open fcb

read-seq fc

cmp al,02H

je all-done
cmp al,02H

jg check-more
display buffer

jmp read-line
cmp al,03H

jne all-done
Xor Si,8i

cmp buffer[si],26
je all-done

display-char buffer[si]
inc si

find-eof
fcb

jmp
close

;see Function 1AH

;see Function OFH
;THIS FUNCTION
;end-of-file?

;yes

;end-of-file with partial
;record?

;yes

;see Function 09H

;get another record
;partial record in buffer?
;no, go home

;set index to 0

;is character EOF?

;yes, no more to display
;see Function 02H
;bump index to next
;character

;check next character
;see Function 10H

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS
Sequential Write (Function 15H)

Call

AH = 15H

DS:DX
Opened FCB

Return

AL
00H = Write completed successfully
01H = Disk full
02H = DTA too small

DX must contain the offset (from the segment address in DS) of an
opened FCB. The record pointed to by Current Block (offset 0CH)
and Current Record (offset 20H) fields is written from the Disk
Transfer Address, then the current block and current record fields are
incremented.

The record size is set to the Value at offset OEH in the FCB. If the
Record Size is less than a sector, the data at the Disk Transfer Ad-
dress is written to a buffer; the buffer is written to disk when it con-
tains a full sector of data, or the file is closed, or a Reset Disk system
call (Function 0DH) is issued.

AL returns a code that describes the processing:

Code Meaning
0 Transfer completed successfully.
1 Disk full; write canceled.
2 Not enough room at the Disk Transfer Address to write
one record; write canceled

Macro Definition: write-seq macro fcb
mov dx,offset fcb
mov ah,15SH
int 21H
endm

1-63

Example

The following program creates a file named DIR.TMP on the disk in
drive B: that contains the disk number (0 = A:, 1 = B:, etc.) and
filename from each directory entry on the disk:

record-size equ 14 ;offset of Record Size
;field in FCB

fcbl db 2,”DIR TMP*
db 25 dup (?)

fcb2 db 2,777
db 25 dup (?)

buffer db 128 dup (?)

func-15H: set-dta buffer ;see Function 1AH
search-first fcb2 ;see Function 11H
cmp al, FFH ;directory entry found?
je all-done :no, no files on disk
create fcbl ;see Function 16H
mov fcb1[record-size],12

;set record size to 12

write-it: write-seq fcbl ;THIS FUNCTION
search-next fcb2 ;see Function 12H
cmp al, FFH :directory entry found?
je all-done ;no, go home
jmp write-it ;yes, write the record

all-done: close fcbl ;see Function 10H

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS
Create File (Function 16H)

Call

AH = 16H

DS:DX
Unopened FCB

Return
AL
00H = Empty directory found
FFH (255) = No empty directory
available

DX must contain the offset (from the segment address in DS) of an
unopened FCB. The directory is searched for an empty entry or an
existing entry for the specified filename.

If an empty directory entry is found, it is initialized to a zero-length
file, the Open File system call (Function 0FH) is called, and AL
returns 0. You can create a hidden file by using an extended FCB
with the attribute byte (offset FCB-1) set to 2.

If an entry is found for the specified filename, all data in the file is
released, making a zero-length file, and the Open File system call
(Function OFH) is issued for the filename (in other words, if you try to
create a file that already exists, the existing file is erased, and a new,
empty file is created).

If an empty directory entry is not found and there is no entry for the
specified filename, AL returns FFH (255).

Macro Definition: create macro fcb
mov dx,offset fcb
mov ah,16H
int 21H
endm
Example

The following program creates a file named DIR.TMP on the disk in
drive B: that contains the disk number (0 = A:, 1 = B:, etc.) and
filename from each directory entry on the disk:

1-65

record-size equ 14 ;offset of Record Size

fcbl
fcb2
buffer

func-16H:

write-it:

all-done:

1-66

;field of FCB

db 2,”DIR TMP*
db 25 dup (9

db 2,717
db 25 dup (7)
db 128 dup (?)
set-dta buffer ;see Function 1AH
search-first fcb2 ;see Function 11H
cmp al, FFH ;directory entry found?
je all-done ;no, no files on disk
create fcbl ;THIS FUNCTION
mov fcbl[record-size],12

;set record size to 12
write-seq fcbl ;see Function 15H
search-next fcb2 ;see Function 12H
cmp al, FFH ;directory entry found?
je all-done ;no, go home
jmp write-it ;yes, write the record
close fcbl ;see Function 10H

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS
Rename File (Function 17H)

Call

AH = 17H

DS:DX
Modified FCB

Return

AL
00H = Directory entry found
EFH (255) = No directory entry
found or destination already exists

DX must contain the offset (from the segment address in DS) of an
FCB with the drive number and filename filled in, followed by a
second filename at offset 11H. The disk directory is searched for an
entry that matches the first filename, which can contain the ? wild
card character.

If a matching directory entry is found, the filename in the directory
entry is changed to match the second filename in the modified FCB
(the two filenames cannot be the same name). If the ? wild card
character is used in the second filename, the corresponding charac-
ters in the filename of the directory entry are not changed. AL returns
0.

If a matching directory entry is not found or an entry is found for the
second filename, AL returns FFH (255).

Macro Definition: rename macro fcb,newname
mov dx,offset fcb
mov ah,17H
int 21H
endm

Example

The following program prompts for the name of a file and a new
name, then renames the file:

fcb db 37 dup (9
promptl db ”Filename: $“
prompt2 db ”New name: $“
reply db 17 dup(d

crlf db 13,1078

1-67

func-17H:

1-68

display promptl ;see Function 09H
get-string 15,reply ;see Function 0AH
display crif ;see Function 09H
parse reply[2],fcb :see Function 29H
display prompt2 :see Function 09H
get-string 15,reply ;see Function 0AH
display crif :see Function 09 H

parse reply[2],fcb[16]
;see Function 29H
rename fcb ;THIS FUNCTION

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS
Current Disk (Function 19H)

Call
AH = 19H

Return
AL
Currently selected drive
(0=A,1=B, etc)
AL returns the currently selected drive (0 = A:, 1 = B:, etc.).

Macro Definition: current-disk macro

mov ah,19H
int 21H
endm

Example
The following program displays the currently selected (default) drive
in a 2-drive system:

message db "Current disk is $§“ ;see Function 09H
;for explanation of $

crlf db 13,10,

func-19H: display message ;see Function 09H
current-disk ;THIS FUNCTION
cmp al,00H ;is it disk A?
jne disk-b ;no, it’s disk B:
display-char ”A* ;see Function 02H
jmp all-done

disk-b: display-char ”B“ ;see Function 02H

all-done: display crlf ;see Function 09H

Set Disk Transfer Address (Function 1AH)

Call
AH = 1AH
DS:DX
Disk Transfer Address

Return
None

DX must contain the offset (from the segment address in DS) of the
Disk Transfer Address. Disk transfers cannot wrap around from the
end of the segment to the beginning, nor can they overflow into
another segment.

NOTE

If you do not set the Disk Transfer Address,
MS-DOS defaults to offset 80H in the
Program Segment Prefix.

Macro Definition: set-dta macro buffer
mov dx,offset buffer
mov ah,1AH
int 21H
endm

Example

The following program prompts for a letter, converts the letter to its
alphabetic sequence (A =1, B =2, etc.), then reads and displays the
corresponding record from a file named ALPHABET.DAT on the
disk in drive B:. The file contains 26 records; each record is 28 bytes
long:

record-size equ 14 ;offset of Record Size
;field of FCB
relative-record equ 33 ;offset of Relative Record

;field of FCB

1-70

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS

fcb db 2. “ALPHABETDAT”
db 25 dup (9
buffer db 34 dup (9),“$”

prompt db “Enter letter: $”

crlf db 13,10,“8”

func-1AH: set-dta buffer ;THIS FUNCTION
open fcb ;see Function 0OFH
mov fcb[record-size},28 ;set record size

get-char: display prompt ;see Function 09H
read-kbd-and-echo ;see Function 01H
cmp al,0DH just a CR?
je all-done ;yes, go home
sub al,41H ;convert ASCII

;code to record #
mov fcb[relative-record],al
;set relative record

display crif ;see Function 09H
read-ran fcb ;see Function 21H
display buffer ;see Function 09H
display crlf ;see Function 09H
jmp get-char ;get another character

all-done: close fcb ;see Function 10H

1-71

Random Read (Function 21H)

Call

AH = 21H

DS:DX
Opened FCB

Return

AL
00H = Read completed successfully
01H = EOF

02H = DTA too small
03H = EOQF, partial record

DX must contain the offset (from the segment address in DS) of an
opened FCB. The Current Block (offset 0CH) and Current Record
(offset 20H) fields are set to agree with the Relative Record field
(offset 21H), then the record addressed by these fields is loaded at the
Disk Transfer Address.

