
*1

GW™-BASIC

NCR
Personal
Computer

Copyright © 1982, 1983, 1984, 1985 by Microsoft Corporation

December 1985

All features, functions, and operations described herein may not be marketed by NCR in
all parts of the world. In some instances, photographs are of equipment prototypes.
Therefore, before using this document, consult your NCR representative or NCR office
for information that is applicable and current.

It is the policy of NCR Corporation to improve products as new technology, components,
software, and firmware become available. NCR Corporation, therefore, reserves the
right to change specifications without prior notice.

GW (GW™-BASIC) is a trademark of Microsoft Corporation. IBM is a registered
trademark of International Business Machines Corporation.

Copyright © 1984, 1985 by NCR Corporation
Dayton, Ohio

All Rights Reserved
Printed in the Federal Republic of Germany

CUSTOMER PROGRAM LICENSE AGREEMENT

LICENSE

You may:

use the Program(s) only on a single machine at a single location;a.

b.

c.

d.

NCR

YOU SHOULD CAREFULLY READ THE FOLLOWING TERMS AND CONDITIONS BEFORE
OPENING THE DISKETTE(S) PACKAGE. OPENING THIS DISKETTE(S) PACKAGE INDI­
CATES YOUR ACCEPTANCE OF THESE TERMS AND CONDITIONS. IF YOU DO NOT AGREE
WITH THEM, YOU SHOULD PROMPTLY RETURN THE PACKAGE UNOPENED; AND YOUR
MONEY WILL BE REFUNDED.
NCR provides this Program(s) and licenses its use under these terms and conditions and under
Copyright Law. You assume responsibility for the selection of the Program(s) to achieve your
intended results, and for the installation, use and results obtained from the Program(s). This
program is confidential, proprietary to and a trade secret of the owner, and should be
safeguarded by you as such.

copy the program into any machine readable or printed form for backup or modification
purposes only, to support your use of the Program(s) on the single machine (Certain
programs, however, may include mechanisms to limit or inhibit copying. They are marked
“copy protected’’);

transfer the Program(s) and license to another party only if the other party agrees to accept
the terms and conditions of the Agreement. You must advise NCR of the name and address
of the other party and the other party must sign a copy of the NCR Customer Program
License Agreement and have the same received by NCR. If you transfer the Program(s), you
must at the same time either transfer all copies whether in printed or machine readable form
to the same party or destroy any copies not transferred; this includes all modifications and
portions of the Program(s) contained or merged into other programs.

modify the Program(s) and/or merge it into another program for your use on the single
machine (Any portion of this Program(s) merged into another program will continue to be
subject to the terms and conditions of this Agreement); and

You must reproduce and include any copyright notice and serial number on any copy,
modification or portion merged into another program.

TERM

EXCLUSION OF WARRANTY

LIMITED WARRANTY

NCR’s entire liability and your exclusive remedy shall be:

NCR warrants the diskette(s) on which the program is furnished, to be free from defects in
materials and workmanship under normal use for a period of ninety (90) days from the date of
delivery to you as evidenced by a copy of your receipt.

1. the replacement of any diskette(s) not meeting NCR’S “Limited Warranty’’ and which is
returned to NCR or an authorized NCR dealer or distributor, with a copy of your receipt, or

This warranty gives you specific legal rights and you may also have the other rights which vary
from state to state.

2. if NCR or its authorized dealer or distributor is unable to deliver a replacement diskette(s)
and repair is not practicable or cannot be timely made, you may terminate this Agreement
by returning the program and your money will be refunded.

Some states do not allow limitations on how long an implied warranty lasts, so the above
exclusion may not apply to you.

Some states do not allow the limitation or exclusion of liability for incidental or consequential
damages so the above limitation or exclusion may not apply to you.

YOU MAY NOT USE, COPY, MODIFY, OR TRANSFER THE PROGRAM(S), OR ANY COPY,
MODIFICATION OR MERGED PORTION, IN WHOLE OR IN PART, EXCEPT AS EXPRESSLY
PROVIDED FOR IN THIS LICENSE.

IF YOU TRANSFER POSSESSION OF ANY COPY, MODIFICATION OR MERGED PORTION
OF THE PROGRAM TO ANOTHER PARTY, YOUR LICENSE IS AUTOMATICALLY TERMI­
NATED.

THE PROGRAM(S) IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES
OF MERCHANTABILITY OF FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU SHOULD THE
PROGRAM(S) PROVE DEFECTIVE, YOU (AND NOT NCR OR ITS DEALER OR DISTRIBU­
TOR) ASSUME THE ENTIRE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION. NCR does not warrant that the functions contained in the Program(s) will meet
your requirements or that the operation of the program will be uninterrupted or error free.

IN NO EVENT WILL NCR BE LIABLE TO YOU FOR ANY DAMAGES, INCLUDING ANY LOST
PROFITS, LOST SAVINGS OR OTHER INCIDENTAL OR CONSEQUENTIAL DAMAGES
ARISING OUT OF THE USE OR INABILITY TO USE THE DISKETTE(S) EVEN IF NCR OR AN
AUTHORIZED NCR DEALER OR DISTRIBUTOR HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY.

The license is effective until terminated. You may terminate it at any time by destroying the
program together with all copies, modifications and merged portions in any form. It will also
terminate upon conditions set forth elsewhere in this Agreement or if you fail to comply with
any term or condition of this Agreement. You agree upon such termination to destroy the
Program(s) together with all copies, modifications and merged portions in any form.

HOW TO USE THIS MANUAL

GW-BASIC

GW-BASIC is a widely used programming language that gives you
complete and comfortable access to the features of your NCR PER­
SONAL COMPUTER. These features include disk access, printing,
file sharing, communications, high-resolution graphics, and even
music.

Chapter 3 presents the distinguishing feature of GW-BASIC, namely
the variety of screen display possibilities. In addition to the extended
character set you can use with a monochrom display adapter, a co­
lor graphics display adapter allows you to use the graphic capabili­
ty of GW-BASIC to its fullest. As in Chapter 1, the description is
accompanied by examples and exercises.

Chapter 2 introduces the GW-BASIC program editor. This is a
description of the facilities provided by GW-BASIC to enable you to
write new programs and change existing programs. If you are already
acquainted with the line editors offered by some BASIC versions, you
will especially appreciate the true full screen editing capability of
GW-BASIC.

With the help of the GW-BASIC full screen editor and the extensive
GW-BASIC instruction set, you can create programs for a wide
variety of applications. The versatile printing and drawing instruc­
tions enable your program to produce, store, and recall lists, letters,
and business graphics as simple or as intricate as you require. For
mathematicians there is a wealth of functions, or, if you are
programming “just for fun”, you might wish to add some music to
your programs. GW-BASIC also provides programming facilities that
enable you to make full use of a color display, a light pen, and a
joystick.

Chapter 1 gives instructions for both the beginner and experienced
programmers on how to get GW-BASIC started, and how to leave
GW-BASIC when you have finished creating or running a program.
The Chapter continues with a description of the way in which
GW-BASIC communicates with you and how it stores the informa­
tion you give it. The final sections of Chapter 1 show the kinds of
decisions a GW-BASIC program can make, and also the help it
requires from you in order to make these decisions. Each aspect
covered in this introduction is accompanied by examples and
exercises to assist the beginner in what might well be a first
encounter with computing.

GW-BASICii

Chapters 6 and 7 are of interest mainly to assembler programmers
who wish to incorporate machine language routines in a GW-BASIC
program, or who are interested in how GW-BASIC makes use of the
memory of your NCR PERSONAL COMPUTER.

The manual ends with several appendices that contain other useful
information: a list of reserved words and the character set used by
GW-BASIC (A and B); error messages displayed by GW-BASIC (C);
additional mathematical functions (D); a program for converting
decimal values to hexadecimal values (E); and, a keyboard layout with
internal key positions indicated (F).

GW-BASIC provides an environment conducive to testing programs.
With RUN and GOTO you can enter a program at any point you
wish, the STOP instruction does precisely what its name suggests,
and a special tracing facility (TRON/TROFF) enables you to check the
path your program is taking. Even if your program appears not to
be working, GW-BASIC cannot damage your computer. Further­
more, GW-BASIC can give you valuable information as to what
might not be working properly in a program. For example, if you tell
GW-BASIC to play the note H, it will not only point out that no such

The introductory pages to Chapter 4 give you a list of the complete
GW-BASIC instruction set. Most of the instructions “speak” for
themselves: BEEP obviously has something to do with making a
sound; CIRCLE is concerned with drawing precisely that geometrical
figure. The list is divided into sections, each dealing with a particular
aspect of programming, for example, “Loading and storing programs”,
and “The loudspeaker”. Then follows, in alphabetical sequence, a full
description of each command and function in the GW-BASIC instruc­
tion set. A large number of programming examples are included.
Therefore, this Chapter serves both as a reference document for
experienced programmmers and as a practical guide for newcomers to
programming. Even if an example does not fulfill your particular
program requirement, you will find the information that enables you
to adjust that example to create the effect you wish to see or hear.

Chapter 5 describes the different ways of storing information on disk
files and how GW-BASIC communicates with external devices such as
a printer. You may already know the meaning of terms such as
“random access” and “sequential access” related to files, but just in
case these terms are new to you, explanations and examples are
included.

iiiGW-BASIC

note exists, but also tell you where in the program the erroneous
instruction occurred.

In summary, regardless of your knowledge base, learning GW-BASIC
with this manual will enhance your programming proficiency.
GW-BASIC is both simple and intrinsically helpful, as is this manual
with its numerous examples and exercises.

GW-BASIC
Contents

Chapter 2 Full Screen Editor 2-1

GW-BASIC

1-1
1-5
1-5
1-6
1-9

1-10
1-12
1-14
1-17
1-18
1-18
1-20
1-22
1-23
1-24
1-25
1-25
1-26
1-29
1-29
1-30
1-32

3-1
3-2
3-3
3-4
3-5

Chapter 3 Screen Display
CHARACTER MODE
GRAPHICS MODE

X and Y Coordinates
Color Selection in Graphics Mode . .

EXERCISES

Chapter 4 Commands and Functions
SYSTEM COMPATIBILITY. . . .
SYNTAX NOTATION
ABS Function
ASC Function
ATN Function
AUTO Command
BEEP Command

Chapter 1 Introduction
HOW TO START-UP GW-BASIC
HOW TO EXIT GW-BASIC
SAVING AND RETRIEVING A PROGRAM. .
EXERCISES
MODES OF OPERATION
THE CHARACTER SET............
CONSTANTS
VARIABLES...................ARRAY VARIABLES............
SPACE REQUIREMENTS
TYPE CONVERSION
EXERCISES
EXPRESSIONS AND OPERATORS

ARITHMETIC OPERATORS
Integer Division and Modulus Arithmetic . .
Overflow and Division by Zero
RELATIONAL OPERATORS
LOGICAL OPERATORS
FUNCTIONAL OPERATORS
EVALUATION OF EXPRESSIONS
STRING OPERATIONS

EXERCISES

4-16
4-18
4-20
4-21
4-22
4-23
4-24

GW-BASICVI

4-25
4-27
4-29
4-30'
4-31
4-34
4-36
4-37
4-38
4-41
4-43
4-44
4-46
4-50
4-52
4-53
4-54
4-56
4-57
4-58
4-59
4-60
4-61
4-62
4-63
4-65
4-66
4-67
4-68
4-69
4-70
4-75
4-76
4-77
4-78
4-80
4-81
4-81a
4-82
4-83
4-85
4-86
4-88
4-90
4-91

BLOAD Command
BSAVE Command
CALL Command
CDBL Function
CHAIN Command
CHDIR Command
CHR$ Function
CINIT Function
CIRCLE Command
CLEAR Command
CLOSE Command
CLS Command
COLOR Command (Character Mode) . .
COLOR Command (Graphics Mode) . . .
COM Command
COMMON Command
CONT Command
COS Function
CSNG Function
CSRLIN Function
CVI, CVS, CVD Function
DATA Command
DATES Command
DATES Function
DEF FN Command
DEFINT/SNG/DBL/STR Commands . .
DEF SEG Command
DEF USR Command
DELETE Command
DIM Command
DRAW Command
EDIT Command
END Command
ENVIRON Command
ENVIRONS Function
EOF Function
ERASE Command
ERDEV and ERDEVS System Variables .
ERR and ERL System Variables
ERROR Command
EXP Function
FIELD Command
FILES Command
FIX Function
FOR...NEXT Command

GW-BASIC vii

FRE Function....................................
GET (Files) Command
GET (Graphics) Command
GOSUB...RETURN Command . . .
GOTO Command
HEX! Function
IF Commands
INKEY! Function
INP Function
INPUT Command
INPUT# Command
INPUT$ Function
INSTR Function
INT Function
IOCTL Command
IOCTL$ Function

KEY Command
KEY(N) Command...........................
KILL Command
LCOPY Command
LEFT! Function
LEN Function
LET Command
LINE Command . ,
LINE INPUT Command
LINE INPUT# Command
LIST Command
LLIST Command
LOAD Command
LOC Function
LOCATE Function...........................
LOCK Command
LOF Function
LOG Function
LPOS Function
LPRINT, LPRINT USING Commands
LSET and RSET Commands . . .
MERGE Command
MID! Command
MID! Function
MKDIR Command
MKI!, MKS!, MKD! Functions . .
NAME Command
NEW Command
OCT! Function

. 4-95

. 4-96

. 4-97

. 4-99

. 4-101
. 4-103
. 4-104
. 4-107
. 4-109
. 4-110
. 4-113
. 4-115
. 4-116
. 4-117
. 4-117a
. 4-117b

. 4-118

. 4-122

. 4-124
4-125

. 4-126

. 4-127

. 4-128

. 4-129

. 4-132

. 4-133

. 4-134

. 4-136

. 4-137

. 4-138

. 4-139
. 4-140a
. 4-141
. 4-142
. 4-143

 . 4-144
. 4-146
. 4-147
. 4-148
. 4-149
. 4-150
. 4-151
. 4-152
. 4-153
. 4-154

GW-BASICVIII

. 4-155

. 4-157

. 4-159

. 4-161

. 4-164

. 4-166

. 4-168

. 4-170

. 4-173

. 4-177

. 4-182

. 4-183

. 4-184

. 4-189

. 4-190

. 4-191

. 4-193

. 4-197

. 4-198

. 4-200

. 4-201

. 4-202

. 4-204
. . 4-207
. . 4-212
. . 4-215
. . 4-216
. . 4-221
. . 4-223
. . 4-225
. . 4-227
. . 4-228
. . 4-229
. . 4-230
. . 4-231
. . 4-232
. . 4-233
. . 4-235
. . 4-237
. . 4-238
. . 4-239
. . 4-241
. . 4-243
. . 4-244
. . 4-246

ON COM(n) Command
ON ERROR GOTO Command
ON...GOSUB,ON...GOTO Commands. .
ON KEY Command
ON PEN Command...............................
ON PLAY Command...........................
ON STRIG Command
ON TIMER Command...........................
OPEN Command....................................
OPEN “COM Command
OPTION BASE Command
OUT Command
PAINT Command
PEEK Function
PEN Command
PEN Function
PLAY Command
PMAP Function
POINT Function
POKE Command....................................
POS Function..
PRESET and PSET Commands . . .
PRINT Command
PRINT USING Command..................
PRINT# and PRINT# USING Command
PUT (Files) Command
PUT (Graphics) Command
RANDOMIZE Command......................
READ Command....................................
REM Command....................................
RENUM Command
RESET Command
RESTORE Command...........................
RESUME Command...........................
RETURN Command
RIGHTS Function...............................
RMDIR Command
RND Function
RUN Command....................................
SAVE Command....................................
SCREEN Command
SCREEN Function
SGN Function..
SHELL Command...............................
SIN Function

ixGW-BASIC

5-1
5-4
5-5
5-6
5-7
5-7
5-8
5-9
5-9

Chapter 5 Files and Devices
EVERY FILE NEEDS A NAME
DEVICE NAMES
REDIRECTION OF STANDARD INPUT/OUTPUT . .
HOW TO USE DISK FILES

SEQUENTIAL FILES
Creating a Sequential File
Reading a Sequential File
Continuing a Sequential File
Inserting Records in a Sequential File

SOUND Command
SPACES Function
SPC Function
SQR Function
STICK Function
STOP Command
STR$ Function
STRIG Command
STRIG Function
STRINGS Function
SWAP Command
SYSTEM Command
TAB Function
TAN Function
TIMES Command
TIMES Function
TIMER Function
TRON and TROFF Commands.
UNLOCK Command................
USR Function
VAL Function
VARPTR Function
VARPTRS Function
VIEW Command
WAIT Command
WHILE and WEND Commands
WIDTH Command
WINDOW Command
WRITE Command
WRITE# Command

4-247
4-250
4-251
4-252
4-253
4-254
4-255
4-256
4-257
4-258
4-259
4-260
4-261
4-262
4-263
4-264
4-265
4-266

. 4-266a
. 4-267
. 4-269
. 4-270
. 4-271
. 4-272
. 4-274
. 4-275
. 4-276
. 4-278
. 4-283
. 4-284

7-8

7-8

GW-BASIC

5-10
5-10
5-11
5-12
5-15
5-15
5-15
5-16
5-16
5-17
5-17
5-17
5-18

6-1
6-2
6-2
6-3
6-4
6-4
6-6

7-2
7-3
7-4
7-6
7-6
7-6
7-8

Chapter 7 For PEEKers and POKErs
GW-BASIC AND PC MEMORY . .
VARIABLES
THE FILE CONTROL BLOCK. . .
THE KEYBOARD
SETTING SCREEN ATTRIBUTES .

CHARACTER DISPLAY MEMORY
GRAPHICS DISPLAY MEMORY .

Storage Map for Low and Medium
Resolution Graphics..........................
Storage Map for High Resolution .
Black-and-White Graphics
Storage Map for High Resolution .
Color Graphics

COLOR SELECTION
DISPLAY MODE SELECTION . .

THE CHARACTER SET

7-9
7-9

7-10
7-11

RANDOM FILES
Creating a Random File
Accessing a Random File
A Sample Random Access Program

COMMUNICATIONS
OPENING A COMMUNICATIONS FILE . .
COMMUNICATION I/O
I/O Functions
INPUTS FUNCTION
CONTROL SIGNALS
Output Signals
Input Signals
SAMPLE PROGRAM

Chapter 6 Running Machine Language
RESERVING MEMORY
USING RESERVED MEMORY
POKEing
BLOADing

HOW GW-BASIC CALLS SUBROUTINES . .
CALL
USR

A-1Reserved Words Appendix A

The Character Set B-1Appendix B

C-1Appendix C Error Messages

D-1Additional Functions Appendix D

E-1Decimal and Hexadecimal Numbers . .Appendix E

F-1Keyboard Positions Appendix F

GW-BASIC xi

Chapter 1

Introduction

HOW TO START-UP GW-BASIC

In addition, the Programmer’s Tools disk contains the program
BASIC. This is operationally compatible with GW-BASIC. However,
it does not support advanced statements, such as PAINT, CIRCLE,
etc. If an attempt is made to issue an advanced statement an “Ad­
vanced feature” error message will be returned.

Before you start, you should already know about some of the funda­
mental operations within the NCR-DOS operating system, such as
how to copy disks and how to issue commands to the operating system.
It will also help if you are already conversant with the conventions of
giving names to disk files. It is certainly worthwhile looking at these
aspects of your operating system, before you start to write
GW-BASIC programs.

The GW-BASIC program is provided on the Programmer’s Tools mas­
ter diskette. It can be called by GWBASIC, GW-BASIC, or BASICA.
Irrespective of which filename you enter, the GW-BASIC program is
loaded. In other words, the GW-BASIC program is physically present
only once, but you can access it by typing either one of the three
filenames. This is because some applications use different filenames to
call GW-BASIC.

The first step is to load the NCR-DOS operating system into the me­
mory of your computer. (If you are not yet acquainted with this proce­
dure, consult your NCR -DOS manual.) Once the system prompt is dis­
played on the screen, you can load GW-BASIC into memory. Enter one
of the GW-BASIC program file names, for example,

GWBASIC
GW-BASIC

GWBASIC, GW-BASIC, and BASICA are marked read-only to en­
sure protection against deletion. When issuing a DISKCOPY com­
mand, these directory entries cannot subsequently be deleted from
the destination disk. Should you wish to create a disk that does not
contain all of the GW-BASIC program files, use the COPY command.
If you use the COPY *.* command, the system makes three copies of
the GW-BASIC program (one copy for each directory entry). The
copies can then be deleted as desired.

INTRODUCTION

GWBASIC OLDPROG

GW-BASIC1-2

loads GW-BASIC into memory and starts to RUN the program
contained in the file OLDPROG.ABC, whereas

The alternative methods of loading GW-BASIC involve including one
or more options in the loading command:

GWBASIC filename

loads GW-BASIC into memory and starts to run the program
contained in the file OLDPROG.BAS. It is a good idea to give your
GW-BASIC programs the extension .BAS to make them easy to
distinguish when viewing the contents of your disk directory. If you
are using the NCR-DOS BATCH facility for the automatic execution
of a sequence of GW-BASIC programs, each program must end with

The following alternative methods of loading GW-BASIC are of
interest to experienced programmers, so if you are new to GW­
BASIC, you may wish to skip the rest of this section. Proceed then to
“How to Exit GW-BASIC.”

where filename represents the name of a program file (not enclosed in
quotation marks). This command tells GW-BASIC to find that file,
load it, and RUN it without waiting for further instructions from you,
and without even displaying the GW-BASIC sign-on message. The
name of the file must be in agreement with NCR-DOS file name
conventions. It may even specify a path. If you do not specify the file
extension, and assuming that the name of the file is less than nine
characters in length, GW-BASIC understands that the file extension
is .BAS. Examples:

GWBASIC OLDPROG.ABC

(Remember, a command is complete only when you subsequently
press the^) key. This key is referred to as the <ENTER> key in the
remainder of this manual.) When GW-BASIC has been successfully
loaded, it will announce its presence with a sign-on message followed
by:

*
*
*Ok

“Ok” means that GW-BASIC is ready to accept your commands. The
information appearing at the bottom of the screen relates to the
Function Keys of the keyboard and need not concern us for the
moment.

INTRODUCTION

<stdin

> stdout

GWBASIC /Fmumber

GWBASIC /F:6

GW-BASIC 1-3

This option refers to the standard input device, which is normally the
keyboard, stdin represents the name of a file from which GW-BASIC
should accept input instead. If you are using this option, it must
precede any options that start with a slash (/).

the GW-BASIC SYSTEM command to ensure the return to the
NCR-DOS operating system.

where number represents the number of disk files that may be open
(maximum 15) at any one time during the execution of a program. For
example,

tells GW-BASIC that up to six files may be open. Each file requires 62
bytes of computer memory for its File Control Block, plus the buffer
size (see /S option). The number of files that may be open at one time
depends on the value assigned to the FILES parameter in the
operating system CONFIG.SYS file. This parameter defaults to 8.
GW-BASIC itself uses 4 files, so if CONFIG.SYS has FILES = 8, the
maximum value for the number of files in the /F option is 4.

refers to the standard output device, which is normally the screen,
stdout represents the name of a file to which GW-BASIC should
direct output. If you are using this option, it must precede any options
that start with a slash (/).

NOTE: The /F switch takes effect only if the /I switch is specified on
the command line. Please refer to the description of the /I
switch below.

INTRODUCTION

GWBASIC /M:address,blocksize

GWBASIC /M:32768

GWBASIC /M:32000,2048

GWBASIC /S:size

GW-BASIC1-4

NOTE: The /S switch takes effect only if the /I switch is specified on
the command line. Please refer to the description of the /I
switch below.

where size is the buffer size for use with random access files. The
maximum allowable size is 32767. This option determines the
maximum record length which an OPEN command may set.

where address represents the highest memory location that can be
used by GW-BASIC. This option is useful for reserving an area in
upper memory for use by your program. Obviously, this address must
be a realistic one; that is, it must leave memory space at least for your
program. The maximum amount of memory which can be reserved is
64 KB. Example:

allows GW-BASIC to use the first 32 KB of the program segment
setup by the operating system. If you wish, you may use the second
part of this option to set a maximum blocksize, which is recommended
when you intend to load programs above the address defined in the
first part of the option. Blocksize is the number of memory
paragraphs (each of 16 bytes) required as workspace for GW-BASIC,
plus the extra space you require outside the GW-BASIC program
area. Example:

This results in a total of 32768 (2048 x 16) bytes being reserved, of
which 32000 are for GW-BASIC, and 768 for use outside GW-BASIC.

INTRODUCTION

GWBASIC /C:comsize

GWBASIC /I

/D

GW-BASIC

If you do not specify values for these options, GW-BASIC sets
so-called default values: the maximum number of files which can be
open at one time is 3, there is no constraint on memory use, the file
record size is 128 bytes, the buffer size for asynchronous communica­
tions is 256 bytes, and the /D option is not in force.

GW-BASIC is able to dynamically allocate the space required to sup­
port file operations. However, some applications have been written in
such a manner that certain internal data structures must be static.
IBM, for example, uses the /F and /S switches, to determine the
number of disk files that may be open at any one time and the buffer
size for use with random access files, respectively.
In order to provide compatibility with these programs, GW-BASIC
will statically allocate space required for file operations based on the /S
and /F switches when the /I switch is specified.

This option tells GW-BASIC that you wish to use double precision for
the following mathematical functions: ATN, COS, EXP, LOG, SIN,
SQR, and TAN. The inclusion of this option requires approximately
3000 bytes more memory than would otherwise be occupied by
GW-BASIC.

sets the size of the buffer used for receiving data under asynchronous
communications. If you are not using this facility, this option has no
effect. The maximum allowable value for this option is 32767. If you
set the value 0 for this option, the RS232C support is disabled, with
the result that the buffer space is not required, and the portions of
GW-BASIC relating to the communications facility are not loaded
from disk. If you are using two asynchronous communications
facilities, comsize applies to both of them. The value recommended
for a high-speed communications line is 1024. The buffer for
transmitting data is always allocated 128 bytes.

INTRODUCTION

GW-BASIC1-4b

GWBASIC /M:32768
Load GW-BASIC and wait for further instructions. GW­
BASIC itself may not use memory above location 32768.

You can combine these options in a single command when loading
GW-BASIC. Here are some examples:

GWBASIC PAYROLL.BAS /F:6
Load GW-BASIC and execute the program file PAY­
ROLL.BAS, using up to 6 open files.

GWBASIC DATACK /F:2/M:32768
Load GW-BASIC and execute the program file
DATACK.BAS. No more than 2 files may be open at any one
time; memory above location 32768 is out of bounds to
GW-BASIC. '

INTRODUCTION

HOW TO EXIT GW-BASIC

SYSTEM

SAVING AND RETRIEVING A PROGRAM

SAVE “NEWPROG

GW-BASIC 1-5

To exit GW-BASIC and return to the NCR-DOS operating system,
enter the command

This command can be entered at any time when “Ok” is the last
message on the screen, or when the blinking cursor indicates that
GW-BASIC is waiting for you to enter another program line. When
the “Ok” message reappears, you know that your program is now on
disk.

If you are a newcomer to GW-BASIC, you should read this section
before going on to do the subsequent exercises.

As soon as you have loaded GW-BASIC, the “Ok” prompt appears.
This is how GW-BASIC tells you that it is waiting for your
instructions. At this point you can start writing a program. Before
testing your program, it is usually a good idea to save it on disk. For
this you need the SAVE command. At this point you must decide what
you are going to call your program. The following example saves a
program under the name NEWPROG.BAS on the currently active
disk:

This command returns control to NCR-DOS. Note that use of the
<Ctrl-Break> key combination does not have this effect. Instead, it
is used for breaking out of a GW-BASIC program, and returning to
the GW-BASIC “Ok” level.

GW-BASIC assumes that what you are saving on disk is a GW-BASIC
program and gives the program filename the extension .BAS. You
could even specify the .BAS extension yourself (SAVE
“NEWPROG.BAS”), but the result would be no different. You can, if
you wish, specify a different extension to the filename. GW-BASIC
would respect your choice, but every time you wished to do some work

INTRODUCTION

LOAD “NEWPROG”

RUN

GWBASIC NEWPROG

RUN “NEWPROG”

EXERCISES

1-6 GW-BASIC

Alternatively, having loaded GW-BASIC, and once the sign-on
message and “Ok” have appeared, you can type

If you know from the outset that you are going to run an already
existing program without any further editing, you can choose
between two other methods. When your NCR PC displays the
NCR-DOS prompt, you can include the name of the program (without
quote marks) when you load GW-BASIC:

In either case, the program is executed without further action on your
part.

There is little point in entering these commands at the moment, as
you have not yet written a program for GW-BASIC to save on disk. If
you have just tried loading or running a non-existent program, you
may have noticed that GW-BASIC “complained” that the program
file could not be found. Such error messages are nothing to be too
concerned about. They are GW-BASIC’s way of telling you what
information is missing or indicating where something may have gone
wrong.

and your program is back again in the computer’s memory. You can
continue writing (editing) your program, or you can execute it using
the RUN command. To do the latter simply type

Reset the system by means of the <Ctrl-Alt-Del> and load
NCR-DOS. When the system prompt appears, start GW-BASIC by
entering

on that program, you would have to enter the extension as well as the
filename. Therefore, it seems only reasonable to let GW-BASIC use
the .BAS extension to the filename.

When you wish to resume work on your program, first load
GW-BASIC. When “Ok” appears, enter

INTRODUCTION

SAVE “MINIPROG”

SYSTEM

LOAD “MINIPROG”

LIST

10 CLS

SAVE “MINIPROG”

GW-BASIC 1-7

GWBASIC
Remember that “enter” means to type in the words and then press the
<ENTER> key.) GW-BASIC then announces its presence by means of
the “Ok” message. Now type the following line:

20 PRINT “This is how short a program can be”
This time GW-BASIC does not return “Ok” but expects you to enter
further program lines. This may be a very short program, but you can
still save it on disk. Decide on a name, say, MINIPROG, and type the
following GW-BASIC command (if you are not sure of NCR-DOS file
naming conventions, use a name consisting of up to 8 letters):

When “Ok” is displayed again, leave GW-BASIC and return to the
operating system level by entering

You can now check that MINIPROG.BAS is really in the directory by
using the NCR-DOS DIR command.
Now resume working on your program by first loading GW-BASIC
and then entering

“Ok” tells you that your program has been found and loaded. You can
view the contents of the program by typing

which, in this case, results in the display of the single program line
followed by “Ok”. Add the following entry to the program at the place
where the cursor is blinking:

Then enter LIST once again. You have probably noticed that
GW-BASIC has put the two program instructions “in the right
order”, that is, with the lower of the two numbers first. This is the
order in which they will be executed when RUN is entered. But first,
save this updated version of the program in the same way as before:

INTRODUCTION

Now for a trial run. Simply enter

RUN

GWBASIC MINIPROG

GW-BASIC1-8

The first of the two commands (the one prefixed with the number 10)
Clears the Screen; the second PRINTs the text contained in the
quotation marks on the screen. This short program is executed very
quickly, and then the “Ok” message is displayed. Now return to the
operating system level (SYSTEM), so that you can try another
method of running a program. When the NCR-DOS prompt appears,
enter

First, GW-BASIC is loaded, and immediately following this,
MINIPROG is loaded and executed without waiting for any further
instructions on your part.

The RENUM command offers a facility for creating more “space”
between program lines, should this become necessary. AUTO is a
command which automatically offers you line numbers with an
increment determined by you, thus saving you the trouble of typing
the line number for each line of the program.

If you make a mistake when entering a program line (that is, a
command prefixed by a number), simply enter the line in its
incomplete or incorrect form and write the line in its correct form
using the same line number. The old, incorrect version is replaced by
the new, correct version, as soon as the latter is entered. If you
overlook a mistake that contradicts the language rules of GW-BASIC,
it will not be noticed by GW-BASIC until you execute the program.
Then GW-BASIC will stop the program and indicate to you the line
number in which the mistake is present. To delete a program line
without replacement, simply enter DELETE with the number of the
line concerned. The complete facilities of the editor are described in
the Full Screen Editor chapter.

Line numbers tell GW-BASIC the sequence in which you wish
commands to be carried out. A line number must be in the range 0 to
65529, but there is no reason why a program 5 lines long must use the
lines 0, 1, 2, 3, and 4. Indeed, this would be undesirable as it would
prevent subsequent insertion of additional program lines. For this
reason, it is a good idea to write your programs with a line increment,
perhaps of 10.

INTRODUCTION

LIST.

MODES OF OPERATION

GW-BASIC 1-9

GW-BASIC uses a shorthand form for the EDIT, LIST, AUTO, and
DELETE commands to refer to the current line, namely the period (.).
Therefore, if you enter

the program line you are currently working on is displayed on the
screen.

The indirect mode is the one you use for entering program lines as you
have done in the exercises. It is called indirect because the commands
are not executed immediately, but only when you issue the command
to run the program. You do not have to tell GW-BASIC that you
require this mode: as soon as it sees that the command is prefixed by a
line number, GW-BASIC knows that the command is not intended for
immediate execution, but to be part of a program which can be run,
saved, and retrieved at a later time.
The commands LOAD, SAVE, RUN, and SYSTEM, as used in the
earlier exercises, were direct commands; that is, their effect came
about immediately. Accordingly, they did not have program line
numbers. Using GW-BASIC commands as direct commands is often a
convenient way of checking what has happened in a program. This
facility also enables you to use GW-BASIC and your computer as a
calculator for quick computations. Try entering the following simple
calculation as a direct command:

10 CLS:PRINT “This is how short a program can be”
When typing a program line, you may exceed the length of a display
line on the screen, provided the program line is not longer than 254
characters plus the <ENTER> key.

When GW-BASIC is loaded, it displays the “Ok” message to indicate
that it is ready to accept your commands. At this point, you have the
choice of two modes: the indirect mode or the direct mode.

The two GW-BASIC lines which comprise the program
MINIPROG.BAS each consist of one command only. GW-BASIC
permits lines containing more than one command; in this case, the
commands must be separated by colons. For example, the following
line would have the same effect as the two lines of MINIPROG.BAS
together:

INTRODUCTION

PRINT 128+64-5

THE CHARACTER SET

Description Symbol Significance in GW-BASIC

Blank

Equal sign

Plus sign +

Minus sign Usual arithmetic significance

Asterisk * Multiplication symbol

Slash Division symbol

Caret A Exponentiation symbol

() Usual algebraic significance

Percent sign Denotes an integer number%

1-10 GW-BASIC

Left and right
parentheses

The result is displayed on the screen immediately. Omitting line
numbers to achieve immediate results means that the command is
not retained beyond execution (even though the result is the same as
if it had been executed as part of a program). Therefore, when a
command or sequence of commands is required for repeated use, it
makes most sense to prefix them with line numbers and store them on
disk. This is why we create computer programs.

Usual function in arithmetic
comparisons. Assigns contents
to program variable

Usual arithmetic significance
Concatenation of texts

Separates syntax elements in
program line

The GW-BASIC character set comprises all the letters of the
alphabet as well as numeric characters (the digits 0 through 9). In
addition, a number of special characters belong to the GW-BASIC
character set. You may recognize some of these as denoting
arithmetic functions. Others are of special significance in GW-BASIC
programming. They are explained in the appropriate sections of this
manual. Here is a list of the special characters:

INTRODUCTION

#

Exclamation mark

Dollar sign Denotes a text$

Comma

Semicolon

Decimal pointPeriod

ft Delimits a text

Colon

Ampersand & Used in declaring number bases

Question mark ?

Usual algebraic significance

Backslash \

GW-BASIC 1-11

Number (or
pound) sign

Single quotation
mark

Double quotation
mark

Less than
Greater than

The GW-BASIC character set is an extension of the widely known and
used ASCII code. The ASCII code attributes a value to 128 individual
characters. For example, the ASCII code for the uppercase letter A is
65; for the digit 3, it is 51. The so-called control characters, that is,
those codes that do not directly produce a screen image of their own

Denotes a double precision
number

Denotes a single precision num­
ber

Delimits a programmer’s
remark

Separates commands within a
program line

Editor abbreviation for PRINT
command

Used in screen or printer for­
matting

Used as a delimited between
string variables (same as
comma)

Symbol for integer division
GW-BASIC also recognizes a number of Ctrl key combinations for
program editing purposes. These are described in the section which
deals with GW-BASIC’s Full Screen Editor.

INTRODUCTION

10 PRINT "UPPER lower”

1-12 GW-BASIC

10 print "UPPER lower”
the next time you LIST this line on the screen it will appear as

CONSTANTS
Constants are actual data that you supply to GW-BASIC. This data
can take the form of a string or numeric constant. A string constant is
one that is enclosed in (double) quotation marks, for example

PRINT CHR$(227)
results in the Greek letter pi being displayed. Finally, try one of the
control (that is, the non-displayable) characters:

PRINT CHR$(65)
tells GW-BASIC to display on the screen the character that
corresponds to the code value 65. As a result, the uppercase letter A is
displayed (as if you had issued the command PRINT "A”). Now try a
character that does not appear on the keyboard, for example

(for example, the codes determining cursor movement on the screen)
are also represented in ASCII.
Appendix B of this handbook lists the complete GW-BASIC character
set. The characters occupying the values 32 up to 126 will be already
familiar to programmers. A few little-used ASCII control characters
in the range 0 to 31 are used by GW-BASIC for graphic symbols.
Although the values 128 to 255 are not represented in the ASCII code,
GW-BASIC uses these values to provide you with a wealth of extra
letters and other symbols.
Refer to Appendix B and enter commands like the following:

PRINT CHR$(7)
causes the loudspeaker to beep.
You can enter the names of GW-BASIC commands in upper or
lowercase. The next time you LIST your program on the screen, you
see that GW-BASIC has converted into uppercase any lowercase
letters you might have used in commands. This does not apply to
letters you enter within quotation marks: GW-BASIC realizes that
you intend these lowercase letters for later printing on the screen or a
printer. If, for example, you enter line 10 of your program as

INTRODUCTION

GW-BASIC 1-13

“$25,000.00”
(but you cannot do any arithmetics with those numbers as they
currently stand).
When you want to do calculations with numbers, you can use numeric
constants for both positive and negative numbers. The simple
calculation in the direct mode of GW-BASIC in the last Exercises
used three numeric constants (128,64, and 5). There are five types of
numeric constants:

Integer constants
Whole numbers between -32768 and +32767 (the plus sign is
optional on a positive number).

Fixed Point Constants
Positive or negative real numbers; i.e., numbers that contain
decimal points.

“WELCOME”
“Enter any number”

Accordingly, line 20 of your short program in the last Exercises (20
PRINT “This is how short a program can be”) contained a string
constant. You can even place numbers inside quotation marks, for
example

Floating Point Constants
Positive or negative numbers represented in exponential form
(similar to scientific notation). A floating point constant consists
of an optionally signed (+ or -) integer or fixed point number
(mantissa) followed by the letter E and an optionally signed
integer (the exponent). The allowable range for floating point
constants is 2.9E-39 to 1.7E+38.
Examples:

35E-2 (“thirty-five” times “ten to the power of minus 2”)
= .35
235.988E-7 = .0000235988
2359E6 = 2359000000
(Double precision floating point constants use the letter D
instead of E. The difference between the two is described in
this section.)

INTRODUCTION

Single Precision Double Precision

1-14 GW-BASIC

345692811
-1.09432D-06
3489.0#
7654321.1234

Hexadecimal Constants
Numbers with the prefix &H. (Assembler programmers know all
about these.)

Examples:
&H76
&H32F

Octal Constants
Numbers with the prefix &O or &.

Examples:
&O347
&1234

46.8
-1.09E-06
3489.0
22.5!

• seven or fewer digits, or
• exponential form using E, or
• a trailing exclamation mark (!)

A double precision constant is any numeric constant that has

• eight or more digits, or
• exponential form using D, or
• a trailing number sign (#)

Examples of constants

VARIABLES
A variable is a kind of storage compartment in your program in which
a value (string or numeric) is placed. Your program can assign a value

Non-integer numeric constants may be either single precision or
double precision numbers. Single precision numeric constants are
stored with 7 digits of precision and displayed with up to 7 digits (6
digit accuracy). With double precision, the numbers are stored with
17 digits of precision and displayed with up to 16 digits.

A single precision constant is any non-integer numeric constant that
has

INTRODUCTION

GW-BASIC 1-15

PI#
MINIMUM!
LIMIT%
N$
ABC

to a variable and manipulate its contents. You can even assign, check,
and alter variables in the direct mode.
The name of a variable must start with a letter; the remainder of the
name may consist of letters, digits, decimal points and a type
declaration (see below). The name of a variable can be as long as you
wish, but GW-BASIC recognizes only the first 40 characters.
However, this hardly poses a limitation: it is good practice to keep
variable names short, thus making the program easier to type into the
computer.
A variable can store either a string or numeric value. The last
character of a string variable must be $. This is the type declaration
for a string variable. There are three types of numeric variables, each
with a special character at the end of the name:

% Integer variable
! Single precision variable
Double precision variable

If you do not specify a type declaration, GW-BASIC assumes a
numeric, single precision variable. (The difference between the
different types of numeric values was discussed in the section
“Constants”.) Here are some examples of GW-BASIC variable names:

stores a double precision value
stores a single precision value
stores an integer value
stores a string value
stores a single precision value

When writing a program, you can choose the names of your variables.
In addition to the formalities of name choice already mentioned,
there is one further constraint: the name of a variable must not be
identical with a name belonging to the GW-BASIC instruction set.
These names are often termed “reserved words” (there is a list of
them in Appendix A). A reserved word may, however, be embedded in
a variable name. For example, GW-BASIC does not allow you to use
the name PRINT$, but you may use the name PRINTER^. If the name
of a variable begins with FN, GW-BASIC assumes that it is a call to a
user defined function. This is described in Chapter 4, Commands and
Functions.
It always makes sense to give a variable a name that somehow
identifies the data it is holding. For example, if you want to calculate
interest on a loan, you might store the current rate of interest in a

INTRODUCTION

GW-BASIC1-16

PRINT TEMP:PRINT WEATHER#

or, perhaps a little more meaningful

LET TEMP = 80
LET WEATHER# = “sunny”

These commands say no more than that the numeric variable TEMP
should now assume the value 80 and the string variable WEATHER#
should hold the letters “sunny”. In fact, the word LET is never really
required, so the following would do just as well:

variable called INTEREST, and the name of the loaning or borrowing
bank in BANK#. Any lowercase letters you enter in a variable name
are converted by GW-BASIC to uppercase at the next LIST.

There is a second method of type declaration for variables, whereby
any number of variables can be declared as integer, string, single or
double precision in a single command (see DEFINT, DEFSTR,
DEFSNG, and DEFDBL in the chapter Commands and Functions).

To store values in variables, GW-BASIC has the LET command.
Examples:

TEMP = 80
WEATHER# = “sunny”

To display the current contents of a variable on the screen, simply use
the PRINT command, for example

PRINT “It is a “jWEATHER#;” day, the temperature is
“;TEMP;” degrees.”

NOTE: If you do not explicitly set a variable to a value, either in
direct mode or in a program, it will give you the answer 0
(numeric variable) or nothing at all (string variable) when you
display its contents. The length of a string variable is the number
of characters it contains, up to a maximum of 255 characters.

If you attempt to assign a string value to a numeric variable, or vice
versa, GW-BASIC points out the error (“Type mismatch”). What
GW-BASIC cannot do is to check the credibility of what is in a
variable: if you assign “cold” to WEATHER#, the sentence displayed
by the above PRINT command will seem somewhat contradictory,
while as far as GW-BASIC can see, the command is syntactically
acceptable.

INTRODUCTION

It is a nice, sunny day, and the temperature is 65 degrees.

GW-BASIC 1-17

TEMP = TEMP-20
WEATHERS = “nice, “ +WEATHER#

The above PRINT command would then produce

It is possible not only to assign constants to a variable, but also to
assign the same or other variables, and even perform arithmetic or
string manipulation at the same time. Having set TEMP to 85 and
WEATHERS to “sunny”, you could undertake the following changes:

An array may have more than one dimension. An example of a
two-dimensional array is a mileage chart giving the distances
between a number of towns. The command PRINT MILES(2,5) tells
GW-BASIC to display the numeric value from the table entry
indicated by reading element number 2 along the top of the table and
element number 5 down the side.

V(2) = 65
It is important to note that this assigns the value 65 to the third (!)
element of the array variable V (the first element is subscripted by 0,
unless you change this to 1 using OPTION BASE).

ARRAY VARIABLES
An array is a group or table of values referenced by the same variable
name. Each element in an array is referenced by the name of the
array and a subscript that tells GW-BASIC which element of the
array you wish to access. The subscript is an integer or an expression
which yields an integer. For example, PRINT NNAME$(4) tells
GW-BASIC to display one entry of what is presumably a list of
names.

The maximum number of dimensions for an array is 255; the
maximum number of elements per dimension is 32767.
The procedure for using array variables differs a little from that of
using simple numeric variables. If the array variable is to contain
more than 11 elements (subscripts 0 through 10) or more than one
dimension, it must be declared accordingly (see DIM in the chapter,
Commands and Functions). If you use an array before it is defined, it is
assumed to be of single dimension with a maximum subscript of 10.
We have already established that, when assigning a value to or
reading the contents of an element, you must state in parentheses
which element is intended, for example

INTRODUCTION

TYPE CONVERSION

The value displayed is 55.88346.

1-18 GW-BASIC

It is sometimes necessary for GW-BASIC to convert a number from
one degree of precision to another. When this is the case, the rules
stated in this section apply. If you attempt to assign a string variable
to a numeric variable, or vice versa, a “Type mismatch” error is
displayed by GW-BASIC.

• If a numeric value of one precision is assigned to a numeric
variable of a different precision, the number is stored with the
precision declared for the target variable (the variable on the left
of the equal sign). Example:

10 A % = 23.42
20 PRINT A%

When you run this short program, GW-BASIC will display the
number 23. If you assign the number 23.52 to A%, GW-BASIC
displays the number 24. This is because GW-BASIC does not
simply truncate, but rounds the number when assigning it to a
variable of lower precision. An example of this rounding taking
place when assigning a double precision number to a single
precision variable:

10 C = 55.8834567#
20 PRINT C

SPACE REQUIREMENTS
The space requirements in the computer memory for the various
types of numeric variable are as follows:

Integer, including hexadecimal and octal numbers — 2 bytes
Single precision — 4 bytes
Double precision — 8 bytes

In the case of an array, these figures are to be understood as per
element. The space requirement of a string variable is the length of
the string (number of characters), plus three bytes.

It is evident that numbers of higher precision require more memory
space. They also require more time when being evaluated. Therefore,
a program with integer variables runs faster, especially where
repeated calculations are involved.

INTRODUCTION

2.04 2.039999961853027

A

1-19GW-BASIC

ABS (B#-A)

where B# and A represent the double and single precision
variables, respectively.

• When an expression is being evaluated, all the operands are
converted to the degree of precision of the most precise operand
involved. Here are two examples:

10 A = 2.04
20 B# = A
30 PRINT A;B #

When you run this program, GW-BASIC will display the original
and the new form of the number side by side as follows:

The following expression is of interest to mathematicians who
require exact information about the degree of deviation:

10 D# = 6#/7
20 PRINT D#

All the arithmetic is performed with double precision, and the
result (.8571429) is likewise returned with double precision.

10 D = 6#/7
20 PRINT D

Again, the arithmetic is done in double precision, but this time
the result is assigned to a single precision variable. Therefore, the
command PRINT D will yield a single precision result (.8571429).

This rounding also occurs if you forget to use pure integers in
commands or functions where integers are required. Example:
given that the single precision variable SUBSCR contains the
value 2.5, the command PRINT NNAME$(SUBSCR) will be
interpreted by GW-BASIC at the time of execution as PRINT
NNAME$(3).

• Assigning a lower precision number to a variable of higher
precision cannot, of course, result in any greater accuracy. In fact,
there is sometimes a very slight deviation from the original
number, due to the way in which GW-BASIC stores numbers.
Consider the following example:

6.3E-8 *

INTRODUCTION

EXERCISES

1-20 GW-BASIC

The following example shows you how the use of string variables can
save typing time when re-arranging elements of a text:

• Logical operators (AND, OR etc, described later in this chapter)
convert their operands to integers and yield an integer result.
Operands must be in the range -32768 to 32767, otherwise an
“Overflow” error occurs.

Run this program. Line 10 assigns to PC the value 5. Line 20 divides
this number by 100, thus creating a number which can be directly

10 A$=“The quick brown “:B$=” jumps over the lazy ”
20 AN1$=“fox”: AN2$=“dog”:AN3$=“bear”
30 AN4$=“kangaroo”:AN5$=“beaver”:AN6$=“camel”
40 CLS
50 PRINT A$;AN1$;B$;AN2$:PRINT
60 PRINT A$;AN2$;B$;AN1$:PRINT
70 PRINT A$;AN3$;B$;AN4$:PRINT
80 PRINT A$;AN6$;B$;AN3$:PRINT
90 PRINT A$;AN5$;B$;AN6$:PRINT

100 PRINT A$;AN6$;B$;AN4$:PRINT
Every element of the text of the 6 lines thus displayed on the screen is
held in a string variable. The PRINT items are separated here by
semicolons, which tells GW-BASIC to start printing the next item
immediately after the position where the last print item finished. The
additional PRINT command at the end of each of the lines 50 to 100
creates a line of space between each line on the screen.
The next example shows a simple percentage calculation on a
sequence of numbers you input to the computer. This program uses
single precision arithmetic:

10 PC=5
20 PCX = PC/100
30 CLS
40 INPUT NUMBER
50 IF NUMBER=0 THEN GOTO 100
60 RESULT=NUMBER*PCX
70 PRINT PC;“ % of “;NUMBER;” = “;RESULT
80 PRINT
90 GOTO 40

100 END

INTRODUCTION

GW-BASIC 1-21

10 OPTION BASE 1:DIM NNAME$(10):CLS
20 FOR LOOP% =1 TO 10
30 PRINT “Enter somebody’s name
40 INPUT NNAME$(LOOP%)
50 NEXT LOOP%
60 CLS
70 PRINT “Now recall those names”:PRINT
80 PRINT “Enter number 1 to 10”:PRINT:PRINT
90 INPUT “Number”;N%

100 IF N% =0 THEN GOTO 130
110 PRINT “The name entered at place”;N%;“is
”;NNAME$(N%)

multiplied to gain a percentage figure, and places the new number in
the variable PCX. Line 30 clears the screen. Following this,
GW-BASIC prompts you by means of a question mark to enter a
numeric value (which may include a decimal point or be in
exponential notation); the value you input is stored in NUMBER. Line
50 checks whether NUMBER is 0; if this is the case, GW-BASIC
branches (GOTO) to line 100, which is the END of the program. If
NUMBER is not 0, 5% of NUMBER is calculated (line 60), the result
being stored in RESULT. The calculation with result is then
displayed on the screen (line 70; line 80 prints a blank line). (If the
result exceeds the number of digits which can be displayed as a single
precision number, GW-BASIC automatically uses the exponential
form.) GW-BASIC then branches back to line 40, with the effect that
GW-BASIC once again waits for you to enter a new number at the
keyboard. The loop of events between lines 40 and 90 is repeated until
NUMBER contains 0. To change the percentage figure which is the
basis of calculation, simply alter line 10 correspondingly. If you
attempt an illegal input, for example, trying to include a letter in the
number, GW-BASIC immediately asks you to redo that one input (“?
Redo from start”).
The final example in these exercises concerns the use of an array
variable. It also shows how, with a minimum of program lines, a task
can be repeated a number of times, each time in a slightly different
form. The program defines an array variable consisting of 10
elements in a single dimension, the first element being subscripted by
the number 1 (line 10). You are then asked to INPUT 10 names to fill
this array (lines 20-50). Afterwards, the screen is cleared. You are
then requested to enter numbers of your choice in the range 1 to 10.
After each entry, the corresponding element of the array containing
the names is displayed. If you enter 0, the program terminates.

INTRODUCTION

EXPRESSIONS AND OPERATORS

1-22 GW-BASIC

An expression may be simply a string or numeric constant, or a
variable, or it may combine constants and variables by means of
operators to produce a single value.
Operators perform mathematical or logical operations. These opera­
tions are carried out mainly on numeric values, but there is no reason
why strings should not be added together or compared with one

90 PRINT “Number ”;:INPUT N%
One thing this program does not prevent you from doing is entering
an integer number greater than 10. As there is no element in the array
with a subscript greater than 10, to do so would force GW-BASIC to
terminate the program with the error message “Subscript out of
range”. The next set of exercises will show you how to program
GW-BASIC to make logical decisions which detect such eventualities
and thus prevent them from causing a premature termination of the
program.

120 GOTO 90
130 END

This program uses a so-called FOR...NEXT loop from lines 20 to 50.
Line 20 tells GW-BASIC how often the loop has to be passed through
(from 1 to 10, i.e. 10 times). The number of passes already made
through the loop is held in a variable, which is here called LOOP%,
but which could be any numeric (preferably integer) variable. At the
outset, this number is 1, which means that on the first pass, the array
variable NNAME$ in line 40 is subscripted by 1. This in turn means
that the first name you INPUT during the execution of the program is
stored as the first element of the array variable. After this,
GW-BASIC raises the value held in LOOP% and checks whether the
limit specified in line 20 (namely 10) has been exceeded. As this is
clearly not the case after the first pass, GW-BASIC returns to line 20
for the next pass: you are asked for the second time to enter a name;
this is stored as the second element of the array variable, and so on.
GW-BASIC goes on to line 60 only after the 10th pass through the
loop.
Line 90 displays the request “Number” and waits for you to enter a
number. This way of including the request in the INPUT command is
a GW-BASIC facility which saves the use of an explicit PRINT
command. Therefore, line 90 is equivalent to

INTRODUCTION

Sample ExpressionOperationOperator

X*YExponentiationA

-XNegation

*7

X + YAddition, Subtraction

1-23GW-BASIC

another. The operators provided by GW-BASIC can be regarded as
belonging to four different categories:
• Arithmetic
• Relational
• Logical
• Functional

These operators are given here in their order of precedence. If you
have a mathematical background, you are probably aware of the
significance of this order. It reflects the sequence in which subordi­
nate expressions are evaluated within a more complex expression.
Example:

(2 + 6) * 5
yields the result 40.
In the section dealing with the GW-BASIC character set, there was
already mention of special characters representing mathematical
functions. One example of this is the asterisk, which in GW-BASIC

Multiplication, Floating
Point Division

X*Y
X/Y

ARITHMETIC OPERATORS
The arithmetic operators are:

2 + 6*5
There is obviously a difference in result between adding 2 to 6 and
then multiplying this intermediate result by 5 (= 40), and multiply­
ing 5 by 6 and then adding 2 (= 32). The generally accepted procedure
of the two is the latter: multiplication is higher in the order of
precedence than addition, which means that the multiplication part
of the expression must be carried out first. This is often termed
“algebraic logic”.
You can override this order of precedence by use of parentheses.
Accordingly, the expression

INTRODUCTION

Algebraic Expression GW-BASIC Expression

X + Y*2

X-Y/Z

X*Y/Z

(X + Y)/Z

(Xa2)aY

Xa(7aZ)

1-24 GW-BASIC

denotes multiplication. Here are some examples which show how
GW-BASIC represents these mathematical functions:

X*(-Y)
Two consecutive
operators must be
separated by
parentheses.

Integer Division and Modulus Arithmetic
Two additional operators are available in GW-BASIC integer division
and modulus arithmetic.

Integer division is denoted by the backslash (\). The operands are
rounded to integers (must be in the range -32768 to 32767) before the
division is performed, and the quotient is truncated to an integer.

For example:
10 \ 4 yields the value 2
25.68 \ 6.99 yields the value 3

The precedence of integer division is just after multiplication and
floating point division.

Modulus arithmetic is denoted by the operator MOD. It gives the
integer value that is the remainder of an integer division. GW-BASIC
creates integers, where necessary, by rounding (not truncating).
Examples:

10.4 MOD 4 = 2 (10/4 = 2 with a remainder 2)
25.68 MOD 6.99 = 5 (26/7 = 3 with a remainder 5)

The precedence of modulus arithmetic is just after integer
division.

X + 2Y

X-X
z

XY
z
X + Y

z
2 Y

(X)
YZ

XT

X(-Y)

INTRODUCTION

Sample ExpressionsOperator Relation Tested

X = YEquality

XoY or XxYInequality

X<YLess than

X>YGreater than

X< = YorX = <YLess than or equal to<= or =

X>=Y or X = >Y= or =

GW-BASIC 1-25

If overflow occurs, the “Overflow” error message is displayed,
machine infinity with the algebraically correct sign is supplied as the
result. In the case of integer overflow, execution stops.

GW-BASIC does not check for “underflow” (the result of an operation
is so small that GW-BASIC cannot distinguish it from zero).

(The equal sign is also used to assign a value to a variable.
See LET, Chapter 4).

Greater than or equal
to

Overflow And Division By Zero
If, during the evaluation of an expression, a division by zero is
encountered, the “Division by zero” error message is displayed,
machine infinity with the sign of the numerator is supplied as the
result of the division, and execution continues. If the evaluation of an
expoentiation results in zero being raised to a negative power, the
“Division by zero” error message is displayed, positive machine
infinity is supplied as the result of the exponentiation, and execution
continues.

When arithmetic and relational operators are combined in one
expression, the arithmetic is always performed first. For example,
the expression

X + Y<(T-1)/Z

is true if the value of X plus Y is less than the value of T-l divided by Z.
More examples:

IF SIN(X)<.5 THEN GO TO 1000

RELATIONAL OPERATORS
Relational operators are used to compare two values. The result of the
comparison is either “true” (-1) or “false” (0). This result may then be
used to make decisions regarding program flow. (See IF, Chapter 4).

INTRODUCTION

IF I MOD J<>0 THEN K = K + 1

PRINT SECONDS%>30

200 THEN PRINT “Con-

200 THEN PRINT “Condi-

1-26 GW-BASIC

Now let us consider the same situation from the seller’s point of view.
He or she might consider selling on the basis of the following
consideration: “I am prepared to sell you the commodity of a quality
higher than 3, but then the price cannot be less than 200.
Alternatively, I will accept the lower price, but I cannot fulfill the
quality requirement.” GW-BASIC uses the XOR operator to express
this sentiment of “either one or the other, but not both”:

Causes GW-BASIC to display the number -1 if the integer variable
contains a value greater than 30; otherwise, 0 is displayed.

In the first of these two examples the outcome of evaluating whether
the sine of X is less than .5 determines whether program execution
will branch to line 1000. In the second example, the value held in K is
increased by 1, only if the remainder resulting from dividing the
contents of the variable I by that of J is not zero.

LOGICAL OPERATORS
Logical operators perform logical, or “Boolean”, operations. The
operator denotes the kind of comparison that two values are
subjected to. The GW-BASIC words for the various kinds of logical
comparison are NOT, AND, OR, XOR, IMP, and EQV.

Your program could base a decision whether or not to display a
recommendation to buy a particular commodity on the following
consideration: “If the quality code is higher than 3, and the price less
than 200, then buy!” A corresponding GW-BASIC command would
look something like this:

IF QUALITY% > 3 OR PRICE
tions are acceptable for buying”

This means that at least one of the conditions must be fulfilled. It
does not matter which one; furthermore, it would be acceptable if
both were fulfilled.

IF QUALITY% > 3 AND PRICE
ditions are good for buying”

Both conditions must be fulfilled if the recommendation is to be
displayed. Now consider the following example:

INTRODUCTION

100 THEN GOTO 1000

1-27GW-BASIC

IF QUALITY % > 3 XOR PRICE < 200 THEN PRINT “Sell­
ing conditions are not ideal, but good enough to do business”

The logical operators NOT and EQV (equivalent to) have
counterparts in the GW-BASIC character set:

IF ANSWERS EQV “YES” THEN GOTO 1500 has the same
effect as
IF ANSWERS = “YES” THEN GOTO 1500

The following list gives the result of all the permutations of each of
the six logical operators. 1 stands for “true”; Ofor “false”. Taking the
second permutation under OR as an example, the information can be
read “If the first condition is fulfilled (1), but the second condition is
not fulfilled (0), the conditions of the comparison as a whole are to be
regarded as fulfilled (1)”. The first permutation under XOR can read
“If both the first and the second condition are fulfilled, the conditions
of the comparison as a whole are to be regarded as not fulfilled”.

