
Z8000 PLZ/ASM
Assembly Language Programming Manual

Preface

This manual describes the PLZ/ASM assembly language for the Zilog
Z8000 microprocessor, and serves as the primary reference manual
for the assembly language programmer. It is one in a series of
documents describing the Z8000 and associated hardware and
software. Information on the use of the PLZ/ASM Assembler can be
found in the publication:

Z8000 Assembler User's Guide

It is intended that this manual be read the first time in
sequence, from beginning to end.

Chapter 1 provides an overview of the architecture of the Z8000,
with special emphasis on those features of interest to the
assembly language programmer. A detailed description of the
architecture and hardware-related features can be found in the
publication:

Z8000 CPU Technical Manual (To be published)

Chapter 2 introduces assembly language conventions, including the
format of statements and addressing mode specifications.

Chapter 3 contains the detailed instruction set of the Z8000.

Chapter 4 introduces the high-level PLZ/ASM statements needed to
construct a complete program, while Chapter 5 contains the
detailed description of these statements.

The Appendices contain a summary of the instruction set,
high-level statements and assembler directives, plus a table of
the ASCII character set.

iii

iv

Contents

SECTION 1. ARCHITECTURAL OVERVIEW 1-1

1.1 INTRODUCTION 1-1

1.2 MEMORY ADDRESS SPACES 1-3

1.2.1 Four Memory Address Spaces 1-5
1.2.2 Addressing Memory Spaces 1-5

1.3 INPUT/OUTPUT ADDRESS SPACES 1-6

1.4 SEGMENTATION 1-8

1.4.1 Nonsegmented and Segmented
Addresses 1-9

1.4.2 Memory Management 1-11

• 1.5 DATA MANIPULATION 1-15

1.5.1 Data Types 1-15
1.5.2 General-Purpose Registers 1-16
1.5.3 Stacks and Stack Pointers 1-16
1.5.4 Addressing Modes 1-18
1.5.5 Instruction Formats 1-24

1. 6 PROGRAM CONTROLS 1-24

1.6.1 Program Counter 1-26
1.6.2 Status Flags 1-26
1.6.3 Control Bits 1-28
1.6.4 Interrupts and Traps 1-28
1.6.5 Program Status Area 1-30
1.6.6 System Reset 1-33
1.6.7 Memory Refresh 1-33

1.7 ADDRESS ARITHMETIC 1-35

1.7.1 Nonsegmented Addressing 1-35
1.7.2 Segmented Addressing 1-35

SECTION 2. Z8000 ASSEMBLER CONVENTIONS 2-1

2.1 ASSEMBLER OVERVIEW 2-1

CONTENTS (continued)

2.2 ASSEMBLY LANGUAGE STATEMENT FORMAT 2-2

2.2.1 Program Labels and Identifiers ... 2-2
2.2.2 Instruction 2-3
2.2.3 Operand Field 2-4
2.2.4 Comments 2-5

2.3 ARITHMETIC OPERANDS 2-6

2.3.1 Run-Time vs. Assembly-Time
Arithmetic 2-6

2.3.2 Constants 2-7
2.3.3 Data Variables 2-8
2.3.4 Expressions and Operators 2-10
2.3.5 Segmented Address Operators 2-13

2.4 Z8000 ADDRESSING MODES 2-14

2.4.1 Immediate Data 2-15
2.4.2 Register Address 2-16
2.4.3 Indirect Register Address 2-17
2.4.4 Direct Address 2-18
2.4.5 Indexed Address 2-19
2.4.6 Relative Address 2-20
2.4.7 Based Address 2-21
2.4.8 Based Indexed Address 2-22

SECTION 3. ASSEMBLY LANGUAGE INSTRUCTION SET 3-1

3.1 FUNCTIONAL SUMMARY 3-1

3.2 NOTATION AND BINARY ENCODING 3-11

3.2.1 Operand Notation 3-11
3.2.2 Instruction Format Encoding 3-14
3.2.3 Operation Notation 3-21

3.3 ASSEMBLY LANGUAGE INSTRUCTIONS 3-23

3.4 UNIMPLEMENTED INSTRUCTIONS 3-24

SECTION 4. STRUCTURING A Z8000 PROGRAM 4-1

4.1 INTRODUCTION 4-1

vi

CONTENTS (continued)

4.2 PROGRAM STRUCTURE 4-1

4.2.1 Modules 4-1
4.2.2 Procedures 4-2
4.2.3 DO Loops 4-3
4.2.4 IF Statements 4-4
4.2.5 Scope 4-5
4.2.6 Summary . „ 4-6

4.3 RELOCATABILITY 4-8

4.3.1 Sections 4-8
4.3.2 Location Counter Control 4-9
4.3.3 Modes of Arithmetic Expressions .. 4-10

SECTION 5. PLZ/ASM HIGH-LEVEL STATEMENTS 5-1

5.1 Z8000 SOURCE PROGRAM STATEMENTS 5-1

5.2 PROGRAM STRUCTURING STATEMENTS 5-2

5.2.1 Module Declaration 5-2
5.2.2 Procedure Declaration 5-2
5.2.3 DO Statement 5-4
5.2.4 IF Statement 5-5
5.2.5 IF-CASE Statement 5-7

5.3 DEFINING DATA 5-8

5.3.1 Constant Definition 5-8
5.3.2 Data Types 5-9
5.3.3 Type Definition 5-12
5.3.4 Variable Declaration 5-14
5.3.5 Label Declaration 5-19
5.3.6 SIZEOF Operator 5-20

APPENDIX A (To be published) A-l

APPENDIX B HIGH-LEVEL STATEMENTS SUMMARY B-l

APPENDIX C ASSEMBLER DIRECTIVES AND
EXTENDED INSTRUCTIONS C-l

C.I ASSEMBLER DIRECTIVES C-l

Vll

E3-3055-01 07/02/79

CONTENTS (continued)

C.2 EXTENDED INSTRUCTIONS C-2

APPENDIX D RESERVED WORDS AND
SPECIAL CHARACTERS D-l

D.I RESERVED WORDS D-l
D.2 SPECIAL CHARACTERS D-3

APPENDIX E HEX-ASCII TABLE E-l

LIST OF TABLES

TABLE 3-1 NUMBER OF BYTES IN INSTRUCTIONS 3-20

LIST OF ILLUSTRATIONS

FIGURE 1-1 Z8000 PIN Functions 1-4

FIGURE 1-2 Addressable Data Elements 1-7

FIGURE 1-3 Segmented Address (Register Memory) 1-10

FIGURE 1-4 Segmented Address Within Instruction 1-10

FIGURE 1-5 The MMU Connection 1-12

FIGURE 1-6 Logical to Physical Address Translation 1-13

FIGURE 1-7 Segmented Address Relocation 1-14

FIGURE 1-8 Byte and Word Strings 1-17

FIGURE 1-9 General Purpose Registers 1-19

FIGURE 1-10 Typical Instruction Formats (nonsegmented) 1-25

FIGURE 1-11 Program Status Blocks 1-25

FIGURE 1-12 Format of Saved Program Status
in the System Stack 1-31

vni

CONTENTS (continued)

FIGURE 1-13 Program Status Area 1-32

FIGURE 1-14 Program Status Area Pointer 1-34

FIGURE 1-15 Refresh Register 1-34

Section 1
Architectural Overview

1.1 INTRODUCTION

Zilog's Z8000 microprocessor has been designed to accommodate a
wide range of applications, from the relatively simple to the
large and complex. Depending on the Z8000 configuration chosen,
the programmer can directly address from 64 kilobytes (64K or
65,536 bytes) to 8 megabytes (8M or 8,388,608 bytes) of memory.

The Z8000 achieves high throughput with a relatively low clock
rate (standard: 4MHz) and can, therefore, use memories with a
comparatively long access time. Built-in random-access memory
(RAM) refresh with a programmable refresh rate permits the use of
a wide variety of dynamic memories.

Z8000 central processing unit (CPU) resources include sixteen
16-bit general-purpose registers, seven data "types" (lengths
from single bits to 32-bit long words), eight addressing modes,
and a repertoire of 105 instructions. These resources are
similar in form to comparable features of the Z8-microcomputer
and Z80-microprocessor families, allowing users of these systems
to upgrade easily to the Z8000.

Over 410 meaningful combinations of instructions, data types, and
addressing modes are available with the Z8000. The instruction
set also includes signed multiplication and signed division
(implemented in hardware) for both 16-bit and 32-bit values.

The Z8000 provides several sophisticated features not found on
other microprocessors. Since reference to these features are
made throughout this manual, a brief description of each of the
major concepts and terminology follows:

• Segmentation

To facilitate the management of a large address space, the
Z8000 allows program and data to be accessed as part of
variable-length logical groupings called "segments".
Segmentation provides hardware assistance for relocation of
program and data, as well as protection against accidental
or malicious damage to system or user information (see
Section 1.4).

1-1

• Stacks

The Z8000 has several instructions which facilitate the
handling of stacks (Section 1.5.3). A "stack" is an area
of memory used for temporary storage or re-entrant
procedure call/interrupt service linkage information, and
is managed in a "last-in, first-out" manner; that is,
several items may be "pushed" or added to the top of a
stack and then "popped" or removed from the stack in
reverse order. On the Z8000, a stack starts at the highest
address allocated for it and grows linearly downward to the
lowest address as items are pushed. A general-purpose
register is used to "point" to the current top of the
stack; that is, the register contains the address of the
most recently-pushed item.

• Interrupts and Traps

Two events can alter the normal execution of a Z8000
program: asynchronous hardware "interrupts" which occur
when a peripheral device needs service, and synchronous
software "traps" which occur when an error condition arises
such as an attempted use of an unimplemented instruction.
The Z8000 handles both of these cases in a similar manner
(Section 1.6.4). The current status of the processor is
pushed on a stack, and then program control is
automatically "vectored" to a handler procedure for the
particular class of interrupt or trap. The address of the
handler is determined by indexing a table (or "vector") of
program status blocks which is referred to as the Program
Status Area, and extracting the appropriate entry that
includes the address of the handler procedure. When the
handler procedure is finished, control can be returned to
the interrupted program through the status information
saved on the stack. (Non-vectored interrupts are also
possible, with the burden placed on the program to
determine which device needs servicing.)

• Normal and System Operating Modes

Z8000 programs run in one of two operating modes:
Normal mode or System mode. Normal mode is the operating
mode during normal program execution. System mode exists
primarily to protect the operating system kernel.
Instructions that alter the machine state (such as I/O
operations, changes to control registers, etc.) can be
issued only in System mode and are referred to as
"privileged" instructions.

1-2

Attempting to execute privileged System mode instructions
while in Normal mode initiates a trap. This is an
important feature in a multi-user environment. Programs
running in normal mode cannot take over or monopolize
control of the Z8000 or damage other users' programs or
system software. System mode is also in effect following
an interrupt or trap.

Compiler and assembler code, the program code output by these
translators, and operating system code, all run efficiently on
the Z8000. Large address spaces, memory relocation, system and
normal stacks, special instructions, and a sophisticated
interrupt and trap structure add to this efficiency.

The Z8000 can also be part of a multi-microprocessor system using
its exclusion and synchronization software instructions and its
Micro Input and Micro Output hardware controls. The large
address space of the Z8000 augments the overall data-processing
capability of multi-microprocessor configurations.

From a programmer's point of view, the basic Z8000 system
configuration consists of the Z8000 microprocessor and its
various memory and I/O address spaces. These are described in
the remainder of this section. For detailed architectural and
configuration data, see the Z8000 Technical Manual.

NOTE

The Z8000 is designed to provide for future
extensions to its architecture which would require
several of the currently unused (but reserved)
bits in some of the instruction and data
encodings. Any shaded or hatched areas in the
figures throughout this manual are considered
reserved and should not be used by the programmer.
Reserved bits must be zero.

1.2 MEMORY ADDRESS SPACES

To allow for a wide range of applications, two versions of the
Z8000 microprocessor device are available: a 40-pin package
(Z8002) with an address range of 0-64K bytes, and a 48-pin
package (Z8001) with an address range of 0-8M bytes (Figure 1-1).
The Z8002 version is called nonsegmented and the Z8001 is the
segmented version (see Section 1.4.1) .

1-3

BUS,
TIMING

STATUS<

CONTROL

BUS
CONTROL<

INTERRUPTS-;

MULTI-MICRO
CONTROL

ÄS

DS

MREQ

READ/WRITE

NORMAL/SYSTEM

BYTE/WORD

ST3

ST2

ST,

ST0

WATT 28OO1

STOP Z8002

BUSRQ

BUSAK

NMI

vT
NVT

M,

MO

AD15

AD14

AD13

AD12

AD,,

AD10

ADg

AD8

AD7

AD6

AD5

AD„

AD3

AD2

AD,

AD0

[* SN6

| SN5

i SN4

| SN3

1 SN2

1 SNl

| SN0

L S E G T

« » >

-*— *-

•+-+-

-*— »-

-*— *-

"*-*"

^ ^

-*— *-
-«— »-

-*— *-
-*— »-

^ ^

•*-*-J

—^

^
^

^

ADDRESS/
DATA BUS

Z8OO1
ONLY

SEGMENT
NUMBER

SEGMENT
"* TRAP fs^_.

m r
+ 5 V GND CLK RESET

Figure 1-1 Z8000 Pin Functions

1-4

1.2.1 Four Memory Address Spaces

When memory is addressed, the Z8000 CPU distinguishes between

• CODE memory, containing program instructions, and

• DATA memory, including stack memory,

both of which can be accessed in Normal and System operating
modes. Thus, the programmer can address four distinct memory
address spaces: system code memory, normal code memory, system
data memory, or normal data memory.

The specific space addressed is determined by the combination of
outputs from the Z8000 status pins, STO-ST3 (Figure 1-1). The
status pins indicate various CPU operations such as memory or I/O
references, interrupt or trap acknowledgements, memory refresh or
internal operations. Data memory reference, stack memory
reference, instruction fetch of the first word of an instruction
(IF1), and instruction fetch of the nth word of an instruction
(IFn) each correspond to different status pin outputs, so that
each address space can be distinguished by the memory hardware.

Each of the four address spaces has a range as great as the
addressing capability of the processor. For the user with a
nonsegmented Z8002 microprocessor, this means each address space
can have up to 64K bytes, for a total system capacity of 256K
bytes of directly-addressable memory. Similarly, a segmented
Z8001 provides 32 megabytes of directly-addressable memory (up to
8M bytes for each of the four address spaces).

1.2.2 Addressing Memory Spaces

Each memory address space can be viewed as a string of bytes
numbered consecutively in ascending order. This "byte address"
is the basic addressing element for the memory portion of a Z8000
system. The different methods for arriving at the byte address
are discussed later in this section (Section 1.5.4).

The byte address is used not only to address bytes, but also to
address bits, 4-bit Binary Coded Decimal (BCD) digits, 16-bit
words, and 32-bit long words.