AL returns a code that describes the processing:

Code Meaning
0 Read completed successfully.
1 End-of-file; no data in the record.

2 Not enough room at the Disk Transfer Address to read
one record; read canceled.

3 End-of-file; a partial record was read and padded to the
record length with zeros.

Macro Definition: read-ran macro fcb
mov dx,offset fcb

mov ah21H
int 21H
endm

Example

The following program prompts for a letter, converts the letter to its
alphabetic sequence (A = 1, B = 2, etc.), then reads and displays the
corresponding record from a file named ALPHABET.DAT on the disk
in drive B:. The file contains 26 records; each record is 28 bytes long:

1-72

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS

record-size

equ 14 ;offset of Record Size
;field of FCB

relative-record equ 33 ;offset of Relative Record

fcb

buffer
prompt
crif

func-21H:

get-char:

all-done:

:field of FCB

db 2,“ALPHABETDAT”
db 25 dup (9)
db 34 dup (9),“$”

db “Enter letter: $”

db 13,10,$”

set-dta buffer ;see Function 1AH

open fcb ;see Function O0FH

mov fcblrecord-size],28 ;set record size

display prompt ;see Function 09H

read-kbd-and-echo ;see Function 01H

cmp al,0DH Jjust a CR?

je all-done ;yes, go home

sub al,41H ;convert ASCII code
;to record #

mov fcb[relative-record],al ;set relative
;record

display crif ;see Function 09H

read-ran fcb ;THIS FUNCTION

display buffer ;see Function 09H

display crlf ;see Function 09H

jmp get-char ;get another char.

close fcb ;see Function 10H

1-73

Random Write (Function 22H)

Call

AH = 22H

DS:DX
Opened FCB

Return

AL
00H = Write completed successfully
01H = Disk full
02H = DTA too small

DX must contain the offset from the segment address in DS of an
opened FCB. The Current Block (offset 0CH) and Current Record
(offset 20H) fields are set to agree with the Relative Record field
(offset 21H), then the record addressed by these fields is written from
the Disk Transfer Address. If the record size is smaller than a sector
(512 bytes), the records are buffered until a sector is ready to write.
AL returns a code that describes the processing:

Code Meaning
0 Write completed successfully.
1 Disk is full.

2 Not enough room at the Disk Transfer Address to write
one record; write canceled.

Macro Definition: write-ran macro fcb
mov dx,offset fcb
mov ah,22H
int 21H
endm
Example

The following program prompts for a letter, converts the letter to its
alphabetic sequence (A = 1, B = 2, etc.), then reads and displays the
corresponding record from a file named ALPHABET.DAT on the
disk in drive B:. After displaying the record, it prompts the user to
enter a changed record. If the user types a new record, it is written to
the file; if the user just presses <KNEW LINE>, the record is not re-
placed. The file contains 26 records; each record is 28 bytes long:

1-74

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS

record-size

equ 14 ;offset of Record Size
;field of FCB

relative-record equ 33 ;offset of Relative Record

fcb

buffer
promptl
prompt2
crif
reply
blanks

func-22H:

get-char:

all-done:

;field of FCB

db 2,“ALPHABETDAT”
db 25 dup (?)
db 26 dup (7),13,10,8”

db “Enter letter: $
db “New record (KNEW LINE> for no change).$”
db 13,10,“”

db 28 dup (32)
db 26 dup (32)

set-dta buffer ;see Function 1AH

open fcb ;see Function OFH
mov fcb[record-size],32 ;set record size
display promptl ;see Function 09H
read-kbd-and-echo ;see Function 01H
cmp al,0DH just a CR?

je all-done ;yes, go home

sub al41H ;convert ASCII

:code to record #
mov fcb[relative-record],al
;set relative record

display crif ;see Function 09H
read-ran fcb ;THIS FUNCTION
display buffer ;see Function 09H
display crlf ;see Function 09H
display prompt2 ;see Function 09H
get-string 27,reply ;see Function 0AH
display crlf ;see Function 09H
cmp reply[1],0 ;was anything typed

;besides CR?
je get-char ;no

;get another char.
xor bx,bx ;to load a byte
mov bl,reply[1] ;use reply length as

ycounter

move-string blanks,buffer,26 ;see chapter end
move-string reply[2],buffer,bx ;see chapter end

write-ran fcb ;THIS FUNCTION
jmp get-char ;get another character
close fcb ;see Function 10H

1-75

File Size (Function 23H)

Call

AH = 23H

DS:DX
Unopened FCB

Return
AL
00H = Directory entry found
FFH (255) = No directory entry found

DX must contain the offset (from the segment address in DS) of an
unopened FCB. You must set the Record Size field (offset 0EH) to
the proper value before calling this function. The disk directory is
searched for the first matching entry.

If a matching directory entry is found, the Relative Record field
(offset 21H) is set to the number of records in the file, calculated from
the total file size in the directory entry (offset 1CH) and the Record
Size field of the FCB (offset 0EH). AL returns 00.

If no matching directory is found, AL returns FFH (255).

NOTE

If the value of the Record Size field of the
FCB (offset 0EH) doesn’t match the actual
number of characters in a record, this
function does not return the correct file size.
If the default record size (128) is not correct,
you must set the Record Size field to the
correct value before using this function.

MS-DOS PROGRAMMER'S MANUAL

Macro Definition:

Example

file-size macro fcb
mov dx,offset fcb
mov ah,23H
int 21H
endm

SYSTEM CALLS

The following program prompts for the name of a file, opens the file
to fill in the Record Size field of the FCB, issues a File Size system
call, and displays the file size and number of records in hexadecimal:

fcb
prompt
msgl
msg2
crif

reply
sixteen

func-23H:

get-length:

convert-it:

show-it:

all-done:

db 37 dup (?)

db “File name: $”

db “Record length: “13,10,“$”

db “Records: “,13,10,“$”

db 13,10,“$”

db 17 dup (9

db 16

display prompt ;see Function 09H

get-string 17,reply ;see Function 0AH

cmp reply{1],0 just a CR?

jne get-length ;no, keep going

jmp all-done ;yes, go home

display crlf ;see Function 09H

parse reply[2],fcb ;see Function 29H

open fcb ;see Function OFH

file-size fcb ;THIS FUNCTION

mov §i,33 ;offset to Relative
:Record field

mov di,9 ;reply in msg-2

cmp fcb[si],0 ;digit to convert?

je show-it ;NO, prepare message

convert fcb[si],sixteen,msg-2[di]

inc si ;bump n-o-r index

inc di ;bump message index

jmp convert-it ;check for a digit

convert fcb[14],sixteen,msg-1[15]

display msg-1 ;see Function 09H

display msg-2 ;see Function 09H

jmp func-23H ;get a filename

close fcb ;see Function 10H

1-77

Set Relative Record (Function 24H)

Call

AH = 24H

DS:DX
Opened FCB

Return
None

DX must contain the offset (from the segment address in DS) of an
opened FCB. The Relative Record field (offset 21H) is set to the same
file address as the Current Block (offset 0CH) and Current Record
(offset 20H) fields.

