
CHAPTER 4

MS-DOS CONTROL BLOCKS AND WORK AREAS

kjc,(2_ 005

GOine .

MS-DOS CONTROL BLOCKS AND WORK AREAS

CHAPTER 4

MS-DOS CONTROL BLOCKS AND WORK AREAS

TYPICAL MS-DOS MEMORY MAP4.1

Interrupt vector table

Optional extra apace (used by NCR for ROM data area)

IO.SYS - MS-DOS interface to hardware

handlers, service routines

MS-DOS buffers, control areas, and installed device drivers

External command or utility - (.COM

User stack for .COM files (256 bytes)

Command interpreter,

availableof

4-1

for
23BProcess

24H

MSDOS.SYS - MS-DOS interrupt
(Interrupt 21H functions)

Transient part of COMMAND.COM
internal commands, batch processor

User memory is allocated from the lowest end
memory that will meet the allocation request.

or .EXE file)

Resident part of COMMAND.COM - Interrupt handlers
Interrupts 22H (Terminate Process Exit Address),
(Ctrl-Break Handler Address), 24H (Critical Error
Handler Address) and code to reload the transient part

COMMAND.COM
COMMAND.COM

MS-DOS CONTROL BLOCKS AND WORK AREAS

4.2 MS-DOS PROGRAM SEGMENT

of
the program.

system
block.

1. By issuing

AH=31H (Keep21H with2. Interruptan

3. 0 in the Program Segment

4. at

5. and

I Note

1

4-2

II

By issuing
Process)

By issuing
the PSP

Methods 1 and 2 are preferred for both functionality
and best operation in future versions of MS-DOS.

A long jump to offset
Prefix

MS-DOS builds the
The program returns

an Interrupt 20H with CS:O pointing

an Interrupt 21H with AH=4CH

At offset 0 within the Program Segment,
Program Segment Prefix control block,
from EXEC by one of five methods:

By issuing an Interrupt 21H with register AH=0
with CS:0 pointing at the PSP.

The first 256 bytes of the Program Segment are set up by the
EXEC system call for the program being loaded into memory.
The program is then loaded following this block. An .EXE
file with minalloc and maxalloc both set to zero is loaded
as high as possible.

When an external command is typed, or when you execute a
program through the EXEC system call, MS-DOS determines the
lowest available free memory address to use as the start

This area is called the Program Segment.

MS-DOS CONTROL BLOCKS AND WORK AREAS

the

conditionsthe following

For all programs:

environment
in

stringsASCII

NAME=parameter

4-3

When a program receives control,
are in effect:

COMMAND.COM,
If a batch file

file
concatenated

passed environment is
the Program Segment

The segment address of the
contained at offset 2CH
Prefix.

Following the last byte of zeros is a set of
initial arguments passed to a program that contains
a word count followed by an ASCIZ string. If the
file is found in the current directory, the ASCIZ
string contains the drive and pathname of the
executable program as passed to the EXEC function
call. If the file is found in the path, the
filename is concatenated with the information in

The environment is a series of
(totaling less than 32K) in the form:

All five methods result in transferring control to the
program that issued the EXEC. Using method 1 or 2 allows a
completion code to be returned. During this returning
process, Interrupts 22H, 23H, and 24B (Terminate Process
Exit Address, Ctrl-Break Handler Address, and CriticalError
Handler Address) addresses are restored from the values
saved in the Program Segment Prefix of the terminating
program. Control is then given to the terminate address.
If this is a program returning to COMMAND.COM, control
transfers to its resident portion. If a batch file was in
process, it is continued; otherwise, COMMAND.COM performs a
checksum on the transient part, reloads it if necessary,
then issues the system prompt and waits for you to type
next command.

Each string is terminated by a byte of zeros, and
the set of strings is terminated by another byte of
zeros.

COMMAND.COM
COMMAND.COM
COMMAND.COM

MS-DOS CONTROL BLOCKS AND WORK AREAS

determine

a

4-4

The Disk Transfer
(default DTA in

80H
At

file

the path. Programs may use this area to
where the program was loaded.

at
80H set to the number of characters. If the <, >,
or parameters were typed on the command line, they
(and the filenames associated with them) will not
appear in this area; redirection of standard input
and output is transparent to applications.

The environment built by the command processor
contains at least a COMSPEC= string (the parameters
on COMSPEC define the path used by MS-DOS to locate
COMMAND.COM on disk). The last Path and Prompt
commands issued will also be in the environment,
along with any environment strings defined with the
MS-DOS Set command.

An unformatted parameter area at 81H contains all
the characters typed after the command (including
leading and imbedded delimiters), with the byte

set to the number of characters.

Address (DTA) is set to
DTA in the Program Segment Prefix).

5CH and 6CH in the Program Segment Prefix are
control blocks. These are formatted from the first
two parameters, typed when the command was entered.
If either parameter contained a pathname, then the
corresponding FCB contains only the valid drive
number. The filename field will not be valid.

The environment that is passed is a copy of the
invoking process environment. If your application
uses a "keep process" concept, you should be aware
that the copy of the environment passed to you is
static. That is, it will not change even if
subsequent Set, Path, or Prompt commands are
issued. Conversely, any modification of the passed
environment by the application will not be
reflected in the parent process environment. For
instance, a program cannot change the MS-DOS
environment values as the Set command does.

COMMAND.COM

MS-DOS CONTROL BLOCKS AND WORK AREAS

number of bytes

For Executable (.EXE) programs:

the valuesto

For Executable (.COM) programs:

If

The Instruction Pointer (IP) is set to 100H.

4-5

CS,IP,SS, and SP registers are set
set by MS-LINK in the .EXE image.

DS and ES registers are set to point to the Program
Segment Prefix.

Offset 2 (one word) contains the segment address of
the first byte of unavailable memory. Programs
must not modify addresses beyond this point unless
they were obtained by allocating memory via the
Allocate Memory system call (Function Request 48H).

Offset 6 (one word) contains the
available in the segment.

AL=FF if the first parameter contained an
invalid drive specifier (otherwise AL=00)

AH=FF if the second parameter contained an
invalid drive specifier (otherwise AH=00)

All of user memory is allocated-to the program,
the program invokes another program through
Function Request 4BH, it must first free some
memory through the Set Block (4AH) function call,
to provide space for the program being executed.

Register AX indicates whether or not the drive
specifiers (entered with the first two parameters)
are valid, as follows:

All four segment registers contain the segment
address of the initial allocation block that starts
with the Program Segment Prefix control block.

MS-DOS CONTROL BLOCKS AND WORK AREAS

program's segment.

4-6

The Stack Pointer register is set to the end of the
The segment size at offset 6 is

reduced by 100H to allow for a stack of that size.

A word of zeros is placed on top of the stack.
This is to allow a user program to exit to
COMMAND.COM by doing a RET instruction last. This
assumes, however, that the user has maintained his
stack and code segments.

Figure 4.1 illustrates the format of the Program Segment
Prefix. All offsets are in hexadecimal.

on top of the
user program to

RET instruction last.

COMMAND.COM

MS-DOS CONTROL BLOCKS AND WORK AREAS

(Offsets in Hex)

INT 20H

I

I

I

Used by MS-DOS

5CH
I

I

I
100

Figure 4.1. Program Segment Prefix

Important

4-7

I
I

I
I

80-

I
I

I
I

II
I

Formatted Parameter Area 1 formatted as standard
unopened FCB 6CH

Formatted Parameter Area 2 formatted as standard
unopened FCB (overlaid if FCB at 5CH is opened)

Unformatted Parameter Area
(default Disk Transfer Area)

Initially contains command invocation line.

I
I

I I
Programs must not alter any part of the Program Segment I
Prefix below offset 5CH. I

Offset add I
I call Function I
1(5 bytes) dispatcher I

error exit address I
(IP, CS) |

I End of
I alloc.
I block

|Reser-| Long
I ved
I

Terminate address
(IP, CS)

I HardI

0 -
I
I

8 -
jSegment addr.l
(Function
I dispatcher

10----------
ICtrl-Break
I exit
I address (CS)I

Ctrl-Break exit I
address (IP) II

CHAPTER 5

.EXE FILE STRUCTURE AND LOADING

.EXE FILE STRUCTURE AND LOADING

CHAPTER 5

.EXE FILE STRUCTURE AND LOADING

Note

The .EXE files produced by MS-LINK consist of two parts:

Control and relocation information

The load module

(Note that offsets are

ContentsOffset

Must contain 4DH, 5AH.00-01

02-03

04-05

5-1

The header is formatted as follows,
in hexadecimal.)

I
I.

Number of bytes contained in last page;
this is useful in reading overlays.

Size of the file in 512-byte pages,
including the header.

the beginning
The load module

I This chapter describes the .EXE file structure.
| Use Function Request 4B00H, Load and Execute a Program, I

to load (or load and execute) an .EXE file.

The control and relocation information is at
of the file in an area called the header,
immediately follows the header.

.EXE FILE STRUCTURE AND LOADING

Number of relocation entries in table.06-07

Size of the header in 16-byte paragraphs.08-09

0A-0B

OC-OD

program.

OE-OF

10-11

12-13

14-15

16-17

18-19

5-2

Value to be loaded into the SP register
before starting program execution.

Initial value to be loaded into the IP
register before starting program
execution.

Relative byte offset from beginning of
run file to relocation table.

Initial value to be loaded into stack
segment before starting program exe­
cution. This must be adjusted by
relocation.

Negative sum of all the words in the
file.

Initial value to be loaded into the CS
register before starting program
execution. This must be adjusted by
relocat ion.

This is used to locate the beginning of
the load module in the file.

Maximum number of 16-byte paragraphs
required above the end of the loaded

If both minalloc and max-
alloc are 0, then the program will
be loaded as high as possible.

Minimum number of 16-byte paragraphs
required above the end of the loaded
program.

.EXE FILE STRUCTURE AND LOADING

1A-1B

is1. of header read into
memory.

2. on

in the lowest3.

4.

5-3

The formatted part of the
Its size is 1BH.

size
(OA-OB and OC-OD).
FFFFH paragraphs.

The load module size is calculated
the header size from the file size,
and 08-09 can be used for this calculation,
actual size is downward-adjusted based on
contents of offsets 02-03.
the high/low loader switch,
is determined at which to load the load
This segment is called the start segment.

by subtracting
Offsets 04-05

this calculation. The
downward-adjusted based on the

Based on the setting of
an appropriate segment

module.

The relocation table follows the
above. This table
relocation items,
a two-byte
value.
module
module is given control,
process:

A Program Segment Prefix is built
part of the allocated memory.

The number of the overlay as generated by
MS-LINK.

A portion of memory is allocated depending on the
of the load module and the allocation numbers

MS-DOS attempts to allocate
This will always fail, returning

the size of the largest free block. If this block
is smaller than minalloc and loadsize, then there
will be no memory error. If this block is larger
than maxalloc and loadsize, MS-DOS will allocate
(maxalloc + loadsize). Otherwise, MS-DOS will
allocate the largest free block of memory.

formatted area described
consists of a variable number of

Each relocation item contains two fields:
offset value, followed by a two-byte segment

These two fields contain the offset into the load
of a word which requires modification before the

The following steps describe this

.EXE FILE STRUCTURE AND LOADING

5.

intoread work6. a

7.

the8.

5-4

The relocation table items are
area.

The load module is read into memory beginning with
the start segment.

Each relocation table item segment value
to the start segment value. This
segment, plus the relocation item offset
points to a word
added the start segment value. The result
placed back into the word in the load module.

is added
calculated

value,
in the load module to which is

is

Once all relocation items have been processed,
SS and SP registers are set from the values in the
header. Then, the start segment value is added to
SS. The ES and DS registers are set to the segment
address of the Program Segment Prefix. The start
segment value is added to the header CS register
value. The result, along with the header IP value,
is the initial CS:IP to transfer to before starting
execution of the program.

CHAPTER 6

INTEL RELOCATABLE OBJECT MODULE FORMATS

INTEL RELOCATABLE OBJECT MODULE FORMATS

CHAPTER 6

INTEL RELOCATABLE OBJECT MODULE FORMATS

INTRODUCTION6.1

6-1

The following table lists the record formats that are
supported by Microsoft. These record formats are described
in this chapter. Record formats that are preceded by an
asterisk (*) deviate from the Intel(R) specification.

The 8086 object module formats permit you to specify
relocatable memory images that may be linked together.
Capabilities are provided that allow efficient use of the
memory mapping facilities of the 8086 microprocessor.

This chapter presents the object record formats that define
the relocatable object language for the 8086 microprocessor.
The 8086 object language is the output of all language
translators that have the 8086 as the target processor and
are to be linked using the Microsoft Linker. The 8086
object language is input and output for object language
processors such as linkers and librarians.

INTEL RELOCATABLE OBJECT MODULE FORMATS

Table 6.1 Object Module Record Formats

6.2 DEFINITION OF TERMS

8086 relocation

OMF - Object Module Formats.

6-2

FIXUP RECORD
^MODULE END RECORD
COMMENT RECORD

T-MODULE HEADER RECORD
LIST OF NAMES RECORD

*SEGMENT DEFINITION RECORD
*GROUP DEFINITION RECORD
*TYPE DEFINITION RECORD

Data Records
LOGICAL ENUMERATED DATA RECORD
LOGICAL ITERATED DATA RECORD

Symbol Definition Records
*PUBLIC NAMES DEFINITION RECORD
*EXTERNAL NAMES DEFINITION RECORD
*LINE NUMBERS RECORD

The following terms are fundamental to the
and linkage.

MAS - Memory Address Space.
(1,048,576).
memory, which may occupy only

The 8086 MAS is
Note that the MAS is distinguished

a

1 megabyte
from actual

portion of the MAS.

INTEL RELOCATABLE OBJECT MODULE FORMATS

code and

Pascal

The following restrictions apply to object modules:

1.