1-5

In the case of a bit or digit, the memory address designates the
byte or word that contains it. For example, a bit can be
addressed by specifying a byte address and the number of the bit
within the byte (0-7) , or by specifying a word address and the
bit number within the word (0-15). Bits are numbered
right-to-left; that is, least-to-most significant (Figure 1-2).

In the case of data types longer than one byte, the memory
address designates the leftmost, or high-order byte. In other
words, the high-order byte has the lowest memory address of the
bytes within a word or long word (Figure 1-2).

Program instructions residing in code memory are always addressed
as 16-bit words. Words and instructions are always aligned (the
high-order byte must have an even-numbered address)"! Aligned
words improve access speed and double the range of instructions
that use relative addresses (JR, DJNZ, DBJNZ, CALR) — see
Section 1.5.4. The memory address of a long word must also be an
even-numbered byte address.

NOTE

Word quadruples (64 bits) cannot be addressed in
memory. It is possible to address 64-bit register
quadruples, however. This is covered later, in
Section 1.5.2.

1.3 INPUT/OUTPUT ADDRESS SPACES

The Z80CO has an I/O address space separate from the memory
address space. I/O address references can be distinguished from
memory addresses using the status pin outputs from the Z8000
(Figure 1-1) .

I/O addresses are 16-bit addresses allowing a range of 0-64K
bytes to be addressed. I/O addresses are multiplexed with the
byte or word data accessed by the I/O operation. (See pins ADO -
AD15 of Figure 1-1.) I/O data references have an automatic wait
cycle included for each load or store, which results in a 4-cycle
read or write.

The Z8000 instruction set includes two groups of I/O
instructions: a standard complement of input, output, and block
transfer instructions, plus a "special" group of I/O
instructions. The latter are generally used to load and examine
the Memory Management Unit, a device used only in the segmented
Z8000 system configuration (Section 1.4.2). Special I/O
references can be distinguished from standard I/O references
using the status pins (Figure 1-1.)

1-6

7 6 5 4 3 2 1 0

BITS IN A BYTE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BITS IN A WORD

UPPER LOWER
i i i i i

BCD DIGITS IN A BYTE

i i i i i
BYTE

UPPER BYTE
i i i

LOWER BYTE
i _ i _ i _ i _ i

WORD

UPPER WORD
i i i i i i i i i i i i i i i

•LONG WORD

LOWER WORD
i i i i i i i i i i i i

Figure 1-2 Addressable Data Elements

1-7

l.4 SEGMENTATION

The segmented Z8000 memory address space may be separated into
several (up to 128) variable-length "segments". Each segment may
vary in size, independently from other segments, from 0 to 64K
bytes. Addresses consist of both a segment number and an offset.
The segment number is used as an index into a table of base
addresses for each segment. The table is kept in a separate
package called the Memory Management Unit (MMU). The
corresponding table entry provides a base to which the offset is
added, thus providing the final address. The term "logical
address" is used to indicate the segmented address used by the
programmer to construct his program. The term "physical address"
is used to indicate the translated address which is passed to the
physical memory hardware. This address translation is
accomplished completely in hardware and does not affect the
instruction execution time.

Segmentation provides:

1) Dynamic relocation of program and data memory without
necessitating the modification of addresses. Since all
instructions use addresses which are relative to the segment
base registers, code and data segments can be relocated
anywhere in memory simply by moving the information and
setting the segment base registers (in the MMU) to new
values. This provides great flexibility for multi-user or
multi-task operating systems in efficiently managing memory
allocations.

2) Hardware-assisted memory protection to insure that only valid
addresses within the bounds of the user's code and data
segments are accessed. Since segments can be of variable
length, only the amount of memory needed for each segment
needs to be specified (independently from other segments).

3) Large logical address space without necessitating large
physical address space ("virtual memory"). Since logical
addresses are 23 bits, up to 8M bytes per address space can
be accessed. This space usually exceeds the size of the
available physical memory address space. However, by using a
combination of the MMU, some external hardware and some
operating system software, a virtual memory scheme can be
employed which detects accesses to logical memory which are
not currently mapped to physical memory, thus allowing the
loading of segments from external secondary memory devices on
demand.

4) Controlled sharing of memory with several Z8000 CPUs. Logical
segments may be shared by several microprocessors by using
the same MMU, or the same physical memory segments may be
shared with several MMUs mapping different microprocessors'

1-8

logical address spaces into the same physical addresses.
Relocation, protection and/or virtual memory facilities may
be shared by several processors as well.

The nonsegmented Z8002 uses 16-bit addresses that can be
manipulated as words. This version can directly address 64K
bytes of memory in each of its four address spaces. The
segmented, Z8001 version uses 23 bits to address directly up to
8M bytes in each of its four address spaces. The basic
difference between programs running in nonsegmented or segmented
modes is the number of bytes used to form addresses in
instructions or registers.

Code written for a nonsegmented Z8000 can run in one segment of a
segmented Z8000. This is called "running the segmented Z8000 in
nonsegmented mode". The converse is not possible; i.e., code
written for a segmented Z8000 will not run properly on a
nonsegmented Z8000 due to differences in the instruction formats,
and the use of register pairs for addressing modes. The
functionality of the two versions is identical in all respects
other than memory addressing.

1.4.1 Nonsegmented and Segmented Addresses

All nonsegmented addresses are represented as 16-bit words,
whether they reside in a register, in memory, or as part of an
instruction.

Segmented addresses require 23 bits. Each 8-megabyte address
space is divided into 128 segments from 0 to 64K bytes each.
Thus, to address a byte in one of these spaces, two pieces of
information are needed:

• the segment number (0-127), which can be expressed in 7
bits, and

• the offset from the beginning of the segment (i.e., the
0-64K byte address within the segment), which can be
expressed in 16 bits.

The two parts of a segmented address may be manipulated
separately. Word functions, including 16-bit arithmetic, can be
performed on the offset portion.

Figures 1-3 and 1-4 show internal representations of segmented
addresses. The two words shown in Figure 1-3 could represent a
long word in memory (Section 1.2.2) or a register pair in the CPU
(Section 1.5.2). Within instructions, segmented addresses can
have a long 16-bit offset or a short 8-bit offset. As Figure 1-4
indicates, bit 7 of the segment-number byte is used to
differentiate between these two formats.

1-9

0 7

r segment number

15

long offset
i i i i i

SHADED AREAS ARE RESERVED

Figure 1-3 Segmented Address (Register Memory)

0 7

1 segment number
i r i i i

15

long offset

SHADED AREAS ARE RESERVED

0 7

segment number
i i i i i i

short offset

Figure 1-4 Segmented Address Within Instruction

1-10

1.4.2 Memory Management

The segmented Z8000 configuration usually includes a separate
package called the Memory Management Unit (MMU). The MMU pin
functions are pictured logically in Figure 1-5 and described
below. These functions are divided between:

• segment address relocation, and
• memory protection.

The MMU relocates segment addresses by converting them from
"logical" to "physical" addresses. Logical addresses are those
manipulated by the program or specified in instructions, and
output by the Z8000 CPU. Physical addresses are actual hardware
locations. This address translation occurs automatically in the
MMU and requires no programmer intervention (see Figure 1-6).

As Figure 1-5 illustrates, the inputs to the MMU include the
segment number and the upper eight bits of the offset. Each
segment number is associated with a 24-bit "base" address
equivalent to the first physical address in the segment. The
16-bit offset is added to this base to complete the 24-bit
physical address. Note that the lower eight bits of the offset
are passed directly to the physical memory, so that the MMU need
only store the upper 16 bits of each base address (bits 8-23).
Figure 1-7 is another representation of the addition done by the
MMU to form the 24-bit physical address.

The other major function of the MMU is memory protection. By
interpreting its four status lines (Chip Select, Address Strobe,
Data Strobe, and Read/Write), the MMU can check

System vs. normal segment status
Code vs. data status
Read/write vs. read-only status
Invalid entry
Segment size

During each memory reference, the attributes for each segment are
checked against the corresponding Z8QOO status lines. If a
mismatch is detected, a trap is generated using the Segment Trap
line (SECT).

The MMU functions constantly while memory is referenced, but its
translation and protection tables are loaded and examined as an
I/O peripheral. The ZSOOO's special I/O instructions (SIN, SOUT,
and their variations -- see Section 3) can load or examine the
MMU.

1-11

Z8000
CPU

(BIDIRECTIONAL)

D7-D0

A7-A0

AD15-AD8

SN6-SN0

SEGMENT NUMBER

TRAP

ST3-ST0

STATUS

MEMORY
MANAGEMENT

UNIT

AD7-AD0

A23~A0

Figure 1-5 The MMU Connection

1-12

LOGICAL
ADDRESSING

SPACE

SEGMENT 0

PHYSICAL
ADDRESSING

SPACE

0000
ELEMENT

ADDRESSED
UP TO
FFFF

000000

FFFFFF

Figure 1-6 Logical to Physical Address Translation

1-13

LOGICAL ADDRESS

/"MEMORY
MANAGEMENT
UNIT

23

ADD

SEG#

BASE
ADDRESS
MEMORY

16 15 \/ 8 7

15

00000000

15
T

00000000 I
I

23 8 7

24-BIT PHYSICAL ADDRESS

\

8 7

OFFSET

Figure 1-7 Segmented Address Relocation

1-14

1.5 DATA MANIPULATION

This section describes the Z8000 CPU data manipulation features
which are relevant to the assembly-language programmer. For
information on CPU architectural or hardware features, see the
Z8000 CPU Technical Manual.

1.5.1 Data Types

Z8000 instructions allow the programmer to work with seven
different data types (or data lengths); five of these were
described in Section 1.2.2 and Figure 1-2:

• Bits
• 4-bit BCD digits
• 8-bit bytes
• 16-bit words
• 32-bit long words

Each of these can be addressed by specifying a byte address
the byte containing a bit, digit or byte, or the high-order byte
of a word or long word. For these five data types, the length to
be used is implied by the operation.

All five of these data types can also be processed in CPU
registers (Section 1.5.2). In this case, the instruction
designates:

• a byte-register number (for a bit, digit, or byte
data type),

• a word-register number (for a word data type), or

• a register-pair number (for a long word data type)

Z8000 instructions allow bits to be set, cleared, and tested.
Digits are used in BCD arithmetic operations. Bytes are used to
handle characters or small integers (in the range 0 to 255 if
unsigned, or in the range -128 to 127 if signed). Words can
contain larger values (in the range 0 to 65535 if unsigned, or in
the range -32768 to 32767 if signed), instructions, or
nonsegmented addresses. Long words contain large values (in the
range 0 to 4,294,967,295 if unsigned, or in the range
-2,147,483,648 to 2,147,483,647 if signed) and segmented
addresses.

The two remaining data types, not discussed thus far are:

• Strings of bytes
• Strings of words

1-15

Strings can be stored and referenced only in memory. They are
referenced by designating either their lowest or their highest
byte address plus their length in bytes or words. They are used
with Z8000 "autoincrement" or "autodecrement" instructions, which
automatically increase or decrease the pointer to a byte or word
address (Figure 1-8). Note that when strings are used, the
programmer must designate the length of the data element
explicitly, as one of the instruction operands.

1.5.2 General-Purpose Registers

The Z8000 CPU data manipulation capabilities are based on a
powerful set of sixteen 16-bit, general-purpose registers which
are used to hold temporary data and address calculations during
the processing of data in the I/O and memory address spaces. The
registers are specified in assembly language statements as RO
through Rl5, which means they can be addressed by four bits. All
sixteen registers can be used as accumulators. In addition to
their use as accumulators in arithmetic and logical operations,
15 of the 16 registers may be used in addressing mode
calculations as either indirect, index or base-address registers.
Because the instruction format encoding uses the value 0 to
differentiate between various addressing modes, register RO (or
the register pair RRO) cannot be used as an indirect, index or
base-address register.

The programmer can also address registers as groups of 8, 32, or
even 64 bits (Figure 1-9). These registers are specified using
the following assembly language symbols:

• RHO, RLO, RH1, RLl, ..., RH7, RL7 for 8-bit registers.
("H" stands for high-order byte, and "L" stands for
low-order byte within a word register). These registers
overlap 16-bit registers RO - R7. All 8-bit registers
can be used as accumulators.

• RRO, RR2, RR4, ..., RR14 for 32-bit register pairs.

• RQO, RQ4, RQ8, and RQ12 for 64-bit register quadruples.
These registers are used only by a few instructions such
as Multiply, Divide, and Extend Sign.

i

1.5.3 Stacks and Stack Pointers

The Z8000 is a register-oriented machine. It also has
sophisticated stack-oriented instructions and includes separate
hardware-maintained stacks for its two operating modes — a
system stack and a normal stack, residing in system data memory
and normal data memory, respectively. In addition, since any
general-purpose register (except RO) can be used as a

1-16

LOWEST BYTE
ADDRESS

(AUTOINCREMENT)

OR

HIGHEST BYTE
ADDRESS

(AUTODECEMENT)

i i i i i i
LENGTH IN BYTES AS ONE
OF THE OPERANDS

i i i i i i i

BYTE STRING

LOWEST WORD
ADDRESS

(AUTOINCREMENT)

OR

HIGHEST WORD
ADDRESS

(AUTODECREMENT)

15

i i i i i i i i i

l l l l i

i i i i l i i l i i i i i i
LENGTH IN WORDS
AS ONE OF THE
OPERANDS

i i i i i i i i i i i i

i i i i i i

WORD STRING

Figure 1-8 Byte and Word Strings

1-17

programmer-maintained stack pointer with instructions such as
Push and Pop, multiple stacks can be efficiently supported. The
stack pointers (pointers to stack locations in data memory) are
kept in general-purpose registers and, therefore, can be altered
using standard instructions. No special stack-pointer
instructions are needed.

The processor stack is used implicitly by certain operations such
as the Call and Return instructions or the interrupt and trap
mechanisms. Depending on the System or Normal mode, these
operations use a hardware-defined stack pointer to access either
the system processor stack or the normal processor stack.

For the nonsegmented Z8000, the system and normal processor
stacks can be addressed by 16 bits. Register R15 is used for
this purpose. For the segmented version, 32-bit pointers are
required and register pair RR14 is used (Figure 1-9). The format
of the 32-bit address is shown in Figure 1-3.

As Figure 1-9 also shows, two copies of the stack pointer are
needed -- one for the system stack and one for the normal stack.
Although the stacks are separated in memory, the normal stack
pointer (NSP) register can be accessed while in System mode using
the Load Control Register (LDCTL) instruction.

The two sets of stack pointers make task-switching easier. To
make sure the normal stack is always free of system information,
the normal program status data saved when an interrupt or trap
occurs is pushed onto the system stack before the new program
status is loaded (see Sections 1.6.4 and 1.6.5).

1.5.4 Addressing Nodes

An assembly-language statement consists generally of an operation
to be performed (instruction) and the data to be operated upon
(operands). The latter include the source of the data and the
destination where the result of the operation is to be stored.