IF NOT (TEMP = 100) THEN GOTO 1000 has the same effect
as
IF TEMP

X
1
0

X
1
1
0
0

X
1
1
0
0

X
i
i
o
0

Y
1
0
1
0

x
1
0
1
0

NOT X
0
1

X XOR Y
0
1
1
0

Y
1
0
1
0

X AND Y
1
0
0
0

X OR Y
1
1
1
0

INTRODUCTION

75

75)

1-28 GW-BASIC

X
1
1
0
0

X
1
1
0
0

Y
1
0
1
0

X
i
0
1
0

X EQV Y
1
0
0
1

X IMP Y (implies)
1
0
1
1

This list also indicates the order of precedence in which logical
expressions are evaluated (NOT has highest priority). As with
arithmetic operations, you can override this order of precedence by
the use of parentheses. Consider the following examples:

IF SKY$ = “clear” AND TEMP > 70 OR HUMIDITY
THEN PRINT “Let’s have a picnic”

IF SKY$ = “clear” AND (TEMP > 70 OR HUMIDITY
THEN PRINT “Let’s have a picnic”

In the first example, the picnic invitation is made regardless of the
appearance of the sky and the temperature, just as long as the
relative humidity is below 75%. The second example would appear to
be a much safer weather basis: either the temperature or the
humidity (or both) must be favorable, and the sky must be clear at
any rate.

The following is a detailed discussion of how GW-BASIC determines
the result of a logical operation. It is not necessary to understand this
process in order to program with GW-BASIC. The discussion is of
interest mainly to programmers working at bit level.

Logical operators work by converting their operands to sixteen bit,
signed, two’s complement integers in the range -32768 to +32767. (If
the operands are not in this range, an error results.) If both operands
are supplied as 0 or -1, logical operators return 0 or -1. The given
operation is performed on these integers in bitwise fashion; i.e., each
bit of the result is determined by the corresponding bits in the two
operands.

Thus, it is possible to use logical operators to test bytes for a
particular bit pattern. For instance, the AND operator may be used to
“mask” all but one of the bits of a status byte at a machine I/O port.

INTRODUCTION

63 AND 16=16

15 AND 14=14

-1 and 8=8

4 OR 2=6

10 OR 10=10

TWOSCOMP% = (NOT INTGER%) + 1

1-29GW-BASIC

The OR operator may be used to “merge” two bytes to create a
particular binary value. The following examples demonstrate how the
logical operators work.

Given that INTGER% contains 2 (= binary 10), NOT INTGER%
produces the bit pattern 11111111 11111101. This is -3 in decimal.
TWOSCOMP% is therefore assigned the value -2 (the result of adding
1 to -3). The general expression for calculating the two’s complement
of an integer is “the bit complement plus one”.

63 = binary 111111 and 16 = binary
10000, so 63 AND 16 = 16 (binary 10000)

15 = binary 1111 and 14 = binary 1110,
so 15 AND 14 = 14 (binary 1110)

4 = binary 1000 and 2 = binary 10
so 4 OR 2 = 6 (binary 110)

FUNCTIONAL OPERATORS
A function is used in an expression to call a predetermined operation
that is to be performed on an operand. GW-BASIC has “intrinsic”
functions that reside in the system, such as SQR (square root) or SIN
(sine). All of GW-BASIC’s intrinsic functions are described in
Chapter 4.
GW-BASIC also allows “user defined” functions that are written by
the User. See DEF FN, Chapter 4.

-1 = binary 1111111111111111 and
8 = binary 1000, so -1 AND 8=8 (binary
1000)

10 = binary 1010, so 1010 OR 1010 = 10
binary 1010

You can use GW-BASIC to work out the two’s complement of an
integer:

EVALUATION OF EXPRESSIONS
This section summarizes the precedence of numeric operations; that
is, the order in which GW-BASIC evaluates them within an
expression.

INTRODUCTION

2. Then arithmetic operations are carried out in the following order:

3. Relational operations are performed next.

4. Finally, logical operations in the following order:

1-30 GW-BASIC

1. Function calls (regardless of whether defined in your program or
already provided by GW-BASIC) are evaluated first.

Strings may be compared using the same relational operators
that are used with numbers:

a. NOT
b. AND
c. OR
d. XOR (exclusive OR)
e. EQV (equivalence)
f. IMP (implication)

Operations at the same precedence level are performed from left to
right. To change the order of precedence for a particular expression,
use parentheses: operations enclosed within parentheses are per­
formed first; within parentheses, the usual order of evaluation (as
detailed above) is observed.

STRING OPERATIONS
Strings may be concantenated (joined together) using +. For
example:

10 A$=“FILE”:B$ = “NAME”
20 PRINT A$ + B$
30 PRINT “NEW ” + A$ + B$
RUN
FILENAME
NEW FILENAME

a. *
b. unary —
c. *,/
d. \
e. MOD
f. +,-

INTRODUCTION

1-31GW-BASIC

Thus, string comparisons can be used to test string values or to
alphabetize strings. All string constants used in comparison expres­
sions must be enclosed in quotation marks.

String comparisons are made by taking one character at a time from
each string and comparing the ASCII codes. If all the ASCII codes are
the same, the strings are equal. If the ASCII codes differ, the lower
code number precedes the higher. If, during string comparison, the
end of one string is reached, the shorter string is said to be smaller.
Leading and trailing blanks are significant. Examples (the result is
“true” in each case).

“AA”<“AB”
“FILENAME” = “FILENAME”
“X&”>“X#”
“C1”>“CL”
“kg”>“KG”
“SM YTH” < “SMYTHE”
B$<“256” (where B$ contains the string “1234”)

INTRODUCTION

12

and

12

PRINT Y MOD X + 3

105 IF N%

1-32 GW-BASIC

X = 12
Y = 14

EXERCISES
You have now read quite a lot about the precedence of operators. Try
performing some mathematical operations with a particular view to
observing the effects of overriding the order of precedence by the use
of parentheses. For example, observe the difference of result between

10 THEN PRINT “There aren’t that many
names”:GOTO 80

The next example will remind you of the arithmetic you did at school,
before you learned about decimal points. It demonstrates how you can
use GW-BASIC’s integer and modulus division operators to produce a
result in the form of quotient and remainder.

The program makes use of “error trapping”. When GW-BASIC
notices during program execution that there is a syntactical error, or
that a command or function is not being used correctly (for example,
division by zero, or subscript out of range), a message is displayed to
that effect. You can intercept non-syntactical errors by means of
questioning the contents of a variable and making a branch in the
program dependent on the answer. In the last set of exercises, in the
program which stored a list of names and then recalled these names
in response to your entering numbers, there was nothing to prevent
you from entering a number higher than the maximum allowable
subscript for the array. One way of intercepting such an erroneous
entry in that program would be the following program line:

PRINT 5 + 6 *

PRINT (5 + 6) *

Enter these commands in the direct mode for quick results. You can
even include GW-BASIC variables in an expression, but this makes
sense only if you give them a value first; otherwise, GW-BASIC will
assign them the value 0. Enter (in direct mode)

and then a command (likewise in direct mode) to resolve an
expression which uses these two variables, for example

INTRODUCTION

GW-BASIC 1-33

The section “String Operators” demonstrated that it is possible fo
compare not only numbers, but also strings. The outcome of the

10 ON ERROR GOTO 100
30 INPUT “Number to be divided”;Q%
40 INPUT “Now enter the divisor”;D%
50 PRINT:PRINT “The answer is “;Q%\D%;”, remainder; “Q%

MOD D%
60 PRINT
70 GOTO 30

100 CLS
110 IF ERR = 6 THEN PRINT “Outside the integer range! Try

again”
130 RESUME 30

This has the effect that if you enter a number higher than 10, first
your own error notification is displayed, then GW-BASIC returns to
line 80 in expectation of a legal entry. In this way, your program
prevents GW-BASIC from attempting in line 110 to reference an
array with a sub script that is too high.

GW-BASIC provides a more comfortable error trapping facility,
which is used in the following program. Line 10 tells GW-BASIC that
in the event of an error occurring anywhere in the program,
GW-BASIC should branch to line 100. The types of errors that can
occur in this program would result from entering an integer which is
outside the allowable range for integers (resulting in an Overflow
error), or trying to make GW-BASIC use 0 as a divisor (Division by
Zero error). Line 110 deals with the former error, but there is no need
to deal with the latter as division by zero does not force GW-BASIC to
stop the program. The numbers 6 and 11 are codes GW-BASIC uses to
denote these two error situations. Appendix C of this manual gives a
list of all error possibilities GW-BASIC can detect. It is particularly
important to trap the integer overflow error, as this error would
otherwise lead to termination of the program. The RESUME 30
command tells GW-BASIC to consider the error situation as dealt
with, and to resume normal program execution at line 30.
You may already have noticed that this program gives you no
possibility of breaking out of the cycle of events between lines 30 and
70. This gives you the opportunity of practicing use of the <Ctrl-
Break> key combination. It terminates a program and returns
GW-BASIC to the “Ok” level. (You will probably make frequent use of
this facility when developing programs to break out of an
interminable loop.)

INTRODUCTION

1-34 GW-BASIC

The greater part of the “swapping” routine is concerned with
displaying on the screen the pair of names being exchanged. The loop
at line 200 presents a delay, in that GW-BASIC must pass through
this loop 600 times before RETURNing to compare the next pair of
names. The loop itself contains no commands, so GW-BASIC is in

Remember that the sorting procedure takes into account the full
ASCII code. It is not confined to letters. The program does not prevent
you from entering non-alphabetical characters, nor does it stipulate
whether you are to use uppercase or lowercase letters. For example,
you could enter the “name” “!unusual”. The sorting procedure would
place this nearer the beginning of the list than any name starting
with a letter, because the ASCII value for the exclamation mark is 57,
and the lowest code occupied by a letter is 65 (uppercase A).

The actual exchange is carried out in a “subroutine” at line 180. This
subroutine is entered (if the condition for exchanging is fulfilled) by
means of the GOSUB command in line 90. The RETURN command
tells GW-BASIC to go back to the command which immediately
follows the one which sent GW-BASIC to the subroutine, in this case,
to line 100. It would have been possible here to use a command GOTO
180 to enter the name exchanging routine, and GOTO 100 to enable
GW-BASIC to find its way back. The important difference between
the two methods is that the RETURN (can be used only with GOSUB)
is able to put GW-BASIC back to the right place, without having to
state a line number. This is a particularly useful facility in programs
where a subroutine is entered from different places in the program.

The following program asks you to input 10 names (lines 10 to 50).
These names are stored in the array NNAME$. The screen is cleared,
and the program proceeds to sort the names in rising ASCII sequence
(lines 70 to 110). There are many known procedures for sorting data.
This is one of the simplest, namely that of going through the list,
comparing pairs of adjacent entries and carrying out an exchange
where necessary. The program checks (line 110) the variable EXCH$
for a “Y” for yes or an “N” for no, to see whether an exchange was
necessary on the most recent run through the list. If an exchange was
necessary, another sorting run through the list is undertaken. After a
clear run in which no exchange is necessary, GW-BASIC proceeds to
print the list in the new order.

comparison of two strings depends on a character-by-character
comparison on the basis of ASCII values. This has the effect that,
seen as strings, “345” is greater than “12345”, because the ASCII code
for the digit “3” is higher than that for the digit “1”.

INTRODUCTION

GW-BASIC 1-35

effect “running on the spot”, in order to give you time to read the
screen before displaying the next swapped pair. If this time is too
short, increase the number of times GW-BASIC must pass through
the loop. You should bear in mind that displaying the swapped pairs
considerably increases the time GW-BASIC requires for the total
sorting procedure. To increase sorting speed, simply delete lines 180
and 200.

Line 170 does not contain any commands for GW-BASIC, but is a
programmer’s remark. As soon as GW-BASIC sees the word REM, it
knows that it does not have to read the rest of that line, so you can
write what you like in it. Here it is used for two purposes: the
asterisks make a clear division between the subroutine and the main
program flow, thus making the program easier for the programmer to
read; the subsequent note refers to the purpose of the subroutine.

10 OPTION BASE 1:DIM NNAME$(10):CLS
20 FOR LOOP%=1 TO 10
30 PRINT “Enter somebody’s name”;
40 INPUT NNAME$(LOOP%)
50 NEXT LOOP%
60 CLS
70 EXCH$=“N”
80 FOR LP%=1 TO 9
90 IF NNAME$(LP%)>NNAME$(LP% +1) THEN

EXCH$=“Y”:GOSUB 180
100 NEXT LP%
110 IF EXCH$=“Y” THEN CLS:GOTO 70
120 PRINT “In ‘ASCII’ order”:PRINT
130 FOR LP%=1 TO 10
140 PRINT NNAME$(LP%)
150 NEXT LP%
160 END
170 REM *************** subroutine — display/exchange ele­

ments of array
180 PRINT “Swapping “;NNAME$(LP%);” and

“;NNAME$(LP%+1)
190 SWAP NNAME$(LP%),NNAME$(LP% +1)
200 FOR DLY% =1 TO 800.NEXT DLY%
210 RETURN

Chapter 2

Full Screen Editor

Key Function

Home

<Ctrl-Home>

GW-BASIC 2-1

The cursor moves to the top left-hand corner
of the screen.

The screen is cleared, and the cursor moves to
the top left-hand corner.

This section describes the use of the keyboard of your computer in
relation to writing and editing GW-BASIC programs. If you are not
already familiar with the layout and basic operations of the keyboard,
you should first read the appropriate description in your OWNER’S
MANUAL.

GW-BASIC provides a comfortable Full Screen Editor to enable you
to create and alter programs. Editing is not confined to the program
line currently being written. Instead, you can use the special cursor
movement keys to place the cursor anywhere on the screen, and delete
or add to the program at the point indicated by the cursor position. As
soon as you have edited a program line, press the <ENTER> key
before moving the cursor away from that line. GW-BASIC then
registers the new contents of that line.
NOTE: The GW-BASIC command NEW clears the computer memory

of any GW- BASIC program, but leaves GW-BASIC itself intact.
NEW is used to ensure a clean memory before beginning to edit a
new program.

Cursor movement is performed by a single-key action. The direction of
movement is marked on each of the four keys concerned. If a left
cursor move pushes the cursor off the edge of the screen, it re-appears
at the far right of the line above. If a cursor right move pushes the
cursor off the edge of the screen, it re-appears at the far left of the line
below.
The keyboard functions supported by GW-BASIC are given below. A
number of these are 2-key actions involving the use of the Ctrl key.

FULL SCREEN EDITOR

The cursor moves up one line.t
I The cursor moves down one line.

The cursor moves to the left .

The cursor moves to the right.

<Ctrl-->>

<Ctrl-<->

End

<Ctrl-End>

Ins

GW-BASIC2-2

The cursor moves to the beginning of the next
word on the right. The beginning of a word is
defined as the first letter or digit which
follows a blank or special character (e.g.
punctuation mark).

The cursor moves to the beginning of the
previous word on the left.

The cursor moves to the end of the logical
line, that is, to the end of the GW-BASIC line
(which may extend beyond the limit of one
screen line). This function is especially useful
for adding to an existing program line.

The logical line from the current cursor
position to the end of the line is erased.

This key acts as a “toggle” for the insert
mode: if you press this key while the insert
mode is off, this mode is turned on, and vice
versa. Insert mode on means that what you
type in now pushes existing characters to the
right. If there is no more space in the same
screen line, characters are pushed over to the
next line. There is no loss of characters,
either in the cursor line or in subsequent
lines. While insert mode is on, the cursor
covers the lower half of the character posi­
tion.

When insert mode is off, what you type in
writes over (replaces) existing characters. In
addition to the toggle effect mentioned above,
pressing a cursor movement key or the
<ENTER> key turns the insert mode off.

FULL SCREEN EDITOR

Del

Esc

<Ctrl-Break>

GW-BASIC 2-3

GW-BASIC returns to the command level
(“Ok”) without saving any changes to the line
currently being edited. The line does not
disappear from the screen. (The procedure
for passing the newest version of a line to
GW-BASIC is simply to press <ENTER>.)

When the insert mode is off, this key has the
effect of moving the cursor to the next tab
stop, without displacing any characters. Tab
stops are situated every eight character
positions in a line, that is, at positions
1,9,17,25 etc.

If you press this key, the entire logical line in
which the cursor is situated is removed from
the screen. If, however, the line has already
been passed to GW-BASIC (<ENTER> key
action), it is not deleted from the program.
(To delete a line from the program, simply
type the line number and then press
<ENTER>, or use the DELETE command.)

The character at the current cursor position
is deleted. Characters to the right of the
cursor move to the left to close up the space.
The closing up procedure has effect through­
out the entire logical line following the
current cursor position.

The backspace key. The character immedi­
ately to the left of the cursor is deleted. The
space thus created is closed up as with the
delete function.

When the insert mode is on, blanks are
inserted from the current cursor position up
to the next tab stop. Text displacement takes
place as with the insert function (see above).

FULL SCREEN EDITOR

<Ctrl-<J>

<Ctrl-PrtSc>

2-4 GW-BASIC

• To erase a line, simply enter the number of the line, or use
DELETE. The DELETE command is useful for deleting a number
of consecutive lines.

When you press <ENTER> key, the pro­
gram line in which the cursor is situated is
passed to GW-BASIC. Pending subsequent
changes (likewise notified to GW-BASIC by
pressing <ENTER>, this is the line as it will
be seen by GW-BASIC when your program is
executed.

This key action produces a so-called line feed;
that is, the cursor drops one line, but the
program (logical) line is not yet passed to
GW-BASIC. The blanks thus created at the
end of the upper line are of no consequence to
the contents of the program. This function is
especially useful for creating line divisions to
make a program easy to read.

<<J>
<ENTER>

This key combination is not quite the same as
the standard <Shift-PrtSc> function.
<Ctrl-PrtSc> directs to the printer a copy of
everything appearing on the screen, not only
during editing but also during program exe­
cution. This copying function remains in
force until you press <Ctrl-PrtSc> again.

The most effective way of learning the various editor functions is to
practice them. Simply load GW-BASIC in the usual way and write
some program lines. Remember, each program line consists of a line
number followed by at least one blank, which is followed by the
program text. The lines you write while practicing the Full Screen
Editor need by no means be perfect GW-BASIC syntax (syntax
checking is done at the time of program execution). You will probably
not want to try a program RUN. You could use the examples from the
exercises in Chapter 1, building in mistakes, and then correcting
them.
Here are a few suggestions about how to make program writing and
editing more comfortable:
• Remember, only when you press <ENTER> is a program line

passed to GW-BASIC. Regardless of where in the line the cursor is
when you press <ENTER>, the whole logical line is passed to
GW-BASIC. It is not necessary to move the cursor to the end of the
line.

FULL SCREEN EDITOR

GW-BASIC 2-5

• The AUTO command provides you with line numbers, thus saving
you the work of typing them. Before editing lines other than the
current one, you should turn AUTO off by pressing <Ctrl-
Break>.

• A number of GW-BASIC reserved words can be typed by means of
Alt key combinations; for example, the key combination
< Alt-P> produces the word PRINT on the screen. The following
is a complete list of these special Alt key functions:

• To change a line number, make a copy of the line as described
above and then delete the original line.

• A program may sometimes require a number of lines with almost
identical contents. In this case, it is easy to duplicate a line and
then make the small changes necessary within the duplicate line.
To duplicate a line, move the cursor to the beginning of that line.
Then overwrite the line number with the new line number for the
copy. When you press <ENTER>, the copy is passed to
GW-BASIC; the original line is unaffected.

• LIST enables you to view part or all of a program. LIST uses
uppercase letters wherever appropriate (e.g. for GW-BASIC
reserved words) and displays the program lines in ascending
numerical order. If you are viewing a large number of lines at
once, you will find that the screen scrolls far too quickly for
comfortable reading. Pressing the combination <Ctrl-Num
Lock> suspends scrolling, giving you time for detailed reading.
To resume scrolling, simply press any character key. (The same
key combination also suspends program execution. This enables
you to read on the screen long lists or other texts produced by a
program).

FULL SCREEN EDITOR

GW-BASIC2-6

• If you wish to leave important information on part of the screen
and use only the other part for program editing, you should refer
to the description of the VIEW command in Chapter 4.

Fl LIST
F3 LOAD”
F5 CONT
F7 TRON
F9 KEY

A AUTO
B BSAVE
C COLOR
D DELETE
E ELSE
F FOR
G GOTO
H HEX$
I INPUT
J not used
K KEY
L LOCATE
M MID $

N NEXT
0 OPEN
P PRINT
Q not used
R RUN
S SCREEN
TTHEN
U USING
V VAL
W WIDTH
X XOR
Y not used
Z not used

F2 RUN
F4 SAVE”
F6 ,“LPT ”
F8 TROFF
F10 SCREEN 0,0,0

• Program alterations take place in the computer memory. They
are not stored on disk until you issue an explicit SAVE command.
When writing a long program, issue frequent intermediate SAVE
commands. Normally, you will use the same filename each time,
so that previous, less complete versions of the program do not
clutter your disk. A program on disk is preserved even in the
event of a power shut-down.

• The ten Function Keys on the keyboard are programmed with
GW- BASIC reserved words as soon as GW-BASIC is loaded into
computer memory. These are commands that are especially useful
in the direct mode and, therefore, are already supplied, with
<ENTER> where appropriate. To activate one of these, simply
press the corresponding Function Key:

GW-BASIC uses the bottom line of the screen display to show the
contents of these Function Keys. You can turn this part of the
display on and off, as well as change the contents of these keys, by
means of the KEY command.

Chapter 3

Screen Display

CHARACTER MODE

GW-BASIC 3-1

GW-BASIC is capable of directing the screen to display text (including
the special symbols described in “The Character Set“, Chapter 1) and
draw points and geometric figures. GW-BASIC operates in either of
two modes, character mode and graphics mode.

In character mode, the software considers the screen to have 25 lines
(from top to bottom). Each line can accommodate 40 or 80 characters
from the GW-BASIC character set. (You can set this by means of the
WIDTH command.)

GW-BASIC regards the top leftmost character position as line 1,
column 1; the character position in the bottom right-hand corner of
the screen is 25,80 (assuming your program selects 80 columns per
line). The 25th line is accessible to a GW-BASIC program, but it is not
scrolled by GW-BASIC. This line normally displays the current con­
tents of the Function Keys of your keyboard.

If your machine has a Monochrome Display Adapter, you have pro­
gram control over the following screen attributes: display intensity,
image inversion (dark on light and vice versa), underscoring, and
blinking. On a Color Graphics Display Adapter machine, foreground
and background colors can be set.

The foreground and background colors determine how an individual
character area is displayed. The foreground is the character itself, the
background is the small rectangular area which surrounds it.

SCREEN DISPLA Y

The colors available in character mode are:

GRAPHICS MODE

Low Resolution

Medium Resolution

3-2 GW-BASIC

Graphics mode is more sophisticated. To allow you to draw pictures
and other shapes, the software considers the screen to be made up of
points. (These points, or picture elements, are often described as “pix­
els*.) The number of pixels per screen determines the degree of resolu­
tion. By means of the SCREEN command, you can choose between
three modes of resolution, namely low, medium, and high resolution.

This is the display mode that considers the screen as 200 horizontal
pixel lines, each containing 320 pixels. The screen consists of 25 lines
with 40 characters.

Depending on a color or monochrome display being used, you can set
different colors for the foreground (the character itself) and the back­
ground (the screen) or use up to 4 gray scales.

In medium resolution the screen has 640 pixels across and 200 pixels
down the screen. Each of the 25 lines on the screen accommodates 80
characters. This display mode can use only black and white, regard­
less of whether you have a color or a monochrome screen.

8 Gray
9 Light Blue
10 Light Green
11 Light Cyan
12 Light Red
13 Light Magenta
14 Yellow
15 High-intensity White

0 Black
1 Dark Blue
2 Dark Green
3 Cyan
4 Red
5 Magenta
6 Brown
7 White

The COLOR and SCREEN commands, with which screen attributes
are determined, are also used for a monochrome display. The obvious
limitation is that only two colors, black and green, can be displayed.

SCREEN DISPLAY

High Resolution

X and Y Coordinates

PSET (320,199)

PSET STEP (6,4)

GW-BASIC 3-3

Again there are 25 lines per screen, each containing 80 characters.
This display mode regards the screen as consisting of 400 horizontal
pixel lines with 640 pixels each. There are two different high resolu­
tion modes. In high resolution black-and-white graphics (SCREEN 3)
the screen display is supported only in black and white. The high reso­
lution color graphics mode (SCREEN 4) is similar to low resolution
graphics. Here, too, colors can be selected as desired, or, on a mono­
chrome display, up to four gray scales can be used.

The widely used convention for addressing points on a graphics dis­
play is the use of x and y coordinates. The x coordinate is the horizontal
position on the screen, the y coordinate is the vertical position. 0,0 is
the first pixel position in the upper left-hand corner of the screen (ori­
gin). Usually, you can specify the coordinates in either of two forms: an
absolute form where x,y specify the exact position, or an offset form
where x,y are the offset values from the last point referenced. When
specifying the coordinates in offset form, you must include the word
STEP to let the software know you are “stepping** from the previously
established point. For example, the following GW-BASIC command
locates and illuminates a point near the center of the screen on a high
resolution screen:

If the next point you wish to illuminate is known in relation to the pre­
vious point (for example, you wish to illuminate the pixel 6 points to
the right of and 4 pixels below the last point referenced), you can use
the following addressing technique:

This saves you the trouble of calculating the absolute coordinates in
relation to the 0,0 origin. If the new point is to the left of or above the
last point addressed, appropriate minus values are required.

If you have a mathematical background, you will have noticed that
this coordinate scheme does not use Cartesian coordinates. However,
GW-BASIC includes a command (WINDOW) to enable you to define
your own coordinate scheme, which can be the Cartesian scheme, if

SCREEN DISPLA Y

Color Selection in Graphics Mode

Palette 0 Palette 1 Color

Color Display Monochrome Display

4 colors 4 gray scales

black/white

GW-BAS/C3-4

Green
Red
Brown

you so wish. The foregoing discussion and the following introduction to
the graphics modes refer to the screen in terms of the coordinates as
initially set by GW-BASIC, that is, with the origin in the top left cor­
ner and the maximum y value at the bottom of the screen.

The fact that this is a graphic, and not the character mode, does not
prevent you from calling on the GW-BASIC character set. With a color
screen, the characters are written in Color 3 of the palette you have
chosen, the background color is the one you have selected for Color 0.

Cyan
Magenta
White

black/white
4 colors

black/white
4 gray scales

1
2
3

Low Resolution
SCREEN 1

High Resolution
SCREEN 3
SCREEN4

If you have a color screen, you can select different colors for the fore­
ground (the character or graphics image) and the background (the
screen itself). You can choose between two palettes, each containing
three colors designated 1,2 and 3. The palettes contain the following
colors:

Medium Resolution
SCREEN 2 black/white

Furthermore, it is possible to switch from one palette to the other,
whereupon the colors on the screen change to the colors of the newly
selected palette. In addition to the palette colors, you can assign a color
of your choice to the background color (color 0), which is independent
of palette switching, and which can be any of the 16 colors available in
character mode.

SCREEN DISPLAY

Character Support in Graphics Mode

GW-BAS/C 3-4a

To ensure full character support for non-United States characters, the
GRAFTABL.COM file must be loaded into memory. This is done by
entering the GRAFTABL command, which is described in your NCR-
DOS manual.

GRAFTABL.COM

SCREEN DISPLAY

EXERCISES

3-5GW-BASIC

The following program demonstrates just some of the graphic
possibilities offered by high . resolution graphics on a color display.
The program carries out point by point drawing on the screen, under
control of the numeric key pad on the right of the keyboard. You can
determine whether the GW-BASIC screen coordinates (used so far in
this chapter) or true Cartesian coordinates are to apply to graphic
drawing. By changing a single program line you can even determine a
different point of coordinate origin on the screen. The program

The following examples are for use with a color graphics display
adapter only. The first example displays the colors available, both
in steady and blinking form. The colors, with the exception of
black and gray, are displayed on a black background. (You could
make writing invisible by choosing the same color for foreground
and background.)
This program uses the character mode of display. The character
displayed is the one with the code value 219 (a rectangle filling the
entire space of one character). The STRINGS function in line 10 sets
up the string variable B$ with 40 such rectangles. Line 20 sets the
background color to black and display width to 80 characters. The
remainder of the program takes the basic colors (0 to 7) one by one,
first displaying the basic color itself (line 50), then the same color
blinking (line 70), then the “bright” version of the color (line 90), and
finally the bright version blinking. In each case, blinking is achieved
by adding 16 to what would otherwise be the value for the color. The
line width of 80 results in the four versions for each color being
displayed over two lines.

5 SCREEN 0
10 B$=STRING$(40,CHR$(219))
20 COLOR ,0:WIDTH 80
30 FOR LP%=1 TO 7
40 COLOR LP%,0
50 PRINT B$;
60 COLOR LP%+16,0
70 PRINT B$;
80 COLOR LP%+8,0
90 PRINT B$;
100 COLOR LP% +24,0
110 PRINT B$;
120 NEXT LP%
125 COLOR 7,0
130 END

SCREEN DISPLAY

EXX, WYE

PAL Contains 0 or 1 for the current palette.

COL

K$

C$

ERON$,EROFF$

3-6 GW-BASIC

XI,Y1
X2,Y2

If this variable contains “c”, it indicates
that Cartesian coordinates are being
used (lines 60,160,170).

Initially, ERON$ contains “N” for no,
and EROFF$ contains “Y” for yes. Line
150 checks whether ERON$ has assumed

Contains 1,2, or 3 for the color being used
from the current palette.

Stores one character read from the key­
board by means of the INKEY$ function.
GW-BASIC remains in the keyboard
reading routine (lines 330 to 360) until a
key is pressed.

The X and Y coordinates of two diago­
nally opposed corners of the screen. Used
in the WINDOW command, these effec­
tively define the number of addressable
points along the horizontal and vertical
axes of the screen. In the WINDOW
SCREEN command, XI, Y1 refers to the
top left corner of the screen, while X2, Y2
refers to the bottom right corner. If the
word SCREEN is omitted from the WIN­
DOW command, the Cartesian coordi­
nate system applies: XI,Y1 is the bottom
left corner, while X2,Y2 is the top right
corner.

The X and Y coordinates of the currently
addressed point on the screen.

enables you to change the color palette and select a color within the
chosen palette.

The program variables are used as follows:

All numeric variables hold integer values (line 20).

SCREEN DISPLAY

3-7GW-BASIC

Having ensured that the Num Lock key enables the numeric (not the
cursor movement) functions, you can use the cluster of keys around
the 5 on the numeric key pad to illuminate points in 8 directions (8
illuminates the point to the North, 9 the point North-East of the last
point addressed, and so on). Using the window values in line 40, the
very first point addressed is in the center area of the screen, so you
will not start by getting lost! If you press the 5 key, an illuminated
point still moves over the screen in accordance with your operation of
the numeric key pad, but it does not leave a trail. This is so that you
can go to a new drawing position. This suppression of drawing
remains in force until you press the 5 key again.

The entire screen movement is carried out in lines 140 to 300. The
PSET and PRESET commands are used to plot and erase points,
respectively. You may wish to refer to Chapter 4 for the full

the value “Y”. If this is the case, points on
the screen are erased and not illumi­
nated. The values of these two variables
are exchanged (line 310), whenever the
numeric key 5 is pressed during point by
point drawing.

Upon entering RUN, you are asked to enter “c” if you wish to use
Cartesian coordinates, otherwise press any key. The screen is then
cleared and the high resolution graphics mode is set with color
enabled (line 50). Following this, one of two screen windows is set up,
according to the coordinate system selected (line 60). The values used
for the numeric range of the coordinates which are to represent the
height and width of the screen are determined by the values assigned
to the variables XI,Y1 and X2,Y2 in line 40. The values given here
make use of the maximum display definition available in high
resolution graphics. The origin (0,0) is as near to the center of the
screen as possible. The alternative values suggested by the REMark
line 30 would place the origin at the top or bottom left corner of the
screen, depending on whether Cartesian or SCREEN coordinates
apply. You might like to try these later (simply delete the word REM
from line 30, and insert this word at the beginning of line 40). You
could even produce a kind of horizontal or vertical exaggeration of a
drawing, by varying the proportion between the X and the Y values.

A string of 30 blanks, used for
overwriting screen messages issued by
the program in screen line 25.

SCREEN DISPLAY

5 KEY OFF

Cartesian or SCREEN coordinates?

10 INPUT “c for Cartesian”;C$

All numeric variables integer

20 DEFINT A-Z

WINDOWS for origin in corner and origin in center

High resolution, color enabled

50 SCREEN 4,0

3-8 GW-BASIC

descriptions of these commands, the ON GOTO command, and the
VAL function.

30 REM Xl=0:yl=0:X2=639:Y2=399
40 Xl=320:Yl=200:X2=319:Y2=199

The coordinates of the point on the screen currently addressed are
displayed at the bottom of the screen in the format X,Y (line 290).
There is nothing to prevent you from falling off the edge of the screen
world, but a BEEP will tell you if this has happened (line 270).

The background color is initially set to black, the drawing color to
magenta (color 2 of palette 1, line 90). If, instead of pressing a number
key (1 to 9), you press lowercase c, this indicates to the program that
you wish to change the drawing color (line 130). This is carried out in a
subroutine in lines 370 to 500: a number 0 or 1 is accepted as the
palette number, a number 1, 2, or 3 as the color from that palette. If
you change palette, the whole drawing created so far changes color
accordingly (green <-> cyan, red <-> magenta, brown <-> white).
After completion of the color change, drawing control is returned to
the numeric key pad.

If you press lowercase x during drawing control, GW-BASIC
branches to line 510, whereupon the character display mode is
restored. You might wish to insert a selection of further graphic func­
tions at this point, for example, CIRCLE drawing or area PAINTing.
You could even save your drawing in an array variable and eventually
on disk. Chapter 4 provides all the programming details you need in
order to put to best use the graphic power of GW-BASIC.

SCREEN DISPLAY

100 EXX=0:WYE=0

3-9GW-BASIC

70 ERON$=“N”:EROFF$=“Y”

String of 30 blanks, used for erasing “Palette?” and “Color number?”

90 COLOR 0,1:COL=2
First point addressed is the origin

GW-BASIC returns here after any screen movement or new color
setting

Set WINDOW according to whether or not Cartesian coordinates

60 IF C$o“c” THEN WINDOW SCREEN(X1,Y1)-(X2,Y2):
ELSE WINDOW (X1,Y1)-(X2,Y2)

Initially, points to be illuminated, not erased

110 GOSUB 330
120 IF K$=“x” THEN GOTO 510
130 IF K$=“c” THEN GOSUB 370:GOTO 110
140 IF K$<“1” OR K$>“9” THEN GOTO 110
150 IF ERON$=“Y” THEN PRESET (EXX.WYE)
160 IF C$O“c” THEN ON VAL(K$) GOTO 180,190,200,

210,220,230,240,250,260
170 IF C$=“c” THEN ON VAL(K$) GOTO 240,250,260,

210,220,230,180,190,200
180 EXX=EXX-1:WYE=WYE + 1:GOTO 270
190 WYE=WYE + 1:GOTO 270
200 EXX = EXX+1:WYE=WYE+1:GOTO 270
210 EXX = EXX-1:GOTO 270
220 GOTO 310
230 EXX = EXX + 1:GOTO 270
240 EXX = EXX-1:WYE=WYE-1:GOTO 270
250 WYE=WYE-1:GOTO 270
260 EXX=EXX+1:WYE=WYE-1:GOTO 270
270 IF EXX>X2 OR EXX<X1 OR WYE>Y2 OR WYE<Y1

THEN BEEP
280 PSET (EXX,WYE),COL

80 B$=STRING$(30,“ ”)
Black background, palette 1, initial plotting color is magenta

SCREEN DISPLAY

Display current coordinates, then return for next keyboard input

GW-BASIC arrives here only if the 5 key has been pressed

Subroutines

Pressing x while drawing sends GW-BASIC here

3-10 GW-BASIC

310 SWAP ERON$,EROFF$
320 GOTO 110

290 LOCATE 25,1:PRINT EXX;”, “;WYE;
300 GOTO 110

510 REM ***** other functions?
520 SCREEN 0
530 END

330 REM ***** read keyboard
340 K$ = INKEY$
350 IF K$=“” THEN GOTO 340
360 RETURN
370 REM ***** set color
380 LOCATE 25,1
390 PRINT “palette?
400 GOSUB 330
410 IF K$<“0” OR K$>“1” THEN GOTO 380
420 PAL%=VAL(K$)
430 LOCATE 25,1
440 PRINT “color number?
450 GOSUB 330
46Q IF K$<“1” OR K$>“3” THEN GOTO 430
470 COL% =VAL(K$)
480 COLOR ,PAL
490 LOCATE 25,1:PRINT B$:
500 RETURN

Chapter 4

Commands and Functions

4-1GW-BASIC

This chapter contains a detailed description of how each command
and function works. You may have heard of the term “statement” as
well as “command” in relation to computer programming languages.
The tradition which underlies this distinction is that statements are
instructions within a program that are carried out at the time of
execution, whereas commands are used to work on programs prior or
subsequent to execution in order to, for example, load, edit, save, and
run a program. This is basically the difference between communicat­
ing with GW-BASIC in direct and indirect mode. As most GW-BASIC
commands (and statements) can be entered in either direct or indirect
mode, the formal distinction is not necessary. This manual uses the
term “command”.

If you supply a floating point value for a function where an integer
value is required, GW-BASIC rounds the fractional part and uses the
resulting integer. If you specify the /D option when loading
GW-BASIC, the functions ATN, COS, EXP, LOG, SIN, SQR, and TAN
are calculated to double precision. Otherwise single precision is used.
See Appendix D for information about mathematical functions that
are not intrinsic to GW-BASIC.

The following pages present a brief summary of all the GW-BASIC
commands and functions. First they are listed in groups. Each group
has a title denoting the purpose common to the commands and
functions listed under it. Each command and function is described

A function converts a value into some other value by means of a fixed
formula. The functions described in this chapter are built-in, or
“intrinsic” to GW-BASIC. These functions may be called from any
program without further definition. GW-BASIC cannot process a
function on its own. It also needs a command to tell it what to do with
the result, for example, display it on the screen, send it to a printer, or
assign it to a variable. An argument to a function, that is, the value
which the function is to work on, is always enclosed in parentheses in
GW-BASIC.

COMMANDS AND FUNCTIONS

GW-BASIC Management

CLEAR

CONT

DEF SEG Defines a segment of storage in memory.

DEF USR

END

FRE

4-2 GW-BASIC

A number of especially versatile commands and functions appear
under more than one heading.

briefly, leaving aside details of syntax. Thus, if you are a newcomer to
GW-BASIC, you will be able to find the element of GW-BASIC which
conforms to a particular programming situation, simply by glancing
over these few pages. You can then refer to the complete descriptions
constituting the main part of this chapter.
The headings, in order of presentation, are:

GW-BASIC Management
Program Editing
Loading and Storing Programs
File Processing
The Keyboard and Other Non-Disk Input
Characters on Screen or Printer
Graphics
The Loudspeaker
Program Variables and Type Conversion
String Manipulation
Mathematical Functions
Decision Making and Branching
Event Trapping
Other Commands and Functions

The program stops, all files are closed,
“Ok” is displayed.

Continues execution of a program after a
break.

A function returning the amount of
memory space currently not being used
by GW-BASIC.

Clears program variables, and optionally
delimits the area of memory available to
GW-BASIC.

Defines the starting address of a
machine language program.

COMMANDS AND FUNCTIONS

NEW

RANDOMIZE

RUN

SHELL

STOP

SYSTEM

TRON, TROFF

VARPTR$

WAIT

Program Editing

AUTO

DELETE

4-3GW-BASIC

Closes all files and returns to NCR-DOS
system level.

Clears programs and their variables
from memory, but leaves GW-BASIC
intact.

Sets the starting point (seed) of the
random number sequence used by the
RND function.

Loads and begins execution of a program,
or begins execution of a program already
in memory from a specified program line.

Execute an NCR-DOS command file and
then return to GW-BASIC.

Terminates program execution, display­
ing the number of the terminating pro­
gram line on the screen.

Switches the program testing (trace)
facility on and off.

A function returning the address in
computer memory of a specified variable.
This information is sometimes required
by machine language programs.

GW-BASIC suspends program execution
until a specified value is present at a
specified port.

Generates program line numbers auto­
matically, thus saving you the trouble of
typing them.

Deletes one program line or a number of
consecutive program lines.

COMMANDS AND FUNCTIONS

EDIT

LIST

LLIST

NEW

Renumbers program lines.RENUM

Sets a Function Key on the keyboard.KEY

KEY ON/OFF/LIST

Loading and Storing Programs

BLOAD

BSAVE Saves binary data on disk.

LOAD

MERGE

SAVE

File Processing

CHDIR Changes the current directory.

CLOSE # Closes a file to program access.

4-4 GW-BASIC

Lists program lines on the screen, or
directs them to a file.

Saves a program on disk, optionally in a
protected format.

Loads a program file from disk. Option­
ally, the program is executed immedi­
ately.

Loads binary data into memory. Used
especially with machine code programs.

Turns display of Function Key contents
on and off.

Clears the computer memory, including
any programs, but not GW-BASIC itself.

As LIST, except that the program lines
appear on a printer.

Writes a program line on the screen, so
that you can edit it.

Merges. a program from disk with a
program already in memory.

COMMANDS AND FUNCTIONS

ENVIRON

EOF

Reads a record from a random file.GET #

FIELD #

FILES

INPUT #

Erases a disk file.KILL

Reads an entire line from a file.LINE INPUT #

LOG

LOCK

LOF

MKDIR Creates a directory.

NAME...AS... Renames a disk file.

GW-BASIC 4-5

Changes Operating System environment
parameters. Can be used to access a
program in another directory. As a func­
tion it returns these parameters.

A command restricting access to all or
part of an opened file by other processes
which have also opened that file (net­
work environment).

A function which returns information as
to whether the end of a specified file has
been reached.

Defines a field in a random file buffer,
thus enabling different parts of a record
to be assigned to different program vari­
ables.

Looks for a specific file or group of files
in the disk directory, and if found, dis­
plays the filename(s).

Reads data from a file and immediately
assigns it to one or more variables.

Returns information about the current
state of processing of a random, sequen­
tial, or communications file.

A function returning the length of a
specified file.

COMMANDS AND FUNCTIONS

OPEN “COM

PUT

Closes all disk files.RESET

RMDIR

UNLOCK

VARPTR(#)

WRITE # Directs the output of data to a file.

The Keyboard and Other Non-Disk Input

DATA

INKEY$

INP

INPUT

KEY Sets a Function Key.

KEY ON/OFF/LIST

4-6 GW-BASIC

Removes a directory.

Releases locks applied to an opened file
(network environment).

PRINT #
PRINT #..USING

OPEN
OPEN...FOR..AS

Writes a list of expressions or data to a
file.

Turn display of Function Key contents on
and off.

Writes data from a random file buffer in
memory to a file.

A list of data items to be read sequen­
tially by the READ command.

A function which reads a character from
the keyboard.

A function returning the address of the
file control block of a specified file.

A special form of the OPEN command,
opening a file for communications.

A versatile command used for opening
files for program access.

A function returning one byte read at a
specified port of the computer. Output to
a port is by means of the OUT command.

Reads input from the keyboard into a
variable.

COMMANDS AND FUNCTIONS

LINE INPUT

ON KEY...GOSUB

PEN

RESTORE

STICK

STRIG

STRIGON/OFF

Characters on Screen or Printer

Clears the screen.CLS

COLOR

CSRLIN

IOCTL

IOCTL$

GW-BASIC 4-7

PENON/OFF/STOP
READ

A function returning light pen coordi­
nates.

Switches the light pen function on and off.
Reads the next item from the DATA list
into a variable.

Enables DATA statements in a program
to be reREAD from a specified line.

Reads one line of input from the key­
board, ignoring commas and similar
delimiters.

GW-BASIC transfers program control to
the subroutine at a specified line number,
when a specified cursor movement key or
Function Key has been pressed.

A function returning the coordinates
transmitted by a joystick.

A function checking whether a joystick
button is being or has been pressed.

Enables and disables the button on a joy­
stick.

Sets color for character writing, back­
ground color, and border color for a color
screen.

A function returning the number of the
screen line (1...25) in which the cursor is
situated.

Sends a control data string to a device
driver

Reads a control data string from a device
driver

COMMANDS AND FUNCTIONS

LCOPY Prints the screen display on a printer.

LOCATE

LPOS

LPRINT Prints data on a printer.

LPRINT USING

POS

Displays data on the screen.PRINT

PRINT USING

SCREEN

SPC

TAB

Sets width for output to screen or printer.WIDTH

WRITE Similar to PRINT.

see also Program Editing

Graphics

CIRCLE

4-8 GW-BASIC

Draws a circle with a specified center and
radius, an arc, or even an ellipse.

Prints a specified number of spaces in a
PRINT command.

Moves the print or screen display (cur­
sor) position to the column specified.

As PRINT, but also specifies a display
format.

A function returning the number of the
screen column in which the cursor is
situated.

As LPRINT, but also specifies a print
format.

Determines the appearance of and posi­
tions the cursor.

A function returning the current position
of the print head.

Among other things, sets character mode
for screen display. As a function,
SCREEN returns the character at, or the
color of, a specified position on the
screen.

COMMANDS AND FUNCTIONS

COLOR

DRAW

GET

LINE

PAINT

PMAP

POINT

PRESET

PSET

PUT

SCREEN Sets graphic modes.

VIEW

WINDOW Redefines the coordinates of the screen.

The Loudspeaker

BEEP

ON PLAY

GW-BASIC 4-9

Reads the colors of all points within a
specified rectangle on the screen into an
array variable.

Selects one of the two color palettes and
the background color.

Draws a user-defined figure on the
screen.

Draws lines on the screen, and, if
requested, fills in a delimited area.

Fills in a delimited area on the screen
with a specified color.

Continuous background music during the
execution of a program.

A function returning the color of a
specified point.

Resets a specified point on the screen to
background color.

Reads graphic information from an array
variable and transmits it to the screen.

Restricts or transfers screen activity to a
specified area.

A beep tone is emitted by the loud­
speaker.

Illuminates a point on the screen in a
specified color.

Translates coordinates between
program-defined coordinate system and
actual screen coordinates.

COMMANDS AND FUNCTIONS

PLAY

SOUND For the musically less gifted.

Program Variables and Type Conversion

ASC

CDBL, CSNG

CINT

CLEAR Clears program variables.

CHAIN

COMMON

CVI, CVS, CVD

ERASE

FIX

DIM

4-10 GW-BASIC

DEFINT, DEFSG,
DEFDBL, DEFSTR

Declares the number of dimensions and
their maximum subscripts for an array
variable.

Removes array variables from a pro­
gram.

Define one or more variables as type
integer, single precision, double preci­
sion, or string.

Functions converting the string repre­
sentation of a number into an integer,
single precision number, or double preci­
sion number respectively.

Control is passed to another program,
optionally all variables may be used by
the new program.

Marks specified variables part of the
CHAINed program.

A function returning the ASCII code for
the first character in a string.
A function converting a number to double
precision or single precision, respec­
tively.

A function converting a number to an
integer by rounding (not truncating).

For musicians. As a function it returns
the number of notes still left in the music
buffer.

A function truncating a number to an
integer.

COMMANDS AND FUNCTIONS

INT

HEX$

LET

MKI$, MKS$, MKD$

OCT$

OPTION BASE

SWAP Exchanges the values of two variables.

STR$

VAL

VARPTR

String Manipulation

ASC

CHR$

DEF FN

INSTR$

LEFT$

GW-BASIC 4-11

Searches a string for a particular charac­
ter sequence.

A function returning the leftmost part of
a string.

A function extracting a numeric value
from a string.

A function returning the ASCII code for
the first character in a string.

A function returning the ASCII charac­
ter corresponding to a value.

Define your own string processing func­
tions.

Converts an integer, single or double
precision number to a string.

A function converting a numeric value to
an octal string.

States whether 0 or 1 is to be the
minimum value for subscripts to array
variables.

A function converting a value to its
string counterpart.

A function converting a numeric value to
a hexadecimal string.
Assigns a value to a variable.

As FIX, except that negative numbers
are truncated to the next lowest integer
value (e.g. -3.67 becomes -4).

A function returning the memory
address of a specified variable.

COMMANDS AND FUNCTIONS

LEN

LSET Left-justifies a string.

MID$

RIGHTS

RSET Right justifies a string.

SPACES

STRINGS

STRS

VAL

Mathematical Functions

ABS Returns the absolute value of a number.

ATN Arctangent in radians.

COS Cosine of an angle in radians.

DEF FN

EXP Raises e to a specified power.

FIX Truncates a number to an integer.

4-12 GW-BASIC

A command enabling you to define your
own mathematical functions.

A function extracting a value from a
string.

A function returning a string consisting
of a character, or the first character of a
string variable, repeated a specified
number of times.

A function converting a numeric value to
its string equivalent.

A command and function used for
extracting or replacing part of a string.

A function returning the rightmost part
of a string.

A function returning a number of spaces
in a string variable.

A function returning the length of a
string.

COMMANDS AND FUNCTIONS

INT

LOG The natural logarithm of a number.

RND

SGN The sign of a number.

SIN Sine of an angle in radians.

SQR The square root of a number.

Tangent of an angle in radians.TAN

Decision Making and Branching

CALL

FOR..TO..STEP

GOSUB

GOTO

IF..THEN..ELSE

GW-BASIC 4-13

Performs the program lines a specified
number of times up to the NEXT com­
mand.

Transfers program control to the subrou­
tine starting at a specified line number.
The subroutine should be concluded by
RETURN. See also ON GOSUB in the
detailed description.

Transfers program control to a machine
language program.

Transfers program control to the speci­
fied line. See also ON GOTO in the
detailed description.

As FIX, except that negative numbers
are truncated to the next lowest integer
value (e.g. -3.67 becomes -4).

Returns a random number (see also
RANDOMIZE).

If the specified condition is fulfilled,
GW-BASIC carries out a specified com­
mand or commands. Optionally, you may
determine what the program should do if
the condition is not fulfilled.

COMMANDS AND FUNCTIONS

NEXT

RETURN

USR

WHILE..WEND

Event Trapping

COMON/OFF/STOP

ERDEV

ERDEV$

ERL

ERR

ERROR

KEYON/OFF/STOP

ONCOMGOSUB

4-14 GW-BASIC

Enables and disables communications
activity.

A read-only variable returning the code of
a device error.

A read-only variable returning the device
that generated an error.

Simulates an error. Useful for testing
error trapping routines.

Enables and disables the trapping facility
for Function Keys and cursor movement
keys.

Specifies the program line number of a
subroutine to which program control
transfers in the event of communications
activity occurring.

Concludes a subroutine, and returns pro­
gram control to the line which follows the
GOSUB command, or to another, speci­
fied line.

Encloses a sequence of program lines to be
executed repeatedly, as long as a specified
condition is fulfilled.

A function returning the line number
where the last error was detected by
GW-BASIC.

A function returning a value from a
machine language routine (similar to
CALL).

Returns program control to the begin­
ning of the loop (FOR..TO..STEP), as long
as the specified number of passes
through the loop has not been exceeded.

A function returning the GW-BASIC code
number of the last detected error. (The
GW-BASIC error codes are listed in
Appendix A.)

COMMANDS AND FUNCTIONS

ON ERROR GOTO

ON KEY GOSUB

ON PEN GOSUB

ON STRIG GOSUB

ON TIMER

PEN ON/OFF/STOP

RESUME

STRIG ON/OFF/STOP

Other Commands and Functions

DATES Allows you to change or read the date.

OUT

PEEK

GW-BASIC 4-15

Transmits one byte to a port of the
computer.

After dealing with an error, returns
program control to the line where the
error occurred, to the subsequent line, or
to another, specified line.

Enables and disables joystick button, or
the trapping facility itself.

In the event of light pen activity, pro­
gram control passes to the subroutine at
the specified program line.

Determines the line to which program
control will be passed in the event of a
specified time elapsing (see TIMES and
TIMER in Other Commands and Func­
tions).

In the event of a joystick button being
pressed, program control passes to the
subroutine at the specified program line.

Enables and disables the light pen facil­
ity.

In the event of GW-BASIC detecting an
error, program control will be passed to
the specified line.

In the event of a specified Function Key
or cursor movement key is pressed, pro­
gram control passes to the subroutine at
the specified program line.

Returns the contents of the byte at a
specified address in computer memory.

COMMANDS AND FUNCTIONS

POKE

REM

Allows you to change and read the time.TIMES

TIMER

SYSTEM COMPATIBILITY

• Communication with user installed devices.

• Support for GW-BASIC in a network environment.

4-16 GW-BASIC

Writes a byte into computer memory at a
specified address.
Used to record a programmer’s remark.

A function returning the number of
seconds since the last system reset or
midnight, whichever is the most recent.
(System reset is achieved by switching
the computer on, or the key combination
<Ctrl-Alt-Del>.)

• Execution of NCR-DOS command files from within GW-BASIC
(SHELL).

If you are using GW-BASIC to write programs that should also be able
to execute under an earlier version of IBM Advanced BASIC, you
should refer to the programming language documentation of that
earlier version. A number of GW-BASIC features are not supported
by these earlier versions. Characteristic enhancements of GW-BASIC
3.11 are:
• Re-direction of Standard Input (INPUT, LINE INPUT) and

Standard Output (PRINT) can be specified in the NCR-DOS
command line to load GW-BASIC.

The GW-BASIC version supplied is Version 3.11. The set of com­
mands and functions is fully compatible with that of IBM Advanced
BASIC 3.0. This means that with GW-BASIC you can run programs
written under IBM Advanced BASIC 3.0 or an earlier version, both
on your NCR PC and an IBM unit. Similarly, programs you write
using GW-BASIC can be run under IBM Advanced BASIC.

• The same NCR-DOS command line allows the /M option to
specify a “maximum blocksize”, in order to reserve space for
machine language routines.

COMMANDS AND FUNCTIONS

• Graphic enhancements:

New graphics features: PMAP, WINDOW, and VIEW.

• Other new functions: PLAY and TIMER.

• Sound features enhanced: PLAY (raising and lowering of octave).

• File processing:

LOF returns the actual number of bytes allocated to a file.

EOF can be applied to re-directed Standard Input.

GW-BASIC 4-17

• A new option (/D) in the command line enables double precision
calculation of ATN, COS, EXP, LOG, SIN, SQR, and TAN.
RANDOMIZE is also available in double precision.

• Parity checking for communications can be enabled and disabled
(PE option in OPEN “COM).

• DELETE command: if no line number is specified after the
hyphen, the program is deleted to the end.

• The characters <, >, and \ are not permitted as part of a
filename or extension, as they may now be used in the re-direction
of input and output (<,>) or for specifying a path (\).

• New event traps: ON PLAY, ON TIMER. ON KEY now allows
trapping of up to six user-specified keys.

Line Clipping with CIRCLE, LINE, PAINT, POINT, PRESET,
and PSET, so that out-of-range drawing does not wrap round to
another part of the screen.

Additions to DRAW (Turn through Angle, Paint), LINE (style
option allows dashed and dotted lines etc.), PAINT (background
option for easier tile painting), and POINT (differentiates
between physical and world coordinates).

GET and PUT allow record numbers up to 16,777,215, thus
providing for large files with short records.

New commands (ENVIRON, MKDIR, CHDIR, and RMDIR) allow
manipulation of NCR-DOS paths and access to other directories.

COMMANDS AND FUNCTIONS

[]

{ }

CAPS

Syntax

Tells what the instruction or function is used for.Purpose

GW-BASIC4-18

Square brackets indicate that the enclosed entry is
optional.

When the term “filespec” is used as an option in the
syntax, it refers to a combination of device name and
filename in the correct format for the operating
system.

Ellipsis indicate that an entry may be repeated as
many times as needed or desired.

Shows the correct syntax for the instruction or
function. See the introduction to this manual for
syntax notation.

Braces indicate that the user has a choice between
two or more entries. At least one of the entries
enclosed in braces must be chosen unless the entries
are also enclosed in square brackets.

Vertical bars separate choices within braces; when
used with a filter indicates a pipe. Otherwise, at least
one of the entries separated by bars must be chosen
unless the entries are also enclosed in square brack­
ets.

Angle brackets indicate user-entered data. When the
angle brackets enclose a key, press the key named by
the text; for example, <Break>.

SYNTAX NOTATION
The descriptions of the GW-BASIC commands and functions use the
following notation to explain the “rules” which determine the way the
command or function should be written:

Capital letters indicate portions of statements or
commands that must be entered exactly as shown.

All other punctuation, such as commas, colons, slash marks, and
equal signs must be entered exactly as shown.
Each description in this chapter is formatted as follows:

COMMANDS AND FUNCTIONS

Remarks

Example

Note

GW-BASIC 4-19

Describes in detail how the instruction or function is
used.

Shows sample programs or program segments that
demonstrate the use of the instruction or function.

Describes special cases or provides additional perti­
nent information.

ABS Function

ABS(X)Syntax

To return the absolute value of the expression X.Purpose

Example

4-20 GW-BASIC

COMMANDS AND FUNCTIONS
ABS

PRINT ABS(7*(-5))
will yield

35

ASC Function

Syntax ASC(X$)

Purpose

Remarks

Example

GW-BASIC 4-21

To return a numerical value that is the ASCII
code of the first character in the string X$. (See
Appendix B for ASCII codes.)

If X$ is empty, an “Illegal function call” error is
returned.

See the CHR$ function for details on ASCII
code-to-character conversion, and the example in
the description of CONT.

COMMANDS AND FUNCTIONS
ASC

10 X$=“TEST”
20 PRINT ASC(X$)
will yield

84
this being the ASCII code of uppercase T.

ATN Function

ATN(X)Syntax

Purpose

Remarks

Example

Note To convert degrees to radians:

RADIANS = DEGREES *PI/180

where PI (single precision) is 3.141593.

4-22 GW-BASIC

COMMANDS AND FUNCTIONS
ATN

10 INPUT X
20 PRINT ATN(X)

To return the arctangent of X, where X is in
radians. Result is in the range -pi/2 to pi/2.

The expression X may be any numeric type, but
the evaluation of ATN is performed in single
precision, unless you specify the /D option when
loading GW-BASIC.

If you enter 3, the value displayed will be
1.249046

AUTO Command

Syntax AUTO [line number[,increment]]

Purpose

Remarks

Example AUTO 100,50

AUTO

Note

GW-BASIC 4-23

To automatically generate line numbers during
program entry.

AUTO begins numbering at “line number” and
increments each subsequent line number by
“increment”. The default for both values is 10. If
“line number” is followed by a comma but
“increment” is not specified, the last increment
specified in an AUTO command is assumed.

If AUTO generates a line number that is already
being used, an asterisk is printed after the
number to warn the user that any input will
replace the existing line. However, pressing
<ENTER> immediately after the asterisk will
save the existing line and generate the next line
number.

If the cursor is moved to another line on the
screen, numbering will resume there.

AUTO is terminated by pressing <Ctrl-Break>.
The line in which <Ctrl-Break> is pressed is not
saved. After <Ctrl-Break> is pressed, GW-
BASIC returns to command level, (“Ok”).

Before editing program lines other than the line
currently offered by AUTO, be sure to leave
AUTO by pressing <Ctrl-Break.>

COMMANDS AND FUNCTIONS
AUTO

Generates line numbers 100,
150, 200

Generates line numbers 10,
20, 30, 40

BEEP Statement

BEEPSyntax

Purpose

Remarks

Example 2430 IF X < 20 THEN BEEP

4-24 GW-BASIC

COMMANDS AND FUNCTIONS
BEEP

To produce an 830 Hz tone in the speaker for
approximately 1/4 second (to be precise: 240 ms).