2.

it

6-3

1 inked
that

combined
LSEG.
fit

T-MODULE - A module created by a translator, such as
or FORTRAN.

on a
the

line
This restriction is not

and is not enforced by it.

This means that any byte in
offset from the base

Every module should have a name. Translators will
provide names for T-modules, providing a default
name (possibly the filename or a null name) if
neither source code nor user specifies otherwise.

MODULE - an "inseparable" collection of object
other information produced by a translator.

on a
This
8086

rlapping)
access a

LSEG - Logical Segment - A contiguous region of memory whose
are determined at translation time (except for

nor location in MAS are
size, although
LSEG may be

contents are determined at
address-binding). Neither size
necessarily determined at translation time:
partially fixed, may not be final because the

at LINK time with other LSEGs, forming a single
An LSEG must not be larger than 64K, so that it can

in a FRAME. This means that any byte in an LSEG may be
addressed by a 16-bit offset from the base of a FRAME
covering the LSEG.

FRAME - A contiguous region of 64K of MAS, beginning
paragraph boundary (i.e., on a multiple of 16 bytes),
concept is useful because the content of the four
segment registers defines four (possibly ove
FRAMEs; no 16-bit address in the 8086 code can
memory location outside of the current four FRAMES.

Every T-module in a collection of linked modules
must have a different name, so that symbolic
debugging systems can distinguish the various
numbers and local symbols,
required by the Linker,

INTEL RELOCATABLE OBJECT MODULE FORMATS

FRAME.

a

PARAGRAPH NUMBER - This term is equivalent to FRAME NUMBER.

PSEG NUMBER - This term is equivalent to FRAME NUMBER.

translation

6-4

The Microsoft Linker does not currently allow an LSEG to
a member of more than one group.
attempts to place an LSEG in

exactly
can

FRAME NUMBER - Every FRAME begins
The "paragraphs" in MAS can be
65535.
called FRAME NUMBERS.

The notation "Gr A(X,Y,Z,)" means that LSEGs X, Y and Z form
a group whose name is A. The fact that X, Y and Z are all
LSEGs in the same group does not imply any ordering of X, Y
and Z in MAS, nor does it imply any contiguity be tween X, Y
and Z.

be
The Linker will ignore all

more than one group.

PSEG - Physical Segment - This term is equivalent to
Some people prefer "PSEG" to "FRAME" because the terms
"PSEG" and "LSEG" reflect the "physical" and "logical"
nature of the underlying segments.

CANONIC - Any location in MAS is contained in exactly 4096
distinct FRAMEs; but one of these FRAMES can be
distinguished because it has a higher FRAME NUMBER. This
distinguished FRAME is called the canonic FRAME of the
location. In other words, the canonic frame of a given byte

GROUP - A collection of LSEGs defined at translation time,
whose final locations in MAS have been constrained such that
there will be at least one FRAME that covers (contains)
every LSEG in the collection.

on a paragraph boundary,
numbered from 0 through

These numbers, each of which defines a FRAME, are

INTEL RELOCATABLE OBJECT MODULE FORMATS

at

1.

specifycode2. to

the

6-5

They play a role at LINK time in determining which
LSEGs are combined with other LSEGs.

They are used in assembly source
groups.

SEGMENT NAME -
translation time.

following semantics to
or any class name whose

segments of said class
Such

module

CLASS NAME - LSEGs may optionally be assigned Class Names at
translation time. Classes define a partition on LSEGs: two
LSEGs are in the same class if they have the same Class
Name .■

The Microsoft Linker applies the
class names. The class name "CODE"
suffix is "CODE" implies that all
contain only code and may be considered read-only,
segments may be overlayed if the user specifies
containing the segment as part of an overlay.

OVERLAY NAME - LSEGs may optionally be assigned an overlay
name. The overlay name of an LSEG is ignored by MS-LINK
(version 2.40 and later versions), but it is used by Intel
relocation and Linkage products.

LSEGs are assigned segment names
These names serve two purposes:

is the frame so chosen that the byte's offset from that
frame lies in the range 0 to 15 (decimal). Thus, if FOO is
a symbol defining a memory location, one may speak of the
"canonic FRAME of FOO", or of "FOO's canonic FRAME". By
extension, if S is any set of memory locations, then there
exists a unique FRAME which has the lowest FRAME NUMBER in
the set of canonic FRAMES of the locations in S. This
unique FRAME is called the canonic FRAME of the set S.
Thus, we may speak of the canonic FRAME of an LSEG or of a
group of LSEGs.

INTEL RELOCATABLE OBJECT MODULE FORMATS

Names

MODULE IDENTIFICATION AND ATTRIBUTES6.3

infirst recordalways a
module.

may or may

6.4 SEGMENT DEFINITION

a

6-6

In summary, modules may or may not be main and
not have a starting address.

COMPLETE NAME - The complete name of an LSEG consists of the
Segment Name, Class Name, and Overlay Name. LSEGs from
different modules will be combined if their Complete
are identical.

the attribute of
having a specified starting

only one

A module header record is always the
It provides a module name.

In addition to a name, a module may have
main program as well as
When linking multiple modules together,

being a
address.
module with the main attribute should be given.

A module is a collection of object code defined by a
sequence of records produced by a translator. The object
code represents contiguous regions of memory whose contents
are determined at translation time. These regions are
called LOGICAL SEGMENTS (LSEGs). A module defines the
attributes of each LSEG. The SEGMENT DEFINITION RECORD
(SEGDEF) is the vehicle by which all LSEG information (name,
length, memory alignment, etc.) is maintained. The LSEG
information is required when multiple LSEGs are combined and
when segment addressability (See Section 6.5, "Segment
Addressing") is established. The SEGDEF records are
required to follow the first header record.

INTEL RELOCATABLE OBJECT MODULE FORMATS

SEGMENT ADDRESSING6.5

8086

6-7

unit is
Sect ion

Since such frequent
undesirable, it is
LSEGs together into a
memory frame so
the same base register value.
GROUP and has been
"Definition of Terms."

The 8086 addressing mechanism provides segment base
registers from which a 64K-byte region of memory, called a
FRAME, may be addressed. There is one code segment base
register (CS), two data segment base registers (DS, ES), and
one stack segment base register (SS).

The GRPDEF records within a module must follow all SEGDEF
records as GRPDEF records may reference SEGDEF records in
defining a GROUP. The GRPDEF records must also precede all
other records except header records, as the Linker must
process them first.

loading of base registers is
a good strategy to collect many small
single unit that will fit in one

that all the LSEGs may be addressed using
This addressable unit is a

defined earlier in Section 6.2,

To allow addressability of objects within a GROUP to be
established, each GROUP must be explicitly defined in the
module. The GROUP DEFINITION RECORD (GRPDEF) provides a
list of constituent segments either by segment name or by
segment attribute such as "the segment defining symbol FOO"
or "the segments with class name ROM."

The possible number of LSEGs that may make up a memory image
far exceeds the number of available base registers. Thus,
base registers may require frequent loading. This would be
the case in a modular program with many small data and/or
code LSEGs.

INTEL RELOCATABLE OBJECT MODULE FORMATS

6.6 SYMBOL DEFINITION

6.7 INDICES

9

Note

6-8

I
I

I
I

I
I

I.

is
a

I .

i
I

I

In general, indices must
than

An index is normally a positive number. The index
value zero is reserved, and may carry a special meaning
dependent upon the type of index (e.g., a Segment Index
of zero specifies the "Unnamed," absolute pseudo­
segment; a Type Index of zero specifies the "Untyped
type", which is different from "Decline to state").

assume values quite large (that is,
much larger than 255). Nevertheless, a great number of
object files will contain no indices with values greater
than 50 or 100. Therefore, indices will be encoded in one
or two bytes, as required.

MS-LINK supports three different types of records that fall
into the class of symbol definition records. The two most
important types are PUBLIC NAMES DEFINITION RECORDS
(PUBDEFs) and EXTERNAL NAMES DEFINITION RECORDS (EXTDEFs).
These types are used to define globally visible
and data items and to
addition, TYPDEF records
allocation of communal

procedures
items and to resolve external references. In
TYPDEF records are used by MS-LINK for the

of communal variables (see Section 6.14
'Microsoft Type Representations for Communal Variables").

"Index" fields occur throughout this document. An index
an integer that selects some particular item from
collection of such items. (List of examples: NAME INDEX
SEGMENT INDEX, GROUP INDEX, EXTERNAL INDEX, TYPE INDEX.)

INTEL RELOCATABLE OBJECT MODULE FORMATS

CONCEPTUAL FRAMEWORK FOR FIXUPS6.8

I Note

I

I
8086 translators specify a fixup by giving four data:

The place and type of1.

One of two possible fixup MODEs.2.

6-9

IIII

III
II

IIIIII

some modification to object code, requested by
performed by the Linker, achieving address

A "fixup" is
a translator,
binding.

This definition of "fixup" accurately represents the
viewpoint maintained by the Linker. Nevertheless, the
Linker can be used to achieve modifications of object
code (i.e., "fixups") that do not conform to this
definition. For example, the binding of code to either
hardware floating point or software floating point
subroutines is a modification to an operation code,
where the operation code is treated as if it were an
address. The previous definition of "fixup" is not
intended to disallow or disparage object code
modifications.

a LOCATION to be fixed up.

The high-order (left-most) bit of the first (and possibly
the only) byte determines whether the index occupies one
byte or two. If the bit is 0, then the index is a number
between 0 and 127, occupying one byte. If the bit is 1,
then the index is a number between 0 and 32K-1, occupying
two bytes, and is determined as follows: the low-order 8
bits are in the second byte, and the high-order 7 bits are
in the first byte.

INTEL RELOCATABLE OBJECT MODULE FORMATS

whichaddress3. tomemorya

within which the4.

POINTER,a a

1.

or

2.

3.

4. an
if

6-10

The vertical alignment of the following figure
four points.

pointer (and
the high-order word

LOCATION - There are 5 types
BASE, an OFFSET, a HIBYTE,

illustrates
(Remember that the high-order byte of a word

in 8086 memory is the byte with the higher address.)

A TARGET, which is
LOCATION must refer.

of LOCATION:
and a LOBYTE.

A BASE is the high-order word of a pointer (and the
Linker doesn't care if the low-order word of the
pointer is present or not).

OFFSET (and
low-order half

A LOBYTE is the low-order half of an OFFSET (and
the Linker doesn't care if the high-order half
follows or not).

A HIBYTE is the high-order half of an
the Linker doesn't care if the
precedes or not).

A FRAME defining a context
reference takes place.

An OFFSET is the low-order word of a
the Linker doesn't care if
follows or not).

INTEL RELOCATABLE OBJECT MODULE FORMATS

Pointer:

IBase:

Offset:

IHibyte:

ILobyte:

Figure 6.1. LOCATION Types

second

f ixups:of

that

6-11

■+

I
+

kinds
I!

Self-relative fixups support the 8- and 16-bit offsets
are used in the CALL, JUMP and SHORT-JUMP instructions.
Segment-relative fixups support all other addressing modes
of the 8086.

MODE - The Linker supports two
"self-relative" and "segment-relative.

A LOCATION is specified by two data: (1) the LOCATION type,
and (2) where the LOCATION is. The first is specified by

•the LOC subfield of the LOCAT field of the FIXUP record;
the second is specified by the DATA RECORD OFFSET subfield
of the LOCAT field of the FIXUP record.

INTEL RELOCATABLE OBJECT MODULE FORMATS

theThe TARGET is Dth

theThe Dth

The

bytethe

6-12

BI
of
an

The TARGET is the
whose address is the External Name identified

by the INDEX.

(T6) X is an EXTERNAL INDEX,
byte

(TO) X is a SEGMENT INDEX.
byte in the LSEG identified by the INDEX.

Each secondary way of specifying a
item: the INDEX-or-FRAME-NUMBER
displacement equal to zero is assumed.

(T7) X is a FRAME NUMBER. The TARGET is
whose 20-bit address is (X*16).

byte following the byte whose
(eventually) given by the External Name
by the INDEX.

(T3) X is a FRAME NUMBER. The TARGET is the Dth
byte in the FRAME identified by the FRAME NUMBER
(i.e., the address of TARGET is (X*16)+D).

TARGET uses only one data
X. An implicit

<T2) X is an EXTERNAL INDEX,
following

TARGET - The TARGET is the location in MAS being referenced.
(More explicitly, the TARGET may be considered to be the
lowest byte in the object being referenced.) A TARGET is
specified in one of eight ways. There are four "primary
ways, and four "secondary" ways. Each primary way
specifying a TARGET uses two kinds of data:
INDEX-or-FRAME-NUMBER 'X', and a displacement 'D'.

(T5) X is a GROUP INDEX. The TARGET is the Oth
(first) byte in the LSEG in the specified group
that is eventually LOCATEd lowest in MAS.

(Tl) X is a GROUP INDEX. The TARGET is
byte in the LSEG identified by the INDEX.

(T4) X is a SEGMENT INDEX. The TARGET is the Oth
(first) byte in the LSEG identified by the INDEX.

The TARGET is the Dth
address is
identified

INTEL RELOCATABLE OBJECT MODULE FORMATS

Note

The following nomenclature is used to describe a TARGET:

Sl(<segment name>), <displacement> [TO]TARGET:

GI(<group name>), <displacement> [Tl]TARGET:

[T2]EX(<symbol name>), <displacement>TARGET:

[T4]SI (<segmentTARGET:

[T5]GI (<group name>)TARGET:

El (<symbol name>) [T6]TARGET:

The following examples illustrate how this notation is used:

SI(CODE), 1024TARGET:

GI(DATAAREA)TARGET:

EI(SIN)TARGET:

El(PAYSCHEDULE), 24TARGET:

6-13

The 1025th byte in
the segment "CODE".

The 24th byte
following the location
of an EXTERNAL data
structure called
"PAYSCHEDULE".

I I
| Note
I I

The Microsoft Linker does not support methods T3 and T7.I

The address of the
external subroutine
"SIN".

name>)

The location in MAS of
a group called
"DATAAREA".