In its simplest form, an operand can be either the specific data
to be processed (immediate data) or the name of a register that
holds the data. Data can be specified in more complex ways,
also. For example, an operand may name a register whose contents
are added to the contents of another register to form the address
of the memory location containing the source data (based indexed
addressing). Data can be specified by eight distinct addressing
modes:

1-18

RRO

RR2

RR4

RR6

RR8

RR10

RR12

RR14

I RQ

R1

I R2

.
R3

(R4

I R5

| R6

I «7

I R8

R9

| R1°

(R11

| R12

(R13

R1

R14

R1

R15

7 RHO 0

15 RH1

RH2

RH3

RH4

RH5

RH6

RH7

*' | SYSTEM STACK

NORMAL STACK

5' | SYSTEM STACK

NORMAL STACK

7 RLO 0

RL1 0

RL2

RL3

RL4

RL5

RL6

RL7

POINTER (SEG. NO.)

POINTER (SEG. NO.)

POINTER (OFFSET)

POINTER (OFFSET)

I

-"

1

^

RQO

RQ4

RQ8

RQ12

GENERAL

REGISTERS

NOTE: Register R14 is not used as a stack pointer
in the nonsegmented Z8000.

Figure 1-9 General-Purpose Registers

1-19

Immediate Data (IM)
Register (R)
Indirect Register (IR)
Direct Address (DA)
Indexed Address (X)
Relative Address (RA)
Based Address (BA)
Based Indexed Address (BX)

Depending on the operation, the addressing mode to be used might
be implied by an instruction or spelled out explicitly. When
stated explicitly, the addressing mode usually refers to a
register or memory location. Implied addressing modes usually
refer to program (code) memory or the I/O address space.

Immediate Data

Although considered an "addressing mode" for the purpose of this
discussion, Immediate Data is the only mode that does not
indicate a register or memory address. The data processed by the
instruction in this case is the value supplied as the operand.

INSTRUCTION

OPERAND

THE OPERAND VALUE IS IN THE INSTRUCTION

Immediate Data mode is often used to initialize registers. The
Z8000 is optimized for this function, providing several short
immediate data instructions to reduce the byte count of programs.

Register Addressing

In Register addressing mode, the instruction processes data taken
from a specified general-purpose register. Storing data in a
register allows shorter instructions and- faster execution.

REG
INSTRUCTION »- OPERAND

THE OPERAND VALUE IS THE CONTENTS OF THE REGISTER

The register length (byte, word, register pair, or register
quadruple) is implied by the instruction.

1-20

Indirect Register Addressing

In Indirect Register addressing mode, the data processed is not
the value in the specified register. Instead, the register holds
the address of the data.

REG

INSTRUCTION »- ADDRESS OPERAND

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE
ADDRESS IS IN THE REGISTER

A single word register is- used to hold the address in
Nonsegmented mode, while a register Ĵ2air must be used in
Segmented .mode. Any general-purpose word register (or register
pair in Seg'mented mode) can be used except RO or RRO. This mode
is also used by the I/O instructions to specify a "port" and
always indicates a 16-bit I/O address held in a single word
register.

The Indirect Register mode may save space and reduce run time
when consecutive locations are referenced. This mode can also be
used to simulate more complex addressing modes, since addresses
can be computed before the data is accessed.

Direct Addressing

In Direct Address mode, the data processed is found at the
address specified as an operand.

INSTRUCTION J
ADDRESS H OPERAND

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE
ADDRESS IS IN THE INSTRUCTION

This mode is also used by the I/O instructions to specify a
"port" and always indicates a 16-bit I/O address. This mode is
also used by Jump and Call instructions to specify the address of
the next instruction to be executed (actually, the address serves
as an imediate value that is loaded into the program counter).
The address specified is limited to one word in Nonsegmented mode
and in Segmented mode using the short offset (Figure 1-4).
Segmented addresses using a long offset require a long word.

1-21

Indexed Addressing

In Indexed Address mode, the instruction processes data located
at an indexed address in memory. The indexed address is computed
by adding the address specified in the instruction to a
"displacement" or "index". The index is contained in a word
register, also specified in the instruction. Indexed Addressing
allows random access to tables or other complex data structures
where the address of the base of the table is known, but the
particular element index must be computed by the program.

REG
INSTRUCTION | —

|

ADDRESS

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE
ADDRESS IS THE ADDRESS IN THE INSTRUCTION, OFFSET BY THE
CONTENTS OF THE REGISTER

Any word register can be used as the index register except RO .
The address operand is limited to one word in Nonsegmented mode ,
but can be one or two words in Segmented mode, depending on
whether a long or short offset is used in the address (Figure

Relative Addressing

In Relative Address mode, the data processed is found at an
address relative to the current instruction. The instruction
specifies a two's complement displacement which is added to the
program counter to form the target address. The program counter
setting used is the address of the first instruction following
the current relative instruction.

PC
INSTRUCTION ADDRESS

DISPLACEMENT H + I H OPERAND•GH
THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE
ADDRESS IS THE CONTENTS OF PC OFFSET BY THE DISPLACEMENT IN
THE INSTRUCTION

1-22

As with Direct Address mode, Relative Address is also used by
certain program control instructions to specify the address of
the next instruction to be executed (specifically, the result of
the addition of the program counter and the displacement is
loaded into the program counter).

Based Addressing

Based Address mode is similar to Indexed Address mode. In Based
Address, however, the register operand specifies the base address
and the displacement is expressed as a 16-bit value. The two are
added and the resulting address points to the data to be
processed. This addressing mode may only be used with the Load
instructions. Based Address, as a complement to Indexed Address,
allows random access to tables or other data structures where the
displacement of an element within the structure is known, but the
base of the particular structure must be computed by the program.

1 1
1 INSTRUCTION 1 —

REG

/~\
»I t 1 »1 OPFRAND 1

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE
ADDRESS IS THE ADDRESS IN THE REGISTER, OFFSET BY THE
DISPLACEMENT IN THE INSTRUCTION.

Any word register (or register pair in Segmented mode) can be
used for the base address except RO or RRO. In Segmented mode,
Based Address allows access to locations whose segment numbers
are not known at assembly time.

Based Indexed Addressing

Based Indexed Address is an extension of Based Address, and may
only be used with the Load instructions. In this case, both the
base address and index (displacement) are held in registers.

1-23

INSTRUCTION

REG

-»-I ADDRESS

REG

DISPLACEMENT H + I H OPERAND

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE
ADDRESS IS THE ADDRESS IN THE REGISTER, OFFSET BY THE
DISPLACEMENT IN THE REGISTER.

Any word register (or register pair in segmented mode) can be
used as the base address except RO or RRO. Any word register can
be used as the index except RO.

1.5.5 Instruction Formats

Z8000 instructions may occupy one to four words, depending on the
number of operands and the number of words needed to form operand
addresses or immediate values. Figure 1-10 shows some of the
formats for typical instructions and the main fields within these
formats.

Regardless of an instruction's length, its first byte contains
the operation code (also referred to as the "opcode"). In
addition to specifying the operation, this field also indicates
the addressing mode (bits 14-15), and the word or byte data type
(bit 8), as applicable. Instructions can designate zero or more
operands explicitly. If the operands designate general-purpose
registers, the register address(es) are usually specified in the
second byte of the instruction. The format of these fields are
detailed in Section 3.

1.6 PROGRAM CONTROLS

In addition to the general-purpose registers described in Section
1.5.2, the Z8000 CPU has several control registers containing
status flags, control bits, the Program Counter, a pointer to the
Program Status Area, and a memory refresh register.

The status flags, control bits, and program counter are referred
to collectively as the Program Status (PS). The Program Status
is contained in two or four words, depending on whether the
nonsegmented or segmented version of the Z8000 is used (Figure
1-11). The status flags and control bits are referred to
collectively as the Flags and Control Word (FCW).

1-24

15

opcode

8 7

W/B

4 3

src reg dst reg

15 8 7 4 3

ADD R, DA
ADDS R, DA

mode opcode w/B 0 0 0 0 reg

direct address
i i i i i i i i i i i

15 12 11 8 7

JR CC, RA I opcode displacement

Figure 1-10 Typical Instruction Formats (Nonsegmented)

CONTROL BITS FLAGS

PROGRAM COUNTER

NONSEGMENTED

15

CONTROL BITS FLAGS

IsEG S/N 0 VI NVI 4 C Z s P/V D H

Kiw£
PC SEGMENT NUMBER

PROGRAM COUNTER OFFSET

SEGMENTED

Figure 1-11 Program Status Blocks

1-25

1.6.1 Program Counter

The Program Counter (PC) contains the address in program memory
of the next instruction to be executed. As shown in Figure 1-11,
the Program Counter is 16 bits for the nonsegmented version and
32 bits for the segmented version. The segmented address format
is described in Section 1.4.1.

1.6.2 Status Flags

Status Flags (FLAGS) can be used to determine the outcome of
certain operations and to redirect the flow of the program as
necessary. The program status has six flags for the use of the
programmer and the Z8000 processor:

Carry (C)
Zero (Z)
Sign (S)
Parity/Overflow (P/V)
Decimal Adjust (D)
Half Carry (H)

Z8000 CPU control instructions allow the programmer to set, reset
(clear), or complement any or all of the first four flags. The
half-carry and decimal-adjust flags are used only by the Z8000
for BCD arithmetic corrections.

The FLAGS register can be separately loaded by the Load Control
Register (LDCTLB) instruction without disturbing the control bits
in the other byte of the FCW. The C, Z, S, and P/V flags can
also be used with branching instructions to provide up to 21
conditional tests and as loop controls in string instructions.

The carry (C) flag, when set, generally indicates a carry out of
the high-order bit position of a register being used as an
accumulator. For example, adding two 8-bit numbers causes a
carry out of bit 7 and sets the carry flag:

Bit

7 6 5 4 3 2 1 0

2 2 5 1 1 1 0 0 0 0 1
6 4 0 1 0 0 0 0 0 0

2 8 9 f— 0 0 1 0 0 0 0 1

= carry flag

1-26

The zero (Z) flag is set when the result register's contents are
zero following certain operations.

The sign (S) flag is set to one when the most significant bit of
a result register contains a one (a negative number in
two1s-complement notation) following certain operations.

The overflow (V) flag, when set, indicates that a
two1s-complement number in a result register has exceeded the
largest or is less than the smallest number that can be
represented in a two's-complement notation. This flag is set as
the result of an arithmetic operation. Consider the following
example:

Bit

7 6 5 4 3 2 1 0

120
105

225

0 1 1 1 1 0 0 0
0 1 1 0 1 0 0 1

— 1 1 1 0 0 0 0 1

0 = carry flag

The result in this case (-95 in two's complement notation)
incorrect, thus the overflow flag would be set.

is

The same bit acts as a parity (P) flag following logical
instructions for byte operands only. The number of one bits in
the register is counted and the flag is set if the total is even
(that is, P=l). If the total is odd, the flag is reset (P=0).

The decimal-adjust (D) flag is used for BCD arithmetic. Since
the algorithm for correcting BCD operations is different for
addition and subtraction, this flag is used to specify what kind
of instruction was executed so that the subsequent Decimal Adjust
(DAB) instruction can perform its function correctly.

The half-carry (H) flag indicates a carry out of, or a borrow
into bit 3 as the result of adding or subtracting two BCD digits.
This flag is used by the DAB instruction to convert the binary
result of a previous decimal addition or subtraction into the
correct decimal (BCD) result.

Neither the decimal-adjust nor the half-carry flag is normally
accessed by the programmer. The specific operations affecting
the flags are detailed in Section 3 and listed in Appendix A.

1-27

1.6.3 Control Bits

The control bits are used to enable various interrupts or
operating modes. The nonsegmented Z8000 uses three control bits;
the segmented version has four (Figure 1-11). These bits are:

• Vectored Interrupt Enable (VI)
• Non-Vectored Interrupt Enable (NVI)
• Segmentation Mode (SEG), used only by

the segmented Z8000
• System/Normal Mode (S/N)

The two interrupt control bits (VI and NVI) are set and reset by
the Enable Interrupt (El) and Disable Interrupt (DI)
instructions. When the control bit is set to one, the
appropriate interrupt is enabled; otherwise, it is disabled.
Interrupts and interrupt handling are described further in the
following two sections.

The Segmentation mode bit has meaning only for the segmented
version of the Z8000. The setting of this bit indicates whether
the Z8000 is running in Segmented (=1) or Nonsegmented mode (=0).
The bit is set and reset by the LDPS or LDCTL instructions.

The System/Normal bit indicates the operating mode of the
program. When set to one, System mode is in effect; when reset
to zero, Normal mode is in effect. This bit can be explicitly
set or reset by the LDPS or LDCTL instructions, or implicitly
changed by the occurrence of an interrupt or trap (Section 1.6.4)
when a new program status is loaded. The programmer can also
enter System mode from Normal mode (and change the setting of
this control bit) by issuing a System Call (SC) instruction.

Any control bit can be changed by the occurrence of an interrupt
or trap, and then restored to its previous setting by terminating
the interrupt handler procedure with an Interrupt Return
instruction (IRET). The Interrupt Return pops the saved program
status off the system stack.

1.6.4 Interrupts and Traps

Interrupts are asynchronous events and are typically triggered by
peripheral devices needing attention. The three kinds of
interrupts are:

• Non-Maskable interrupt (NMI)
• Vectored interrupt (VI)
• Non-Vectored interrupt (NVI)

1-28

Non-Maskable interrupts cannot be disabled, and are usually
reserved for critical external events that require immediate
attention. Vectored interrupts cause a 16-bit value output by
the interrupting device to be read from the data bus (ADO-AD15).
This "vector" value is used to select a particular interrupt
procedure to automatically branch to (Section 1.6.5).
Non-Vectored interrupts are all handled by the same interrupt
procedure, which may "poll" the external devices to determine
which one requires attention.

Traps, on the other hand, are synchronous events and usually
indicate some special programming error or condition. They are
triggered by specific instructions and recur each time the
instruction is executed with the same set of data. The four
kinds of traps are:

• Unimplemented instructions
• Privileged instructions in Normal mode
• Segmentation violations
• System call

During the execution of an instruction, one of three kinds of
error conditions can arise. An "illegal instruction exception"
signifies that that the binary code of the current instruction is
an illegal value for the architecture of the Z8000. The result
of this error is undefined, so the programmer must not use binary
instruction values other than those defined in the instruction
set of Section 3.

An "unimplemented instruction exception" signifies that the
binary code of the current instruction is defined by the Z8000
architecture, but is not currently implemented by the hardware
(Section 3.4). In this case, an Unimplemented Instruction trap
occurs, which allows system software to either simulate the
execution of the instruction or abort the program.

An "operation exception" signifies that the binary code of the
current instruction is valid, but the operand specification or
execution of the instruction is architecturally invalid. For
example, an attempt to execute a privileged instruction in Normal
mode will cause a trap. A segmentation violation, such as using
an offset larger than the defined length of the segment, will
cause the MMU to signal a Segmentation trap. (Segmentation traps
occur only with the segmented Z8000.) All other operation
exceptions, such as specifying an odd address for a word data
value, are considered programmer errors and the results are
undefined.