Macro Definition: set-relative-record macro fcb
mov dx,offset fcb

mov ah,24H
int 21H
endm

Example

The following program copies a file using the Random Block Read
and Random Block Write system calls. It speeds the copy by setting
the record length equal to the file size and the record count to 1, and
using a buffer of 32K bytes. It positions the file pointer by setting the
Current Record field (offset 20H) to 1 and using Set Relative Record
to make the Relative Record field (offset 21H) point to the same
record as the combination of the Current Block (offset 0CH) and
Current Record (offset 20H) fields:

current-record equ 32 ;offset of Current Record
;field of FCB
file-size equ 16 ;offset of File Size

;field of FCB

fcb db 37 dup ()

filename db 17 dup (?)

promptl db “File to copy: $” :see Function 09H for
prompt2 db “Name of copy: $” ;explanation of $

crif db 13,10,“$”

1-78

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS

file-length dw ?

buffer

func-24H:

db 32767 dup (?)

set-dta buffer ;see Function 1AH

display promptl ;see Function 09H

get-string 15, filename ;see Function 0AH

display crlf ;see Function 09H

parse filename[2],fcb ;see Function 29H

open fcb ;see Function OFH

mov fcb[current-record],0 ;set Current Record
;field

set-relative-record fcb ;THIS FUNCTION
mov ax,word ptr fcb[file-size] ;get file size
mov file-length,ax ;save it for
;ran-block-write
ran-block-read fcb,1,ax ;see Function 27H

display prompt2 ;see Function 09H

get-string 15.filename ;see Function 0AH

display crif ;see Function 09H

parse filename[2],fcb ;see Function 29H

create fcb ;see Function 16H

mov feb[current-record],0 ;set Current Record
;field

set-relative-record fcb ;THIS FUNCTION
mov ax,file-length ;get original file

;length
ran-block-write fcb,1,ax ;see Function 28H
close fcb ;see Function 10H

Set Vector (Function 25H)

Call
AH = 25H
AL
Interrupt number
DS:DX
Interrupt-handling routine

Return
None

Function 25H should be used to set a particular interrupt vector. The
operating system can then manage the interrupts on a per-process
basis. Note that programs should never set interrupt vectors by wri-
ting them directly in the low memory vector table.

DX must contain the offset (to the segment address in DS) of an
interrupt-handling routine. AL must contain the number of the
interrupt handled by the routine. The address in the vector table for
the specified interrupt is set to DS:DX.

Macro Definition: set-vector macro interrupt,seg-addr,off-addr
push ds
mov ax,seg-addr
mov ds,ax
mov dx,off-addr

mov ah,25H
mov al,interrupt
int 21H
pop ds
endm

Example

1ds dx.intvector

mov ah,25H

mov al,intnumber

int 21H

;There are no errors returned

1-80

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS

Random Block Read (Function 27H)

Call
AH =27H
DS:DX
Opened FCB
CX
Number of blocks to read
Return
AL
00H = Read completed successfully
01H = EOF

02H = End of segment

03H = EOF, partial record
CX

Number of blocks read

DX must contain the offset (to the segment address in DS) of an
opened FCB. CX must contain the number of records to read; if it
contains 0, the function returns without reading any records (no
operation). The specified number of records - calculated from the
Record Size field (offset 0EH) - is read starting at the record specified
by the Relative Record field (offset 21H). The records are placed at
the Disk Transfer Address.

AL returns a code that describes the processing:

Code Meaning
0 Read completed successfully.
1 End-of-file; no data in the record.
2 Not enough room at the Disk Transfer Address to read
one record; read canceled.
3 End-of-file; a partial record was read and padded to the

record length with zeros.

CX returns the number of records read; the Current Block (offset
0CH), Current Record (offset 20H), and Relative Record (offset 21H)
fields are set to address the next record.

1-81

Macro Definition: ran-block-read macro
mov
mov
mov
mov
int
endm

Example

fcb,count,rec-size
dx,offset fcb

cx,count

word ptr fcb[14],rec-size
ah,27H

21H

The following program copies a file using the Random Block Read
system call. It speeds the copy by specifying a record count of 1 and a
record length equal to the file size, and using a buffer of 32 K bytes;
the file is read as a single record (compare to the sample program for
Function 28H that specifies a record length of 1 and a record count

equal to the file size):

current-record equ 32 ;offset of Curr

ent Record field

;see Function 09H for
;explanation of $

file-size equ 16 ;offset of File Size field
fcb db 37 dup (?)

filename db 17 dup(?)

promptl db ”File to copy: $”

prompt2 db ”Name of copy: $”

crif db 13,10,”$”

file-length dw ?

buffer db 32767 dup(?)

func-27H: .set-dta buffer

display promptl
get-string15,filename

display crif

parse filename[2],fcb

open fcb

mov fcb[current-record],0

set-relative-record fcb
mov
mov file-length,ax

ran-block-read fcb,1,ax
1-82

ax,word ptr fcblfile-

;see Function 1AH
;see Function 09H
;see Function 0AH
;see Function 09H
;see Function 29H
;see Function 0FH
;set Current
;Record field

;see Function 24H
size]

;get file size

;save it for
;ran-block-write
;THIS FUNCTION

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS

display prompt2 ;see Function 09H
get-string15,filename ;see Function 0AH
display crlf ;see Function 09H
parse filename[2],fcb ;see Function 29H
create fcb ;see Function 16H

mov fcb[current-record],0
;set Current Record

;field
set-relative-record fcb ;see Function 24H
mov ax, file-length ;get original file

;size
ran-block-write fcb,1,ax ;see Function 28H
close fcb ;see Function 10H

1-83

Random Block Write (Function 28H)

Call

AH = 28H

DS:DX
Opened FCB

CX
Number of blocks to write
(0 = set File Size field)

Return
AL
00H = Write completed successfully
01H = Disk full
02H = End of segment
CX
Number of blocks written

DX must contain the offset (to the segment address in DS) of an
opened FCB; CX must contain either the number of records to write
or 0. The specified number of records (calculated from the Record
Size field, offset 0EH) is written from the Disk Transfer Address. The
records are written to the file starting at the record specified in the
Relative Record field (offset 21H) of the FCB. If CX is 0, no records
are written, but the File Size field of the directory entry (offset 1CH) is
set to the number of records specified by the Relative Record field of
the FCB (offset 21H); allocation units are allocated or released, as
required.

AL returns a code that describes the processing:

Code Meaning
0 Write completed successfully.
1 Disk full. No records written.

2 Not enough room at the Disk Transfer Address to read
one record; read canceled.

CX returns the number of records written; the current block (offset

0CH), Current Record (offset 20H), and Relative Record (offset 21H)
fields are set to address the next record.

1-84

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS

Macro Definition: ran-block-write macro fcb,count,rec-size
mov dx,offset fcb
mov cx,count
mov word ptr fcb[14],

rec-size
mov ah,28H
int 21H

endm
Example

The following program copies a file using the Random Block Read
and Random Block Write system calls. It speeds the copy by speci-
fying a record count equal to the file size and a record length of 1, and
using a buffer of 32K bytes; the file is copied quickly with one disk
access each to read and write (compare to the sample program of
Function 27H, that specifies a record count of 1 and a record length
equal to file size):

current-record equ 32 ;offset of Current Record field
file-size equ 16 ;offset of File Size field

fcb db 37 dup (?)

filename db 17 dup(?)

promptl db “File to copy: $” ;see Function 09H for
prompt2 db “Name of copy: $” ;explanation of $

crif db 13,10,“$”

num-recs dw ?

buffer db 32767 dup(?)

func-28H: set-dta buffer ;see Function 1AH

display promptl ;see Function 09H
get-string 15, filename ;see Function 0AH
display crlf ;see Function 09H
parse filename[2]fcb ;see Function 29H
open fcb ;see Function OFH

mov fcb|current-record],0

;set Current Record

field
set-relative-record fcb ;see Function 24H
mov ax, word ptr fcbfile-size]

;get file size

1-85

1-86

mov nume-recs,ax ;save it for
;ran-block-write
ran-block-read fcb,num-recs,1 ;THIS FUNCTION

display prompt2 ;see Function 09H
get-string15,filename ;see Function 0AH
display crif ;see Function 09H
parse filename[2],fcb ;see Function 29H
create fcb ;see Function 16H

mov fcb[current-record],0 ;set Current
;Record field

set-relative-record fcb ;see Function 24H
mov ax, file-length ;get size of original
ran-block-write fcb,num-recs,1 ;see Function 28H
close fcb ;see Function 10H

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS

Parse File Name (Function 29H)

Call

AH =

AL

29H

Controls parsing (see text)
DS:SI

String to parse
ES:DI

Unopened FCB

Return

AL

00H = No wild card characters

01H = Wild-card characters used

FFH (255) = Drive letter invalid
DS:SI

First byte past string that was parsed
ES:DI

Unopened FCB

SI must contain the offset (to the segment address in DS) of a string
(command line) to parse; DI must contain the offset (to the segment
address in ES) of an unopened FCB. The string is parsed for a file-
name of the form d:filename.ext; if one is found, a corresponding
unopened FCB is created at ES:DI.