BEEP has the same effect as PRINT CHR$(7);
(see Appendix B).

BLOAD Command

BLOAD “filespec” [,offset]Syntax

Purpose

Remarks

CAUTION:

Example 10 DEF SEG = &H6000

GW-BASIC 4-25

“filespec” refers to a file in the NCR-DOS file
naming conventions (see Chapter 5, Files and
Devices).

“offset” is a numeric in the range 0 to 65535. This
is the offset address at which loading is to start in
the segment declared by the last DEF SEG
statement.

To load a specified memory image file into
memory from disk.

The BLOAD command allows a program or data
that has been saved as a memory image file to be
loaded anywhere in memory. A memory image
file is a byte-for-byte copy of what was originally
in memory. See BSAVE for information about
saving memory image files.

If the offset is omitted, the segment address and
offset contained in the file (i.e., the address
specified by the BSAVE statement when the file
was created) are used.

If offset is specified, the segment address used is
the one given in the most recently executed DEF
SEG statement. If no DEF SEG statement has
been given, the GW-BASIC data segment will be
used as the default.

COMMANDS AND FUNCTIONS
BLOAD

BLOAD does not perform an
address range check. It is
therefore possible to load a file
anywhere in memory. The user
must be careful not to load over
GW-BASIC or the operating
system.

20 BLOAD“PROG1”,&HFOOO

Note

4-26 GW-BASIC

This example sets the segment address at hexa­
decimal 6000 and loads PROG1, starting F000
bytes (hexadecimal) above the segment address.
(You are not bound to using hexadecimal values:
the decimal equivalents are 24576 and 61440,
respectively.)

BLOAD is especially useful for loading screen
images from disk into video memory (screen
buffer). This requires additional information
about the location and structure of video memory
(see Chapter 7).

COMMANDS AND FUNCTIONS
BLOAD

BSAVE Command

BSAVE “filespec”,offset,lengthSyntax

Purpose

Remarks

Example

GW-BASIC 4-27

“filespec” refers to a file in accordance with the
NCR-DOS file naming conventions (see Chapter
5, Files and Devices).

“offset” is a numeric in the range 0 to 65535. This
is the offset address in the segment declared by
the last DEF SEG statement. Memory is saved on
disk starting here.

“length” is a numeric in the range 1 to 65535. This
is the length in bytes of the memory image to be
saved.

To save the contents of the specified area of
memory, for example, a machine language pro­
gram, as a disk file.

If “offset” is omitted, a “Bad file name” error is
issued and the save is aborted. A DEF SEG
statement must be executed before the BSAVE.
The last known DEF SEG address will be used for
the save.

This example saves 256 bytes starting at memory
address 6000:F000, that is, hexadecimal F000

If length is omitted, a “Bad file name” error is
issued and the save is aborted.

10 DEF SEG = &H6000
20 BSAVE“PROG1”,&HFOOO,256

COMMANDS AND FUNCTIONS
BSAVE

The BSAVE command allows data or programs
to be saved as memory image files on disk . A
memory image file is a byte-for-byte copy of what
is in memory.

The “filespec”, “offset”,
required in the syntax.

and “length” are

Note

GW-BASIC4-28

bytes 11 above the segment address hexadecimal
6000 (You are not bound to using hexadecimal
values: the decimal equivalents are 24576 and
61440, respectively.) in the file PROG1.

BSAVE is especially useful for saving screen
images on disk. This requires additional informa­
tion about the location and structure of video
memory (see Chapter 7).

COMMANDS AND FUNCTIONS
BSAVE

CALL Statement

Syntax CALL variable name[(argument list)]

Purpose

Remarks

4-29GW-BASIC

where “variable name” contains an address that
is the starting point of the subroutine. This
starting point is an offset address to the last
defined segment, “variable name” may not be an
array variable name.

To call an assembly language subroutine or a
compiled routine written in another high level
language.

“argument list” contains the parameter names
that are passed to the external subroutine.

CALL is one way to transfer program flow to an
external subroutine. (See also the USR function).

CALL generates the same calling sequence used
by FORTRAN and BASIC compilers.

COMMANDS AND FUNCTIONS
CALL

CDBL Function

Syntax CDBL(X)

Purpose To convert X to a double precision number.

Example

Note

4-30 GW-BASIC

COMMANDS AND FUNCTIONS
CDBL

This function clearly cannot make the original
number more accurate than it was before
conversion. In the example, the new, double
precision number is still accurate to the second
place after the decimal point, and that only after
rounding. The section “Type Conversion” in
Chapter 1 describes the factors influencing
accuracy when converting from one type of
number to another.

10 A = 454.67
20 PRINT CDBL(A)
will yield
454.6700134277344

CHAIN Statement

Syntax

Purpose

Remarks

COMMON may be used to pass variables.

GW-BASIC 4-31

To call a program and pass parameters to it from
the current program.

CHAIN [MERGE]filespec[,[line number exp]
[,ALL] [,DELETE range]]

See the examples below for illustration of the
syntax options.

“filespec” is the name of the program (see
Chapter 5, Files and Devices) that is called.

With the ALL option, every variable in the
current program is passed to the called program.
If the ALL option is omitted, the current program
must contain a COMMON statement to list the
parameters that are passed.

The MERGE option allows a subroutine to be
brought into the GW-BASIC program as an
overlay. That is, the current program and the
called program are merged (see MERGE). The

COMMANDS AND FUNCTIONS
CHAIN

“line number exp” is a line number or an
expression that evaluates to a line number in the
called program. It is the starting point for
execution of the called program. If it is omitted,
execution begins at the first line, “line number
exp” is not affected by a RENUM command, used
on the calling program.

If the ALL option is used and “line number
expression” is not, a comma must hold the place
of “line number exp”. For example, CHAIN
“NEXTPROG”„ALL is correct; CHAIN
“NEXTPROG”,ALL is incorrect. In the latter
case, GW-BASIC assumes that ALL is a variable
name and evaluates it as a line number expres­
sion.

Examples

4-32 GW-BASIC

CHAIN MERGE
“0VERLY2”,1000,ALL,DELETE 1000-2000
deletes lines 1000 to 2000 of the current program
before loading OVERLY2.

CHAIN MERGE “OVERLY1”,1000,ALL
has the special effect of overwriting lines in the
current program with lines from OVERLY1,
where line numbers between the two programs
coincide (all of OVERLY1 is chained).
It is possible to clear an area of program lines, in
order to provide clean loading space for the
chained program. For example,

CHAIN “NEWPROG”,1000,ALL
differs from the previous example, in that all the
variables (not just three) of the current program
are passed to the chained program.

COMMON VAR1,VAR2,VAR$
CHAIN “NEWPROG”,1000
has the same effect, except that program control
is passed to line 1000 of the chained program.

causes GW-BASIC to load this program, and pass
program control to the beginning of that pro­
gram. The three variables named under COM­
MON are passed to the chained program.

After an overlay is used, it is usually desirable to
delete it so that a new overlay may be brought in.
To do this, use the DELETE option.

The line numbers in “range” are affected by the
RENUM command.

COMMON VAR1,VAR2,VAR$
CHAIN “NEWPROG”

called program must be an ASCII file if it is to be
merged.

COMMANDS AND FUNCTIONS
CHAIN

Note

4-33GW-BASIC

CHAIN command with MERGE option leaves the
files open and preserves the current OPTION
BASE setting. The chained program may, how­
ever, have an OPTION BASE of its own, if no
array variables are being passed.

When using the MERGE option, user-defined
functions should be placed before any CHAIN
MERGE commands in the program. Otherwise,
the user-defined functions will be undefined after
the merge is complete.

CHAIN does a RESTORE before the chained
program is run. Therefore, the pointer to DATA
items is reset. READ does not continue after the
last DATA item read in the old program.

COMMANDS AND FUNCTIONS
CHAIN

If MERGE is omitted, CHAIN does not preserve
variable types or user-defined functions for use
by the chained program. That is, any DEFINT,
DEFSNG, DEFDBL, DEFSTR, or DEFFN state­
ments containing shared variables must be
restated in the chained program.

CHDIR Command

Syntax CHDIR path

To change the current directory.Purpose

Remarks

Examples Given the following hierarchical structure

ROOT

SALES ACCOUNTING

JOHN MARY STEVE SUE

REPORT

CHDIR “JOHN”
To change from JOHN back to SALES:

4-34 GW-BASIC

CHDIR “ACCOUNTING \ SUE”
To change from SALES to the directory JOHN:

COMMANDS AND FUNCTIONS
CHDIR

CHDIR “\”
You can specify a disk drive, thus applying the
CHDIR command to a disk drive other than the
current one, for example

“path” is a string expression not exceeding 128
characters identifying the new directory which is
now to be the current directory. For details about
paths and directories you should refer to your
NCR-DOS manual.

REPORT
other
files

REPORT
other
files

to change to the directory SUE from the ROOT
directory, use

REPORT
other
files

CHDIR “GSALES”

Note

4-35GW-BASIC

When your program refers to a file, GW-BASIC
looks for the file in the current directory of the
disk. (The syntax descriptions in this chapter
denote file references by means of the term
“filespec”).

If your keyboard does not have a backslash key
(\), you can use the forward slash instead (/),
when designating paths.

COMMANDS AND FUNCTIONS
CHDIR

CHR$ Function

Syntax CHR$(I)

Purpose

Remarks

Example

KEY 1,“LIST” + CHR$(13)

Note

PRINT CHR$(251);

4-36 GW-BASIC

COMMANDS AND FUNCTIONS
CHR$

The CHR$ function is useful for displaying
characters for which there is no single key action
on the keyboard. For example, your keyboard
probably does not include the square root symbol,
but you can display it with

10 B$ = STRING$(120,CHR$(7))
20 PRINT B$

The following example programs the Function
Key 1 to issue the GW-BASIC LIST command,
without your having to press <ENTER>

See the ASC function for details of how to convert
a character back to its ASCII code. See also the
example in the description of CONT.
You can set a repetition factor for the character
by means of the STRINGS function. The follow­
ing example beeps the speaker for approximately
30 seconds:

CHR$ is commonly used to send a special charac­
ter to the screen or printer. For instance, the
beeping character CHR$(7) could be sent as a
preface to an error message, or a form feed
CHR$(12) could be sent to clear the screen and
return the cursor to the home position.

PRINT CHR$(66)
returns
B

To return one character with a decimal
equivalent ASCII code of I. (Decimal equivalent
ASCII codes are listed in Appendix B.)

CINT Function

Syntax CINT(X)

Purpose

Remarks

Example

GW-BASIC 4-37

If the result is not in the range -32768 to 32767, an
“Overflow” error occurs.

To convert X to an integer by rounding the
fractional portion.

See the CDBL and CSNG functions for details on
converting numbers to the double precision and
single precision data type, respectively. See also
the FIX and INT functions, both of which return
integers.

COMMANDS AND FUNCTIONS
CINT

PRINT CINT(45.67)
will yield

46

PRINT CINT(-3.85)
will yield
-4

CIRCLE Statement (Graphics Modes)

CIRCLE (x,y), radius [,color[,start,end[,aspect]]]Syntax

Purpose

4-38 GW-BASIC

COMMANDS AND FUNCTIONS
CIRCLE

start,end
Specifies in radians where the drawing is to begin
and end. The values may range from -2*PI to
2*PI, where PI = 3.141593. (See also remarks.)

radius
Specifies the radius (major axis) in points.

Draws an ellipse on the screen according to the
following definitions:

color
In low and high resolution color graphics, this
selects the color (1 to 3) from the current pa­
lette. The background color (0) is also allow­
ed. If you do not specify the color, color 3 is
used. In medium and high resolution black-
and-white graphics, the color can be 1 for
white, or 0 for black (default is 1).

x,y
Specifies the coordinates of the center of the
ellipse. The coordinates can be absolute, or
relative to the last point addressed on the screen
(using STEP).

aspect
Specifies the ratio of the X radius to the Y radius.
If the ratio is less than 1, the radius is the X
(horizontal) radius; if the ratio is greater than 1,
the radius is the Y (vertical) radius.

GW-BASIC produces a circle on the screen
without your having to specify a value for
“aspect.” If you specify a value for “aspect” which
is not 5/6 in low and high resolution graphics
or 5/12 in medium resolution graphics, an el­
lipse is displayed. If the value you specify is
less than 5/6 (medium resolution: 5/12), the
ellipse has the form of a circle which has
been stretched along the horizontal axis (see
example).

Remarks

PI/2

3*PI/2

4-39GW-BASIC

Either start or end value may be negative (-0,
however, is not allowed) in which case the angle is
connected to the center point with a line. For
example, start and end values of -PI/2, -2PI
would draw part of a circle.

Use the aspect argument to draw an ellipse other
than a circle. Remember, if the aspect ratio is less
than 1, then r is the X radius; if the aspect ratio is
greater than 1, then r is the Y radius. For
example,

COMMANDS AND FUNCTIONS
CIRCLE

0‘PI
2*PI

The first two arguments (x,y coordinates and
radius) are the only ones required to draw a
circle. Use the last two arguments to draw other
“curved” shapes. Start and end, for example,
allow you to control how much of the circle is to
be drawn. The values of start and end are in
radians, positioned in the standard mathemati­
cal way.

Example

will draw an ellipse like this:

60

Note

4-40 GW-BASIC

COMMANDS AND FUNCTIONS
CIRCLE

It is admissible for the center coordinates to be
off the screen. The ellipse is then drawn using the
imaginary center, whereby points which lie
within the actual screen coordinates are dis­
played. The following example draws an arc
across the top right corner of the screen in high
resolution:

10 SCREEN 2
20 CIRCLE (650,-10),100

After an ellipse has been drawn, the “last point
referenced” on the screen is considered by GW-
BASIC to be the center of the ellipse.

Points that are off the screen are not drawn by
CIRCLE, and do not cause an error situation.

10 SCREEN 1
20 CIRCLE (160,100),60„„5/18

CLEAR Command

CLEAR [,[expression!] [,expression]]Syntax

Purpose

Remarks

CLEAR performs the following actions:

It does not erase the program in memory.

CLEARExamples

4-41GW-BASIC

COMMANDS AND FUNCTIONS
CLEAR

Closes all files.
Clears all COMMON variables.
Resets numeric variables and arrays to
zero.
Resets the stack and string space.
Resets all string variables and arrays to
null.
Releases all disk buffers..
Cancels all DEFinitions (DEF FN, DEF
USR, DEF SEG, DEFINT, DEFDBL,
DEFSNG, DEFSTR)
Turns off sound and resets to Music
Foreground.
PEN and STRIG are reset to OFF.

“expression2” sets aside stack space for
GW-BASIC. The default is 572 bytes or
one-eighth of the available memory, whichever is
smaller. The specification of a larger stack may
be necessary if your program uses deeply-nested
GOSUB routines, or a lot of FOR...NEXT loops, or
does extensive PAINTing:

To set all numeric variables to zero, all string
variables to null, and to close all open files; and,
optionally, to set the end of memory and the
amount of stack space.

“expression!” is a memory location that, if
specified, sets the highest location of the
workspace available for use by GW-BASIC. You
can thus put aside space for machine language
programs.

performs the above-stated actions only.

CLEAR ,32768

CLEAR ,,2000

CLEAR ,32768,2000

Note

4-42 GW-BASIC

has the additional effect of setting the maximum
workspace to 32KB.

has the special effect of setting aside 2000 bytes
for the stack.

performs the CLEAR actions, sets maximum
workspace to 32KB, and sets aside 2000 bytes for
the stack.

COMMANDS AND FUNCTIONS
CLEAR

To free space in memory, your program can use
the ERASE statement on specified array
variables.

CLOSE Command

Syntax CLOSE [[#]file number[,[#]file number...]...]

Purpose

Remarks

Examples CLOSE

closes all open files and devices.

CLOSE #1,#2,#3

Note

GW-BASIC 4-43

To conclude I/O to a file or device. The CLOSE
statement is complementary to the OPEN
statement.

“file number” is the number under which the file
was opened. A CLOSE with no arguments closes
all open files and devices.

The association between a particular file and file
number terminates upon execution of a CLOSE
statement. The file may then be reopened using
the same or a different file number; also that file
number may now be reused to open any file.

A CLOSE for a sequential output file (or device)
writes the final buffer of output.

closes the files and devices associated with the
numbers 1,2, and 3. (The inclusion of the # sign is
optional).

COMMANDS AND FUNCTIONS
CLOSE

END, NEW, RESET, SYSTEM and RUN (with­
out the R option) all have the effect of automati­
cally closing open files and devices. Pressing
<Ctrl-Break> during program execution has
the same effect. STOP does not close any files or
devices.

The END statement and the NEW command
always close all disk files automatically. (STOP
does not close disk files.)
Access to files and devices is discussed in Chapter
5.

CLS Command

Syntax

Purpose

Remarks

Example

Note

4-44 GW-BASIC

If the KEY ON statement is in effect when you use
the CLS statement, the screen is cleared; how­
ever, the function line at the bottom of the screen
is renewed with the currently active background/
foreground colors.

Erases the screen to the currently selected back­
ground color.

COMMANDS AND FUNCTIONS
CLS

in character mode, clears the screen and sets the
background color to blue (1). Subsequent writing
(including the GW-BASIC “Ok” message) appears
in light red (12).

In character mode, the color statement alone does
not set the screen to the new background color: the
new background color is used as subsequent
screen writing progresses. CLS has the effect of

In the graphics modes, only one screen page is
present in the screen buffer. CLS clears the screen
buffer completely. The last referenced point on the
screen is then considered to be 160,100 in low,
320,100 in medium, and 320,200 in high resolu­
tion. A subsequent graphic command using STEP
refers to this point.

The <n> parameter may be specified to selec­
tively clear portions of the screen. <n> may be 1
or 2. CLS 1 results in a graphics viewport being
cleared, while CLS 2 clears a text window.

In character mode, the cursor is placed in the top
left corner of the screen. The screen buffer (video
memory) can store 8 screen pages. CLS clears only
the active screen page (use SCREEN to determine
which page is active).

10 COLOR 12,1
20 CLS

CLS<n>
where <n> may be 1 or 2

GW-BASiC 4-45

The SCREEN and WIDTH commands, used to set
the screen mode and character line WIDTH, also
have the effect of clearing the screen.

COMMANDS AND FUNCTIONS
CLS

setting the entire character area of the screen to
the background color. Similarity, CLS is not
required in the graphics modes in order to change
the background color of the screen.

COLOR Command (Character Mode)

COLOR [writing] [,[background] [,border]]Syntax

Purpose

Remarks

4-46 GW-BASIC

COMMANDS AND FUNCTIONS
COLOR

“writing” is a numeric expression in the range
0...31. This represents the color in which charac­
ters are to be displayed.

“border” is a numeric expression in the range
0...15 which determines the color of the border
surrounding the character display area.

8 Gray
9 Light Blue

10 Light Green
11 Light Cyan

“background” is a numeric expression in the
range 0...7 for the background color.

0 Black
1 Blue
2 Green
3 Cyan

12 Light Red
13 Light Magenta
14 Yellow
15 High Intensity

4 Red
5 Magenta
6 Brown
7 White

For the writing color, you may add 16 to the
required color, thus yielding a value 16 to 31. This
causes subsequent screen writing to blink in the
selected color.

The values 8 to 15 refer to high-intensity versions
of the same colors:

To alter one or more of the three color factors
(writing, background, border) which make up the
display on a color screen. On a monochrome
display, COLOR can be used to invert the video
display (i.e., black characters on white, instead of
white characters on a black background; or vice
versa). On both monochrome and color screens,
writing can be set to increased brightness or be
made to blink.
The significance of the values 0 to 7:

Writing Background

GW-BASIC 4-47

Border cannot be activated due to hardware
limitations on the NCR high resolution screen.
However, connecting another CRT, e.g. an IBM
color CRT, to a PC 4i monochrome system enables
activation of border

With a monochrome display adapter, color
values are used as follows (references to the
color white are to be understood as the stand­
ard writing color used by your display).

Combinations other than those stated here pro­
duce white writing on black background effect.

With a color graphics display adapter, you can
specify any color in the range 0 to 7 as the

0
1

2.6
7

Black
White, and underlined
White
White

COMMANDS AND FUNCTIONS
COLOR

Black
Black
Black
White

When using a white background (7), you may use
for writing 0, 8,16 or 24 (the latter two produce a
blinking display). You cannot set white writing
on a white backgound. Furthermore, there is now
high intensity and no underlining.

When using a black background (0...6), you can
set normal white, high-intensity white, normal
white blinking, and high-intensity white blinking
(7, 15, 23, or 31, respectively). In each case,
subtracting 6 from the value gives the additional
effect of underlining.

It usually makes sense to select colors so as to
produce an acceptable contrast between back­
ground and writing. However, GW-BASIC does
not prevent you from using black for both. To
create this invisible writing effect, specify 0 for
background and 0, 8, 16, or 24 for writing. You
could use this possibility for entering, say,
passwords which are not intended to be displayed
on the screen.

COLOR 12

COLOR 12,1

4-48 GW-BASIC

COLOR ,1

influences only the background color, changing it
to blue.

sets writing to light red and background to
blue.

sets the writing color to light red; the back­
ground color remains as it was before.

10 X$ = “The quick brown fox jumps over the
lazy dog”

20 SCREEN O.WIDTH 80
30 COLOR 7,0
40 CLS
50 PRINT “Start typing...”;
60 FOR DLY% =1 TO 700:NEXT DLY%
70 COLOR 0,7
80 PRINT “ NOW”
90 TIMES = “00:00:00”
100 COLOR 0,0
110 INPUT 1$
120 TS =RIGHT$(TIME$,2)
130 SLOW$ = RIGHT$(TIME$,4)

The following example is for both monochrome
and color displays. It asks you to enter a known
text in such a way that you cannot see what you
are typing on the screen, but you may backspace
and correct if you suspect you have made a
mistake. Your typing speed is timed, and dis­
played (in seconds), assuming that the text you
have typed and entered with the <ENTER> is
identical to the string contained in X$. After your
“score” is displayed, press any key to return to
“Ok”.

common color for <writing> and <back-
ground> in order to make writing invisible.

Examples
(With color graphics display adapter)

COMMANDS AND FUNCTIONS
COLOR

Note

GW-BASIC 4-49

The display mode (character, low, medium or
high resolution graphics) can be set through
the SCREEN command.

The final item in a COLOR command should not
be a comma.

A value outside the permitted range may lead to
an “Illegal function call” error.

COMMANDS AND FUNCTIONS
COLON

140 CLS
150 IF I$<>X$ THEN GOTO 220
160 COLOR 23,0
170 PRINT X$:PRINT:PRINT
180 PRINT “ WELL DONE
190 IF ASC(SLOW$)<>48 THEN PRINT “But

you took at least a minute”:GOTO 260
200 PRINT “You took ”;T$;“ seconds”:PRINT
210 GOTO 260
220 COLOR 7,0
230 PRINT “Not quite right...”:PRINT
240 PRINT “You should have typed:”:PRINT

X$:PRINT
250 PRINT “... this is what you wrote:”:PRINT

1$
260 COLOR 7,0
270 IF INKEY$= “” THEN GOTO 270

COLOR Statement (Graphics Mode)

COLOR [background] [.[palette]Syntax

Color Number Palette 0 Palette 1

Purpose

Remarks

Example

GW-BASIC4-50

COMMANDS AND FUNCTIONS
COLOR

“background” is a numeric expression specifying
the screen background color. Values 0 to 15 are
allowed (see COLOR (Character Mode) for the
color significance of these values).

“palette” is a numeric expression which selects
one of the two available color palettes. An even
number selects palette 0, an odd number selects
palette 1. On each palette there are three colors:

Characters written on the screen in low or
high resolution color graphics use color num­
ber 3 from the currently selected palette, that
is, brown or white.

10 SCREEN 4
20 COLOR 2,0

1
2
3

Cyan
Magenta
White

Green
Red
Brown

The CIRCLE, DRAW, LINE, PAINT, PRESET
AND PSET commands can use either the back­
ground color or one of the three colors from the
current palette. COLOR is used to select a palette
for these graphics commands.

When COLOR is executed, the background color
changes immediately. When COLOR is used to
change the,palette, the colors of drawings cur­
rently displayed on the screen change accord­
ingly: if you change from palette 0 to 1, what was
green is now cyan, red becomes magenta, and
brown becomes white. The reverse is true if you
change from palette 1 to 0 (cyan becomes green,
etc.).

Note

GW-BASIC 4-51

The example at the end of the Chapter Screen
Display demonstrates just a few of the possibili­
ties of GW-BASIC color graphics.

COLOR is not applicable to medium and high
resolution black-and-white graphics, as this
screen mode uses black and white only. If you
attempt to use COLOR in this mode, an Ille­
gal function call’ error will result.

An “Illegal Function call” error also results from
a value exceeding 255.
With a monochrome display colors are rep­
resented in four gray scales. The shade of the
background color (color number 0) depends on
the intensity of the selected color.
Color number 1 of the color palettes 0 and 1 rep­
resents the darkest shade; color number 2 the
next lighter; color number 3 is the lightest shade.

sets screen mode 4 (high resolution color
graphics), the background color to green, and
selects color palette 0.

10 SCREEN 4
20 COLOR 4

sets screen mode 4 and the background color to
red. The color palette remains as it was before.

10 SCREEN 4
20 COLOR ,1

sets screen mode 4 and selects color palette 1. The
background color does not change.

COMMANDS AND FUNCTIONS
COLOR

COM Command

Syntax

Purpose

Example 10 COM(l) ON

4-52 GW-BASIC

COMMANDS AND FUNCTIONS
COM

Enables error trapping of communications activ­
ity on channel 1.

COM(n) STOP disables communications event
trapping, but if an event occurs, it is recorded and
ON COM will affect transfer of program control
as soon as trapping is enabled.

COM(n) OFF disables communications event
trapping. If an event takes place, it is not
recorded.

The COM(n) ON enables communications event
trapping by an ON COM command (see ON COM).
While trapping is enabled, and if a non-zero line
number is specified in the ON COM statement,
GW-BASIC checks before the execution of every
command to see if activity has occurred on the
communications channel. If it has, GW-BASIC
transfers program control to the line indicated by
the ON COM command.

where n is the number of the communications
channel, either 1 or 2.

COM(n) ON
COM(n) OFF
COM(n) STOP

trapping of
the specified

To enable or disable event
communications activity on
channel.

COMMON Statement

Syntax COMMON list of variables

To pass variables to a chained program.Purpose

Remarks

Example

GW-BASIC 4-53

chains the program PROG3, passes the variables
A, B, C, G$, and the array variable D, and starts
execution of the chained program at line 10.

100 COMMON A,B,C,D(),G$
110 CHAIN “PROGS”,10

COMMANDS AND FUNCTIONS
COMMON

CHAIN should not state the dimensions of an
array variable. Such a statement is ignored by
GW-BASIC.

COMMON is used with CHAIN. COMMON
statements may appear anywhere in a program,
though it is recommended that they appear at the
beginning. The same variable cannot appear in
more than one COMMON. Array variables are
specified by appending “()” to the variable name.
If all variables are to be passed, use CHAIN with
the ALL option and omit COMMON.

CONT Command

Syntax CONT

Purpose

Remarks

Example

4-54 GW-BASIC

COMMANDS AND FUNCTIONS
CONT

Execution resumes at the point where the break
occurred. If the break occurred after a prompt
from an INPUT statement, execution continues
with the reprinting of the prompt (“?” or prompt
string).

The following program displays the characters of
the GW-BASIC character set which have a code
value of 128 or higher (see Appendix B). Each
character, along with its code value, is displayed
in a line of its own. A scrolling delay is built in
(line 50), but to examine a character for any
length of time, you will need to press <Ctrl-
Break>. When you enter CONT as a direct
command, the display of characters continues.
You may interrupt and continue the program as
often as you wish. WIDTH 40 means that charac­
ters are displayed in large format.

CONT is invalid if the program has been edited
during the break.

10 WIDTH 40
20 FOR LOOP% = 128 TO 255

CONT is usually used in conjunction with STOP
for program testing. When execution is stopped,
you can examine intermediate values of variables
and change them using direct mode commands.
Execution may be resumed with CONT or a direct
mode GOTO, which resumes execution at a
specified line number. CONT may be used to
continue execution after an error has caused
GW-BASIC to terminate program execution.

To continue program execution after
<Ctrl-Break> has been pressed, a STOP has
been executed, or an untrapped error has
occurred.

Note

GW-BASIC 4-55

RUN, even with a line number, is not suitable for
continuing a program after a break, as it has the
same effects on memory contents as CLEAR;
notably, closing all files, erasing definitions, and
clearing out variables.

COMMANDS AND FUNCTIONS
CONT

30 PRINT “The character for code
”;LOOP%;“is ”;CHR$(LOOP%)

40 PRINT
50 FOR DLY% = 1 TO 500: NEXT DLY%
60 NEXT LOOP%

COS Function

Syntax COS(X)

Purpose To return the cosine of X, where X is in radians.

Remarks

Example

To convert radians to degrees:Note

DEGREES = RADIANS *180/PI

To convert degrees to radians:

RADIANS = DEGREES *PI/180

where PI (single precision) is 3.141593

4-56 GW-BASIC

COMMANDS AND FUNCTIONS
COS

The calculation of COS(X) is performed in single
precision, unless you specify the /D option when
loading GW-BASIC.

10 X=2*COS(.4)
20 PRINT X
will yield

1.842122

CSNG Function

Syntax CSNG(X)

Purpose To convert X to a single precision number.

Example

GW-BASIC 4-57

The section “Type Conversion” in Chapter 1 gives
more information about conversion accuracy.

See the CINT and CDBL functions for converting
numbers to the integer and double precision data
types, respectively.

COMMANDS AND FUNCTIONS
CSNG

10 A# = 482.3421222#
20 PRINT CSNG(A#)
will yield
482.3421

CSRLIN Function

Syntax CSRLIN

Purpose

Example

Note

GW-BASIC4-58

COMMANDS AND FUNCTIONS
CSRLIN

10 L% = CSRLIN
20 C% = POS(O)
30 LOCATE 13,30 :PRINT “HELLO”
40 LOCATE L%,C%

POS is similar to CSRLIN, returning the current
column of the cursor instead. LOCATE is the
command used for positioning the cursor.

This is really equated to a variable containing the
current line position of the cursor (0 to 24).

In the following example, line 10 reads the
current line position into L%. Line 20 reads the
current column position into C%; line 30 displays
HELLO in the middle line of the screen, and line
40 restores the position of the cursor to the
former line and column.

CVI, CVS, CVD Functions

Syntax

Purpose To convert string values to numeric values.

Remarks

Example

Note

GW-BASIC 4-59

The result in each case is stored in the numeric
variable; the string itself is unaffected by the
conversion.

CVI(2-byte string)
CVS(4-byte string)
CVD(8-byte string)

Numeric values that are read in from a random
disk file must be converted from strings back into
numbers. CVI converts a 2-byte string to an
integer. CVS converts a 4-byte string to a single
precision number. CVD converts an 8-byte string
to a double precision number.

70 FIELD #1,4 AS N$, 12 AS B$
80 GET #1
90 Y = CVS(N$)

The record read from the random file in line 80 is
divided into two string variables, N$ and B$, by
the FIELD declaration of line 70. Line 90 regards
N$ as the string form of a single precision
number, and assigns the equivalent numeric
value to Y. Presumably, N$ was originally a
number written to the file using the MKS$
function.

The MKI$, MKS$, and MKD$ functions perform
the inverse operations, that is, they convert
numeric values to strings.

COMMANDS AND FUNCTIONS
CVI, CVS, CVD

DATA Command

DATA constant^constant]...Syntax

Purpose

Remarks

See READExample

GW-BASIC4-60

COMMANDS AND FUNCTIONS
DATA

To store the numeric and string constants that
are accessed by the program’s READ commands.

A DATA line may contain numeric constants in
any format; i.e., fixed-point, • floating-point,
integer, decimal, octal or hexadecimal. (No
numeric expressions are allowed in the list.)
String constants in a DATA line must be
surrounded by double quotation marks only if
they contain commas, colons, or significant
leading or trailing spaces. Otherwise, quotation
marks are not needed.

A line of DATA may be reread from the
beginning by use of the RESTORE command.

DATA does not actually instruct GW-BASIC to
carry out any action, so it may be placed
anywhere in the program. A DATA list may
contain as many constants as will fit on a line
(separated by commas). Any number of DATA
lines may be used in a program. READ
commands access DATA lines in order (by line
number). The data contained in the various
DATA lines may be thought of as one continuous
list of items, regardless of how many items are on
a line or where the lines are placed in the
program.

The variable type (numeric or string) given in the
READ statement must agree with the
corresponding constant in the DATA list;
otherwise, a “Syntax error” (not “Type
mismatch”) is issued by GW-BASIC.

DATES Command

DATE$ = string expressionSyntax

Purpose

Remarks

10 DATES = “07-13-1984”Example

The current date is set at July 13, 1984.

Note

4-61GW-BASIC

“string expression” returns a string in one of the
following forms:

The year must be in the range 1980 to 2099. If the
“string expression” contains only one digit for
the day or month, GW-BASIC assumes a zero in
front of it. If only two digits for the year are
given, GW-BASIC assumes the year falls in the
twentieth century and places “19” in front of
them.

mm-dd-yy
mm-dd-yyyy
mm/dd/yy
mm/dd/yyyy

COMMANDS AND FUNCTIONS
DATES

The date may have been set already by
NCR-DOS, before you loaded GW-BASIC.
However, this does not prevent you from
overwriting while in GW-BASIC.

To set the current date. This statement
complements the DATE$ function, which
retrieves the current date.

DATES Function

Syntax DATES

Purpose

Remarks

Example 10 PRINT DATES

07-13-1984

GW-BASIC4-62

COMMANDS AND FUNCTIONS
DATES

The separators are hyphens, even if the
separators used when entering the date were
slashes.

The DATES function returns a ten-character
string in the form mm-dd-yyyy, where mm is the
month (01 through 12), dd is the day (01 through
31), and yyyy is the year (1980 through 2099).

following the setting of DATES, the display
produces:

This is really equal to a variable containing the
current date. (To set the date, use the DATES
command.

DEF FN Command

Syntax

Purpose

Remarks

4-63GW-BASIC

To define and name a function in addition to the
functions provided by GW-BASIC.

DEF FNname[(parameter list)]=
function definition

“name” must be a legal variable name. This
name, preceded by FN, becomes the name of the
function.

“parameter list” consists of those variable names
in the function definition that are to be given
values when the function is called. The items in
the list are separated by commas.

“function definition” is a single expression that
performs the operation of the function. Variable
names that appear in this expression serve only
to define the function; they do not affect program
variables that have the same name. A variable
name used in a function definition may or may
not appear in the parameter list. If it does, the
value of the parameter is supplied when the
function is called. Otherwise, the current value of
the variable is used.

The variables in the parameter list represent, on
a one-to-one basis, the argument variables or
values that will be given in the function call.

DEF FN may define either numeric or string
functions. If the function is numeric, the result of
evaluating the expression comprising the
function definition is returned to the calling
command with the precision inherent in the
function name. If the calling command attempts
to assign a numeric function result to a string
variable, or vice versa, a “Type mismatch” error
occurs.

COMMANDS AND FUNCTIONS
DEF FN

Example

10 DEF FNHYPOT(S1,S2)=SQR(S1 a2+S2 a2)

Note

4-64 GW-BASIC

GW-BASIC does not accept DEF FN in the direct
mode.

A function may be recursive (that is, it may call
itself), but you must then provide a way of
stopping it; otherwise, an error situation (“Out of
memory”) will occur.

To make use of this function, you could continue
the program with

To calculate the hypotenuse of a right-angled
triangle (the side opposite the right-angle) you
could define a function as follows:

20 INPUT “Length of one side adjacent to right
angle?”;SIDEl

30 INPUT “Length of other side?”;SIDE2
40 PRINT “Length of hypotenuse is

“;FNHYPOT(SIDE1,SIDE2)

GW-BASIC must encounter the DEF FN
command before the program makes use of the
corresponding function, otherwise an “Undefined
user function” error occurs. A function may be
defined more than once. GW-BASIC always
refers to the most recently encountered
definition.

COMMANDS AND FUNCTIONS
DEF FN

DEFINT/SNG/DBL/STR Commands

Syntax DEF<type> <range(s) of letters>

where <type> is INT, SNG, DBL, or STR

Purpose

Remarks

are

Examples 10 DEFDBL L-P

10 DEFSTR A

Note

4-65GW-BASIC

All variables beginning with the letter A will be
string variables.

To declare variable types as integer, single
precision, double precision, or string.

All variables beginning with the letters L, M, N,
0. and P will be double precision variables.

10 DEFINT I-N,W-Z
All variables beginning with the letters I, J, K, L,
M, N, W, X, Y, Z will be integer variables.

GW-BASIC does not recognize the type declara­
tion stated in DEFtype until the DEFtype com­
mand is actually encountered during program
execution. It is therefore a good idea to place
these type DEFinitions at the beginning of the
program.

COMMANDS AND FUNCTIONS
DEFINT/SNG/DBL/STR

Any variable names beginning with the letter(s)
specified in <range of letters> will be
considered the type of variable specified in the
<type> portion. However, a type declaration
character at the end of the actual name of the
variable (%,!,#, or $) always takes precedence
over DEFtype. (See the section “Variables” in
Chapter 1.)

If no type declaration commands
encountered, GW-BASIC assumes that all
variables without declaration characters are
single precision variables.

DEF SEG Command

Syntax DEF SEG [= address]

Purpose

Remarks

Example 10 DEF SEG = &HB800

Note

4-66 GW-BASIC

COMMANDS AND FUNCTIONS
DEF SEG

This program line sets the segment to the
hexadecimal number B800 (in decimal: 47104),
which represents a true memory address of 16
times that value -B8000 (753664). In fact, this is
the beginning of the screen buffer for the color
display, so you would probably follow up this
command with BLOAD or BSAVE. Later in the
program you would probably change the segment
back to GW-BASIC’s Data Segment.

If the “address” option is omitted, the segment to
be used is set to the GW-BASIC data segment
(DS). This is the initial default value.

Entry of any value outside the “address” range 0
through 65535 will result in an “Illegal function
call” error, and the previous value will be
retained.

where “address” is a numeric expression in the
range 0 to 65535.

The address specified is saved for use as the
segment required by BLOAD, BSAVE, CALL,
POKE, USR, and PEEK.

If the “address” option is given, it should be
based on a 16-byte boundary. GW-BASIC
multiplies this value by 16 and uses the result of
this multiplication as the actual memory address
of the beginning of the segment. GW-BASIC does
not check the validity of the specified address.

DEF and SEG must be separated by a space.
Otherwise, GW-BASIC will interpret
DEFSEG = 100 to mean “assign the value 100 to
the variable DEFSEG.”

DEF USR Command

DEF USR[digit]=integer expressionSyntax

Purpose

Remarks

Example

GW-BASIC 4-67

To specify the starting address of an assembly
language subroutine.

200 DEF USR0=24000
210 X = USR0(Y A 2/2.89)

Line 200 defines the starting address of a
machine language subroutine as 24000. Line 210
assigns to the variable X the result of whatever
the subroutine does with the value of the expres­
sion given in parentheses (see USR).

If you need to access a subroutine by absolute
memory address, consider the following example:

200 DEF SEG=0
210 DEF USR0=ABSADDR%

300 RESULT = USR0(INFO)

where ABSADDR% contains the absolute mem­
ory address of the subroutine to be accessed in
line 300.

COMMANDS AND FUNCTIONS
DEF USR

“digit” may be any digit from 0 to 9. The digit
corresponds to the number of the USR subroutine
whose address is being specified. If “digit” is
omitted, DEF USR0 is assumed. The value of
“integer expression” is the starting address of
the USR subroutine offset to the segment value
which applies when the USR subroutine is called.

It is admissible to use the same “digit” in more
than one DEF USR command, then assigning a
new address to that digit. GW-BASIC always
recognizes the address most recently assigned.
This enables you to access more than 10 subrou­
tines.

DELETE Command

Syntax

To delete program lines.Purpose

Remarks

Examples

4-68 GW-BASIC

COMMANDS AND FUNCTIONS
DELETE

GW-BASIC always returns to command level
(“Ok”) after a DELETE is executed. If a specified
line number does not exist, an “Illegal function
call” error occurs.

DELETE [line numberl] [-line number2]
DELETE [line numberl-]

DELETE 40-
deletes line 40 and any subsequent lines in the
program.

DELETE 40-100
deletes lines 40 through 100, inclusive.

DELETE
deletes the current line.

DELETE 40
deletes line 40.

DELETE -40
deletes all lines up to and including line 40.

DIM Command

Syntax

Purpose

Remarks

Example

4-69GW-BASIC

DIM variable (subscripts)
[,variable(subscripts)]...

If an array variable name is used without a DIM
statement, the maximum value of the array’s
subscript(s) is assumed to be 10. If a subscript is
used that is greater than the maximum specified,
a “Subscript out of range” error occurs. The
minimum value for a subscript is always 0, unless
otherwise specified with OPTION BASE.

The DIM statement sets all the elements of the
specified numeric arrays to an initial value of
zero. Elements of a string array are initially
empty (zero length).

If you attempt to issue a DIM command more
than once for the same array variable, or if
GW-BASIC encounters DIM after the implicit
definition of that array variable (i.e., use of the
array variable with maximum subscript 10
without a prior DIM), a “Duplicate Definition”
error occurs.

See the Exercises after the section “Array
Variables” in Chapter 1.

COMMANDS AND FUNCTIONS
DIM

The maximum number of dimensions allowed in a
DIM statement is 255, hardly a practical
limitation. The number of dimensions is more
likely to be limited by the amount of available
memory, and the maximum admissible length for
a program line. The maximum number of
elements per dimension is 32767.

To specify the maximum values for array
variable subscripts and allocate storage
accordingly.

DRAW Command (Graphics Modes)

Syntax DRAW string expression

Purpose

Remarks

4-70 GW-BASIC

COMMANDS AND FUNCTIONS
DRAW

U [<n>] Move up
D [<n>] Move down
L [<n>] Move left
R [<n>] Move right
E [<n>] Move diagonally up and right
F [<n>] Move diagonally down and right
G [<n>] Move diagonally down and left
H [<n>] Move diagonally up and left

Draws an object as specified by the string
expression.

M<x,y>
Move absolute or offset (see Chapter 3 for
discussion of x and y coordinates). If x is preceded
by a + or -, x and y are added to the coordinates of
the last point referenced. The point thus
referenced is connected to the last point
referenced by a line. If no + or - is added, a line is
drawn to. point (x,y) from the last point
referenced.

With the Draw statement you can draw an object
using object definition language commands. A
language command is a single character within a
string, optionally followed by one or more
arguments. The string expression defines an
object which is drawn on the screen when
GW-BASIC executes the DRAW statement.

The n in the preceding commands indicates the
distance to move. The number of points moved is
n times the scale factor (see S below). If you do
not specify n, movement is one scale unit.

The following movement commands begin
movement from the coordinates of the last point
referenced by another language command, or
another GW-BASIC graphics command (e.g.,
LINE or PSET).

4-71GW-BASIC

The following prefix commands may precede any
of the above movement commands:

When considering how a drawing will look when
displayed on the screen, you should take into
account the “aspect ratio” of the screen. The
aspect ratio is the vertical exaggeration factor of
1.2 in low and high resolution graphics, and
2.4 in medium resolution graphics. For ex­
ample, the following short program DRAWs a
square in medium resolution graphics:

The vertical sides are specified with lower values
than the horizontal sides because horizontal
drawing illuminates more pixels per inch (2.4
times as many).
A square in low resolution graphics would be

10 SCREEN 2
20 DRAW “L96D40 R96 U40”

10 SCREEN 1
20 DRAW “L96 D80 R96 U80”

In addition to simple straight line drawing,
DRAW offers the following graphic commands.

TA<n>
Turns the drawing angle through <n>
degrees in the counter clockwise direction. (A
negative value for <n> turns the drawing
angle clockwise). The result of
DRAW “TA5;U50”
is that the “upward” line is in fact leaning
five degrees to the left, as we perceive it on

COMMANDS AND FUNCTIONS
DRAW

B
Move but do not plot any points.

N
Move but return to original position when
plotting is finished.

4-72 GW-BASIC

<X string variable>
When DRAW encounters this command, it
carries out the drawing commands contained
in “variables” before proceeding with the rest
of the command string. This enables you to
execute a second string from within a string.

<P paint outline>
Paints the area comprising the drawing in
which the last addressed point is enclosed.
The drawing outline must already have the

the screen. If <n> is outside the range -360
to +360, an “Illegal function call” error
occurs.

C<n>
Determines the drawing color. In low and
high resolution color graphics, <n> may be 1,
2, or 3, this being the color from the current­
ly selected palette, or 0, the current back­
ground color (see COLOR). If you do not
specify a color, GW-BASIC uses 3. In medium
and high resolution black-and-white graphics,
<n> can be 0 (black) or 1 (white). If you do
not specify a color, GW-BASIC uses 1.

S<n>
Sets the scale (magnification) factor for the
U, D, L, R, E, F, G, H, and M (offset)
movement commands. <n> divided by 4 is
the scale factor. If you do not specify a scale
factor, GW-BASIC uses 4 for <n>, that is,
scale factor 1. <n> must be an integer value
in the range 1 to 255.

A<n>
Similar to the TA command. The difference is
that <n> represents a number 0,1,2 or 3, for
0.90, 180, and 270 degrees, respectively. Both
TA and A compensate for drawing
exaggeration which would otherwise occur
when specifying 0 or 180 degrees. See the
following example.

COMMANDS AND FUNCTIONS
DRAW

Examples

GW-BASIC 4-73

10 SCREEN 1
20 DRAW “E15 F15 L30”
draws an isosceles triangle.

10 SCREEN 1
20 FOR L% =0 TO 360 STEP 10
30 DRAW “TA=L%;NU60”
40 NEXT L%
If you now draw a circle using the same center
and the radius 60

10 SCREEN 1
20 V=50
30 DRAW “U=V; R=V; D=V; L=V;”
draws a box. (This time we have used variables
(V), so the semicolons are necessary.) The follow­
ing lines move the “last referenced point” into the
confines of the box, and paint the box with color 2
and the outline with color 1 from the currently
selected palette:

30 DRAW “C2”
40 DRAW “BE10”
50 DRAW “Pl,2”
The following example draws spokes:

COMMANDS AND FUNCTIONS
DRAW

color ‘outline’; otherwise, painting goes be­
yond the outline. In low and high resolu­
tion color graphics, the colors may be 0,1,
2, or 3; in medium and high resolution
black-and-white graphics 0 or 1 (see ‘C
<n>’ above). Both ‘paint’ and ‘outline’
must be specified.

The items contained in a DRAW command string
do not require separators (not even blanks), with
the exception that a semicolon must separate the
name of a variable from the next item. However,
spaces and/or semicolons may be used between
items, and they do make the string easier to read.
Variables are allowed for all n and x,y values
indicated in this description of DRAW. A varia­
ble is preceded by an equal sign, except after the
X drawing command.

50 CIRCLE (160,100),60

Note

4-74 GW-BASIC

The X drawing command is useful, in that it
enables you to call drawings which are to be used
more than once, as required.

It is possible to specify variables through the
VARPTR$ function.

you will notice that the circle is too small to
encompass the spokes. To compensate this you
should instruct TA to draw the first spoke in a
horizontal direction. This is because the radius
applied to the circle represents a number of
horizontal, not vertical screen points (see CIR­
CLE).

An error situation does not result from
DRAWing off the edge of the screen (exception:
TA<n>). However, DRAWing off the right of
the screen in low or high resolution will re­
sult in wrap round to the next horizontal line.

COMMANDS AND FUNCTIONS
DRAW

EDIT Command

Syntax EDIT line number

Purpose Displays a line for editing.

Remarks

Note

GW-BASIC 4-75

The EDIT statement simply displays the line
specified and positions the cursor under the first
digit of the line number. You may then modify
the line using the keys described in Chapter 2,
Full Screen Editor.

A period (.) always refers to the current line. If
you have just entered a line and want to go back
and edit it, you may enter EDIT, to redisplay the
line.

To display a block of program lines for editing
purposes, you can use the LIST command.

COMMANDS AND FUNCTIONS
EDIT

“line number” specifies the line number of a line
in the program. If there is no such line, an
“Undefined Line Number” error message is
displayed.

END Command

Syntax END

Purpose

Remarks

Example 520 IF K>1000 THEN END ELSE GOTO 20

4-76 GW-BASIC

COMMANDS AND FUNCTIONS
END

END may be placed anywhere in the program to
terminate execution. Unlike the STOP statement,
END does not cause a “Break” message to be
printed. Furthermore, END closes all files. An
END statement at the end of a program is
optional.

To terminate program execution, close all files,
and return to command level (“Ok”).

ENVIRON Command

ENVIRON parameter-id[= text]Syntax

Purpose

Remarks

Example

ENVIRON “PATH = A:\SALES”

Note

4-77GW-BASIC

For details of pathing and other NCR-DOS
Environment parameters, you should refer to the
NCR-DOS Manual and NCR-DOS Programmer’s
Guide.

“parameter-id” is the name of the parameter, for
example, PATH.

“text” is the new parameter text. If “text” is
omitted, then the parameter is removed from the
Environment String Table and the Table is
compressed. If “text” is present, it must be
enclosed in double quotation marks and preceded
by an equal sign or a blank. If “text” contains
only a semicolon, it is regarded as non-existent.

The following command gives GW-BASIC access
to the directory SALES on drive A.

ENVIRON allows only strings as parameters.
Failure to use strings results in a “Type mis­
match” error. “Out of memory” indicates that the
Environment String Table is full.

Unless changed by the NCR-DOS PATH com­
mand, GW-BASIC’s Environment String Table is
initially empty.

COMMANDS AND FUNCTIONS
ENVIRON

To modify parameters in GW-BASIC’s
Environment String Table, especially the
“PATH” parameter. This enables your program
to call up another program (NCR-DOS calls this a
child process), even though the program is in a
different directory (see SHELL).

ENVIRONS Function

Syntax

Purpose

Remarks

Examples

0

GW-BASIC4-78

A:\SALES
The command

PRINT ENVIRONS (“PATH”)
displays

PRINT ENVIRON$(1)
displays

COMMANDS AND FUNCTIONS
ENVIRONS

PATH = A:\SALES
The following program saves BASIC’s Environ­
ment String Table in an array so that it may be
modified for a child process. After the child
process completes, the Environment is restored.

“parameter-id” is the name of the parameter
enclosed in double quotation marks.
n is an integer expression yielding a value in the
range 1 to 255. This value represents the nth
parameter in the Table.
If the parameter is not found, the ENVIRON#
function returns an empty string.

Assuming that the dnly parameter in the Table is
that assigned in the example under the
ENVIRON Command,

To retrieve an Environment parameter from
GW-BASICS Environment String Table.

10 DIM ENV.TBL$(10) 'Assume no more than
10 parms

20 N.PARMS= 1 ‘init number of parms
30 WHILE LEN(ENVIRON$(N.PARMS))
40 ENV.TBL#(N.PARMS) =

ENVIRON$(N.PARMS)

ENVIRON# (“parameter-id”)
ENVIRON# (n)

Note

GW-BASIC 4-79

If “parameter-id” is not a string, a “Type mis­
match” error occurs. If the string is too long, a
“String too long” error occurs. If there are too
few parameters in the Table for “n” to make
sense, an “Illegal function call” error occurs.

1000 SHELL “MYCHILD” ‘Runs
“MYCHILD.EXE”

1010 FOR 1= 1 TO N.PARMS
1020 ENVIRON ENV.TBL$(I) ‘Restore parms
1030 NEXT I

COMMANDS AND FUNCTIONS
ENVIRONS

50 N.PARMS = N.PARMS+1
60 WEND
70 N.PARMS = N.PARMS-1 ‘adjust to correct

number
80 ‘Now store new Environment
90 ENVIRON “MYCHILD.PARM1 = SORT BY

NAME”
100 ENVIRON “MYCHILD.PARM2=LIST BY

NAME”

EOF Function

Syntax EOF (file number)

To test whether the end of a file has been reached.Purpose

Remarks

Example

Note

4-80 GW-BASIC

COMMANDS AND FUNCTIONS
EOF

10 OPEN “NAMES” FOR INPUT AS #1
‘20 IF EOF(l) THEN PRINT “That’s all”: END
30 INPUT #1, N$
40 PRINT N$
50 GOTO 20

EOF can also apply to redirected I/O on standard
input devices. In this case, specify 0 as the “file
number”.

The EOF condition is not significant for random
access files.

This example displays each record of a sequential
file “NAMES”, which would already have to
exist. The end-of-file situation is detected as soon
as it arises, thus preventing an error situation.

EOF returns true (-1) if there is no more data in
the file. The file is empty if the next input
operation (for example INPUT#, LINE INPUT#)
would cause an “Input past end” error.

In the case of a communications file, the value is
returned if the input buffer is empty.

ERASE Command

ERASE <list of array variables>Syntax

To eliminate arrays from memory.Purpose

Remarks

Example

Note CLEAR erases all program variables.

GW-BASIC 4-81

Arrays may be redimensioned after they are
erased, or the previously allocated array space in
memory may be used for other purposes. If an
attempt is made to redimension an array without
first erasing it, a “Duplicate definition” error
occurs.

The following program uses the FRE function to
demonstrate just how much space can be saved
when you ERASE a large array variable which is
no longer required.

You see that the difference in memory require­
ment between the large and the re-DIMensioned
array is approximately 40000 bytes.

COMMANDS AND FUNCTIONS
ERASE

10 PRINT “Bytes free before DIMensioning
large array: “;FRE(“”)

20 DIM DINOSAUR (100,100)
30 PRINT “Bytes free after DIMensioning large

array: “;FRE(“”)
40 ERASE DINOSAUR
50 DIM DINOSAUR (10,10).
60 PRINT “It’s now a much smaller array.

Bytes free: “;FRE(“”)

ERDEV AND ERDEV$ Variables

ERDEV, ERDEV$Syntax

Purpose

Remarks

Example

PRINT HEX$(ERDEV), ERDEV$

and GW-BASIC will display

LPT1800A

GW-BASIC4-81 a

Printer out of paper
Device fault

COMMANDS AND FUNCTIONS
ERDEV AND ERDEV$

To return the error code of a device in error and
the name of the device generating the error.

To get the error code and the name of the device in
error, type

If an LPRINT command is issued with the printer
turned off, either one of the following messages will
be returned:

When an error occurs, the ERDEV and ERDEV$
variables hold the INT24 error code and the name
of the device in error, respectively. Both variables
are read-only variables. The lower 8 bits of the
ERDEV variable contain the error code, the upper
8 bits hold bits 13,14, and 15 of the device header
block. ERDEV$ contains either an 8-byte charac­
ter device name or a two-character block device
name, such as A: or B:.

Note

GW-BAS/C 4-81 b

COMMANDS AND FUNCTIONS
ERDEV AND ERDEV$

For further information turn to the “Device
Drivers” section of the NCR-DOS Programmer’s
Guide.

ERR AND ERL System Variables

Purpose

Remarks

IF 65535 = ERL THEN...

See ON ERRORExample

Note

GW-BASIC4-82

COMMANDS AND FUNCTIONS
ERR, ERL

To establish where in the program an error
occurred and the nature of that error.

When an error handling routine is entered, the
variable ERR contains the error code for the
error and the variable ERL contains the line
number of the line in which the error was
detected. The ERR and ERL variables are usually
used in IF...THEN decisions to direct program
flow in the error handling routine. Appendix C
lists the GW-BASIC error codes.

ERR and ERL are system, not program, varia­
bles. You cannot assign values to them. You can
only look to see wThat GW-BASIC has put in them.

If the error-producing command was entered in
direct mode, ERL contains 65535. To test whether
a direct mode command was responsible for the
error, enter

Otherwise, ERL is written on the left side of the
relational operator (e.g. =), so that the line
number stated on the right will not be left out by
the RENUM command during program editing,
for example:

IF ERL < 20 THEN PRINT “The error
occurred in a line very near to the beginning of
the program”

ERROR Command

ERROR Cinteger expression>Syntax

Purpose

Remarks

Example 1

Example 2

GW-BASIC 4-83

To simulate the occurrence of a GW-BASIC error,
or to enable you to define error codes.

The value of cinteger expression> must be
greater than 0 and less than 255. If the value of
Cinteger expression> equals an error code
already in use by GW-BASIC (see Appendix C),
the ERROR statement will simulate the occur­
rence of that error and the corresponding error
message will be printed. (See Example 1.)

To define your own error code, use a value that is
greater than any used by GW-BASIC error codes.
(It is preferable to use the highest available
values, so compatibility may be maintained when
more error codes are added to GW-BASIC.) This
user-defined error code may then be conveniently
handled in an error handling routine. (See Exam­
ple 2.)

If an ERROR statement specifies a code for
which no error handling has been defined, GW-
BASIC responds with the “Unprintable error”
error message, and terminates program execu­
tion.

110 ON ERROR GOTO 400
120 INPUT “WHAT IS YOUR BET”;B
130 IF B>5000 THEN ERROR 210

COMMANDS AND FUNCTIONS
ERROR

10 S=10
20 T=5
30 ERROR S+T
40 END
will yield
String too long in 30

Note

GW-BASIC4-84

400 IF ERR = 210 THEN PRINT “HOUSE
LIMIT IS $5000”

410 IF ERL = 130 THEN RESUME 120

ERROR is useful for testing your error handling
routines. Like most other commands, ERROR can
be entered in the direct mode.

COMMANDS AND FUNCTIONS
ERROR

EXP Function

Syntax EXP(X)

Purpose

Remarks

Example

GW-BASIC 4-85

If x is greater than 88.02969, the “Overflow” error
message is displayed, but execution continues.

COMMANDS AND FUNCTIONS
EXP

10 X = 5
20 PRINT EXP(X-l)
will yield

54.59815

To return e (base of natural logarithms) to the
power of X. X must be < = 88.02969.

FIELD Command

Syntax

Purpose

Remarks

Examples

GW-BASIC4-86

COMMANDS AND FUNCTIONS
FIELD

FIELD [#]<file number>,<field width> AS
<string variable>...

To allocate space for variables in a random file
buffer.

Before GET or PUT can be executed, a FIELD
command must be executed to format the random
file buffer.

<file number> is the number under which the
file was opened. <field width> is the number of
characters to be allocated to <string variable>.

Any number of FIELD commands may be
executed for the same file. All FIELD statements
that have been executed will remain in effect
throughout the program.

FIELD does not actually place any data in the
random file buffer (this is done by LSET and
RSET), nor does it fetch data from the random
file (this is done by GET).

FIELD 1, 20 AS N$, 10 AS ID#, 40 AS ADD?, 58
AS LEFTOVER?

tells GW-BASIC that as soon as a record has been
read from the random file allocated the number 1,
the first 20 bytes of that record can be regarded
as belonging to the string variable N$, the next 10
bvtes as belonging to ID$, and so on. To view the
first 20 bytes, you could issue the command
PRINT N?.

One thing you must not do is give these variables
contents (e.g. by using LET or INPUT), as they

The total number of bytes allocated in a FIELD
command must not exceed the record length that
was specified when the file was opened.
Otherwise, a “Field overflow” error occurs. (The
default record length is 128 bytes.)

GW-BASIC 4-87

have already been allocated to the random file
buffer.

To write a record to a random file, you need the
LSET (or RSET) statement to place the data in
the random buffer, and the PUT statement to
write the contents of the buffer to disk. The
following example writes a new subscriber and
his number as the fourth record in the file. (LSET
places data left-justified in the area of the buffer
delimited by the field variable.)

200 OPEN “R”, #1, “TELNUMS”,35
210 FIELD 1,25 AS NNAME$, 10 AS

PHONENO$
220 LSET NNAME$=“ISAAC NEWTON”
230 LSET PHONENO$=“1234”
240 PUT 1,4
250 END

COMMANDS AND FUNCTIONS
FIELD

FILES Command

FILES [“filespec”]Syntax

Purpose

Remarks

Examples FILES

FILES “♦.BAS”

shows all files on drive B.