INTEL RELOCATABLE OBJECT MODULE FORMATS

is

The six ways of specifying frames are:

o

o

6-14

an i
when

definition is found.

i is
require

some
The

INDEX.
External

X,
Other

(Fl) X is a GROUP INDEX.
FRAME defined by the group (i.
defined by the LSEG in the group that is eventually
LOCATEd lowest in MAS).

relative to
is no associated GROUP.

The FRAME is the canonic
e., the canonic FRAME

FRAME - Every 8086 memory
contained within some FRAME;
by the content of some segment register,
form a
the TARGET is, and to which FRAME
made. Thus,
six ways. Some ways
INDEX-o r-FRAME-NUMBER,
data.

(F2a) The symbol is defined
LSEG, and there
LSEGs canonic FRAME is specified.

(F2) X is
determined

EXTERNAL INDEX. The FRAME is
the External Name's public
There are three cases:

(F0) X is a SEGMENT INDEX. The FRAME is the
canonic FRAME of the LSEG defined by the INDEX.

reference is to a location
where the FRAME is designated

For the Linker to
correct, usable memory reference, it must know what

the reference is being
every fixup specifies such a FRAME, in one of

use data, X, which is in
as above. Other ways require no

(F2b) The symbol is defined absolutely, without
reference to an LSEG, and there is no
associated GROUP. The FRAME is specified by
the FRAME NUMBER subfield of the PUBDEF record
that gives the symbol's definition.

INTEL RELOCATABLE OBJECT MODULE FORMATS

o

obviousthe

of the

TARGET.

ino

o

o
case,

o

6-15

an
the

def ined,
The canonic

(The group is

(F5a) The TARGET specified a SEGMENT INDEX:
this case, the FRAME is determined as in (FO) .

(F3) X is
FRAME).

explicit
FRAME is

an EXTERNAL INDEX:
FRAME is determined as in

a FRAME NUMBER (specifying

(F2c) Regardless of how the symbol is
there is an associated GROUP.
FRAME of the GROUP is specified.
specified by the GROUP INDEX subfield of the
PUBDEF Record.)

' (F5c) The TARGET specified
in this case, the
(F2).

(F5b) The TARGET specified a GROUP INDEX: in
this case, the FRAME is determined as in (Fl).

(F4) No X. The FRAME is the canonic FRAME
LSEG containing LOCATION.

(F5d) The TARGET is specified with
FRAME NUMBER: in this case
determined as in (F3).

(F5) No X. The FRAME is determined by the
There are four cases:

INTEL RELOCATABLE OBJECT MODULE FORMATS

Note
I
I

similar aboveis theto

[FO]SI (<segment name>)FRAME:

[Fl]GI (<group name>)FRAME:

[F2]El (<symbol name>)FRAME:

[F4]LOCATIONFRAME:

[F5]TARGETFRAME:

[F6]FRAME: NONE

6.9 SELF-RELATIVE FIXUPS

6-16

Nomenclature describing FRAMES
nomenclature for TARGETS.

The Microsoft Linker does not support frame methods
F2b, F3, and F5d.

A self-relative fixup operates as follows: A memory address
is implicitly defined by LOCATION; namely the address of
the byte following LOCATION (because at the time of a
self-relative reference, the 8086 IP (Instruction Pointer)
is pointing to the byte following the reference).

For an 8086 memory reference, the FRAME specified by a
self-relative reference is usually the canonic FRAME of the
LSEG containing the LOCATION, and the FRAME specified by a
segment relative reference is the canonic FRAME of the LSEG
containing the TARGET.

INTEL RELOCATABLE OBJECT MODULE FORMATS

added to

SEGMENT-RELATIVE FIXUPS6.10
way:

1.

(modulo2.

6-17

If LOCATION is
65536)

If LOCATION is a BASE, then FBVAL is added
65536) to the BASE; FOVAL is ignored.

If the LOCATION is an OFFSET, the displacement is
LOCATION modulo 65536; no errors are reported.

If the LOCATION is" a BASE, POINTER, or HIBYTE, it is unclear
what the translator had in mind, and the action taken by the
Linker is undefined.

If the LOCATION is a LOBYTE, the displacement must be within
the range {-128:127}, otherwise the Linker will give a
warning.

a POINTER, then FBVAL is added
(modulo 65536) to the high-order word of POINTER,
and FOVAL is added (modulo 65536) to the low-order
word of POINTER.

TARGET are
warning. Otherwise, there is a unique
which, when added to the address
LOCATION, will yield the relative position of TARGET in
FRAME.

{-128:127}, otherwise the Linker
The displacement is added to LOCATION modulo 256.

number, FOVAL,
base of the FRAME to the
number is less
reports an error.
fixup LOCATION in the following fashion:

For 8086 self-relative references, if either LOCATION or
outside the specified FRAME, the Linker gives a

Otherwise, there is a unique 16-bit displacement
when added to the address implicitly defined by

the

A segment-relative fixup operates in the following way: a
non-negative 16-bit number, FBVAL, is defined as the FRAME
NUMBER of the FRAME specified by the fixup, and a signed
20-bit number, FOVAL, is defined as the distance from the

TARGET. If this signed 20-bit
than 0 or greater than 65535, the Linker
Otherwise, FBVAL and FOVAL are used to

INTEL RELOCATABLE OBJECT MODULE FORMATS

3.

4.

5.

6.11 RECORD ORDER

I
Note

6-18

©

IIIII I
II

The syntactic description language used below is
defined in WIRTH: CACM, November 1977 , vol.£20, no.£11,
pp.£822-823. The character strings represented by
capital letters above are not literals but are
identifiers that are further defined in the section
describing the record formats.

I
IIII

If LOCATION is a LOBYTE, then (FOVAL modulo 256) is
added (modulo 256) to the LOBYTE; FBVAL is
ignored.

then FOVAL is added
FBVAL is ignored.

A object code file must contain a sequence of (one or more)
modules, or a library containing zero or more modules. A
module is defined as a collection of object code defined by
a sequence of object records. The following syntax shows
the valid orderings of records to form a module. In
addition, the given semantic rules provide information about
how to interpret the record sequence.

If LOCATION is an OFFSET,
(modulo 65536) to the OFFSET;

If LOCATION is a HIBYTE, then (FOVAL/256) is added
(modulo 256) to the HIBYTE; FBVAL is ignored.
(The indicated division is "integer division",
i.e., the remainder is discarded.)

INTEL RELOCATABLE OBJECT MODULE FORMATS

«= tmoduleobject file

{component}«• THEADR seg-grp modtailtmodule

= {LNAMES} {SEGDEF} {TYPDEF | EXTDEF I GRPDEF}seg_grp

•= data I debug—recordcomponent

data

debug—record = LINNUM

■= data_record {FIXUPP}content—def

FIXUPP (containing only thread fields)thread—def

«= LIDATA I LEDATAdata_record

modtail = MODEND

The following rules apply:

DATA1.

2.

3.

6.12 INTRODUCTION TO THE RECORD FORMATS

inrecordThe following pages present diagrams of formats

6-19

All LNAMES,
records
them.

GRPDEF,
all

A FIXUPP record always refers to the previous
record.

TYPDEF,
records

and EXTDEF
that refer to

in a file,
in a file or

= content—def I thread—def I
TYPDEF | PUBDEF | EXTDEF

SEGDEF,
must precede

COMENT records may appear anywhere
except as the first or last record
module, or within a contentdef.

INTEL RELOCATABLE OBJECT MODULE FORMATS

record format, to

! il IIII

NUMBERNAME

I
MUIII

TITLE and OFFICIAL ABBREVIATION

The BOXES

sizes.

6-20

I
I
I
I

RECORD
LENGTH

I
I
I

I REC |
I TYP |
I xxH |
I I

I
+--- rpt---

SAMPLE RECORD FORMAT
(SAMREC)

I
I CHK
I SUM

I

At the top is the name of the record format described, with
an official abbreviation. To promote uniformity among
various programs, including translators and debuggers, the
abbreviation should be used in both code and documentation.
The record format abbreviation is always six letters.

schematic form. Here is a sample
illustrate the various conventions.

Each format is drawn with boxes of two sizes. The narrow
boxes represent single bytes. The wide boxes represent two
bytes each. The wide boxes with three slashes in the top
and bottom represent a variable number of bytes, one or
more, depending upon content. The wide boxes with four
vertical bars in the top and bottom represent 4-byte fields.

INTEL RELOCATABLE OBJECT MODULE FORMATS

RECTYP

RECORD LENGTH

NAME

subset

NUMBER

6-21

The second field in each record contains the number of bytes
in the record, exclusive of the first two fields.

The first byte in each record contains a value between 0 and
255, indicating which record type the record is.

in the field,
string.

Most translators constrain the character set to be a
of the ASCII character set.

a byte

"NAME"Any field that indicates a "NAME" has the following internal
structure: the first byte contains a number between 0 and
127, inclusive, that indicates the number of remaining bytes

The remaining bytes are interpreted as

A 4-byte NUMBER field represents a 32-bit unsigned integer,
where the first 8 bits (least-significant) are stored in the
first byte (lowest address), the next 8 bits are stored in
the second byte, and so on.

INTEL RELOCATABLE OBJECT MODULE FORMATS

REPEATED OR CONDITIONAL FIELDS

i>

CHKSUM

BIT FIELDS

I ! II I
I II I 1

43 1

6-22

II
I

II
I

record format are present only
these fields are indicated
brackets below the boxes.

Descriptions of contents of fields will sometimes be at
bit level. Boxes with
represent bytes or words;
boundaries; thus the I
bit-fields of 3-, 1-, and 4-bits.

the
i vertical lines drawn through them

the vertical lines indicate bit
byte represented below, has three

Similarly, some portions of a
if some given condition is true;
by similar ’'conditional" or "cond"

Some portions of a record format contain a field or a series
of fields that may be repeated one or more times. Such
portions are indicated by the "repeated" or "rpt" brackets
below the boxes.

a check sum, which contains
of the sum (modulo 256) of all other
Therefore, the sum (modulo 256) of all

The last field in each record is
the 2's complement
bytes in the record.
bytes in the record equals 0.

1 .

INTEL RELOCATABLE OBJECT MODULE FORMATS

III

I
III

translator must have T-MODULEa

T-MODULE NAME

name for the T-MODULE.

Ill

NAME

III

6-23

I I
+ rpt---- *

I
I

I
II

II
II

I
I REC
I TYP
I 96H

IIII

LIST OF NAMES RECORD
(LNAMES)

RECORD
LENGTH

RECORD
LENGTH

T
MODULE
NAME

CHK
SUM

I
I

T-MODULE HEADER RECORD
(THEADR)

I REC |
I TYP I
I 80H |I I

I I
I CHK |
I SUM II II I

Every module output from a
HEADER RECORD.

The T-MODULE NAME provides a

INTEL RELOCATABLE OBJECT MODULE FORMATS

a

NAME

which may have zero

II
IIIIII

6-24

SEGMENT
NAME
INDEX

may
as

be
the

used
names

in
of

SEGMENT DEFINITION RECORD
(SEGDEF)

name,This repeatable field provides a
length.

SEGMENT INDEX values 1 through 32767, which are used in
other record types to refer to specific LSEGs, are defined
implicitly by the sequence in which SEGDEF Records appear in
the object file.

--------------- ///----------------///.
Ill I I
I REC | RECORD | SEGMENT I SEGMENT I
|TYP| LENGTH I ATTR | LENGTH II98HI | | I
III I I

This Record provides a list of names that
following SEGDEF and GRPDEF records
Segments, Classes and/or Groups.

-///--///-----Illi
ICLASSlOVER |CHK|
INAME |LAY ISUMl
I INDEX|NAME |
I I INDEX|
--///—///-

The ordering of LNAMES records within a module, together
with the ordering of names within each LNAMES Record,
induces an ordering on the names. Thus, these names are
considered to be numbered: 1, 2, 3, 4, ... These numbers
are used as "Name Indices" in the Segment Name Index, Class
Name Index and Group Name Index fields of the SEGDEF and
GRPDEF Records.

INTEL RELOCATABLE OBJECT MODULE FORMATS

SEG ATTR

l

relocatable, page-aligned LSEG.a

6-25

I

I

OFF
SET I

I
I

I I
+----conditional—1-

I I II B I P I
I I I

The SEG ATTR field provides information on various
attributes of a segment, and has the following format:

I
A

I

subfield that specifies the
The semantics are defined

I I
I FRAME |
I NUMBER I
I I
I I ------ r—

C

A=0 SEGDEF describes an absolute LSEG.
A=1 SEGDEF describes

I
I ACB
I P
I
I

The ACBP byte contains four numbers which are the A, C, B,
and P attribute specifications. This byte has the following
format:

"A" (Alignment) is a 3-bit
alignment attribute of the LSEG.
as follows:

a relocatable, byte-aligned LSEG.
A=2 SEGDEF describes a relocatable, word-aligned LSEG.
A=3 SEGDEF describes a relocatable, paragraph-aligned

LSEG.
A=4 SEGGDEF describes

INTEL RELOCATABLE OBJECT MODULE FORMATS

present.

data specified

3-bit tha t

denote

Intel

Table 6.2. Combination Attribute Example

dx' dy'C LZ

6-26

2
5
6

dx
dx
dx

dy+LX+G
dy+LX+G
dy

or
combined.
best

Let X,Y

LX+LY+G
LX+LY+G
MXY

be
is

purposes only;
of a ROM
the ROM. MS-LINK will ignore
belonging to an absolute LSEG.

"Public"
"Stack"
"Common"

the alignment attribute of Y.
the (combined) LSEG Z;
of a byte, and let
byte. The following
combined LSEG Z,

If A=0, the FRAME NUMBER and OFFSET fields will be
Using MS-LINK, absolute segments may be used for addressing

for example, defining the starting address
and defining symbolic names for addresses within

any data specified as

"C" (Combination) is a 3-bit subfield
combination attribute of the LSEG.
must have combination zero (C=0).