Bits 0-3 of AL control the parsing and processing. Bits 4-7 are ignored:

Bit Value Meaning

0 0
1
1 0
1
2 1
0
3 1
0

All parsing stops if a file separator is encountered.
Leading separators are ignored.

The drive number in the FCB is set to 0 (default
drive) if the string does not contain a drive num-
ber.

The drive number in the FCB is not changed if the
string does not contain a drive number.

The filename in the FCB is not changed if the
string does not contain a filename.

The filename in the FCB is set to 8 blanks if the
string does not contain a filename.

The extension in the FCB is not changed if the
string does not contain an extension.

The extension in the FCB is set to 3 blanks if the
string does not contain an extension.

1-87

If the filename or extension includes an asterisk (*), all remaining
characters in the name or extension are set to question mark (?).

Filename separators:
oo, =+4+/“[]\<>1 space tab

Filename terminators include all the filename separators plus any
control character. A filename cannot contain a filename terminator; if
one is encountered, parsing stops.

If the string contains a valid filename:

1. AL returns 1 if the filename or extension contains a wild
card character (* or ?); AL returns 0 if neither the filename
nor extension contains a wild card character.

2. DS:SI point to the first character following the string that
was parsed.

ES:DI point to the first byte of the unopened FCB.

If the drive letter is invalid, AL returns FFH (255). If the string does
not contain a valid filename, ES:DI+1 points to a blank (ASCII 20H).

Macro Definition: parse macro string,fcb
mov si,offset string
mov di,offset fcb
push es
push ds
pop es
mov al,0FH ;bits 0, 1,2, 3 on
mov ah,29H
int 21H
pop es
endm

Example

The following program verifies the existence of the file named in
reply to the prompt:

fcb db 37 dup (7

prompt db “Filename: $”

reply db 17 dup(?)

yes db “FILE EXISTS”,13,10,“$”

1-88

MS-DOS PROGRAMMER’S MANUAL SYSTEM CALLS

no db “FILE DOES NOT EXIST”,13,10,“$”

func-29H: display prompt :see Function 09H
get-string 15,reply ;see Function 0OAH
parse reply[2].fcb ;THIS FUNCTION
search-first fcb ;see Function 11H
cmp al,FFH ;dir. entry found?
je not-there ;no
display yes ;see Function 09H
jmp continue

not-there: display no

continue:

1-89

Get Date (Function 2AH)

Call
AH = 2AH

Return
CX
Year (1980 - 2099)
DH
Month (1 - 12)
DL
Day (1 - 31)
AL
Day of week (0=Sun., 6=Sat.)

This function returns the current date set in the operating system as
binary numbers in CX and DX:

CX Year (1980-2099)

DH Month (1 = January, 2 = February, etc.)

DL Day (1-31)

AL Day of week (0 = Sunday, 1 = Monday, etc.)

Macro Definition: get-date macro
mov ah,2AH
int 21H
endm

Example

The following program gets the date, increments the day, increments
the month or year, if necessary, and sets the new date:

month db 31,28,31,30,31,30,31,31,30,31,30,31

func-2AH: get-date ;see above

inc dl ;increment day

Xor bx,bx ;50 BL can be used as index
mov bl,dh ;move month to index register
dec bx ;month table starts with 0
cmp dl,month[bx] ;past end of month?

jle month-ok :no, set the new date

mov di1 ;yes, set day to 1

1-90

MS-DOS PROGRAMMER'S MANUAL

month-ok:

inc dh

cmp dh,12

jle month-ok
mov dh,1

inc cX

set-date cx,dh,dl

SYSTEM CALLS

;and increment month
;past end of year?

:no, set the new date
;yes, set the month to 1
;increment year

;THIS FUNCTION

1-91

Set Date (Function 2BH)

Call
AH = 2BH
CX

Year (1980 - 2099)
DH

Month (1 - 12)
DL

Day (1 - 31)

Return
AL
00H = Date was valid
FFH (255) = Date was invalid

Registers CX and DX must contain a valid date in binary:

CX Year (1980-2099)
DH Month (1 = January, 2 = February, etc.)
DL Day (1-31)

If the date is valid, the date is set and AL returns 0. If the date is not
valid, the function is canceled and AL returns FFH (255).

Macro Definition: set-date macro year,month,day
mov cx,year
mov dh,month

mov dl,day
mov ah,2BH
int 21H
endm

Example

The following program gets the date, increments the day, increments
the month or year, if necessary, and sets the new date:

month db 31,28,31,30,31,30,31,31,30,31,30,31

func-2BH: get-date | ;see Function 2AH

inc dl ;increment day
Xor bx,bx ;50 BL can be used as index

1-92

MS-DOS PROGRAMMER'S MANUAL

month-ok:

mov bl,dh

dec bx

cmp dl,month[bx]
jle month-ok
mov di,1

inc dh

cmp dh,12

jle month-ok
mov dh,1

inc cX

set-date cx,dh,dl

SYSTEM CALLS

;move month to index register
;month table starts with 0
;past end of month?

:no, set the new date
;yes, set day to 1

;and increment month
;past end of year?

;no, set the new date
;yes, set the month to 1
:increment year

;THIS FUNCTION

Get Time (Function 2CH)

Call
AH = 2CH
Return
CH

Hour (0 - 23)
CL

Minutes (0 - 59)
DH

Seconds (0 - 59)
DL

Hundredths (0 - 99)

This function returns the current time set in the operating system as
binary numbers in CX and DX:

CH Hour (0-23)

CL Minutes (0-59)

DH Seconds (0-59)

DL Hundredths of a second (0-99)

Macro Definition: get-time macro
mov ah,2CH
int 21H
endm

Example

The following program continuously displays the time until any key is
pressed:

time db “00:00:00.007,13,10,“$”

ten db 10

func-2CH: get-time ;THIS FUNCTION
convert ch,ten,time ;see end of chapter

convert cltentime[3] ;see end of chapter
convert dh,ten,time[6] ;see end of chapter
convert dlten,time[9] ;see end of chapter

display time ;see Function 09H
check-kbd-status ;see Function 0BH

cmp al,FFH ;has a key been pressed?
je all-done ;yes, terminate

jmp func-2CH ;no, display time

1-94

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS
Set Time (Function 2DH)

Call
AH = 2DH
CH

Hour (0 - 23)
CL

Minutes (0 - 59)
DH

Seconds (0 - 59)
DL

Hundredths (0 - 99)

Return
AL
00H = Time was valid
FFH (255) = Time was invalid

Registers CX and DX must contain a valid time in binary:

CH Hour (0-23)

CL Minutes (0-59)

DH Seconds (0-59)

DL Hundredths of a second (0-99)

If the time is valid, the time is set and AL returns 0. If the time is not
valid, the function is canceled and AL returns FFH (255).