FILES “TEST?.BAS”

4-88 GW-BASIC

COMMANDS AND FUNCTIONS
FILES

shows all five-letter files whose names start with
“TEST” and end with the .BAS extension in the
current directory of the currently selected drive.

shows all files with extension .BAS in the current
directory of the currently selected drive

shows all files in the current directory on the
currently selected drive.

If “filespec” is omitted, all the files in the current
directory on the currently selected drive will be
listed, “filespec” is a string which may contain
question marks (?) or asterisks (*) used as
universal characters. A question mark will match
any single character in the filename or extension.
An asterisk will match one or more characters
starting at that position. The asterisk is a
shorthand notation for a series of question marks.
It is also required to include a pathname in
“filespec” if the file is in another directory.

To print the names of files residing on the
specified disk.

The filenames are displayed in a format which
indicates the position of a file in its immediate
surroundings in the NCR-DOS hierarchical
directories. If the filename is in fact a

FILES “B:*.*” or FILES “B:

FILES “\ SALES”

displays the directory entry

SALES <DIR>

ROOT

ACCOUNTINGSALES

SUESTEVEJOHN MARY

REPORT

GW-BASIC 4-89

REPORT
other
files

COMMANDS AND FUNCTIONS
FILES

REPORT
other
files

The command
FILES “ \ SALES \ MARY \”

displays the names of all the files in the directory
MARY.

sub-directory, this is denoted by “<DIR>”
following the directory name. Referring to the
hierarchical structure shown in the following
illustration, the command

REPORT
other
files

FIX Function

FIX(X)Syntax

Purpose

Remarks

Examples

GW-BASIC4-90

COMMANDS AND FUNCTIONS
FIX

Returns the value of the digits to the left of the
decimal point in the number X, and ignores any
digits to the right of the decimal point.

The difference between FIX and INT is that FIX
does not return the next lower number for
negative X (see INT,CINT).

PRINT FIX(58.75)
will yield

58

PRINT FIX(-58.75)
will yield
-58

FOR...NEXT Command

FOR variable = x TO y [STEP z]Syntax

NEXT [variable] [,variable...]

where x, y, and z are numeric expressions.

Purpose

Remarks

GW-BASIC 4-91

To allow a series of instructions to be performed
in a loop a given number of times.

“variable” is used as a counter. The first numeric
expression (x) is the initial value of the counter.
The second numeric expression (y) is the final
value of the counter. The program lines following
the FOR command are executed until NEXT is
encountered. Then the counter is adjusted by the
amount specified by STEP. A check is performed
to see if the value of the counter is now greater
than the final value (y). If it is not greater,
GW-BASIC branches back to the command after
the FOR command and the process is repeated. If
it is greater, execution continues with the
command following NEXT. This sequence of
events is often called a FOR...NEXT loop.

If STEP is not specified, the increment is
assumed to be one. If STEP is negative, the
counter is decreased each time GW-BASIC
passes through the loop. The loop is executed
until the counter is less than the final value.

The counter must be an integer or single
precision numeric constant. If a double precision
numeric constant is used, a “Type mismatch”
error will result. Using an integer as the counter
gives better program performance.

The body of the loop is skipped if the initial value
of the loop exceeds the final value, assuming a
positive value for STEP. In the case of STEP

COMMANDS AND FUNCTIONS
FOR...NEXT

Nested Loops

Example 1

Example 2

4-92 GW-BASIC

being a negative value, the body of the loop is
skipped if the initial value is less than the final
value.

1
3
5
7
9

The variable(s) belonging to NEXT may be
omitted, in which case the NEXT statement will
match the most recent FOR statement. If a NEXT
is encountered before its corresponding FOR, a
“NEXT without FOR” error message is issued
and execution is terminated.
Using the FOR variable name with its corre­
sponding NEXT causes a marginal loss of execu­
tion speed, but makes your program much more
readable.

FOR...NEXT loops may be nested; that is, a
FOR...NEXT loop may be placed within the
context of another FOR...NEXT loop. When loops
are nested, each loop must have a unique variable
name as its counter. The NEXT command for the
inside loop must appear before that for the
outside loop. If nested loops have the same end
point, a single NEXT may be used for all of them.

COMMANDS AND FUNCTIONS
FOB...NEXT

10 J=0
20 FOR 1 = 1 TO J
30 PRINT I
40 NEXT I

10 K = 10
20 FOR 1 = 1 TOK STEP 2
30 PRINT I;
40 K = K + 10
50 PRINT K
60 NEXT
will yield

20
30
40
50
60

50

Example 3

5 6 7 8 9 10

Example 4

4-93GW-BASIC

In this example, the loop does not execute because
the initial value of the loop exceeds the final
value. The program skips to line 50.

In this example, the loop executes ten times. The
final value for the loop variable is always set
before the initial value is set.

COMMANDS AND FUNCTIONS
FOR...NEXT

The versatility of a FOR...NEXT loop is to be seen
in its use as a means of addressing the elements
of an array variable. The following program lets
you enter the names of 6 animals, and for each
animal 3 menus from which it can choose. The
first part lets you enter the animals and their
favorite dishes, and stores this information in
zoo$.
10 OPTION BASE 1
20 DIM ZOO$(6,4)
30CLS
40 INPUT “What is today’s date”;DAY$
50CLS
60 LOCATE 23,33:PRINT “The animals’ menu”
70 FOR A% =1 TO 6
80 PRINT
100 INPUT “Which animal”;Z00$(A%,l)
110 FOR M% =2 TO 4
130 PRINT “Menu ”;M%-1;” for the

”;ZOO$(A%,1)”?
140 INPUT ZOO$(A%,M%)
150 NEXT M%
160 NEXT A%
The second part displays the entire menu for the
ZOO.

101=5
20 FOR 1=1 TO 1+5
30 PRINT I;
40 NEXT
will yield
12 3 4

GW-BASIC4-94

170 CLS
180 LOCATE 1,26
190 PRINT “The animals’ menu for

today”„„DAY$
210 FOR A%=1TO6
220 PRINT
230 PRINT “The”;ZOO$(A%,l);” can choose

from”,
240 FOR M% =2 TO 4
250 PRINT ZOO$(A%,M%),
260 NEXT M%
270 NEXT A%

COMMANDS AND FUNCTIONS
FOR...NEXT

FRE Function

Syntax

Purpose

Remarks

Example See ERASE

Note

GW-BASIC 4-95

To find out the amount of memory still free, and
to economize on string space.

With a numeric argument, FRE returns the
number of bytes in memory that are not being
used by GW-BASIC. Arguments to FRE are
dummy arguments; that is, the syntax requires
them, but they are not processed by the function.

FRE(“”) releases memory space occupied by
strings which are no longer needed, before
returning the number of free bytes.

The number of bytes returned by the FRE
function does not take into account the workspace
in memory required by the GW-BASIC inter­
preter. Even when nothing is in the workspace,
GW-BASIC reserves between 2.5KB and 4KB.

COMMANDS AND FUNCTIONS
FRE

FRE(O)
FRE(“”)

GW-BASIC does not initiate memory
economizing until all free memory has almost
been used up. Left this late, it can take quite some
time, so using FRE periodically can shorten
delays.

GET (Files) Command

Syntax GET [#]file number[,record number]

Purpose

Remarks

Example See FIELD

Note

4-96 GW-BASIC

COMMANDS AND FUNCTIONS
GET (FILES)

Once the record is in the buffer, your program
can read it with INPUT#, LINE INPUT#, or by
referring to the variables used in a FIELD
definition for the buffer.

To read a record from a random disk file into a
random buffer.

“file number” is the number under which the file
was OPENed. If “record number” is omitted, the
next record (after the last GET) is read into the
buffer. The largest possible record number is
16,777,215; the smallest is 1. “record number”
may be in the form of a mathematical expression
or variable name.

You may also use GET for reading bytes from a
communications file, “record number” here has
nothing to do with records; instead, it represents
the number of bytes to be read from the commu­
nications buffer, provided that this number is not
greater than the value set by the LEN option at
OPEN “COM...

GET (Graphics) Command

GET (xl,yl)-(x2,y2),arraySyntax

Purpose

Remarks

GW-BASIC 4-97

To read screen graphics information (graphics
modes only) into an array variable.

COMMANDS AND FUNCTIONS
GET (GRAPHICS)

xl,yl and x2,y2 are opposite corners of an
imaginary rectangle. The color of each point
within this rectangle is read into the specified
array.
The equation
BYTES = 4 + INT
((XLEN*RESOLUTION + 7)/8)* YLEN
gives the required size of the array in bytes.
XLEN represents the horizontal length of the
rectangle, YLEN its vertical length. RESOLU­
TION is 2 for low and high resolution color
graphics, 1 for medium and high resolution
black-and-white graphics. (This is the
number of bits required to store on screen
point in video RAM.)
If, for example, you wish to store a low reso­
lution graphic design of size 15 horizontal by
12 vertical pixels, the number of bytes requi­
red is
4 + INT((15*2 + 7)/8)*12
which yields a result of 52 bytes.
Now all you have to do is decide upon the type of
numeric array in which you wish to store the
design. In the section “Space Requirements” in
Chapter 1, the bytes per element of an array were
given as follows:
• integer array — 2
• single precision array — 4
• double precision array — 8

This means that an integer array of 26 elements
is large enough to store the 15x12 graphic design.
Using an integer, rather than a single or double
precision array, offers the advantage that you
can examine the horizontal and vertical dimen-

Example

30 12

15 12

Note

GW-BASIC4-98

10 DIM A%(52)
20 SCREEN 1
30 GET (0,0)-(14,ll)
40 SCREEN 0:WIDTH 80
50 PRINT A%(O),A%(1)

The leftmost of the two numbers displayed is the
horizontal length times 2; the rightmost number
is the vertical length of the rectangle.

The complementary command, PUT, can be used
for putting the contents of an array on the screen.
Both GET and PUT work more efficiently if the
xl is a number that can be divided by 8 (in
low and high resolution color graphics) or
16 (in medium and high resolution black-and
-white graphics) without remainder.
You can also use offset coordinates, for example

sion of the graphic design: the first element
contains the horizontal length; the second ele­
ment contains the vertical length.

The following program stores a 15x12 low
resolution rectangle from the top left corner of
the screen in the array variable A%, and displays
the contents of the first two elements of the
array.

Change line 20 to SCREEN 2 (don’t forget to
press <CR>). This tells GW-BASIC to use me­
dium resolution graphics. Now RUN the pro­
gram again. This time the two numbers dis­
played are the horizontal and vertical length
of the rectangle:

GET (100,100)-STEP(15,-12),A%

determines that the graphic information of a
rectangle of which the top left corner is the point
100,100 is to be read into the array variable A%.

COMMANDS AND FUNCTIONS
GET (GRAPHICS)

GOSUB...RETURN Command

GOSUB <line number>Syntax

RETURN [line number]

To branch to, and return from, a subroutine.Purpose

Remarks

4-99GW-BASIC

A subroutine may be called any number of times
in a program. A subroutine also may be called
from within another subroutine. Such nesting of
subroutines is limited only by available memory.

“line number” in the GOSUB command is the
first line of the subroutine.

The “line number” option may be included in the
RETURN command to return to a specific line
number from the subroutine. Use this type of
return with care, however, because any other
GOSUBs, WHILEs, or FORs that were active at
the time of the GOSUB will remain active, and
errors such as “FOR without NEXT” may result.

Subroutines may appear anywhere in the
program, but it is recommended that the
subroutine be readily distinguishable from the
main program. It is often a good idea to head a
subroutine with a REM line, stating what the
subroutine does. To prevent inadvertent entry
into the subroutine, precede it with a STOP,
END, or GOTO statement that directs program
control around the subroutine.

COMMANDS AND FUNCTIONS
GOSUB...RETURN

Simple RETURN command(s) in a subroutine
cause GW-BASIC to branch back to the command
following the most recently encountered GOSUB.
A subroutine may contain more than one
RETURN, so GW-BASIC does not have to branch
to the last line of the subroutine in order to
return.

Example

Note

GW-BASIC4-100

The ON...GOSUB command can be used to select
a subroutine in accordance with the result of a
preceding operation.

10 GOSUB 40
20 PRINT “BACK FROM SUBROUTINE”
30 END
40 PRINT “SUBROUTINE”;
50 PRINT “ IN”;
60 PRINT “ PROGRESS”
70 RETURN
will yield
SUBROUTINE IN PROGRESS
BACK FROM SUBROUTINE

COMMANDS AND FUNCTIONS
GOSUB...RETURN

GOTO Command

GOTO cline number>Syntax

Purpose

Remarks

Example

GW-BASIC 4-101

To branch unconditionally out of the normal
program sequence to a specified line number.

If cline number> is the line number of an
executable command, that command and those
following are executed. If it is non-executable
(e.g. REM) execution proceeds at the first
executable command encountered after cline
number >.

The GOTO 10 command sets up an infinite loop.
The way GW-BASIC breaks out of it is when it
runs out of DATA to READ. (In fact, the loop is
executed only three times.)
The following example is a true infinite loop.

However, you do not have to switch off your
computer to break out of the loop. For situations
like this, GW-BASIC has provided a break-out
possibility, namely the cCtrl-Break> combina­
tion. This even leaves the variables intact, so you
can inspect them (using PRINT...in direct mode).

COMMANDS AND FUNCTIONS
GOTO

10 THRU% = 1
20 PRINT “This is run number”;THRU%;

“through the loop”
30 THRU% =THRU% +1
40 GOTO 20

10 READ R
20 PRINT “R =”;R,
30 A = 3.14*Ra2
40 PRINT “AREA = ”;A
50 GOTO 10
60 DATA 5,7,12
will yield
R = 5
R = 7
R = 12

AREA = 78.5
AREA = 153.86
AREA = 452.16

Out of data in 10

Note

GW-BASIC4-102

Entering GOTO with a line number in direct
mode is a way of re-entering a program at the
beginning of a line of your choice after a break in
execution. It does not matter whether you inter­
rupted the program (STOP command, <Ctrl-
Break>), or GW-BASIC was forced to stop due to
an error.

The ON...GOTO command can be used to select a
program line to which GW-BASIC must branch,
depending on the result of a preceding operation.

COMMANDS AND FUNCTIONS
GOTO

HEX$ Function

Syntax HEX$(X)

Purpose

Remarks

Example

Note

GW-BASIC 4-103

X, if not already an integer, is rounded to an
integer before HEX$(X) is evaluated. This
integer must be in the range -32768 to 65535.

COMMANDS AND FUNCTIONS
HEX$

10 INPUT X
20 A$ = HEX$(X)
30 PRINT X “DECIMAL IS ” A$ “

HEXADECIMAL”
will yield
? 32
32 DECIMAL IS 20 HEXADECIMAL

If the value of X is negative, HEX$ returns the
“two’s complement”. This is the same as
regarding X as positive, and applying the HEX$
function to the difference between 65536 and X.

To return a string that represents the
hexadecimal value of the decimal argument.

For hexadecimal to decimal conversion, see
Appendix E.

Syntax

ELSE

or

ELSE

Purpose

Remarks

Examples

4-104 GW-BASIC

commands(s)
line number

COMMANDS AND FUNCTIONS
IF

Note that only if TEMP <70 is TRUE is the
GOTO 100 instruction performed.

Another way of coming to the same decision is

To make a decision regarding program flow based
on the answer for an expression.

If the “expression” is evaluated to be TRUE, the
THEN or GOTO clause is executed. THEN may be
followed by either a line number for branching or
one or more commands to be executed. GOTO is
always followed by a line number. If “expression”
is FALSE, the THEN or GOTO clause is ignored
and the ELSE clause, if present, is executed. If no
ELSE is present, execution continues with the
next executable command. A comma is allowed
before THEN.

IF expression GOTO line number
Jcommand(s))
line number!

10 INPUT “What is the outside temperature in
Fahrenheit”;TEMP

10 INPUT “What is the outside temperature in
Fahrenheit”;TEMP

20 IF TEMP <70 THEN PRINT “It’s too cold
for a picnic”: GOTO 100

30 PRINT “It’s warm enough for a picnic”
40 END
100 PRINT “So we’re staying at home, today”
110 END

IF expression [,]
THEN

J command I
line number!-

IF...THEN...ELSE...
IF...GOTO Commands

Examples

4-105GW-BASIC

Nesting of IF...commands
IF...THEN...ELSE commands may be nested,
that is, the final course of action depends on a
multiple decision.

10 IF X>Y THEN PRINT “X IS GREATER”
ELSE IF Y>X THEN PRINT “X IS LESS”
ELSE PRINT “EQUAL”

If the command does not contain the same
number of ELSE and THEN CLAUSES, each
ELSE is matched with the closest unmatched
THEN try the following example:

COMMANDS AND FUNCTIONS
IF

20 IF TEMP <70 THEN PRINT “It’s too cold
for a picnic”:PRINT “So we’re staying at
home, today” ELSE PRINT “It’s warm
enough for a picnic”.

The following example uses line numbers instead
of commands to do the same thing:

10 PRINT “What is the outside temperature in
Fahrenheit”;TEMP

20 IF TEMP<90 THEN 50
30 PRINT “Switch on the air conditioning”
40 END
50 IF TEMP <70 THEN 100 ELSE 80
60 PRINT “GW-BASIC will never encounter

this line!”
80 PRINT “Conditions are right for a picnic”
90 END
100 PRINT “It’s still too cold”
110 END

10 INPUT “How many ounces of
sugar”;SUGAR

20 INPUT “How many measures of
milk”;MILK

30 INPUT “How many plums”;FRUIT
40 IF SUGAR>4 THEN IF MILK = 6 THEN

100 ELSE IF FRUIT>10 THEN 120
50 PRINT “The mixture isn’t sweet enough. Or

it’s a case of both the wrong milk quantity

Note

GW-BASIC4-106

210 IF IOFLAG THEN PRINT A$ ELSE
LPRINT A$

This statement causes printed output to go either
to the screen or the line printer, depending on the
value of the variable IOFLAG. If IOFLAG is zero,
output goes to the line printer; otherwise, output
goes to the screen.

IF ABS(A-1.0)<1.0E-6 THEN...

This test is true is the value of A is 1.0 with a
relative error of less than 1.0E-6.

The value zero is considered to represent “false”;
a non-zero value to represent “true”. You could
therefore make a decision dependent on the
contents of a numeric variable. Example:

When using IF to test equality for a value that is
the result of a floating-point computation,
remember that the internal representation of the
value may not be exact. Therefore, the test should
be against the range over which the accuracy of
the value may vary. For example, to test a
computed variable A against the value 1.0, use:

If an IF...THEN command is followed by a line
number in direct mode, an “Undefined line” error
results, unless a statement with the specified line
number has previously been entered in indirect
mode.

and not enough fruit. Perhaps you got every­
thing wrong!”

60 END
100 PRINT “This cake mixture has at least

enough sugar and the milk quantity is
right, so I don’t care how many plums are
in it”

110 END
120 PRINT “There’s enough sugar. The milk

isn’t right, but there are enough plums”

If there isn’t enough sugar, the judgement of line
120 cannot apply, even if there are enough plums.

COMMANDS AND FUNCTIONS
IF

INKEY$ Function

INKEY$Syntax

Returns a character from the keyboard buffer.Purpose

Remarks

Example

GW-PASIC 4-107

The following example is useful for programs in
which the user is to be allowed as much time as he
or she wishes to look at a screen display. Program
execution continues when any key is pressed.

The next example repeatedly reads the keyboard
to see if you have pressed the space bar. But it
does not go on checking forever: after INKEY$
has looked at the keyboard LIMIT% number of
times, the program gives up waiting and BEEPs
you for being so slow. You might use something
like this in video games.

COMMANDS AND FUNCTIONS
INKEY$

210 PRINT “Press any key to continue”
220 K$ = INKEY$:IF LEN(K$) = 0 THEN GOTO

220

INKEY$, unlike the INPUT command, does not
wait for you to press a key. If you “miss your
chance”, that is, if there are no characters
waiting in the keyboard buffer, INKEY$ returns
a null string (length zero). Otherwise, a single
character from the keyboard buffer is returned.
A number of keys return an extended string of
not one but two characters. In these cases, the
first character is undisplayable (ASCII code 0),
only the second character is meaningful. The keys
concerned are cursor movement keys, and certain
shift, Ctrl and Alt key combinations (see Appen­
dix B).
A further difference between INKEY$ and
INPUT is that INKEY$ does not echo your
keyboard entry on the screen.
The character returned by INKEY$ must be
assigned to a string variable before it can be
examined.

To check for and read one of the extended strings:

GW-BASIC4-108

INKEY$ does not annul the special functions of
the following key combinations:

<Ctrl-Break> (break out of program)
<Ctrl-NumLock> (system pause)
<PrtSc> (print contents of screen)
< Alt-Ctrl-Del > (system reset)

10 LIMIT% = 1000
20 FOR 1% = 1 TO LIMIT%
30 K$ = INKEY$:IF K$ <>
40 PRINT “Just in time!”
50 GOTO 20
60 NEXT 1%
70 BEEP:CLS:PRINT “Too Slow!”
80 GOTO 20

10 K$ = INKEY$
20 IF LEN(K$)=2 THEN K$ = RIGHT$(K$,1)

COMMANDS AND FUNCTIONS
INKEY$

“ ” THEN 60

INP Function

Syntax INP(I)

Purpose

Remarks

Example 100 A%=INP(64)

Note

GW-BASIC 4-109

To return the byte read from port 1.1 must be in
the range 0 to 65535.

INP is the complementary function to the OUT
command.

reads a byte from port 64 and assigns it to the
variable A%.

INP performs the same function as the assembly
language IN instruction.

COMMANDS AND FUNCTIONS
INP

INPUT Command

INPUT[;] [prompt string;]variable [,variable]...Syntax

Purpose

Remarks

GW-BASIC4-110

COMMANDS AND FUNCTIONS
INPUT

To allow input from the keyboard during
program execution.

When an INPUT command is encountered,
program execution pauses and a question mark is
printed to indicate the program is waiting for
data. If “prompt string” is included, the string is
printed before the question mark. GW-BASIC
then waits for you to type data at the keyboard
with a concluding <ENTER>

The data entered is assigned to the variable(s)
given in “variable”. The number of data items
you enter must be the same as the number of
variables in the list. You must type a comma
before each data item other than the first.

The variable names in the list may be numeric or
string variable names (including subscripted
variables). The type of each data item that is
input must agree with the type specified by the
variable name. String items input need not be
surrounded by quotation marks unless they
contain commas or start or end with a significant
number of blanks.

Responding to INPUT with too many or too few
items or with the wrong type of value (numeric
instead of string, etc.) causes the message “?Redo
from start” to be printed. No assignment of input
values is made until an acceptable response is
given. If only a single variable is specified in the
INPUT statement, you may omit the data item

A comma may be used instead of a semicolon
after the prompt string to suppress the question
mark. For example, INPUT “ENTER
BIRTHDATE”,B$ will print the prompt with no
question mark.

Examples

To break-out of this program, use <Ctrl-Break>

Note

GW-BASIC 4-111

and simply press <ENTER>. GW-BASIC then
supplies a zero for a numeric variable, or an
empty string for a string variable.

The > stdin option, which you may include in the
NCR-DOS command to load GW-BASIC, allows
you to appoint a file which will provide data for
INPUT in place of the keyboard. In this case, each
response must be concluded by a <Ctrl-Z>. If
this character is missing, a “Read past end” error
occurs, all files are closed, and GW-BASIC
returns control to the NCR-DOS (not “Ok”)
command level. Similarly, if you press <Ctrl-
Break>, the return is to the NCR-DOS command
level.
If you use <Ctrl-Break> to interrupt execution
of an INPUT statement, and then return to the
program with CONT, GW-BASIC resumes execu-

COMMANDS AND FUNCTIONS
INPUT

10 PI=3.14
20 INPUT “WHAT IS THE RADIUS”;R
30 A = PI*Ra2
40 PRINT “THE AREA OF THE CIRCLE
IS”;A
50 PRINT
60 GOTO 20
will yield
WHAT IS THE RADIUS? 7.4 (You enter 7.4)
THE AREA OF THE CIRCLE IS 171.9464

WHAT IS THE RADIUS?
and so on.

10 INPUT X
20 PRINT X “SQUARED IS”; Xa2
30 END
will yield
? 5 (The 5 is an example of what you

might enter in response to the
question mark.)

5 SQUARED IS 25

10 OPEN “R”,#l, “TELNUMS”,35

20 FIELD 1,2 AS SUBSCRIB$,33 AS UNUSED$

4-112 GW-BASIC

60 FOR LOOP% = 2 TO TOTAL %
70 GET #1, LOOP%
80 PRINT NNAME$,PHONENO$
90 NEXT LOOP%
100 END

40 GET #1
50 TOTAL % = CVI(SUBSCRIBE)

The rest of the program GETs each record from
the disk file and displays each name and phone
number of the screen:

The first record contains no more than the
number of subscribers up to a maximum of 99. A
FIELD definition suitable for this first record is:

The remaining records, containing actual names
and numbers, could conform to the following
divisions.

30 FIELD 1,25 AS NNAME$,10 AS
PHONENO$

The first thing to do is to GET the first record,
and look at the first two bytes of that record to
see how many subscriber records are in the file
(this number is converted from a string to an
integer value):

tion with the INPUT (not the subsequent)
statement.

The following example assumes that a file exists
containing information about telephone sub­
scribers (name, number) in records each 35 bytes
in length. The first line opens the file for random
access.

COMMANDS AND FUNCTIONS
INPUT

INPUT# Command

Syntax INPUT#file number,variable list

Purpose

Remarks

Example See Chapter 5, Files and Devices”.

GW-BASIC 4-113

To read data items from a sequential device or
file and assign them to program variables.

The data items in the file should appear just as
they would if data were being typed in response to
an INPUT statement. With numeric values,
leading spaces, carriage returns, and linefeeds
are ignored. The first character encountered that
is not a space, carriage return, or linefeed is
assumed to be the start of the number. The
number concludes with a space, carriage return,
linefeed, or comma.

COMMANDS AND FUNCTIONS
INPUT#

“file number” is the number used when the file
was OPENed for input, “variable list” contains
the variable names to which items in the file will
be assigned. (The variable type must match the
type specified by the variable name.) With
INPUT#, no question mark is printed, as with
INPUT.

If GW-BASIC is scanning the sequential data file
for a string item, it will also ignore leading
spaces, carriage returns, and linefeeds. The first
character encountered that is not a space,
carriage return, or linefeed is assumed to be the
start of a string item. If this first character is a
quotation mark (“), the string item will consist of
all characters read between the first quotation
mark and the second. Thus, a quoted string may
not contain a quotation mark as a character. If
the first character of the string is not a quotation
mark, the string is an unquoted string, concluded
by a comma, carriage return, or linefeed (or after
255 characters have been read). If end-of-file is
reached when a numeric or string item is being
INPUT, the item is terminated.

Note

GW-BASIC4-114

INPUT# can also be used with a random access
file.

COMMANDS AND FUNCTIONS
INPUT#

INPUTS Function

INPUT$(X[,[#]Y])Syntax

Purpose

Remarks

Example

Note

GW-BASIC 4-115

To return a string of X characters, read from file
number Y. If the file number is not specified, the
characters will be read from the keyboard.

INPUTS and INKEYS read all keyboard entries
and not just printable characters. To detect, for
example, cursor movement keys, use these
functions and not INPUT or LINE INPUT.

Similarly, you should use INPUTS for reading
communications files (rather than INPUT# or
LINE INPUT#), as any ASCII character may be
significant.

COMMANDS AND FUNCTIONS
INPUTS

5 ‘LIST THE CONTENTS OF A SEQUENTIAL
FILE IN HEXADECIMAL

10 OPEN“I”,1,“DATA”
20 IF EOF(l) THEN 50
30 PRINT HEX$(ASC(INPUTS(1,#1)));
40 GOTO 20
50 PRINT
60 END

If the keyboard is used for input, no characters
will be echoed on the screen. All control
characters are passed through except
<Ctrl-Break>, which can be used to interrupt
the execution of the INPUTS function. When
responding to INPUTS via the keyboard, it is not
necessary to press <ENTER>. X limits the
number of input characters anyway.

INSTR Function

INSTR([I,]X$,Y$)Syntax

Purpose

Remarks

Example

Note

4-116 GW-BASIC

COMMANDS AND FUNCTIONS
INSTR

If I is out of range, that is, beyond the length of
X$, an “Illegal function call” error occurs. To find
the length of a string you can use the LEN
function.

The first INSTR searches for “B” from the
beginning of the string variable X$, and finds one
at position 2. The second INSTR starts searching
at position 4, and, therefore, cannot find the “B”
at position 2 but does find the “B” at position 6.

I must be in the range 1 to 255. If I is greater than
the number of characters in X$ or if X$ is null or
Y$ cannot be found, INSTR returns 0. If Y$ is
null, INSTR returns I, or 1 if I was not specified.
X$ and Y$ may be string variables, string
expressions, or string constants.

To search for the first occurrence of string Y$ in
X$ and return the position at which the match is
found. Optional offset I sets the position X$ for
starting the search.

10 X$=“ABCDEB”
20 Y$=“B”
30 PRINT INSTR(X$,Y$);INSTR(4,X$,Y$)
will yield

2 6

INT Function

Syntax INT(X)

Purpose

Examples

Note

4-117GW-BASIC

To return the largest integer that is less than or
equal to the numerical value X.

See the CINT and FIX functions, which also
return integer values.

COMMANDS AND FUNCTIONS
INT

PRINT INT(99.89)
will yield

99

PRINT INT(-12.11)
will yield
-13

IOCTL Command

IOCTL [#] <file number>, <string expression>Syntax

To send a control data string to a device driverPurpose

Remarks

Example

Note

GW-BASIC4-117a

COMMANDS AND FUNCTIONS
IOCTL

The IOCTL command allows you to pass control
data strings to a device driver that you have
written and installed. The format and the con­
tents of a control data string depend on your
drivers setup.

If the device width is set with a “Wn” command,
you may send this with an IOCTL control data
string.

Before an IOCTL command can be executed, an
OPEN command must be executed to open the
driver.

<file number> is the number under which the
device driver is opened.

<string expression> is the control data string to
be sent to the device driver. The maximum
allowable length is 255 bytes. Semicolons can
separate control data strings.

Assume that you have written your own printer
device driver (LPT1) and substituted it for the one
originally installed.

The IOCTL$ function performs the inverse
operation, that is, it reads a control data string
from a device.

10 OPEN “O”, *1, “LPT1”
20 IOCTL *1, “W132”

IOCTL$ Function

Syntax IOCTL$ ([=#=] <file number>)

To read a control data string from a device driverPurpose

Remarks

Example

GW-BAS/C 4-117b

An IOCTL$ function can be used to check the
correct execution of an IOCTL command and to
return information on the device configuration.

<file number> represents the number under
which the device driver was opened.

The following example assumes that you can set
the device width with a “Wn” command. In line 30
a check is performed to see if the width has been
set correctly.

If a value other than 80 is returned, an error may
have occurred. If a device failure occurs, refer to
the ERDEV and the ERDEV$ variables.

COMMANDSAND FUNCTIONS
!OCTL$

10 OPEN “LPT” AS *2
20 IOCTL *2, “W80”
30 IF IOCTL$(2) = 80 THEN PRINT“WIDTH

SET CORRECTLY”

KEY Command

Syntax

Purpose

Remarks

GW-BASIC4-118

COMMANDS AND FUNCTIONS
KEY

“string expression”
Specifies the string expression which will be
assigned to the programmable Function Key.

Fl LIST
F2 RUN<CR>
F3 LOAD”
F4 SAVE”
F5 CONT<CR>

F6 ,“LPT1:<CR>
F7 TRON<CR>
F8 TROFF<CR>
F9 KEY
F10 SCREEN 0,0,0<CR>

Allows you to assign a string expression to
programmable function keys. You may assign a
string of up to 15 characters to any one or all of
the keys. When you later press the key, the string
will be input to GW-BASIC. KEY ON/OFF/LIST
enables you to view or hide the contents of the
programmable Function Keys.

KEY key number,string expression
KEY ON
KEY OFF
KEY LIST

Initially, the programmable function keys are
assigned the following values by GW-BASIC:

KEY “key number”,“string expression”
Assigns the string expression to the specified
key. The string expression may be 1 to 15
characters in length. If is is longer than 15
characters, only the first 15 characters are
assigned.

If you specify a value for “key number” which is
not in the range 1 to 10, an “Illegal Function Call”
error occurs. The previous key string assignment
is retained.

“key number”
Specifies the number of a programmable
Function Key in the range 1 to 10 (see list below).

Examples

GW-BASIC 4-119

Assigning a string of length 0 to a programmable
Function Key disables the key. It will remain
disabled until another error string expression is
assigned to it.

In the following example, the statement in line 10
assigns the string ‘MENU’ with a concluding
<CR> to Function Key 1. This assignment
might be used in a program to select a menu
display when entered by the user. Line 20 disables
the key.

Key Trapping
GW-BASIC allows you to define six additional
key traps. The trapped key must be in the Ctrl,
Shift or Alt mode.

COMMANDS AND FUNCTIONS
KEY

KEY LIST
Lists all 10 programmable Function Key values
on the screen. All 15 characters of each Function
Key are displayed.

When a programmable Function Key is assigned,
the INKEY$ function returns one character of
the string each time it is called. If the program­
mable Function Key is disabled, INKEY$ returns
a string of length 2. The first character is binary
zero, and the second is the key scan code (see
Appendix B).

KEY ON
The first six characters of each Function Key are
displayed on the 25th line of the screen, just as
after loading GW-BASIC. If you are using a
display WIDTH of 40, only five Function Keys are
displayed.

KEY OFF
Erases the programmable Function Key display
from the 25th line, but it does not disable the
function keys.

10 KEY 1,“MENU” + CHR$(13)
20 KEY 1,“”

Example

Note

4-120 GW-BASIC

“keyboard” is a number representing the position
on the keyboard of the key to be trapped (see
Appendix F).

Key trapping cannot be used to override the
Ctl-PrtSc function, nor does it affect Function or
cursor movement keys.

The following program sets up a trap for the key
combination <Ctrl-Shift-X>:

10 KEY 15, CHR$(&H04 + &H03) + CHR$(45)
20 ON KEY(15) GOSUB 1000
30 KEY (15) ON

Line 20 states that whenever this key combina­
tion is pressed, and provided that the trap is
enabled (line 30, see KEY(n) command), GW-
BASIC will branch to the subroutine at line 1000.

To set a trap, a KEY command containing the
following elements is required:

&H40
&H20
&H08
&H04
&H01 or &H02 or &H03

Caps Lock
Num Lock
Alt
Ctrl
Shift

Combined mode key actions are accomplished by
combining the appropriate codes. For example
&H04 + &H01 means <Ctrl-Shift>.

COMMANDS AND FUNCTIONS
KEY

KEY key number,CHR$(mode) +
CHR$(keyboard)

“key number” is a numeric in the range 15 to 20.
“mode” is a hexadecimal value as follows:

1000 PRINT “Somebody has pressed Ctrl-
Shift-X!”

GW-BASIC 4-121

However, you can override the GW-BASIC Ctrl-
Break function, with the result that you can no
longer use this key combination to break out of a
programmed return to the GW-BASIC “Ok”
level. Similarly, you can override the Ctrl-Alt-Del
(system reset) combination.

COMMANDS AND FUNCTIONS
KEY

KEY(N) Command

Syntax

Purpose

Remarks n is a numeric expression in the range 1 to 20:

See KEY.Example

Note

4-122 GW-BASIC

COMMANDS AND FUNCTIONS
KEY(N)

To enable or disable trapping the operation of one
of the above mentioned keys or key combinations.

KEY(n) ON
KEY(n) OFF
KEY(n) STOP

where (n) is the number of a programmable
Function Key, a cursor movement key, or one of
the six user-defined key traps (see KEY Com­
mand).

1 — 10
11
12
13
14
15 — 20

A KEY(n) command may not precede an ON
KEY(n) command.

the appropriate Function Key
Cursor Up
Cursor Left
Cursor Right
Cursor Down
User defined trappable key combi­
nation.

The KEY(n) ON command enables trapping of
the key or key combination specified by n. While
trapping is enabled, and if a non-zero line number
is specified in the ON KEY command, GW-
BASIC checks before every command to see if the
specified key has been used. If it has, the
GW-BASIC branches to the subroutine starting
at the line given in the ON KEY command.
KEY(n) OFF disables the event trap. If an event
takes place, it is not recorded.
KEY(n) STOP disables the event trap, but if an
event occurs, it is recorded and an ON KEY
command will be executed as soon as trapping is
enabled.

GW-BASIC 4-123

KEY(n) ON does not have any effect on whether
the Function Keys are displayed in the 25th
screen line.

COMMANDS AND FUNCTIONS
KEY(N)

KILL Command

Syntax KILL filespec

To delete a file from disk.Purpose

Remarks

Examples 200 KILL “A:OBSOLETE.DAT”

Note

4-124 GW-BASIC

COMMANDS AND FUNCTIONS
KILL

200 KILL
“LOCAL1 \ LOCAL1A \ UNUSED.BAS”

KILL can be used for all types of disk files both
program and data files. The filespec may contain
question marks (?) or asterisks (*) (universal
characters). A question mark will match any
single character in the filename or extension. An
asterisk will match one or more characters
starting at its position.

deletes the file with the name OBSOLETE.DAT
on drive A.

If a KILL statement is given for a file that is
currently OPEN, a “File already open” error
occurs.

KILL is similar to the NCR-DOS ERASE com­
mand.

deletes the file UNUSED.BAS from the
subdirectory LOCAL1A on the current disk.

COMMANDS AND FUNCTIONS

LCOPY Command

Syntax LCOPY

To output the screen display to a printer.Purpose

Remarks

GW-BASIC 4-125

The LCOPY command enables you to “dump” a
screen, that is, to print what is currently dis­
played on a printer.

The time required for printing depends on the
degree of resolution that you have selected.
To print screen graphics on a printer you can also
use the GRAPHICS command. Refer to your
NCR-DOS manual for further information on
how to invoke this command.

LEFTS Function

Syntax LEFT$(X$,I)

Purpose

Remarks

Example

Also see the MID$ and RIGHTS functions.

Note

4-126 GW-BASIC

COMMANDS AND FUNCTIONS
LEFTS

To find out the length of a string, you can use the
LEN function.

To return a string comprising the leftmost I
characters of X$.

I must be in the range 0 to 255. If I is greater than
the number of characters in X$, the entire string
(X$) will be returned. If I = 0, the null string
(length zero) is returned.

10 A$ = “BASIC”
20 B$=LEFT$(A$,3)
30 PRINT B$
will yield
BAS

LEN Function

Syntax LEN(X$)

Purpose

Example OREGON”

GW-BASIC 4-127

10 X$=“PORTLAND,
20 PRINT LEN(X$)
will yield

16

To return the number of characters in X$,
including blanks and special characters.

COMMANDS AND FUNCTIONS
LEN

LET Command

[LET] variable = expressionSyntax

To assign the value of an expression to a variable.Purpose

Remarks

Example

is the same as

Note

GW-BASIC4-128

The same variable may appear on both sides of
the equal sign, for example:

If the expression to the right of the equal sign
does not yield a result of the same type as that of
the variable to the left of the equal sign, a “Type
mismatch” error occurs.

110 D = 12
120 E = 12a2
130 F = 12a4
140 SUM = D + E + F
150 TEXT$ = “Words”

110 LET D = 12
120 LETE = 12a2
130 LETF = 12a4
140 LET SUM=D+E+F
150 LET TEXTS = “Words”

COMMANDS AND FUNCTIONS
LET

100 INPUT “Enter any number”, NUMB
110 NUMB = NUMB/3
120 PRINT “Your number divided by three =

“;NUMB

Notice that the word LET is optional; that is, the
equal sign is sufficient for assigning an
expression to a variable name.

LINE Command

Syntax LINE[xl,yl)](x2,y2)[,[color][,B[F]][, style]]

Purpose Draws a line, box, or filled-in box on the screen.

4-129GW-BASIC

The BF tells BASIC to draw the same rectangle as
B and also to fill in the interior points in the same
color as B. (You cannot use “style” with BF.)

“style” is an option for drawing the line or box
not with a continuous line but with a dotted or
dashed line, or any other pattern you choose,
“style” is a number in the range 0 to 65535. The
style of drawing corresponds to the 16 bit binary
representation of the number. A dotted line
requires the bit pattern

B or BF
Specifies box or filled-in box. The B tells BASIC to
draw a rectangle with the points (xl,yl) and
(x2,y2) as opposite corners. This avoids having to
give four LINE commands to perform the same
function:

LINE (xl,yl)-(x2,yl)
LINE (xl,yl)-(xl,y2)
LINE (x2,yl)-(x2,y2)
LINE (xl,y2)-(x2,y2)

’color’
Specifies color of line, box, or filled-in box. In low
and high resolution color graphics, the number
must be in the range 1-3, this representing a color
from the color palette, or 0 (the background color).
Default is 3. In medium and high resolution black-
and-white graphics, 0 indicates black, 1 indicates
white. Default is 1.

(xl,yl),(x2,y2)
Specifies the coordinates in either absolute or off­
set form (see Chapter 3 “Screen Display”). If
(xl,yl) point coordinates are not specified, the
beginning point of the line is the last point referred
to in a graphics command.

COMMANDS AND FUNCTIONS
LINE

or

Examples

GW-BASIC4-130

COMMANDS AND FUNCTIONS
LINE

1010101010101010
0101010101010101
This corresponds to the decimal number 43690
(first pattern) or 21845 (second pattern). Experi­
enced programmers will probably prefer to use
the hexadecimal notations &HAAAA and
&H5555
The pattern set by style applies to the first 16
screen points of the line, and is repeated thereaf­
ter until the end of the line. Any screen points not
set retain their old appearance. Therefore, before
drawing an intermittent line, you may wish to
first draw a continuous line using the background
color (0), in order to achieve a single background
color for the whole length of the line. This is a
consideration which applies in particular to color
graphics.

10 INPUT “X2 and Y2 and color”;
X2%,Y2%,COL%

20 SCREEN 1,0:COLOR 0,1
30 FOR D% =1 TO 400:NEXT D%
40 LINE -(X2%,Y2%),COL%
50 IF INKEY$ = ““ THEN 40
60 SCREEN 0:WIDTH 80
This program asks you for the end coordinates
and the color of a line to be drawn from the center
of the screen (the “last point referenced” follow­
ing the SCREEN1 command). The line is then
drawn and remains on the screen until you press
any key. (The short delay caused by line 30 is
merely to give the display time to settle after
changing mode.)
The following example connects the corners of
the screen with one another using medium re­
solution line drawing:

10 SCREEN 2 :CLS
20 LINE (0,0)-(639,199)„B
30 LINE (0,0)-(639,199)
40 LINE (0,199)-(639,0)
50 IF INKEY$ = THEN 50

60 SCREEN 0

0000111100001111 (hexadecimal 0F0F).

10 LINE (150,100)—STEP (30,-30)

Note

GW-BASIC 4-131

As “styles” is not specified, continuous lines are
drawn. Now re-write lines 20 to 40 as follows:

20 STYLE% =21845 :LINE
(0,0)—(639,199)„B,STYLE%

30 LINE (0,0)—(639,199),„STYLE%
40 LINE (0,199)—(639,0),,,STYLE%

This now produces dotted lines. Change the value
of STYLE % to 1 and the dots will be few and far
between. The value 3855 produces dashed lines.
The binary equivalent is

The following example draws a line using offset
coordinates, that is, relative to the last point
referenced (in this case 150,100):

10 SCREEN 1,0
20 COLOR 0, RND*4
30 LINE
(RND*319,RND*199)-STEP(RND*50,RND*50)
,RND*3, BF
40 GOTO 20

If LINE attempts to draw beyond the edges of the
graphic display area, there is no wrap around to
another part of the screen. Those parts of the
drawing that are out of bounds are simply clipped
away. GW-BASIC does not regard this as an
error condition.

COMMANDS AND FUNCTIONS
LINE

The following draws random size boxes up to a
maximum of 50 X 50 points at random positions
in random colors

LINE INPUT Command

Syntax

Purpose

Remarks

Example See “LINE INPUT#

Note

4-132 GW-BASIC

LINE INPUT[;] [“prompt string”;]
string variable

COMMANDS AND FUNCTIONS
LINE INPUT

If you interrupt execution of a LINE INPUT
command by pressing <Ctrl-Break>, and then
return to the program with CONT, GW-BASIC
resumes execution with the LINE INPUT (not the
subsequent) command.

A LINE INPUT command may be aborted by
typing <Ctrl-Break>. GW-BASIC then returns
to command level (“Ok”).

“prompt string” is a string constant that is
displayed on the screen before input is accepted.
A question mark is not printed unless it is part of
“prompt string”. The subsequent keyboard input
is assigned to “string variable”.

To read an entire line (up to 254 characters) from
the keyboard to a string variable, ignoring
delimiters.

If LINE INPUT is immediately followed by a
semicolon, then the cursor remains in the same
line, even after you have pressed <ENTER>

LINE INPUT# Command

LINE INPUT# file number,string variableSyntax

Purpose

Remarks

Example

GW-BASIC 4-133

To read an entire line (up to 254 characters),
ignoring delimiters, from a sequential disk data
file to a string variable.

LINE INPUT# is especially useful if each line of
a data file has been broken into fields, or if a
GW-BASIC program saved in ASCII format (see
SAVE) is being read as data by another program.

COMMANDS AND FUNCTIONS
LINE INPUT#

“file number” is the number under which the file
was OPENed. “string variable” is the variable
name to which the line will be assigned. LINE
INPUT# reads all characters in the sequential
file up to a carriage return. It then skips over the
carriage return/linefeed sequence. The next
LINE INPUT# reads all characters up to the next
carriage return. (If a linefeed/carriage return
sequence is encountered, it is preserved.)

This example reads information with commas
and other delimiters from the keyboard into C$.
This information is written to the file LIST.
Afterwards the sequential file is re-opened and
the information is read back in C$ and then
displayed.

JONES 234,4
LINDA JONES

10 OPEN “O”,1,“LIST”
20 LINE INPUT “CUSTOMER
INFORMATION? ”;C$
30 PRINT #1, C$
40 CLOSE 1
50 OPEN “I”,1,“LIST”
60 LINE INPUT #1, C$
70 PRINT C$
80 CLOSE 1
will yield
CUSTOMER INFORMATION? LINDA

MEMPHIS
234,4 MEMPHIS

LIST Command

Syntax

Purpose

Remarks

Examples LIST

4-134 GW-BASIC

displays line 100 only.
LIST 80-

COMMANDS AND FUNCTIONS
LIST

displays the entire program.
LIST 100

This time, listing is confined to this inclusive line
span.
LIST 1000-“COPY2”.BAS

The hyphen has the effect that not only line 80
but also every line with a higher number is
displayed.
LIST -120
Every line up to and including line 120 is
displayed.
LIST 50-210

If you do not specify line numbers, the entire
program is listed.
You may terminate any listings to the screen by
pressing <Ctrl-Break>. <Ctrl-Num Lock>
temporarily suspends listing, that is, until you
press any key.

Allows a program to be listed, usually on the
screen.

LIST [line number 1] [-[line number 2]]
[filespec]

“line number l”,“line number 2”
Numbers in the range 0 to 65529 which specify the
span of program lines to be displayed.
“filespec”
A file or device to which the program listing is to
be directed. If filespec is omitted, the program
lines are listed on the screen.

Note

GW-BASIC 4-135

Writes a copy of the program in ASCII format
(see SAVE) to the file COPY2.BAS, starting at
line 1000.

Refer to Chapter 5 Files and Devices for informa­
tion about using device names (e.g. LPT1:) for
“filespec”.

COMMANDS AND FUNCTIONS
LIST

If LIST is executed in indirect mode, GW-BASIC
returns immediately afterwards to the command
level (“Ok”).

LLIST Command

LLIST [line number 1] [-[line number 2]]Syntax

Purpose To list a program on the printer.

Remarks

4-136 GW-BASIC

COMMANDS AND FUNCTIONS
LLIST

LLIST works in an identical way to LIST, except
that you cannot use “filespec”.

LOAD Command

LOAD filespec[,R]Syntax

To load a file from disk or a device into memory.Purpose

Remarks

LOAD “STRTRK”,RExample

“filespec” may include a pathname.Note

GW-BASIC 4-137

The “filespec” must include the filename that
was used when the file was SAVEd, but you need
not specify the extension if it is .BAS.

The R option automatically runs the program
after it has been loaded.

LOAD closes all open files and deletes all varia­
bles and program lines currently residing in
memory before it loads the designated program.
However, if the R option is used with LOAD, the
program is RUN after it is LOADed, and all open
data files remain, so that the newly run program
can use them.

Loads and runs the program STRTRK.BAS. (This
has the same effect as RUN “STRTRK”.)

COMMANDS AND FUNCTIONS
LOAD

LOAD “B:MYPROG”
Loads the program MYPROG.BAS from the disk
in drive B, but does not run the program.

LOC Function

Syntax LOC(file number)

Purpose

Remarks

Examples 200 IF LOC(1)>50THEN STOP

200 PUT #1,LOC(1)

4-138 GW-BASIC

COMMANDS AND FUNCTIONS
LOC

stops the program if reading has gone beyond
the 50th record.

The following example is useful for re-writing a
random access file record which has just been
read:

For a communications file, LOC is used to
determine if there are any characters in the input
queue waiting to be read. If there are more than
255 characters in the queue, LOC returns 255.
Since interpreter strings are limited to 255
characters, this practical limit eliminates the
need to test for string size before reading data
into it. If fewer than 255 characters remain in the
queue, the value returned by LOC is the actual
number of characters waiting to be read.

When a file is opened for sequential input,
GW-BASIC reads the first sector of the file, so
LOC will return a 1 even before any input from
the file occurs.

With sequential access files, LOC returns the
number of records read from, or written to, the
file since it was opened.

where “file number” is the number under which
the file was opened.

With random access files, LOC returns the
number of the last record read or written.

LOCATE Command

LOCATE[row] [,[col] [,[cursor] [,[top] [,bottom]]]]Syntax

Purpose

Remarks

GW-BASIC 4-139

To position the cursor on the screen, define its
size, and to make it visible and invisible.

COMMANDS AND FUNCTIONS
LOCATE

“col”
Specifies the screen column number in the range
1 to 40 (using width 40) or 1 to 80 (using width 80)
where the cursor is to appear.

“cursor”
A value indicating whether the cursor is to be
visible. Specify 1 for visible, 0 for invisible,
“cursor” does not apply to the graphics modes.

“row”
Specifies the screen line number in the range 1 to
25 where the cursor is to appear.

“bottom”
Determines the lowermost line of the cursor. The
area between “top” and “bottom” is filled in at
whatever character position the cursor is
situated. If “top” is given as a higher scan line
number than “bottom”, the cursor wraps round
to the upper portion of the character position,
giving a cursor in two parts, “top” and “bottom”
do not apply to the graphics modes.

Positioning the cursor determines where charac­
ter output to the screen is displayed.

You may omit any of the command parameters.
The current value continues to apply for an
omitted parameter.

‘top’
A character position on the screen consists of
14 or 8 scan lines, depending on whether you
are using a monochrome display adapter or a
color graphics display adapter. The scan lines
are numbered from the top of the character
position as 0 to 13 and 0 to 7, respectively,
‘top’ determines the topmost scan line of the
cursor.

Examples LOCATE 1,1

LOCATE 24,1,1,6,1

Note

4-140 GW-BASIC

Places a two-part visible cursor at the beginning
of the 24th character display line

Allowable ranges for LOCATE parameters are 1
to 25 for “row”, 1 to screen WIDTH for “col”, 0 or
1 for “cursor”, and 1 to 31 for “top” and “bottom”.
Out of range values produce an “Illegal function
call” error.

Moves the cursor to the top left corner of the
character display area.

Sets a block cursor on a color screen, but does not
change the position or visibility of the cursor.

If you turn off the Function Key display in the
bottom screen line (KEY OFF), you can use all 25
lines. GW-BASIC does not normally write in line
25, but it will do so, if you place the cursor there.

COMMANDS AND FUNCTIONS
LOCATE

When a program is running, GW-BASIC nor­
mally turns the cursor off. The command
LOCATE „1 turns it back on.

LOCATE ,„0,7

LOCK Command

Syntax

Purpose

Remarks

The following example locks the entire file n:Examples

30 LOCK #n

To lock records 1 through X enter

30 LOCK #n, 1 TO X

Note

GW-BASIC 4 140a

LOCK [#] file number [,[record number]]
[TO record number]

The following error situations can arise when
locking a file:

To restrict access to all or part of an opened file by
other processes which also have opened that file.

An entire open file, or a range of records within an
opened file (in the case of a random file) may be
locked, thus denying access to those records to any
other process which has also opened the file.

If the file has been opened for sequential input or
output, the entire file is locked regardless of any
record range specified. The specification of a range
in a LOCK command regarding a sequential file
will not be considered an error, but will be ignored.

The record range specified must be from lower to
(the same or) higher record numbers. If a starting
record number is not specified, record number 1 is
assumed. If an end record is not specified, one re­
cord is locked. Legal record numbers are in the
range 1-16,777,215 (2-24th-l). The maximum re­
cord size allowed is 32767 bytes.

COMMANDS AND FUNCTIONS
LOCK

“Permission denied”
A syntactically correct LOCK request cannot be
granted.

GW-BASIC4-140b

“Illegal function call”
The record range specified does not meet neces­
sary criteria, or a range/record length combina­
tion exceeds the legal limit for the size of a file.

A LOCK command must be executed on a file or
record range within a file before an attempt is
made to read or write to that file. In addition, the
file or range must be unlocked before the file is
closed. Please refer to the description of the UN­
LOCK command.

COMMANDS AND FUNCTIONS
LOCK

LOF Function

LOF(file number)Syntax

To return the length of the file in bytes.Purpose

Remarks

Example

Note

GW-BASIC 4-141

You can also apply LOF to a communications file.
In this case, the function returns the amount of
free space in the input buffer. The maximum
amount of free space is normally 256 bytes, but
you can change this using the /C option when
loading GW-BASIC.

10 OPEN “AFILE” AS #1.
20 GET #1, LOF(1)/RECSIZ%

If you apply LOF to files created under IBM
BASIC 1.10, the length returned is a multiple of
128. For example, a true length of 290 yields the
result 384.

COMMANDS AND FUNCTIONS
LOF

The following example reads the last record of a
random access file into the buffer. The record
length must already have been stored in
RECSIZ%:

LOG Function

LOG(X)Syntax

Purpose

Example

Note

GW-BASIC4-142

COMMANDS AND FUNCTIONS
LOG

To return the natural logarithm of X. X must be
greater than zero.

LOG is performed in single precision unless you
specify the /D option when loading GW-BASIC.
This option results in LOG and other “Resident”
functions being calculated with double precision.

PRINT LOG(45/7)
will yield

1.860752

LPOS Function

Syntax LPOS(X)

where X is the identifier for the line printer.

Purpose

Remarks

Example 100 IF LPOS(X)>60 THEN LPRINT CHR$(13)

GW-BASIC 4-143

To return the current character in the print
buffer that is ready to be printed.

LPOS does not necessarily give the physical
position of the print head.

This program line ensures that no more than 60
characters are printed in any line, CHR$(13)
produces a carriage return <ENTER>.

LPT1:
LPT2:
LPT3:

COMMANDS AND FUNCTIONS
LPOS

0 or 1
2
3

The value of X determines which printer is being
tested:

LPRINT and LPRINT USING Commands

LPRINT [list of expressions!;]Syntax

To print data at the line printer (LPT1:)Purpose

Remarks

9900 IF ERR = 24 THEN RESUME
(error number 24 is the “Device Timeout” error).

Note

LPRINT CHR$(12);

GW-BASIC4-144

LPRINT USING string expressionist of
expressions^]

COMMANDS AND FUNCTIONS
LPRINT

LPRINT assumes that you are using a printer
with a line width of 80 characters and automati­
cally inserts a carriage return/line feed sequence
accordingly. You may change this width value by
means of the WIDTH“LPT1:” command.
LPRINT issues a “Device Timeout” error if the
printer or other device receiving the LPRINT
output is slow in responding. You can give the
device more time by trapping the error, for
example:

Use of LPRINT is not confined to printable
characters. Your program* can use LPRINT to
activate printer functions, such as head move­
ment and character font selection. A number of
the codes are standardized, for example:

“list of expressions”
contains the items which are to be printed. These
items are numeric and/or string expressions, and
must be separated from one another by commas
or semicolons.

“string expression”
is a string constant or variable giving the format
to be used for printing.
Details regarding printing formats are the same
as those for displaying characters on the screen.
Please refer to PRINT and PRINT USING.

GW-BASIC 4-145

should produce a form feed on the printer. Other
codes are specified to the printer being used. For
these refer to your printer documentation.

COMMANDS AND FUNCTIONS
LPRINT

LSET and RSET Commands

Syntax

Purpose

Remarks

Examples 150 LSET W$ = “Very + WEATHERS

Note

4-146 GW-BASIC

COMMANDS AND FUNCTIONS
LSET AND RSET

places the string expression in the buffer at the
position indicated by the FIELD variable W$.
The string is set to the left of the FIELD area and,
at the right of this area, it is padded with blanks
or truncated, if necessary.

The following example converts a numeric value
to a string before placing it right-justified in the
buffer:

30 ABC$ = MKI$(14)
40 RSETAS = ABCS

You may apply LSET and RSET to non-FIELDed
variables. This is useful for formatting text
which is to be displayed on the screen or printed.

LSET string variable = string expression
RSET string variable = string expression

To move data from memory to a random file
buffer (in preparation for a PUT statement).

“string variable”
is a variable which has already been defined by
FIELD.

“string expression”
contains the information to be placed in the
random access file buffer at the position
indicated by string variable.

If “string expression” requires fewer bytes than
specified for “string variable”, LSET left-
justifies the string in the field, and RSET
right-justifies the string. (Spaces are used to pad
the extra positions.) If the string is too long for
the field, characters are dropped from the right.
Numeric values must be converted to strings
before they are LSET or RSET (see MKI$, MKS$,
MKD$).

MERGE Command

MERGE “filespec”Syntax

Purpose

Remarks

MERGE “NUMBERS”Example

GW-BASIC 4-147

To merge a specified disk file into the program
currently in memory.

The “filespec” must include the filename used
when the file was saved. The file must have been
saved in ASCII format (see SAVE). If it was not,
a “Bad file mode” error occurs, “filespec” may
include a pathname.

If any lines in the disk file have the same line
numbers as lines in the program in memory, the
lines from the file on disk will replace the
corresponding lines in memory.

GW-BASIC always returns to command level
(“ok”) after executing a MERGE command.

merges the GW-BASIC program file NUM-
BERS.BAS residing in the current directory of
the current disk into the program already pres­
ent in memory.

COMMANDS AND FUNCTIONS
MERGE

MID$ Command

Syntax

where n and m are integer expressions.

Purpose

Remarks

See MID$ Function.Example

Note

GW-BASIC4-148

COMMANDS AND FUNCTIONS
MID$

The values n and m must be in the range 1 to 255,
otherwise an “Illegal function call” error occurs.

To replace a portion of one string with another
string.

MID$(string expression!,n[,m]) = string
expression2

The characters in “string expression!”, begin­
ning at position n, are replaced by the characters
in “string expression2. The optional “m” refers to
the number of characters from “string
expression2” that will be used in the replacement.
If “m” is omitted, all of “string expression2” is
used. However, regardless of whether “m” is
omitted or included, the replacement of charac­
ters never goes beyond the length of “string
expression!”.

MID$ Function

Syntax MID$(X$,n[,m])

Purpose

Remarks

Example

Note

GW-BASIC 4-149

If n or m is out of range, an “Illegal function call”
error occurs.

To return a string of length m characters from
X$, beginning with the nth character.

n and m must be integer expressions in the range
1 to 255. If m is omitted or if there are fewer than
m characters to the right of the nth character, all
rightmost characters beginning with the nth
character are returned. If n is greater than the
number of characters in X$ (LEN(X$)), MID#
returns a null string.