1-29

The System Call instruction (SC) provides a controlled access
from Normal mode software to System mode software, and is handled
in a manner similar to the other traps.

Because it is possible for several interrupts or traps to occur
simultaneously, a priority for selecting which kind of interrupt
or trap is honored first is established by the Z8000
architecture. The descending priority order of the traps and
interrupts is: internal trap (unimplemented instructions,
privileged instructions and the System Call instruction),
Non-Maskable interrupt, Segmentation trap, Vectored interrupt,
and Non-Vectored interrupt.

Interrupts and traps are handled similarly by the Z8000 hardware.
At the start of the interrupt or trap sequence, the Z8000 is
forced into System mode. In addition, the segmented version of
the Z8000 is forced into Segmentation mode, regardless of the
current mode. The program status information in effect just
prior to the interrupt or trap is pushed onto the system stack.
An additional word, indicating the "identifier" for the interrupt
or trap, is also pushed onto the system stack, where it can be
accessed by the interrupt or trap handler (Figure 1-12). The new
program status is set up as described in the following section
(which includes loading the program counter with the starting
address of the procedure for servicing the interrupt or trap),
and then control is transferred to the service procedure.

For internal traps, the "identifier" stored in the system stack
is the first word of the instruction causing the trap. For
interrupts and external traps (such as a segmentation trap), the
"identifier" stored is the 16-bit value read from the data bus
(ADO-AD15) at the start of the interrupt acknowledge sequence.
In the case of Vectored interrupts, this value is also used to
select the appropriate service procedure, as explained in the
following section.

1.6.5 Program Status Area

As part of a system software configuration, the user must provide
service procedures to handle the various interrupts and traps.
The procedures are accessed through their respective program
status blocks (Figure 1-11) which determine the new program
status set up when program execution is interrupted. These
status words reside in a reserved area of memory called the
Program Status Area, also established by the programmer, and
should be arranged as shown in Figure 1-13. The ordering is
important, because the specific program status block selected
(and consequently the service procedure selected) is determined
implicitly from the kind of interrupt or trap that occurred.
Note that the size of each program status block depends on the
version oJLjthje_Z80(K)̂ (two words for the nonsegmented and four
words for the segmented version).

1-30

NONSEGMENTED SEGMENTED

STACK POINTER
AFTER TRAP
OR INTERRUPT

STACK POINTER
BEFORE TRAP
OR INTERRUPT

IDENTIFIER

FCW

PC

-1 WORD-

LOW
ADDRESS

SP AFTER

SP BEFORE

HIGH
ADDRESS

IDENTIFIER

FCW

PC SEGMENT

PC OFFSET

1 WORD-

LOW
ADDRESS

HIGH
ADDRESS

Figure 1-12 Format of Saved Program Status
in the System Stack

1-31

PROGRAM STATUS AREA POINTER

PSAP SEG NO. UPPER | 00. . . 0 .]

OFFSET ~/ "

IMPLIED

OFFSET*
(NON-SEGMENTED'

Z8000)

•OFFSETS IN BYTES
"UNUSED FOR NON-SEGMENTED Z8000

12

16

20

24

28

30

32

34

36

PROGRAM
STATUS AREA

540

RESERVED

UNIMPLEMENTED
INSTRUCTION

PRIVILEGED
INSTRUCTION

SYSTEM CALL
INSTRUCTION

SEGMENT
TRAP**

NON-MASKABLE
INTERRUPT

NON-VECTORED
INTERRUPT

VECTORED INT.

NEW PC

NEW PC

NEW PC

16

24

32

40

48

56

60

64

68

72

OFFSET*
.(SEGMENTED
Z8000)

VECTORED
INTERRUPT
JUMP TABLE

1080

t/-?« n - /i\V

Figure 1-13 Program Status Area

1-32

.J

For each kind of interrupt or trap other than a Vectored
interrupt, there is a single program status block that is
automatically loaded into the Program Status registers (which
includes the Flags and Control Word and the Program Counter).
Control is then passed to the service procedure whose starting
address is contained in the Program Counter.

For all Vectored interrupts, the same Flags and Control Word
(FCW) is loaded from the corresponding program status block.
However, the appropriate Program Counter (PC) value is selected
from up to 256 different values in the Program Status Area. The
low-order eight bits of the "identifier" placed on the data bus
by the interrupting device is used as an index into the Program
Status Area following the FCW for Vectored interrupts. The
"identifier" value 0 selects the first PC value, the value 1
selects the second PC, and so on up to the "identifier" value
255.

The Program Status Area is addressed by a special control
register, the "Program Status Area Pointer", or PSAP. This
pointer is one word for the nonsegmented and two words for the
segmented Z8000. As shown in Figure 1-14, the pointer contains a
segment number (if applicable) and the high-order byte of a
16-bit offset address. The low-order byte is assumed to contain
zeroes, thus the Program Status Area must start on a 256-byte
address boundary. The programmer accesses the PSAP using the
Load Control Register instruction (LDCTL).

1.6.6 System Reset

A system reset overrides all other conditions, including all
other interrupts or traps. When a reset sequence is begun, a
4-word program status is fetched from segment 0, offset 0 for the
segmented Z8000; for the nonsegmented version, the program status
occupies two words at address 2.

During the reset sequence, the status pins and other outputs
indicate System mode; in addition, Segmentation mode is in effect
for the segmented Z8000. No information is saved on the system
stack when a reset occurs since the stack pointer has not yet
been initialized.

1.6.7 Memory Refresh

The refresh control register (REFRESH) is a 16-bit counter used
to refresh dynamic memory automatically. A special refresh
memory access is made at progammable intervals and is otherwise
invisible to the currently executing program. This register has
the format shown in Figure 1-15 and, like the other control
registers, can be programmed using the Load Control Register
(LDCTL) instruction.

1-33

PSAP upper offset

NONSEGMENTED

PSAPSEG I. segment number
i i i i i i

PSAPOFF upper offset
i i i

SEGMENTED

Figure 1-14 Program Status Area Pointer

15 14 98

RATE COUNTER

REFRESH ENABLE

Figure 1-15 Refresh Register

1-34

The refresh rate (the time between successive refreshes) is
determined by the 6-bit prescaler. This is a modulo-n counter (n
= 1-64) driven at one-fourth the system clock rate. Thus, with a
4 MHz clock, the refresh period is programmable from 1 to 64
microseconds.

The refresh row counter is 9 bits and is incremented by 2 each
time the prescaler times out (reaches zero). This allows up to
256 rows for future high-density memories. (Currently available
16K dynamic RAMs have 128 rows.)

Memory refresh can be totally disabled, if necessary, by setting
bit 15 of the refresh register to zero.

1.7 ADDRESS ARITHMETIC

1.7.1 Nonsegmented Addressing

In the nonsegmented Z8000, all addresses are 16-bit values. When
addressing mode arithmetic is performed, the result is always
taken modulo 65536. No carry is generated or any other
indication that the result of addition or other addressing
operations may have overflowed 16 bits. Thus in Indexed,
Relative, Based and Based Indexed addressing modes, or in
autoincrement and autodecrement instructions, the resulting
address always remains within the 0 to 65535 addressing space.

1.7.2 Segmented Addressing

In the segmented Z8000, all memory addresses are 23-bit values,
consisting of a 7-bit segment number and a 16-bit offset. The
short offset format (Figure 1-4) contains an 8-bit offset which
is extended to include 8 high-order zero bits before further
addressing computations are performed. When addressing mode
arithmetic is performed, only the 16-bit offset is used so that
the result is taken modulo 65536 as in nonsegmented addressing.
No carry out of the 16-bit offset is generated, nor is any other
indication that the result of addition or other addressing
operations may have overflowed 16 bits. In other words, the
segment number is not affected by addressing arithmetic. Thus in
Indexed, Relative, Based and Based Indexed addressing modes, or
in autoincrement or autodecrement instructions, the resulting
address always remains within the same segment with the offset in
the range 0 to 65535. ""~"^-

1-35

Nonsegmented programs can be run in one segment of the segmented
Z8000 by setting the Segmentation mode control bit to zero with
the LDPS or LDCTL instructions. In this case, the current^valjoe
of the Program Counter's segment number is used for all memory
accesses. While "running the segmented Z8000 in Nonsegmented
mode", the rules of nonsegmented addressing mode arithmetic
apply.

All I/O addresses are 16-bit values, regardless of whether memory
addresses are segmented or nonsegmented. Therefore, all I/O
address arithmetic follows the rule for nonsegmented addressing.

1-36

Section 2
Z8000 Assembler Conventions

2.1 ASSEMBLER OVERVIEW

The Z8000 microprocessor is programmed in a symbolic assembly
language (PLZ/ASM). This marks a significant improvement over
coding in binary notation. The operation codes for
assembly-language statements are easily memorized (for example,
SUB for Subtract and LD for Load). In addition, meaningful
symbolic names can be assigned to program addresses and data (for
example, ALLOCATE as the label of the first statement in a
storage allocation procedure).

A Z8000 source module is made up, for the most part, of such
assembly language statements. These statements are then
translated by the Z8000 assembler into an object module that can
either be separately executed by the Z8000 microprocessor, or can
be linked with other object modules to form a complete program.
Because the assembler has some high-level features, a source
module can also include PLZ constructs such as DO and IF
statements. The user can also embed assembler directives, which
control the operation of the assembler, in the source module.
High-level statements and assembler directives are discussed in
Sections 4 and 5.

Depending on the assembler directives used, addresses within an
object module or program can be absolute (meaning addresses in
the source program correspond exactly to Z8000 logical memory
addresses) or relocatable (meaning addresses can be assigned
relative to some logical base address at a later time). Object
modules should be made relocatable wherever possible. This
facilitates both the ability to link with other object modules as
well as the ability to load object programs anywhere in memory.
It also allows the creation of libraries of commonly used
procedures (including math or input/output routines) that can be
linked selectively into several programs as desired.

Operation of the assembler, module linkage, address relocation,
and program execution are the subject of the Z8000 Assembler
User's Guide.

2-1

2.2 ASSEMBLY LANGUAGE STATEMENT FORMAT

The most fundamental component of a PLZ/ASM program is the
assembly language statement consisting of an instruction and its
operand (s). The instruction describes an action to be taken; the
operand (s) supplies the data to be acted upon.

An assembly language statement can include four fields:

• Statement label (s)

• An instruction

• Operand(s)

• Comments

The statement label and comment fields are always optional. The
statement has zero or more operands, depending on the instruction
selected. The following statements have the same effect in a
Z8000 program, but the second is more descriptive (and
consequently more helpful in program debugging) .

Label Instruction Operand (s) Comment

LD COUNT, #255
INITCOUNT: LD COUNT, #255 ILoad COUNT with

initial value!

Each of the elements of a PLZ/ASM program must be separated from
other elements by one or more delimiters. A delimiter is one of
the characters: space (blank), comma, semicolon, tab, carriage
return, line feed, or form feed. Note that carriage return is
treated just like any other delimiter, so that a single statement
may span several lines, or several statements may appear on a
single line. The delimiter used in a specific situation is up to
the programmer. For the sake of illustration, this manual uses
blanks to separate statement fields and commas to separate
operands.

2.2.1 Program Labels and Identifiers

Any assembly language (or high-level) statement in a Z8000
program can be preceded by any number of labels. Any statement
referenced by another statement must be labeled. A label
consists of an identifier followed by a colon (:) in the form:

2-2

labeil: Iabel2: ... labein: statement

A PLZ/ASM identifier can contain up to 127 characters, of which
the first must be a letter. The remaining characters can be
letters, digits, or the special character underscore (_).
Letters can be capitalized or lower-cased, but each time an
identifier is used, it must be written in exactly the same way.
The following are valid identifiers:

START_UP_ROUTINE
Program_Initialization • J * .
A
Loop_12
Nl
sort

In addition to their statement-labeling function, identifiers
also serve as symbolic names for constants (Section 2.3.2) , data
variables (Section 2.3.3), and procedures (Section 5.2.2).
Certain identifiers serve as PLZ/ASM keywords and should not be
used as programmer-defined identifiers (see Appendix D).

An identifier can be associated with only one item within the
scope of its definition. Section 4.2.5 explains the scope of
identifiers, including the scope of labels. Labels are
accessible within the module in which they are defined, and are
not accessible outside that module unless specifically declared
to be GLOBAL or EXTERNAL.

2.2.2 Instruction

The instruction is the assembly-language mnemonic describing a
specific action to be taken. The instruction must be separated
from its operand(s) by a delimiter.

LD R5, RIO ILoad register 5 from register 101

CLR RIO IClear register 10!

Many of the operations of the Z8000 can be applied to word, byte,
and long operands. A simple naming convention has been adopted
to distinguish the size of the operands for these particular
instructions: the suffix "B" designates a byte instruction, the
suffix "L" designates a long word instruction, and no suffix
designates a word instruction:

2-3

ADD RO, Rl !Add word operands!

ADDB RHO, RLO !Add byte operands!

ADDL RRO, RR2 !Add long operands!

2.2.3 Operand Field

Depending on the instruction specified, this field can have zero
or more operands. If two or more operands are needed, each must
be separated by a delimiter.

IRET !No operand!

COM RIO !0ne operand!

ADD R6, #210 !Two operands!

LDM R2, SAVEREG, #5 !Three operands!

CPD R2, @R6, Rl, Z IFour operands!

Operands supply the information the instruction needs to carry
out its action. An operand can be:

• Data to be processed (immediate data);

• The address of a location from which data is to be
taken (source address);

• The address of a location where data is to be put
(destination address);

• The address of a program location to which program
control is to be passed;

• A condition code, used to direct the flow of program
control.

Although there are a number of valid combinations of operands,
there is one basic convention to remember: the destination
operand always precedes the source operand. Refer to the
specific instructions in Section 3 for valid operand
combinations.

Immediate data can be in the form of a constant, an address, or
an expression (constants and/or addresses combined by operators).
Each of these forms is described in Section 2.3.

2-4

LD RO, #K ILoad constant K into reg 0!

LD RO, #COUNTER ILoad address of COUNTER into
reg 0!

ADD RO, #CON/3 + 5 !Add value of expression
(CON/3 + 5) to contents of
reg 01

Source, destination, and program addresses can also take several
forms. PLZ/ASM addressing modes are described in Section 2.4.
Some examples are:

LD RO, @R5 ILoad word value whose
address is in register 5
into register 0!

LDB RH5, VAR1 ILoad byte value located at
address labeled VARl into
register RH5!

LDL RR10, VARl + 1 ILoad long value at location
following that addressed by
VARl into register pair 10-11!

JP Z, LOOP1 IJump to program address
labeled LOOP1 if zero flag tZ)
is set!

JP NZ, LOOPl + 6 lOtherwise, jump to location
six bytes after LOOPl!

Condition codes are listed in Section 3.2.1.

2.2.4 Comments

Comments are used to document program code as a guide to program
logic and also to simplify present or future program debugging.
Comments can be inserted anywhere a program delimiter may appear.
Comments are bounded by exclamation points (!) and can contain
any characters except the exclamation point itself.

IModule 3, Changed 7-25-78!