Macro Definition: set-time macro hour,minutes,seconds,hundredths
mov chhour
mov clminutes
mov dh,seconds
mov dlhundredths

mov ah2DH
int 21H
endm

Example

The following program sets the system clock to 0 and continuously
displays the time. When a character is typed, the display freezes;
when another character is typed, the clock is reset to 0 and the display
starts again:

1-95

time db “00:00:00.007,13,10,“8”

ten db 10

func-2DH: set-time 0,0,0,0 ;THIS FUNCTION

read-clock: get-time ;see Function 2CH
convert ch,ten,time ;see end of chapter

convert cltentime[3] ;see end of chapter
convert dh,ten,time[6] ;see end of chapter
convert dlten,time[9] ;see end of chapter

display time ;see Function 09H
dir-console-io FFH ;see Function 06H
cmp al,00H ;was a char. typed?
jne stop ;yes, stop the timer
jmp read-clock :no keep timer on
stop: read-kbd ;see Function 08H

jmp func-2DH ;keep displaying time

1-96

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS
Set/Reset Verify Flag (Function 2EH)

Call

AH =2EH

AL
00H = Do not verify
01H = Verify

Return
None

AL must be either 1 (verify after each disk write) or 0 (write without
verifying). MS-DOS checks this flag each time it writes to a disk.
The flag is normally off; you may wish to turn it on when writing
critical data to disk. Because disk errors are rare and verification slows
writing, you will probably want to leave it off at other times.

Macro Definition: verify macro switch
mov al,switch
mov ah,2EH
int 21H
endm

Example

The following program copies the contents of a single-sided disk in
drive A: to the disk in drive B:, verifying each write. It uses a buffer of
32K bytes:

on equ 1

off equ 0

prompt db “Source in A, target in B”,13,10
db “Any key to start. $”

start dw 0

buffer db 64 dup (512 dup(?)) ;64 sectors

func-2DH: display prompt :see Function 09H

read-kbd :see Function 08H
verify on ;THIS FUNCTION
mov cX,5 ;coby 64 sectors

;5 times

copy: push cX ;save counter
abs-disk-read 0,buffer,64,start
;see Interrupt 25H
abs-disk-write 1,buffer,64,start
;see Interrupt 26H
add start,64 ;do next 64 sectors
pop cX ;restore counter
loop copy ;do it again
verify off ;THIS FUNCTION
disk-read 0,buffer,64,start ;see Interrupt 25H

1-98

abs-disk-write 1,buffer,64,start
;see Interrupt 26H

add start,64 ;do next 64 sectors
pop cX ;restore counter
loop copy ;do it again

verify off

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS
Get Disk Transfer Address (Function 2FH)

Call
AH = 2FH

Return

ES:BX
Points to Disk Transfer Address

Function 2FH returns the Disk Transfer Address.

Error returns:

None.

Example
mov ah,2FH
int 21H

;es:bx has current Disk Transfer Address

1-99

Get DOS Version Number (Function 30H)

Call
AH = 30H
Return
AL
Major version number
AH

Minor version number

This function returns the MS-DOS version number. On return,
AL.AH will be the two-part version designation; i.e., for MS-DOS
1.28, AL would be 1 and AH would be 28. For pre-1.28, DOS AL =0.
Note that version 1.1 is the same as 1.10, not the same as 1.01.

Error returns:

None.

Example
mov ah,30
int 21H

; al is the major version number

; ah is the minor version number
; bh is the OEM number

; bl:cx is the (24 bit) user number

1-100

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS
Keep Process (Function 31H)

Call
AH = 31H
AL
Exit code
DX
Memory size, in paragraphs

Return
None

This call terminates the current process and attempts to set the initial
allocation block to a specific size in paragraphs. It will not free up any
other allocation blocks belonging to that process. The exit code
passed in AX is retrievable by the parent via Function 4DH.

This method is preferred over Interrupt 27H and has the advantage of
allowing more than 64K to be kept.

Error returns:

None.

Example
mov al, exitcode
mov dx, parasize
mov ah, 31H

int 21H

1-101

CONTROL-C Check (Function 33H)

Call

AH = 33H

AL
Function

00H =Request current state
01H = Set state
DL (if setting)

00H = Off
01H=0On
Return
DL
00H = Off
01H=0On

MS-DOS ordinarily checks for a CONTROL-C on the controlling
device only when doing function call operations 01H-OCH to that
device. Function 33H allows the user to expand this checking to
include any system call. For example, with the CONTROL-C trapping
off, all disk 1/0 will proceed without interruption; with CONTROL-C
trapping on, the CONTROL-C interrupt is given at the system call
that initiates the disk operation.

NOTE

Programs that wish to use calls 06H or 07H
to read CONTROL-Cs as data must ensure
that the CONTROL-C check is off.

Error return:
AL = FF
The function passed in AL was not in the range 0:1.

Example
mov dl,val
mov ah,33H

mov al,func

1-102

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS
int 21H

; If al was 0, then dl has the current value
;of the CONTROL-C check

1-103

Get Interrupt Vector (Function 35H)

Call
AH = 35H
AL
Interrupt number

Return
ES:BX
Pointer to interrupt routine

This function returns the interrupt vector associated with an inter-
rupt. Note that programs should never get an interrupt vector by
reading the low memory vector table directly.

Error returns:

None.

Example
mov ah,35H
mov al.interrupt
int 21H

; es:bx now has long pointer to interrupt routine

1-104

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS

Get Disk Free Space (Function 36H)

Call
AH = 36H
DL
Drive (0 = Default,
1=A etc)
Return
BX
Available clusters
DX
Clusters per drive
CX
Bytes per sector
AX

FFFF if drive number is invalid;
otherwise sectors per cluster

This function returns free space on disk along with additional infor-
mation about the disk.

Error returns:
AX = FFFF
The drive number given in DL was invalid.

Example
mov ah,36H
mov dl,Drive ;0 = default, A =1
int 21H

; bx =Number of free allocation units on drive
; dx = Total number of allocation units on drive
; X = Bytes per sector

; ax = Sectors per allocation unit

1-105

Return Country-Dependent Information (Function 38H)
Call
AH = 38H
DS:DX
Pointer to 32-byte memory area
AL
Function code. In MS-DOS 2.0,
must be 0

Return
Carry set:
AX
2 = file not found
Carry not set:
DX:DS filled in with country data

The value passed in AL is either 0 (for current country) or a country
code. Country codes are typically the international telephone prefix
code for the country.

If DX = -1, then the call sets the current country (as returned by the
AL = 0 call) to the country code in AL. If the country code is not
found, the current country is not changed.

NOTE

Applications must assume 32 bytes of infor-
mation. This means the buffer pointed to by
DS:DX must be able to accommodate 32
bytes.

This function is fully supported only in versions of MS-DOS 2.01 and
higher. It exists in MS-DOS 2.0, but is not fully implemented.

This function returns, in the block of memory pointed to by DS:DX,
the following information pertinent to international applications:

1-106

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS

WORD Date/time format
5 BYTE ASCIZ string currency symbol
2 BYTE ASCIZ string thousands separator
2 BYTE ASCIZ string decimal separator
2 BYTE ASCIZ string date separator
2 BYTE ASCIZ string time separator
1 BYTE Bit field
1 BYTE Currency places
1 BYTE time format
DWORD Case Mapping call
2 BYTE ASCIZ string data list separator

The format of most of these entries is ASCIZ (a NUL terminated
ASCII string), but a fixed size is allocated for each field for easy
indexing into the table.

The date/time format has the following values:

0 - USA standard h:m:s m/d/y
1 - Europe standard h:m:s d/m/y
2 - Japan standard y/m/d h:m:s

The bit field contains 8 bit values. Any bit not currently defined must
be assumed to have a random value.
Bit 0 =0 If currency symbol precedes the currency amount.
= 1 If currency symbol comes after the currency amount.
Bit 1 =0 If the currency symbol immediately precedes the
currency amount,
=1 If there is a space between the currency symbol and
the amount.

1-107

The time format has the following values:

0 - 12 hour time
1 - 24 hour time

The currency places field indicates the number of places which
appear after the decimal point on currency amounts.