The MID$ function is useful for looking at the
characters of a string one by one. The following
program asks you to enter a text. The program
checks whether there are any characters in that
string that are not letters. As soon as such a
character is found, its position is displayed on the
screen.

COMMANDS AND FUNCTIONS
MID$

10 INPUT “Please enter a text “;T$
20 IF LEN(T$) = 0 THEN GOTO 10
30 FOR L% = 1 TO LEN(T$)
40 CHAR$ = MID$(T$,L%,1)
50 IF CHAR$<“A” OR CHAR$> “z” OR

CHAR$> “Z” AND CHAR$< “a” THEN
P%=L%:GOTO 100

60 NEXT L%
70 PRINT “Text is all letters” :END
100 PRINT “A non-letter character” ;CHAR$;

“was found at position “;P%
110 END

10 A$=“GOOD ”
20 B$ = “MORNING EVENING AFTERNOON”
30 PRINT A$;MID$(B$,9,7)
will yield
GOOD EVENING

MKDIR Command

Syntax MKDIR path

To create a directory on the specified drive.Purpose

Remarks

Examples

ROOT

SALES ACCOUNTING

JOHN MARY STEVE SUE

REPORT REPORT

the command
MKDIR “RESEARCH”

MKDIR “RESEARCH \MARTHA”

Note

GW-BASIC4-150

COMMANDS AND FUNCTIONS
MKDIR

other
files

“path” is a string expression not exceeding 128
characters identifying a new directory which is to
be created. For details about paths and
directories you should refer to your NCR-DOS
manual.

Given the following hierarchical structure, and
assuming you are presently in the root directory

MKDIR works in the same way as the NCR-DOS
command of the same name.

Creates a sub-directory MARTHA in the direc­
tory RESEARCH.

REPORT
other
files

REPORT
other
files

Creates a sub-directory of that name to ROOT
(that is, on the same level as SALE and
ACCOUNTING).

MKI$, MKS$, MKD$ Functions

Syntax

Purpose To convert numeric values to string values.

Remarks

Example

Note

GW-BASIC 4-151

MKI$ (integer expression)
MKS$ (single precision expression)
MKD$ (double precision expression)

90 AMT=(K+T)
100 FIELD #1,4 AS D$,20 AS N$
110 LSET D$ = MKS$(AMT)
120 LSET N$=A$
130 PUT #1

converts the single precision value in AMT into a
4-byte string, places it in the random access file
buffer, and writes it as part of the record to a file.

The complementary functions, that is, the func­
tions which convert strings to numeric values are
CVI, CVS, and CVD.

The STR$ function also converts a numeric to
string value, but it does not necessarily retain the
length in bytes of the original number.

COMMANDS AND FUNCTIONS
MKI$, MKS$, MKD$

Any numeric value that is to be placed in a
random file buffer with an LSET or RSET
statement must first be converted to a string.
MKI$ converts an integer to a 2-byte string.
MKS$ converts a single precision number to a
4-byte string. MKD$ converts a double precision
number to an 8-byte string.

NAME Command

Syntax NAME Cold filename> AS <new filename>

To change the name of a disk file.Purpose

Remarks

NAME “ACCTS” AS “LEDGER”Example

Note

The specification of a pathname is not allowed.

Before using NAME, ensure that the file is closed.

GW-BASIC4-152

COMMANDS AND FUNCTIONS
NAME

A file may not be renamed with a new drive
designation. If this is attempted, a “Rename
across disks” error is generated. After a NAME
command, the file exists on the same disk, in the
same area of disk space, but with the new name.

In this example, the file that was formerly named
ACCTS will now be named LEDGER.

When you are using the name command, GW-
BASIC does not assume a file extension of .BAS.

Cold filename> must exist and Cnew
filename> must not exist; otherwise, an error
will result.

NEW Command

Syntax NEW

Purpose

Remarks

NEW closes all files and turns tracing off.

GW-BASIC 4-153

To delete the program currently in memory, close
all files, and clear all variables. If the TRacer is
ON, it is turned off.

NEW is entered in direct mode to clear memory
before entering a new program. GW-BASIC
always returns to command level after a NEW is
executed.

COMMANDS AND FUNCTIONS
NEW

OCT$ Function

Syntax OCT$(X)

Purpose

Example

4-154 GW-BASIC

COMMANDS AND FUNCTIONS
OCT$

See the HEX$ function for details on hexadeci­
mal conversion.

PRINT OCT$(24)
will yield

30

To return a string that represents the octal value
of the decimal argument. X is rounded to an
integer before OCT$(X) is evaluated.

ON COM(n) Command

Syntax ON COM(n) GOSUB line

Function

Remarks

GW-BASIC 4-155

The following commands control the activation
or deactivation of communications trapping:

n
Communications channel number (1 or 2).

line
Line number of the beginning of the trap routine.
A line number of 0 disables trapping for the
specified channel.

COMMANDS AND FUNCTIONS
ON COM(n)

COM(n) ON
Must be executed to activate the ON COM(n)
command. If you specify a non-zero line in ON
COM (n), every time the program starts a new
command, GW-BASIC checks to see if any
characters have come into the specified channel.
If there is at least one character, GW-BASIC
performs a GOSUB to the specified line.
COM(n) OFF
When executed, no trapping takes place for the
channel. If information arrives on the communi­
cations channel, it is not noticed by GW-BASIC.
COM(n) STOP
When executed, no trapping takes place for the
channel. However, any characters received by the
channel are saved in memory so that an immedi­
ate trap takes place when COM(n) ON is executed.
When a trap occurs, GW-BASIC automatically
executes a COM(n) STOP so that recursive traps
can never take place. The RETURN from the trap
routine automatically executes COM(n) ON

Allows your program to set a trap for
communications activity: as soon as information
comes into the communications buffer,
GW-BASIC branches to the subroutine at the
specified line number.

Example

4-156 GW-BASIC

30 ON COM(l) GOSUB 9900
40 COM(l) ON

9900 REM trap routine to deal with incoming
characters

9990 RETURN
Line 30 means that if communications activity
and trapping has been enabled for this communi­
cations channel at the time of the event, GW-
BASIC will branch to the subroutine at line 9900.
Line 40 enables communications trapping for this
channel.

unless an explicit COM(n) OFF has been executed
within the trap routine.
Trapping never takes place unless GW-BASIC is
executing a program.
When an error trap takes place (see ON ERROR),
all trapping is automatically disabled. This
means that communications events are disre­
garded by GW-BASIC.
Typically, the communications trap routine reads
an entire message from the communications
channel before returning. Using the communica­
tions trap for single character messages is not
advisable because at high baud rates (speeds) the
overhead of trapping and reading for each indi­
vidual character may cause the interrupt buffer
for communications to overflow.
Specifying a line number with the RETURN
command at the end of the trap routine is
optional. Use it to go back to the program at a
fixed line number. This action eliminates the
GOSUB entry which the trap created. Use
RETURN line with care! Any other GOSUB,
WHILE, or FOR which was active at the time of
the trap will remain active.

COMMANDS AND FUNCTIONS
ON COM(n)

ON ERROR GOTO Command

Syntax ON ERROR GOTO line number

Purpose

Remarks

10 ON ERROR GOTO 500Examples

690 RESUME

GW-BASIC 4-157

Line 10 states that if any error occurs GW-BASIC
is to branch to line 500. Line 520 asks that if a
communications device did not respond in time

To enable error handling and specify the first line
of the error handling routine.

Once error handling has been enabled, all errors
detected, including direct mode errors, will cause
a jump to the specified error handling routine. If
“line number” does not exist, an “Undefined line”
error results.

COMMANDS AND FUNCTIONS
ON ERROR GOTO

500 REM Error trap handling routines
510 ON ERROR GOTO 0
520 IF ERR = 24 THEN RESUME ‘Device too
slow

To disable error handling, execute an ON ERROR
GOTO 0. Subsequent errors will print an error
message and halt execution. An ON ERROR
GOTO 0 command that appears in an error
handling routine causes GW-BASIC to stop and
print the error message for the error that caused
the trap. It is recommended that all error
handling routines execute an ON ERROR GOTO
0 if an error is encountered for which there is no
recovery action.
If an error occurs during execution of an error
handling routine, that error message is printed
and execution terminates. Error trapping does
not occur within the error handling routine.

10 ON ERROR GOTO 9900

GW-BASIC4-158

COMMANDS AND FUNCTIONS
ON ERROR GOTO

You may want an audible signal to attract your
attention if an error occurs. In this case, do the
following:

send GW-BASIC back to try to establish commu­
nications again. This is just one example of an
error. Refer to Appendix C and decide which error
possibilities you think you should provide for in
each program you create.

9900 REM Beep until a key is pressed
9910 BEEP
9920 IF INKEY$ =
9930 END

““ THEN 9910

ON...GOSUB and ON...GOTO Commands

Syntax

Purpose

Remarks

Examples

GW-BASIC 4-159

The value of “expression” determines which line
number in the list will be used for branching. For
example, if the value is three, the third line
number in the list will be the destination of the
branch. (If the value is a non-integer, the
fractional portion is rounded.)

In the ON...GOSUB statement, each line number
in the list must be the first line number of a
subroutine. Where you are using ON...GOSUB,
you must ensure that GW-BASIC can find its way
back after completing execution of the subrou­
tine. This is achieved by the RETURN command.

If the value of “expression” is zero or greater
than the number of items in the list (but not
greater than 255), GW-BASIC continues with the
next executable command. If the value of expres­
sion is negative or greater than 255, an “Illegal
function call” error occurs.

To branch to one of several specified line
numbers, depending on the value returned when
“expression” is evaluated.

ON <expression> GOTO <list of line
numbers>

ON <expression> GOSUB <list of line
numbers>

COMMANDS AND FUNCTIONS
ON...GOSUB AND ON...GOTO

100 ON L-l GOTO 150,300,320,390
If the value of the expression after any necessary
rounding is 1, GW-BASIC branches to line 150. If
this value is 2, GW-BASIC branches to line 300,
and so on. If the value of L-l is greater than 4,
GW-BASIC simply goes on to the next line after
100.
The following program asks you to enter a
number 1 to 4 according to the simple arithmetic
operation to be performed. Line 110 tells GW-

4-160 GW-BASIC

COMMANDS AND FUNCTIONS
ON...GOSUB AND ON...GOTO

BASIC to enter one of four subroutines, depend­
ing on your choice. After doing the arithmetic
and telling you the answer, GW-BASIC
RETURNs to the command following the
ON...GOSUB command. Press a key to go back to
the beginning of the program. Entering zero for a
number ends the program.

10 CLS:PRINT “Let me do your arithmetic
homework“:PRINT

20 INPUT “Enter the first of two numbers”;Nl
30 INPUT “Now the second number”;N2
40 IF Nl=0 OR N2=0 THEN END
50 CLS:PRINT “Press 1,2,3, or 4”:PRINT
60 PRINT “1) Add the numbers”
70 PRINT “2) Subtract the second number

from the first” t
80 PRINT “3) Multiply the numbers”
90 PRINT “4) Divide the first number by the

second”
100 INPUT CHOICE:PRINT
110 ON CHOICE GOSUB 150,170,190,210
120 IF INKEY$=““ THEN 120
130 GOTO 10
140 REM ****** the subroutines
150 PRINT Nl;” plus “;N2;” equals “;N1+N2
160 RETURN
170 PRINT Nl;” minus “;N2:” equals “;N1-N2
180 RETURN
190 PRINT Nl;” times “;N2;” equals “;N1*N2
200 RETURN
210 PRINT Nl;” divided by “;N2;” equals

“;N1/N2
220 RETURN

ON KEY Command

KEY(n) GOSUB line numberSyntax

Purpose

Remarks

GW-BASIC 4-161

1-10
11
12
13
14
15-20

“line number”
is the first line of the subroutine to which
GW-BASIC will branch in the event of the key
denoted by n being pressed. If “line number” is 0,
the pressing of that key is no longer trapped.

To instruct GW-BASIC to branch to a subroutine
at a specified line, if a specified key or key
combination is pressed.

The following commands control the activation
or deactivation of key trapping:

The ten Function Keys
Cursor Up
Cursor Left
Cursor Right
Cursor Down
User-defined trappable key
combination
(see KEY).

COMMANDS AND FUNCTIONS
ON KEY

KEY(n) ON
Must be executed if ON KEY(n) is to have any
effect. If you specify a non-zero line for the trap
with ON KEY(n), every time the program starts a
new command, GW-BASIC checks to see if the
specified key was pressed. If you have pressed the
key, GW-BASIC executes a GOSUB to the speci­
fied line.

KEY(n) OFF
If executed, no trapping takes place for the
specified key. If you press the key, GW-BASIC
does not react.

n is a number in the range 1-20 referring to a
programmable Function Key, a cursor movement
key, or a user-defined trappable key combination:

Example

4-162 GW-BASIC

10 KEY 20,CHR$(&H04) + CHR$(70)
20 ON KEY(20) GOSUB 1000
30 KEY(20) ON
40 PRINT “Try to get back to “Ok”
50 GOTO 40

The following example prevents <Ctrl-Break>
from having its usual effect:

Specifying a line number with the RETURN
command at the end of trap routine is optional.
Use RETURN “line” to go back to the program at
a fixed line number. This action eliminates the
GOSUB entry which the trap created. Use
RETURN “line” with care! Any other GOSUB,
WHILE, or FOR which was active at the time of
the trap will remain active.

KEY(n) STOP
If executed, no trapping takes place for the
specified key. However, if you press the specified
key, an immediate trap takes place when KEY(n)
ON is performed.

When a trap occurs, GW-BASIC automatically
causes a KEY(n) STOP for the trapped key so
that recursive traps can never take place. The
RETURN from the trap routine automatically
performs a KEY(n) ON unless an explicit KEY(n)
OFF has been performed within the trap routine.

Trapping never takes place unless GW-BASIC is
executing a program.

When an error trap takes place, all trapping is
automatically disabled. This means that key­
board events are ignored.

No type of trapping is activated when GW-BASIC
is in direct mode. In particular, Function Keys
resume their programmed contents.

A key that causes a trap cannot be subsequently
tested with the INPUT or INKEY$, so the trap
routine for each key must be different if you want
different functions.

COMMANDS AND FUNCTIONS
ON KEY

GW-BASIC 4-163

Before running this program, make sure that any
other program in memory is saved on disk, as you
will need a system restart <Ctrl-Alt-Del> to
break out.

COMMANDS AND FUNCTIONS
ON KEY

1000 PRINT “You tried to break out but you
didn’t succeed”

1010 RETURN

ON PEN Command

Syntax ON PEN GOSUB line number

Purpose

Remarks

4-164 GW-BASIC

COMMANDS AND FUNCTIONS
ON PEN

The PEN function is not affected when light pen
activity causes a trap.

PEN STOP means that light pen trapping is
cancelled, but pen activity is recorded by GW-
BASIC. Therefore, an immediate trap takes place
as soon as PEN ON is executed, if there has been
interim light pen activity.
When the trap occurs, GW-BASIC automatically
executes a PEN STOP so that recursive traps
cannot take place. The RETURN from the trap
handling subroutine automatically effects PEN
ON, unless the subroutine contains an explicit
PEN OFF command.

“line number”
is the first line of the subroutine to which
GW-BASIC will branch if light pen activity is
detected. If you specify a “line number” of 0, light
pen trapping is disabled.
Assuming that “line number” was not specified
as 0, and that a PEN ON command has been
executed, then every time a new command is
about to be executed GW-BASIC checks to see if
the light pen was activated. If so, GW-BASIC
branches to the subroutine at “line number”.
PEN OFF means that light pen trapping is
cancelled. Furthermore, light pen activity is not
recorded.

To set a line number where light pen trap
handling starts.

Event trapping does not take place when GW-
BASIC is not executing a program.
When an error trap takes place (see ON ERROR),
all trapping is automatically disabled. This
means that light pen events are ignored by
GW-BASIC.

Example

1000 REM light pen handling

1190 RETURN

GW-BASIC 4-165

Specifying a line number with the RETURN
command at the end of the light pen handling
subroutine is optional. This causes GW-BASIC to
RETURN to the specified line number. This
eliminates the GOSUB entry which the trap
created, but it should be used with care! Any
other GOSUB, WHILE or FOR which was active
at the time of the trap will remain active.

10 ON PEN GOSUB 1000
20 PEN ON

This shows in lines 10 and 20 the commands
necessary to create and enable a trap for light pen
activity. Line 1190 shows the RETURN from the
light pen handling routine.

COMMANDS AND FUNCTIONS
ON PEN

ON PLAY Command

Syntax ON PLAY(n) GOSUB line number

Purpose

Remarks

4-166 GW-BASIC

COMMANDS AND FUNCTIONS
ON PLAY

n is an integer expression in the range 1 to 32. A
trap occurs when n notes in the background
music buffer are left to play.
“line number” is the first line of the subroutine to
which GW-BASIC branches when a trap occurs.
A line number of 0 prevents music trapping.
Assuming that “line number” was not specified
as 0, and that a PLAY ON command has been
executed, then every time a new command is
about to be executed GW-BASIC checks to see if
the background music buffer has gone from n to
n-1. If so, GW-BASIC branches to the subroutine
at “line number”.
PLAY OFF has the effect that background music
trapping no longer takes place. Furthermore,
background music activity is not recorded.
PLAY STOP has the effect that background
music trapping no longer takes place, but back­
ground music activity is recorded by GW-BASIC.
Therefore, an immediate trap takes place as soon
as PLAY ON is executed, if there has been
interim background music activity.
When the trap occurs, GW-BASIC automatically
executes a PLAY STOP, so that recursive traps
cannot take place. The RETURN from the trap
handling subroutine automatically effects PLAY
ON, unless the subroutine contains an explicit
PLAY OFF command.
Event trapping does not take place when GW-
BASIC is not executing a program.
When an error trap takes place (see ON ERROR),
all trapping is automatically disabled. This
means that music events are ignored by GW-
BASIC.

To enable execution of other GW-BASIC
commands while background music is playing.

Example See PLAY Command

Note

4-167GW-BASIC

A music event can occur only when PLAY is in the
background music, not the foreground music
mode. A music event is not issued if the back­
ground music buffer is empty.

Do not choose too high a value for n. For example,
ON PLAY(32) causes so many event traps that
there is hardly time for the rest of the program.

Specifying a line number with the RETURN
command at the end of the music event handling
subroutine is optional. This causes GW-BASIC to
RETURN to the specified line number. This
eliminates the GOSUB entry which the trap
created, but it should be used with care! Any
other GOSUB, WHILE, or FOR which was active
at the time of the trap will remain active.

COMMANDS AND FUNCTIONS
ON PLAY

ON STRIG Command

Syntax

Purpose

Remarks

the RETURN

GW-BASIC4-168

COMMANDS AND FUNCTIONS
ON STRIG

ON STRIG(n) GOSUB line number

where (n) is a number denoting one of a maxi­
mum of four joystick buttons. Valid numbers are
0, 2, 4, and 6.

where “line number” is the number of the first
line of a subroutine that is to be performed when
the joystick button is pressed.

To specify the first line number of a subroutine to
be performed when a joystick button is pressed.

A “line number” of zero disables the event trap.

The ON STRIG command will only have effect if a
STRIG ON has been executed (see STRIG Com­
mand) to enable event trapping for that button. If
event trapping is enabled, and if the “ line
number” in ON STRIG is not zero, GW-BASIC
checks between commands to see if the joystick
button has been pressed. If it has, a GOSUB is
executed to the specified line.

If a STRIG OFF command has been executed for
the specified button (see STRIG command), the
GOSUB is not executed and GW-BASIC does not
record that a button was pressed.

If a STRIG STOP command has been executed for
the specified button (see STRIG Command), the
GOSUB is not executed, but will be performed as
soon as the appropriate STRIG ON statement is
executed.

ON statement
was executed

Specifying a line number with
command at the end of the trap handling subrou-

When an event trap occurs (i.e., the GOSUB is
performed), an automatic STRIG STOP is exe­
cuted so that recursive traps cannot take place.
The RETURN from the trapping subroutine will
automatically perform a STRIG
unless an explicit STRIG OFF
inside the subroutine.

Example

2290 RETURN

GW-BASIC 4-169

tine is optional. It returns GW-BASIC to a
specific line number from the trap handling
subroutine. Use this type of return with care,
because any other GOSUBs, WHILEs, or FORs
that were active at the time of the trap will
remain active.

Event trapping does not take place when GW-
BASIC is not executing a program. Event trap­
ping is automatically disabled when an error trap
occurs. GW-BASIC then ignores joystick events.

The STRIG function is not affected by the
occurrence of a joystick trap.

10 ON STRIG(2) GOSUB 2200
20 STRIG(2) ON

2200 REM deals with pressing of a joystick
button

COMMANDS AND FUNCTIONS
ON STRIG

ON TIMER Command

ON TIMER(n) GOSUB line numberSyntax

Purpose

Remarks

GW-BASIC4-170

COMMANDS AND FUNCTIONS
ON TIMER

TIMER OFF has the effect that timer trapping no
longer takes place. Furthermore, timer activity is
not recorded.

To set the line number where execution of a
subroutine starts at the expiration of a specified
period of time.

n is a numeric expression in the range 1 to 86,400
representing the state of the TIMER counter
which will cause a timer event. This range of
seconds means that a period of up to 24 hours can
be set. A timer event occurs every n seconds
following a TIMER ON command.
“line number” is the first line of the subroutine
executed by GW-BASIC when a timer event
occurs. A “line number” of 0 prevents timer
trapping.
When n seconds have elapsed, the timer event
occurs, whereupon GW-BASIC starts counting
again from zero to n, and branches to the
subroutine at line number.

TIMER STOP means that timer trapping no
longer takes place but timer activity is recorded
by GW-BASIC. Therefore, an immediate trap
takes place as soon as TIMER ON is executed, if
there has been interim timer activity.
When the trap occurs, GW-BASIC automatically
executes a TIMER STOP so that recursive traps
cannot take place. The RETURN from the trap
handling subroutine automatically effects
TIMER ON, unless the subroutine contains an
explicit TIMER OFF command.
Event trapping does not take place when GW-
BASIC is not executing a program.
When an error trap takes place (see ON ERROR),
all trapping is automatically disabled. This

Example

THEN 70

Deal with timer event

GW-BASIC 4-171

The following program issues a timer event once
every minute. The contents of the screen are
saved in an array variable, and the current time
is displayed on the screen. After this, the old
screen contents are restored. Lines 70 and 80 are
included so you can write something on the screen
(you can start typing as soon as the screen clears
following RUN). When GW-BASIC BEEPs (line
110), stop writing for the moment. A little time is
needed to store the screen in PIC$ (lines 130 to
160). Resume writing as soon as the screen is
restored after the time has been displayed. If you
wish, you can set the clock which governs the
display of time in this program to the current
time (see TIME$ function).

COMMANDS AND FUNCTIONS
ON TIMER

10 DEFINT A-Z
20 DIM PIC$(24,80)
30 SCREEN 0:WIDTH 80
40 ON TIMER(60) GOSUB 100
50 TIMER ON
60 CLS
70 K$ = INKEY$:IF K$=““
80 PRINT K$;
90 GOTO 70
100 REM *****
110 BEEP
120 ROW = CSRLIN:COL = POS(0)
130 FOR V = ITO ROW
140 FOR H = ITO 80
150 PIC$(V,H) = CHR$(SCREEN(V,H))

means that timer events are disregarded by
GW-BASIC.

Specifying a line number with the RETURN
command at the end of the timer handling
subroutine is optional. GW-BASIC then
RETURNS to the specified line number. This
eliminates the GOSUB entry which the trap
created, but it should be used with care! Any
other GOSUB, WHILE, or FOR which was active
at the time of the trap will remain active.

4-172 GW-BASIC

160 NEXT H:NEXT V
170 CLS:LOCATE 1,1
180 PRINT TIME$;
190 FOR DLY=1 TO 4000:NEXT DLY
200 CLS
210 FOR V=1 TO ROW
220 FOR H = 1 TO 80
230 PRINT PIC$(V,H);
240 NEXT H:NEXT V
250 LOCATE ROW,COL
260 RETURN

COMMANDS AND FUNCTIONS
ON TIMER

OPEN Command

Syntaxes

0 Specifies sequential output mode.

Specifies sequential input mode.I

R

OUTPUT

Specifies sequential input modeINPUT

APPEND

GW-BASIC 4-173

OPEN “filespec”[FOR mode] [access] AS [#]file
number[LEN=record length]

The second form of the OPEN statement includes
access control for file sharing in a network envi­
ronment. “access” can be one of the following:

OPEN “mode”,[#]file number, “filespec”[,record
length]

Specifies sequential output mode
and sets the file pointer at the
end of file and the record number
as the last record of the file. A
PRINT# or WRITE# command
will then extend (append) the
file.

Specifies sequential output
mode

COMMANDS AND FUNCTIONS
OPEN

Specifies random input/output mode.

In the second syntax form, mode is not a string
expression (no quotes), but is as follows:

Note that in the first form, mode and filespec are
enclosed in double quotation marks. In the second
form, only filespec needs quotation marks. If
mode is omitted in either form, GW-BASIC
assumes random access. Sequential and random
access files are discussed in Chapter 5, Files and
Devices.

In the first syntax form, “mode” is a string
expression whose first character is one of the
following:

4-174 GW-BASIC

Whichever syntax form you use, “file number” is
an integer expression whose value is between 1
and the maximum number set using the /F option
when GW-BASIC was loaded. The number is then
associated with the file for as long as it is OPEN
and is used to refer other disk I/O commands to
the file, for example, FIELD for a random access
file.

default
If “access” is not specified, the file may be opened
any number of times by a process, provided that
the file is not currently open on another process.
Other processes are denied access.

SHARED
“denied none” mode. No restrictions are placed on
the read/write accessibility of the file to another
process.

LOCK WRITE
“deny write” mode. A file successfully opened
with LOCK WRITE access may not be opened for
write access by another process. An attempt to
open a file with this access will be unsuccessful, if
the file has been opened in default mode or with a
write access by another process.

LOCK READ WRITE
“deny all” access. If a file is successfully opened
with this access, the access of the process to this
file is exclusive. A file currently open in this mode
cannot be opened again in any mode by any pro­
cess.

LOCK READ
“deny read” mode. Once a file is opened with
LOCK READ access, no other process is granted
read access to that file. An attempt to open a file
with this access will be unsuccessful, if the file is
currently open in default mode or with a read ac­
cess.

COMMANDS AND FUNCTIONS
OPEN

To allow I/O to a file or device.Purpose

Remarks

4-175GW-BASIC

“filespec” is a string expression containing a
name that conforms to DOS rules for disk
filenames, “filespec” may include a pathname
(see Chapter 5).

“record length” is an integer expression that, if
included, sets the record length for random and
sequential files. The default length is 128 bytes.
Any value you set may not exceed that set by the
/S option when loading GW-BASIC.

A disk file must be opened before any disk I/O
operation can be performed on that file. OPEN
allocates a buffer for I/O to the file or device and
determines the mode of access that will be used
with the buffer.

COMMANDS AND FUNCTIONS
OPEN

The opening of a communications file is described
separately (see OPEN COM).

A file can be opened for sequential input or
random access under more than one file number
at a time. However, once a file is open, it cannot
be further opened for sequential output or
appending.

If a file has been successfully opened with LOCK
READ WRITE access, OPEN may generate the
trappable error 70 “Permission Denied”. This
error message is associated with the error code
formerly identified as “Disk Write Protect”.

The GW-BASIC commands which require a prior
opening of the file are FIELD, GET, INPUTS,
INPUT#, LINE INPUT#, PRINT#,
PRINT#USING, PUT, and WRITE#.

A disk file may be either random or sequential
access. The same applies to a printer. Other
devices are normally accessed in sequential mode.
APPEND is valid for disk files only.

Unless “‘filespec” specifies another disk drive or
device, GW-BASIC assumes the file to be opened
is on the current disk drive.

Examples

10 OPEN “WORDS” FOR OUTPUT AS #1

Using the other syntax form, the equivalent is

20 OPEN “WORDS” FOR APPEND AS #1

10 OPEN “C:STORY.TIM” AS #1 LEN = 256

Using the other syntax form, the equivalent is

10 OPEN “R”, #9, “CrSTORY.TIM”, 256

4-176 GW-BASIC

If a printer (LPT1:, LPT2:, or LPT3:) is opened as
a random file with a WIDTH of 255, the line feed
normally accompanying a carriage return is
suppressed. The print head can then make a
second pass over the line and add effects such as
underlining.

The following command is an example of opening
a new sequential access file:

10 OPEN “O”, #1, “WORDS”

Do not use these commands for a file already
existing, as it would be erased and then opened as
a new file. Instead use

The following example opens a random access
file. If the file STORY.TIM already exists on
drive C in the current directory, it is opened for
further processing by your program (it is not
erased). If the file does not already exist, it is
opened as a new, empty file. A record length of
256 bytes is specified.

If an OPEN fails because the mode is incompati­
ble with access to a device, the error generated is
“Path/File Access Error”. An example of a situa­
tion generating such an error is that of a process
attempting to open a file for output on a directory
which has been shared for read only.

COMMANDS AND FUNCTIONS
OPEN

Note

GW-BAS/C 4-176a

“File not found”
A file opened for input does not exist. If a file
opened for output, append, or random access does
not exist, a new file is created.

Here is an example of a pathname being speci­
fied:

30 OPEN “BITOPLVL\BOTLVL\INFO.OLD”
FOR APPEND AS 2

“Illegal function call”
A value in the OPEN command is outside the
permitted range.

A string variable may be given for “filespec”, for
example

The following error situations can arise when
opening a file:

COMMANDSAND FUNCTIONS
OPEN

10 INPUT “Which sequential file needs append­
ing”; F$

20 OPEN F$ FOR APPEND AS 1

OPEN “COM Command

Syntax

Purpose

Remarks

S

0

M

E

N

The default for parity is even (E).

GW-BASIC 4-177

dev
Specifies one of the following communications
devices: C0M1 or COM2,

speed
An integer constant which specifies the number
of transmit or receive bits per second (baud rate).
Valid speeds are: 75,110,150, 300, 600,1200,1800,
2400, 4800, and 9600. Default is 300 bps.

SPACE: parity bit is always transmitted
and received as a space (0 bit).

ODD: odd transmit and receive parity
checking.

MARK: parity bit is always transmitted
and received as a mark (1 bit).

EVEN: even transmit and receive parity
checking.

NONE: no transmit or receive parity
checking.

COMMANDS AND FUNCTIONS
OPEN “COM

OPEN “dev:[speed],[parity],
[data] [stop] [,RS] [,CS[n]] [,DS[n]] [,
CD[n]] [,BIN] [,ASC] [,LF] [,PE]” AS [#]file number
[LEN=length]

parity
A one-character constant which specifies the
parity for transmit and receive, as follows:

Opens a communications file. Allocates a buffer
for I/O in the same manner as OPEN for disk
files. Supports RS-232 asynchronous
communication with other computers and
peripherals.

4-178 GW-BASIC

CDn
Controls Carrier Detect (CD) line signal, also
known as Received Line Signal Detect (RLSD). If
you enter CD, the line signal is not checked. If you
enter CDn, n specifies the amount of time (in

CSn
Controls Clear To Send (CTS) line signal. If you
include CS without n, the line signal is not
checked. If you enter CSn, n specifies the amount
of time (in milliseconds) the system waits before
returning a “Device Timeout” error. Using n=0 is
the same as entering CS without n.

stop
An integer constant which indicates the number
of stop bits. Valid values are 1 and 2. The default
stop bits for 75 and 110 bps is 2. The default for all
others is 1. If you specify 4 or 5 for data, a 2
entered for stop will mean 1 1/2 stop bits.

data
An integer constant which indicates the number
of transmit or receive data bits. Valid values are:
4, 5, 6, 7, and 8. The default is 7. If you specify 4,
you may not specify N for parity, otherwise a
“Bad File Name” error occurs. If you specify 8
bits, you must specify N (none) parity.

RS
Suppresses Request To Send (RTS) line signal. If
you include RS, fhe RTS line is not turned on
when an OPEN COM statement is run.

DSn
Controls Data Set Ready (DSR) line signal. If you
include DS, the line signal is not checked. If you
enter DSn, n specifies the amount of time (in
milliseconds) the system waits before returning a
“Device Timeout” error. Using n=0 is the same
as entering DS without n.

COMMANDS AND FUNCTIONS
OPEN “COM

GW-BASIC 4-179

milliseconds) the system waits before returning a
“Device Timeout” error. If you use n=0, or you
omit the option, the line signal is not checked.

The maximum value for n which may be specified
with CS, DS, or CD is 65535.

COMMANDS AND FUNCTIONS
OPEN “COM

PE
Enables parity checking. If not included, no
parity checking takes place. Assuming you are
using 7 data bits or less and that parity checking
is enabled, a parity error will set the high order
bit and cause a “Device I/O Error”. (Framing and
overrun errors always set the high order bit and
cause “Device I/O Error”, regardless of data
length.)

LF
Sends a line feed following each carriage return.
Specify LF when using communication files to
print to a serial line printer. Note that INPUT#
and LINE INPUT#, when used to read from a
communications file which was opened with the
LF option, ignore the line feed and stop when
they detect a carriage return.

BIN
Opens the device in binary mode. In this mode,
tabs are not expanded to spaces, and a carriage
return is not necessary at the end-of-line. Ctrl-Z is
not treated as end-of-file, and it will not be sent
over the RS232 line when the communications
line is closed. BIN is selected by default unless
ASC is specified. The BIN option supersedes the
LF option.

ASC
Opens the device in ASCII mode. In this mode,
carriage returns must mark the end-of-line;
Ctrl-Z is treated as end-of-file; XON/XOFF pro­
tocol is enabled. When the communications line is
closed, Ctrl-Z will be sent over the RS232 line.

Examples

10 OPEN “COMI:” AS #1

10 OPEN “COM1:2400” AS #2

GW-BASIC4-180

file number
An integer expression which returns a valid file
number. The number is associated with the file
for as long as it is open and is used by other
communications I/O statements to refer to the
file. A communications device may be open under
only one file number at a time.

length
The maximum number of bytes which can be read
from the communications buffer when using
GET or PUT. The default is 128 bytes.

Any syntactical errors within the part of the
command enclosed in double quotation marks
result in a “Bad File Name” error. An indication
of which parameter is in error is not given.
See Chapter 5, Files and Devices for information
on communications I/O. Success with communi­
cations depends to a great extent on getting the
hardware connections right. Therefore, you
should refer to the hardware documentation for
the communications device you are using.

In the following example, file number 1 is opened
for communication with defaults: 300 bps, even
parity, and 7 data bits with 1 stop bit. However,
parity checking will not actually take place since
PE is not included.

The following command opens file number 2 for
communication at 2400 bps. Defaults are: even
parity, 7 data bits, and 1 stop bit. Again, PE is not
included.

The following command opens file number 1 for
asynchronous I/O at 1200 bps. No parity is
produced or checked. 8-bit bytes will be sent and
received. The stop bit defaults to 1.

COMMANDS AND FUNCTIONS
OPEN “COM

10 OPEN “COM1:4800„„CS,DS3000,PE” AS #1

Note

600 REM other error handling routines

GW-BASIC 4-181

Error trapping a “Device Timeout” error is useful
if you want to give the communications device
more time to respond (see ON ERROR). However,
you probably do not want to wait indefinitely for
the device. In this case, it is not enough for the
trap routine to contain only a RESUME com­
mand. Your program should include a counter to
limit the number of tries to be made. The trap
routine can adjust this counter each time GW-
BASIC passes through it. Example:

10 OPEN “COM2:1200,N,8” AS #1
The next example opens COMI for 4800 bits per
second, defaulting to even parity and 7 data bits.
RTS is to be transmitted, CTS will not be checked,
and a “Device Timeout” error will arise if DSR is
not detected within three seconds. Parity check­
ing is enabled. Commas are required for the
missing (defaulting) parameters: parity, data,
and stop. (If you omit one or more of the
parameters RS, CS, DS, CD, LF, and PE, replac­
ing commas are not required).

10
20
30

COMMANDS AND FUNCTIONS
OPEN "COM

500 IF ERRO24 THEN GOTO 600
510 ATTEMPT% = ATTEMPT% -1
520 IF ATTEMPT% =0 THEN GOTO 540
530 RESUME
540 BEEP:PRINT“Check device and start pro­

gram again”
550 STOP

ATTEMPT%=5
ON ERROR GOTO 500
OPEN “COM1:,„„CS,DS,CD5000” AS #1

OPTION BASE Command

OPTION BASE nSyntax

where n is 1 or 0

Purpose

Remarks The default base is 0. If the command

OPTION BASE 1

4-182 GW-BASIC

COMMANDS AND FUNCTIONS
OPTION BASE

OPTION BASE must be encountered by GW-
BASIC before an array is defined or used.

To declare the minimum value for array sub­
scripts.

is executed, the lowest value an array subscript
may have is 1.

OUT Command

Syntax OUT I,J

To send a byte to a machine output port.Purpose

Example

Note

4-183GW-BASIC

100 OUT 128,255

transmits the value 255 via port 128.

where I is the port number. It must be an integer
expression in the range 0 to 65535.

J is the data to be transmitted. It must be an
integer expression in the range 0 to 255.

OUT has the same effect as the assembly lan­
guage OUT instruction.

COMMANDS AND FUNCTIONS
OUT

PAINT Command

Syntax PAINT (x,y)[[effect] [,outline] [background]

Purpose

Remarks

4-184 GW-BASIC

COMMANDS AND FUNCTIONS
PAINT

The starting point x,y must be inside and
completely enclosed by the figure to be painted. If
the specified point already has the “outline”
color, no painting takes place, therefore move x,y
just inside the figure after DRAWing it and
before PAINTing it.

outline
The color belonging to the outline of the area to
be filled. Possible colors are as given above under
“effect”. If the “outline” color is incorrect,
painting goes beyond the area in which x,y is
enclosed. In medium and high resolution
black-and-white graphics “outline” need not
be stated as it defaults to the same value as
“effect”.

x,y
The coordinates of any point within the area to be
filled in. The coordinates may be given in
absolute or relative (using STEP) form.

In low and high resolution color graphics, to
fill an area with a specified color. In medium
and high resolution black-and-white graphics,
this means filling in an area enclosed by white
with white.

effect
If a numeric expression, it can be either the
background color (0), or one of the colors 1 to
3 from the current palette (see COLOR). This
applies to low and high resolution color gra­
phics, where the default is 3. In medium and
high resolution black-and-white graphics, a
numeric value of 0 denotes black; the default
value of 1 denotes white. Alternatively, ‘ef­
fects’ may be a string expression, in which
case ‘tiling’ is performed. This is explained
later in this description of PAINT.

GW-BASIC 4-185

To understand how these hexadecimal values
create an x, some knowledge of binary and
hexadecimal values is useful. Perhaps the follow­
ing diagram can help:

When PAINTing a figure with lots of corners,
GW-BASIC needs a greater than usual amount of
stack space. You can give GW-BASIC more stack
space, using the CLEAR command.

Tiling
Tiling is a facility provided by GW-BASIC to
enable your program to cover part or all of
the screen with a pattern. The mask determin­
ing this pattern is always 8 bits wide, thus
covering 4 horizontal pixels in low and high
resolution color graphics, or 8 horizontal
pixels in medium and high resolution black-
and-white graphics.

10 SCREEN 2:CLS
20 PAINT (320,100),CHR$(&H81) +
CHR$(&H42) + CHR$(&H24) +

CHR$(&H18) + CHR$(&H18) +
CHR$(&H24) + CHR$(&H42) + CHR$(&H81)

COMMANDS AND FUNCTIONS
PAINT

GW-BASIC recognizes that you wish the PAINT
command to do tiling when “effect” is a string
expression, “effect” then consists of up to 64
2-character hexadecimal values, each of which
represents a pattern for 4 or 8 horizontal pixels.
Thus, you can define a pattern of up to
4-horizontal by 64 vertical pixels in low and
high resolution color graphics, or 8 by 64
pixels in medium and high resolution black-
and-white graphics. This pattern is repeated
uniformly over the entire screen or within a
figure, if that figure encloses the point x,y.

In medium and high resolution black-and-
white graphics, the following string value for
“effect” produces x’s over the whole screen
by means of an 8 by 8 pixel pattern.

across the screen

&H55

&HAA

&HFF produces four consecutive hori-

4-186 GW-BASIC

produces four consecutive hori­
zontal points in color 1 (palette
0: green, palette 1: cyan)

produces four consecutive hori­
zontal points in color 2 (palette
0: red, palette 2: magenta)

CHR$(&H81)
CHR$(&H42)
CHR$(&H24)
CHR$(&H18)
CHR$(&H18)
CHR$(&H24)
CHR$(&H42)
CHR$(&H81)

Tile byte 0
Tile byte 1
Tile byte 2
Tile byte 3
Tile byte 4
Tile byte 5
Tile byte 6
Tile byte 7

s 0)a
£O
■0 ♦

bit with
lowest value

I I l-l
I l-l I
l-l I

COMMANDS AND FUNCTIONS
PAINT

The first CHR$ value following the x,y coordi­
nates in line 20 is tile byte 0, the last is tile byte 7.
GW-BASIC does not necessarily start with tile
byte 0 at the specified x,y coordinates. Instead,
the number of the tile byte painted at x,y is equal
to the remainder of dividing the y coordinate by
the number of bytes in the pattern. In the
example given here, this means that pattern
painting starts in vertical screen line 100 with the
byte number 4 (remainder of dividing 100 by 8).

I- l I I I
II- |||
I I I—I I !■(| |
I I I I —I —I I I I

I I l-l-l I I I
l-l I I
I I —I I

In low and high resolution color graphics, one
tile byte represents only four screen points in
the horizontal direction. This is because two
bits are required for each point, so that GW-
BASIC knows what color that point is. There­
fore, the eight bits of each tile byte must be
regarded as four pairs. The binary value of a
pair can be 01 for color 1 of the current pa­
lette, 10 for color 2, or 11 for color 3. This
gives the color for a single screen point.
Therefore, you will most probably be using
the following three hexadecimal values for the
CHR functions which go to make up the
“effect” string:

I
i I l-l I
Il-Ill
l«l I I I I I l-l♦
bit with
highest value

Examples

10 SCREEN 1:COLOR 0,1

GW-BASIC 4-187

zontal points in color 3 (palette
0: brown, palette 1: white)

You may have occasion to tile paint over an area
already painted that is the same color as two
consecutive bytes in the pattern. Normally,
PAINT terminates when it encounters two con­
secutive bytes of the same color as the point being
set, because the point is then surrounded by the
same color, “background” specifies a background
tile color enabling you to skip up to two consecu­
tive bytes in the tile string. By using “back­
ground” your program can, for example, draw
alternating blue and red lines on a red back­
ground with a minimum of GW-BASIC com­
mands.
If more than two consecutive lines in the pattern
match “background”, GW-BASIC recognizes an
“Illegal function call” error.

10 SCREEN 1:COLOR 0,0
20CLS
30 CIRCLE (160,100),30,2
40 PAINT STEP (0,0),1,2
The next example uses a string expression for
“effect” to paint cyan and magenta horizontal
stripes in the box drawn in line 40. STEP (5,-5)
moves the position for PAINT from the bottom
left corner of the box to just inside it. As the box
was drawn in white, “outline” must be set to
white (3), otherwise painting would go beyond the
confines of the box.

The first example draws a circle in red on black
screen background. Since the last point refer­
enced is then the center of the circle, PAINT is
already positioned inside the circle and need not
be moved: STEP (0,0). The circle is then filled in
with green (color 1 of palette 0). The “outline”
color must be set to 2, the color the circle was
drawn with, otherwise painting will continue
outside the circle.

COMMANDS AND FUNCTIONS
PAINT

4-188 GW-BASIC

10 SCREEN 1:COLOR 0,1
20 PATT$ = CHR$(&H55) + CHR$(&H55) +

CHR$(&HA A) + CHR$(&HA A)
30 DRAW “u90 r90 d90 190”
40 PAINT STEP (5,-5),2,3
50 FOR DLY% =1 TO 1000:NEXT DLY%
60 PAINT STEP (5,-5),PATT$,3,CHR$(&HAA)
70 REM PAINT STEP (5,-5),PATT$,3

The following example shows the use of “back­
ground” to paint stripes of cyan and magenta on a
magenta background. Lines 30 and 40 draw a box
and fill it with magenta. Line 60 paints the
stripes using the skipping effect provided by
“background”. Line 70 contains in a program­
mer’s REMark the same command, but without
this skipping. Try making 60 the REM (non­
executed) line and let GW-BASIC execute line 70
instead. You will see that painting stops as soon
as the first magenta line is to be drawn. Note that
the tiling pattern in this example was taken from
a string variable, PATT$. The delay created by
line 50 gives you time to observe what is happen­
ing on the screen.

20 CLS
30 DRAW “c3”
40 DRAW “u50 r50 d50 150”
50 PAINT STEP (5,-5),

CHR$(&H55) + CHR$(&H55) + CHR$
(&H A A) + CHR$(&H A A),3

COMMANDS AND FUNCTIONS
PAINT

PEEK Function

Syntax PEEK(I)

Purpose

Remarks

A% =PEEK(&H5A00)Example

A% =PEEK(23040)

Note

GW-BASIC 4-189

To return the byte read from the indicated
memory location (I).

The returned value is an integer in the range 0 to
255. I must be in the range 0 to 65535. I is the
offset from the current segment, which was
defined by the last DEF SEG command.

You do not have to use a hexadecimal value for I.
The decimal equivalent of this command is

To assign a value to a specific memory location,
use the POKE command.

PEEK is the complementary function of the
POKE statement.

assigns the value of the byte at the hexadecimal
address 5A00 to the integer variable A%.

COMMANDS AND FUNCTIONS
PEEK

PEN Command

Syntax

To enable and disable light pen reading.Purpose

Remarks

GW-BASIC4-190

COMMANDS AND FUNCTIONS
PEN

The light pen is initially off. PEN ON enables
data from the light pen to be read by means of the
PEN function, and enables the ON PEN event
trap.

PEN ON
PEN OFF
PEN STOP

PEN OFF disables light pen reading and the ON
PEN event trap. Issue this command as soon as
light pen reading is no longer required, as this
results in better GW-BASIC execution times.
PEN events are then not recorded by GW-BASIC.

PEN STOP disables the ON PEN event trap, but
GW-BASIC records any light pen activity. Conse­
quently, a trap is activated as soon as PEN ON is
executed, if there has been interim light pen
activity.

PEN Function

Syntax

Remarks
0

1

2

3

4

5

6

7

8

GW-BASIC 4-191

PEN(n)
where n is a numeric expression in the range 0 to
9, selecting a particular light pen value to be read.

Returns the character column position
where the light pen was last activated.
This is a value in the range 1 to 80 or 1 to
40, depending on the current WIDTH
setting.

Returns the last known valid character
row in the range 1 to 24.

Returns the x coordinate of the position
in which the pen was last activated. The
number thus read can be in the range 0 to

319 in low resolution, 0 to 639 in
medium and high resolution.

COMMANDS AND FUNCTIONS
PEN

The significance of the values 0 to 9:
This is a flag indicating whether the pen
switch has been set to down since the
PEN function was last called upon to give
information.

Returns -1 if the pen switch is down, 0 if it
is up.
Returns the last known valid x co­
ordinate (low resolution 0 to 319,
medium and high resolution 0 to
639).
Returns the last known valid y coor­
dinate (low and medium resolution 0
to 199, high resolution 0 to 399).

Returns a value in the range 1 to 24 for
the line position where the light pen was
last activated.

Returns the y coordinate of the posi­
tion in which the light pen was last
read (low and medium resolution 0
to 199, high resolution 0 to 399).

9

Example

Note

4-192 GW-BASIC

Attempting to read the light pen while PEN OFF
is in force results in an “Illegal function call”
error.

10 PEN ON
20 PENLIN% =PEN(6)

Returns the last known valid character
column position in the range 1 to 80 or 1
to 40, depending on the current WIDTH
setting.

enables light pen reading (and event trapping)
and puts the number of the screen line in which
the light pen was last activated into the variable
PENLIN%.

COMMANDS AND FUNCTIONS
PEN

PLAY Command

PLAY <string expression>Syntax

Purpose

MS - Music Staccato

GW-BASIC 4-193

To create a tune by defining its characteristics in
the string expression. The expression may consist
of any of the following commands, which you may
specify in any order unless stated otherwise in
the description.

MB - Music Background
Music runs in the background. A buffer of up to
32 notes plays in the background while
GW-BASIC is executing other commands.

MF - Music Foreground
Sets music to run in the foreground. Each
subsequent note or sound is not started until the
previous note or sound is finished. MF is the
initial default value.

MN - Music Normal
Plays each note 7/8ths. of the time specified in L
(length). This is the default setting.

ML - Music Legato
Plays each note the full length (as specified in L).

COMMANDS AND FUNCTIONS
PLAY

L <n> - Length
Sets the length of the note (or notes), where n
may be from 1 to 64. As examples, LI specifies a
whole note, L2 specifies a half note...and L64
specifies a sixty-fourth note. You may specify the
length before a group of notes or after a single
note to change the length of that note only. For
example, A16 is the same definition as L16A.

A to G [#, + ,-]
Plays the specified note. # or 4- after a note
specifies a sharp; - after a note specifies a flat. In
either case, the note must be an actual piano key.

4-194 GW-BASIC

. - dot or period
Used after a note, plays the note as a dotted note;
that is, its length is multiplied by 3/2. More than
one dot may be used after the note, in which case
its length is adjusted accordingly. As examples,
A., plays 9/4 as long as L specifies, A... plays 27/8
as long, etc. Dots may also be used after a pause
(P) to scale the pause length in the same way.

X variable;
Executes the specified string containing valid
PLAY commands.

T <n> - Tempo
Sets the number of quarter notes <n> that can
be played in a minute. <n> may range from 32 to
255; the default value is 120.

P <n> - Pause
Sets the length of the pause, where <n> may
range from 1 to 64. The <n> value is the same as
the <n> value in the L(ength) command; for
example, Pl causes a pause the length of a whole
note, P2 causes a pause the length of a half note,
and so on.

0 <n> - Octave
Sets the octave, where <n> may range from 0 to
6. Each of the seven octaves start with C. Middle
C is at the beginning of octave 3; the default
octave is octave 4.

N <n> - Note
Plays the note specified by <n>. <n> may
range from 0 to 84 thus covering the semi-tones of
7 octaves, starting two octaves below middle C.
<n> may equal 0 to specify a pause. Using this
command provides an alternative way to specify
the note other than by name (A to G) and octave.

Plays each note 3/4ths. of the time specified in L
(length).

COMMANDS AND FUNCTIONS
PLAY

Examples

GW-BASIC 4-195

< note
Lowers the scale by one octave and plays the note
A to G specified. If the octave is already 0, the
note is played in octave 0.

> note
Raises the scale by one octave and plays the note
A to G specified in the new octave. If the octave is
already six, the note is played in octave 6.

In all commands, the <n> value can be a
constant or a numeric variable preceded by an
equal sign, followed by a semicolon. The
semicolon (;) is required when you use a variable
in this way, and when you. use the X command;
otherwise, a semicolon is optional between
commands, except it is not allowed after MF, MB,
MN, ML, or MS. Blanks in a string are ignored.

10 MARY$ = “GFE-FGGG”
20 PLAY “MB T100 03 L8;XMARY$;P8 FFF4”
30 PLAY “GB-B-4;XMARY$;GFFGFE-.”

The following example shows the use of the ON
PLAY event trap to produce a continuous back­
ground tune while screen activity is in progress.
The screen activity simply builds up a random
pattern of character blanks as you press the
space bar (lines 40 to 60).

Line 10 determines that whenever the number of
background music notes left to play goes from 1
to 0, GW-BASIC will branch to the subroutine
starting at line 80. The subroutine tells GW-
BASIC to play the background tune (again). Line
20 enables the trap. Line 30 starts the PLAYing
of the background tune. Without this command,
the condition for music trapping given in line 10
would never be fulfilled, and there would be no
music.

COMMANDS AND FUNCTIONS
PLAY

You can also specify variables in the form
VARPTR# (<variable>), instead of =
<variable>;. This method is useful in programs
that will later be compiled.

GW-BASIC4-196

COMMANDS AND FUNCTIONS
PLAY

5 SCREEN O:WIDTH 80:KEY OFF
10 ON PLAY (1) GOSUB 80
20 PLAY ON
30 GOSUB 80
35 CLS
40 IF INKEY$=““ THEN GOTO 40
50 COLOR INT(32*RND)
55 LOCATE INT(25*RND+l),INT(80*RND+l)
56 PRINT CHR$(219);
60 GOTO 40
80 REM ****^*4:^*

90 PLAY “o2 mb tl40 f aa c aa”
100 RETURN

PMAP Function

PMAP (coord,transaction)Syntax

Purpose

“translation” can be one of four values:Remarks

Example

4-197GW-BASIC

10 SCREEN 1: WINDOW (-1,-1)-(1,1)
and then execute

0 returns a physical x coordinate for a world x
coordinate specified in “coord”.

2 returns a world x coordinate for the physical x
coordinate specified in “coord”.

1 returns a physical y coordinate for the world
coordinate specified in “coord”.

Refer to the WINDOW description for full details
of how this command sets the coordinate scheme.

COMMANDS AND FUNCTIONS
PMAP

To translate world coordinates (set by
WINDOW) into physical coordinates (see VIEW),
and vice versa.

3 returns a world y coordinate for the physical y
coordinate specified in “coord”.

The physical coordinates of the usable screen
are 0,0-199,319 in low resolution (medium
resolution: 0,0-199,639, high resolution: 0,0-
399,639), as long as you do not alter this with
VIEW.

20 PRINT PMAP(-l,0),PMAP(l,0),PMAP(-l,l),
PMAP(1,1)

30 PRINT PMAP(0,l),PMAP(0,0)
GW-BASIC displays
0 319 199 0
100 160

If you first use WINDOW to determine a
Cartesian coordinate scheme in low resolu­
tion graphics

POINT Function

Syntax

Purpose

Remarks

“coord” is a value 0 to 3;

0 returns the physical x coordinate

1 returns the physical y coordinate

Examples

4-198 GW-BASIC

3 is the same as 2, except that a y coordinate is
returned.

2 if WINDOW is currently active, the coordinate
returned is the world x coordinate. Otherwise,
the physical x coordinate is returned.

To read the color or a coordinate of the currently
addressed point on the screen.

The following program creates a random pattern
of red dots in a 50 by 50 area in the top left corner
of the screen (lines 20 to 40). Then, each of the
2500 graphic points is read using the POINT
function. If a point is red, it is changed to black
and vice versa.

COMMANDS AND FUNCTIONS
POINT

10 SCREEN 1:COLOR 0,0:CLS
20 FOR CHANCE% =1 to 1000
30 PSET (RND*50,RND*50),2
40 NEXT CHANCE%
50 FOR X% = 0 TO 50
60 FOR Y% = 0 TO 50
70 PSET(X%,Y%),ABS(POINT(X%,Y%)-2)
80 NEXT Y%:NEXTX%

POINT(x,y)
POINT (coord)

x and y must specify an absolute screen posi­
tion. The value returned in low and high re­
solution color graphics is 0 for background, or
a value 1,2, or 3 for the corresponding color
of the current palette. In medium and high re­
solution black-and-white graphics, the possi­
ble values are 0 and 1.

WINDOW

GW-BASIC 4-199

COMMANDS AND FUNCTIONS
POINT

The program given below asks you to enter an x
and a y coordinate. This point is then illuminated
red using the standard coordinate system of
low resolution graphics (origin top left, 320
points in the horizontal direction, 200 in vertical
direction). Line 40 then sets a Cartesian coordi­
nate system with the origin as near as possible to
the center of the screen. The center point is
illuminated brown, and the x and y value you
entered are used to plot a point in green in
accordance with the new (Cartesian) coordinate
system. The top of the screen then displays on the
left the coordinates of the green point in terms of
the physical screen, and on the right the coordi­
nates of the same point in terms of the WINDOW
definition.

10 INPUT “X and Y”;X%,Y%
20 SCREEN 1;COLOR 0,0:CLS
30 PSET (X%,Y%),2
40 WINDOW (-160,-100)-(159,99)
50 PSET (0,0),3
60 PSET (X%,Y%),1
70 PRINT POINT(0);POINT(1);”—

- >“;POINT(2);POINT(3)
80 IF INKEY$ = “” THEN 80
90 SCREEN 0:WIDTH 80
100 LIST

POKE Command

Syntax POKE I,J

where I and J are integer expressions.

Purpose To write a byte into a memory location.

Remarks

Note

4-200 GW-BASIC

COMMANDS AND FUNCTIONS
POKE

The complementary function to POKE is PEEK.
The argument to PEEK is an address from which
a byte is to be read.

POKE gives you immense power over your
computer, which means that you should use it
with care: It is advisable to confine POKEing to
an area of memory which you have especially set
aside for your own use.

I and J are integer expressions. The expression I
represents the address of the memory location
and J is the data byte. I must be in the range 0 to
65535. I is the offset from the current segment,
which was set by the last DEF SEG statement.

POKEing and PEEKing is a fast way of storing
and reading data, or passing information to
machine language routines. You can even write
machine language routines using POKE (see
Chapter 6).

POS Function

Syntax POS(I)

Purpose

Remarks

Example IF POS(X)>30 THEN BEEP

Note

GW-BASIC 4-201

To return the current horizontal (column)
position of the cursor

The leftmost position is 1.1 is a dummy argument
so you can use a numeric constant in its place. To
return the current line position of the cursor, use
the CSRLIN function.

causes GW-BASIC to BEEP for as long as the
cursor is to the right of the 30th screen column.

The screen can consist of 40 or 80 columns,
depending on the setting of WIDTH.

COMMANDS AND FUNCTIONS
POS

PRESET and PSET Commands

Syntax

Purpose

Example

GW-BASIC4-202

COMMANDS AND FUNCTIONS
PRESET AND PSET

The following example sends a dash, defined as
six horizontal pixels, from left to right across the
center of the screen. The PRESET command in
line 70 means that a trail is not left.

10 SCREEN 2:CLS
20 FORX%=0TO5
30 PSET (X%,100)
40 NEXT X%
50 FOR X% =6 TO 639
60 PSET (X%,100)
70 PRESET (X%-6,100)
80 NEXT X%

See also the Exercises at the end of Chapter 3,
Screen Display.

PRESET(x,y)[,color]
PSET(x,y)[,color]

where x and y specify a point on the screen, and
“color” specifies the background color (0) or a
color 1 to 3 from the current palette (low
and high resolution color graphics). In medi­
um and high resolution black-and-white gra­
phics, the values 0 and 2 denote black, 1 and
3 denote white.
To illuminate a point on the screen in a specified
color and/or to determine the point which subse­
quent graphic drawing is to regard as the last
point referenced.
The default “color” for low and high resolu­
tion color graphics is 3, for medium and high
resolution black-and-white graphics 1.
The only difference between PSET and PRESET
is that if no “color” is specified for PRESET, the
background color (0) is used, thus plotting an
invisible point.

You may specify offset coordinates using STEP,
that is, a point relative to the last point refer­
enced.

Note

GW-BASIC 4-203

Specify a greater value than 3 for “color” causes
an “Illegal function call” error.

GW-BASIC does not recognize an error if you try
to address points outside the range of coordinates
available for plotting.

COMMANDS AND FUNCTIONS
PRESET AND PSET

PRINT Command

PRINT [list of expressions]Syntax

To display data on the screen.Purpose

Remarks

Print Positions

GW-BASIC4-204

COMMANDS AND FUNCTIONS
PRINT

Printed numbers are always followed by a space.
Positive numbers are preceded by a space. Nega­
tive numbers are preceded by a minus sign.
Single precision numbers that can be represented
with 6 or fewer digits in the unsealed (fixed point
or integer) format no less accurately than they
can be represented in the scaled (floating poinz,)
format are output using the unsealed format. For

The position of each printed item is determined
by the punctuation used to separate the items in
the list. GW-BASIC divides the line into zones of
14 spaces each. In the list of expressions, a comma
causes the next value to be displayed at the
beginning of the next zone. A semicolon causes
the next value to be printed immediately after the
last value. One or more spaces between expres­
sions have the same effect as a semicolon.