RES R15, #3 !?!

A single comment can cross line boundaries; that is, carriage
returns can occur within a comment.

2-5

2.3 ARITHMETIC OPERANDS

2.3.1 Run-Time vs. Assembly-Time Arithmetic

Arithmetic is performed in two ways in an assembly language
program. Run-time arithmetic is done while the program is
actually executing.

SUB RIO, R12 ISubtract the contents of register
12 from the contents of register 10!

Assembly-time arithmetic is done by the assembler when the
program is assembled and involves the evaluation of arithmetic
expressions in operands, such as the following:

LD RO, #(22/7 + X)

JP Z, LOOP1 + 12

ADD R2, HOLDREG-1

Assembly-time arithmetic is more limited than run-time arithmetic
in such areas as signed vs. unsigned arithmetic and the range of
values permitted.

Only unsigned arithmetic is allowed in assembly-time expression
evaluation. Run-time arithmetic uses both signed and unsigned
modes, as determined from the assembly-language instruction
specified and the meaning attached to operands by the programmer.

All assembly-time arithmetic is computed using 32-bit arithmetic,
"modulo 4,294,967,296" (2 raised to the thirty-second power).
Values greater than or equal to 4,294,967,296 are divided by
4,294,967,296 and the remainder of the division is used as the
result. Depending on the number of bits required by the
particular instruction, only the rightmost 4, 8, 16, or 32 bits
of the resulting 32-bit value are used. If the result of
assembly-time arithmetic is to be stored in four bits, the value
is taken "modulo 16" to give a result in the range 0 to 15. If
the result is to be stored in a single byte location, the value
is taken "modulo 256" to give a result in the range 0 to 255 (or
-128 to 127 if signed representation is intended). If the result
is to be stored in a word, the value is taken "modulo 65536" to
give a result in the range 0 to 65535 (or -32768 to 32767 if
signed representation is intended).

2-6

LDB RL4, #X+22

JP X+22

ADDL RR12, #32000*MAX

IResult of (X+22) must be in
range -128 to 255!

IModulo 65536. Result is the
address 22 bytes beyond X!

IResult of (32000*MAX) is taken
modulo 4,294,967,296!

2.3.2 Constants

A constant value is one that doesn't change throughout the
program. Constants may be expressed as numbers, as character
sequences, or as a symbolic name representing a constant value.

Numbers can be written in decimal, hexadecimal, binary, or octal
notation. The latter three are preceded by a percent sign (%)
and, in the case of binary and octal, by a base specifier
enclosed in parentheses. If a number has no prefix, decimal is
assumed.

10

%AFOF
%(2)10110010
%(8)70

decimal
hexadecimal
hexadecimal
binary
octal

A character sequence is a sequence of one or more characters
enclosed in single quote marks. Any ASCII character (except a
percent sign or single quote) can be included in the character
sequence.

'A1

'This is a character sequence1

A character can also be represented in a character sequence in
the form "%hh," where "hh" is the hexadecimal equivalent of the
ASCII code for the character. (See Appendix E for the ASCII
character set and its hexadecimal equivalents.)

'Here is an ESC character: %1B'

For convenience, certain ASCII characters
shorter, more mnemonic codes as follows:

have been assigned

%L
%T
%R
%P

or
or
or
or

%t
%r
%p

%Q or %q

Linefeed
Tab
Carriage Return
Page (Form Feed)
Percent Sign
Single Quote

2-7

Example:

'First line%rSecond line%r'
'Quote%Qinside a quote%Q'

A constant can be assigned a symbolic name by a constant
definition (CONSTANT) statement. A symbolic identifier, once
associated with a constant value, retains that value through the
entire program module.

Constant symbols are defined by the CONSTANT statement in the
form shown below. Identifiers follow the rules outlined in
Section 2.2.1. The special character pair ":=" can be read "is
defined as".

CONSTANT
REC_LENGTH
BUFFER_LENGTH
SEMICOLON
BIGNUMBER
smallnumber

64
4*RECLENGTH

• = ' .
1000000
-1

It is also possible to create a new symbol which will be treated
the same as any reserved keyword (see Appendix D for a list of
reserved keywords). If the symbol on the right side of the ':='
in a CONSTANT statement is a keyword, then the symbol on the left
side can be used thereafter any place the keyword would be valid.
One important use of this ability is to "rename" a register such
as R5 with a more meaningful name sucĥ â ŜUBTOTAIi TöT~course,
the symbol R5 can still be used). The programmer is cautioned,
however, that renaming keywords in general can lead to confusing
and difficult to maintain programs.

2.3.3 Data Variables

A data variable can be thought of as a "container" that can hold
different values from time to time. Just as a physical 8-ounce
container can hold 0-8 ounces of liquid, an 8-bit (BYTE or
SHORT_INTEGER) variable can hold values in the range 0 to 255 if
unsigned, or -128 to 127 if signed two's complement
representation is intended. A 16-bit (WORD or INTEGER) variable
can hold values in the range 0 to 65535 if unsigned, or -32768 to
32767 if signed. Similarly, a 32-bit (LONG or LONG_INTEGER)
variable can hold values in the range 0 to 4,296,967,296 (or
-2,148,483,648 to 2,148,483,647 if signed two's complement
representation is intended).

2-8

NOTE

While it is suggested that BYTE, WORD, and LONG
variables be used for unsigned values, and
SHORT_INTEGER, INTEGER, and LONG_INTEGER
variables be used for signed values, there are no
restrictions on whether a particular variable is
signed or unsigned. In other words, BYTE and
SHORT_INTEGER are treated as equivalent, as are
WORD and INTEGER, as are LONG and LONG_INTEGER,
with the appropriate interpretation left entirely
to the programmer.

A data variable name can be associated with a data memory
location; the value of the variable is the contents of that
location at the time the variable is referenced. A data variable
name is a symbolic identifier and follows the rules for
identifiers in Section 2.2.1.

LD R5, MPLIER ILoad the value contained in the
location symbolized by MPLIER!

ADD R5, 4 + SUBTOTAL !Add the value contained in the
location 4 bytes after the loca-
tion addressed by SUBTOTAL to
the contents of register 5!

If a data variable operand is preceded by "#," it is treated as
immediate data and the value used is the data address associated
with the variable, not the contents of the location. For
example, suppose location 50 has the symbolic name COUNTER and
contains the bit pattern 11111111 (decimal 255).

LDB RLO, COUNTER 1255 is loaded into RLO!

LDB RLO, #COUNTER 150 is loaded into RLO!

LDB RLO, COUNTER - 5 IContents of location 45 are
loaded into RLO!

LDB RLO, #COUNTER - 5 !45 is loaded into RLO!

Every data variable name has a type and scope associated with it,
as well as a value. The type and scope (and, optionally, the
initial value) are defined in a variable declaration statement
like the following:

INTERNAL
SWITCH1 BYTE

2-9

In this example, "INTERNAL" is the scope of the variable SWITCHl,
and "BYTE" is its type.

Variables can have GLOBAL, EXTERNAL, INTERNAL, or LOCAL scope.
They can be one of the "simple" types BYTE or SHORT_INTEGER (for
8-bit values), WORD or INTEGER (for 16-bit values), or LONG or
LONG_INTEGER (for 32-bit values). They can also be one of the
"structured" types ARRAY or RECORD. (Section 5.3.4 discusses
variable declaration in more detail.)

2.3.4 Expressions and Operators

Expressions are formed using arithmetic, logical, shift, and
relational operators in combination with constants and variables.
These operators allow both unary (single-operand) and binary
(two-operand) expressions, as shown below.

Arithmetic Operators. The arithmetic operators are as follows:

Operator Operation

+ Unary plus, binary addition

Unary minus, binary subtraction

* Unsigned multiplication

/ Unsigned division

MOD Unsigned modulus

The division operator (/) truncates any remainder. The MOD
operator returns the remainder from dividing its operands.

17/4 = 4

17 MOD 4 = 1

If zero is specified as the right operand for either of these
division operators, the result is undefined.

Examples:

ADD R5, #-3 !A minus 3 is added to
register 5!

ADD R5, #K + (5*3) IValue of constant K + 15 is
added to register 5!

2-10

Note that expressions containing these operators are evaluated at
assembly time and, consequently, the arithmetic performed is
unsigned. Signed arithmetic can still be done at run time.

Logical Operators. The logical operators are as follows:

Operator Operation

LNOT (Unary) Logical complement

LAND Logical AND

LOR Logical OR

LXOR Logical EXCLUSIVE OR

LNOT simply complements the bit pattern of its (single) operand.
All one bits are changed to zero and vice-versa.

LD R2, #LNOT MASK IReverse the bits in a
mask and load into reg 2!

The effect of LAND, LOR, and LXOR can be seen from the following
examples. Although 32-bit arithmetic would actually be done by
the assembler, 8-bit arithmetic is shown for clarity. Assume two
constants A and B have the bit patterns 11110000 and 01010101,
respectively. The expressions:

A LAND B
A LOR B
A LXOR B

will result in the following evaluations of the operands:

LAND 11110000
01010101

01010000

LOR 11110000
01010101

11110101

LXOR 11110000
01010101

10100101

LAND sets a one bit whenever both ANDed bits are one; LOR sets a
one bit whenever either ORed bit is one; LXOR sets a one bit when
the two EXCLUSIVE-ORed bits are different.

The assembly-time logical operations performed by LNOT, LAND,
LOR, and LXOR can also be done at run time by the Z8000
instructions COM, AND, OR, and XOR. The assembly-time operations
require less code and register manipulation. The run-time
operations allow greater flexibility, however. For example, they
can operate on registers (variables) whose contents are not known
at assembly time, as well as on known constant values.

2-11

Shift Operators. The shift operators are as follows:

SHR Logical shift right
SHL Logical shift left

When used in expressions, the shift operators have the form

d operator n

where "d" is the data to be shifted and "n" specifies the number
of bits to be shifted. Vacated bits are replaced with zeros.
For example, if the constant PRODUCT is equal to 10110011, the
statement

LDB RLO, #(PRODUCT SHL 2)

would load the value 11001100 into register RLO.

If the second operand supplied is negative (that is, if the sign
bit is set), it has the effect of reversing the direction of the
shift.

ADD PRODUCT, #(MPLIER SHR -1) 1MPLIER is shifted left
one bit position!

Relational Operators. The relational operators are as follows:

< Less than
<= Less than or equal
= Equal
<> Not equal
>= Greater than or equal
> Greater than

These six relational operators return a logical TRUE value (all
ones) if the comparison of the two operands is true, and return a
logical FALSE value (all zeros) otherwise. The operators assume
both operands are unsigned.

LD R0,#(l=2) !Reg 0 is loaded with zeros!
LD RO,#(2+2) < 5 !Reg 0 is loaded with ones!

Precedence of Operators. Expressions are generally evaluated
left to right with operators having the highest precedence
evaluated first. If two operators have equal precedence, the
leftmost is evaluated first.

2-12

The following lists the PLZ/ASM operators in order of precedence:

• Unary operators: +, -, LNOT

• Multiplication/Division/Shift/AND: *, / , MOD,
SHR, SHL, LAND

• Addition/Subtraction/OR/XOR: +, -, LOR, LXOR

• Relational operators: <, <=, =, <>, >=, >

Parentheses can be used to change the normal order of precedence.
Items enclosed in parentheses are evaluated first. If
parentheses are nested, the innermost are evaluated first.

20/5 - 12/3 = 0

20/(5 - 12/3) = 20

Modes of Arithmetic Expressions. All arithmetic expressions have
a mode associated with them: absolute, relocatable, or external.
These modes are defined in detail in Section 4, following the
explanation of the concepts of "scope" and "program
relocatability".

2.3.5 Segmented Address Operators

Two special operators are provided to ease the manipulation of
segmented addresses. While addresses can be treated as a single
value with a symbolic name assigned by the programmer,
occasionally it is useful to determine the segment number or
offset associated with a symbolic name.

The "SEG" unary operator is applied to an address expression
which contains a symbolic name associated with an address, and
returns a 16-bit value. This value is the 7-bit segment number
associated with the expression and a one bit in the most
significant bit of the high-order byte, and all zero bits in the
low-order byte (Section 1.4.1).

The "OFFSET" unary operator is applied to an address expression
and returns a 16-bit value which is the offset value associated
with the expression.

Example: LD R2,#SEG PTR
LD R3,#OFFSET PTR

ILoad segmented address of PTR
into register pair RR2, which
is functionally equivalent to
the following statement!

LDL RR2,#PTR

2-13

Because of the special properties of these address operators, no
other operators may be applied to a subexpression containing a
SEG or OFFSET operator, although other operators can be used
within the subexpression SEG or OFFSET are applied to:

SEG (PTR+4) {Valid}
(SEG PTR)+4 {Invalid}

-(OFFSET PTR) {Invalid}

2.4 Z8000 ADDRESSING MODES

With the exception of immediate data and condition codes, all
assembly-language operands are expressed as addresses: register,
memory, and I/O addresses. The various address modes recognized
by the Z8000 assembler are as follows:

Immediate Data
Register
Indirect Register
Direct Address
Indexed Address
Relative Address
Based Address
Based Indexed Address

Special characters are used in operands to identify certain of
these address modes. The characters are:

• "R" preceding a word register number;

• "RH" or "RL" preceding a byte register number;

• "RR" preceding a register pair number;

• "RQ" preceding a register quadruple number;

• "@" preceding an indirect-register reference;

• "#" preceding immediate data; '

• "()" used to enclose the displacement part of
an indexed, based, or based indexed address;

• "$" signifying the current program counter location,
usually used in relative addressing.

The use of these characters is shown in the following sections.

Not every address mode can be used by every instruction. The
individual instruction descriptions in Section 3 tell which
address modes can be used for each instruction.

2-14

2.4.1 Immediate Data

The operand value used by the instruction in Immediate Data
addressing mode is the value supplied in the operand field
itself.

Immediate data is preceded by the special character "#" and may
be a constant (including character constants and symbols
representing constants) or an expression as described in Section
2.3.4. Immediate data expressions are evaluated using 32-bit
arithmetic. Depending on the instruction being used, the value
represented by the rightmost 4, 8, 16, or 32 bits is actually
used. An error message is generated for values that overflow the
valid range for the instruction.

LDB RHO, #100 ILoad 100 into byte register RHO!

LDL RRO, #%8000 * REP__COUNT
ILoad the value resulting from
the multiplication of %8000 and
the value of constant REP_COUNT
into register pair RRO!

If a variable name or address expression is prefixed by "#", the
value used is the address represented by the variable or the
result of the expression evaluation, not the contents of the
corresponding data location. In Nonsegmented mode, all address
expressions result in a 16-bit value.

For segmented addresses, the assembler automatically creates the
proper format for a long offset address which includes the
segment number and the offset in a 32-bit value (Section 1.4.1).
It is recommended that symbolic names be used wherever possible,
since the corresponding segment number and offset for the
symbolic name will be automatically managed by the assembler and
can be assigned values later when the module is linked or loaded
for execution.