The Case Mapping call is a FAR procedure which will perform coun-
try specific lower-to-uppercase mapping on character values from
80H to FFH. It is called with the character to be mapped in AL. It
returns the correct upper case code for that character, if any, in AL.
AL and the FLAGS are the only registers altered. It is allowable to
pass this routine codes below 80H; however nothing is done to cha-
racters in this range. In the case where there is no mapping, AL is not
altered.

Error returns:
AX
2 =file not found
The country passed in AL was not found (no table for
specified country).

Example
1ds dx, blk
mov ah, 38H
mov al, Country-code
int 21H

;AX = Country code of country returned

1-108

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS
Create Sub-Directory (Function 39H)

Call
AH = 39H
DS:DX
Pointer to pathname

Return
Carry set:
AX
3 = path not found
5 =access denied
Carry not set:
No error

Given a pointer to an ASCIZ name, this function creates a new
directory entry at the end.

Error returns:
AX
3 = path not found
The path specified was invalid or not found.
5 =access denied
The directory could not be created (no room in parent
directory), the directory/file already existed or a device
name was specified.

Example
Ids dx, name
mov ah, 39H
int 21H

1-109

Remove a Directory Entry (Function 3AH)

Call
AH = 3AH
DS:DX
Pointer to pathname

Return
Carry set:
AX
3 =path not found
5 =access denied
16 = current directory
Carry not set:
No error

Function 3AH is given an ASCIZ name of a directory. That directory
is removed from its parent directory.

Error returns:
AX
3 = path not found
The path specified was invalid or not found.
5 =access denied
The path specified was not empty, not a directory, the root
directory, or contained invalid information.
16 = current directory
The path specified was the current directory on a drive.

Example
Ids dx, name

mov ah, 3AH
int 21H

1-110

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS
Change the Current Directory (Function 3BH)

Call
AH = 3BH
DS:DX
Pointer to pathname

Return
Carry set:
AX
3 = path not found
Carry not set:
No error

Function 3BH is given the ASCIZ name of the directory which is to
become the current directory. If any member of the specified path-
name does not exist, then the current directory is unchanged. Other-
wise, the current directory is set to the string.
Error returns:
AX
3 = path not found
The path specified in DS:DX either indicated a file or
the path was invalid.

Example
1ds dx, name
mov ah, 3BH
int 21H

1-111

Create a File (Function 3CH)

Call
AH = 3CH
DS:DX
Pointer to pathname
CX
File attribute

Return
Carry set:
AX
5 =access denied
3 = path not found
4 =too many open files
Carry not set:
AX is handle number

Function 3CH creates a new file or truncates an old file to zero length
in preparation for writing. If the file did not exist, then the file is
created in the appropriate directory and the file is given the attribute
found in CX. The file handle returned has been opened for
read/write access.

Error returns:
AX
5 = access denied
The attributes specified in CX contained one that
could not be created (directory, volume ID), a file
already existed with a more inclusive set of attribu-
tes, a directory existed with the same name, or the
path was not found.
3 = path not found
The path specified had a syntax error.
4 = too many open files
The file was created with the specified attributes,
but there were no free handles available for the
process, or the internal system tables were full.

Example

1ds dx, name
mov ah, 3CH
mov cXx, attribute
int 21H

; ax now has the handle
1-112

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS

Open a File (Function 3DH)

Call
AH = 3DH
AL

Access

0 = File opened for reading
1 =File opened for writing
2 =File opened for both
reading and writing

Return
Carry set:
AX
12 = invalid access
2 = file not found
S =access denied
4 =too many open files
Carry not set:
AX is handle number

Function 3DH associates a 16-bit file handle with a file.
The following values are allowed:

ACCESS Function
0 file is opened for reading
1 file is opened for writing
2 file is opened for both reading and writing.

DS:DX point to an ASCIZ name of the file to be opened.
The read/write pointer is set at the first byte of the file and the record

size of the file is 1 byte. The returned file handle must be used for
subsequent I/0 to the file.

1-113

Error returns:
AX
12 =invalid access
The access specified in AL was not in the range 0:2.
2 = file not found
The path specified was invalid or not found.
5 =access denied
The user attempted to open a directory or volume-id, or
open a read-only file for writing.
4 =too many open files
There were no free handles available in the current
process or the internal system tables were full.

Example
1ds dx, name
mov ah, 3DH
mov al, access
int 21H
; ax has error or file handle
; If successful open

1-114

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS

Close a File Handle (Function 3EH)

Call
AH = 3EH
BX

File handle

Return
Carry set:
AX
6 = invalid handle
Carry not set:
No error

In BX is passed a file handle (like that returned by Functions 3DH,
3CH, or 45H), Function 3EH closes the associated file. Internal buf-
fers are flushed.

Error return:
AX
6 = invalid handle
The handle passed in BX was not currently open.

Example
mov bx, handle
mov ah, 3EH
int 21H

1-115

Read From File/Device (Function 3FH)

Call
AH = 3FH
DS:DX

Pointer to buffer
CX

Bytes to read
BX

File handle

Return
Carry set:
AX
Number of bytes read
6 =invalid handle
S =error set:
Carry not set:
AX = number of bytes read

Function 3FH transfers count bytes from a file into a buffer location.
It is not guaranteed that all count bytes will be read; for example,
reading from the keyboard will read at most one line of text. If the
returned value is zero, then the program has tried to read from the
end of file.

All I/0 is done using normalized pointers; no segment wraparound
will occur.

Error returns:
AX
6 = invalid handle
The handle passed in BX was not currently open.
5 =access denied
The handle passed in BX was opened in a mode that
did not allow reading.

Example
1ds dx, buf
mov cX, count
mov bx, handle
mov ah, 3FH
int 21H

; ax has number of bytes read

1-116

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS

Write to a File or Device (Function 40H)

Call
AH = 40H
DS:DX

Pointer to buffer
CX

Bytes to write
BX

File handle

Return
Carry set:
AX
Number of bytes written
6 = invalid handle
5 = access denied
Carry not set:
AX = number of bytes written

Function 40H transfers count bytes from a buffer into a file. It should
be regarded as an error if the number of bytes written is not the same
as the number requested.

The write system call with a count of zero (CX = 0) will set the file
size to the current position. Allocation units are allocated or released
as required.

All I/0 is done using normalized pointers; no segment wraparound
will occur.

Error returns:
AX
6 = invalid handle
The handle passed in BX was not currently open.
5 =access denied
The handle was not opened in a mode that allowed

writing.
Example
Ids dx, buf
mov cx, count
mov bx, handle
mov ah, 40H
int 21H

;ax has number of bytes written

1-117

Delete a Directory Entry (Function 41H)

Call
AH = 41H
DS:DX
Pointer to pathname

Return
Carry set:
AX
2 =file not found
5 =access denied
Carry not set:
No error

Function 41H removes a directory entry associated with a filename.
Error returns:
AX
2 =file not found
The path specified was invalid or not found.
5 =access denied
The path specified was a directory or read-only.

Example
lds dx, name
mov ah, 41H

int 21H

1-118

MS-DOS PROGRAMMER'S MANUAL

Move File Pointer (Function 42H)

Call
AH = 42H
CX:DX

Distance to move, in bytes
AL

Method of moving:

(see text)
BX

File handle

Return
Carry set:
AX
6 = invalid handle
1 = invalid function
Carry not set:

DX:AX = new pointer location

SYSTEM CALLS

Function 42H moves the read/write pointer according to one of the
following methods:

Method Function
The pointer is moved to offset bytes from the be-

0
1

2

ginning of the file.

The pointer is moved to the current location plus

offset.

The pointer is moved to the end of file plus offset.

Offset should be regarded as a 32-bit integer with CX occupying the
most significant 16 bits.

Error
AX

returns:

6 = invalid handle
The handle passed in BX was not currently open.
1 = invalid function
The function passed in AL was not in the range 0:2.