C field encodes a number
the segment can
of this attribute.

specifies the
Absolute segments (A=0)

zero <C=01. For relocatable segments,
the C field encodes a number (0,1,2,4,5,6 or 7) that
indicates how the segment can be combined. The
interpretation of this attribute. is best given by
considering how two LSEGs are combined; Let X,Y be LSEGs,
and let Z be the LSEG resulting from the combination of X,Y.
Let LX and LY be the lengths of X and Y, and let MXY
the maximum of LX, LY. Let G be the length of any gap
required between the X- and Y-components of Z to accommodate

alignment attribute of Y. Let LZ denote the length of
let dx (0=DXLX) be the offset in X
dy similarly be the offset in Y of a

table gives the length LZ of the
and the offsets dx' and dy' in Z for the

bytes corresponding to dx in X and dy in Y. Intel defines
additionally alignment types 5 and 6 and also processes code
and data placed in segment with align-type.

INTEL RELOCATABLE OBJECT MODULE FORMATS

C=0

field is the

(present only

FRAME

SEGMENT LENGTH

SEGMENT NAME INDEX

6-27

Table 6.2 has no lines for C=0, C=1, C>=3, C=4 and C=7 .
indicates that the relocatable LSEG may not be combined;
C=1 and Ce3 are undefined. C-=4 and C=7 are treated like
C=2. Cl, C4, and C7 all have different meanings according
to the Intel standard.

•ipn

The FRAME
absolute
absolute segment. The range of OFFSET is constrained to be
between 0 and 15 inclusive. If a value larger than 15 is
desired for OFFSET, then an adjustment of the FRAME NUMBER
should be done.

the programmer or translator
Examples: CODE, DATA, TAXDATA,

field provides the Segment
the list of names provided by the

(see
a length of

indicates that
In this case the

"B" (Big) is a 1-bit subfield which, if 1,
the Segment Length is exactly 64K (65536).
SEGMENT LENGTH field must contain zero.

The Segment Name is a name
assigns to the segment.
MODULENAME_CODE, STACK. This
Name, by indexing into
LNAMES Record(s).

The "P"
"Page resident"

field must always be zero. The
field in Intel-Land.

NUMBER and OFFSET fields (present only for
segments, A=0) specify the placement in MAS of the

The range of OFFSET is constrained to
15 inclusive.

The SEGMENT LENGTH field gives the length of the segment in
bytes. The length may be zero; if so, MS-LINK will not
delete the segment from the module. The SEGMENT LENGTH
field is only big enough to hold numbers from 0 to 64K-1
inclusive. The B attribute bit in the ACBP field (see SEG
ATTR section) must be used to give the segment
64K.

INTEL RELOCATABLE OBJECT MODULE FORMATS

CLASS NAME INDEX

OVERLAY NAME INDEX

Note

into

Note

i
6-28

I

II

I
!

I
I

programmer
LSEGs in MAS.

FASTRAM, DISPLAYRAM. '
indexing into the list
Record(s).

The Overlay Name is a name the translator and/or MS-LINK, at
the programmer's request, applies to a segment.
Name, like the Class Name, may be null,
the Overlay Name, by indexing
provided by the LNAMES Record(s).

The Overlay
This field provides
the list of names

I

This is ignored in MS-LINK versions 2.40 and later, but !
supported in all earlier versions. However, semantics
differ from Intel semantics.

The "Complete Name" of a segment is a 3-component
entity comprising a Segment Name, a Class Name and an
Overlay Name. (The latter two components may be null.)

The Class Name is a name the programmer or translator can
assign to a segment. If none is assigned, the name is null,
and has length 0. The purpose of Class Names is to allow
the programmer to define a "handle" used in the ordering of
the LSEGs in MAS. Examples: RED, WHITE, BLUE; ROM

This field provides the Class Name, by
of names provided by the LNAMES

INTEL RELOCATABLE OBJECT MODULE FORMATS

III III

/// III

GROUP NAME INDEX

6-29

II

IIIII
IIIIII

RECORD
LENGTH

field
list

GROUP
NAME
INDEX

I REC
I TYP
I 9AHI

GROUP DEFINITION RECORD
(GRPDEF)

a name
The

GROUP
COMPONENT

I DESCRIPTORI

I
I CHK
I SUMI

The GROUP NAME INDEX
indexing into the
Record(s)•

provides
of names

may
a group is

the Group Name, by
provided by the LNAMES

+—repeated—»•

The Group Name is a name by which a collection of LSEGs
be referenced. The important property of such
that, when the LSEGs are eventually fixed in MAS, there must
exist some FRAME which "covers" every LSEG of the group.

INTEL RELOCATABLE OBJECT MODULE FORMATS

GROUP COMPONENT DESCRIPTOR

Each GROUP COMPONENT DESCRIPTOR has the following format:

III

I

IIIIII

I

III///

6-30

RECORD
LENGTH

NAME
(USUALLY
NULL)

SEGMENT
INDEX

III
I

EIGHT
LEAF

DESCRIPTOR

I
SI II

l(FFH)II I

I I
+—repeated—+

TYPE DEFINITION RECORD
(TYPDEF)

Intel defines 4 other group descriptor types, each with
own meaning. They are OFEH, OFDH, OfBH, and OfAH.
Microsoft Linker will treat all of these values the same
OFFH (i.e., it always
index, and it does not, in fact, check to see if
is actually OFF).

I
I CHK
I SUMII

its
The
as

expects OFFH followed by a segment
the value

The first byte of the DESCRIPTOR
DESCRIPTOR contains one field, which is
selects the LSEG described by a

I I
I REC |
I TYP |
I 8EH II I

contains OFFH; the
a SEGMENT INDEX that

preceding SEGDEF record.

INTEL RELOCATABLE OBJECT MODULE FORMATS

the

are
to

NAME

EIGHT LEAF DESCRIPTOR

This field can describe up to eight Leaves.

Ill

III

6-31

II

II E
N

I I
I LEAF I
I DESCRIPTOR |I II I

The Microsoft Linker uses TYPDEF records only for communal
variable allocation. This is not Intel's intended purpose.
See Section 6.14, "Microsoft Type Representations for
Communal Variables."

I I
+ rpt-----+

Use of this field is reserved. Translators should place a
single byte containing 0 in it (which is the representation
of a name of length zero).

TYPE INDEX values 1 through 32767, which are contained in
other record types to associate object types with object
names, are defined implicitly by the sequence in which
TYPDEF records appear in the object file.

As many "EIGHT LEAF DESCRIPTOR" fields as necessary are used
to describe a branch. (Every such field except the last in
the record describes eight leaves; the last such field
describes from one to eight leaves.)

INTEL RELOCATABLE OBJECT MODULE FORMATS

1 8between and

I

iI
129

I

132

i

6-32

II

IIII

I
1I

II
!

IIIII

o
to
128

0
to

64K-1

-2G-1
to

2G-1

0
to

16M-1

The LEAF DESCRIPTOR field, which occurs
times, has one of the following formats:

I II II 136 I
I

The EN field is a byte: the 8 bits, left to right, indicate
if the following 8 Leaves (left to right) are Easy (bit=0)
or Nice (bit=l).

INTEL RELOCATABLE OBJECT MODULE FORMATS

132,

136,

I
■repeated

6-33

I
IIII

The first format (single byte), containing a value between 0
and 127, represents a Numeric Leaf whose value is the number
given.

RECORD
LENGTH

I

I
I

leading byte containing
The number is contained in the

leading byte containing
The number is contained

CHK |
SUM |

I

I
REC |
TYP |
90H|

I

PUBLIC NAMES DEFINITION RECORD
(PUBDEF)

--- Ill—
I I I
I PUBLIC I TYPE I
I OFFSET I INDEX I
I I I
I I I

The third format, with a
represents a Numeric Leaf,
following three bytes.

The second format, with a
represents a Numeric Leaf,
following two bytes.

I
—///

This record provides a list of one or more PUBLIC NAMEs;
for each one, three data are provided: (1) a base value for
the name, (2) the offset value of the name, and (3) the type
of entity represented by the name.

--- III------- 1II------
I

PUBLIC | PUBLIC
BASE I NAME

I I
—Ill----- III—

The fourth format, with a
represents a Signed Numeric Leaf,
in the following four bytes, sign extended if necessary.

leading byte containing 129,
The number is contained in the

INTEL RELOCATABLE OBJECT MODULE FORMATS

PUBLIC BASE

The PUBLIC BASE has the following format:

IIIIII

I

and

andINDEXSEGMENT

6-34

The FRAME NUMBER is present if both the
GROUP INDEX are zero.

GROUP
INDEX

I SEGMENT
INDEX

FRAME
NUMBER

I

I
I
I

I I
+conditional+

A SEGMENT INDEX of 0 (legal only if GROUP INDEX is
means
record is taken as a
defined by the value in the FRAME NUMBER field.

The SEGMENT INDEX field has
provides a

A non-zero SEGMENT INDEX selects an LSEG.
location of each public symbol
taken as a non-negative displacement
OFFSET
the FRAME NUMBER field must be absent.

I
I

| INDEX J INDEX I
I I I
I I I
---- ///-------- ///---

also 0)
that the location of each public symbol defined in the

displacement from the base of the FRAME

In this case, the
defined in the record is

(given by a PUBLIC
field) from the first byte of the selected LSEG, and

a format given earlier,
number between 0 and 32767, inclusive.

The GROUP INDEX field has a format given earlier, and
provides a number between 0 and 32767 inclusive. A non-zero
GROUP INDEX associates a group with the public symbol, and
is used as described in Section 6.8, ’’Conceptual Framework
for Fixups,” case (F2c). A zero GROUP INDEX indicates that
there is no associated group.

INTEL RELOCATABLE OBJECT MODULE FORMATS

Any fixup of the form:1.

EI(P)TARGET:

FRAME: TARGET

public symbol

SI(L),dTARGET:

GI(G)FRAME:

1!If

in
the as

2.

6-35

(where
record)
the form:

this
a

PUBDEF
fixup of

and "d
PUBLIC

When the value of a public symbol, as defined by
the SEGMENT INDEX, PUBLIC OFFSET, and (optionally)
FRAME NUMBER fields, is converted to a
{base .offset) pair, the base part will be taken as
the base of the indicated group. If a non-negative
16-bit offset cannot then complete the definition
of the public symbol's value, an error occurs.

A GROUP INDEX of zero selects no group. MS-LINK will not
alter the FRAME specification of fixups referencing the
symbol, and will take, as the base part of the absolute
value of the public symbol, the canonic frame of the segment
(either LSEG or PSEG) determined by the SEGMENT INDEX field.

where "SI(L)" and "d" are provided by
INDEX and PUBLIC OFFSET fields,
action would have the frame specifier
fixup be the same as in the old fixup:
TARGET.)

A non-zero GROUP INDEX selects some group; this group is
taken as the "frame of reference" for references to all
public symbols defined in this record; that is, MS-LINK
will perform the following actions:

"P" is a public symbol in
will be converted by MS-LINK to

the SEGMENT
(The "normal"

the new
FRAME:

INTEL RELOCATABLE OBJECT MODULE FORMATS

PUBLIC NAME

PUBLIC OFFSET

the

TYPE INDEX

IIIIII I

III

repeated

6-36

II RECORD
LENGTH

!II TYPE
INDEX

CHK
SUM

IIIII

whose
The

I
I REC
I TYP
I 8CHI

EXTERNAL NAMES DEFINITION RECORD
(EXTDEF)

I I
HI------

I EXTERNAL
I NAMEII

The PUBLIC NAME field gives the name of the object
location in MAS is made available to other modules,
name must contain one or more characters.

The PUBLIC OFFSET field is a 16-bit value, which is either
offset of the Public Symbol with respect to an LSEG (if

SEGMENT INDEX >0), or the offset of the Public Symbol with
respect to the specified FRAME (if SEGMENT INDEX =0).

The TYPE INDEX field identifies a single preceding TYPDEF
(Type Definition) Record containing a descriptor for the
type of entity represented by the Public Symbol. This field
is ignored by the Linker.

INTEL RELOCATABLE OBJECT MODULE FORMATS

an

EXTERNAL NAME

which havemust non-zero

Note

6-37

I
I

I
III
I
I

II
I

as
DATUM

This
Name is

This field provides the name,
length, of an external object.

I
I

8086 External Names are numbered positively: 1,2,3,... I
This is a change from 8080 External Names, which were
numbered starting from zero: 0,1,2,... This conforms
with other 8086 Indices (Segment Index, Type Index,
etc.) which use 0 as a default value with special
meaning.

Inclusion of a Name in an External Names Record is an
implicit request that the object file be linked to a module
containing the same name declared as a Public Symbol,
request obtains whether or not the External
referenced within some FIXUPP Record in the module.
The ordering of EXTDEF Records within a module, together
with the ordering of External Names within each EXTDEF
Record, induces an ordering on the set of all External Names
requested by the module. Thus, External Names are
considered to be numbered 1, 2, 3, 4, These numbers
are used as "External Indices" in the TARGET DATUM and/or
FRAME DATUM fields of FIXUPP Records to refer to a
particular External Name.

This record provides a list of external names, and for each
name, the type of object it represents. MS-LINK will assign
to each External Name the value provided by an identical
Public Name (if such a name is found).

INTEL RELOCATABLE OBJECT MODULE FORMATS

TYPE INDEX

allocation

III

I
III I I

•repeated'

6-38

I
II

LINE
NUMBER
BASE

IIIII

LINE
NUMBER

LINE
NUMBER
OFFSET

For example, an
kth object mist

I CHK |
I SUM |

LINE NUMBERS RECORD
(LINNUM)

The TYPE INDEX is used only in communal variable
by the Microsoft Linker.

I REC
I TYP
I 94H

This field
Definition)

This record provides the means by which a translator may
pass the correspondence between a line number in source code
and the corresponding translated code.

identifies a single preceding TYPDEF (Type
record containing a descriptor for the type of

object named by the External Symbol.