For those cases where a specific segment is desired, the
following notation may be used (the segment designator is
enclosed in double angle brackets) :

«segment»of f set

where "segment" is a constant expression which evaluates to a
7-bit value, and "offset" is a constant expression which
evaluates to a 16-bit value. This notation is expanded into a
long offset address by the assembler.

2-15

LD RO, #DATATABLE +12

LDL RR2, IADDR

LDL RR2, #<'<3»%1234

2.4.2 Register Address

!Add 12 to
DATATABLE
into word
segmented

ILoad the
register
mode)!

the address of
and load the result
register RO (non-
mode) !

address of ADDR into
pair RR2 (segmented

iLoad the segmented address
with segment 3, offset %1234
into register pair RR2 (seg-
mented mode)!

In Register addressing mode, the operand value is the contents of
the specified general-purpose register. There are four different
sizes of registers on the Z8000.

• Word register (16 bits)

• Byte register (8 bits)

• Register pair (32 bits)

• Register quadruple (64 bits)

A word register is indicated by an
0 to 15 (decimal). These correspond
machine. Either the high or low byte
registers can be accessed by using the byte
"RH" or "RL" followed by a number from 0 to

"R" followed by a number
to the 16 registers of

from
the

of the first eight
register constructs
7. Any pair of word

registers can be accessed as a register pair by using "RR"
followed by an even number between 0 and 14. Register quadruples
are equivalent to four consecutive word registers and are
accessed by the notation "RQ" followed by one of the numbers 0,
4, 8, or 12.

register pair
given for a

If an odd register number is given with a
designator, or a number other than 0, 4, 8, or 12 is
register quadruple, an assembly error will result.

In general, the size of a register used in an operation depends
on the particular instruction. Byte registers are used with byte
instructions, which end with the suffix "B". Word registers are
used with word instructions, which have no special suffix.
Register pairs are used with long word instructions, which end
with the suffix "L". Register quadruples are used only with
three instructions (DIVL, EXTSL and MULTL) which use a 64-bit
value. An assembly error will occur if the size of a register
does not correspond correctly with the particular instruction.

2-16

LD R5, #%3FFF

LDB RH3, #%F3

ADDL RR2, RR4

MULTL RQ8, RR12

ILoad register 5 with the
hexadecimal value 3FFF!

ILoad the high order byte of
word register 3 with the
hexadecimal value F3!

!Add the register pairs 2-3 and
4-5 and store the result in 2-3!

IMultiply the value in register
pair 10-11 by the value in
register pair 12-13 and store the
result in register quadruple
8-9-10-11!

2.4.3 Indirect Register Address

In Indirect Register addressing mode,
contents of the location
specified register. A word
in nonsegmented mode, while

i _ ^ i _„ _ n _

the operand value is the
whose address is contained in the
register is used to hold the address

a register pair must be used inin nonsegmented mode, while a register pair
segmented mode. Any general-purpose word register
pair in segmented mode) can be used except RO or R

(or register
RRO.

Indirect Register addressing mode is also used with the I/O
instructions and always indicates a 16-bit I/O address. Any
general-purpose word register can be used except RO.

An Indirect Register address is specified by a "commercial at"
symbol (@) followed by either a word register or a register pair
designator.
register is
15, and a
even number

JP

LD

For Indirect Register addressing mode, a word
specified by an "R" followed by a number from 1 to
register pair is specified by a "RR" followed by an

from 2 to 14 (Section 2.4.2).

@R2

@R3, R2

LD @RR2, #30

IPass control (jump) to the
program memory location
addressed by register 2
(nonsegmented mode)!

'Load contents of register
2 into location addressed by
register 3 (nonsegmented mode)!

ILoad immediate value 30 into
location addressed by register
pair 2-3 (segmented mode)!

2-17

2.4.4 Direct Address

The operand value used by the instruction in Direct addressing
mode is the contents of the location specified by the address in
the instruction. A direct address may be specified as a symbolic
name of a memory or I/O location, or an expression which
evaluates to an address. In nonsegmented mode or for all I/O
instructions, the address is a 16-bit value. In segmented mode,
the memory address is either a 16-bit value (short offset) or a
32-bit value (long offset). All assembly-time address
expressions are evaluated using 32-bit arithmetic, with only the
rightmost 16 bits of the result used for nonsegmented addresses.

LD RIO, DATUM "Load the contents of the
location addressed by DATUM
into register 10!

LD STRUCT+8, RIO !Load the contents of register
10 into the location addressed
by adding 8 to STRUCT!

JP C, %2000 IJump to location %2000 if the
carry flag is set (nonsegmented
mode) !

INB RHO, 77 !Input the contents of the I/O
location addressed by 77 into
RHO!

For segmented addresses, the assembler automatically creates the
proper format which includes the segment number and the offset.
It is recommended that symbolic names be used wherever possible,
since the corresponding segment number and offset for the
symbolic name will be automatically managed by the assembler and
can be assigned values later when the module is linked or loaded
for execution.

For those cases where a specific segment is desired, the
following notation may be used (the segment designator is
enclosed in double angle brackets):

«segment »off set

where "segment" is a constant expression which evaluates to a
7-bit value, and "offset" is a constant expression which
evaluates to a 16-bit value. This notation is expanded into a
long offset address by the assembler.

To force a short offset address, the segmented address may be
enclosed in vertical bars ("I"). In this case, the offset must
be in the range 0 to 255, and the final address includes the
segment number and short offset in a 16-bit value.

2-18

LD RIO, IDATUMI ILoad the contents of the
location addressed by DATUM
(short offset format) into
register 10!

LD «STORAGE»HEAD, RIO ILoad the contents of reg-
ister 10 into the location
addressed by the segment
named STORAGE offset by
HEAD (long offset format)!

JP |«3»%12| 'Jump to location addressed
by segment 3, offset %12
(short offset format)!

2.4.5 Indexed Address

An indexed address consists of a memory address displaced by the
contents of a designated word register (the index). This
displacement is added to the memory address and the resulting
address points to the location whose contents are used by the
instruction. In nonsegmented mode, the memory address is
specified as an expression which evaluates to a 16-bit value. In
segmented mode, the memory address is specified as an expression
which evaluates to either a 16-bit value (short offset) or a
32-bit value (long offset). All assembly-time address
expressions are evaluated using 32-bit arithmetic, with only the
rightmost 16 bits of the result used for nonsegmented addresses.
This address is followed by the index, a word register designator
enclosed in parentheses. For Indexed Addressing, a word register
is specified by an "R" followed by a number from 1 to 15. Any
general-purpose word register can be used except RO.

LD RIO, TABLE(R3) ILoad the contents of the
location addressed by TABLE
plus the contents of reg-
ister 3 into register 10!

LD 240+38(R3), RIO ILoad the contents of reg-
ister 10 into the location
addressed by 278 plus the
contents of register 3
(nonsegmented mode)!

For segmented addresses, the assembler automatically creates the
proper format for the memory address which includes the segment
number and the offset. As with Direct Addressing, symbolic names
should be used wherever possible so that values can be assigned
later when the module is linked or loaded for execution.

2-19

For those cases where a specific segment is desired, the
following notation may be used (the segment designator is
enclosed in double angle brackets):

«segment »of f set(R)

where "segment" is a constant expression which evaluates to a
7-bit value, "offset" is a constant expression which evaluates to
a 16-bit value, and "R" is a word register designator. This
notation is expanded into a long offset address by the assembler.

To force a short offset address, the segmented address may be
enclosed in vertical bars ("I"). In this case, the offset must
be in the range 0 to 255, and the final address includes the
segment number and short offset in a 16-bit value.

LD RIO, |TABLE|(R3)

LD <<STACK»8(R13) , RIO

ILoad the contents of the
location addressed by
TABLE (short offset format)
plus the contents of reg-
ister 3 into register 10!

ILoad the contents of reg-
ister 10 into the location
addressed by the segment
named STACK offset by 8
(long offset format) plus
the contents of register 13!

2.4.6 Relative Address

Relative address mode is implied by its instruction. It is used
by the Call Relative (CALR), Decrement and Jump If Not Zero
(DJNZ), Jump Relative (JR), Load Address Relative (LDAR), and
Load Relative (LDR) instructions and is the only mode available
to these instructions. The operand, in this case, represents a
displacement that is added to the contents of the program counter
to form the destination address that is relative to the current
instruction. The original contents of the program counter is
taken to be the address of the instruction byte following the
instruction. The size and range of the displacement depends on
the particular instruction, and is described with each
instruction in Section 3.

The displacement value can be expressed in two ways. In the
first case, the programmer provides a specific displacement in
the form "$+n" where n is a constant expression in the range
appropriate for the particular instruction and $ represents the
contents of the program counter at the start of the instruction.
The assembler automatically subtracts the value of the address of
the following instruction to derive the actual displacement.

2-20

JR 0V, $+K !Add value of constant K to program
counter and jump to new location if
overflow has occurred!

In the second method, the assembler calculates the displacement
automatically. The programmer simply specifies an expression
which evaluates to a number or a program label as in Direct
Addressing. The address specified by the operand must be in the
valid range for the instruction, and the assembler automatically
subtracts the value of the address of the following instruction
to derive the actual displacement.

DJNZ R5, LOOP

LDR RIO, DATA

IDecrement register 5 and jump to
LOOP if the result is not zero!

ILoad the contents of the location
addressed by DATA into register 10!

2.4.7 Based Address

A based address consists of a register that contains the base and
a 16-bit displacement. The displacement is added to the base and
the resulting address indicates the location whose contents are
used by the instruction.

In nonsegmented mode, the base address is held in a word register
that is specified by an "R" followed by a number from 1 to 15.
Any general-purpose word register can be used except RO. The
displacement is specified as an expression which evaluates to a
16-bit value, preceded by a "#" symbol and enclosed in
parentheses.

In segmented mode, the segmented base address is held in a
register pair that is specified by an "RR" followed by an even
number from 2 to 14. Any general-purpose register pair can be
used except RRO. The displacement is specified as an expression
which evaluates to a 16-bit value, preceded by a "#" symbol and
enclosed in parentheses.

LDL RR2, Rl(#255)

LD RR4(#%4000), R2

!Load into register pair 2-3 the
long word value found in the
location resulting from adding
255 to the address in register
1 (nonsegmented mode)!

ILoad register 2 into the loca-
tion addressed by adding %4000
to the segmented address found
in register pair 4-5 (segmented
mode) !

2-21

2.4.8 Based Indexed Address

Based Indexed addressing is similar to Based addressing (2.4.7)
except that the displacement ("index") as well as the base is
held in a register. The contents of the registers are added
together to determine the address used in the instruction.

In nonsegmented mode, the base address is held in a word register
that is specified by an "R" followed by a number from 1 to 15.
The index is held in a word register specified in a similar
manner and enclosed in parentheses. Any general-purpose word
registers can be used for either the base or index except RO.

In segmented mode, the segmented base address is held in a
register pair that is specified by an "RR" followed by an even
number from 2 to 14. Any general-purpose register pair can be
used except RRO. The index is held in a word register that is
specified by an "R" followed by a number from 1 to 15. Any
general-purpose word register can be used except RO.

LD R3, R8(R15) ILoad the value at the location
addressed by adding the address
in R8 to the displacement in
R15 into register 3 (nonseg-
mented mode)!

LDB RR14(R4), RH2 ILoad register RH2 into the
location addressed by the seg-
mented address in RR14 indexed by
the value in R4 (segmented mode)!

2-22

Section 3
Assembly Language Instruction Set

3.1 FUNCTIONAL SUMMARY

Z8000 PLZ/ASM instructions can be divided functionally into nine
groups:

Load and Exchange
Arithmetic
Logical
Program Control
Bit Manipulation
Rotate and Shift
Block Transfer and String Manipulation
Input/Output
CPU Control

The instruction summary shows the instructions belonging to each
functional group and the number of operands required for each.
The following notation is used:

• Operations with word, byte and long word data operands
are listed with their instruction mnemonics grouped
together. The suffix "B" designates a byte instruction,
the suffix "L" designates a long word instruction, and no
suffix designates a word instruction. For some
instructions, a data size is either not applicable or
depends on the segmentation mode, and thus the
instruction mnemonic does not have a suffix to indicate
data size.

• "src" is the source operand ("srcl" and "src2" are used
to distinguish between two source operands in the same
instruction)

• "dst" is the destination operand

• "r" is a register operand, typically used as a counter

• "num" is a number; that is, an immediate value

• "cc" is a condition code (Section 3.2.1)

• "flag" is any combination of the C, Z, S, P, and V
status flags

• "int" is any combination of the VI and NVI interrupt
control bits

3-1

LOAD AND EXCHANGE INSTRUCTIONS

Instruction Operand(s) Name of Instruction

CLR
CLRB

EX
EXB

LD
LDB
LDL

LDA

LDAR

LDK

LDM

LDR
LDRB
LDRL

POP
POPL

PUSH
PUSHL

dst

dst , src

dst , src

dst , src

dst , src

dst , src

dst , src , num

dst , src

dst , src

dst , src

Clear

Exchange

Load

Load Address

Load Address Relative

Load Constant

Load Multiple

Load Relative

Pop

Push

ARITHMETIC INSTRUCTIONS

Instruction

ADC
ADCB

ADD
ADDB
ADDL

CP
CPB
CPL

Operand(s)

dst,src

dst, src

dst,src

Name of Instruction

Add with Carry

Add

Compare

3-2

ARITHMETIC INSTRUCTIONS (continued)

Instruction

DAB

DEC
DECB

DIV
DIVL

EXTS
EXTSB
EXTSL

INC
INCB

MULT
MULTL

NEC
NEGB

SBC
SBCB

SUB
SUBB
SUBL

Operands(s)

dst

dst, src

dst,src

dst

dst,src

dst,src

dst

dst, src

dst, src

Name of Instruction

Decimal Adjust

Decrement

Divide

Extend Sign

Increment

Multiply

Negate

Subtract with Carry

Subtract

LOGICAL INSTRUCTIONS

Instruction

AND
ANDB

COM
COMB

OR
ORB

Operand(s)

dst,src

dst

dst, src

Name of Instruction

And

Complement

Or

3-3

LOGICAL INSTRUCTIONS (continued)

Instruction

TEST
TESTE
TESTL

TCC
TCCB

XOR
XORB

Operand(s)

dst

cc,dst

dst ,src

Name of Instruction

Test

Test Condition Code

Exclusive Or

PROGRAM CONTROL INSTRUCTIONS

Instruction Operand(s)

CALL

CALR

DJNZ
DBJNZ

IRET

JP

JR

RET

SC

dst

dst

r ,dst

cc,dst

cc,dst

cc

src

Name of Instruction

Call Procedure

Call Procedure Relative

Decrement and Jump if
Not Zero

Interrupt Return

Jump

Jump Relative

Return from Procedure

System Call

Instruction

BIT
BITB

BIT MANIPULATION INSTRUCTIONS

Operand(s)

dst, src

Name of Instruction

Bit Test

3-4

BIT MANIPULATION INSTRUCTIONS (continued)