If a comma or a semicolon terminates the list of
expressions, the next PRINT command begins
displaying on the same line, spacing accordingly.
If the list of expressions terminates without a
comma or a semicolon, a carriage return is
carried out at the end of the line. If the line to be
displayed is longer than the screen WIDTH,
GW-BASIC goes to the next physical line and
continues with the rest of the line.

If “list of expressions” is omitted, a blank line is
printed. If “list of expressions” is included, the
values of the expressions are displayed on the
screen. The expressions in the list may be
numeric and/or string expressions. (Strings
must be enclosed in quotation marks.)

Examples

-25 3125

?

GW-BASIC 4-205

example, IE-7 is output as .0000001 but IE-8 is
output as IE-08. Double precision numbers that
can be represented with 16 or fewer digits in the
unsealed format no less accurately than they can
be represented in the scaled format are output
using the unsealed format. For example, ID-16 is
output as .0000000000000001 and ID-16 is output
as ID-17.

A question mark may be used in place of the word
PRINT in a PRINT statement. GW-BASIC auto­
matically replaces it with the word PRINT at the
next LISTing.

In the above example, the commas in the PRINT
statement cause each value to be displayed at the
beginning of the next print zone.

In the next example, the semicolon at the end of
line 20 causes the PRINT items of lines 20 and 30
to be displayed on the same line. Line 40 causes a
blank line to be printed before the next prompt.

? 21
21 SQUARED IS 441 AND 21 CUBED IS 9261

COMMANDS AND FUNCTIONS
PRINT

10 INPUT X
20 PRINT X “SQUARED IS” Xa2 “AND”;
30 PRINT X “CUBED IS” Xa3
40 PRINT
50 GOTO 10
will yield
? 9
9 SQUARED IS 81 AND 9 CUBED IS 729

10 X=5
20 PRINT X + 5,X-5,X*(-5),X A 5
30 END
will yield

10 0

Note

4-206 GW-BASIC

If the end of the last item of a PRINT statement is
displayed in the rightmost screen position (col­
umn 40 or 80 according to WIDTH) and if that
PRINT statement is not concluded by a semicolon,
a blank line will be apparent between the line just
displayed and the next item displayed.

LPRINT displays data on a printer instead of on
the screen.

In the following example, the semicolons in the
PRINT statement cause each value to be dis­
played immediately after the preceding value.
(Don’t forget, a number is always followed by a
space.) In line 40, a question mark is used instead
of the word PRINT.

10 FORX = 1TO5
20 J=J+5
30 K=K+10
40 ?J;K;
50 NEXT X
will yield

5 10 10 20 15 30 20 40 25 50

COMMANDS AND FUNCTIONS
PRINT

PRINT USING Command

Syntax PRINT USING string exp;list of expressions

Purpose

String Fields

Example:

10 A$ = “LOOK”:B$ = “OUT”

4-207GW-BASIC

Remarks/
Examples

To print strings or numbers using a specified
format.

“list of expressions” is comprised of the string
expressions or numeric expressions that are to be
printed, separated by semicolons or commas.

“string exp” is a string constant or variable
composed of special formatting characters. These
formatting characters (see below) determine the
field and the format of the printed strings or
numbers.

When PRINT USING is used to print strings, one
of three formatting characters may be used to
format the string field:

“\n spaces\”
Specifies that 2 + n characters from each item of
the “list of expressions” are to be printed. If the
backslashes are typed with no spaces, two charac­
ters will be printed; with one space, three
characters will be printed, and so on. If the string
is longer than the field, the extra characters are
ignored. If the field is longer than the string, the
string will be left-justified in the field and
padded with spaces on the right.

COMMANDS AND FUNCTIONS
PRINT USING

Specifies that only the first character of each
item in the given “list of expressions” is to be
printed.

Example:

Numeric Fields

4-208 GW-BASIC

tt (number sign)
A number sign is used to represent each digit
position. Digit positions are always filled. If the
number to be printed has fewer digits than
positions specified, the number will be right-
justified (preceded by spaces) in the field.

. (decimal point)
A decimal point may be inserted at any position
in the field. If the format string specifies that a
digit is to precede the decimal point, the digit will
always be printed (as 0, if necessary). Numbers
are rounded as necessary.

PRINT USING 78
0.78

When PRINT USING is used to print numbers,
the following special characters may be used to
format the numeric field:

30 PRINT USING “!”;A$;B$
40 PRINT USING “\
50 PRINT USING “\
will yield
LO
LOOKOUT
LOOK OUT !!

Specifies a variable length string field. When the
field is specified with the string is output
without modification.

\“;A$;B$
\“;A$;B$;“!!”

10 A$ = “LOOK”:B$ = “OUT”
20 PRINT USING “!”;A$;
30 PRINT USING
will yield
LOUT

COMMANDS AND FUNCTIONS
PRINT USING

also specifies

“;12.39,-0.9,765.1

4-209GW-BASIC

PRINT USING “###.##”;987.654
987.65

In the last example, three spaces were inserted at
the end of the format string to separate the
printed values on the line.

+ (plus sign)
A plus sign at the beginning or end of the format
string will cause the sign of the number (plus or
minus) to be printed before or after the number.

— (minus sign)
A minus sign at the end of the format field will
cause negative numbers to be printed with a
trailing minus sign.

$$ (double dollar sign)
A double dollar sign causes a dollar sign to be
printed to the immediate left of the formatted
number. The $$ specifies two more digit posi­
tions, one of which is the dollar sign. The
exponential format cannot be used with $$.
Negative numbers cannot be used unless the
minus sign trails to the right.

COMMANDS AND FUNCTIONS
PRINT USING

“;-68.95,2.4,55.6,-.9
-0.90

“;10.2,5.3,66.789, .234
0.23

PRINT USING “##.##- “;-68.95,22.449,-7.01
68.95- 22.45 7.01-

** (double asterisk)
A double asterisk at the beginning of the format
string causes leading spaces in the numeric field
to be filled with asterisks. The **
positions for two more digits.

PRINT USING “##.##
10.20 5.30 66.79

PRINT USING “+##.##
-68.95 +2.40 +55.60

PRINT USING “**#.#
*12.4 *-0.9 765.1

4-210 GW-BASIC

PRINT USING “##.## a A A a”;234.56
2.35E+02

A A A A
Four carets may be placed after the digit position
characters to specify exponential format. The
four carets allow space for E + xx to be printed.
Any decimal point position may be specified. The
significant digits are left-justified, and the expo­
nent is adjusted. Unless a leading + or trailing +
or - is specified, one digit position will be used to
the left of the decimal point to print a space or a
minus sign.

, (comma)
A comma that is to the left of the decimal point in
a formatting string causes a comma to be printed
to the left of every third digit to the left of the
decimal point. A comma that is at the end of the
format string is printed as part of the string. A
comma specifies another digit position. The
comma has no effect if used with exponential
(A A A A) format.

PRINT USING “####.##,“;1234.5
1234.50,

PRINT USING “####,.##”;1234.5
1,234.50

PRINT USING “$$###.##”’,456.78
$456.78

PRINT USING
***$2.34

“**$##.##”;2.34

COMMANDS AND FUNCTIONS
PRINT USING

**$
The **$ at the beginning of a format string
combines the effects of the above two symbols.
Leading spaces will be asterisk-filled and a dollar
sign will be printed before the number. **$
specifies three more digit positions, one of which
is the dollar sign.

Your file has been assigned #2

GW-BASIC 4-211

PRINT USING “+.##A A A a”;123
+ .12E+03

An underscore in the format string causes the
next character to be output as a literal character.

An underscore at the beginning of the format
string may be omitted.

% (percent sign)
If the number to be printed is larger than the
specified numeric field, a percent sign is printed
in front of the number. If rounding causes the
number to exceed the field, a percent sign will be
printed in front of the rounded number.

PRINT USING “##.##”;111.22
% 111.22

PRINT USING 999
%1.00

If the number of digits specified exceeds 24, an
“Illegal function call” error will result.

COMMANDS AND FUNCTIONS
PRINT USING

PRINT USING “Your file has been assigned
##“;2

The literal character itself may be an underscore
if you place “ ” in the format string.

PRINT USING*1 !##.## !”;12.34
112.34!

PRINT USING “.#### a A A a-”;-888888
.8889E+06-

PRINT# and PRINT# USING Commands

Syntax

To write data to a sequential file.Purpose

PRINT#1,A;B;C;X;Y;Z

and

PRINT#1,A$;B$

GW-BASIC4-212

COMMANDS AND FUNCTIONS
PRINT# AND PRINT# USING

Remarks/
Examples

PRINT#file number,[USING string exp;] list of
expressions

PRINT# does not compress data. An image of the
data is written to the file, just as it would be
displayed on the screen with PRINT. For this
reason, care should be taken to delimit the data,
so that later it will be input correctly from the
file.

(If commas are used as delimiters, the extra
blanks that are inserted between print fields will
also be written to the file.)

String expressions must be separated by
semicolons in the list. To format the string
expressions correctly in the file, use explicit
delimiters in the list of expressions.

would write CAMERA93604-1 to the file. Because
there are no delimiters, this could not be input as

In the “list of expressions”, numeric expressions
should be delimited by semicolons. For example:

“file number” is the number used when the file
was opened for output, “string exp” consists of
formatting characters as described in PRINT
USING. The expressions in “list of expressions”
are the numeric and/or string expressions that
will be written to the file.

For example, let A$ = “CAMERA”
B$ = “93604-1”. The command

PRINT#1,A$;“,”;B$

The image written to the file is

CAMERA,93604-1

PRINT#1,A$;B$

would write the following image to the file:

CAMERA, AUTOMATIC 93604-1

And the statement

INPUT#1,A$,B$

writes the following image to the file:

GW-BASIC 4-213

For example, let A$=“CAMERA, AUTOMATIC”
and B$=” 93604-1”. The command

two separate strings. To correct the problem,
insert explicit delimiters into the PRINT#
command as follows:

which can be read back from the file into two
string variables.

PRINT#1,CHR$(34);A$;CHR$(34);CHR$(34);B$
;CHR$(34)

COMMANDS AND FUNCTIONS
PRINT# AND PRINT# USING

If the strings themselves contain commas,
semicolons, significant leading blanks, carriage
returns, or linefeeds, write them to the file
surrounded by explicit quotation marks,
CHR$(34).

would input “CAMERA” to A$ and
“AUTOMATIC93604-1” to B$. To separate these
strings properly in the file, write double quota­
tion marks to the file image using CHR$(34). The
command

93604-1”“CAMERA, AUTOMATIC”

And the statement

INPUT#1,A$,B$

PRINT#1,USING“$$###.##,”;J;K;L

Note

4-214 GW-BASIC

See also WRITE# which does not require explicit
delimiters.

PRINT# may also be used with the USING option
to control the format of the file. For example:

COMMANDS AND FUNCTIONS
PRINT# AND PRINT# USING

would input “CAMERA, AUTOMATIC” to A$
and “ 93604-1” to B$.

PUT (Files) Command

Syntax PUT [#]file number [,record number]

Purpose

Remarks

Note

4-215GW-BASIC

To write a record from a random buffer to a
random access file.

Any attempt to read or write past the end of the
buffer causes a “Field overflow” error.

You can also use PUT for a communications file.
Then “record number” is not a record number,
but the number of bytes for output. Take care
that this number is not greater than that set by
the LEN option in OPEN COM.

COMMANDS AND FUNCTIONS
PUT

LSET, RSET, PRINT#, PRINT# USING, and
WRITE# may be used to put characters in the
random file buffer before executing a PUT
statement. In the case of WRITE#, GW-BASIC
pads the buffer with spaces up to the carriage
return.

“file number” is the number under which the file
was opened. If “record number” is omitted, the
record will assume the next available record
number (after the last PUT). The largest possible
record number is 32,767. The smallest record
number is 1.

A single PUT command does not necessarily
mean that the disk drive of your computer is
activated immediately. This is because GW-
BASIC and the operating system try to collect a
number of records before writing them to disk.

PUT (Graphics) Command

PUT (x,y),array[,image]Syntax

Purpose

Remarks

1. Using XOR, PUT the image on the screen.

2. Calculate the next position for the image.

4-216 GW-BASIC

To set the colors of points on the screen using
data stored in an array.

“x,y” are the coordinates of the top left position
of the screen area to be affected.

COMMANDS AND FUNCTIONS
PUT (GRAPHICS)

“array” is the name of the numeric array
containing the data. The GET (Graphics)
description explains how graphic data is stored in
such an array.
“image”, if included, offers a choice of effects.
PSET puts the graphic data on the screen just as
it was when GET was used to store it in the array.
PRESET has the same effect as PSET, except
that a negative image is produced: a value 0 in the
array sets the screen point to color 3 of the
current palette, and vice versa; 1 sets the screen
point to 2, and vice versa.
AND has the effect that only those points of the
array, which are also already illuminated in a
non-background color on the screen, are dis­
played. The remaining parts of an image already
present on the screen are cleared.
OR superimposes the array image on the existing
screen image.
XOR is particularly useful for creating animated
images. Where a point on the screen has the same
color as the corresponding point in the array, an
inverse image is produced. If an image is PUT
twice using XOR at the same position, the former
background is restored. You can use this charac­
teristic to move an object around the screen
without affecting the background:

4. Go to step 1, using the new image location.

The default “image” is XOR.

4-217GW-BASIC

3. PUT the image on the screen again using XOR
at the position used in 1.

The following tables show the results of PUTting
a screen point for AND, OR, and XOR in low
and high resolution color graphics. Color 0 is
the background; colors 1, 2, and 3 are the
colors of the current palette.

COMMANDS AND FUNCTIONS
PUT (GRAPHICS)

Array Value for Point
AND

30 21

Array Value for Point
OR

0 2 31

Array Value for Point
XOR

0 2 31

Example

4-218 GW-BASIC

0
1
2
3

0
0
0
0

1
0
3
2

1
1
3
3

0
1
0
1

2
3
0
1

2
3
2
3

0
0
2
2

3
2
1
0

3
3
3
3

0
1
2
3

0
1
2
3

The following program makes use of the XOR
“image” of the PUT statement while moving a
green ball around the screen under control of the
numeric keypad of the keyboard (press Num Lock
to activate the numerical function of these keys
instead of their cursor movement function).

COMMANDS AND FUNCTIONS
PUT (GRAPHICS)

Old Color 0
of 1

Screen Point 2
3

Old Color 0
of 1

Screen Point 2
3

Old Color 0
of 1

Screen Point 2
3

4-219GW-BASIC

The error trapping facility traps the “Illegal
function call” error, as this is issued when an
attempt is made to PUT an image outside the
screen.

COMMANDS AND FUNCTIONS
PUT (GRAPHICS)

Line 50 draws a circle in red, line 55 fills it in
green. As the diameter of the circle is 20 screen
points, an area 20 by 20 screen points is stored by
the GET command (line 70), after the top left
hand corner of that area has been located (line
60). Line 150 displays the green ball again on the
screen, line 160 calls a subroutine which assigns
offset values to X% and Y% according to the
numeric keys pressed (“7” yields minus in the x
direction and minus in the y direction, “9” yields
plus in the x direction and minus in the y
direction, etc.). Line 170 PUTs the ball image at
the old position using XOR, thus removing the
image and immediately .proceeds to display the
ball at the next position, using the offset values
contained in X% and Y%.

5 ON ERROR GOTO 1100
10 DIM BALL%(64)
20 PI=3.141593
30 SCREEN 1:CLS
40 COLOR 0,0
50 CIRCLE (160,100),10,2
55 PAINT STEP (0,0),1,2
60 PRESET STEP (-10,-10)
70 GET

(POINT(0),POINT(1))-STEP(20,20),BALL%
100 CLS
150 PUT STEP(X%,Y%),BALL%,XOR
160 GOSUB 1000
170 PUT STEP(0,0),BALL% ,XOR
180 GOTO 150
500 REM
1000 REM ♦♦♦♦♦** Look at keyboard

Note

4-220 GW-BASIC

If it is not important to preserve background, you
can PUT a single array containing both the new
image and enough background points to cover up
the old image, using PSET as “image”. This saves
one of the two PUT commands needed if using
XOR “image”, but it means that the array must
be correspondingly greater.

Flicker is kept to a minimum by displaying the
new image immediately after removing the old
one (line 180).

COMMANDS AND FUNCTIONS
PUT (GRAPHICS)

1001 IF INKEY$=“” THEN GOTO 1001
1005 X% =0:Y% =0
1010 FOR LOOK%=1TO5
1020 K$=INKEY$
1030 X% = X%-4*(K$=“9” OR K$=“6” OR

K$=“3”)+4*(K$=“7” OR K$=“4” OR
K$=“l”)

1040 Y% =4*(K$=“3” OR K$=“2” OR
K$=‘T”)+4*(K$=“9” OR K$=“8” OR
K$=“7”)

1050 NEXT LOOK%
1060 RETURN
1100 REM ******* Trap ball going off screen
1110 IF ERR=5 THEN BEEP:RESUME 50
1120 ERROR GOTO 0

RANDOMIZE Command

Syntax

Purpose To reseed the random number generator.

Remarks

Random Number Seed (-32768 to 32767)?

before executing RANDOMIZE.

Example

Note

4-221GW-BASIC

If “numeric expression” is omitted, GW-BASIC
suspends program execution and asks for a value
by printing

If the random number generator is not reseeded,
the RND function returns the same sequence of
random numbers each time the program is run.
To change the sequence of random numbers every
time the program is run, place a RANDOMIZE
statement at the beginning of the program and
change the “numeric expression”with each run.

If you run the program again entering 3, you will
find that the numbers displayed are the same as
those displayed the first time you ran the
program. The numbers would appear not to be
truly random (see RND).

It is often inconvenient if operator action is
required to reseed the random number generator.

COMMANDS AND FUNCTIONS
RANDOMIZE

RANDOMIZE [numeric expression]
RANDOMIZE TIMER

10 RANDOMIZE
20 FOR 1 = 1 TO 5
30 PRINT RND;
40 NEXT I
will yield
Random Number Seed (-32768 to 32767)?
Enter 3 in response. You will see five “random”
numbers displayed. Now run the program again
and enter another number in the permitted
range. GW-BASIC displays a different set of
numbers.

RANDOMIZE VAL (RIGHT$(TIM$,2))

RANDOMIZE TIMER MOD 32767

4-222 GW-BASIC

For this reason, GW-BASIC allows the TIMES
function to supply the “numeric expression”. In
this case, it makes most sense to read the seconds
counter:

GW-BASIC 2.0 (see “System Compatibility” in
this chapter) allows you to use the TIMER
function. This saves the VAL transformation and
offers a wider range of values with which to
reseed the random number generator:

COMMANDS AND FUNCTIONS
RANDOMIZE

READ Command

Syntax READ list of variables

Purpose

Remarks

Examples

4-223GW-BASIC

To reread DATA from the start, use the
RESTORE command.

To read items from a DATA list and assign them
to variables.

A READ command must always be used in
conjunction with DATA. READ assigns DATA
items to variables on a one-to-one basis. An item
READ from a DATA list must be of the same
type as the variable to which it is being assigned.
If they do not agree, a “Syntax error” will result.

A single READ command may access one or more
DATA items (they will be accessed in order), or
several READ commands may access the same
DATA items. If the number of variables in “list of
variables” exceeds the number of DATA items,
an “Out of data” error message is displayed. If
the number of variables specified is fewer than
the number of DATA items, subsequent READ
commands will begin reading data at the first
unread item. If there are no subsequent READ
commands, the extra data is ignored.

80 FOR 1 = 1 TO 10
90 READ A(I)
100 NEXT I
110 DATA 3.08,5.19,3.12,3.98,4.24
120 DATA 5.08,5.55,4.00,3.16,3.37

This program segment READs the values from
the DATA lists into the (implicitly defined) array

COMMANDS AND FUNCTIONS
READ

4-224 GW-BASIC

A. After execution, the value of A(l) will be 3.08,
and so on.

This program reads string and numeric data
from the DATA items in line 30. Note that DATA
items which include commas, semicolons or
significant leading or trailing blanks must be
enclosed in double quotation marks.

COMMANDS AND FUNCTIONS
READ

10 PRINT “CITY”, “STATE”, “ZIP”
20 READ C$,S$,Z
30 DATA “DENVER,”, COLORADO, 80211
40 PRINT C$,S$,Z
will yield
CITY STATE ZIP
DENVER, COLORADO 80211

REM Command

Syntax REM remark

Purpose

Remarks

Example

or

Note

4-225GW-BASIC

To allow explanatory remarks to be inserted in a
program.

REM lines are not executed but are output
exactly as entered when the program is listed.

REM lines may be branched into from a GOTO or
GOSUB command. Execution will continue with
the first executable command after the REM line.

Remarks may be added to the end of a line by
preceding the remark with a single quotation
mark instead of :REM.

120 REM CALCULATE AVERAGE VELOCITY
130 FOR 1 = 1 TO 20
140 SUM = SUM + V(I)

120 FOR 1 = 1 TO 20 ‘CALCULATE AVERAGE
VELOCITY
130 SUM = SUM + V(I)
140 NEXT I

In a program line containing more than one
command, REM, if present, must be the last
command in that line.

COMMANDS AND FUNCTIONS
RE1M

4-226 GW-BASIC

REM lines or appended remarks preceded by a
quotation mark can be used to divide a program
listing into sections and explain how the program
works. However, it is not a good idea to
oversaturate your program with remarks as they
require memory space and increase execution
time.

COMMANDS AND FUNCTIONS
REM

RENUM Command

Syntax

To renumber program lines.Purpose

Remarks

Note

Examples RENUM

RENUM 300„50

RENUM 1000,900,20

4-227GW-BASIC

RENUM [new number] [,[old number]
[,increment]]

“new number” is the first line number to be used
in the new sequence. The default is 10. “old
number” is the line in the current program where
renumbering is to begin. The default is the first
line of the program, “increment” is the increment
to be used in the new sequence. The default is 10.

RENUM cannot be used to change the order of
program lines (for example, RENUM 15,30 when
the program has three lines numbered 10, 20 and
30) or to create line numbers greater than 65529.
An “Illegal function call” error will result.

Renumbers the entire program. The first new line
number will be 10. Lines will be numbered in
increments of 10.

Renumbers the entire program. The first new line
number will be 300. Lines will be numbered in
increments of 50.

Renumbers the lines from 900 up so they start
with line number 1000 and are numbered in
increments of 20.

COMMANDS AND FUNCTIONS
RENUM

RENUM also changes all line number references
following GOTO, GOSUB, THEN, ELSE,
ON...GOTO, ON...GOSUB, RESTORE, and
RESUME commands to reflect the new line
numbers.

RESET Command

RESETSyntax

To close all files on all drives.Purpose

Remarks

Note To close individual files use CLOSE.

4-228 GW-BASIC

COMMANDS AND FUNCTIONS
RESET

RESET closes all open files on all drives and
writes the directory track to every disk for which
there were open files.

All files must be closed before a disk is removed
from its drive.

RESTORE Command

RESTORE [line number]Syntax

Purpose

Remarks

Example

4-229GW-BASIC

To allow DATA statements to be reread from a
specified line.

After a RESTORE command is executed, the next
READ command accesses the first item in the
first DATA list in the program. If “line number”
is specified, the next READ command accesses
the first item in the specified DATA line.

COMMANDS AND FUNCTIONS
RESTORE

10 READ A,B,C
20 RESTORE
30 READ D,E,F
40 DATA 57, 68, 79
50 PRINT A;B;C;D;E;F
will yield
57 68 79 57 68 79

RESUME Command

Syntaxes

Purpose

Remarks

Example 10 ON ERROR GOTO 900

Note

4-230 GW-BASIC

COMMANDS AND FUNCTIONS
RESUME

900 IF (ERR = 230)AND(ERL = 90) THEN
PRINT “TRY AGAIN”:RESUME 80

RENUMBER does not attempt to change the
number 0 in a RESUME 0 command. To let you
know this, GW-BASIC issues an “Undefined line
number” error message.

A RESUME that is not in an error handling
routine causes a “RESUME without error”
message to be printed.

RESUME “line number”
Execution resumes at “line number”.

Any one of the four syntaxes shown above may be
used, depending upon where execution is to
resume:

To continue program execution after an error
recovery procedure has been performed.

RESUME NEXT
Execution resumes at the command immediately
following the one that caused the error.

RESUME or RESUME 0
Execution resumes at the command that caused
the error.

RESUME
RESUME 0
RESUME NEXT
RESUME line number

RETURN Command

Syntax RETURN [line number]

Purpose

Remarks

4-231GW-BASIC

“line numbers” Specifies the number of the
program line to which GW-BASIC returns after
executing a subroutine.

The use of non-local RETURNS, that is, RETURN
with a “line number” requires particular care.
You must make sure that such a RETURN
command does not bypass the RETURN for
another subroutine which is still active.

Returns program from a subroutine, entered by
means of GOSUB or ON GOSUB.

COMMANDS AND FUNCTIONS
RETURN

RIGHTS Function

RIGHT$(string expression,number)Syntax

Purpose

Remarks

Example

Also see the LEFT$ and MID$ functions.

4-232 GW-BASIC

COMMANDS AND FUNCTIONS
RIGHTS

To return the rightmost “number” of characters
of the “string expression”.

If “number” is greater than or equal to the
number of characters in the “string expression”,
the result is the entire string. If “number” is 0,
the null string (length zero) is returned.

10 A$=“DISK BASIC”
20 PRINT RIGHT$(A$,5)
will yield
BASIC

RMDIR Command

Syntax path

Purpose To remove a directory from the specified drive.

Remarks

Example

ROOT

ACCOUNTINGSALES

SUESTEVEJOHN MARY

REPORT

the command

Note

4-233GW-BASIC

“path” is a string expression not exceeding 128
characters identifying a sub-directory which is to
be removed. For details about paths and
directories you should refer to your NCR-DOS
manual.

Given the following hierarchical structure, and
assuming you are presently in the root directory

GW-BASIC does not allow you to remove the
parent directory of the directory you are cur­
rently working in. If you attempt this, a “Path/

COMMANDS AND FUNCTIONS
RMDIR

REPORT

other
files

REPORT

other
files

RMDIR “SALES \ ACCOUNTING \ SUE”
removes the directory SUE following the speci­
fied path, on the condition that there are no files
and no sub-directories under SUE. In this exam­
ple, it would be necessary to KILL the file
REPORT before issuing the RMDIR command.

REPORT

other
files

4-234 GW-BASIC

A “File not Found” error also occurs if you try to
remove a directory using KILL.

file access” error occurs. The same error occurs if
subdirectories of the directory to be removed still
exist, or if files still exist in the directory.

COMMANDS AND FUNCTIONS
RMDIR

RND Function

Syntax RND[(X)]

Purpose

Remarks

Examples

4-235GW-BASIC

To return a single precision random number
between 0 and 1.
The RND function draws upon a pseudo-random
sequence of numbers stored internally by
GW-BASIC. This sequence is so constructed that
it, to all intents and purposes, presents a
sequence of random numbers.

If X is greater than 0 or X is omitted, the next
random number in the sequence is generated. If X
is 0, the last number generated is repeated.
A negative value of X reseeds the random number
generator, but is unaffected by RANDOMIZE.
RND never quite attains the value 1. Therefore,
to return a random integer value in the range 0 to
10 inclusive, for example, issue the command

PRINT INT(RND*11))
(This is not strictly necessary where the com­
mand or function calling upon RND rounds to the
nearest integer.)

The following program gives you an idea of the
pseudo-random nature of the “random” number
sequence. (You will need <Ctrl-Break> to
breakout.)

10 SCREEN 2:CLS
20 PSET (RND*639,RND*199)
30 GOTO 20
Now the same program again, this time with a
greater element of chance:

COMMANDS AND FUNCTIONS
RND

The same sequence of random numbers is
generated each time the program is run unless
the random number generator is reseeded (see
RANDOMIZE).

4-236 GW-BASIC

The following program repeatedly throws two
dice, adds the two numbers together and builds
on a column 2 to 12 according to the result:

10 DEFINT A-Z
20 DIM STAT(12)
30 FOOT=180
40 SCREEN 1:COLOR 0,0:CLS
50 PRESET (93,14)
60 DRAW “c2 r28 d28 128 u28 br56”
70 DRAW “r28 d28 128 u28”
80 LOCATE 25,2:PRINT “2 3 4 5 6 7 8 9 10 11 12”
90 FOR DICE=1 TO 1000
100 RANDOMIZE TIMER MOD 32767
110 D1=INT(RND*6)+1:D2=INT(RND*6) + 1
120 LOCATE 3,13:PRINT DI
130 LOCATE 3,20:PRINT D2
140 THROW=D1+D2
150 LOCATE 3,30
160 PRINT”->”;TH ROW
170 STAT(THROW) = STAT(THROW) +1
180 PSET

(24*THROW-36,FOOT-STAT(THROW)),1
190 FOR D=1 TO 800:NEXT D
200 NEXT DICE%

10 SCREEN 2:CLS
20 RANDOMIZE TIMER MOD 32767
30 PSET (RND*639,RND*199)
40 GOTO 20

COMMANDS AND FUNCTIONS
RND

RUN Command

RUN [line number]Syntax 1

Purpose To execute the program currently in memory.

Remarks

RUN filespec[,R]Syntax 2

Purpose

Remarks

4-237GW-BASIC

If “line number” is specified, execution begins
with that line. Otherwise, execution begins at the
lowest line number.

The “filespec” must include the filename used
when the file was saved. (GW-BASIC appends the
filename with the extension .BAS, if you do not
supply one.)

COMMANDS AND FUNCTIONS
RUN

To load a file from disk into memory and run
it.

RUN closes all open files and deletes the current
contents of memory before loading the
designated program. However, with the “R”
option, all data files remain open.

SAVE Command

SAVE filespecSyntax ,A

,P

To save a program file on disk.Purpose

Remarks

Examples SAVE “B:COM2”,A

SAVE “ENIGMA”,P

4-238 GW-BASIC

COMMANDS AND FUNCTIONS
SAVE

Saves the program ENIGMA as a protected file
which cannot be altered.

The P option protects the file by saving it in an
encoded binary format. When a protected file is
later RUN (or LOADed), any attempt to list or
edit it will fail (“Illegal function call”). This
characteristic cannot be reversed, so always keep
an unprotected version of the program, so that
you can list or edit it at a later date.

Saves the program COM2 in ASCII format on
the disk in drive B.

The A option saves the file in ASCII format. If
the A option is not specified, GW-BASIC saves
the file in a compressed binary format. ASCII
format takes more space on the disk, but some
disk access requires that files be in ASCII format.
For instance, the MERGE command requires an
ASCII format file. You can view an ASCII format
file using an editor or the NCR-DOS TYPE
command.

“filespec” is a string expression that conforms to
the NCR-DOS conventions for naming files.
GW-BASIC appends a default filename extension
.BAS if one is not supplied in the SAVE com­
mand. If a filename already exists, the file is
written over.

SCREEN Command

Syntax SCREEN [mode] [,active] [,outpage] [,seepage]

GW-BASIC 4-239

Purpose
Remarks

To set screen attributes for a color screen.
“mode” is an integer expression 0, 1, 2, 3, or
4 which sets the display mode: character
mode, low resolution graphics, medium reso­
lution graphics, high resolution black-and-
white graphics, and high resolution color gra­
phics, respectively.
“active” is an integer expression 0 or 1. This
attribute is connected with enabling and disa­
bling color in earlier versions of BASIC. It has no
effect on the screen display of your NCR PC when
using the version of GW-BASIC supplied.

“outpage” refers to the number of the page in
character mode to which GW-BASIC is to write
screen output. Admissible values are 0 to 7, if you
are using a line width of 40 characters, or 0 to 3, if
the line width is 80 characters.

“seepage” refers to the number of the page in
character mode which GW-BASIC displays. If
you do not specify a value, “outpage” and
“seepage” are the same.

Upon execution of a valid SCREEN command,
GW-BASIC sets the foreground color to white
and the background color to black. (You can
subsequently alter colors by means of the COLOR
command.)

COMMANDS AND FUNCTIONS
SCREEN

If the “mode” differs from the previously active
mode, the screen is cleared. If you require a clear
screen when setting “mode”, it is a good idea to
include a subsequent CLS command, as this
works regardless of the previous mode.

Specifying different page numbers for “seepage”
and “outpage” enables your program to write to
“outpage” without affecting the current screen
display. A subsequent SCREEN command can
then give “seepage” the same number as

Examples 10 SCREEN 0,1,0,0

20 SCREEN „l,0

10 SCREEN 1:CLS

10 SCREEN 3

Note

SCREEN 0

4-240 GW-BASIC

switches to or confirms low resolution
graphics, and clears the screen at least once.

See WIDTH regarding the size of characters
displayed in the graphics modes.

If your program is intended to run on both a
monochrome and a color display, specify

leaves the display “mode” as it was before, and
sets “outpage” and “seepage” to 1 and 0, respec­
tively.

switches to or confirms high resolution black-
and-white graphics.

selects character mode and sets “outpage” and
“seepage” to 0.

You may omit any parameter, using a comma in
its place. The old value for that parameter is then
retained, except “seepage” which defaults to
“outpage”.

COMMANDS AND FUNCTIONS
SCREEN

“outpage”, and the screen page built up in the
background appears instantaneously. There is
only one cursor for all pages. Therefore, use POS
and CSRLIN if you later wish to restore the
cursor at a specific position on a page, before
making another page the “seepage”. Use
LOCATE to restore the cursor to the position
thus stored.

SCREEN Function

SCREEN(row,col[,attr])Syntax

Purpose

Remarks

• the background color is calculated as follows

Examples

4-241GW-BASIC

To return the ASCII code (0 to 255) of the
character currently displayed at a specified
position on the screen.

“row” is a numeric expression in the range 1 to 25
specifying the line number.

“attr” is permitted in character mode only. If
“attr” is a non-zero value, then a number repre­
senting the display characteristics of the speci­
fied character position is returned. This number
is in the range 0 to 255:
• the remainder from dividing this number by

16 (number MOD 16) gives the code of the
character color (see COLOR).

• if the number is greater than 127, then the
character is blinking.

The SCREEN function in graphics mode returns
the ASCII code, if an ASCII character is dis­
played at the specified position. If the position
contains part of a graphic design (points, lines,
etc.), the value returned is zero.

200 X% = SCREEN (10,1)
assigns to X% the ASCII code of the character in
line 10, column 1.

((number-writing)/16) MOD 128
where writing is the color code 0...15 of the
character.

COMMANDS AND FUNCTIONS
SCREEN

“col” is a numeric expression in the range 1 to 40
or 1 to 80 (according to WIDTH) specifying the
column number.

210 C% = SCREEN (10,1,1)

4-242 GW-BASIC

assigns to C% a number in the range 0 to 255
representing the display characteristics of the
same character position.

COMMANDS AND FUNCTIONS
SCREEN

SGN Function

Syntax SGN(X)

Purpose To indicate the value of X, relative to zero:

ON SGN(X)+2 GOTO 100,200,300Example

4-243GW-BASIC

If X>0, SGN(X) returns 1.
If X=0, SGN(X) returns 0.
If X<0, SGN(X) returns -1.

Branches to 100 if X is negative, 200 if X is 0, and
300 if X if positive.

COMMANDS AND FUNCTIONS
SGN

SHELL [command string]Syntax

Purpose

Remarks

10 OPEN “SORTIN.DAT” FOR OUTPUT AS #1Example

<SORTIN.DAT

4-244 GW-BASIC

SHELL without a “command string1’ gives you
the NCR-DOS system prompt, for example A>.
You can then call upon NCR-DOS .EXE, .COM, or
.BAT files. To return to GW-BASIC, enter the
NCR-DOS EXIT command. This comand is neces­
sary only if the SHELL command was entered
without a command string.

SHELL may include a command string in accord­
ance with the NCR-DOS conventions for issuing
commands. If you are executing your own com­
mand file, you should make sure that it does not
end with the condition “Terminate and stay
resident”, otherwise GW-BASIC will issue the
error message “Can’t continue after SHELL”. If
there is not enough room in memory to retain
GW-BASIC and execute the SHELLed program,
an “Out of memory” error will occur.

If the SHELLed program is to process a file,
make sure that this file is not in an open state at
the time the SHELL command is executed.
GW-BASIC can reopen the file as soon as the
SHELLed program is terminated.

To load and execute an NCR-DOS .EXE, .COM, or
.BAT file and afterwards return to the
GW-BASIC program command following the
SHELL command.

COMMANDS AND FUNCTIONS
SHELL

SHELL Command

1000 CLOSE #1
1010 SHELL “SORT

> SORTOUT.DAT”
1020 OPEN “SORTOUT.DAT” FOR INPUT AS

#1

Note

4-245GW-BASIC

This example uses the NCR-DOS SORT command
to sort data entered in the course of the GW-
BASIC program. Note that the file must be closed
(line 1000) before SHELLing the NCR-DOS com­
mand.

Programmers writing their own NCR-DOS .COM
or .EXE files which are to be capable of being
SHELLed by GW-BASIC should take care that
the interrupt vector is saved immediately upon
entry to the SHELLed program, and that it is
restored just before returning to GW-BASIC.

COMMANDS AND FUNCTIONS
SHELL

SIN Function

SIN(X)Syntax

To return the sine of X, where X is in radians.Purpose

Remarks

Example

Note To convert radians to degrees:

DEGREES = RADIANS*180/PI

where PI (single precision) is 3.141593.

To convert degrees to radians:

RADIANS = DEGREES*PI/180

4-246 GW-BASIC

COMMANDS AND FUNCTIONS
SIN

The sine is evaluated to single precision, unless
you specify the /D option when loading
GW-BASIC.

PRINT SIN(1.5)
will yield

.9974951

SOUND Command

Syntax SOUND frequency .duration

Purpose Generates sound through the speaker.

Note Freq. Note Freq.

* Middle C

GW-BASIC 4-247

“frequency”
Specifies the frequency in Hertz (cycles per
second). Specify the desired number from 37 to
32767 (see Notes and Frequencies table below).

“duration”
Specifies desired length of the sound measured in
clock ticks. (1 clock tick = 55 ms.) Specify the
number of clock ticks in the range 0 to 65535 (see
Tempo table below).

COMMANDS AND FUNCTIONS
SOUND

740
784
830
880
930
987.8

1046.4
1106
1174.6
1244
1318.6
1397
1480
1568
1660
1760
1864
1975.6
2093
2217.4
2349.4

32767
220
233
247
262
277.2
293.6
311.6
329.6
349.2
370
392
416
440
466
493.2
523.2
554.8
587.4
622
659.2
598.4

F#
G
G#
A
A#
B
C
C#
D
D#
E
F
F#
G
G#
A
A#
B
C
C#
D

The following table correlates notes with their
frequencies. The tuning note A has a frequency of
440.

Pause
A
A#
B
C
C#
D
D#
E
F
F#
G
G#
A
A#
B

*C
C#
D
D#
E
F

Remarks

Tempo

very slow

16.55-14.3766-76

120-168 9.1-6.5

6.5-5.25168-208
very fast

Example

10 FOR 1 = 220 TO 2200 STEP 20

4-248 GW-BASIC

The following program creates a glissando up and
down.

To create periods of silence, use SOUND 32767,
“duration”.

The “duration” for one beat is calculated from
beats per minute. Divide the beats per minute
into 1092 (the number of clock ticks in a minute).
The following table shows typical tempos in
terms of clock ticks (duration).

SOUND produces a sound that continues until
another SOUND command is reached. If a
SOUND command with a “duration” of 0 is
encountered, any currently running sound is
turned off. (If no SOUND command is running,
SOUND “frequency”,0 has no effect.)

You can cause sounds to be buffered so program
execution does not stop when a new SOUND
command is encountered. (See the MB command
under PLAY.)

Larghissimo
Largo
Larghetto
Grave
Lento
Adagio
Adagietto
Andante
Andantino
Moderate

Allegretto
Allegro
Vivace
Veloce
Presto
Prestissimo

Beats/
Minute

76-108
108-120

40-60
60-66

27.3-18.2
18.2-16.55

Ticks/
Beat

(Duration)

14.37-10.11
10.11-9.1

slow
i

medium

I
fast

COMMANDS AND FUNCTIONS
SOUND

GW-BASIC 4-249

20 SOUND I, 0.5
30 NEXT
40 FOR 1=2200 TO 220 STEP -20
50 SOUND I, 0.5
60 NEXT

COMMANDS AND FUNCTIONS
SOUND

SPACES Function

SPACE$(X)Syntax

To return a string consisting of X spaces.Purpose

Remarks

Example

See also the SPC function.

4-250 GW-BASIC

The expression X is rounded, if necessary, to an
integer which must be in the range 0 to 255.

COMMANDS AND FUNCTIONS
SPACES

This program prints one space at the beginning of
the first line, two at the beginning of the second
line, and so on. The additional space in each case
arises through the fact that GW-BASIC prefixes
each number with a space of its own in the PRINT
command.

10 FOR 1 = 1 TO 5
20 X$=SPACE$(I)
30 PRINT X$;I
40 NEXT I
will yield

1
2

3
4

5

SPC Function

Syntax SPC(I)

Purpose

Remarks

Example

THERE

Also see SPACE$.

4-251GW-BASIC

To skip spaces in a PRINT or LPRINT command.
I is the number of spaces to be skipped.

SPC may only be used with PRINT and LPRINT.
I must be in range 0 to 255. The spaces are
displayed or printed as if the equivalent string of
spaces were concluded by a semicolon, that is,
with no automatic carriage return.

COMMANDS AND FUNCTIONS
SPC

PRINT “OVER” SPC(15) “THERE”
will yield
OVER

SQR Function

Syntax SQR(X)

To return the square root of X.Purpose

Remarks X must not be a negative number.

Example

4-252 GW-BASIC

COMMANDS AND FUNCTIONS
SOR

3.162278
3.872984
4.472136
5

10 FOR X% =10 TO 25 STEP 5
20 PRINT X%, SQR(X%)
30 NEXT X%
will yield

10
15
20
25

STICK Function

Syntax STICK(n)

Purpose

The values for n can be:Remarks

1 — Returns the y coordinate of joystick A.

2 — Returns the x coordinate of joystick B.

3 — Returns the y coordinate of joystick B.

Example

Note

4-253GW-BASIC

To return the x and y coordinates of the two
joysticks.

Even if you only wish to read the values for
joystick B, you must execute a dummy command
using STICK(O).

n is a numeric expression returning an integer in
the range 0 to 3.

This program samples the x and y coordinates of
joystick B.

50 DISCARD = STICK(0)
60 X% =STICK(2)
70 Y% =STICK(3)
80 PRINT X%,Y%

STRIG is for use in connection with joystick
buttons.

COMMANDS AND FUNCTIONS
STICK

0 — returns the x coordinate for joystick A. Also
prepares the x and y values for both
joysticks for the following function calls:

STOP Command

STOPSyntax

Purpose

Remarks

Break in nnnnn

Unlike END, STOP does not close files.

Example

4-254 GW-BASIC

To terminate program execution and return to
command level.

COMMANDS AND FUNCTIONS
STOP

10 CT=0
20 IF INKEY$o“”THEN STOP
30 CT = CT + 1
40 FOR SLOTH % =1 TO 200:NEXT SLOTH%
50 GOTO 20

STOP commands may be used anywhere in a
program to terminate execution. STOP is often
used for debugging. Following STOP you can
inspect and alter program variables, and then
continue with CONT.

When a STOP is encountered, the following
message is printed:

The following loop is executed until you press a
key. You can then see how far the counter has
progressed by entering PRINT CT as a direct
command. CONT enables the program to con­
tinue where it left off.

STR$ Function

Syntax STR$(X)

Purpose

Remarks

Example

The complementary function of STR$ is VAL.Note

GW-BASIC 4-255

To return a string representation of the value
yielded by the numeric expression X.

If X is positive, the string representation is
preceded by a single blank. Therefore, the length
of the string returned by STR$ is one character
greater than a positive number it represents.

The following program doubles any number you
enter, provided the number is not longer than two
digits:

COMMANDS AND FUNCTIONS
STR$

10 REM Arithmetic for kids
20 INPUT “Enter an EASY number”;N
30 IF LEN(STR$(N))>3 THEN PRINT “I said

EASY. Try again”:GOTO 20
40 PRINT N;“doubled is”;N*2

STRIG Command

Syntax

To enable and disable the joystick buttons.Purpose

Remarks

GW-BASIC4-256

STRIG OFF tells GW-BASIC to ignore the
presence of the joystick buttons.

COMMANDS AND FUNCTIONS
STRIG

STRIG ON
STRIG OFF

To enable and disable the trapping of joystick
buttons.

STRIG ON has the effect that every time GW-
BASIC is about to execute a command, it per­
forms a check to see if a button has been pressed.

STRIG (n) ON
STRIG (n) OFF
STRIG (n) STOP

STRIG (n) ON enables trapping of the button
specified by n. Up to four buttons may be trapped,
using the values 0, 2, 4, and 6 for n.

STRIG (n) OFF disables trapping for the speci­
fied button 0, 2, 4, or 6. If a button is pressed
between execution of this command and the next
STRIG (n) ON, GW-BASIC does not remember
the event.

STRIG (n) STOP disables trapping for the speci­
fied button 0,2,4, or 6. If a button is pressed after
execution of this command, GW-BASIC will
branch to the event handling routine as soon as it
has encountered the next STRIG (n) ON com­
mand.

STRIG Function

Syntax STRIG (n)

Purpose

Remarks

Example

4-257GW-BASIC

STRIG ON must have been executed before
button checking can take place.

To return information as to whether a joystick
button is being pressed or has been pressed since
the last time it was checked.

n is a numeric expression in the range 0 to 7. One
of four buttons can be checked, according to
whether n is 0,2,4,6. STRIG (n) returns the value
-1, if the button has been pressed since the last
time it was checked; otherwise, it returns 0.

If n is 1, 3, 5, or 7, STRIG (n) returns the value -1,
if that button is currently pressed.

COMMANDS AND FUNCTIONS
STRIG

10 STRIG ON
20 IF STRIG(2) THEN PRINT “Somebody has

pressed button 2”
30 IF STRIG(3) THEN PRINT “Now please

release button 2”: GOTO 50
40 PRINT “Have you forgotten the existence of

button 2?”
50 END

STRINGS Function

Syntax

Purpose

Example

4-258 GW-BASIC

COMMANDS AND FUNCTIONS
STRINGS

To return a string of length I whose characters all
have ASCII code J or the first character of the
string expression X$.

STRING$(I,J)
STRING$(I,X$)

10 X$=STRING$(10,45)
20 PRINT X$ “MONTHLY REPORT” X$
will yield
--------- MONTHLY REPORT----------

SWAP Command

Syntax SWAP variablel,variable2

To exchange the values of two variables.Purpose

Remarks

Example

4-259GW-BASIC

Any type variable may be swapped (integer,
single precision, double precision, string), but the
two variables must be of the same type or a “Type
mismatch” error results.

If the second variable is not already defined when
SWAP is executed, an “Illegal function call”
error will result.

COMMANDS AND FUNCTIONS
SWAP

10 A$=“ONE” : B$ = “ALL” : C$ = “FOR”
20 PRINT A$ C$ B$
30 SWAP A$, B$
40 PRINT A$ C$ B$
will yield

ONE FOR ALL
ALL FOR ONE

SYSTEM Command

Syntax SYSTEM

Purpose

Remarks

4-260 GW-BASIC

COMMANDS AND FUNCTIONS
SYSTEM

To close all open files and return control to
NCR-DOS.

Any GW-BASIC program in memory is lost as
soon as SYSTEM is executed, so consider
SAVEing the program if you have updated it
since the last SAVE.

TAB Function

Syntax TAB(I)

To move the display or print position to I.Purpose

Remarks

“AMOUNT”TAB(25)Example

AMOUNT

G. T. JONES $25.00

4-261GW-BASIC

If the current print position is already beyond
space I, TAB goes to that position on the next line.
Space 1 is the leftmost position; the rightmost
position is the defined WIDTH. I must be in the
range 1 to 255. TAB may only be used in PRINT,
PRINT #, and LPRINT commands.

TAB at the end of a list of PRINT or LPRINT
items is regarded by GW-BASIC as having a
semicolon; therefore, no automatic carriage
return occurs.

This program shows TAB being used to create
neat display columns.

COMMANDS AND FUNCTIONS
TAB

10 PRINT “NAME”
20 READ A$,B$
30 PRINT A$ TAB(25) B$
40 DATA “G. T. JONES”, “$25.00”
will yield
NAME

TAN Function

Syntax TAN(X)

Purpose

Remarks

Example

Note To convert radians to degrees:

DEGREES = RADIANS*180/PI

where PI (single precision) is 3.141593.

To convert degrees to radians:

RADIANS = DEGREES*PI/180

4-262 GW-BASIC

COMMANDS AND FUNCTIONS
TAN

To return the tangent of X. The angle X is in
radians.

The tangent is calculated to single precision,
unless you specify the /D option when loading
GW-BASIC.

10 RADS=0.78
20 PRINT TAN(RADS)
will yield
.9892613

TIMES Command

Syntax TIME$ = string expression

Purpose

Remarks

Example 10 TIME#=“08:00:00”

The current time is set at 8:00 a.m.

Note

GW-BASIC 4-263

hh:mm:ss
(sets the hour, minutes, and seconds)

To set the time. This command complements the
TIME$ function, which retrieves the time.

A 24-hour clock is used; 8:00 p.m., therefore,
would be entered as 20:00:00.

If you have set the time at the NCR-DOS
command level, there is no need to set it again
from within GW-BASIC.

“string expression” represents a string in one of
the following forms:

hh:mm
(sets the hour and minutes; seconds default to 00)

COMMANDS AND FUNCTIONS
TIMES

hh
(sets the hour; minutes and seconds default to 00)

TIMES Function

TIME$Syntax

Purpose

Remarks

Example

4-264 GW-BASIC

COMMANDS AND FUNCTIONS
TIMES

This example repeatedly checks the clock. At 6:30
a.m. it starts BEEPing and continues to do so for
a whole minute or until you press a key. (You
might prefer to replace BEEP with some music.)

To retrieve the current time. (To set the time, use
the TIMES command.)

10 ALARMS = TIMES
20 IE LEFTS (ALARM$,2) = “06” AND MIDS

(ALARMS,4,2) = “30”THEN BEEP:PRINT
“Your early morning call”:GOTO 40

30 GOTO 10
40 IF INKEYS =

The TIMES function returns an eight-character
string in the form hh:mm:ss, where hh is the hour
(00 through 23), mm is minutes (00 through 59),
and ss is seconds (00 through 59). A 24-hour clock
is used; 8:00 p.m., therefore, would be shown as
20:00:00.

THEN GOTO 10 ELSE END

TIMER Function

Syntax TIMER

Purpose

Remarks

Example

4-265GW-BASIC

The following program gives you an idea of how
much time elapses in a GW-BASIC delay loop:

To return a single precision number representing
the number of seconds that have elapsed since
midnight or the last time you switched on or reset
your computer.

TIMER starts counting at 0, and starts again
with zero a fraction of a second before 86400
would be attained. TIMER returns whole seconds
and fractions of a second.

COMMANDS AND FUNCTIONS
TIMER

10 INPUT “How many runs through loop”;R
20 TIME# = “00:00:00:”
30 FOR X% = 1 TO R: NEXT X%
40 PRINT TIMER; “seconds”

TRON AND TROFF Commands

TRONSyntax

TROFF

To trace the execution of program commands.Purpose

Remarks

TRONExample

TROFF

GW-BASIC4-266

COMMANDS AND FUNCTIONS
TRON and TROFF

10 K = 10
20 FOR J=1 TO 2
30L=K + 10
40 PRINT J;K;L
50 K = K + 10
60 NEXT
70 END

As an aid in debugging, TRON (executed in either
direct or indirect mode) enables a trace flag that
prints each line number of the program as it is
executed. The numbers appear enclosed in square
brackets. The trace flag is disabled with the
TROFF command (or when a NEW command is
executed).

The numbers not enclosed in brackets are the
result of PRINT commands.

will yield
[10] [20] [30] [40] 1 10 20
[50] [60] [30] [40] 2 20 30
[50] [60] [70]

UNLOCK Command

Syntax

Purpose To release locks applied to an opened file.

Remarks

Examples

This UNLOCK command would be illegal:

Note

4-266aGW-BASIC

The UNLOCK command is the mirror image to
the LOCK command (see description earlier in
this chapter).
In the case of files opened in random mode, if a
range of record numbers is specified, this range
must match exactly the record number range
given by the LOCK command.

The following UNLOCK command would be legal:

UNLOCK [#] file number [,[record number]]
[TO record number]

30 LOCK #1,1 TO 4
40 LOCK *1,5 TO 8
50 UNLOCK #1,1 TO 4
60 UNLOCK #1,5 TO 8

Failure to unlock may jeopardize future access to
that file in a network environment.

30 LOCK #1, 1 TO 4
40 LOCK #1, 5 TO 8
50 UNLOCK #1, 1 TO 8

COMMANDS AND FUNCTIONS
UNLOCK

The following error situation can arise when un­
locking a file:

“Permission denied”
The range for a file opened in random mode does
not exactly match that of a preceding LOCK com­
mand.
The UNLOCK command must be performed on all
locked files or ranges within files before that file is
closed or the process terminates.

USR Function

USR[digit] [(argument)]Syntax

To call an assembly language subroutine.Purpose

Remarks

Example

Note

GW-BASIC 4-267

where “digit” specifies which USR routine is
being called. See DEF USR for rules governing
“digit”. If “digit” is omitted, USRO is assumed.

“argument” is the value passed to the subroutine.
It may be any numeric or string expression.

If a segment other than the default segment (data
segment DS) is to be used, a DEF SEG command
must be executed prior to a USR function call.
The address given in the DEF SEG command
determines the machine location of the beginning
of the segment to which the address specified in
DEF USR is offset.

For each USR function, a corresponding DEF
USR must be executed to define the USR call
offset. This offset and the currently active DEF
SEG segment address determine the starting
address of the subroutine.

100 DEF SEG = &H8000
110 DEF USRO-O
120 X = 5
130 Y = USR0(X)
140 PRINT Y

COMMANDS AND FUNCTIONS
USR

Line 130 calls the machine language subroutine
at the beginning (address 0) of the segment which
starts at the machine memory address
hexadecimal 8000. A single value returned by the
subroutine is assigned to the variable Y.

If your machine language program is not
required to return a value to your BASIC
program, the variable to the left of the equal sign
in the command containing the USR function
plays only a dummy role.

4-268 GW-BASIC

Another way of accessing a machine language
subroutine is to use the CALL command.

Chapter 6 contains more information about using
machine language routines in GW-BASIC pro­
grams.

COMMANDS AND FUNCTIONS
USR

VAL Function

VAL(XS)Syntax

Purpose

-3”)VAL(“

returns -3.

Remarks

Example

Note

GW-BASIC 4-269

To return the numerical value of string
expression X$. The VAL function strips blanks,
tabs, and linefeeds from the argument string. For
example,

If the string does not begin with numeric
characters, VAL returns 0.

The constraints of the argument string when
using CVI, CVS, or CVD do not apply to VAL, so it
is especially useful for converting strings of
variable length to numeric values.

10 FIELD #1,<4 AS YEARS, 2 AS MONTHS, 2
AS DAYS

120 GET #1,1
130 IF VAL(YEAR$+MONTHS+DAYS) < 195-

40713 THEN PRINT “Older than I am”

The complementary function STR$ converts
numeric values to strings.

COMMANDS AND FUNCTIONS
VAL

You might wish to evaluate the numeric signifi­
cance of information which has been read into a
random file buffer as a string, for example, dates:

VARPTR Function

VARPTR(variable name)Syntax 1

VARPTR(#file number)Syntax 2

Syntax 1Purpose

Note

Syntax 2

4-270 GW-BASIC

COMMANDS AND FUNCTIONS
VARPTR

VARPTR is usually used to obtain the address of
a variable or array so that it may be passed to an
assembly language subroutine. A function call of
the form VARPTR(A(0)) can be specified when
passing an array, so that the lowest-addressed
element of the array is returned.

Returns the address of the first byte of data
identified with “variable name”. A value must be
assigned to “variable name” prior to execution of
VARPTR; otherwise, an “Illegal function call”
error results. Any type variable name may be
used (numeric, string, array). For string
variables, the address of the first byte of the
string descriptor is returned (see Chapter 6). The
address returned is an integer in the range 0 to
65535.

For sequential files, VARPTR# returns the
starting address of the disk I/O buffer assigned
to “file number”. For random files, the address of
the file control block assigned to “file number” is
returned (see Chapter 5).

All simple variables should be assigned before
calling VARPTR for an array, because the
addresses of the arrays change whenever a new
simple variable is assigned.

VARPTR$ Function

VARPTR$(variable name)Syntax

Purpose

Remarks

10 PLAY “X” + VARPTR$(A$)Example

10 PLAY “XA$;

Note

4-271GW-BASIC

VARPTR$ returns a three-byte string in the
form:

where “variable name” is the name of a variable
in the program.

To return a character form of the memory
address of the variable.

VARPTR$ is primarily used with the DRAW and
PLAY statements in programs that will be
compiled.

A value must be assigned to “variable name”
prior to execution of VARPTR$; otherwise, an
“Illegal function call” error results. Any type
variable (numeric, string, or array) may be used.

uses the subcommand X, plus the address of A$,
as the string expression in the PLAY statement.
In the GW-BASIC interpreter supplied, this is
the same as

Because array addresses change whenever a new
variable is assigned, always assign all simple
variables before calling VARPTR$ for an array
element.

COMMANDS AND FUNCTIONS
VARPTR$

byte 0 = type: 2 = integer, 3 = string, 4 =
single precision, 5 = double
precision

byte 1 = low byte of address
byte 2 = high byte of address

VIEW Command

Syntax

Purpose

Remarks

GW-BASIC4-272

COMMANDS AND FUNCTIONS
VIEW

To define subsets of the screen (“viewports”) in
the graphics display modes in order to limit
screen activity to a specified area.

VIEW without any parameters defines the entire
screen as the viewport. The RUN command has
the same effect.

(xl,yl)-(x2,y2) are the coordinates of the top left
and bottom right corners of the rectangular
viewport, respectively. Unlike most other coordi­
nate specifications in GW-BASIC, these coordi­
nates must represent screen points actually
available, otherwise an “Illegal function call”
error occurs.

VIEW [[SCREEN] [(xl,yl)-(x2,y2)[,[filling]
[, [outline]]]]]

“filling” allows you to fill the viewport with
color, “filling” is therefore a number 0 to 3
in low and high resolution color graphics (0:
background ; 1 to 3: color from color palette),
or 0 (black) or 1 (white) in medium and high
resolution black-and-white graphics. If you do
not specify a color, no filling is performed.

“outline” allows you to draw a boundary line in a
specified color (see “filling”), if space is available.

The viewport specified may not extend beyond
the screen. The coordinates specified for the two
diametrically opposed corners must not be identi­
cal.

If the word SCREEN is not included in the VIEW
command, the coordinates of subsequent graph­
ics drawing are relative to the viewport. Thus, it
is possible to display the same graphics design
with different scaling, if you have previously
issued an explicit WINDOW command.

If the word SCREEN is included, the physical
screen area addressed by graphics commands is
unaltered by the viewport, but only those parts

Only one viewport can be active at a given time.

Examples

4-273GW-BASIC

10 SCREEN 1:CLS:COLOR 0,0
20 WINDOW SCREEN (0,0)-(319,199)
30 CIRCLE (160,100),70,1
40 VIEW (40,30)-(90,70)„2
50 CIRCLE (160,100),70,3

While still in the graphics mode enter CLS as a
direct command. Only the small, brown circle
disappears.

The following program shows VIEW with the
SCREEN option. First, a circle is drawn in
normal screen characteristics (line 20). Then a
viewport is defined in the top left quarter of the
screen (line 30). Only the part of the second circle
which lies within the viewport is then actually
drawn (line 40).