External indices may not reference forward,
external definition record defining the
precede any record referring to that object with index k.

RECORD |
LENGTH I

INTEL RELOCATABLE OBJECT MODULE FORMATS

LINE NUMBER BASE

The LINE NUMBER BASE has the following format:

byte

LINE NUMBER

LINE NUMBER OFFSET

respect

6-39

I I
SEGMENT
INDEX

The SEGMENT INDEX determines the location of the first
of code corresponding to some source line number.

I GROUP
I INDEX
I (ignored)II I
---- ///-------- ///----

A line number between 0 and 32767, inclusive, is provided in
binary by this field. The high-order bit is reserved for
future use and must be zero.

---- ///-------- ///----I I

The LINE NUMBER OFFSET field is a 16-bit value, which is the
offset of the line number with respect to an LSEG (if
SEGMENT INDEX >0).

INTEL RELOCATABLE OBJECT MODULE FORMATS

IIII I
I I
--- ///

SEGMENT INDEX

ENUMERATED DATA OFFSET

base
is

DAT

1024 consecutive bytes of

6-40

II
RECORD
LENGTH

SEGMENT
INDEX

III DATA
OFFSET

relative
found previous to the

1 REC
I TYP
I AOH

I I
+-rpt-+

LOGICAL ENUMERATED DATA RECORD
(LEDATA)

This record provides contiguous data fro® which a portion of
an 8086 memory image may be constructed.

I
ENUMERATED I

I DATII

I CHK i
I SUM |I I

the DAT
field occupy

This field provides up to
relocatable or absolute data.

This field must be non-zero and specifies an index
to the SEGMENT DEFINITION RECORDS
LEDATA RECORD.

This field specifies an offset that is relative to the
of the LSEG that is specified by the SEGMENT INDEX and
defines the relative location of the first byte of
field. Successive data bytes in the DAT
successively higher locations of memory.

INTEL RELOCATABLE OBJECT MODULE FORMATS

III
I

III III

SEGMENT INDEX

relative

ITERATED DATA OFFSET

base

DATA BLOCK.

6-41

RECORD
LENGTH

SEGMENT
INDEX

specified
of

I
ITERATED I
DATA
BLOCK

CHK
SUM I

II

I
ITERATED |
DATA |
OFFSET I

LOGICAL ITERATED DATA RECORD
(LIDATA)

---- ///
I
I
I
I

This field must be non-zero and specifies an index
to the SEGDEF records found previous to the LIDATA RECORD.

I
I REC
I TYP
I A2H

This record provides contiguous data from which a portion of
an 8086 memory image may be constructed.

I I
+-r epea ted—+

This field specifies an offset that is relative to the
of the LSEG that is specified by the SEGMENT INDEX and
defines the relative location of the first byte in the
ITERATED DATA BLOCK. Successive data bytes in the ITERATED
DATA BLOCK occupy successively higher locations of memory.

INTEL RELOCATABLE OBJECT MODULE FORMATS

ITERATED DATA BLOCK

III II
CONTENT

III

Note

I

REPEAT COUNT

BLOCK COUNT

6-42

I I

I I

The Linker cannot handle LIDATA records whose ITERATED
DATA BLOCK is larger than 512 bytes.

IIIII

REPEAT
COUNT

BLOCK
COUNT

are
BLOCK.
portion of
bytes.

that the CONTENT
is to be repeated.

This field specifies the number of times
portion of this ITERATED DATA BLOCK
REPEAT COUNT must be non-zero.

This field specifies the number of ITERATED DATA BLOCKS that
to be found in the CONTENT portion of this ITERATED DATA

If this field has value zero, then the CONTENT
this ITERATED DATA BLOCK is interpreted as data

If non-zero, then the CONTENT portion is interpreted
as that number of ITERATED DATA BLOCKs.

This repeated field is a structure specifying the repeated
data bytes. The structure has the following format:

INTEL RELOCATABLE OBJECT MODULE FORMATS

CONTENT

depending

count

Note

-///

III

6-43

IIII

RECORD
LENGTH

I
III

I I
+ rpt----*

THREAD
or

FIXUP

I I I
From the outermost level, the number of nested ITERATED I
DATA BLOCKS is limited to 17, i.e., the number of
levels of recursion is limited to 17. I __________________________________I

FIXUP RECORD
(FIXUPP)

This field may be interpreted in one of two ways,
on the value of the previous BLOCK COUNT field.

I REC |
I TYP I
! 9CH II I

CHK |
SUM |I

If BLOCK COUNT is zero, then this field is a 1-byte
followed by the indicated number of data bytes.

If BLOCK COUNT is non-zero, then this field is interpreted
as the first byte of another ITERATED DATA BLOCK.

INTEL RELOCATABLE OBJECT MODULE FORMATS

THREAD

THREAD is a field with the following format:

///

INDEX

III

6-44

! I

are
for

I I
+conditional+

This record specifies 0
a modification (fixup)
DATA record,

record

A THREAD field specifies a default target or frame that
subsequently be referred to in identifying a target or
frame. Eight threads are provided; four for
specification and four for target specification,
target or frame has been specified by a THREAD,
referred to by following FIXUP fields (in
following FIXUPP records), until another THREAD
the same type (TARGET or
appears (in the same or another FIXUPP record).

I I
I TRD I

I I

or more fixups. Each fixup requests
to a LOCATION within the previous

A data record may be followed by more than one
fixup record that refers. Each fixup is specified by a
FIXUP field that specifies four data: a location, a modes a
target and a frame. The frame and the target may be
specified totally within the FIXUP field, or may be
specified by reference to a preceding THREAD field.

may
a

frame
Once a

it may be
the same or
field with

FRAME) and Thread Number (0-3)

INTEL RELOCATABLE OBJECT MODULE FORMATS

subf ield is byte with thisa

def inedany

where

primary

5,

6-45

The TRD DAT (ThReaD DATa)
internal structure:

IlliI 0 I D I Z I
Illi

I I
METHOD

I I

I I I
I THRED |
I I I

the 0,
target.

The "Z" is a 1-bit subfield, currently without
function, that is required to contain 0.

identifies what type of
If D=0, then a target thread is

then a frame thread is being

INDEX contains a Segment Index, Group Index, or External
Index depending on the specification in the METHOD subfield.
This subfield will not be present if F4 or F5 are specified
by METHOD.

THRED is a number between 0 and 3, and associates a Thread
Number to the frame or target defined by the THREAD field.

If D=1, then METHOD = 0, 1, 2, 4, 5, corresponding to
methods F0, ..., of specifying a frame. Here, METHOD
indicates what kind (if any) of Index is required to specify
the frame. Note that methods 3 and 5d are not supported by
MS-LINK.

The "D"
thread

subfield is one bit that
is being specified.

being defined; if D=1,
defined.

METHOD is a 3-bit subfield containing a number between 0 and
3 (D=0) or a number between 0 and 6 (D«=l).

If D=0, then METHOD ■= (0, 1, 2, 3, 4, 5, 6, 7) mod 4,
..., 7 indicate methods TO T7 of specifying a
Thus, METHOD indicates what kind of Index or Frame

Number is required to specify the target, without indicating
if the target will be specified in a primary or secondary
way. Note that methods 2b, 3, and 7 are not supported by
MS-LINK.

INTEL RELOCATABLE OBJECT MODULE FORMATS

FIXUP

field with the following format:

///IIIIII
I

LOCAT

IIIIII III

LOCAT is

I

I

I
■hi bytelo byte '+

Note

I
1-bit subfield that specifies that length ofthe

6-46

i
I

Self-relative fixups may not be applied to LIDATA
records.

FRAME
DATUM

TARGET
DATUM

I
I
I I

I
I

+■

I I I I
+conditional+conditional+cojiditional+

Illi
I 1 I M 1 S I
1111

"S"

I I
DATA

I
LOC OFFSET

I I I

I I
I FIX |
I DAT |

I I i I
RECORD
Illi

a byte pair with the following format:

FIXUP is a

is a

| TARGET
I DIS-
| PLACEMENT

M is a 1-bit subfield that specifies the mode of the fixups:
self-relative (M=0) or segment-relative (M=l).

INTEL RELOCATABLE OBJECT MODULE FORMATS

Note

gives

Note

I
6-47

II

II

II

IIII

II

I
II

I

III

in the
(LOC=0),
(LOC=3),

If

"base" (L0C=2), a "pointer"
Other values in LOC are invalid.

If it is present in this
be either two bytes
number, S=0) or three

2's complement

LOC is a

If the preceding DATA record is an LIDATA record, it is
possible for the value of DATA RECORD OFFSET to
designate a "location" within a REPEAT COUNT subfield
or a BLOCK COUNT subfield of the ITERATED DATA field.
Such a reference is an error. MS-LINK's action on such
a malformed record is undefined.

3-byte subfields are a possible future extension, and
are not currently supported. Thus, S=0 is currently
mandatory.

The DATA RECORD OFFSET is a number between 0 and 1023,
inclusive, that gives the relative position of the lowest
order byte of LOCATION (the actual bytes being fixed up)
within the preceding DATA record. The DATA RECORD OFFSET is
relative to the first byte in the data fields in the DATA
RECORDS.

the TARGET DISPLACEMENT subfield.
FIXUP field (see below), it will
(containing a 16-bit non-negative
bytes (containing a signed 24-bit number in
form, S=l).

3-bit subfield indicating that, the byte(s)
preceding DATA Record to be fixed up are a "lobyte
an "offset" (LOC=1), a "base" (L0C=2),
or a "hibyte" (LOC=4).

INTEL RELOCATABLE OBJECT MODULE FORMATS

FIX DAT is a byte with the following format:

See Note 2See Note 1

F5dF3, andmethod 2b, notare

Target method T3 and T7 are not supported.Note 2:

FRAME.

(T=l),

6-48

(0-3).
THREAD

I I ! I I
I T | P I TARGT |I I i I I

frame for
thread (F=l) or explicitly

I I
I F I I I

FRAME
I I

field
thread number.
the same, or in an earlier FIXUPP record.)

interpreted
F bit.

"P" is a
specified in a primary way (requires a TARGET DISPLACEMENT,
P=0) or specified in a secondary way (requires no TARGET
DISPLACEMENT, P=l). Since a target thread does not have a
primary/secondary attribute, the P bit is the only field
that specifies the primary/secondary attribute of the target
specification.

by a
same

appear in

1-bit subfield that indicates whether the target is
in a

specified in
P=l) .

*'T" is a 1-bit- subfield that specifies whether the target
specified for this fixup is defined by reference to a thread

or is given explicitly in the FIXUP field (T=0).

FRAME is a number interpreted in one of two ways as
indicated by the F bit. If F is zero, FRAME is a number
between 0 and 5 and corresponds to methods F0 F5 of
specifying a FRAME. If F=l, then FRAME is a thread number

It specifies the frame most recently defined
that defined a frame thread with the
(Note that the THREAD field may

F is a 1-bit subfield that specifies whether the
this FIXUP is specified by a
(F=0).

Note 1: Frame
supported.

INTEL RELOCATABLE OBJECT MODULE FORMATS

II
NoteI

6-49

I I
II

All these methods are described in Section 6.8,
"Conceptual Framework for Fixups."

FRAME DATUM is
specification,
External Index,
when the frame
explicitly by methods F4 or F5 or F6.

TARGET DISPLACEMENT is the 2-byte displacement required by
"primary" ways of specifying TARGETS. This 2-byte subfield
is present if P=0.

TARGT is interpreted as a 2-bit subfield. When T=0, it
provides a number between 0 and 3, corresponding to methods
TO, ..., T3 or T4, ..., T7, depending on the value of P (P
can be interpreted as the high-order bit of TO, ..., T7).
When the target is specified by a thread (T“l), then TARGT
specifies a thread number (0-3).

TARGET DATUM is the "referent" portion of a target
specification, and is a Segment Index, a Group Index, an
External Index or a Frame Number. The TARGET DATUM subfield
is present only when the target is not specified by a thread
(T-0).

the "referent" portion of a frame
and is a Segment Index, a Group Index, an
The FRAME DATUM subfield is present only
is specified neither by a thread (Fe0) nor

INTEL RELOCATABLE OBJECT MODULE FORMATS

///

I
III

MOD TYP

bitThe

following2-bit subfield specifiesthat the

6-50

o

I I
I I
+conditional+

III

This field specifies the attributes of the module,
allocation and associated meanings are as follows:

START
ADDRS

I I
! CHK i
I SUM I
I I
I I

1111*11111
I MATTR |Z|Z|Z|Z|Z|L|I I I I I I I I I

This record serves two purposes.
module
a specified entry point for initiation of execution,
latter is true, the execution address is specified.

I
I REC
i TYP
I 8AHI

I
I MOD
I TYPI

MATTR is a
module attributes:

It denotes the end of a
and indicates whether the module just terminated has

If the

MODULE END RECORD
(MODEND)

I
I RECORD
| LENGTH

INTEL RELOCATABLE OBJECT MODULE FORMATS

MATTR MODULE ATTRIBUTE

Physical start addresses (L=0) are not supported.

3) has

START ADDRS

III III I

IIIIII

6-51

• II

0
1
2
3

Non-main module with no START ADDRS
Non-main module with START ADDRS
Main module with no START ADDRS
Main module with START ADDRS

FRAME
DATUM

TARGET
DATUM

Illi
+conditional+conditional+conditional+

"Z" indicates that this bit has not currently been assigned
a function. These bits are required to be zero.

The starting address of a module has all the attributes of
any other logical reference found in a module. The mapping
of a logical starting address to a physical starting address
is done in exactly the same manner as mapping any other
logical address to a physical address as specified in the

The START ADDRS field (present only if MATTR is 1 or
the following format:

I I
I END I
I DAT III

"L" indicates whether the START ADDRS field is interpreted
as a logical address that requires fixing up by MS-LINK.
(L*=l). Note: with MS-LINK, L must always equal 1.