Instruction

RES
RESB

SET
SETB

TSET
TSETB

Operand(s)

dst, src

dst ,src

dst

Name of Instruction

Reset Bit

Set Bit

Test and Set

ROTATE AND SHIFT INSTRUCTIONS

Instruction

RL
RLE

RLC
RLCB

RLDB

RR
RRB

RRC
RRCB

RRDB

SDA
SDAB
SDAL

SDL
SDLB
SDLL

SLA
SLAB
SLAL

Operand(s)

dst, src

dst, src

dst, src

dst, src

dst, src

dst, src

dst, src

dst,src

dst, src

Name of Instruction

Rotate Left

Rotate Left through
Carry

Rotate Left Digit

Rotate Right

Rotate Right through
Carry

Rotate Right Digit

Shift Dynamic Arithmetic

Shift Dynamic Logical

Shift Left Arithmetic

3-5

ROTATE AND SHIFT INSTRUCTIONS (continued)

Instruction

SLL
SLLB
SLLL

SRA
SRAB
SRAL

SRL
SRLB
SRLL

Operand(s)

dst,src

dst,src

dst,src

Name of Instruction

Shift Left Logical

Shift Right Arithmetic

Shift Right Logical

BLOCK TRANSFER AND STRING MANIPULATION INSTRUCTIONS

Instruction

CPD
CPDB

CPDR
CPDRB

CPI
CPIB

CPIR
CPIRB

CPSD
CPSDB

CPSDR
CPSDRB

CPSI
CPSIB

CPSIR
CPSIRB

LDD
LDDB

Operand(s)

dst,src,r,cc

dst,src,r,cc

dst,src,r,cc

dst,src,r,cc

dst,src,r,cc

dst,src,r,cc

dst,src,r,cc

dst,src,r,cc

dst,src,r

Name of Instruction

Compare and Decrement

Compare, Decrement and
Repeat

Compare and Increment

Compare, Increment and
Repeat

Compare String and
Decrement

Compare String, Decrement
and Repeat

Compare String and
Increment

Compare String, Increment
and Repeat

Load and Decrement

3-6

BLOCK TRANSFER AND STRING MANIPULATION INSTRUCTIONS (continued)

Instruction

LDDR
LDDRB

LDI
LDIB

LDIR
LDIRB

TRDB

TRDRB

TRIB

TRIRB

TRTDB

TRTDRB

TRTIB

TRTIRB

Operand(s)

dst, src,r

dst,src,r

dst, src,r

dst, src,r

dst,src,r

dst, src,r

dst,src,r

srcl,src2 ,r

srcl,src2 , r

srcl,src2 ,r

srcl,src2, r

Name of Instruction

Load, Decrement and
Repeat

Load and Increment

Load, Increment and
Repeat

Translate and Decrement

Translate, Decrement and
Repeat

Translate and Increment

Translate, Increment and
Repeat

Translate, Test and
Decrement

Translate, Test, Decrement
and Repeat

Translate, Test and
Increment

Translate, Test, Increment
and Repeat

INPUT/OUTPUT INSTRUCTIONS

Instruction

IN
INB

IND
INDB

Operand(s)

dst, src

dst,src,r

Name of Instruction

Input

Input and Decrement

3-7

INPUT/OUTPUT INSTRUCTIONS (continued)

Instructions

INDR
INDRB

INI
INIB

INIR
INIRB

OTDR
OTDRB

OTIR
OTIRB

OUT
OUTB

OUTD
OUTDB

OUTI
OUTIB

SIN
SINE

SIND
SINDB

SINDR
SINDRB

SINI
SINIB

SINIR
SINIRB

SOTDR
SOTDRB

SOTIR
SOTIRB

Operand (s)

dst ,src,r

dst ,src,r

dst , src, r

dst ,src,r

dst , src , r

dst , src

dst , src , r

dst , src , r

dst , src

dst , src, r

dst , src , r

dst , src, r

dst, src, r

dst , src, r

dst , src , r

Name of Instruction

Input, Decrement and
Repeat

Input and Increment

Input, Increment and
Repeat

Output, Decrement and
Repeat

Output, Increment and
Repeat

Output

Output and Decrement

Output and Increment

Special Input

Special Input and
Decrement

Special Input, Decrement
and Repeat

Special Input and
Increment

Special Input, Increment
and Repeat

Special Output, Decremen
and Repeat

Special Output, Incremen
and Repeat

3-8

INPUT/OUTPUT INSTRUCTIONS (continued)

Instruction

SOUT
SOUTB

SOUTD
SOUTDB

SOUTI
SOUTIB

Instruction

Operand(s)

dst,src

dst,src,r

dst ,src,r

Name of Instruction

Special Output

Special Output and
Decrement

Special Output and
Increment

CPU CONTROL INSTRUCTIONS

Operand(s)

COMFLG

DI

El

HALT

LDCTL
LDCTLB

LDPS

MBIT

MREQ

MRES

MSET

NOP

RESFLG

SETFLG

flag

int

int

dst , src

src

dst

flag

flag

Name of Instruction

Complement Flag

Disable Interrupt

Enable Interrupt

Halt

Load Control Register

Load Program Status

Multi-Micro Bit Test

Multi-Micro Request

Multi-Micro Reset

Multi-Micro Set

No Operation

Reset Flag

Set Flag

3-9

The following set of instructions are privileged; that is, they
can only be executed in System mode:

DI
El
HALT
IN
INB
IND
INDB
INDR
INDRB
INI

INIB
INIR
INIRB
IRET
LDCTL
LDPS
MBIT
MREQ
MRES
MSET

OTDR
OTDRB
OTIR
OTIRB
OUT
OUTB
OUTD
OUTDB
OUTI
OUTIB

SIN
SINB
SIND
SINDB
SINDR
SINDRB
SINI
SINIB
SINIR
SINIRB

SOTDR
SOTDRB
SOTIR
SOTIRB
SOUT
SOUTB
SOUTD
SOUTDB
SOUTI
SOUTIB

3-10

3.2 NOTATION AND BINARY ENCODING

3.2.1 Operand Notation

Operands are represented by a notational shorthand in the
detailed instruction descriptions that make up the rest of this
section. The notation for operands and their actual assembly
language syntax are as follows:

Notatiori

IM

R

IR

DA

X

RA

BA

BX

Address Mode

Immediate Data

Register

Indirect Register

Direct Address

Indexed Address

Relative Address

Based Address

Based Indexed
Address

Actual Operand

ttexpression

Rn, where n=0-15;
RHn, or RLn, where
n=0-7; RRn, where
n=0,2,4,...14; RQn,
where n=0,4,8,l3

@Rn, where n=l-15
for nonsegmented mode;
@RRn, where n=2,4,6...14
for segmented mode

expression

expression(Rn), whereexpre
n=l-l

expression

Rn(ftexpression), where
n=l-15 for nonsegmented
mode; RRn(texpression),
where n=2,4,6...14 for
segmented mode

Rn(Rn), where n=l-15
for nonsegmented mode;
RRn(Rm), where
n=2,4,6...14 and m=l-15
for segmented mode

3-11

The control registers (CTLR) are:

FLAGS
FCW
REFRESH
PSAP
PSAPSEG
PSAPOFF
NSP
NSPSEG
NSPOFF

Status Flags
Flags and Control Word
Refresh
Program Status Area Pointer*
Program Status Area Pointer Segment
Program Status Area Pointer Offset
Normal Stack Pointer*
Normal Stack Pointer Segment
Normal Stack Pointer Offset

For the nonsegmented Z8002, PSAP is equivalent to PSAPOFF
and NSP is equivalent to NSPOFF.

The status flags are:

C
Z
S
p
v
D
H

Carry flag
Zero flag
Sign flag
Parity flag
Overflow flag
Decimal-adjust flag*
Half-carry flag*

* These flags may not be specified in assembly language
statements.

The interrupt control bits are:

VI
NVI

Vectored Interrupt
Non-Vectored Interrupt

The binary values used in the instruction format encoding for the
general-purpose registers are:

Register

RQO

RQ4

RRO

RR2

RR4

RO
Rl
R2
R3
R4
R5

RHO
RH1
RH2
RH3
RH4
RH5

Binary

0000
0001
0010
0011
0100
0101

3-12

Register

RR6

RQ8 RR8

RR10

RQ12 RR12

RR14

The condition

Code

(blank)
Z
NZ
C
NC
PL
MI
NE
EQ
OV
NOV
PE
PO
GE

LT
GT
LE

UGE

ULT

UGT

OLE

R6 RH6
R7 RH7
R8 RLO
R9 RL1
RIO RL2
Rll RL3
R12 RL4
R13 RL5
R14 RL6
R15 RL7

codes and the flag

Meaning

Always false
Always true
Zero
Not zero
Carry
No carry
Plus
Minus
Not equal
Equal
Overflow
No overflow
Parity even
Parity odd
Greater than
or equal
Less than
Greater than
Less than or
equal
Unsigned
greater than
or equal
Unsigned
less than
Unsigned
greater than
Unsigned less
than or equal

Binary

0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

settings they represent

Flag Settings

-
Z = l
z=o
C=l
c=o
s=o
S=l
z=o
Z = l
V=l
v=o
p=l
P=0
(S XOR V) = 0

(S XOR V) = 1
(Z OR (S XOR V)) = 0
(Z OR (S XOR V)) = 1

C = 0

C=l

((C=0) AND (Z=0)) = 1

(C OR Z) = 1

are:

Binary

0000
1000
0110
1110
0111
1111
1101
0101
1110
0110
0100
1100
0100
1100
1001

0001
1010
0010

1111

0111

1011

0011

Note that some of the condition codes correspond to identical
flag settings: i.e., Z-EQ, NZ-NE, C-ULT, NC-UGE, PE-OV, PO-NOV.

3-13

3.2.2 Instruction Format Encoding

The binary encoding of each Z8000 instruction follows one of nine
basic formats. Each format determines the grouping of bits into
various instruction "fields", the meaning of which depends on the
instruction. The following symbols represent these fields:

Symbol Field Size Value

mode 2 bits Addressing mode specifier

src Varies Source operand address or
immediate value

dst Varies Destination operand address

r 4 bits Register counter address

num 4 bits Number (immediate value)

cc 4 bits Condition code

W/B l bit Word or byte specifier

x 4 bits Index register address for Based
Indexed Addressing mode

displacement Varies Displacement for Relative or
Based Addressing modes

All other bit fields are referred to as operation code (opcode)
fields because they determine the operation of the instruction.

In addition to the various fields within an instruction, address
information for the data operands may be appended to the basic
instruction encoding. The size and format of this additional
address information depends on the particular address mode, as
well as the data operand size in the case of Immediate Data, or
the segmentation mode in the case of Direct Address or Indexed
Address.

3-14

The standard formats for address information are illustrated by
the following examples. Nonstandard formats are described in the
detailed description for each instruction (Section 3.3). The
following examples use Addition (ADD), Load (LD), and Load
Relative (LDR) instructions for illustration purposes, although
the address information formats apply to all instructions which
require additional address information.

Register (R)

dst src
ADD R, R mode opcode W/B src dst I

-i 1 1 1

{mode = 10}

Example:
ADD R2,R3 1 0 0 0 0 0 0 0 0 1 1 0 0

Immediate Data —Word (IM)

dst src
ADD R, IM mode

i
opcode

i i i i
W/B src

> i >
dst

i i i
data

{mode = 00, src field = 0}

Example:
ADD R2,#%1234 0 0 0 0 0 0 0 1 0 0 0 0

I I 1
0 0 1 0

1 1 1

0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0

Immediate Data — Byte (IM)

dst src
ADDB R, IM mode

i
opcode

i i i i
W/B

data

src
i i i

dst
i i i

data

{mode = 00, src field = 0, Byte Immediate Data is duplicated
in each half of the second instruction word}

Example:
ADDB RH2,#%12 0 0

1
0 0 0 0 0I I I I 0

0 0 0 1 0 0 1 0
I 1 1 I I 1 I

0 0 0 01 1 1 0 0 1 01 1 1
0 0 0 1 0 0 1 0

1 1 1 I 1 1 1

3-15

Immediate Data — Long (IM)

dst src
ADDL R, IM mode

i
opcode

i i i i i
data

i i i i i i
data

i i i i i i i

src
i i i

dst
i i

(high order)
i i i i i i

(low order)
i i i i i i i

i

i

{mode = 00, src field = 0}

Example:
ADDL RR2,#%12345678 0 0

1
0

1
0 0 0

1 1

0 1 0
I 1 1

1 0
I

1 0
I

1 0

1 1
I I

0 1
I 1

1 1
1 1

0
1

0

0 0
1 1

0 0
1 1

0
1

0
1

1
I

0
I I

1
I I

1

0 0
I

1 0
I I

1 1

0 1
I

1 0
I

0 0

0
I

0
I

0

Indirect Register (IR)

ADD

{mode

Example:
ADD

dst src
R T R mode opcode w/B src dst
^ ' -Lrv- i i i i i i i i i i i

= 00, src field <> 0}

R 2 @ R 3 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0

Direct Address — Nonsegmented (DA)

srcdst
ADD R, DA mode

i
opcode

i i i i

i i i i i i

W/B src
L J_ _L

dst
i i i

address
i i i i i i i i

{mode = 01, src field = 0}

Example:
ADD R2,%0012 0 1

1
o o o o o

1 1 1 1
1 0 0 0 0

1 1 1
0 0 1 0

1 1 1

0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0
1 1 I 1 1 1 1 1 1 1 1 I I I I

3-16

Direct Address — Segmented Short Offset (DA)

dst src
ADD R, DA

{mode = 01, src field = 0}

Example:
ADD R2, | «3»%0012|

mode

o

opcode
i i i i
segment

i i i i i

W/B src

off

dst

set
1 1 1

0

0

1

0

0 0 0 0 0
I I I I

0 0 0 0 1

1

1

0 0 0 0
I I t

0 0 0 1
1 1 1

0 0 1 0

0 0 1 0

Direct Address -- Segmented Long Offset (DA)

dst src
ADD R, DA mode

1

opcode
i i i i

W/B

segment
i i i i i

src
i i i

dst
i i i

0 0 0 0 0 0 0 0
1 1 1 1 1 1 1

offset

{mode = 01, src field = 0}

Example:
ADD R2,«3»%0012 0 1

1 0

0 0
I

0 0 0 0 0
I I I I

0 0 0 0 1
I I I I

0 0 0 0 0
1 I I 1

1

1

0 0 0 0
! 1 1

0 0 0 0
1 1 1

0 0 0 0 1
I I 1 I

0 0 1 0
I I I

0 0 0 0
I I I

0 0 1 0
I I !