Example
mov
mov
mov
mov
mov
int

; dx:ax has the new location of the pointer

dx, offsetlow
cx, offsethigh
al, method
bx, handle
ah, 42H

21H

1-119

Change Attributes (Function 43H)

Call
AH = 43H
DS:DX

Pointer to pathname
CX (if AL =01)

Attribute to be set
AL

Function

01 Set to CX

00 Return in CX

Return
Carry set:
AX
3 = path not found
S =access denied
1 =invalid function
Carry not set:
CX attributes (if AL = 00)

Given an ASCIZ name, Function 42H will set/get the attributes of
the file to those given in CX.
A function code is passed in AL:
AL Function
0 Return the attributes of the file in CX.
1 Set the attributes of the file to those in CX.

Error returns:
AX
3 = path not found
The path specified was invalid.
S =access denied
The attributes specified in CX contained one that could
not be changed (directory, volume ID).
1 = invalid function
The function passed in AL was not in the range 0:1.

Example
1ds dx, name
mov cX, attribute
mov al, func
int ah, 43H
int 21H

1-120

MS-DOS PROGRAMMER’S MANUAL SYSTEM CALLS

I/0 Control for Devices (Function 44H)

Call

AH = 44H

BX
Handle

BL

Drive (for calls AL =4, 5
0 = default, 1 = A, etc.)
DS:DX
Data or buffer
CX
Bytes to read or write
AL
Function code; see text
Return
Carry set:
AX
6 = invalid handle
1 =invalid function
13 =invalid data
S =access denied
Carry not set:

AL=2345
AX = Count transferred
AL=6,7
00 = Not ready
FF = Ready

Function 44H sets or gets device information associated with an open
handle, or send/receives a control string to a device handle or device.

The following values are allowed for function:

Request Function

Get device information (returned in DX)

Set device information (as determined by DX)

Read CX number of bytes into DS:DX from device control
channel.

Write CX number of bytes from DS:DX to device control
channel.

Same as 2 only drive number in BL 0=default,A:=1B:=2,...
Same as 3 only drive number in BL O=default, A:=1,B:=2,...
Get input status

Get output status

This function can be used to get information about device channels.
Calls can be made on regular files, but only calls 0,6 and 7 are defined
in that case (AL=0,6,7). All other calls return an invalid function error.

NO OV A w N = O

1-121

Calls AL=0 and AL=1
The bits of DX are defined as follows for calls
AIL=0 and AL=1. Note that the upper byte MUST be zero on a

set call.
15 14 13 12 11 10 9 8|7 6 5 4 3 2 1 0
R|cC IJE{R|IS]T U1]|
e | T s|o|lA|P|S|s]|s|s
s | R Reserved DIFIW|JE|C|INfC|C
L E clL]ulo] 1
Vv LIK[L|T|N
ISDEV =1 if this channel is a device
=0 if this channel is a disk file (Bits 8-15 = 0 in this
case)
If ISDEV =1
EOF =0if End Of File on input
RAW =1 if this device is in Raw mode
=0 if this device is cooked
ISCLK =1 if this device is the clock device
ISNUL =1 if this device is the null device
ISCOT =1 if this device is the console output
ISCIN =1 if this device is the console input
SPECL =1 if this device is special
CTRL =0 if this device can not do control strings via
calls AL=2 and AL=3.
CTRL =1 if this device can process control strings via
calls AL=2 and AL=3.
NOTE that this bit cannot be set.
If ISDEV =0
EOF =0 if channel has been written
Bits (-5 are the block device number for the channel
0=A:,1=B:..)
Bits 15,8-13,4 are reserved and should not be altered.
Calls 2..5:

These four calls allow arbitrary control strings to be sent or
received from a device. The call syntax is the same as the read
and write calls, except for 4 and 5, which take a drive number in
BL instead of a handle in BX.

1-122

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS

An invalid function error is returned if the CTRL bit (see
above) is 0.
An access denied is returned by calls AL=4,5 if the drive num-
ber is invalid.
Calls 6,7:
These two calls allow the user to check if a file handle is ready
for input or output. Status of handles open to a device is the
intended use of these calls, but status of a handle open to a disk
file is allowed, and is defined as follows:
Input:
Always ready (AL=FF) until EOF reached, then always
not ready (AL=0) unless current position changed via
LSEEK.
Output:
Always ready (even if disk full).

IMPORTANT

The status is defined at the time the system
is CALLED. On future versions, by the time
control is returned to the user from the
system, the status returned may NOT cor-
rectly reflect the true current state of the
device or file.

Error returns:
AX
6 =invalid handle
The handle passed in BX was not currently open.
1 =invalid function
The function passed in AL was not in the range 0:7.
13 =invalid data
5 =access denied (calls AL=4..7)

1-123

Example
mov
(or mov

mov
(or 1ds
mov
mov
mov
int

bx, Handle
bl, drive

dx, Data
dx, buf
¢x, count
ah, 44H
al, func
21H

for calls AL=4,5
O=default,A:=1...)

and
for calls AL=23.4.5)

; For calls AL=23,45 AX is the number of bytes
; transferred (same as READ and WRITE).

; For calls AL=6,7 AL is status returned, AL=0 if
; status is not ready, AL=0FFH otherwise.

1-124

MS-DOS PROGRAMMER’S MANUAL SYSTEM CALLS
Duplicate a File Handle (Function 45H)

Call
AH = 45H
BX

File handle

Return
Carry set:
AX
6 = invalid handle
4 =too many open files
Carry not set:
AX = new file handle

Function 45H takes an already opened file handle and returns a new
handle that refers to the same file at the same position.

Error returns:
AX
6 = Invalid handle
The handle passed in BX was not currently open.
4 =too many open files
There were no free handles available in the current
process or the internal system tables were full.

Example
mov bx, fh
mov ah, 45H
int 21H

; ax has the returned handle

1-125

Force a Duplicat of a Handle (Function 46H)

Call
AH = 46H
BX
Existing file handle
CX
New file handle
Return
Carry set:
AX

6 =invalid handle

4 =too many open files
Carry not set:

No error

Function 46H takes an already opened file handle and returns a new
handle that refers to the same file at the same position. If there was
already a file open on handle CX, it is closed first.

Error returns:
AX
6 =invalid handle
The handle passed in BX was not currently open.
4 =too many open files
There were no free handles available in the current
process or the internal system tables were full.

Example
mov bx, fh
mov cx, newfh
mov ah, 46H
int 21H

1-126

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS
Return Text of Current Directory (Function 47H)

Call
AH=47TH
DS:SI
Pointer to 64-byte memory area
DL
Drive number

Return
Carry set:
AX
15 = invalid drive
Carry not set:
No error

Function 47H returns the current directory for a particular drive. The
directory is root-relative and does not contain the drive specifier or
leading path separator. The drive code passed in DL is O=default,
1=A:, 2=B:, etc.

Error returns:
AX
15 = invalid drive
The drive specified in DL was invalid.

Example
mov ah, 47TH
Ids si,area
mov dl,drive
int 21H

; ds:si is a pointer to 64 byte area that
; contains drive current directory.

1-127

Allocate Memory (Function 48H)

Call
AH = 48H
BX
Size of memory to be allocated

Return
Carry set:
AX
8 = not enough memory
7 = arena trashed
BX
Maximum size that could be allocated
Carry not set:
AX:0
Pointer to the allocated memory

Function 48H returns a pointer to a free block of memory that has the
requested size in paragraphs.

Error return:
AX
8 = not enough memory
The largest available free block is smaller than that
requested or there is no free block.
7 = arena trashed
The internal consistency of the memory arena has been
destroyed. This is due to a user program changing me-
mory that does not belong to it.

Example
mov bx,size
mov ah,48H
int 21H

; ax:0 is pointer to allocated memory
; if alloc fails, bx is the largest block available

1-128

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS
Free Allocated Memory (Function 49H)

Call

AH = 49H

ES
Segment address of memory
area to be freed

Return
Carry set:
AX
9 =invalid block
7 = arena trashed
Carry not set:
No error

Function 49H returns a piece of memory to the system pool that was
allocated by Function Request 48H.