TARGET I
DIS­

PLACEMENT I

INTEL RELOCATABLE OBJECT MODULE FORMATS

fixups are allowed.

///

COMMENT
!

COMMENT TYPE

6-52

II I
I

RECORD
LENGTH

I
III

COMMENT
TYPE

COMMENT
CLASS

Ii
I

TARGET
record.

CHK |
SUM |

I

COMMENT RECORD
(COMENT)

This field indicates the type of
record. This allows comments
processes that wish to selectively
format of this field is as follows:

I
I REC
I TYP
I 88HI

The above
semantics

and TARGET
"primary’’

I N | N | | | 1 | | |
|P|L|Z|Z|Z|Z|Z|Z|

The NP (NOPURGE) bit, if 1, indicates that it is not able to
be purged by object file utility programs which implement
the capability of deleting COMENT record.

discussion of fixups and the FIXUPP record,
subfields of the START ADDRS field have the same
as the FIX DAT, FRAME DATUM, TARGET DATUM,
DISPLACEMENT fields in the FIXUPP record. Only

Frame method F4 is not allowed

-------------------------------- ///_----- ---
This record allows translators to include comments in object
text.

comment carried by this
to be structured for those

act on comments. The

INTEL RELOCATABLE OBJECT MODULE FORMATS

The COMMENT CLASS field is defined as follows:

0 Language translator comment.

1 The NP bit must be

Reserved for Intel use. (See note 1 below.)2-155

156-255

COMMENT

This field provides the commentary information.

Notes:

1.

2.

6-53

Reserved for users,
apply no semantics to these values.
Note 2 below.)

Intel copyright comment,
set.

Intel products will
(See

The NL (NOLIST) bit, if 1, indicates that the text in the
COMMENT field is not to be listed in the listing file of
object file utility programs which implement the capability
of listing object COMENT records.

Class value 156 is used to specify a DOS level
number. When the class value is 156, the comment
field will contain a two-byte integer specifying a
DOS level number.

Class value 129 is used to specify a library to add
to the Linker's library search list. The comment
field will contain the name of the library. Note
that unlike all other name specifications, the
library name is not prefixed with its length. Its
length is determined by the record length. The
"NODEFAULTLIBRARYSEARCH" switch causes the linker
to ignore all comment records whose class value is
129.

INTEL RELOCATABLE OBJECT MODULE FORMATS

NUMERIC LIST OF RECORD TYPES6.13

6-54

*6E RHEADR
*70 REGINT
*72 REDATA
*74 RIDATA
*76 OVLDEF
*78 ENDREC
*7A BLKDEF
*7C BLKEND
*7E DEBSYM
80 THEADR

*82 LHEADR
*84 PEDATA
*86 PIDATA
88 COMENT
8A MODEND
8C EXTDEF
8E TYPDEF
90 PUBDEF

*92 LOCSYM
94 LINNUM
96 LNAMES
98 SEGDEF
9A GRPDEF
9C FIXUPP

*9E (none)
AO LEDATA
A2 LIDATA
*A4 LIBHED
*A6 LIBNAM
*A8 LIBLOC
*AA LIBDIC

INTEL RELOCATABLE OBJECT MODULE FORMATS

I
Note

MICROSOFT TYPE REPRESENTATIONS FOR COMMUNAL VARIABLES6.14

for communal

a .c

c .c

6-55

I
I

I
I
I

char
char
char

foo[4];
foo[1];
foo[1024];

asterisk (*) are not
They will be

object module.

I

I

*/
*/
*/

If the objects produced from a.c, b.c, and
together, then
char array "foo".

Record types preceded by an
supported by the Microsoft Linker,
ignored if they are found in an

This section defines the Microsoft standard
variable allocation on the 8086 and 80286.

A communal variable is an uninitialized public variable
whose final size and location are not fixed at compile time.
Communal variables are similar to FORTRAN common blocks in
that if a communal variable is declared in more than one
object module being linked together, then its actual size
will be the largest size specified in the several
declarations. In the C language, all uninitialized public
variables are communal. The following example shows three
different declarations of the same C communal variable:

A communal variable is defined in the object text by an
external definition record (EXTDEF) and the type definition
record (TYPDEF) to which it refers.

c.c are linked
the linker will allocate 1024 bytes for the

/* In file
/* In file b.c
/* In file

INTEL RELOCATABLE OBJECT MODULE FORMATS

The TYPDEF for a communal variable has the following formats

The EIGHT LEAF DESCRIPTOR field has the following format;

I
(optional)

6-56

—///-
LENGTH

IN
BITS
—Ill-

-III-
EIGHT
LEAF

| REC | RECORD I I EIGHT I CHK |
| TYP I LENGTH I 0 I LEAF ! SUM I
| 8EH | II DESCRIPTOR | I
---------------------///—-------

I NEAR | VAR I
I 62H | TYP |I I I

The EN field specifies whether the next 8 leaves in the LEAF
or NICE (bit •> 1). This

—///----
I VAR I
I SUBTYP |I I
-- ///---

DESCRIPTOR field are EASY (bit = 0) or NICE (bit » 1).
byte is always zero for TYPDEFS for communal variables.

The LEAF DESCRIPTOR field has one of the following two
formats. The format for communal variables in the default
data segment (near variables) is as follows:

------HI-------
I E | LEAF
I N | DESCRIPTOR I ------- ///-----

INTEL RELOCATABLE OBJECT MODULE FORMATS

BITS

Link time semantics:

6-57

All EXTDEFs referencing
described formats are

TYPE I
INDEX |
-///---

The format for the LENGTH IN BITS or NUMBER OF ELEMENTS
fields is the same as the format for the LEAF DESCRIPTOR
field, describee in the TYPDEF record format section of this
manual.

The VARiable TYPe field must be ARRAY (77H). The length
field specifies the NUMBER OF ELEMENTS, and the ELEMENT TYPE
INDEX is an index to a previously defined TYPDEF whose
format is that of a near communal variable.

a TYPDEF of one of the previously
treated as communal variables. All

others are treated as externally defined symbols for which a
matching public symbol definition (PUBDEF) is expected. A
PUBDEF matching a communal variable definition will override
the communal variable definition. Two communal variable
definitions are said to match if the names given in the
definitions match. If two matching definitions disagree
about whether a communal variable is near or far, the linker
will assume the variable is near.

------- ///--- m—
I FAR | VAR I NUMBER I ELEMENT I
I 61H I TYP | OF
I | 77H | ELEMENTS I----------- HI-----

(77H).
The format

data segment

The VARiable TYPe field may be either SCALAR
(79H), or ARRAY
ignored by the Linker,
not in the default
follows:

(7BH), STRUCT
The VAR SUBTYP field (if any) is

for communal variables
(far variables) is as

INTEL RELOCATABLE OBJECT MODULE FORMATS

communal variables:

bytes

6-58

If the linker finds matching huge and near communal variable
definitions, it issues a warning message, since it is
impossible for a near variable to be larger than 64K bytes.

will reside
consecutive selectors (80286). No
reside in the segments occupied by

A far communal variable whose size is larger than 64K
in segments that are contiguous (8086) or have

other data items will
a huge communal variable.

If the variable is near, then its size is the largest of the
sizes specified for it. If the variable is far, then the
Linker issues a warning if there are conflicting array
element size specifications; if there are no such
conflicts, then the variable's size is the element size
times the largest number of elements specified. The sum of
the sizes of all near variables must not exceed 64K bytes.
The sum of the sizes of all far variables must not exceed
the size of the machine's addressable memory space.

"Huge"

■

I

CHAPTER 7

PROGRAMMING HINTS

PROGRAMMING HINTS

CHAPTER 7

PROGRAMMING HINTS

INTRODUCTION7.1

The hints are organized into the following categories:

Interrupts

System Calls

Device Management

Memory Management

Process Management

File and Directory Management

Miscellaneous

7.2 INTERRUPTS

Never explicitly issue Interrupt 22H (Terminate Process Exit
Address).

This should only be done by the DOS. To change the
terminate address, use Function 35H (Get Interrupt.
Vector) to get the current address and save it, then
use Function 25H (Set Interrupt Vector) to change
the Interrupt 22H entry in the vector table to point
to the new terminate address.

This chapter describes recommended MS-DOS 3.1 programming
procedures. By using these programming hints, you can
ensure compatibility with future versions of MS-DOS.

PROGRAMMING HINTS

Handler Address)(Critical withError

ES24H thehandler must preserve

use

be

is

a

offuture releases

Address) bemust never

Interrupt 23H must be issued only by MS-DOS.

7-2

Interrupt 23H (Ctrl-Break Handler
issued by a user program.

Use Interrupt 24H
care.

These might not be included in
the operating system.

The Interrupt
register.

Handler Address)
MS-DOS with one of the

the system
function call

24H leave
state until a
is made. The

in internal system

Programs that do not IRET from Interrupt
in an
other

Ignore option may
buffers that is incorrect

Avoid trapping Interrupt 23H (Ctrl-Break Handler Address)
and Interrupt 24H (Critical Error Handler Address). Don't
rely on trapping errors via Interrupt 24H as part of
copy protection scheme.

Only system calls 01H-0CH can be made by an
Interrupt 24H handler. Making any other calls will
destroy the MS-DOS stack and prevent successful
of the Retry or Ignore options.

When an Interrupt 24H (Critical Error
received, always IRET back to
standard responses.

The registers SS, SP, DS, BX, CX, and DX must
preserved when using the Retry or Ignore options.

unpredictable
than 01H-0CH

leave data
or invalid.

PROGRAMMING HINTS

registers forexcept

interrupt vectoran

(Set Vector

SYSTEM CALLS7.3

Use new system calls.

been

Avoid using system calls 01H-0CH and 26H (Create New PSP).

inisif than processmore one

7-3

Use file-sharing calls
effect.

These interrupts destroy all
the segment registers.

superseded
See

Avoid using system calls that have
compatibility with pre-2.0 versions of MS-DOS.

Old System Calls,” of this manual forSection 1.8,
a list of these new calls.

in Section 1.5.2,
in Chapter

"File-Related
1 for more

Use Functions 25H and 35H
Interrupt Vector) to set
table.

Use the new "tools" approach for reading and writing
on- standard input and output. Use Function 4BOOH
(Load and Execute Program) instead of 26H to execute
a child process.

Avoid writing or reading
directly to or from memory.

Interrupt Vector and Get
and get values in the interrupt

See "File Sharing,”
Function Requests"
information.

Save any registers your
Interrupt 25H (Absolute
(Absolute Disk Write).

before issuing
or Interrupt 26H

program uses
Disk Read)

PROGRAMMING HINTS

Use networking calls where appropriate.

treat

7.4 DEVICE MANAGEMENT

Use installable device drivers.

givenare

Use buffered I/O.

to

7-4

Examples of both types of device drivers
in Chapter 2, "MS-DOS Device Drivers."

The value in AL
logical drives;
are valid.

specifies
it

Microsoft
" in

Block device drivers
a time, while character

a t ime.

When selecting a disk with Function OEH (Select Disk)
the value returned in AL with care.

The device drivers can handle streams of data up
64K. When sending a large amount of output to the
screen, you can send it with one system call. This
will increase performance.

Some forms of IOCTL can only be used with
Networks. See Section 1.6, "Microsoft Networks,
this manual for a list of these calls.

MS-DOS provides a modular device driver structure
for the BIOS, allowing you to configure and install
device drivers at boot time. Block device
transmit a block of data at
device drivers transmit a byte of data at

the maximum number of
does not specify which drives

PROGRAMMING HINTS

Be compatible with international support.

MEMORY MANAGEMENT7 .5

Use memory management.

This will allow for future compatibility.

1 -3, for more

7-5

The program should ensure that Ctrl-Break checking
is off by using Function 33H (Ctrl-Break Check).

See Section
information.

"Memory Management,"

Programs that use direct console I/O via Function 06H and
07H (Direct Console I/O and Direct Console Input) and that
want to read Ctrl-Break as data should ensure that Ctrl-
Break checking is off.

To provide support for international character sets,
MS-DOS recognizes all possible byte values as
significant characters in filenames . and data
streams. Pre-2.x versions ignored the high bit in
the MS-DOS filename.

MS-DOS keeps track of allocated memory by writing a
memory control block at the beginning of each area
of memory. Programs should use Functions 48H
(Allocate Memory), 49H (Free Allocated Memory), and
4AH (Set Block) to release unneeded memory.

PROGRAMMING HINTS

Only use allocated memory.

7.6 PROCESS MANAGEMENT

Use the EXEC Function Call to load and execute programs.

Programs should terminate using End Process (4CH).

containsreg is terCS the segment

7-6

^^<3

preferred way
programs and program overlays.

• COM
in

Programs that terminate by
a long jump to offset 0 in the PSP,
issuing an Interrupt 20H with CS:O pointing at the PSP8 •
issuing an Interrupt 21H with AH=0, CS:O pointing at the
PSP, or
a long call to location 50H in the PSP with AH=0

must ensure that the
address of the PSP.

Use Function 31H (Keep Process), instead of Interrupt 27H
(Terminate But Stay Resident). Function 31H allows programs
to terminate and stay resident that are greater than 64K.

The EXEC Function (4B00H) is the preferred way to
load programs and program overlays. Using the EXEC
call instead of hard-coding information about how to
load an .EXE file (or always assuming that your file
is a .COM file) will isolate your program from
changes in future releases of MS-DOS and .EXE file
formats.

Don't directly access memory that was not provided
as a result of a system call. Do not use fixed
addressing, use only relative references.

A program that uses memory that has not been
allocated to it may destroy other memory control
blocks or cause other applications to fail.

PROGRAMMING HINTS

FILE AND DIRECTORY MANAGEMENT7.7

Use the MS-DOS file management system.

Use file handles instead of FCBs.

or

7-7

16-bit
a

If a changed file is not closed, its length will not
be recorded correctly in the directory.

should be
funct ions

is
its

Close all files that have changed in length
an

issuing
Interrupt 20H ’ (Program Terminate), Function OOH

(Terminate Program), Function 4CH (End Process), or Function
ODH (Reset Disk).