10 SCREEN 1:CLS:COLOR 0,0
20 CIRCLE (160,100),96,1
30 VIEW SCREEN (1,1)-(159,99)„2
40 CIRCLE (160,100),90,3

which fall within the viewport are actually
displayed.

CLS affects only the current viewport. To clear
the entire physical screen, first disable the
viewport by means of VIEW without parameters.

COMMANDS AND FUNCTIONS
VIEW

The first example shows the use of VIEW to draw
a circle, first with the normal screen display
scale, then removed and reduced. The circle using
normal low resolution graphics’ screen coor­
dinates is drawing in green (line 30), then a small
viewport is defined and outlined in red (line 40).
Finally, a circle is drawn in brown. Note that this
latter circle uses the same coordinates for its
center and the same radius as the first circle, but
is now scaled to the new viewport.

WAIT Command

WAIT port number,I[,J]Syntax

where I and J are integer expressions.

Purpose

Remarks

Example 100 WAIT 32,2

Note

4-274 GW-BASIC

COMMANDS AND FUNCTIONS
WAIT

There is no error trapping facility in the event
that the specified bit pattern (value) does not
appear at the port, but you can break out with
Ctrl-Break.

The WAIT command causes execution to be
suspended until a specified machine input port
develops a specified bit pattern. The data read at
the port is XORed with the integer expression J,
and then ANDed with I. If the result is zero,
GW-BASIC loops back and reads the data at the
port again. If the result is nonzero, execution
continues with the next command. If J is omitted,
it is assumed to be zero.

Suspends program execution until the value 2 is
present at port 32.

To suspend program execution while monitoring
the status of a machine input port.

WHILE AND WEND Commands

Syntax WHILE expression

[loop commands]

WEND

Purpose

Remarks

Example

4-275GW-BASIC

To execute a series of commands in a loop as long
as a given condition is true.

If “expression” is true (that is, resulting in a
non-zero value) , “loop commands” are executed
until WEND is encountered. GW-BASIC then
returns to the WHILE command and checks
“expression”. If it is still true, the process is
repeated. If it is not true, execution resumes with
the command following WEND.

COMMANDS AND FUNCTIONS
WHILE and WEND

FLIPS = 0
FOR 1 = 1 TO J-l

IF A$(I)>A$(I + 1) THEN
SWAP A$(I),A$(I + 1):FLIPS = 1

NEXT I

90 ‘bubble sort array a$ containing J elements
100 FLIPS = 1 ‘force one pass thru

LOOP
110 WHILE FLIPS
115
120
130

140
150 WEND
This example sorts the elements of the array A$
into alphabetical, or, to be more precise, ascend­
ing ASCII sequence. The leading spaces in lines
115 to 140 are a programming convention which
has no effect on the way GW-BASIC executes the
commands. They simply reflect the depth of
nesting.

WHILE/WEND loops may be nested to any level.
Each WEND will match the most recent WHILE.
An unmatched WHILE causes a “WHILE
without WEND” error, and an unmatched
WEND a “WEND without WHILE” error.

WIDTH Command

Syntax

Purpose

Remarks

4-276 GW-BASIC

COMMANDS AND FUNCTIONS
WIDTH

WIDTH file number,size
If the file is open to LPT1:, the line printer’s
printed line width is immediately changed to the
new size specified. This command allows you to
change the width at will while the file is open.
This form of the WIDTH command is also
meaningful for any of the other devices specified
above.

Sets the output line width in number of
characters.

“file number”
Numeric expression in the integer range 1 to 15.
This is the number of a file opened for a device.

WIDTH file number,size
WIDTH device,size
WIDTH size

WIDTH device,size
Used as a deferred width assignment for the line
printer, this form of the WIDTH command stores
the new width value without actually changing
the current width setting. A subsequent OPEN
command for the specified device will use the new
size specified while the file is open.

Note that the LPRINT, LLIST, and LIST,“LPT
commands perform an automatic OPEN. You do
not have to explicitly open the device.

“device”
String expression which identifies the device.
Valid devices are SCRN:, LPT1:, LPT2:, LPT3:,
C0M1:, and COM2:.

“size”
Numeric expression in the integer range 1 to 255.
This is the new width. If you specify 0,
GW-BASIC understands 1.

4-277GW-BASIC

If you enter any value outside the legal ranges an
“Illegal Function Call” error occurs. The previous
value is retained.

The transmit and receive buffer of a communica­
tions file are not altered by WIDTH. The only
effect is that GW-BASIC adds a carriage return
as soon as “size” characters are in the buffer.

The default WIDTH for printing devices is 80; for
communications files 255 with no line folding.

COMMANDS AND FUNCTIONS
WIDTH

No data is lost by using the WIDTH command.
GW-BASIC simply adds a carriage return after
sending the number of characters specified as
“size”. For example, if you have a 60-character
line and a 40-character printer, and if you issue
WIDTH 40, the first 40 characters will be printed
on one line and the next 20 characters on the next
line.

WIDTH size
or
WIDTH “SCRN:”, size
Sets the number of characters which can be
displayed in a screen line. You may specify either
40 or 80. If the screen display is in either of the
graphics modes, WIDTH 40 automatically selects
or confirms low resolution graphics. When
entered while in low resolution mode, WIDTH
80 selects medium resolution graphics. If the
screen display is in medium or high resolution
graphics, specifying WIDTH 80 has no effect.

WINDOW Command

WINDOW [[SCREEN](xl,yl)-(x2,y2)]Syntax

Purpose

Remarks

WINDOW SCREEN(0,0)-(639,399)

4-278 GW-BASIC

COMMANDS AND FUNCTIONS
WINDOW

To redefine the coordinates of the screen in
low, medium and high resolution graphics.

xl,yl and x2,y2 represent in single precision
numbers the coordinates of two diametrically
opposite corners of the screen. For example, your
program can determine that the screen in
low resolution graphics is to be regarded by

GW-BASIC as consisting of 240 (horizontal) by
150 points. The result is that a graphics drawing
appears larger than it did when using the default
320 by 200 coordinate system, without you having
to change the values in the drawing commands.
This is often called a zoom effect, a term which
you may know from photography.

Exactly which two corners are defined by the
“world coordinates” xl,yl and x2,y2 depends on
whether or not you specify SCREEN in the
WINDOW command. If you include SCREEN, the
GW-BASIC convention is retained; that is, xl,yl
is the upper left corner, and x2,y2 is the bottom
right corner. WINDOW sorts the two coordinate
pairs, placing the smaller values for x and y first,
even if you specify them the other way around.
This means that movement from left to right
across the screen increases the x value, while
movement down the screen increases the y value.

If you do not include SCREEN, xl,yl refers to the
bottom left corner of the screen, and x2,y2 refers
to the top right corner. The Cartesian scheme
then applies, namely, that movement down the
screen decreases the y value.

Figure 1 shows the coordinate scheme as set
automatically when high resolution graphics
mode is selected. The explicit command to set this
scheme would be

o.o 320.00 639,0

y increases

320,200

0, 399 320, 399 639, 399

Figure 1

WINDOW (-320,-200) - (319,199)

WINDOW (-1,-1)-(1,1)

4-279GW-BASIC

although this offers the maximum degree of
graphic resolution for that graphics mode. Fur­
thermore, there is no reason why the origin must
be in the center of the screen.

The general formulation of the WINDOW com­
mand for Figure 2 is

COMMANDS AND FUNCTIONS
WINDOW

Figure 2 shows the Cartesian coordinate scheme
with the origin (0,0) in the center of the screen.
The coordinates are here given symbolically in
terms of 1,0, and -1 to denote the transition from
negative to positive values of x and y, and, at the
same time, to remind you that you are by no
means obliged to use (in high resolution
graphics)

-1,1 0,1 1,1

y increases

0,0

y decreases

“1 ,“1 0,-1

Figure 2

WINDOW SCREEN

0,-1-1 ,-1

y decreases

0,0

y increases

0,1 1,1

Figure 3

4-280 GW-BASIC

COMMANDS AND FUNCTIONS
WINDOW

Figure 3 shows in generalized form the standard
high resolution graphics coordinate scheme given
in Figure 1. The equivalent WINDOW command
is

Example

4-281GW-BASIC

WINDOW (200,200)-(10,10)
this is interpreted as

WINDOW uses “clipping”; that is, if your graph­
ics design extends beyond the coordinate range
defined for the screen, those parts outside the
range are not displayed (there is no wrap around
to another part of the screen).
If you specify WINDOW without any parameters,
normal physical screen coordinates are restored.
The RUN command and SCREEN statement have
the same effect.

The two sets of coordinates in the WINDOW
statement must not be identical.

WINDOW (10,10)-(200,200)
A newly set window applies to subsequent graph­
ics drawing. It does not affect existing screen
contents.

COMMANDS AND FUNCTIONS
WINDOW

The effect of WINDOW sorting the coordinate
pairs is that if you, for example, specify

The following program demonstrates zooming,
panning, and clipping in medium resolution
graphics.
First, Cartesian coordinates are set with the
origin (0,0) at the center of the screen (line 20),
and the axes are drawn in green through the
origin. Two boxes are then drawn, one in the
bottom left quadrant, and the other in the top
right quadrant. You can then specify a point in
terms of the current Cartesian coordinate scheme
of (-160,-100)-(159,99).This point is to become the
new focus for zooming. Then, you are asked to
specify a zoom factor. A value greater than 1
produces zoom in; a value less than 1 produces
zoom out. The boxes drawn in line 143 are suitable
for zoom in. For zoom out, try making this the
REM line and removing REM from line 145.

GW-BASIC4-282

5 Xl = -160:Yl = -100:X2=159:Y2=99
10 SCREEN 1:CLS:COLOR 0,0
20 WINDOW (X1,Y1)-(X2,Y2)
40 GOSUB 130
50 LOCATE l,l:INPUT;“zoom/pan to x,y posi­

tion? ”;X,Y
60 LOCATE l,l:INPUT;“zoom factor - zoom

out:< 1? ”;ZP
61 LOCATE „0
62 FOR SC= 1 TO ZP STEP (ZP< = l)*ZP/30-

(ZP>l)*(ZP-l)/60
70 CLS
80 WINDOW

((X*SC+X1)/SC,(Y*SC+Y1)/SC)-
((X*SC+X2)/SC,(Y*SC+Y2)/SC)

100 GOSUB 130
102 NEXT SC
110 IF INKEY$
120 STOP
125 REM ***** Draw axes and boxes
130 LINE (0,50)-(0,-50),l:LINE (-60,0)-(60,0),l
143 LINE (20,20)-(30,30),2,BF:LINE

(-20,-20)-(-5,-5),3,BF
145 REM LINE (20,20)-(60,60),2,BF:LINE

(-40,-40)-(-5,-5),3,BF
170 RETURN

= “” THEN 110

COMMANDS AND FUNCTIONS
WINDOW

WRITE Command

WRITE [list of expressions]Syntax

To output data to the screen.Purpose

Remarks

Example

4-283GW-BASIC

If “list of expressions” is omitted, a blank line is
output. If “list of expressions” is included, the
values of the expressions are output to the screen.
The expressions in the list may be numeric
and/or string expressions. They must be
separated by commas or semicolons.

When the items are output, each item is
separated from the last by a comma. When
displayed, strings are delimited by quotation
marks. Positive numbers are not preceded by
blanks. After the last item in the list is printed,
GW-BASIC inserts a carriage return/linefeed.
These are the features which distinguish WRITE
from PRINT.

WRITE outputs numeric values using the same
format as PRINT.

COMMANDS AND FUNCTIONS
WRITE

10 A = 80:B=90:C$ = “THAT’S ALL”
20 WRITE A,B,C$
will yield

80, 90,“THAT’S ALL’

WRITE# Command

WRITE#file number,list of expressionsSyntax

To write data to a sequential file.Purpose

Remarks

Example Let A$ = “CAMERA” and B$ = “93604-1”

The command:

WRITE#1,A$,B$

writes the following image to the file:

“CAMERA”,“93604-1”

A subsequent INPUTS command, such as

INPUT#1,A$,B$

4-284 GW-BASIC

COMMANDS AND FUNCTIONS
WRITE#

would input “CAMERA” to A$ and “93604-1”
to B$.

The difference between WRITE# and PRINT# is
that WRITE# inserts commas between the items
as they are written to the file and delimits strings
with quotation marks. Therefore, it is not
necessary to put explicit delimiters in the list. A
carriage return/linefeed sequence is inserted
after the last item in the list is written to the file.

“file number” is the number under which the file
was OPENed. The expressions in the list are
string or numeric expressions. They must be
separated by commas or semicolons.

Chapter 5

Files and Devices

() { } @ # $ % *&!-_’/

GW-BASIC 5-1

EVERY FILE NEEDS A NAME
A filename may be up to eight characters long. All letters of the
alphabet and all digits are allowed characters. In addition, the
filename may include the following characters:

The term “file” refers not only to the name under which we SAVE and
LOAD GW-BASIC programs. We also use this term for any collection
of data stored on disk which is capable of being processed by a
program. A “device” normally exists outside the computer cabinet
and is capable of receiving and/or transmitting data, or even
converting data from one form to another. Examples of devices are
the keyboard, a printer, a telephone modem. Even the screen inside
the cabinet can be considered to be a device.
Files and devices are discussed in a common chapter because
GW-BASIC addresses them in the same way. Any type of input/
output can be treated as if it is related to a disk file. Obviously, the
special physical characteristics of the device must be taken into
account. For example, you can easily inspect a record already written
to disk, but you cannot expect a printer to roll back six pages and read
back to your program what is written on that page.
GW-BASIC expects you to say which files you wish to access. You do
this by means of the OPEN command. This command asks you to
state the name of a file and a number with which that file is to be
associated as long it is open. Normally, GW-BASIC allows you to have
up to three data files open at any time, but you can change this
number using the /F option when loading GW-BASIC (see
“Starting-up GW-BASIC” in Chapter 1). When you have finished
working with a file you should CLOSE it. This frees some memory
space and ensures that important information, such as the latest
state of a disk directory, has been noted by GW-BASIC.

FILES AND DEVICES

B:MARKET

5-2 GW-BASIC

A single disk may contain not just one but a number of directories
arranged in a tree-like structure. The main directory is called the root
directory. This is the directory to which all paths must lead back. A
path is the route you have to follow through the structure in order to
access a particular file. You can specify such a path either from the
root directory to a file or from the current directory to a file. A
directory may contain sub-directories and/or files. If you do not
specify a path, GW-BASIC assumes that the file is to be found in the
current directory.

The path to a file is denoted by one or more directory names separated
by \ and concluded by a filename (.extension). The symbol.. denotes
the parent directory, that is, the directory immediately above in the
hierarchical structure. A path may be preceded by a drive letter.

At the same time as stating the name of a file (with an extension, if
one is provided), you may wish to specify in which drive the disk
containing that file is situated. In this case, you must precede the
filename with the drive letter and a colon, for example

You will normally specify the drive if you know the file is not present
on, or is not to be created on, the currently active disk.

The version of GW-BASIC supplied also enables you to specify a path
of access to a file. Your NCR-DOS manual tells you all about
directories and paths. Here is a quick summary of this facility.

If you wish, you can append a period (.) to the filename followed by an
extension consisting of up to three of the legal characters. GW-BASIC
does this automatically to program files (.BAS), if you do not specify a
different extension.

It makes sense to give a file a name which has something to do with its
existing or prospective contents. For example, you might call a
program which carries out a market analysis MARKET.BAS, and the
files containing the reports that are processed in the course of the
analysis MKTRPT1, MKTRPT2, and so on.

FILES AND DEVICES

ROOT

SALES ACCOUNTING

JOHN MARY STEVE SUE

REPORT

REPORT

or

\ SALES \ JOHN \ REPORT

or

„\ MARY \ REPORT

or

.. \.. \ ACCOUNTING \ SUE \ REPORT

or

\ ACCOUNTING \ SUE \ REPORT

GW-BASIC 5-3

\ SALES \ MARY \ REPORT. To access the REPORT under SUE, you
can specify the path

REPORT
other
files

REPORT
other
files

Given the structure in the previous illustration and assuming that
the current directory is JOHN, the path

„\ JOHN \ REPORT
all reference the REPORT in the directory JOHN. To gain access to
the REPORT under MARY, you would have to specify the path as

REPORT
other
files

FILES AND DEVICES

DEVICE NAMES

KYBD: the keyboard.

5-4 GW-BASIC

Note that an initial \ refers to the root directory. You may precede
specification of a path by a drive letter. The character set allowed for
naming directories is the same as that used for naming files. Your
NCR-DOS manual gives complete details about the number of files
and sub-directories which can be accommodated on disks.
The GW-BASIC commands allow you to set up or alter the path
within the directory structure:

BLOAD
BSAVE
CHAIN
FILES
KILL
LOAD

CHDIR
MKDIR
RMDIR
ENVIRON

MERGE
NAME
OPEN
RUN
SAVE

Unlike filenames, device names are already determined by GW-
BASIC:

In addition, the following commands allow you to specify a path to a
file:

If you have not as yet specified any directories, either in GW-BASIC
or outside GW-BASIC at the NCR-DOS command level, GW-BASIC
assumes the root directory. In this case, you do not have to explicitly
state the root directory when accessing files. Therefore, you do not
need to be concerned with different directories and the paths to them,
if you do not yet wish to use this facility of the NCR-DOS Operating
System. You can refer to both program and data files using filename,
extension where provided, and drive letter where appropriate.

A: }
B:
C

} the disk drives: the flexible disk drives (or drive) are
} designated A: and B:, the first fixed disk is designated C:,
and so on.

D: }

FILES AND DEVICES

the screen display.SCRN:

5-5GW-BASIC

GW-BASIC ANYPROG >PROTOCOL.DSK
means that any data which would normally appear on the screen will
be sent to the disk file PROTOCOL.DSK instead.

• INPUTS and input from the specified device KYBD: are still
derived from the keyboard.

• Output explicitly directed to the output device SCRN: is displayed
on the screen.

GW-BASIC FASTKEY <REPLACE.KEY >PROTOCOL.DSK
has the effect that data which would normally appear on the screen
will now be sent to the disk file PROTOCOL.DSK. Input from the
keyboard is suspended. In its place, input is derived from the disk file
REPLACE.KEY.
If you specify not one but two >> when redirecting standard output,
the output does not replace but is appended to the existing file.
Example:

GW-BASIC SECRET >>COLLECT.DAT
appends what would otherwise be the screen output to the disk file
COLLECT.DAT.
Regardless of input and output redirection:
• error messages are still displayed on the screen.

LPT1: }
LPT2: } printers (if present).
LPT3: }

C0M1: } adapters for asynchronous communications
COM2: }

REDIRECTION OF STANDARD INPUT/OUTPUT
The standard input device is the keyboard, the standard output device
is the screen display. You can redirect standard input and output to
files or suitable devices. This is achieved by specifying the < or >
option in the NCR-DOS command line which loads GW-BASIC.
Examples:

FILES AND DEVICES

HOW TO USE DISK DATA FILES

5-6 GW-BASIC

You can create and access two types of disk data file. Files for
sequential access (for the sake of brevity usually called “sequential
files”) and files for random access (“random files”) both store data in
units of records. Your program can determine the length of the record
to suit the data you wish to store. For example, you may decide that a
file should store weather observations of the last 24 hours. Your
record might then look something like this:

• Trapping of keys set up by an ON KEY(n) command is still in
force.

The same fixed sequence applies when reading the file. Your
program must read the records one by one from the beginning
until it finds the record it is looking for. It can then read the
record, but not alter it. This is because a sequential file can be

Ctrl-PrtSc does not copy the screen as long as standard output is
redirected. The redirection of standard output is terminated if you
press Ctrl-Break.

10 bytes for the name of the weather station
4 bytes for time of observation
3 bytes for wind direction
2 bytes for wind force
3 bytes for temperature
2 bytes for relative humidity
4 bytes for atmospheric pressure
4 bytes for visibility

Accordingly, you would choose a record length of at least 32 bytes. If
you do not specify a record length, GW-BASIC assumes 128 bytes.

Then you must decide whether you would like to store and access the
data as a sequential file or as a random file. The characteristics of
these two types of file are as follows.
• Sequential files

As the name suggests, data is written to and read from a
sequential file in a fixed sequence. The first record you write is
record 1, the second record written is record 2, and so on. It is not
possible to write, say, six records and then ask GW-BASIC to note
that you might wish to insert a record between records 2 and 3 at
a later date.

FILES AND DEVICES

GW-BASIC 5-7

Random files allow you to specify a record number which deviates
from the ascending sequence of record numbers associated with
sequential files. You can, for example, write records 1 to 6, and
then continue with record 9, thus leaving “space” for two
additional records which you can insert at a later date. You can
read the records in any order you wish, and you can alter a record
without having to read the file from the beginning. Random files
usually store numeric items in a compressed format, so if you are
working mainly with numbers, using random files can save disk
space.

When comparing the advantages of the two types of file access it
should also be mentioned that random files require more program­
ming than do sequential files. Returning to the example of the
weather reports, you would probably decide that the observations of
the last 24 hours, or the last week, are required at present for fast
random access in order to do the calculations necessary for making a
forecast. Observations which go further back in time are for the
archives and can be stored in chronological order in sequential files.
They need no longer be accessed quickly, but still provide source
information from which statistics can be derived.

open for input, output, or appending at any one time, but not for
more than one of these functions. Appending allows you to add
records at the end of an existing file, but does not allow you to
change the sequence of existing records.

• Random files

Creating a Sequential File.
Here is an example of a new sequential file being opened to receive
data from a program. The GW-BASIC default record length of 128
bytes applies. Each record consists of the concatenation of the strings
N$ (name), D$ (department), and H$ (date hired), with separating
commas. A record is written each time line 50 is executed.

OPEN, CLOSE (the OPEN command can be written in two
different ways, see Chapter 4)

INPUT#, LINE INPUT# - reading data from the file
PRINT#, PRINT# USING, WRITE# - writing data to the file
EOF, LOG, LOF - end of file, location in file, length of file.

SEQUENTIAL FILES
The following commands and functions are used with sequential files:

FILES AND DEVICES

NAME? DONE

5-8 GW-BASIC

Start the program with RUN and enter the following sample data in
response to the prompts NAME, DEPARTMENT, and DATE HIRED:

Reading a Sequential File
The following program reads the sequential file created in the
previous section and displays the names of all people hired in 1978.

NAME? EBENEEZER SCROOGE
DEPARTMENT? ACCOUNTING
DATE HIRED? 04/26/78

NAME? SUPER MANN
DEPARTMENT? MAINTENANCE
DATE HIRED? 08/16/78

NAME? SHERLOCK HOLMES
DEPARTMENT? RESEARCH
DATE HIRED? 12/03/65

NAME? MICKEY MOUSE
DEPARTMENT? AUDIO/VISUAL AIDS
DATE HIRED? 01/12/72

10 OPEN “I”,#1,“DATA”
20 INPUT#!,N$,D$,H$
30 IF RIGHT$(H$,2) = “78” THEN PRINT N$
40 GOTO 20
RUN
EBENEEZER SCROOGE
SUPER MANN
Input past end in 20
ok

10 OPEN “0”,#l,“DATA”
20 INPUT “NAME”;N$
25 IF N$=“DONE” THEN CLOSErEND
30 INPUT “DEPARTMENTS
40 INPUT “DATE HIRED”;H$
50 PRINT#1,N$;“,”;D$;“,”;H$
60 PRINT:GOTO 20

FILES AND DEVICES

40 GOTO 15

4. Write the record(s) for insertion to the temporary file.

6. CLOSE both files.

GW-BASIC 5-9

15 IF EOF(l) THEN PRINT “File search complete”:END

and change line 40 to

When the program tries to INPUT# beyond the end of the file, an
“Input past end” error occurs. To bring the program to an orderly
conclusion, add the program line

It is always advisable to check for end of file before (not after) reading
a record, just in case there are no records in the file at all.

2. Read a record from the original file and write that record to the
temporary file.

3. Repeat step 2, checking each time whether the current record is
the one after which the record insertion is to take place. If this is
so, proceed to step 4.

5. Resume reading the original file, writing each record to the
temporary file, until EOF is detected.

7. Delete the original file (KILL). Then rename the temporary file to
the name of the original file just deleted (NAM).

Continuing a Sequential File
Although adding data to a file is essentially an output operation, you
must not specify “0” or OUTPUT when opening the file, otherwise the
existing file is destroyed. Instead, you should open the file for
APPEND. Records subsequently written to the file are added to the
existing records.

Inserting Records in a Sequential File
To insert data in an existing sequential file an additional, temporary
sequential file is required.

1. OPEN the original file for input and the temporary file for
output.

FILES AND DEVICES

OPEN “R”,#l, “FILE”,32

or

OPEN “FILE” AS #1 LEN = 32

FIELD#l,20 AS N$, 4 AS A$,8 AS P$

5-10 GW-BASIC

LSET N$ = M$
LSET A$ = MKS$(AMT)
P$=TEL$

OPEN, CLOSE (the OPEN command can be written in two
different ways, see Chapter 4)

FIELD - relates program variables to the file buffer
LSET, RSET — alignment of data in the buffer
MKI$, MKS$, MKD$ — convert numeric data to string form in

preparation for writing to the file
CVI, CVS, CVD — convert string representations of numeric

values read from from file
GET — reads a record from the disk into the file buffer
PUT — writes a file from the file buffer to disk
LOC, LOF — location in file, end of file.

RANDOM FILES
The following commands and functions are used with random files:

3. Use the LSET command to move the data into the random buffer.
Numeric values must be made into strings when placed in the
buffer. To do this, use the “make” functions. MKI$ makes an
integer value into a string, MKS$ makes an integer value into a
single precision value, and MKD$ makes an integer value into a
double precision value. Example:

2. Use the FIELD command to allocate space in the random buffer
for the variables that will be written to the random file. Example:

Creating a Random File
Creation of a random file requires the following program steps.

1. OPEN the file for random access (“R” mode). This example
specifies a record length of 32 bytes. If the record length is
omitted, the default is 128 bytes. Example:

FILES AND DEVICES

NOTE:

OPEN “R”,#l, “FILE”,32

5-11GW-BASIC

IF LOC(1)>50 THEN END
ends program execution if the current record number in file #1 is
higher than 50.
The following program asks you to enter a record number (line 30).
Your subsequent input is set up in the file buffer (lines 70 to 90) and
written to the file “FILE” in line 100. This process is repeated until
you enter a record number less than 1.

10 OPEN “R”,#1,“FILE”,32
20 FIELD#l,20 AS N$,4 AS A$, 8 AS P$
30 INPUT “2-DIGIT CODE”;RECORD%
35 IF RECORD% <1 THEN CLOSE:END
40 INPUT “NAME”;X$
50 INPUT “AMOUNT”;AMT
60 INPUT “PHONE”;TEL$:PRINT
70 LSET N$ = X$
80 LSET A$ = MKS$(AMT)
90 LSET P$ = TEL$
100 PUT#1,RECORD%
110 GOTO 30

Do not use a FIELDed string variable in an INPUT or LET
command. This causes the pointer for that variable to point
into string space instead of into the random access file
buffer.

Accessing a Random File
The initial steps for accessing an existing random file are the same as
those for the original creation of the file. If the file is still open from
previous use, these two steps are not required:

1. OPEN the file in “R” mode.

PUT #1,CODE%
The LOC function, with random access files, returns the “current
record number.” The current record number is one plus the last
record number that was used to a GET or PUT command. For
example:

4. Write the data from the buffer to the disk using the PUT
command Example:

FILES AND DEVICES

or

OPEN “FILE” AS #1 LEN = 32

GW-BASIC5-12

PRINT N$
PRINT CVS(A$)

The following program gives you access to the data written to the disk
file in the example given in the section “Creating a random file”. All
you have to do is enter the number of the record you wish to be
displayed. You do not have to read the records one by one from the
beginning of the file, as you would have to with a sequential file.

FIELD#l,20 AS N$, 4 AS A$,8 AS P$
You can now read any record into the file buffer and then evaluate the
contents of the buffer using the FIELDed variables:

3. Use the GET command to move the desired record into the
random buffer.

GET #1,RECORD%
4. The data in the buffer may now be accessed by the program.

Numeric values must be converted back to numbers using the
“convert” functions. CVI converts numeric values to . integer
values, CVS converts numeric values to single precision values,
and CVD converts numeric values to double precision values.

2. Execute a FIELD command to allocate space in the random
buffer for the variables that will be read from the file.

10 OPEN “R”,#1,“FILE”,32
20 FIELD #1,20 AS N$,4 AS A$,8 AS P$
30 INPUT “2-DIGIT CODE”;RECORD%
35 IF RECORD% <1 THEN CLOSE:END
40 GET#1,RECORD%
50 PRINT N$
60 PRINT USING “$$###.##”;CVS(A$)
70 PRINT P$:PRINT
80 GOTO 30

A Sample Random Access Program
Here is an inventory program that illustrates random file access. In
this program, the record number is used as the part number, and it is
assumed the inventory will contain no more than 100 different part

FILES AND DEVICES

GW-BASIC 5-13

numbers. Lines 900 through 960 initialize the data file by writing
CHR$(255) as the first character of each record. This is used later
(line 270 and line 500) to determine whether an entry already exists
for that part number.

Lines 140 through 210 display the different inventory functions that
the program performs. When you type in the desired function
number, line 230 branches to the appropriate subroutine.

110 REM INVENTORY
120 OPEN“R”,#1,“INVEN.DAT”,39
130 FIELD#1,1 AS F$,30 AS D$,2 AS Q$,2 AS R$,4 AS P$
140 PRINT:PRINT “Choose from:“:PRINT
150 PRINT 1,“INITIALIZE FILE”
160 PRINT 2,“CREATE A NEW ENTRY”
170 PRINT 3,“DISPLAY INVENTORY FOR ONE PART”
180 PRINT 4,“ADD TO STOCK”
190 PRINT 5,“SUBTRACT FROM STOCK”
200 PRINT 6,“DISPLAY ALL ITEMS BELOW REORDER

LEVEL”
205 PRINT 7,“END PROGRAM”
210 PRINT:PRINT:INPUT“Your choice”;FUNCTION
220 IF (FUNCTION<1)OR(FUNCTION>7) THEN PRINT

“Valid choices are 1 to 7”:GOTO 140
230 ON FUNCTION GOSUB 900,250,390,480,560,680,245
240 GOTO 210
245 CLOSE:END
250 REM BUILD NEW ENTRY
260 GOSUB 840
270 IF ASC(F$)<>255 THEN INPUT “ENTER Y TO OVER-

WRITE”;A$:IF A$O“Y” THEN RETURN
280 LSET F$=CHR$(0)
290 INPUT “DESCRIPTION”;DESC$
300 LSET D$=DESC$
310 INPUT “QUANTITY IN STOCK”;Q%
320 LSET Q$ = MKI$(Q%)
330 INPUT “REORDER LEVER”;R%
340 LSET R$ = MKI$(R%)
350 INPUT “UNIT PRICE”;P
360 LSET P$ = MKS$(P)
370 PUT#1,PART%
380 RETURN
390 REM DISPLAY ENTRY
400 GOSUB 840

FILES AND DEVICES

“ONLY”;Q%;:PRINT IN

5-14 GW-BASIC

410 IF ASC(F$)=255 THEN PRINT “NULL ENTRY”:RETURN
420 PRINT USING “PART NUMBER###”;PART%
430 PRINT D$
440 PRINT USING “QUANTITY ON HAND#####”;CVI(Q$)
450 PRINT USING “REORDER LEVEL#####”;CVI(R$)
460 PRINT USING “UNIT PRICE $$##.##”;CVS(P$)
470 RETURN
480 REM ADD TO STOCK
490 GOSUB 840
500 IF ASC(F$)=255 THEN PRINT “NULL ENTRY”:RETURN
510 PRINT D$:INPUT “QUANTITY TO ADD“;A%
520 Q% =CVI(Q$) + A%
530 LSET Q$=MKI$(Q%)
540 PUT#1,PART%
550 RETURN
560 REM REMOVE FROM STOCK
570 GOSUB 840
580 IF ASC(F$) = 255 THEN PRINT “NULL ENTRY”:RETURN
590 PRINT D$
600 INPUT “QUANTITY TO SUBTRACT”;S%
610 Q% =CVI(Q$)
620 IF (Q%-S%)<0 THEN

STOCK”:GOTO 600
630 Q%=Q%-S%
640 IF Q% = <CVI(R$) THEN PRINT “QUANTITY

NOW”;Q%; “REORDER LEVEL”;CVI(R$)
650 LSET Q$ = MKI$(Q%)
660 PUT#1,PART%
670 RETURN
680 REM DISPLAY ITEMS BELOW REORDER LEVEL
690 FOR 1 = 1 TO 100
710 GET#1,I
720 IF CVI(Q$)<CVI(R$) THEN PRINT D$;“QUANTITY”;

CVI(Q$) TAB(50) “REORDER LEVEL”;CVI(R$)
730 NEXT I
740 RETURN
840 INPUT “PART NUMBER”;PART%
845 REM GET RECORD FOR PART
850 IF(PART% <1)OR(PART% >100) THEN PRINT “BAD

PART NUMBER”:GOTO 840 ELSE
GET#1,PART% :RETURN

FILES AND DEVICES

THEN

COMMUNICATIONS

GW-BASIC 5-15

This section describes the GW-BASIC program steps required to
support RS-232 asynchronous communication with other computers
and peripherals (with or without XON-XOFF Protocol).

Communications sequential input commands are the same as those
for disk files. They are:

GET and PUT can be used for fixed length input/output. Obviously,
you cannot specify a record number; instead, you state the number of
bytes to be transferred either into or out of the file buffer (see GET,
PUT and the LEN option in OPEN “COM, Chapter 4).

Communications sequential output commands are also the same as
those for disk files. They are:

INPUT#
LINE INPUT#
INPUTS

PRINT
PRINT USING
WRITE#

COMMUNICATION I/O
Because the communications buffer is opened as a file, all input/
output commands which are valid for disk files are valid for
communications.

OPENING A COMMUNICATIONS FILE
The OPEN “COM command allocates a buffer for input/output in the
same manner as the OPEN for disk files. Rfefer to OPEN COM in
Chapter 4.

900 REM INITIALIZE FILE
910 INPUT “ARE YOU SURE”;B$:IF B$<>“Y”

RETURN
920 LSET F$=CHR$(255)
930 FOR 1 = 1 TO 100
940 PUT#1,I
950 NEXT I
960 RETURN

FILES AND DEVICES

LOC(x)

LOF(x)

EOF(x)

5-16 GW-BASIC

10 WHILE NOT EOF(l)
20 A$ = INPUT$(LOC(1),#1)

Returns the amount of free space in the input buffer.
This is the same as the size of the buffer minus the
value returned by LOC. The size of the communica­
tions buffer can be set by the /C option when loading
GW-BASIC. The default size of the buffer is 256
bytes. Attempting to read data into a full buffer can
cause a “Communication buffer overflow” error.

Returns true (-1) if the input buffer is empty; returns
false (0) if there are any characters waiting to be
read.

Returns the number of characters in the input buffer
which are waiting to be read. If more than 255
characters are in the buffer, LOC(x) returns 255. (The
input buffer can hold more than 255 characters, as
determined by the /C option when loading GW-
BASIC.) If fewer than 255 characters remain in the
buffer, LOC(x) returns the actual amount.

I/O Functions
The most difficult aspect of asynchronous communication is process­
ing characters as fast as they are received. At rates above 1200 bps it
may be necessary to suspend character transmission from the input
device long enough for characters already received to be processed.
This can be done by sending XOFF (CHR$(19)) and XON (CHR$(17))
to the computer or device transmitting data to your NCR PC. XOFF
tells the input device to stop sending; XON tells it to resume sending.

There are three functions which help to determine when an “overrun”
condition may occur:

INPUTS FUNCTION
As a recommendation, use the INPUTS function instead of the
INPUT# and LINE INPUT# commands when reading communica­
tions files, because it allows all characters read to be assigned to a
string. INPUT# stops input when it detects a comma or<ENTER>
INPUTS returns a string of a specified number of characters read
from a file specified by number. The following commands are
efficient in reading a communications buffer:

FILES AND DEVICES

NOTE:

GW-BASIC 5-17

If there are characters in the input buffer, the above commands
return the characters in the buffer into A$ and process them (lines 30,
40, 50, etc.). If there are more than 255 characters, only 255 at a time
will be returned to prevent a “String overflow” error. Further, if
there are more than 255 characters, EOF(l) is false, and input into A$
continues until the buffer is empty.

If the CTS or DSR line signals are off while a program is running, I/O
commands associated with the communications file do not work, and
a “Device Fault” or “Device Timeout” error occurs.

30 ...
40 ...
50 ...
60 WEND

When developing a communications program, you should
consider both the host computer’s and satellite computer’s
baud rates. If a “Device I/O” error occurs, this usually
indicates an overrun on the hardware interface, and you
should adjust your program.

Input Signals
If either the Clear To Send (CTS) or Data Set Ready (DSR) signal
lines are off, you cannot perform an OPEN“COM. GW-BASIC returns
a “Device Timeout” error after one second. You can, however, specify
if and how you want these lines tested by using the CS and DS options
in the OPEN“COM command.

Output Signals
When you start GW-BASIC on your NCR PC, the Request To Send
(RTS) and Data Terminal Ready (DTR) signal lines are not turned on
until an OPEN“COM command is performed. You can suppress the
RTS signal by specifying the RS option in the OPEN“COM. Unless
suppressed, the line stays on until the communications file is closed
by CLOSE, END, NEW, RESET, SYSTEM, or RUN without the R
option. If an OPEN COM command fails, the lines remain on. You
may then retry the OPEN“COM without a prior CLOSE command.

CONTROL SIGNALS
This paragraph contains information about control signals which you
may need to know in order to communicate with another computer or
pheripheral.

FILES AND DEVICES

Notes on the Sample Program

Line No. Comments

Sets the screen to character mode.10

20

30

Clears the 23rd line starting at column 1.35-40

Defines Boolean true and false.50

Defines the ASCII XON and XOFF characters.70

100-130

5-18 GW-BASIC

When starting GW-BASIC, set the /F option to 3.
There is no need to set the /C option.

Turns off the programmable function key dis­
play, clears the screen, and makes sure that all
files are closed.

Prints program identification and asks for baud
rate (speed). Opens communications to file num­
ber 1 with even parity, 7 data bits, and a line feed
(LF) following every <CR>.

SAMPLE PROGRAM
The following program enables your NCR PC to be used as a
conventional terminal. In addition to full-duplex communication, the
program allows data to be down loaded (written) to a file, and
conversely, a file may be up-loaded (transmitted) to another machine.

In addition to demonstrating the elements of asynchronous commu­
nications, this program should be useful in transferring GW-BASIC
programs and data to and from the NCR PC.

NOTE: Asynchronous implies character I/O as opposed to line or
block I/O. Therefore, all PRINTs (either to the communications
file, the screen, or a disk file) are terminated with a semicolon (;).
This stops the <ENTER> normally issued at the end of a PRINT
command.

Defines all numeric variables as integers. This is
primarily for use in the subroutine at lines
500-660. Any program looking for speed optimi­
zation should use integer counters in loops
wherever possible.

FILES AND DEVICES

200-280

Get disk file name to be used.300-310

400-430

490-540

550-620

GW-BASIC 5-19

The received data will fill an array of 126
positions unless an end-of-file character (line
530) was received, which closes the file.

This section gives you a menu for receiving data
at your screen or on a file, or for transmitting
data from your keyboard or from one of your
files.

1. You are asked how many characters have to
be received on your communications line
before they are displayed on the screen.

Asks if file name is to be transmitted (up-loaded)
or received (down-loaded) and opens file.

2. Reads one or more characters from the
keyboard into A$ and transmits A$. You are
guided by the menu to continue.

3. If only a space is entered, wait for n charac­
ters and print them when received.

4. If the character was M only, then the user is
ready to down-load a file, so get file name.

6. If the input (A$) is not M, E, or space, send it
by writing to the communications file
(PRINT #1...). as described in step 2, and at
line 230 go back to menu.

7. At lines 250-260, read and display contents of
communications buffer (as much as selected
by n) on screen. Continue with 1.

Before writing to the selected disk file, an XOFF
is sent to the transmitter. Two additional charac­
ters (lines 560-590) may be read after the 126
positions are filled and before the transmitter
gets the XOFF.

5. If you entered an E only, the program will
stop at 9000-9040.

FILES AND DEVICES

625

Continue receiving as at line 500.630

640-680

800-880

1000-1060

9000-9040

GW-BASIC

Read one character into A$ with INPUTS func­
tion. Send character to communications device in
1015. If a character is received, the waiting
routine for XON in case of XOFF is called, line
1015.) Send a <Ctrl-Z> at the end-of-file in line
1040 in case the receiving device needs one to
close its file. Finally, in lines 1050 and 1060, close
disk file, print completion message, and go back
to conversation mode in line 200.

These lines are run if you enter E in response to
the menu. They close the communications file and
the screen output file, restore the programmable
function key display, and end the program.

This is a transmit routine. Until the end of the
disk file:

This is a waiting routine used when the transmit­
ter also receives characters. If the transmitter
receives an XOFF, wait until XON is received
before continuing transmission.

For end-of-file, write last characters to file and
close it. Continue again at the menu.

When the array is completely written to disk file
and XON is sent to the transmitter, the transmit­
ter continues sending.

10 SCREEN 0:WIDTH 80
20 KEY OFF:CLS:CLOSE
30 DEFINT A-Z
35 LOCATE 23,1
40 PRINT STRINGS (60, “ ”)
50 FALSE=0:TRUE= NOT FALSE
70 XOFF$=CHR$(19):XON$=CHR$(17)
100 LOCATE 23,1:PRINT “Async TTY Program
110 LOCATE 1,1:LINE INPUT “speed? ”;SPEED$
120 REM
130 OPEN“COM1:“+SPEED$+”,E,7„LF“AS *1
140 OPEN “scrn:” FOR OUTPUT AS *2
5-20

FILES AND DEVICES

GW-BASIC 5-21

200 LOCATE 1,1:LINE INPUT “on receiving, how many characters
are to be read”;N$

203 N% = VAL(N$)
205 LOCATE 3,1:PRINT “press any keys for transmission”
206 PRINT “except: M for file i/o”
207 PRINT “or space for receiving”
208 PRINT “or E for ending program”
209 LINE INPUT;A$
210 IF A$=“ ” THEN 250
211 IF A$=“M” THEN 300
212 IF A$=“E” THEN 9000
220 PRINT #1,A$;
230 GOTO 200
250 A$ = INPUT$(N%,#1)
260 PRINT #2,A$;
280 GOTO 200
300 LOCATE 8,1
310 LINE INPUT“file? “;DSKFIL$
400 LOCATE 9,1
410 LINE INPUT“(T)ransmit or (R)eceive? “;TXRX$
420 IF TXRX$=“T” THEN OPEN DSKFIL$ FOR INPUT AS
#3:GOTO 1000
430 OPEN DSKFIL$ FOR OUTPUT AS #3
490 DIM BUF$(128)
500 FOR J = 1 TO 126
520 BUF$(J) = INPUT$(1,#1)
530 IF BUF$(J)=CHR$(26) THEN GOTO 640 ‘checks for CtrLZ
540 NEXT J
550 PRINT #1,XOFF$;
560 IF LOC(1)=0 THEN K = 126:GOTO 600
570 BUF$(127) = INPUT$(1,#1)
580 IF LOC(1)=0 THEN K=127:GOTO 600
585 BUF$(128) = INPUT$(1,#1)
590 K = 128
600 FOR 1 = 1 TO k
610 PRINT #3,BUF$(I);
620 NEXT I
625 PRINT #1,XON$;
630 GOTO 500
640 FOR 1 = 1 TO J
650 PRINT #3,BUF$(I);

FILES AND DEVICES

download complete

upload complete

GW-BASIC5-22

660 NEXT I
670 CLOSE #3:CLS:LOCATE 24,10:PRINT “*

680 GOTO 200
800 B$ = INPUT$(1,#1)
810 IF B$=XOFF$ THEN GOTO 850
820 PRINT #2,B$;
830 IF LOC(1)=0 THEN RETURN
840 GOTO 800
850 B$=INPUT$(1,#1)
860 IF B$=XON$ THEN RETURN
870 PRINT #2,B$;
880 GOTO 850
1000 WHILE NOT EOF(3)
1010 A$ = INPUT$(1,#3)
1012 IF VAL(SPEED$)>4000 THEN FOR 1 = 1 TO 10:NEXT
1015 PRINT #1,A$;
1020 IF LOC(1)>0 THEN GOSUB 800
1030 WEND
1040 PRINT #1,CHR$(26); ‘ctrl-Z to close file.
1050 CLOSE #3:CLS:LOCATE 23,10:PRINT “**
***”.

1060 GOTO 200
9000 CLOSE #1
9010 CLOSE #2
9030 KEY ON
9040 END

Chapter 6

Running Machine Language

RESERVING MEMORY

GW-BASIC 6-1

This chapter is intended for the machine language (assembler)
programmer who wishes to use machine language routines from
within a GW-BASIC program. You will find information about where
and how you can reserve memory for these routines, how to load them
into memory, and how GW-BASIC can pass parameters to and read
results from these routines.
Your NCR PC contains an 8088 microprocessor. There is a wealth of
available literature on programming with the 8086 family of
microprocessors, to which the 8088 belongs, including publications by
Intel Corporation.

GW-BASIC uses up to 64 KB of computer memory. Not only your
program is stored in this area, but also the variables it sets up.
Furthermore, space is required for GW-BASIC to interpret your
program commands and carry out calculations. Depending on what
other files, apart from GW-BASIC, are currently held in memory by
NCR-DOS, you can use memory above that kept aside by NCR-DOS
for GW-BASIC. Alternatively, you can use part of the GW-BASIC
memory area.
To use memory outside the GW-BASIC area for machine language
subroutines, define the starting address of an area where you wish to
load the subroutine using the DEF SEG statement. You can then refer
to this area using offset values from within the GW-BASIC program.
This does not actually protect this area from being overwritten by
other applications running under NCR-DOS, nor does it prevent you
from accidentally writing your subroutines to an area of memory
where they can upset GW-BASIC or the operating system. For this
reason you should specify an area you wish to reserve by means of the
second parameter in the /M option when loading GW-BASIC (see the
section “How to Start-Up GW-BASIC” in Chapter 1). For example,

RUNNING MACHINE LANGUAGE

GWBASIC /M:65000

USING RESERVED MEMORY

6-2 GW-BASIC

You can use the memory you have reserved to store any kind of
information you want. For example, if you have a very long series of
integer numbers of which none is greater than 255, you could POKE
them one by one into your reserved area. This saves memory as an
integer array would require two bytes for each element. You can then
read the individual numbers by means of the PEEK function.
You can apply POKE to a series of bytes which go to make up a
machine language routine, or you can BLOAD these bytes from a disk
file.

GWBASIC /M:,4112

allows GW-BASIC 64 KB of memory, and reserves 256 bytes of
memory immediately above GW-BASIC for your use.

An alternative method of reserving memory for subroutines is to put
aside space within the GW-BASIC area. You can use the /M option
when loading GW-BASIC. For example,

10 CLEAR ,65000

You may specify hexadecimal instead of decimal values in any of
these methods, using the &H prefix.

takes away from the top of the GW-BASIC area a little more than 500
bytes and places them at your disposal. To reserve space dynamically
within a GW-BASIC program, use the CLEAR command, for example

Using a FOR...NEXT loop with its control variable starting with zero
and STEPping up by one until the number of DATA items is
exhausted, READ each DATA item into an integer variable and
POKE that value using the current value of the control variable as the
address to be POKEd.

POKEing
Write the byte values for the machine language instructions in
GW-BASIC DATA lists. You will probably prefer to use hexadecimal
values prefixed by &H.
State in a DEF SEG command the memory address of the first byte to
which a DATA item is to be written.

RUNNING MACHINE LANGUAGE

6-3GW-BASIC

If the BLOADing address of your machine language subroutine is
dependent on the location determined by the linker, you must first
ascertain where the operating system wants that subroutine to be
loaded. This requires use of the DEBUG utility which is described in
your NCR-DOS manual.

1. Make sure that the subroutine was linked for loading at the
HIGH end of memory.

The methods described are suitable for coding relatively short
subroutines.

If you write a truly relocatable subroutine, that is, a program which
can execute from any memory address, you need not be concerned
about loading it to an address which differs from the one intended by
the linker. You can use BLOAD following a DEF SEG command, or, if
the subroutine is to be situated not more than 64 KB above the start of
the GW-BASIC program area, you can load it to an address specified
in terms of the offset to the beginning of that area.

As an alternative, you can store the byte values in an integer array
and POKE the elements of the array one by one.

2. Load DEBUG, including GWBASIC.EXE in the command line as
the file to be loaded under DEBUG. Display and note the contents
of the registers. Then load the .EXE file produced by the linker;
display and note the contents of CS and the Instruction Pointer.

3. Restore the registers to the state prior to loading the .EXE file
and, still under DEBUG, start execution of GW-BASIC (not the
subroutine) using the DEBUG G command.

4. Load your GW-BASIC program from which the subroutine is to
be called. Edit the program so that the value of the CS register
noted after loading the .EXE file is in the DEF SEG command.
The DEF USR or CALL command should refer to the address
contained in the Instruction Pointer as noted after loading the
.EXE file.

BLOADing
If you are doing extensive machine language programming, you are
probably using a symbolic or macro assembler and then producing an
.EXE file by means of the NCR-DOS linker.

RUNNING MACHINE LANGUAGE

HOW GW-BASIC CALLS SUBROUTINES

6-4 GW-BASIC

Your GW-BASIC program can call machine language subroutines by
means of the CALL command and the USR function. Regardless of
which method you are using, the DS, ES, and SS processor registers
are all set to the address of the GW-BASIC data area upon entry to
the subroutine. The CS register contains the value specified in the
most recent DEF SEG command. If none has been executed, or DEF
SEG was executed without a specified value, CS is set to the same
address as the other segment registers.

The stack available to the subroutine can accommodate up to 8
PUSHes. If more are required, a separate stack must be set up.

GW-BASIC regards all machine language routines as far procedures;,
therefore, an inter segment RET instruction should conclude the
subroutine. The segment registers and the Stack Pointer must be
restored before returning to GW-BASIC. It is therefore important
that the subroutine note the values of these five registers before
altering their contents.

If the subroutine disables interrupts, they must be enabled before the
return to GW-BASIC.

5. In direct mode set DEF SEG in accordance with the CS value
noted after loading the .EXE file. Then BSAVE the subroutine,
specifying the offset as the contents of the Instruction Pointer
noted after loading the .EXE file.

CALL
Upon execution of the CALL command GW-BASIC does the follow­
ing:

The address (offset to GW-BASIC’s data area) of each variable
specified in the CALL command is PUSHed onto the stack. Using

6. The BLOAD command in your GW-BASIC program which loads
the subroutine need not specify the offset at which it is to be
located. GW-BASIC assumes the offset value used in the BSAVE
command for that file.

It is possible to locate your machine language subroutines within the
GW-BASIC memory area. Possible locations are an unused file or
screen buffer, or a string variable. You can find out the location of a
file buffer or a string variable by means of VARPTR# and VARPTR,
respectively.

RUNNING MACHINE LANGUAGE

CSEG

GW-BASIC 6-5

Processor control is passed to the subroutine using the contents of the
last DEF SEG and the offset value specified in the CALL command.
The stack entry for the last variable in the parameter list is now 6
bytes above the current Stack Pointer value, the entry for the
parameter before the last one is 8 bytes above the current Stack
Pointer value, and so on.
The assembler RET instruction at the end of the subroutine must
specify a value which is two times the number of items in the CALL
variable list.
The following example shows a simple arithmetic operation per­
formed in an assembler subroutine. The two numbers for the
subtraction are passed by the GW-BASIC program in the integer
variables 1% and J%, the result is returned to R%.
GW-BASIC program CALL command:

these addresses the subroutine can accept data from and return data
to the GW-BASIC program. If the variable is a string variable, the
address on the stack is that of a 3-byte string descriptor. The first
byte contains the length of the string (0 to 255), the second byte
contains the eight least significant bits of the offset of the string in
GW-BASIC’s data area, the eight most significant bits are stored in
the third byte. The subroutine must not alter the length of the string.
If your subroutine is to influence the content of a string variable, it is
a good idea to ensure that GW-BASIC first copies the string variable
into its own workspace by performing an operation on the string. For
example, if your subroutine is to return a value to A$, issue the
command

SEGMENT
ASSUME CS:CSEG

CALL SUBTR (I%,J%,R%)
The assembler subroutine:

10 A$=“String long enough?“ + ””

If you do not include such a command, the string descriptor points to
the occurrence of the string in your program text. This could lead to
an unwanted modification of the program.
A return address specified in the CS register and the offset are
likewise PUSHed.

RUNNING MACHINE LANGUAGE

SUBTR PROC FAR

6-6 GW-BASIC

SUBTR
CSEG

MOV [SI],DX
POP BP
RET 6

ENDP
ENDS

MOV AX,[SI]
SUB DX,AX
MOV SI,[BP]+6 jpoints to memory location of R%

;puts two byte result in R%

USR
You can enter a subroutine by means of the USR function. A single
parameter can be passed which can be any constant or variable. If a
parameter is not required by the subroutine, the GW-BASIC
command calling upon the USR function must specify a dummy
parameter.
Upon entry to the subroutine the AL register contains the value 2 for
a two byte integer in two’s complement notation, 3 for a string, 4 for a
single precision number, or 8 for a double precision number.
If the parameter is a string, the DX register points to a 3 byte string
descriptor. The first byte contains the length of the string (0 to 255),
the second byte contains the eight least significant bits of the offset of
the string in GW-BASIC’s data area, the eight most significant bits
are stored in the third byte.
If your subroutine is to influence the content of a string variable, it is
a good idea to ensure that GW-BASIC first copies the string variable
into its own workspace by performing an operation on the string. For
example, if your subroutine is to return a value to A$, issue the
command

PUSH BP
MOV BP,SP
MOV SI,[BP]+10 ;address of 1% in SI
MOV DX,[SI] ;value 1% in DX
MOV SI,[BP]+8 ;address of J% in SI

jvalue J% in AX

10 A$=“String long enough?“+””
If you do not include such a command, the string descriptor points to
the occurrence of the string in your program text. This could lead to
an unwanted modification of the program.

RUNNING MACHINE LANGUAGE

GW-BASIC 6-7

If the parameter is a number, the value is placed in the 8 byte Floating
Point Accumulator in the GW-BASIC data area. The BX register then
points to the fifth byte of the FAC.

The result returned by the USR function call is the contents of the BX
register.

• If the number is an integer, the fifth and sixth byte of the FAC
contain the least significant and the most significant bits of the
number, respectively.

• If the number is a single precision number, the last byte of the
FAC contains the exponent minus 128. The fifth, sixth and
seventh bytes contain the mantissa: the least significant bit is bit
0 of the fifth byte, the most significant bit is bit 6 of the seventh
byte. Bit 7 of the seventh byte indicates a positive number with 0,
a negative number with 1. The mantissa is to be understood as
having a leading 1, the exponent as a whole number.

• The structure of the FAC for a double precision number is the
same as that for a single precision number, with the difference
that the mantissa occupies all the first seven bytes (bit 0 of the
first byte is the least significant bit).

Chapter 7

For PEEKers and POKErs

GW-BASIC 7-1

This chapter presents information as to the way GW-BASIC makes
use of the hardware facilities of your NCR PC. The GW-BASIC
memory map and information about the structure of variables is also
included.

Programming with GW-BASIC does not mean that you have to read
this Chapter. Controlling the hardware is a task GW-BASIC entrusts
to “drivers”. Drivers are programs hidden in GW-BASIC or the
operating system which convert the GW-BASIC commands you issue
into detailed machine instructions.

For example, let us assume that GW-BASIC encounters the command
CLS somewhere in your program. First, the GW-BASIC “interpreter”
checks that the term CLS is included in its dictionary of commands.
Then it calls upon an internal routine driving the screen display, with
the effect that the screen pixels are set one by one to the background
color. The comfort of CLS and the other GW-BASIC commands and
functions is that you do not have to be concerned about how the pixels
are changed. You need not even be aware of the fact that there is a
copy of screen contents in random access memory.

If you want to know where the screen buffers are and other facts
related to the hardware of your NCR PC, or if you are curious about
the way GW-BASIC uses the memory allotted to it, then read on. You
can apply the information in this chapter to the GW-BASIC PEEK
and IN functions, and the POKE and OUT commands.

PEEK allows you to ascertain the value of an individual byte in
memory; IN lets you observe the way the microprocessor receives
information from the machine ports (for example, status signals
from a printer). POKE allows you to influence individual memory
bytes, OUT is used for writing information to machine ports. POKE
and OUT give you immense power over your computer, but they
require careful use, otherwise your computer might behave in a
strange and unpredictable way.

FOR PEEKERS AND POKERS

GW-BASIC AND PC MEMORY

Notes:

7-2 GW-BASIC

NCR-DOS loads GW-BASIC into a program segment just as it loads
other .COM and .EXE files. The absolute machine address of the
program segment is of no consequence: the value for GW-BASIC’s
data area (segment), that is, the value set or confirmed by DEF SEG
without parameters, is automatically assigned by NCR-DOS. The
following diagram shows the state of memory for the program
segment immediately after loading GW-BASIC. Where a paragraph
value is not specified to the left of the colon, the value is the
paragraph address of the GW-BASIC data segment.

NCR offers a TECHNICAL REFERENCE manual for your PC. This
contains detailed information about the way the hardware and the
software drivers operate. The examples given in this chapter are just
some of the effects you can achieve when by-passing GW-BASIC.

• The offset values xxxx and yyyy are stored at the locations
30H-31H and 358H-359H, respectively. In both cases, the lower
byte is the less significant.

• The size of the GW-BASIC stack can be set by means of the
CLEAR command.

FOR PEEKE RS AND POKERS

NCR-DOS Programs Segment: 10
GW-BASIC

WOO

:xxxx

:YYYY
simple variables

arrays

:FFFF

A000W00

F400W00
read-only memory

VARIABLES

1

<name> <data>

<char1> <char2><type> <length> <other chars>

GW-BASIC 7-3

2 integer
3 string
4 single precision
8 double precision

<name> is the name of the variable. The first two characters of the
name are stored in <charl> and <char2>, <length> states how
many more characters are in the variable name. These <other
chars> start at byte 4.
Immediately after the last character of the name is the first byte of
the actual <data> contained in the variable. This is the position to
which the VARPTR function points. The length of this data is

top of memory
or

system
(includes screen buffers)

interpreter
workspace

string
space

GW-BASIC
stack

4

GW-BASIC
program

2, 3, 4,
or 8 bytes

E
Z5

i
S
E

3

X

a.-*
&

Variables are stored by GW-BASIC as follows:
Byte 0 12 3

C\J <D
T— +->

io ID

------------ ------------ ---------------------------

<type> identifies the type of variable as follows:

FOR PEEKERS AND POKERS

THE FILE CONTROL BLOCK

Byte Length Description

0 1

NCR-DOS file control block1 38

39 2

7-4 GW-BASIC

2 bytes for an integer
4 bytes for a single precision number
8 bytes for a double precision number

In the case of a string variable, <data> is a 3-byte string descriptor:
the first byte contains the length of the string, the second byte
contains the less significant half, the third byte the more significant
half of the string address in GW-BASIC’s string area. This address is
to be understood as offset to the beginning of the GW-BASIC data
segment.

Integer numbers are stored as 16 bit binary values (least significant
bits at the lower address). Floating point numbers are stored with the
exponent minus 128 in the uppermost byte. The remaining three
(single precision) or seven (double precision) bytes represent the
mantissa with a leading 1 implied. The most significant byte of the
mantissa is nearest to the exponent byte. The most significant bit of
the mantissa represents the sign (0: positive).

The number of sectors read or written for
sequential access files.

1 plus the last record number read or written
for random access files.