Error return:
AX
9 =invalid block
The block passed in ES is not one allocated via Function
Request 48H.
7 = arena trashed
The internal consistency of the memory arena has been
destroyed. This is due to a user program changing me-
mory that does not belong to it.

Example
mov es,block
mov ah,49H
int 21H

1-129

Modify Allocated Memory Blocks (Function 4AH)

Call
AH = 4AH
-ES
Segment address of memory area
BX
Requested memory area size
Return
Carry set:
AX

9 =invalid block

7 = arena trashed

8 =not enough memory
BX

Maximum size possible
Carry not set:

No error

Function 4AH will attempt to grow/shrink an allocated block of
memory.

Error return:
AX
9 =invalid block
The block passed in ES is not one allocated via this
function.
7 = arena trashed
The internal consistency of the memory arena has been
destroyed. This is due to a user program changing me-
mory that does not belong to it.
8 = not enough memory
There was not enough free memory after the specified
block to satisfy the grow request.

Example
mov es,block
mov bx,newsize
mov ah 4AH
int 21H

; if setblock fails for growing, BX will have the
; maximum size possible

1-130

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS
Load and Execute a program (Function 4BH)

Call
AH = 4BH
DS:DX
Pointer to pathname
ES:BX
Pointer to parameter block
AL
00 = Load and execute program
03 =Load program

Return
Carry set:
AX
1 =invalid function
10 = bad environment
11 = bad format
8 = not enough memory
2 = file not found
Carry not set:
No error

This function allows a program to load another program into memory
and (default) begin execution of it. DS :DX points to the ASCIZ name
of the file to be loaded. ES:BX points to a parameter block for the
load.

A function code is passed in AL:

AL Function

0 Load and execute the program. A program header is
established for the program and the terminate and CON-
TROL-C addresses are set to the instruction after the
EXEC system call.

3 Load (do not create) the program header, and do not

begin execution. This is useful in loading program over-
lays.

1-131

For each value of AL, the block has the following format:

AL = 0 —> load/execute program

WORD segment address of environment.

DWORD pointer to command line at 80H

DWORD pointer to default FCB to be passed
at 5CH

DWORD pointer to default FCB to be passed
at 6CH

AL = 3 —> load overlay

WORD segment address where file will be
loaded.

WORD relocation factor to be applied to the
image.

Note that all open files of a process are duplicated in the child process
after an EXEC. This is extremely powerful; the parent process has
control over the meanings of stdin, stdout, stderr, stdaux and stdprn.
The parent could, for example, write a series of records to a file, open
the file as standard input, open a listing file as standard output and
then EXEC a sort program that takes its input from stdin and writes to
stdout.

Also inherited (or passed from the parent) is an “environment”. This
is a block of text strings (less than 32K bytes total) that convey various
configurations parameters. The format of the environment is as
follows:

1-132

MS-DOS PROGRAMMER’'S MANUAL SYSTEM CALLS

(paragraph boundary)

BYTE ASCIZ string 1
BYTE ASCIZ string 2

BYTE ASCIZ string n
BYTE of zero

Typically the environment strings have the form:
parameter = value
For example, COMMAND.COM might pass its execution search
path as:
PATH = A:XBIN;B:XBASICXLIB

A zero value of the environment address causes the child process to
inherit the parent’s environment unchanged.

Error returns:
AX
1 = invalid function
The function passed in AL was not 0, 1 or 3.
10 = bad environment
The environment was larger than 32Kb.
11 =bad format
The file pointed to by DS:DX was an EXE format file
and contained information that was internally inconsi-
stent.
8 = not enough memory
There was not enough memory for the process to be
created.
2 = file not found
The path specified was invalid or not found.

Example
lds dx, name
les bx, blk

mov ah, 4BH
mov al, func
int 21H

1-133

Terminate a Process (Function 4CH)

Call
AH = 4CH
AL

Return code

Return
None

Function 4CH terminates the current process and transfers control to
the invoking process. In addition, a return code may be sent. All files
open at the time are closed.

This method is preferred over all others (Interrupt 20H, JMP 0) and
has the advantage that CS:0 does not have to point to the Program
Header Prefix.

Error returns:
None.

Example
mov al, code
mov ah, 4CH
int 21H

1-134

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS
Retrieve the Return Code of a Child (Function 4DH)

Call
AH = 4DH

Return
AX
Exit Code

Function 4DH returns the Exit code specified by a child process. It
returns this Exit code only once. The low byte of this code is that sent
by the Exit routine. The high byte is one of the following:

0 = Terminate/abort

1 =CONTROL-C

2 = Hard error

3 =Terminate and stay resident

Error returns:

None.
Example
mov ah, 4DH
int 21H

; ax has the exit code

1-135

Find Match File (Function 4EH)

Call
AH = 4EH
DS:DX
Pointer to pathname
CX
Search attributes

Return
Carry set:
AX
2 = file not found
18 = no more files
Carry not set:
no error

Function 4EH takes a pathname with wild card characters in the last
component (passed in DS:DX), a set of attributes (passed in CX) and
attempts to find all files that match the pathname and have a subset of
the required attributes. A datablock at the current Disk Transfer
Address is written that contains information in the following form:

find-buf-reserved DB 21 DUP (?); Reserved*

find-buf-attr DB ? ; attribute found
find-buf-time DW ? ; time
find-buf-date DW ? : date
find-buf-size-1 DW ? : low(size)
find-buf-size-h DW ? ; high(size)

find-buf-pname DB i3 DUP (?) ; packed name
find-buf ENDS

*Reserved for MS-DOS use on subsequent find-nexts

To obtain the subsequent matches of the pathname, see the descrip-
tion of Function 4FH.

Error returns:
AX
2 = file not found
The path specified in DS:DX was an invalid path.
18 = no more files
There were no files matching this specification.

1-136

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS

Example
mov ah, 4EH
lds dx, pathname
mov cX, attr
int 21H

; Disk Transfer Address has datablock

1-137

Step Through a Directory Matching Files (Function 4FH)

Call
AH = 4FH

Return
Carry set:
AX
18 = no more files
Carry not set:
No error

Function 4FH finds the next matching entry in a directory. The
current Disk Transfer Address must point at a block returned by
Function 4EH (see Function 4EH).

Error returns:
AX
18 = no more files
There are no more files matching this pattern.

Example
; Disk Transfer Address points at area returned by Function
4EH
mov ah, 4FH
int 21H

; next entry is at Disk Transfer Address

k]

1-138

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS
Return Current Setting of Verify After Write Flag (Function 54H)

Call
AH = 54H

Return
AL
Current verify flag value

The current value of the verify flag is returned in AL.
Error returns:

None.
Example
mov ah, 54H
int 21H

; al is the current verify flag value

1-139

Move a Directory Entry (Function 56H)

Call
AH = 56H
DS:DX

Pointer to pathname of
existing file

ES:DI
Pointer to new pathname

Return
Carry set:
AX
2 = file not found
17 = not same device
S =access denied
Carry not set:
No error

Function 56H attempts to rename a file into another path. The paths
must be on the same device.

Error returns:
AX
2 =file not found
The file name specifed by DS:DX was not found.
17 = not same device
The source and destination are on different drives.
S =access denied
The path specified in DS:DX was a directory or the file
specified by ES:DI exists or the destination directory
entry could not be created.

Example
Ids dx, source
les di, dest
mov ah, S6H
int 21H

1-140

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS

Get/Set Date/Time of File (Function 57H)

Call

AH =57H

AL
00 = get date and time
01 = set date and time

BX
File handle
CX (if AL =01)

Time to be set
DX (if AL = 01)
Date to be set

Return
Carry set:
AX
1 =invalid function
6 = invalid handle
Carry not set:
No error
CX/DX set if function 0

Function 57H returns or sets the last-write time for a handle. These
times are not recorded until the file is closed.
A function code is passed in AL:

AL Function
0 Return the time/date of the handle in CX/<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>