These calls should be used instead of the old
file-related functions that use FCBs (file control
blocks). This is because a file operation
simply pass its handle rather than having
maintain FCB information,
sure

Using the MS-DOS file system will ensure program
compatibility with future MS-DOS versions through
compatible disk formats and consistent internal
storage. This will ensure compatibility with future
MS-DOS versions.

a file operation can
rather than having to
If FCBs must be used, be

the program closes them and does not move them
around in memory.

A handle is a 16-bit number that is returned by
MS-DOS when a file is opened or created using
Functions 3CH, 3DH, 5AH, or 5BH (Create Handle, Open
Handle, Create Temporary File, or Create New File).
The MS-DOS file-related function requests that use
handles are listed in Table 1.5 in Chapter 1,
"System Calls."

before
Terminate),

PROGRAMMING HINTS

Close all files when they are no longer needed.

in

Only change disks if all files

bemay

Locking Files7.7.1

locked

to

7 .8 MISCELLANEOUS

Avoid timing dependencies.

7-8

Determine the status of the region by attempting
lock it, and examine the error code.

Programs
23H

system buffers
changed disk.

locked region or
a locked region.

Programs should not rely on being denied access to a
region.

Closing unneeded files will optimize performance
a networking environment.

on the disk are closed.

Information in internal
written incorrectly to a

The result is undefined. Programs that might be-
terminated by an Interrupt 23H or Interrupt 24H
(Ctrl-Break Handler Address or Critical Error
Handler Address) should trap these interrupts and
unlock any locked regions before exiting.

Various machines use CPUs of different speeds.
Also, programs that rely upon the speed of the clock
for timing will not be dependable in a networking
environment.

Programs should not close a file with a
terminate with an open file that contains

PROGRAMMING HINTS

Manufacturer)

Don't directly address the video memory.

interrupts,

highly

Use the .EXE format rather than the .COM format.

Use the environment to pass information to applications.

7-9

Don't use the OEM (Original Equipment
-provided ROM support.

Use the documented interface to the operating system. If
either the hardware or media change, the operating system
will be able to use the features without modification.

calls,
These items may change or not continue

Use of these
program

process to pass
COMMAND.COM is

so
information can easily be

.EXE files are relocatable and .COM files are direct
memory images that load at a specific place and have
no room for additional control information to be
placed in them. .EXE files have headers that can be
expanded for compatibility with future versions of
MS-DOS.

The environment allows a parent
information to a child process,
usually the parent process to every application,
default drive and path
passed to the application.

Don't use undocumented function
or features.
to exist in future versions of MS-DOS.
features would make your
non-portable.

COMMAND.COM

INDEX

INDEX

INDEX

.EXE files 5-1

. . 2-26

1-158

Index-1

1-62
1-63

1-50
1-53

Absolute Disk Read (Interrupt 25H)
Absolute Disk Write (Interrupt 26H)

1-208

Cancel Assign List Entry (Function 5FH, Code 04H)
1-272

Canonic Frame 6-4
Carry flag............. 1-25
Case-Mapping Call 1-150
Change Current Directory (Function 3BH)

BASE................... 6-10
BIN format file 2-3
BIOS Parameter Block (BPB) 2-18, 2-22, 2-31
Bit 8................. 2-14
Bit 9................. 2-14
Block devices
device drivers . .
disk drives......... 2-4
example............. 2-37
installation 2-17

Boot sector 2-32
BPB pointer........... 2-17 to 2-18
Buffered Keyboard Input (Function OAH)
BUILD BPB............. 2-22
Busy bit............... 2-14, 2-27, 2-29

Allocate Memory (Function 48H)
Archive bit........... 3-5
ASCIZ string.............1-219, 1-229
Assign list........... 1-16
Attribute byte...........1-15
Attribute field 2-9
AUTOEXEC file......... 3-2
Auxiliary Input (Function 03H)
Auxiliary Output (Function 04H)

INDEX

1-235

1-73

1-42

1-248

1-174

Index-2

1-89
1-12

3-1
1-142

6-5
2- 10, 2-35
1-82

1-167
3- 3

. . 6-26

2-3
2-4
2-18
2-37, 2-56

. . 3-1

. . 6-52

. . 6-6

. . 4-4

. . 2-5

. . 2-1, 2-7

. . 4-1

1-154
1-95

1-160
1-251

1-116

Delete Directory Entry (Function. 41H)
Delete File (Function 13H)
Device control
Device drivers

block
creating ...
dumb.................
example

Change Directory Entry (Function 56H)
Character device driver, example 2-56
Character devices 2-3
Check Keyboard Status (Function OBH)
Class name, LSEG
CLOCK device
Close File (Function 10H)
Close Handle (Function 3EH)
Cluster
Combination Attribute
COMENT 6-52
Command code field 2-13
Command processor . .
CCMMAND.COM
COMMENT RECORD
Compatibility, ensuring
Complete name, LSEG
COMSPEC
CON device
CONFIG.SYS
Control blocks
Control information
Ctrl-Break Address (Interrupt 23H)
Ctrl-Break Check (Function 33H)
Ctrl-Break Handler Address (Interrupt 23H)
Create Directory (Function 39H)
Create File (Function 16H)
Create Handle (Function 3CH)
Create New File (Function 5BH)
Create New PSP (Function 26H)
Create Temporary File (Function 5AH)
Critical Error Handler Address (Interrupt 24H)

1-44, 3-1

CCMMAND.COM

INDEX

7-4

1-12

1-200

6-36

Index-3

1-12
1-66

1-68

2-1
2-37
2-1
2-18
1- 9
2- 7
2-6

. . 2-3
. 2-3
. 6-36
. 1-27
. 1-20

EXTERNAL NAMES DEFINITION RECORD

. . 6-31

1-225, 4-3
2-37
1-25
1-30, 3-1

. . 2-3

EIGHT LEAF DESCRIPTOR
End address .
End Process (Function 4CH)
Error bit
Error codes
Error handling
EXE device drivers . .
EXE files
EXE format file . . .
EXE loader
EXTDEF
Extended error codes . .
Extended FCB

installable
installing
non-resident
preserving registers . .
resident
smart

Device handles
Device header
Device interrupt routine .
Device management, programming hints
Device strategy routine . 2-6
Device-related function requests
Direct Console I/O (Function 06H)
Direct Console Input (Function 07H)
Directory entry 1-14
Directory-related function requests
Disk allocation 3-2
Disk Directory 3-3
Disk formats

standard MS-DOS 3-10
Disk Transfer Address (DTA) 1-93, 1-229, 4-4
Dispatch table 2-36
Display Character (Function 02H) 1-61
Display String (Function 09H) 1-70
Done bit 2-14, 2-36
Dumb device driver 2-18
Duplicate File Handle (Function 45H)

INDEX.

3-3

. . 1-12

Index-4

1-74
1-203

1-19
1-22
1-20
1-20
1-19

6-9
6-11» 6-17
6—11t 6—16
2-30

6-3
6-14
6-4

7-8
1-10
1-11

1-229
1-232

6-43
6-43

1-211
1-40

. . 2-23, 3-7

. . 2-31

. . 1-19

FAT................................
FAT ID byte
FCB................................
File Allocation Table
File and directory management, programming hints

7-7
1-14File attributes

File Control Block
definition . . .
extended
fields
format
opened
unopened

File locking, programming hints
File-related function requests i
File-sharing function requests
Filename separators . . . 1-124
Filename terminators . . . 1-125
Find First File (Function 4EH)
Find Next File (Function 4FH)
FIXUP RECORD
FIXUPP ...
Fixups

definition
segment-relative . .
self-relative . . .

FLUSH
Flush Buffer, Read Keyboard (Function 0CH)
Force Duplicate File Handle (Function 46H)
Format
FRAME

definition .
specifying .

FRAME NUMBER .
Free Allocated Memory (Function 49H)
Function requests (Interrupt 21H)
alphabetic order 1-34
calling.............1-23
definition
device-related . .

INDEX

Index-5

direc tory-rela ted
file-related
file-sharing . .
Function OOH . .
Function 01H . .
Function 02H . .
Function 03H . .
Function 04H . .
Function 05H . .
Function 06H . .
Function 07H . .
Function 08H . .
Function 09H . .
Function OAH . .
Function OBH . .
Function OCH . .
Function ODH . .
Function OEH . .
Function OFH . .
Function 10H . .
Function 11H . .
Function 12H . .
Function 13H . .
Function 14H . .
Function 15H . .
Function 16H . .
Function 17H . .
Function 19H . .
Function 1AH . .
Function 1BH . .
Function 1CH . .
Function 21H . .
Function 22H . .
Function 23H . .
Function 24H . .
Function 25H . .
Function 26H . .
Function 27H . .
Function 28H . .
Function 29H . .
Function 2AH . .
Function 2BH . .

1-10
. . 1-11
. . 1-58
. . 1-60
. . 1-61
. . 1-62
. . 1-63
. . 1-64
. . 1-66
. . 1-68
. . 1-69
. . 1-70

. . 1-73

. . 1-74

. . 1-76, 1-93

. . 1-77

. . 1-79

. . 1-82

. . 1-84

. . 1-87

. . 1-89

. . 1-91

. . 1-93

. . 1-95

. . 1-97

. . 1-99

. . 1-100

. . 1-102

. . 1-104

. . 1-106

. . 1-108

. . 1-111

. . 1-113

. . 1-41 to 1-44, 1-115

. . 1-116

. . 1-117

. . 1-120

. . 1-123

. . 1-127

. . 1-129

INDEX

Index-6

1-182
1-185
1-187
1-189

1-200
1-203
1-206
1-208
1-211
1-214
1-217
1-222
1-225
1-227
1-229
1-232
1-234

Function 2CH 1-131
Function 2DH 1-133
Function 2EH 1-135
Function 2FH 1-137
Function 30H 1-138
Function 31H 1-140
Function 33H 1-142
Function 35H 1—41 to 1—43, 1—144
Function 36H 1-146
Function 38H 1-148, 1-152

 Function 39H.......................... 1-154
Function 3AH 1-156
Function 3BH 1-158
Function 3CH 1-160
Function 3DH 1-162
Function 3EH 1-167
Function 3FH 1-169
Function 40H 1-171
Function 41H 1-174
Function 42H 1-176
Function 43H 1-179
Function 44H, Code 08H . 1—192
Function 44H, Code 09H . 1-194
Function 44H, Code 0AH . 1-196
Function 44H, Code OBH . 1-198
Function 44H, Codes OOH and 01H
Function 44H, Codes 02H and 03H
Function 44H, Codes 04H and 05H
Function 44H, Codes 06H and 07H
Function 45H
Function 46H .
Function 47H
Function 48H
Function 49H
Function 4AH
Function 4BH, Code OOH .
Function 4BH, Code 03H .
Function 4CH
Function 4DH
Function 4EH
Function 4FH
Function 54H

INDEX

1-137

1-41 to 1-42,

1-227

Index-7

1-261
1-138

Function 56H..............1-235
Function 57H..............1-238
Function 58H.............. 1-241
Function 59H..............1-244
Function 5AH..............1-248
Function 5BH 1-251
Function 5CH, Code OOH . 1-254
Function 5CH, Code 01H . 1-258
Function 5EH, Code OOH . 1-261
Function 5EH, Code 02H . 1-263
Function 5FH, Code 02H . 1-265
Function 5FH, Code 03H . 1-268
Function 5FH, Code 04H . 1-272
Function 62H..............1-274
handling errors 1-25
memory management . . . 1-4
network-related 1-16
numeric order 1-32
process management . . . 1-6
standard character I/O . 1-2
system-management . . . 1-17

1-148
1-206

1-99
. 1-127

. 1-131
1-234

Get Assign List Entry (Function 5FH, Code 02H)
1-265

Get Country Data (Function 38H)
Get Current Directory (Function 47H)
Get Current Disk (Function 19H)
Get Date (Function 2AH)
Get Default Drive Data (Function 1BH) 1-102
Get Disk Free Space (Function 36H) 1-146
Get Disk Transfer Address (Function 2FH)
Get Drive Data (Function 1CH) 1-104
Get Extended Error (Function 59H) 1-244
Get File Size (Function 23H) 1-111
Get Interrupt Vector (Function 35H)

1-144
Get Machine Name (Function 5EH, Code OOH)
Get MS-DOS Version Number (Function 30H)
Get PSP (Function 62H) . . 1-274
Get Return Code Child Process (Function 4DH)
Get Time (Function 2CH)
Get Verify State (Function 54H)

INDEX

1-87, 3-5

2-10

1-115

r

Index-8

Interrupt 24H
Interrupt 25H
Interrupt 26H
Interrupt 27H

1-58
1-40

1-241
1-238

1-179

Handles
definition . . .
device

Handling errors
Header
HIBYTE
Hidden files . . .
High-level language

GROUP
Group Definition Record
GRPDEF

Get/Set Allocation Strategy (Function 58H)
Get/Set Date/Time of File (Function 57H)
Get/Set File Attributes (Function 43H)

. 6-4

. 6-29

. 6-29

. 1-40

. 1-23

. 1-31

1-60 to 1-61, 1-64,
1-71

. . 1-9

. . 1-9

. . 1-25

. . 6-10

. . 1-84,

. . 1-24

• 1-38,
. 1-24,
. 1-41
. 1-42,

1-69,
. 1-44
. 1-50
. 1-53
. 1-56

. . 1-24, 2-37

. . 2-1 to 2-2, 2-35
Interrupt handlers 1-23, 1-41 to 1-43, 4-1
Interrupt routines 2-11
Interrupt-handling routine
Interrupts
21H...........
address of handlers
alphabetic order .
definition
Interrupt 20H . .
Interrupt 21H . .
Interrupt 22H . .
Interrupt 23H . .