Value indicating the mode in which the file
was opened:

1 - Input only
2 - Output only
4 - Random

16 - Append only

If you use the VARPTR function on a file specified by number, the
value returned is the address of the first byte of the file control block
for that file. This address represents an offset to the beginning of the
GW-BASIC data area. It is important to remember that this is a
GW-BASIC, not the NCR-DOS file control block. The structure of the
file control block is as follows:

FOR PEEKERS AND POKERS

141

Number of bytes left in input buffer.142

(reserved)343

146

Device width147

Position in buffer for PRINT#.48 1

49 1

Output position used during tab expansion.150

12851

179 2

Current physical record number.181 2

Current logical record number.183 2

(reserved)1185

186 2

GW-BASIC 7-5

Physical data buffer. Used to transfer data
between NCR-DOS and GW-BASIC. Use this
offset to check data in sequential I/O mode.

Variable length record size. Default: 128. Set
by length parameter in OPEN command.

Number of bytes in sector when read or
written.

Internal use during LOAD and SAVE. Not
used for data files.

Disk files only. Position for PRINT#,
INPUT#, and WRITE#.

Device number:
0,1 - Disk drives A: and B:
248 - LPT3:
249 - LPT2:
250 - COM2:
251 - COMI:
253 - LPT1:
254 - SCRN:
255 - KYBD:

FOR PEEKERS AND POKERS

188 n

THE KEYBOARD

DEF SEG=0
followed by

DEF SEG
restores the segment value to GW-BASIC’s data segment.

SETTING SCREEN ATTRIBUTES

The attribute byte is made up as follows (values are decimal):

7-6 GW-BASIC

The keyboard buffer can store up to 15 characters. Attempting to
enter more causes your NCR PC to beep.
You can clear the keyboard buffer with

POKE 1050,PEEK(1052)
The DEF SEG command is required so that PEEK and POKE refer to
absolute addresses counting from the start of physical RAM.
A subsequent

The memory area from the paragraph:offset of A000:0000 to
B000:FFFF is used for various screen buffers.

Normal video is active when only bits 0,1,2 are set -->
value 7

Inverse video is active when only bits 4,5,6 are set -->

Actual FIELD data buffer. Size n is deter­
mined by the /S option when loading GW-
BASIC. Use this offset to examine file data in
random access mode.

CHARACTER DISPLAY MEMORY
The area from B000:0000 to B000:7FFF contains the 8 screen
pages which are supported in character mode with a monochrome
display adapter. With the line width 80, the default display page
occupies the 4000 bytes starting at B000:0000. The next page
starts on the 1000H boundary at B000:1000, and so on. Charac­
ters are stored at even addresses. The attribute byte for a charac­
ter oosition is the odd byte immediately above the character byte.

FOR PEEKERS AND POKERS

value 112

Add 8 to the value for high intensity and/or add 128 for blinking.

Writing color bit:

bit:Background color

Example:

DEF SEG = &HBOOO:POKE &H8F9E,57:POKE &H8F9F,132

GW-BASIC 7-7

4
blue

DEF SEG = &HBOOO:POKE &H87CE,57:POKE &H87CF,132
has the same effect in character mode with WIDTH 40.

If bits 0,1,2,4,5,6 are all set or all zero, there is no contrast between
writing and background.

Display colors are each made up of a combination of red, green, and
blue. These are the colors produced by the three color guns of the
cathode ray tube inside your computer. The color combination of each
of the 8 basic colors available in character modes is as follows:

produces a blinking red digit 9 in the bottom right corner of the
screen, when character mode with WIDTH 80 is in force.

o blue 1 green
5 green 6

red

2
red

Bit 3 gives the high intensity colors when set,
Bit 7 set yields character blinking.

Black - none
Blue - Blue only
Green - Green only
Cyan - Green and Blue
Red - Red only
Magenta - Blue and Red
Brown - Red and Green
White - Red, Green, arid Blue

The use of alternating addresses for character and attribute is as with
the monochrome display adapter. The difference is that the attribute
value has a color effect on the screen:

FOR PEEKERS AND POKERS

even scans (0,2,4,...,198)

V#B9F3F
free

#BA000
odd scans (1,3,5,...,199)

#BBF3F

Storage Map for High Resolution Black-and-White Graphics

even scans (0,4,8,...,396)

#B9F3F
free

#BA000
even scans (2,6,10,...,398)

odd scans (1,5,9,

#BDF3F
free

#BE000
odd scans (3,7,11 ,...,399)

#BFF3F

7-8 GW-BASIC

#BBF3F
#BC000

i
I
I
I
I
I
I
I

I
I
I

I
I

I
I
I
I
I
I
I

I
I

!
I
I
I
I

I
I

I
I

I
I

!
I
I

I
I
I
I
I
I
I
I
I

I

I
I

I
I

I
I

...,397)

GRAPHICS DISPLAY MEMORY
The screen image is built up in two scans, each running from the top
to the bottom of the screen.
Storage Map for Low Resolution Color Graphics and Medium Reso­
lution Black-and-White Graphics

Memory address
#B8000

Memory address
#B8000

FOR PEEKERS AND POKERS

Storage Map for High Resolution Color Graphics

#BBF3F
free

#BC000
odd scans (1,5,9,..•>397)

even scans (2,6,10,...,398
#ABF3F

free
#AC000

odd scans (3,7,11,•••>399)
#AFF3F

7-9GW-BASIC

Bit 0 — activates the blue gun for
background in graphics mode

#BFF3F
#A8000

Bit 1 — activates the green gun for
background in graphics mode

Bit 2 — activates the red gun for
background in graphics mode

i
i

In medium and high resolution black-and-white graphics, each bit re­
presents one screen point.

COLOR SELECTION
The integrated circuit which looks after the screen display contains a
register where it notes color attributes in terms of the three color
guns of the cathode ray tube. You can address this register via the
machine port &H3D9, using the GW-BASIC OUT command. The
lower 6 of the 8 bits in this register are significant. When set

 even scans (0,4,8,...,396)

Memory address
#B8000

i
i

In low and high resolution color graphics, each byte can be regarded as
consisting of four bit pairs. Each bit pair contains a binary value 0 to 3,
representing the color to be plotted for a screen point (see COLOR in
Chapter 4).

FOR PEEKERS AND POKERS

OUT &H3D9,1

selects a blue color in graphics mode.

Example:

OUT &H3D8,9

GW-BASIC7-10

Bit 5 — selects the color palette 0 or 1.

Example:

Bit 1 selects graphics mode, otherwise character mode applies.

Bit 2 selects a black and white display, otherwise a color display
is selected.

Bit 3 enables the screen display. While the display mode is being
changed, this bit should be 0.

Bit 4 selects medium and high resolution black-and-white graphics.

Bit 5 ensures that the blinking attribute can be used by GW-
BASIC. If you reset this bit to 0, blinking can no longer be
achieved, but you then use the high intensity colors for
background, in addition to the normal intensity colors.

Bit 6 selects 400 pixel lines for high resolution graphics.

Bit 7 enables display of page 1 or 2 (“0“) and page 3 or 4 (“1“) in low
and medium resolution.

When executed in character mode, this command replaces the
blinking facility by the extended range of background colors.

Bit 3 — displays in high intensity
the background color in graphics mode

Bit 4 — selects the high intensity colors for background in
character mode; in the graphics modes, too, it selects the
high intensity colors.

DISPLAY MODE SELECTION
Selection of the display mode is controlled by a further register of the
CRT controller. This register is accessed via the machine port &H3D8
using the GW-BASIC OUT command. The lower 6 of the 8 bits are
significant. When set
Bit 0 sets CRT controller clock to slow “0“ or fast “1“.

FOR PEEKERS AND POKERS

The underline cursor is then created by

THE CHARACTER SET

7-11GW-BASIC

40 LOCATE ,,1,12,13
To switch over to a color screen:

The following command sequence switches over to a monochrome
screen:

10 DEF SEG = 0
20 POKE &H410,(PEEK(&H410) AND &HCF) OR &H10
30 SCREEN 1,0,0,0
40 SCREEN 0:WIDTH 40
50 LOCATE „1,6,7

Line 50 sets up the underline cursor.
The following commands enable you to specify the value 1,2, or 3 in
COL% as the foreground color:

The following program reads the bit pattern of an 8 by "8 character you
enter, and displays a corresponding pattern of dots on the screen:

10 DEF SEG = 0
20 POKE &H410,(PEEK(&H410) OR &H30)
30 SCREEN 0:WIDTH 40:WIDTH 80

10 DEF SEG
20 POKE &H4E,COL7c

You can examine and reproduce the bit patterns of the standard
ASCII part of the GW-BASIC character set. These characters are
stored in the read only memory (ROM) of your NCR PC. The ROM is
located at the memory address F000:C000 (paragraph:offset). The 8 by
8 pixel character set starts at F000:FA6E and occupies addresses up to
F000:FE6D. The 8 by 16 character set resides in memory from
F000H:D000H to F000H:D7FFH. The bit pattern for each character is
held in eight adjacent bytes. The ASCII character for value 0 occupies
the first eight bytes, the ASCII character for value 1 occupies the next
eight bytes, and so on.

FOR PEEKERS ANO POKERS

BYTE = BYTE-

7-12 GW-BASIC

10 DEFINT A-Z
20 OPTION BASE 1
30 DIM PATT(8)
40 DEF SEG = &HF000
50 INPUT “Character”;CH$
60 FOR X = 1 TO 8
70 PATT(X) = PEEK(ASC(CH$)*8+X + &HFA6D)
80 NEXT X
90 CLS
100 FOR X = 1 TO 8
110 BYTE = PATT(X)
120SHFT = 256
140 FOR Y = 1 TO 8
150 SHFT=SHFT/2
160 IF INT(BYTE/SHFT) = 1 THEN

SHFT:PRINT CHR$(249); ELSE PRINT “
170 NEXT Y
175 PRINT
180 NEXT X

Appendix A

Reserved Words

The GW-BASIC reserved words are:

GW-BASIC A-1

ABS
AND
ASC
ATN
AUTO
BEEP
BLOAD
BSAVE
CALL
CDBL
CHAIN
CHDIR
CHR$
CINT
CIRCLE
CLEAR
CLOSE
CLS
COLOR
COM

COMMON
CONT
COS
CSNG
CSRLIN
CVD
CVI
CVS
DATA
DATES
DEF
DEFDBL
DEFINT
DEFSNG
DEFSTR
DELETE
DIM
DRAW
EDIT
ELSE

END
ENVIRON
ENVIRONS
EOF
EQV
ERASE
ERDEV
ERDEV$
ERL
ERR
ERROR
EXP
FIELD
FILES
FIX
FNxxxxxxxx
FOR
FRE
GET
GOSUB

Reserved words are words recognized by GW-BASIC as belonging to
commands and functions. For this reason, you cannot use them as
names for variables (appending %,!,#, or $, as a type declaration
does not change this). A reserved word may, however, be part of a
variable name. For example, you cannot use the word AND$ as the
name of a variable, but SANDS and CANDYS are allowed.

RESERVED WORDS

A-2 GW-BASIC

GOTO
HEX$
IF
IMP
INKEYS
INP
INPUT
INPUT#
INPUTS
INSTR
INT
IOCTL
IOCTLS
KEY
KEYS
KILL
LEFTS
LEN
LET
LINE
LIST
LLIST
LOAD
LOG
LOCATE
LOCK
LOF
LOG
LPOS
LPRINT
LSET
MERGE
MIDS
MKDIR
MKD$
MKI$
MKS$
MOD
MOTOR

SCREEN
SGN
SHELL
SIN
SOUND
SPACES
SPC(
SQR
STEP
STICK
STOP
STR$
STRIG
STRINGS
SWAP
SYSTEM
TAB(
TAN
THEN
TIMES
TIMER
TO
TROFF
TRON

NAME
NEW
NEXT
NOT
OCT$
OFF
ON
OPEN
OPTION
OR
OUT
PAINT
PEEK
PEN
PLAY
PMAP
POINT
POKE
POS
PRESET
PRINT
PRINT#
PSET
PUT
RANDOMIZE UNLOCK
READ USING
REM USR
RENUM VAL
RESET VARPTR
RESTORE VARPTRS
RESUME VIEW
RETURN WAIT
RIGHTS WEND
RMDIR WHILE
RND WIDTH
RSET WINDOW
RUN WRITE
SAVE WRITE#

XOR

Appendix B

The Character Set

PRINT CHR$(63);

B-1GW-BASIC

The values stated in the column &H of the list are the hexadecimal
equivalents of the decimal codes.

displays a question mark on the screen. Where the character is a word
in parentheses, it is not a displayable character as such, although it
may have an effect on the screen display (e.g. cursor movement).

If you know ASCII code, you will notice that the first 32 items in the
list include graphic symbols which replace the standard interpreta­
tion of these values as control and communications functions.

When editing a program, you can produce on the screen a character
for which there is no key on your keyboard by entering the three digit
code while the Alt key is depressed. In this way, you can include
non-keyboard characters in a string constant.

This appendix consists of a list of the characters available to
GW-BASIC. For each character, the decimal and hexadecimal
equivalent of the ASCII code value is given. For example, the code
value for the question mark is 63 (3F in hexadecimal) so

THE CHARACTER SET

Character&H &H Character

(space)

(beep)

?

B-2 GW-BASIC

Control
character

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031

00
01
02
03
04
05
06
07
08
09
0A
OB
0C
0D
OE
OF
10
11
12
13
14
15
16
17
18
19
1A
1B
1C
1D
1E
1F

♦ ♦

(cursor right)
(cursor left)
(cursor up)
(cursor down)

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
LF
VT
FF
CR
SO
SI
DLE
DC1
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
SUB
ESC
FS
GS
RS
US

032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063

20
21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F
30
31
32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F

(
)

ASCII
Decimal

ASCII
Decimal

/
0
1
2
3
4
5
6
7
8
9

(null)
O

1
4
♦

(tab)
(line feed)
(home)
(form feed)
(carriage return)

ft

$
%
&

♦
ST
§

THE CHARACTER SET

&H Character Character&H

GW-BASIC B-3

064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095

40
41
42
43
44
45
46
47
48
49
4A
4B
4C
4D
4E
4F
50
51
52
53
54
55
56
57
58
59
5A
5B
5C
5D
5E
5F

096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

ASCII
Decimal

ASCII
Decimal

60
61
62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F
70
71
72
73
74
75
76
77
78
79
7A
7B
7C
7D
7E
7F

a
b
c
d
e
f
g
h

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
0
P
Q
R
S
T
U
V
w
X
Y
z
[
\
]
A

k
I
m
n
o
P
q
r
s
t
u
V
w
X

y
z

THE CHARACTER SET

Character&H Character&H

GW-BASICB-4

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191

AO
A1
A2
A3
A4
A5
A6
A7
A8
A9
AA
AB
AC
AD
AE
AF
BO
B1
B2
B3
B4
B5
B6
B7
B8
B9
BA
BB
BC
BD
BE
BF

ASCII
Decimal

80
81
82
83
84
85
86
87
88
89
8A
8B
8C
8D
8E
8F
90
91
92
93
94
95
96
97
98
99
9A
9B
9C
9D
9E
9F

ASCII
Decimal

»

a /
6
d
n
N
a
2
c

I
-I
-I
HI
-n

4I
II

Hl
=D
Jl
=J

%

e
a
a
a•

-o
§
e
e
T

1
A
A
E

ae
/E e
o

c
u
&

£
¥
Pt
f

THE CHARACTER SET

Character&HCharacter&H

I-

GW-BASIC B-5

1=
f=

A number of codes read by INKEY$ are two-code characters, and
therefore not part of the ASCII code. If INKEY$ reads one of these
special characters, the first character is a null character (code 000). In
this case, your program should examine the second character of the
string returned by INKEY$. This character is usually the key code
relating to the position on the keyboard, and only then if the mode for
that key (Shift, Ctrl, Alt, or none at all) is the one indicated in the
following list.

CO
C1
C2
C3
C4
C5
C6
C7
C8
C9
CA
CB
CC
CD
CE
CF
DO
D1
D2
D3
D4
D5
D6
D7
D8
D9
DA
DB
DC
DD
DE
DF

■ ■

192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223

ASCII
Decimal

224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

ASCII
Decimal

E0
E1
E2
E3
E4
E5
E6
E7
E8
E9
EA
EB
EC
ED
EE
EF
F0
F1
F2
F3
F4
F5
F6
F7
F8
F9
FA
FB
FC
FD
FE
FF

%
o

4F +
J

(blank
FF’)

>
S
r
j

4-
l=

II-
IL
s=
=!k

l^
JU

L

-U_

a
0
r
5
(7

T

0
Q
d
co
0
€n

v
n
2

THE CHARACTER SET

Key(s)

GW-BASICB-6

Second
Character

71
72
73
75
77
79
80
81
82
83
84-93
94-103

104-113

115
116
117
118
119
120-131
132

3
15
16-25
30-38
44-50
59-68

Ctrl-Cursor Left (Previous Word)
Ctrl-Cursor Right (Next Word)
Ctrl-End
Ctrl-Pg Dn
Ctrl-Home
Alt- 1,2,3,4,5,6,7,8,9,0,-,=
Ctrl-Pg Up

(null character) NUL
(shift tab) I ♦
Alt- Q, W, E, R, T, Y, U, I, O, P
Alt- A, S, D, F, G, H, J, K, L
Alt- Z, X, C, V, B, N, M
Function Keys Fl through F10
(when disabled as soft keys)
Home
Cursor Up
Pg Up
Cursor Left
Cursor Right
End
Cursor Down
Pg Dn
Ins
Del
F11-F20 (Shift- Fl through F10)
F21-F30 (Ctrl- Fl through F10)
F31-F40 (Alt- Fl through F10)

Appendix C

Error Messages

OVERVIEW OF ERROR NUMBERS
Number Error Message

GW-BASIC C-1

If GW-BASIC detects an error in your program, execution of the
program usually stops and an error message is displayed telling you
just what went wrong. The usual cause of an error situation is that
your program has asked GW-BASIC to contradict the rules of the
language, but a difference of opinion between GW-BASIC and an
external device can sometimes be the cause.
If you wish, you can trap error situations using the ON ERROR
statement and the two GW-BASIC variables ERR and ERL. In this
case, your error event handling routine should do something about
the error situation, if you want program execution to continue as if
nothing had happened. If it does not, either GW-BASIC will return
the same error message, or the results of your program will be
unreliable.
The first section of this appendix consists of an overview of error
numbers. When considering what error possibilities to cover in your
program, simply look down this list. For a more detailed description
of an error number refer then to the second section. Remember, you
can also define error situations and allocate error numbers yourself
(see ERROR).
The second section deals with GW-BASIC error messages in
alphabetical order, and gives you indications as to what might have
caused the error.

1
2
3
4
5

NEXT without FOR
Syntax error
RETURN without GOSUB
Out of data
Illegal function call

ERROR MESSAGES

C-2 GW-BASIC

6
7
8
9

10
11

12
13
14
15
16
17
18
19
20
22
23
24
25
26
27
29
30
50
51
52
53
54
55
57
58
61
62
63
64
66
67
68
69
70
71
72

Overflow
Out of memory
Undefined line number
Subscript out of range
Duplicate Definition
Division by zero
(This error cannot be trapped)
Illegal direct
Type mismatch
Out of string space
String too long
String formula too complex
Can’t continue
Undefined user function
No RESUME
RESUME without error
Missing operand
Line buffer overflow
Device Timeout
Device Fault
FOR without NEXT
Out of paper
WHILE without WEND
WEND without WHILE
FIELD overflow
Internal error
Bad file number
File not found
Bad file mode
File already open
Device I/O error
File already exists
Disk full
Input past end
Bad record number
Bad file name
Direct statement in file
Too many files
Device unavailable
Communication buffer overflow
Disk Write Protect
Disk not ready
Disk media error

ERROR MESSAGES

Try checking the OPEN command in your program.

2. Has been modified during a break in execution

3. Does not exist.

Make sure that the program is loaded and start it with RUN.

GW-BASIC C-3

74
75
76

Bad file number 52
A command references a file with a file number that is not OPEN or is
out of the range of file numbers specified when loading GW-BASIC.
Alternatively, the device name or filename was too long or illegal.

Check the name and number of the file in the OPEN command for
that file.

Bad record number 63
In a PUT or GET statement, the record number was either greater
than the maximum allowed (16,777,215) or equal to zero.

Can’t continue 17
You attempted to use CONT to continue a program that:

1. Has halted due to an error.

Bad file mode 54
You attempted to use PUT or GET with a sequential or closed file, to
LOAD a random file or to execute an OPEN command with a file
mode other than Input, Output, Append or Random.

This error may also occur when an attempt is made to read from a file
opened for output or appending or if you attempt to MERGE a
non-ASCII File.

Bad file name 64
An illegal form was used for the filename with a KILL, NAME or
FILES command (e.g. a filename with too many characters).

Rename across disks
Path/file access error
Path not found
Unprintable error

The following list shows each error message and its number, followed
by an explanation of the message.

ERROR MESSAGES

3. Use a lower baud rate for transmitting and receiving.

GW-BASICC-4

Use an ON ERROR trap to retry the input. If it is a case of characters
being received faster than the program can process them, consider
the following measures:

You can direct a trap handling routine to retry the operation
(RESUME), but you should limit the number of attempts or your
program could loop indefinitely.

2. If the transmitting device can support a “handshaking” protocol,
include one in your communications program. This gives time for
input processing to catch up.

1. Increase the size of the communications receive buffer via the /C
option when loading GW-BASIC.

Device I/O Error 57
An I/O Error (overrun, parity, framing or break) was detected during
device I/O. When character length is 7 or less data bits, the highest
order bit is turned on in the byte in error.

Device Unavailable 68
You attempted to open a file to a non-existent device. Perhaps the
hardware simply does not exist, or your program has disabled
communication to the device. For example, C0M1 statement was
disabled by specifying the /C option with the value 0 when loading
GW-BASIC. If this is the case you will have to return to operating
system level (SYSTEM) and re-load GW-BASIC.

Device Fault 25
An interface adapter returned a hardware error. When transmitting
data to a communications file, it indicates that one or more of the
signals being tested (specified on the OPEN “COM... command) was
not found within the specified period of time.

Device Timeout 24
Occurs if one or more of the signals to be tested by the OPEN “COM
command was not found in the specified period of time.

Communication buffer overflow 69
Occurs when a communication input statement is executed and the
input buffer is already full.

ERROR MESSAGES

GW-BASIC C-5

The ASCII file should consist only of GW-BASIC commands with line
numbers. The error may have been caused by a line feed character in
the input stream.

Erase any unnecessary files or use a new disk. Then retry the disk
operation or run the program again from the beginning.

Disk not Ready 71
The most likely problem is that the disk is not inserted properly.

Disk full 61
All disk storage space is in use. Upon encountering this error
situation, GW-BASIC closes all files.

Duplicate Definition 10
Two DIM commands are given for the same array; or, a DIM
command is given for an array after the default dimension of 10 has
been established for that array by implicit definition; or, the OPTION
BASE command was encountered by GW-BASIC after the first
definition or use of an array.

Disk Media Error 72
Occurs when the disk controller detects a hardware or media fault.
This usually indicates a damaged disk.

Copy any existing files to a new disk and reformat the damaged disk.

Disk Write Protect 70
Occurs when you attempt to write to a disk that is write-protected.
The error may also be caused by a hardware failure.

Check if you are using the right disk. Then remove the write
protection and retry the operation.

Division by zero 11
A division by zero or the raising of zero to a negative power was
encountered in an expression. If the cause of the error was division by
zero, the display indicates machine infinity and the sign of number
causing the error. A defective exponentiation yields positive machine
infinity. This error cannot be trapped.

Direct statement in file 66
A direct statement (command) was encountered while LOADing or
CHAINing a file in ASCII format. The LOAD or CHAIN is
terminated.

ERROR MESSAGES

Include a NEXT command in the program.

GW-BASICC-6

Check that the correct disk is in the drive specified, and that the file
specification was entered correctly, including a path if necessary.
Retry the operation.

Illegal function call 5
A parameter that is out of range is passed to a system function. This
error can also be caused by:

File not found 53
A LOAD, KILL, NAME, or OPEN command references a file that
does not exist on the current disk.

FOR without NEXT 26
A FOR command was encountered without a matching NEXT.
Perhaps a FOR loop was active when the physical end of the program
was reached.

File already open 55
A sequential output mode OPEN command was issued for a file that
is already open, or a KILL command was given for a file that is open.
Check that you only executed one OPEN to a file if you are writing to
it sequentially or appending it. Close a file before you use KILL.

Illegal direct 12
You attempted to enter a command invalid in direct mode as a direct
mode command (e.g DEF FN).
Enter the command as part of a program line.

File already exists 58
The filename specified in a NAME command is identical to a filename
already in use on the disk.
Retry the NAME command with a different name.

FIELD overflow 50
A FIELD command attempted to allocate more bytes than were
specified for the record length of a random file in the OPEN
statement; or, the end of the FIELD buffer was encountered while
doing sequential I/O (PRINT#, WRITE#, INPUT#) to a random file.
Check if the OPEN statement and the FIELD statement correspond.
If you are doing sequential I/O to a random file, the length of the data
read or written may not exceed the record length of the random file.

ERROR MESSAGES

1. A negative or improbable subscript to an array.

5. A negative record number used with GET or PUT.

6. Trying to list or edit a protected BASIC program.

Recopy your disk. Check the hardware, and retry the operation.

GW-BASIC C-7

7. Trying to delete line numbers which don’t exist.

Correct the program.

3. A call to a USR function for which the starting address has not
yet been defined with DEF USR.

4. An improper argument to a string processing command or
function.

2. A negative or zero argument for a numeric function where none is
allowed.

Input past end 62
An INPUT statement is executed after all the data in the file has been
INPUT, or for a null (empty) file.
To avoid this error, use the EOF function to detect the end-of-file. The
error also occurs if you try to read from a file that was opened for
output or append.

If you want to read from a sequential output or append file, you must
close it and open it again for input.

Internal error 51
An internal malfunction has occurred in GW-BASIC.

Line buffer overflow 23
You attempted to input a line that has too many characters.
Separate multiple commands so they are on more than one line; or you
may use string variables instead of constants.

Missing operand 22
An expression contains an operator with no operand following it.
Check that all the required operands are included in the expression.

ERROR MESSAGES

C-8 GW-BASIC

Check to include RESUME in your error trapping routine to continue
program execution. It is possible to add an ON ERROR GOTO 0
command to your error trapping routine so BASIC displays the
message for any untrapped error.

Out of string space 14
String variables have caused GW-BASIC to exceed the amount of free
memory remaining. BASIC will allocate string space dynamically,
until it runs out of memory.

Out of paper 27
The printer device is out of paper, or the printer is not switched on.
Insert paper, check that the printer is properly connected, and that
the power is on; then, continue the program.

No RESUME 19
An error handling routine is entered but contains no RESUME
command.

Overflow 6
The result of a calculation is too large to be displayed by GW-BASIC.
Integer overflow causes execution to stop. Otherwise, machine
infinity with the appropriate sign is supplied as the result and
execution continues. Integer overflow is the only type of overflow that

Out of memory 7
A program is too large, or has too many FOR loops or GOSUBs, too
many variables, or expressions that are too complicated. Extensive
PAINTing with jagged edges can also produce this error condition.
It is possible to use CLEAR at the beginning of your program to set
aside more stack space or memory area.

Out of data 4
A READ statement was executed when there is no DATA left to be
read.
Correct the program so that there are enough items in the DATA lists
for all the READ commands in the program.

NEXT without FOR 1
A variable in a NEXT command does not correspond to any
previously executed, unmatched FOR command variable.
Adjust the program so the NEXT has a matching FOR.

ERROR MESSAGES

GW-BASIC C-9

The error message is also returned, if the UNLOCK range for a file
opened in random mode does not exactly match that of a preceding
LOCK statement.

Path/file access error 75
During an MKDIR, CHDIR, or RMDIR operation, NCR-DOS was
unable to make a correct path to filename connection. The error
occurred when you tried to create a directory, remove the current
directory or change a directory. During an OPEN operation you tried
to open a read only file for output.

Path not found 76
During an OPEN, MKDIR, CHDIR, or RMDIR operation, NCR-DOS
was unable to find the path specified.

Permission denied 70
During an OPEN, LOCK or UNLOCK operation, access was denied
because of previous acces by another process.

Rename across disks 74
You attempted to specify two different disks when reNAMEing a file.

RESUME without error 20
A RESUME command was encountered although no error had been
trapped. A common cause, the program has run on into the error
trapping routines. To prevent this, use a STOP or END command at
the point(s) where execution should stop.

can be trapped. To correct integer overflow, you need to use smaller
numbers, or change to single- or double-precision variables.

If a numeric result is so small that GW-BASIC cannot display it
(underflow), the result is zero and execution continues without an
error.

RETURN without GOSUB 3
A RETURN command was encountered for which there is no
previous, unmatched GOSUB statement. A common cause, the
program has run on into subroutines. To prevent this, use a STOP or
END command where execution should stop.

ERROR MESSAGES

Use an existing line number (this may be a REM line).

GW-BASICC-10

Undefined user function 18
You called a function before you gave the function definition (DEF
FN). Check that the program executes the DEF FN statement before
you use the function.

Too many files 67
You attempted to create a new file (using SAVE or OPEN) when all
directory entries were full, or the filespec was incorrect.

Type mismatch 13
Your program tried to assign a string value to a numeric variable, or
vice versa; or the wrong type of argument was passed to a function.

Undefined line number 8
A nonexistent line number is referenced in a command.

Syntax error 2
A line is encountered that contains some incorrect sequence of
characters (such as unmatched parentheses, misspelled command,
incorrect punctuation, etc.). This error can also occur when a READ
command tries to assign DATA of the wrong type (e.g. string for
numeric) to a variable.

Subscript out of range 9
An array element is referenced either with a subscript that is outside
the dimensions of the array or with the wrong number of subscripts.
See also “Illegal function call”.

Check the usage of the array variable. It is possible that you
subscripted a variable that is not an array.

String too long 15
You attempted to create a string more than 255 characters long.

Use smaller strings.

String formula too complex 16
A string expression is too long or too complex.

The expression should be broken into smaller pieces.

ERROR MESSAGES

GW-BASIC C-11

Unprintable error
An error message is not available for the error condition that exists.
This may be caused by an ERROR command with an undefined error
code.

Make sure you handle all error codes that you create, if you want your
program to continue execution without intervention.

Correct the program so that each WHILE has a corresponding
WEND.

WEND without WHILE 30
A WEND command was encountered without a matching WHILE.

WHILE without WEND 29
A WHILE command does not have a matching WEND. WHILE was
still active when the physical end of the program was reached.

Appendix D

Additional Functions

GW-BASIC D-1

DEF FN SUNTAN(LOTION) = 1/TAN(LOTION)
and could be called up with

DEF FN COTAN(X) = 1/TAN(X)
To call up the defined function, a command like the following is
needed:

RESULT = FNCOTAN(ANGLE)
Note that you can use GW-BASIC intrinsic functions as part of your
function definition. This example makes use of TAN. You can give
your function any name you wish, within the usual variable naming
conventions. For example, the following function definition would
serve the same purpose:

Logarithm to base B
Secant
Cosecant
Cotangent
Inverse sine
Inverse cosine

LOGB(X) = LOG(X)/LOG(B)
SEC(X) = 1/COS(X)
CSC(X) = 1/SIN(X)
COT(X) = 1/TAN(X)
ARCSIN(X) = ATN(X/SQR(1-X*X))
ARCCOS(X) = 1.570796

This appendix contains mathematical functions in GW-BASIC
language which are not intrinsic to GW-BASIC. A useful way of
storing and calling such “user defined” functions is by means of the
DEF FN command and the function FN. For example, to define a
function returning the cotangent of a value, use the following
statement.

ENIGMA = SUNTAN(SOMETHIN)
but later, you probably would not be able to remember why you
defined the function in the first place. Therefore, it makes sense to use
meaningful function names.

ADDITIONAL FUNCTIONS

Inverse secant
Inverse cosecant

ARCSINH(X) = LOG(X + SQR(X*X + 1))

ARCCOSH(X) = LOG(X+SQR(X*X-1))

ARCTANH(X) = LOG((l+X)/(l-X))/2

ARCSECH(X) = LOG((1 + SQR(1-X*X))/X)

ARCCOTH(X) = LOG((X+l)/(X-l))/2

D-2 GW-BASIC

Inverse cotangent
Hyperbolic sine
Hyperbolic cosine
Hyperbolic tangent

Hyperbolic secant
Hyperbolic cosecant
Hyperbolic
cotangent

Inverse hyperbolic
sine

Inverse hyperbolic
cosine

Inverse hyperbolic
tangent

Inverse hyperbolic
secant

Inverse hyperbolic
cosecant

Inverse hyperbolic
cotangent

-ATN(X/SQR(1-X*X))
ARCSEC(X) = ATN(SQR(X*X-1))

+(X<0)*3.141593
ARCCSC(X) = ATN(1/SQR(X*X-1))

+ (X<0)*3.141593
ARCCOT(X) = 1.57096-ATN(X)
SINH(X) = (EXP(X)-EXP(-X))/2
COSH(X) = (EXP(X) + EXP(-X))/2
TANH(X) = (EXP(X)-EXP(-X))

/(EXP(X)+EXP(-X))
SECH(X) = 2/(EXP(X)+EXP(-X))
CSCH(X) = 2/(EXP(X)-EXP(-X))
COTH(X) = (EXP(X)+EXP(-X))

/(EXP(X)-EXP(-X))

ARCCSCH(X) = LOG((1+SGN(X)
*SQR(1+X*X))/X)

Appendix E

Decimal and Hexadecimal Numbers

GW-BASIC E-1

Conversion of a decimal number to its hexadecimal equivalent is
provided for by GW-BASIC in the form of the HEX$ function (see
Chapter 4, Commands and Functions). This function
returns the hexadecimal equivalent of a decimal number in the range
-32768 to 65535 (if the number is negative, a two’s complement form is
used),
An example of using the HEX$ function:

GW-BASIC does not itself provide a function for converting
hexadecimal to decimal numbers, but you could use the following
program, which converts a hexadecimal number to a positive decimal
value. Enter any hexadecimal number, using uppercase letters for A
to F. Do not prefix the number with 8H.

Use high line numbers outside your normal programming range. You
can then leave this program in memory or MERGE it from disk while
editing your main program. This enables you to do quick hexadecimal
to decimal conversions during programming, simply by issuing the
direct statement GOTO 9900.

PRINT HEX$(255)
will yield
FF

9900 INPUT “Hex number”;H$
9905 DEC=0
9910 FOR C% = 1 TO LEN(H$)
9920 CH$=MID$(H$,C%,1)
9930 IF (CH$<“0” OR CH$>“9”) AND (CH$<“A” OR

CH$>“F”) THEN GOTO 9900
9940 DEC=16*DEC-(CH$<“A”)*(ASC(CH$)-48)-

(CH$> “9”)*(ASC(CH$)-55)
9950 NEXT C%
9960 PRINT “Hex ”;H$;“ = ”;DEC;“ decimal”

Appendix F

Keyboard Positions

10 K$=INKEY$: IF K$ = “N” THEN GOTO 10

GW-BASIC F-1

Your NCR Personal Computer refers internally to the keys of the
keyboard by means of a keyboard position. In the normal course of
GW-BASIC programming, you refer to a key by means of the “name”
printed on it, for example

The diagram shows the position number on the top of each key on
your keyboard.

However, there are two sets of circumstances in which knowledge of
the key position is required: when reading a two-code character from
the keyboard (see Appendix B), and when defining your own key trap
(see KEY).

KEYBOARD POSITIONS

Keyboard Positions

SS in
in £ co co8 8

(O co £ 2 co £ 8 co
co88 3 CD s E sCD

8 ss 88 8 8 in o>

X
co 5 £ co 8

CMCO
CO

CT) s co
co 88 CM 8 s

co co s 8 in in8
3 < sco s 25

5 5<N X8 CM COco 52 8 co
inco

m
cm

8
8 S8 88 88 oo 88 88 8S8 CT)CT) 88 CMCM $33 co3co 88 88 8 388 88 oo £

$ coco 8co
co ct>2 8X inin

88 coco 88
88 £

coco 88co
co £

CM CM

83 8 co m812 12 8
8

8 8X2 CM
CO2 X co

co co co
CM co2

co
COCT)

in
CT)
in 8 in

co 3 co
co 2 3CT)

in 8

PC8/PC6 PC4i/PC6

F-2 GW-BASIC

A
o

£
8

8

8

£
8

£
o
S

o
$

si

INDEX

\ character, 5-2

GW-BASIC 1

/C option, 1-4
/D option, 1-4
/F option, 1-3, 5-1
/M option, 1-3, 6-1
/S option, 1-4

background, 3-1
backslash, 1-11
BEEP command, 4-24

<CR> key, 1-1
<Ctrl-Alt-Del> key, 1-6
<Ctrl-Break> key, 1-5

ABS function, 4-2Q
accumulator, floating point, 6-7
addressing points, 3-2
AL register, 6-6
ampersand, 1-11
AND, 1-26
arithmetic operators, 1-23
array, 1-17
arrays (in memory), 7-3
ASC function, 4-21
ASCII, 1-11, 7-10, B-l
assembler programming, 6-1
asterisk, 1-10
ATN function, 4-22
AUTO command, 2-5, 4-23

2 GW-BASIC

blank, 1-10
blinking, 3-1, 7-9
BLOAD command, 4-25
BLOADing, 6-3
blocksize, 1-3
border area, 3-2
BSAVE command, 4-27
buffer size,

asynchronous communications, 1-4
random access files, 1-4

CALL command, 4-29
caret, 1-10
Cartesian coordinates, 3-3, 3-5
CDBL function, 4-30
CHAIN command, 4-31
character,

mode, 3-1, 7-9
set, 1-10, 7-10, B-l

CHDIR command, 4-34
CHR$ function, 4-36
CINT function, 4-37
CIRCLE command, 4-38
CLEAR command, 4-41
CLOSE command, 4-43
CLS command, 4-44
colon, 1-11
colons, 1-9
COLOR command, 3-2

(character mode), 4-46
(graphics mode), 4-50

colors, 3-3, 3-4
(in memory), 7-7

COM command, 4-52
comma, 1-11
COMMON command, 4-53
communications, 5-15

I/O functions, 5-16
signals, 5-17

concantenation, string, 1-30
constants,

numeric, 1-12
string, 1-12

3GW-BASIC

CONT command, 4-54
control signals, 5-17
converting numbers

(decimal-hex), E-l
(precision considerations), 1-18

coordinates, 3-2
COS function, 4-56
CSNG function, 4-57
CSRLIN function, 4-58
cursor keys, 2-2
CVI, CVS, CVD function, 4-59

EDIT command, 4-75
editing keys, 2-1

DATA command, 4-60
DATES

command, 4-61
function, 4-62

DEF FN command, 4-63
DEF SEG command, 4-66, 6-1
DEF USR command, 4-67
DEFINT/SNG/DBL/STR commands, 4-65
DELETE command, 2-4, 4-68
deleting characters, 2-3
device names, 5-4
devices, 5-1
DIM command, 4-69
direct mode, 1-9
directory, 5-2

commands, 5-4
disk files,

default number, 1-3
maximum number, 1-3

display intensity, 3-1
division by zero, 1-25
dollar sign, 1-11
double precision, 1-14
double quotation mark, 1-11
DRAW command, 4-70
drive letter, 5-2
drivers, definition of, 7-1

GW-BASIC4

FIELD command, 4-86
file control block, 7-4
filename, 5-1
FILES command, 4-88
files, 5-1

communications, 5-15
random, 5-6, 5-10
sequential, 5-6, 5-7

FIX function, 4-90
fixed point constants, 1-13
floating point

accumulator, 6-7
point constants, 1-13

FOR...NEXT command, 4-91
foreground, 3-1
FRE function, 4-95
function keys, 2-6
functional operators, 1-29

END command, 4-76
ENVIRON command, 4-77
ENVIRONS function, 4-78
EOF function, 4-80
equal sign, 1-10
EQV, 1-26
ERASE command, 4-81
ERDEV and ERDEV$ System Variables, 4-81a
ERR and ERL system variables, 4-82
ERROR command, 4-83
error trapping, 1-32
exclamation mark, 1-11
exiting GW-BASIC, 1-5
EXP function, 4-85
exponentiation (symbol), 1-10
expressions, 1-22
extension, filename, 5-2

GET
(files) command, 4-96
(graphics) command, 4-97

GOSUB...RETURN command, 4-99
GOTO command, 4-101

5GW-BASIC

graphics
characters, B-l
mode, 3-2

greater than symbol, 1-11

KEY command, 4-118
keyboard, 1
KEY(N) command, 4-122
KILL command, 4-124
LCOPY command, 4-125
LEFT$ function, 4-126
LEN function, 4-127
less than symbol, 1-11
LET command, 1-16, 4-128
LINE command, 4-129

HEX$ function, 4-103, E-l
hexadecimal constants, 1-14
hierarchical structure, 5-2
high resolution, 7-9

I/O functions, communications, 5-16
IF commands, 4-104
image inversion, 3-1
IMP, 1-26
IN function, 7-1
indirect mode, 1-9
INKEY$ function, 4-107
INP function, 4-109
INPUT command, 4-110
INPUT#

command, 4-113
function, 4-115

INPUT$ function, 5-16
insert mode, 2-2
INSTR function, 4-116
INT function, 4-117
integer

constants, 1-13
division, 1-24

IOCTL command, 4-117a
IOCTL$ function, 4-117b

GW-BASIC6

NAME command, 4-152
naming

devices, 5-4
files, 5-1

machine language routines, 6-1
mathematical functions, additional, D-l
medium resolution, 7-9
memory

map, 7-2
requirements, 1-3

MERGE command, 4-147
MID$

command, 4-148
function, 4-149

minus sign, 1-10
MKDIR command, 4-150
MKI$, MKS$, MKD$ Functions, 4-151
mode,

direct, 1-9
indirect, 1-9

modulus arithmetic, 1-24

line feed, 2-4
LINE INPUT command, 4-132
LINE INPUT# command, 4-133
line numbers, 1-8
LIST command, 4-134
LLIST command, 4-136
LOAD command, 1-6, 4-137
loading

GW-BASIC, 1-1
program file, 1-2

LOG function, 4-138
LOCATE function, 4-139
locating, file buffer/string variable, 6-4
LOCK command, 4-140a
LOF function, 4-141, 4-142
logical operators, 1-26
LPOS function, 4-143
LPRINT, LPRINT USING commands, 4-144
LSET and RSET commands, 4-146

GW-BASIC 7

PAINT command, 4-184
palettes, 3-3

NCR-DOS, 1-1
network, 4-5, 4-6, 4-16, 4-173, 4-266a
NEW command, 4-153
NOT, 1-26
number sign, 1-11
numbers,

double precision, 1-14
single precision, 1-14

numeric
constant, 1-12
operations, precedence, 1-29

octal constants, 1-14
OCT# function, 4-154
Ok prompt, 1-2
ON COM(n) command, 4-155
ON ERROR GOTO command, 4-157
ON...GOSUB,ON...GOTO commands, 4-159
ON KEY command, 4-161
ON PEN command, 4-164
ON PLAY command, 4-166
ON STRIG command, 4-168
ON TIMER command, 4-170
OPEN “COM command, 4-177
OPEN command, 4-173
operators, 1-22

arithmetic, 1-23
OPTION BASE command, 4-182
options,

/C, 1-4
/D, 1-4
/F, 1-3
/M, 1-3
/S, 1-4
number of disk files, 1-3
stdin, 1-2
stdout, 1-3

OR, 1-26
OUT command, 4-183, 7-1
overflow, 1-25

question mark, 1-11

GW-BASIC8

random files, 5-6, 5-10
RANDOMIZE command, 4-221
READ command, 4-223
redirecting (input/output), 5-5
registers, processors, 6-4
relational operators, 1-25
relocatable subroutine, 6-3
REM command, 4-225
RENUM command, 1-8, 4-227
reserved words, 1-15, 2-5, A-l
reserving memory, 6-1
RESET command, 4-228

parentheses, 1-10
path (directory), 5-2
PEEK function, 4-189, 7-1
PEN

command, 4-190
function, 4-191

percent sign, 1-10
period, 1-11
periods, 1-9
PLAY command, 4-193
plus sign, 1-10
PMAP function, 4-197
POINT function, 4-198
points (pixels), 3-2
POKE command, 4-200, 7-1
POKEING, 6-2
POS function, 4-201
PRESET and PSET commands, 4-202
PRINT USING command, 4-207
PRINT command, 4-204
PRINT# and PRINT# USING commands, 4-212
program editing, 2-1
PUT

(files) command, 4-215
(graphics) command, 4-216

GW-BASIC 9

resolution,
high 3-2, 3-3, 7-9
medium 3-2, 7-8, 7-9
low 3-2, 3-3, 7-8

RESTORE command, 4-229
RESUME command, 4-230
retrieving a program, 1-5
RETURN command, 4-231
RIGHTS function, 4-232
RMDIR command, 4-233
RND function, 4-235
root (directory), 5-2
routines, machine language, 6-1
RUN command, 1-6, 4-237

SAVE command, 1-5, 4-238
saving a program, 1-5
scan codes, keyboard, 1
SCREEN command, 3-2, 4-239
SCREEN function, 4-241
screen

addressing, 7-8
attributes, 3-1

(setting in memory), 7-6
display, 3-1
scrolling, 2-5

semicolon, 1-11
sequential files, 5-6, 5-7
SGN function, 4-243
SHELL command, 4-244
shorthand form, 1-9
signals, control (communications), 5-17
SIN function, 4-246
single precision, 1-14
single quotation mark, 1-11
slash, 1-10
sorting data, 1-34
SOUND command, 4-247
SPACES function, 4-250
SPC function, 4-251
SQR function, 4-252
stack pointer, 6-4

10 GW-BASIC

UNLOCK command, 4-266a
underflow, 1-25
underscoring, 3-1
using files, 5-6
USR function, 4-267, 6-6
VAL function, 4-269
variables, 1-14

(in memory), 7-3
array, 1-17

VARPTR function, 4-270

standard
input device, 1-2
output device, 1-3

starting GW-BASIC, 1-1
stdin, 1-2
stdout, 1-3
STICK function, 4-253
STOP command, 4-254
storage maps, 7-8, 7-9
STRIG

command, 4-256
function, 4-257

STR$ function, 4-255
string

constant, 1-12
operations, 1-30

STRINGS function, 4-258
SWAP command, 4-259
symbols, 1-10
SYNTAX NOTATION, 4-18
SYSTEM command, 1-5, 4-260
system compatibility, 4-16

TAB function, 4-261
TAN function, 4-262
TIMES

command, 4-263
function, 4-264

TIMER function, 4-265
TRON and TROFF commands, 4-266
two-dimensional array, 1-17
type conversion, 1-18

y coordinate, 3-2

1,
gw-basic

VARPTR$ function, 4-271
VIEW command, 4-272

WAIT command, 4-274
WHILE and WEND commands, 4-275
WIDTH command, 3-1, 4-276
WINDOW command, 3-3, 4-278
WRITE command, 4-283
WRITE# command, 4-284

x coordmate, 3-2
XOR, 1-26

3
Doc.No.: 017-0035666

cE
Personal Computer Division
Augsburg, Germany

Getting Started

Owner's Manual

Installation Instructions (for optional kits)

Doc.No.: 017-0036852

INSTALLATION PROCEDURE
AND CHECKLIST

NOTE: Before starting to install your PC, check with your supplier
to see if some or all of this work has already been done.

This procedure is to help you understand the relationship between
the three different documents that you will need when assembling
your PC, these are:

INSTALLATION PROCEDURE

Flex Disk Drives
Multi-Mode Tape Drives
Hard Disk Drives
Coprocessor
Memory Expansion (on Main Processor Board)
Memory Expansion (additional boards)
Serial/Parallel Adapters, Serial/Serial Adapters
Display Adapter
Vertical Mount (do not install until all hardware

installation is completed)

NOTES:
When installing any of the options refer to the information
given in your Owner's Manual and the Installation Instruc­
tions that are supplied with each kit. Open the kits in sequence,
one at a time, to avoid the possibility of mixing parts from differ­
ent kits. Should information in the Owner’s Manual differ from

Preparing the keyboard, as described in section “c” is not neces-
sary for PCs delivered within the US. It is only required for
those countries where there are alphabetical differences to the
standard US keyboard arrangement.

Using the booklet Getting Started, read section “a”, then make
I sure that you have everything that you ordered as shown in sec­

tion “b”. If you have also ordered some optional kits, check that
you have received them but do not open these at this time.

The section “d. Prepare the Display Adapter”—
J To be certain that the strapping is set correctly always use the

information that is in the Installation Instruction provided with
the adapter. Then return to the Getting Started booklet, sec­
tion “e”.

yj Follow the instructions in Getting Started until you have re-
ZX. moved the cabinet top (Step e6). If you have optional kits install

them now, in the following sequence:

The following hints may help when installing your optional kits:

5

6

7

Any additional Flex Disk Drive that you install must be strap­
ped to Drive Select 1 and the terminator resistor must be re­
moved. There is no need to disturb the Drive Select setting or
terminator resistor on the already installed Flex Disk Drive.

that provided in an Installation Instruction, the information
given in the Installation Instruction should be followed.

Any Hard Disk Drive that you install must be strapped to Drive
Select 2. If this is to be the only Hard Disk Drive it must contain
a terminator resistor, if there is another Hard Disk Drive instal­
led then the drive that you are installing must not contain a ter­
minator resistor. There is no need to disturb the Drive Select
setting or terminator resistor on the already installed Hard
Disk Drive.

When all the options and the display adapter are installed re­
turn to Getting Started (Step e8) and complete the final steps of
the hardware preparation.

Before you re-install the cabinet top (Step ell), turn to the
check list at the back of this pamphlet and check that all the
necessary procedures have been completed.

When you are familiar with the fundamentals of operating your
PC, turn to your Owner’s Manual to learn more about the day-
to-day operation of your computer.

When all is ready (re-installing the cabinet top, and connecting
the keyboard and display), take the Getting Started diskette,
load it into the PC as described in section “g” and perform the
Set-up procedure. When this is completed you can then run the
Getting Started diskette again to learn the fundamentals of the
PC.

When installing a Coprocessor or additional memory to the
Main Processor Board it may help to remove the Flex/Hard
Disk Controller Board. This allows easier access to install the
Coprocessor into its socket, or to set the jumpers for an increase
of the Main Processor Board memory size.

CHECK LIST

Have you installed the display adapter in slot 1?

Is the battery connected?

Have you made a note of the number on the keys?

Have you installed all options that you ordered?

If installed, is the Hard Disk Drive unlocked?

Are the terminator resistors correct?

Is the system lock (on the front of the cabinet)
in the unlocked (clockwise) position?

Is the keyboard mode switch (on the Keyboard)
in the correct position?

If you have installed additional memory to the Main
Processor Board, have you set the jumpers P17/18
correctly?

If you have installed additional drives:
Have you set the Drive Select correctly?

If you are not using a Vertical Mount (optional kit),
have you installed the felt feet?

Is the voltage selector switch (on the rear of the
cabinet) set correctly?

Is the Display Adapter Board strapped as
described in the Installation Instruction?

Have you checked the switch SW3 (on the Main
Processor Board) for correct setting?

If everything is correct return to Step ell of Getting Started and
complete the final steps of preparation.

see)

Owner’s Manual

NCR
Personal
Computer

3295 - 0210
14 INCH COLOR MONITOR

Scope

March 1985
It is the policy of NCR Corporation to improve products as new technology,
components, software, and firmware become available. NCR Corporation,
therefore, reserves the right to change specifications without prior notice.
All features, functions, and operations described herein may not be marketed
by NCR in all parts of the world. In some instances, photographs are of equip­
ment prototypes. Therefore, before using this document, consult your NCR
representative or NCR office for information that is applicable and current.

This color display unit (Model 3295-02) is designed for use with NCR Perso­
nal Computers, or other compatible PCs. These instructions are primary
intended for use when installing the display to an NCR PC. However, they are
also useful when installing the display to another compatible PC.
For more detailed information refer to your PC Owner’s Manual.

Copyright © 1985 by NCR Corporation
Dayton, Ohio

All Rights Reserved

WARNING

Information to User

This equipment has been certified to comply with the limits for a Class B computing
device, pursuant to Subpart J of Part 15 of FCC Rules. Only peripherals (computer in-
put/output devices, terminals, printer, etc.) certified to comply with the Class B limits
may be attached to this computer. Operation with non-certified peripherals is likely to
result in interference to radio and TV reception.

This equipment generates and uses radio frequency energy and if not installed and used
properly, that is, in strict accordance with the manufacturer’s instructions, may cause
interference to radio and television reception. It has been type tested and found to
comply with the limits for a Class B computing device in accordance with the specifica­
tions in Subpart J of Part 15 of FCC Rules, which are designed to provide reasonable
protection against such interference in a residential installation. However, there is no
guarantee that interference will not occur in a particular installation. If this equipment
does cause interference to radio or television reception, which can be determined by
turning the equipment off and on, the user is encouraged to try to correct the inter­
ference by one or more of the following measures:

• Reorient the receiving antenna
• Relocate the computer with respect to the receiver
• Move the computer away from the receiver
• Plug the computer into a different outlet so that computer and receiver are on

different branch circuits.

If necessary, the user should consult the dealer or an experienced radio/television
technician for additional suggestions. The user may find the following booklet prepared
by the Federal Communications Commission helpful: “How to Identify and Resolve
Radio-TV Interference Problems41. This booklet is available from the U.S. Government
Printing Office, Washington, DC 20402, Stock No. 004-000-00345-4.

The NCR Corporation (NCR) is not responsible for any radio or television interference
caused by unauthorized modifications of this equipment or the substitution or attach­
ment of connecting cables and equipment other than those specified by NCR. The cor­
rection of interferences caused by such unauthorized modification, substitution or at­
tachment will be the responsibility of the user.

FEDERAL COMMUNICATIONS COMMISSION (FCC)
RADIO FREQUENCY INTERFERENCE STATEMENT

NCR Graphic Display
Adapter Board

Contents Inhalt Le Contenu
Consiste nel Contenido

CAUTION

ACHTUNG

ATTENTION

ATTENZIONE

CUIDADO

Connecte el cable de serial al adaptador Alpha NCR o al adaptador
graphico NCR.

Connettere il cavo segnali solo all' adattatore Alpha NCR o all'
adattatore graphico NCR.

Raccordez le cable signal seulement a un adaptateur Alpha NCR ou
a un adaptateur graphique NCR.

Connect signal cable only to an NCR Alpha or a NCR Graphic Display
Adapter Board.

Signalkabel nur an einen NCR Alpha Adapter oder an ein NCR
Graphic Display Adapter Board anschlieBen.

Installation

?1
100 to 257 Vac, 49 to 61 Hz

2

3

4

5

Check power source:
Netzsteckdose uberprufen:
V6rifiez I’alimentation:
Controllare la presa dell’alimentazione:
Compruebe la fuente de energia:

Connect signal cable to monitor.
(To comply with FCC requirements,
only the cable supplied may be used
Do not use a substitute cable.)
Datenkabel des Monitors anschlieBen.
Raccordez la cable signal au moniteur.
Inserire il cavo segnali nel monitor.
Conecte el cable de serial al monitor.

Connect power cable to monitor.
Netzkabel des Monitors einstecken.
Raccordez le cordon d’alimentation
au moniteur.
Inserire il cavo di alimentazione nel
monitor.
Conecte el cable de corriente al
monitor.

rr^

Connect power cable to power source.
Netzstecker einstecken.
Branchez le cordon d’alimentation au reseau.
Inserire il cavo di alimentazione nella presa.
Conecte el cable de corriente a la fuente
de energia.

Connect signal cable to NCR Graphic Board.
Datenkabel des Monitors in NCR Graphic Board einstecken.
Raccordez le cable signal a adapteur graphique NCR.
Inserire il cavo segnali nel adattore graphico NCR.
Conecte el cable de serial al adaptador graphico NCR. /

Operation

1
—W

I1U<■

2
o

3
J

1 fiiih

Switch on, and wait
for display to appear.
Gerat einschalten und warten, bis
die Bildschirmanzeige erscheint.
Mettez en marche et attendez
I’apparition de I’image.
Accendere, e attendere
I’apparizione del quadro.
Encienda y espere a que se ilumine
la pantalla.

Adjust Brightness and Contrast
for most comfortable display.
Helligkeit und Kontrast fur optimale
Lesbarkeit der Anzeige regeln.
Reglez la luminosite et le
contraste a votre convenance.
Regolare la luminosita e II contrasto
per una buona visualizzazione.
Regule el brillo y la nitidez para
tener una vision perfecta.

*[l
_.ld

Switch off after use.
Gerat nach Gebrauch wieder ausschalten.
Coupez apres utilisation.
Spegnere dopo I’uso.
Apague despues del uso.

Helpful Hints

,iisr

3b

/

Covering ventilation slots
Abdeckung der Beluftungsschlitze
L’occultation des ouies de ventilatio
La copertura delle feritoie di ventila-
zione
Taper las renuras de ventilacidn

Avoid:
Vermeiden Sie:
Evitez:
Evitate:
Evite:

Removing cabinet
Entfernen des Bildschirmgehauses
La depose du capot
II smontaggio della cassa di schermo
Retirar la carcasa

Direct sunlight
Direkte Sonneneinstrahlung
L’exposition directe au soleil
Irradiazione solare diretta
Luz solar directa

%

•3 r

Dampness
Feuchtigkeit
L’humidite
Umidita
Humedad

fIf
jR

g

f
&

■:V:'

>

... M w __

w

%

1 ■"
1 -1

%

t

1

Optional Cable Guide

Zusatzliche Kabelfuhrung

Conduite a cable facultative

Passacavo di opzione

Guia de cable a opcion

Fit only when not using the tilt and
swivel mechanism.

Installare il passacavo solamente se il
meccanismo girevole e inclinabile non
e impiegato.

Installez-la seulement si vous n'utilisez
pas le mechanisme d'orientation.

Instale la guia de cable solo si el
mecanismo de rotacion e inclinacion
no esta utilizado.

Nur einbauen, wenn der Kipp- und
Drehmechanismus nicht verwendet
wird.

Technical Data

CRT

Active Display Area

Resolution

Input Signals

Scan Standard

Outside Controls Contrast, Brightness

100 to 257 Vac, 49 to 61 HzPower Source

65 WattsPower Requirements

+10°C to + 32°C (+ 50°F to + 89.6°F)Operating Temperature

Size

16 kg (35.3 lb)Net Weight

Input Connector

5

o

9

Horizontal: 23.6 kHz
Vertical : 54.6 Hz

Width: 248 mm (9.8 in.)
Height: 186 mm (7.3 in.)

Horizontal: 640 dots
Vertical: 400 lines

Horizontal Drive: 3.3 /zsec, TTL level, negative
Vertical Drive: 678 ^csec, TTL level, negative
Video: R G B I, TTL level, negative

Height: 300mm (11.8 in.)
Depth: 400mm (15.7 in.)
Width: 370mm (13.6 in.)

14 inch diagonal (13 inch visible)
Screen dot pitch: 0.31 mm
90°deflection, dark anti glare screen

9-Pin, "D" Type
Pin 1 nc (not connected)
Pin 2 nc
Pin 3 Red Input
Pin 4 Green Input
Pin 5 Blue Input
Pin 6 Intensity
Pin 7 Vertical Sync
Pin 8 Horizontal Sync
Pin 9 Ground

o o
o o

Doc: 017-0043150

NCR
Personal Computer Division
Augsburg Germany

INSTALLATION

NCR
Personal
Computer

3299 - 903
MONITOR TILT AND SWIVEL

All features, functions, and operations described herein may not be marketed
by NCR in all parts of the world. In some instances, photographs are of equip­
ment prototypes. Therefore, before using this document, consult your nearest
dealer or NCR office for information that is applicable and current.

May 1985
It is the policy of NCR Corporation to improve products as new technology,
components, software, and firmware become available. NCR Corporation,
therefore, reserves the right to change specifications without prior notice.

Copyright c 1985 by NCR Corporation
Dayton, Ohio

All Rights Reserved

LeContenu
net ContentsContents Intta

Consiste -

Installation

2. I

IsA^i
" liBniiii

□
Doc: 017-0043624

a□
Personal Computer Division
Augsburg, Germany