I/O Control for Devices (Function 44H)
Index fields 6-8
Indices 6-8
INIT 2-16, 2-18
INI! code 2-11
Installable device drivers 2-5
Instruction Pointer (IP) . 4-5
Internal stack . . .
Interrupt entry point

INDEX

1-189

Keep Process (Function 31H) 1-140

1-222

Index-9

6-40
2-12
6-41
6-38
6-38
6-23
6-23

1-187
1-185

1-182
1-192

1-198
IOCTL Status (Function 44H, Codes 6 and 7)

LOBYTE
LOCATION, types
Lock (Function 5CH, Code OOH)
LOGICAL ENUMERATED DATA RECORD
LOGICAL ITERATED DATA RECORD <
Logical sector 3-7
Logical sector numbers . . 3-9
Logical Segment 6-3
LSEG 6-3

issuing 1-23
numeric order 1-31
programming hints . . . 7-1
vector table 1-23

10.SYS file 3-5
IOCTL 1-12
IOCTL bit 2-11
IOCTL Block (Function 44H, Codes 4 and 5)
IOCTL Character (Function 44H, Codes 2 and 3)
IOCTL Data (Function 44H, Codes 0 and 1)
I0CTL Is Changeable (Function 44H, Code 08H)
IOCTL Is Redirected Block (Function 44H, Code 09H)

1-194
I0CTL Is Redirected Handle (Function 44H, Code OAH)

1-196
IOCTL Retry (Function 44H, Code OBH)

LEDATA
Length of Record Field . .
LIDATA . .
LINE NUMBERS RECORD . . .
LINNUM . .
List of Names Record ...
LNAMES
Load and Execute Program (Function 4BH, Code OOH)

1-217
Load module 5-1, 5-3
Load Overlay (Function 4BH, Code 03H)
Loadsize..5-3

. . 6-10

. . 6-10
1-254

1 6-40
6-41

INDEX

1-176

Index-10

1-4
7-5

Object Module Formats . .
OFFSET
Old system calls
OMF
Open File (Function OFH) .

4- 1
5- 1
3-1, 3-5
2-18
2-1

5- 3
6- 11
6-50
6-3
6-50
6-6

6-2
6-10
1-18
6-2
1-79

1-9
Name field . .
NCR-DOS Manual
Network-related function requests
NON DESTRUCTIVE READ NO WAIT
NON FAT ID bit
NUL device
Numeric record types . .

Make Assign List Entry (Function 5FH, Code 03H)
1- 268
6-2
5- 3
2- 19
2-19, 2-31
2-34
6- 2
1-4

. . 1-15, 7-4
1-15

1-15

1-16
2-27

2-10
2-10
6-54

MAS .
Maxalloc
MEDIA CHECK
Media descriptor byte
Media, determining . .
Memory Address Space .
Memory control block .
Memory management function requests
Memory management, programming hints
Microsoft Networks • .
Microsoft Networks Manager's Guide
Microsoft Networks User's Guide
Microsoft record types . • 6-55
Mina Hoc
MODE
MODEND
MODULE
MODULE END RECORD ...
Module header record . .
Move File Pointer (Function 42H)
MS-DOS initialization
MS-DOS memory map
MS-LINK
MSDOS.SYS file .
Multiple media .
Multitasking . .

INDEX

. . 6-4

. . 7-4
7-7

Index-11

7-3
4-4

1-106
1-108

1-169
1-69

1-117
1-120

1-263
1-6
7-6

1-38

Random Block Read (Function 27H)
Random Block Write (Function 28H)
Random Read (Function 21H)
Random Write (Function 22H)
Read Handle (Function 3FH)
Read Keyboard (Function 08H)

Open Handle (Function 3DH) 1-162
Opened FCB............. 1-19
Overlay Name, LSEG 6-5

6-4
6-4
6-33

6-33

Programming hints
device management
file and directory management

. . 7-8

. . 7-1

. . 7-5

file locking . .
interrupts . . .
memory management
miscellaneous 7-8
process management . . . 7-6
recommendations 7-1
system calls

Prompt command
PSEG

definition .
NUMBER . . .

PUBDEF
PUBLIC NAMES DEFINITION RECORD

PARAGRAPH NUMBER . .
Parameter block 1-218
Parse File Name (Function 29H) 1-123
Path command........... 4-4
Physical Segment 6-4
Pointer to Next Device field 2-9
Predefined device handles 1-9
Print Character (Function 05H) 1-64
Printer Setup (Function 5EH, Code 02H
Process management function requests
Process management, programming hints
Program End Process (Interrupt 20H)
Program segment 4-2
Program Segment Prefix . • 1-19, 1-24, 1-116,

1-218, 4-3, 5-3

INDEX

1-60

1-156

1-152

Index-12

1-84
1-87

1-100
1-41 to 1-44,

3-1
2-24
6-20
6-1
6-18
1-93

2-36
6-24
6-7
6-6
6-24
6-5
6-11, 6-17

6-11, 6-16
1-91
1-93

1-24
6-1
5-1

5-4
5-3

Read Keyboard and Echo (Function 01H)
Read Only Memory
READ or WRITE
Record format, sample . .
Record formats
Record order
Record size
Record types
Registers, treatment of .
Relocatable memory images
Relocation information . .
Relocation item offset value
Relocation table
Remove Directory (Function 3AH)
Rename File (Function 17H)
request header . .
Request packet . .
Reset Disk (Function ODH)
Resident device drivers
ROM.................
Root directory

1-97
. . 2-11

. 2-2
1-76, 1-93

. 2-1

. 3-1

. 3-4

Search for First Entry (Function 11H)
Search for Next Entry (Function 12H)
Sector count
SEGDEF
Segment addressing
Segment definition
Segment definition record
Segment Name, LSEG
Segment-relative fixups
Select Disk (Function OEH)
Self-relative fixups . . .
Sequential Read (Function 14H)
Sequential Write (Function 15H)
Set Block (Function 4AH) . 1-214, 4-5
Set command
Set Country Data (Functio
Set Date (Function 2BH)
Set Disk Transfer Address (Function 1AH)
Set Interrupt Vector (Function 25H)

1-115

. 4-4
n 38H)
. 1-129

INDEX

1-113

1-135

1-2

1-17

6-23

1-258

Index-13

. . 5-4

. . 2-2

1-56
1-41

Unit code field.........2-13
Unlock (Function 5CH, Code 01H)
Unopened FCB............ 1-19
User stack............. 4-1

. 6-30

. 6-30

. 2-30

Set Relative Record (Function 24H)
Set Time (Function 2DH) . 1-133
Set/Reset Verify Flag (Function 2EH)
Smart device driver . . . 2-18
Standard character I/O function requests
Start sector 2-36
Start segment value
static request header
STATUS.................. 2-29
Status field 2-14
Strategy entry point . . . 2-1 to 2-2, 2-35
Strategy routines 2-11
Superseded system calls . 1-18
Symbol definition 6-8
SYSINIT.............2-2
System calls
definition....... 1-1
programming hints . • . 7-3
replacements for old . . 1-18
superseded calls 1-2
types of........... 1-1

System files 1-84, 1-87, 3-5
System prompt 3-2
System-management function requests

T-MODULE............... 6-3
T-module Header Record (THEADR)
TARGET................. 6-12
Terminate But Stay Resident (Interrupt 27H)
Terminate Process Exit Address (Interrupt 22H)
Terminate Program (Function OOH) 1-58
THEADR.................. 6-23
Transfer address 2-36
TYPDEF
Type Definition Record
Type-ahead buffer . .

INDEX

1-171

Index-14

r

Vector table
Vo lutne ID .
Volume label

1- 23
2- 23
3- 5

Wildcard characters . . . 1-84, 1-87, 1-125
Write Handle (Function 40H)

SEE RIVTRSI Sit>1 Of IHls IORM TOR INSTRUCTIONS

IL
NCR Customer No. Purchase Order No. Purchase Order Datx

Company NameCompany Name

AddrestAddress

City/State/Zip City/State/Zip

AttentionAttention

L) Change of Address

Ship VIA

'"Comments:"international Only — Customs Declaration

mJ

*

lit

Subtotal

 No YesTax Exempt? State/local Taxes

Total 1

E3HS
Signature

DOCUMENTATION ORDER FORM

Hll>.

<)> Axlin I

2. Submit this order to your
local NCR office

3. Call our toll-free number:
1-800-543-2010
In Ohio:
1-800-543-6691
8:00 A.M.-4:30 P.M.
EST - Weekdays

tn case w>e have quesftom regarding yosrr order
Ama Code//Number

T
1
i

T
X1
1
4-
i I

T

x
i

i
1I
7
T

I Tax Exempt No.

tn case weha««<}uesoonx regarding your order
Area Code?)Ntunb*t ' —

, | : UMlTRIt I g^| SI .?

For your convenience you can:
1. Mail this order to:

NCR Corporation
Order Processing
Publication Services
Dayton, Ohio 45479

D Change of Address

CUSTOMER NUMBERS ARE REQUIRED ON AU. ORDERS.

If you are unsure of your customer number
please contact your local NCR office.

1. NCR CUSTOMER NO.
Enter your 8-digit NCR customer number.

HOW TO ORDER
For a fast, easy way to order and receive the documents you need,
complete this Documentation Order Form as follows.

THREE CONVENIENT WAYS TO ORDER
Enter your order using one of the following convenient methods:
U.S. Customers
• Mail the Documentation Order Form to NCR Corporation. Order

Processing—Publication Services, Dayton, Ohio 45479.
• Submit the order to your local NCR office.
• Call our toll-free number: 1-800-543-2010; in Ohio, 1-800-543-6691.

Phone orders are taken from 8:00 am to 4:30 pm EST—weekdays.
International Customers
• Customers located outride of the United States should contact their lo­

cal NCR office for ordering and pricing information.

PAYMENT METHODS
Payments are accepted by check, money order, or purchase order. Please
do not send cash.

14. SUBTOTAL
Add all entries in the amount column and enter the sum in
the SUBTOTAL space.

3. PURCHASE ORDER DATE
Enter the purchase order date.

5. BILL TO
No entry is required unless the BILL TO location is different
from the SHIP TO location.

8. COMMENTS
Use this space for special comments about your order.

15. STATE/LOCAL TAXES
Calculate applicable state and local taxes by multiplying the
SUBTOTAL amount by the percentage of tax. Enter that num­
ber in the STATE/LOCAL TAXES space. If tax exempt, your tax
exempt number must be entered in the space provided to
the left.

16. TOTAL
Enter the total amount of the order.

2. PURCHASE ORDER NO.
Enter your purchase order number.

ORDERING INFORMATION I
9. DOCUMENT NUMBER

Enter the number of the document you wish to order, NCR
document numbers have a 2-character prefix, followed by 4
to 7 characters. (D1-00CKMX)).

10. QUANTITY
Enter the quantity desired. The following discounts apply
when any document is purchased in quantities of 10 or

more on one order.
*> 10-49 10% discount
• 50-99 15% discount
• 100 or more 20% discount

11. DESCRIPTION
Enter the title of the document.

13. AMOUNT
To calculate the line item amount, multiply the quantity by
the unit price.

6. SHIP VIA
Enter your preferred method of delivery. All orders for items in
stock will be processed and shipped within one week of re­
ceipt of order via UPS or mail for domestic shipment and air
shipment for international orders. Rush orders will be pro­
cessed and delivered within 48 hours.

4. SHIP TO
a. If you wish to have documents shipped to a location differ­

ent than the location associated with your NCR customer
number, enter the appropriate information in the space
provided.

b. If the order is to be shipped to your NCR customer number
location, no entry is required in this space.

7. CUSTOMS DECLARATION
(For international Orders)
If a customs declaration is required, enter the full text of the
declaration in the space provided.

12. UNIT PRICE
Enter the unit price of the document. (Prices listed are those
in effect at the time of printing and are subject to change
without notice.) All prices are quoted in U.S. dollars.

OUT OF STOCK ITEMS
Every attempt will be made to ensure that your order is filled complete^
and accurately. If a document is temporarily out of slock, it will be placed
on back order. When a partial shipment is made, your packing list will in­
clude a notification of this condition. Back orders will be automatically
filled when the document is returned to our inventory.

Retain a copy of this order for your records. Thank you.

RETURNS
If you wish to return documents lor credit, please contact our Order
Processing department (1-800-543-2010; in Ohio, 1-800-543-6691) within 30
days of the shipment date. Full credit will be given if documents are re­
turned because of an NCR error. A credit of up to 75% of the net amount
may be issued for the return of unused, shrink-wrapped documents. Re­
turns will NOT be accepted without prior approval from Publication
Services.

ES3I3

Are there any technical errors or misrepresentations in the document?

Is the material presented in a logical and consistent order’’

Is it easy to locate specific information in the document’’

Is there any information you would like to have added to the document?

Are the examples relevant to the task being described9

Could parts of the document be deleted without affecting the document s usefulness9

Did the document help you to perform your job9

Any general comments?

TELEPHONE NO < I

xBdOKTITLE . '' '■ •-

NAME
TITLE
COMPANY
ADDRESS

To help us plan future editions of this document, please take a few minutes to answer the following questions.
Explain in detail using the space provided. Include page numbers where applicable.

Thank you for your evaluation of this document.
Fold the form as indicated and mail to NCR. No postage is
necessary in the U.S.A

READER’S COMMENTS FORM
« am» owm

I . y •BOOK N0. -^1 SPRINT DATE

601z9tz 0!M0 ‘uoiAeq

uoijE-iodJOO HQN

33SS3dQQV A9 aiVd 39 HIM 39VlSOd

ssvno isdidOIHO NO1AVO € ON lMU3d

SS3NISH9A1d3H"1IVIAI

min
Pl°»

TAPP

saivis aaiiNn
3H± Nl

031IVW 31
AUVSS333N
39V±SOd ON

fr-OHM
S90IAJ9S uoiiBOiiqnj :nOI1N3±1V

■

r

k

f f

i.

ST-2106-34 0885

□HQ
Personal Computer Division
Augsburg, Germany