Indexed Address -- Nonsegmented (X)

dst src
ADD R, X

{mode = 01, src field <> 0}

Example:
ADD R2,%0012(R4)

mode
i

opcode
i i i i

W/B src
i i >

dst
i i i

address
i i i i i i i i i i i i i i i

0 1i
0 0

I

0 0 0 0 0
I I I I

0 0 0 0 0
I I I I

1

0

0 1 0 0
I I I

0 0 0 1
I I I

0 0 1 0
I I I

0 0 1 0
I I I

3-17

Indexed Address — Segmented Short Offset (X)

dst src
ADD R, X

(mode = 01, src field <> 0}

mode

0

opcode
i i i i

segment

W/B src
i t i

dst

offset

Example:
ADD R2, |«3»%0012| (R4) 0

0

1 0 0 0 0 0
1 I 1 I

1 0 1 0 0
1 1 1

0 0 1 0
I I 1

0 0 0 0 0 1 1 0 0 0 1 0 0 1 0

Indexed Address — Segmented Long Offset (X)

dst src
ADD R,

Example:
ADD R2,«3»%0012(R4)

Relative Address (RA)

dst src
LDR R, RA

Example:
LDR R2,$+10

mode 1 opcode
i i i i i

1

W/B

segment
i
off

src
i i i

0 0 0 0
1 1 1

dst
i i i

0 0 0 0
1 1 1

set

0

1

0

1

0

0

0 0 0 0 0
I I I I

0 0 0 0 1
I I I 1

0 0 0 0 0

1

1

0

0 1 0 0
I I I

0 0 0 0
1 1 1

0 0 0 1

0 0 1 0

0 0 0 0
I I I

0 0 1 0

1 1
opcode
i i i

i i i

i
W/ B 0 0 0 0

i i i
dst

i i i
displacement

i i i i i i i i i

0 0 1 1 0 0 0 1 0 0 0 0 0 0 1 0
l l l I I l L i I l J_. _J l

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
l I I l I I l l l 1 1 l l l J

{The assembler automatically calculates the relative address
displacement (=6) as the given value (10 bytes after the
start of the LDR instruction) minus the start of the
following instruction (4 bytes after the start of the LDR
instruction)}

3-18

Based Address (BA)

sr c
LD

dst
R, BA

opcode W/B src dst
1 1 1

displacement

{src field <> 0}

Examole:
^LD R2,R4(#%0012)

Based Indexed Address (BX)

dst src
LD R, BX

{src field <> 0}

Example:
LD R2,R4(R5)

0 0 1 1 0 0 0
I I I I I I

0 0 0 0 0 0 0

1

0

0 1 0 0

0 0 0 1
I I I

0 0 1 0

0 0 1 0

opcoc
I I I

0 0 0 0
I I I

Je
I I

W/B

I I I

src
I I I

0 0 0 0
1 1 1

dst
1 1 I

0 0 0 0

0 1 1 1
I I I

0 0 0 0
I I I

0 0 0
I t

1

0 1 0 1
I I I

0 1 0 0
I I I

0 0 1 0
I I I

0 0 0 0 0 0 0 0

There are several instructions whose source operand is Immediate
Data and destination operand is either Direct Address or Indexed
Address. In this case, the Immediate Data follows the address
information (DA or X) in the instruction encoding. The following
example uses the nonsegmented DA format

dst src
LD DA, IM

Example:
LD %0012,#%1234

mode
i

opcode
i i i i

W/B dst
1 1 1

address
i i i i i i i i

data
i i i i i i i i i

0 1 0 0 1 1 0
I 1 I I

1 0 0 0 0
1 1 1

0 0 0 0 0 0 0 0 0 0 0 1
I I I I I I I I I I

0 0 0 1 0 0 1 0 0 0 1 1
1 1 1 1 1 1 I I 1 1 I

opcode
i i i

i i i

i i i

0 1 0 1
I I I

0 0 1 0
1 1 1

0 1 0 0

3-19

E3-3055-01 07/02/79

The nine basic formats, Fl through F9, determine the size of the
instruction, which also depends on the addressing mode. The
following table can be used to determine the number of bytes in a
particular instruction. The addressing mode (including the data
operand size and whether segmented or nonsegmented mode is used)
specifies the row in the table, while the format number specifies
the column.

MODE

dst or src

TABLE 3-1. NUMBER OF BYTES IN INSTRUCTIONS

FORMAT

Fl F2 F3 F4 F5 F6 F7 F8 F9

R, IR
IM (Word/Byte)
IM (Long)
DA,X (NS/SS)
DA,X (SL)
RA
BA
BX

2
4
c.
D

4
6

2
4
CD

4
6

4
2

— -- 6
~ — 8

4
--

6
8

2 2 —
-- -- 2

4 — —
— — —

— -- 2 4
4
4

NS = Nonsegmented , SS = Segmented Shor t O f f s e t , SL = Segmented
Long O f f s e t

3^20

E3-3055-01 07/02/79

3.2.3 Operation Notation

The description of each instruction's operation includes a
shorthand summary. The following symbols are used in the
operation summary.

Symbol

src

dst

r

num

cc

instruction

Rn

PC

PS

SP

@n

Meaning

Source operand

Destination operand

Register operand (typically
used as a counter)

Number, that is, an immediate
value

Condition code

Binary value of the instruction
itself

Register number "n"

Program Counter register

Program Status register

Processor stack pointer register
(R15 if nonsegmented, RR14
if segmented)

Becomes (assignment of a value)

Indirect; that is, the value
found at the address contained

nl,n2 Concatenation; that is, both
"nl" and "n2" are operated
on together

Operand addressed by the
Boolean OR of the instruction
field "f" and the value "n"
(e.g., ROyl is Rl)

3-21

Symbol Meaning

operand(n) Bit "n" of operand

operand(msb) Most significant bit of operand

operand(nl:n2) Bits "nl" through "n2"
of operand

srcfdst] Indexed access, that is, the
operand whose address is
contained in the source operand
offset by the destination operand

AUTOINCREMENT The address of the operand is
automatically incremented by the
size of the operand in bytes (the
address is always contained in a
register)

AUTODECREMENT The address of the operand is
automatically decremented by the
size of the operand in bytes (the
address is always contained in
a register)

3-22

3.3 ASSEMBLY LANGUAGE INSTRUCTIONS

In the remainder of this chapter, Z8000 assembly language
instructions are described in detail in alphabetic order. Each
description includes:

• The name of the instruction.

• The assembly language statement format(s) including
the required operands and valid addressing modes (see
section 3.2.1) .

• The binary instruction format(s) including the
instruction fields and the format class (see section
3.2.2). If the instruction has a "mode" field, then the
valid addressing modes for that format are listed to the
right of the binary encoding. If the instruction has a
"W/B" field, then a "1" bit indicates a word operation and
a "0" bit indicates a byte operation. The format class
appears in parentheses above the binary encoding and
consists of two numbers (Fn.m). "Fn" specifies the basic
format class Fl through F9 and can be used with Table 3-1
to determine the number of bytes for a particular
instruction. The "m" portion of the format number
specifies the sub-class (see Appendix A).

• The operation performed by the instruction including
a summary description (see section 3.2.3) and a detailed
descr iption.

• The status flags affected by the instruction.

• The number of machine cycles used to execute the
instruction.

• Special notes for some instructions concerning
nonstandard instruction field encodings, hardware related
functions, operation restrictions, and other
architectural or implementation details.

• A short assembly language example showing the use
of the instruction. All examples assume the nonsegmented
mode unless otherwise specified.

3-23

3-24

ADC
Add with Carry

ADC dst,src
ADCB

INSTRUCTION FORMAT: (F2.1)

dst: R
src: R

W/B: mode 1 1 0 1 0 W/B src dst
i i , 1

mode
10

dst
R

src
R

OPERATION:

FLAGS:

Z:
S:
V:

D:
H;

CYCLES:

EXAMPLE:

dst <- dst + src + C

The source operand, along with the setting of the
carry flag, is added to the destination operand and the
sum is stored in the destination. The contents of the
source are not affected. Two's complement addition is
performed. In multiple precision arithmetic, this
instruction permits the carry from the addition of
low-order operands to be carried into the addition of
high-order operands.

Set if there is a carry from the most significant bit
of the result; cleared otherwise
Set if the result is zero; cleared otherwise
Set if the result is negative; cleared otherwise
Set if arithmetic overflow occurs, that is, if both
operands were of the same sign and the result is of
the opposite sign; cleared otherwise
ADC - unaffected; ADCB - cleared
ADC - unaffected; ADCB - set if there is a carry
from the most significant bit of the low-order four
bits of the result; cleared otherwise

Word/Byte
5

Long addition may be done with the following
instruction sequence, assuming RO,R1 contain one
operand and R2,R3 contain the other operand:

ADD R1,R3 !add low-order words!
ADC RO,R2 !add carry and high-order words!

If RO contains %0000, Rl contains %FFFF, R2 contains
%4320 and R3 contains %0001, then the above two
instructions leave the value %4321 in RO and %0000
in Rl.

3-25

ADD
Add

ADD ds t , s rc
ADDB
ADDL

INSTRUCTION FORMAT: (F2.1)

mode
t

0 0 0 0 0
1 1 t 1

W/B src
t i i

dst
i i i

L : I mode src
i i

dst

FLAGS:

Z:
S:
V:

D:
H:

CYCLES:

EXAMPLE:

dst: R
src: R, IM, IR, DA, X

mode dst src
10 R R
00 R IM (src field=0)
00 R IR (src fieldOO)
01 R DA (src field=0)
01 R X (src fieldOO)

OPERATION: dst <- dst + src

The source operand is added to the destination operand
and the sum is stored in the destination. The contents
of the source are not affected. Two's complement addi-
tion is performed.

Set if there is a carry from the most significant bit
of the result; cleared otherwise
Set if the result is zero; cleared otherwise
Set if the result is negative; cleared otherwise
Set if arithmetic overflow occurs, that is, if both
operands were of the same sign and the result is of
the opposite sign; cleared otherwise
ADD, ADDL - unaffected; ADDB - cleared
ADD, ADDL - unaffected; ADDB - set if there is a carry
from the most significant bit of the low-order four
bits of the result; cleared otherwise

src

R
IM
IR
DA
X

If register R2 contains %0344 and the word at
the location named AUGEND contains %0011, the statement

ADD R2,AUGEND

will leave the value %0355 in R2.

Word/byte
NS

4
7
7
9

10

SS

10
10

SL

12
13

NS
8

14
14
15
16

Long
SS

—--

—
16
16

SL

—--

—18
19

3-26

AND
And

AND dst,src
ANDB

INSTRUCTION FORMAT: (F2.1)

dst: R
src: R, IM, I.R, DA, X

mode dst src
mode 0 0 0 1 1 VW B src dst

l 1 1

10
00
00
01
01

R
R
R
R
R

R
IM
IR
DA
X

(src
(src
(src
(src

field=0)
fieldOO)
field=0)
f ieldOO)

OPERATION:

FLAGS:

CYCLES:

EXAMPLE;

dst <- dst AND src

The source operand is logically ANDed with the
destination operand and the result is stored in the
destination. The contents of the source are not
affected. The AND operation results in a one bit being
stored whenever the corresponding bits in the two
operands are both ones; otherwise, a zero bit is stored,

Unaffected
Set if the result is zero; cleared otherwise
Set if the most significant bit of the result is set;
is even; cleared otherwise
AND - unaffected; ANDB - set if parity of the result
is even; cleared otherwise
Unaffected
Unaffected

src Word/Byte
NS SS SL

R 4 — —
IM 7 — —
IR 7 -- --
DA 9 10 12
X 10 10 13

If register RL3 contains %C3 (11000011) and the
source operand is the immediate value %7B (01111011),
the statement

ANDB RL3,#%7B

will leave the value %43 (01000011) in RL3.

3-27

BIT
Bit Test

BIT ds t ,s rc dst:
BITB

INSTRUCTION FORMAT: (

W/B:

W/B:

mode 1 0 0 1 1 W / B

(

0 0 1 0 0 1 1 W / B 0
I I I I I

src :

F1.2)
mode

dst src I 10
1 1 I I 1 ' n nu u

01
01

F6.3)

0 0 0 src

I I I I I I

R, IR
R, IM

dst
R

IR
DA

X

dst
R

, DA, X

src
IM
IM (dst
IM (dst
IM (dst

src
R

f ie ldOO)
f ie ld=0)
f i e ldOO)

OPERATION:

FLAGS: C:
Z:
S:
V:
D:

CYCLES:

Z <- NOT dst(src)

Tests the specified bit within the destination operand,
and sets the Z flag if the specified bit is 0; other-
wise it clears the Z flag. The contents of the desti-
nation are not affected. The source (the bit number)
can be specified as either an immediate value, or as a
word register which contains the value. In the second
case, the destination operand must be a register, and
the source operand must be RO through R7 for BITB, or
RO through R15 for BIT. The bit number is a value
from 0 to 7 for BITB, or 0 to 15 for BIT, with 0
indicating the least significant bit.

Unaffected
Set if specified bit is zero; cleared otherwise
Unaffected
Unaffected
Unaffected

H: Unaffected

dst src

R
IR
DA
X
R

IM
IM
IM
IM
R

Word/Byte
NS SS SL
4 __ __
8 -- —
10 11 13
11 11 14
10 — --

3-28

BIT
Bit Test

NOTE: Only the lower four bits of the source operand are used
to specify the bit number for BIT, while only the lower
three bits of the source operand are used with BITB.
When the source operand is an immediate value, the "src
field" in the instruction format encoding contains the
bit number in the lowest four bits for BIT, or the
lowest three bits for BITB.

EXAMPLE: If register RH2 contains %B2 (10110010), the statement

BITB RH2,#0

will leave the Z flag set.

3-29

CALL
Call Procedure

CALL dst

INSTRUCTION FORMAT: (Fl.l)

mode 0 1 1 1 1 1 dst 0 0 0 • I

FLAGS:

CYCLES:

EXAMPLE:

dst: IR, DA, X

OPERATION:

DA (dst field=0)
X (dst fieldOO)

Nonsegmented Segmented
SP <- SP - 2 SP <- SP - 4
@SP <- PC @SP <- PC
PC <- dst PC <- dst

The current contents of the program counter (PC) are
pushed onto the top of the processor stack. The stack
pointer used is R15 if nonsegmented, or RR14 if seg-
mented. (The program counter value used is the address
of the first instruction byte following the CALL in-
struction.) The specified destination address is then
loaded into the PC and points to the first instruction
of a procedure.

At the end of the procedure a RET instruction can be
used to return to original program flow. RET pops
the top of the processor stack back into the PC.

No flags affected

dst Ad d r e s s
NS SS SL

IR 10 -- 15
DA 12 18 20
X 13 18 21

In nonsegmented mode, if the contents of the program
counter are %1000 and the contents of the stack
pointer (R15) are %3002, the statement

CALL %2520

causes the stack pointer to be decremented to %3000,
the value %1004 (the address following the CALL
instruction with direct address mode specified) to be
loaded into the word at location %3000, and the program
counter to be loaded with the value %2520. The program
counter now points to the address of the first
instruction in the procedure to be executed.

3-30

CALR
Call Procedure Relative

CALR dst

INSTRUCTION FORMAT: (F3.4)

displacement
i i i i

dst: RA

dst
RA

OPERATION:

FLAGS:

CYCLES:

NOTE:

EXAMPLE:

Nonsegmented
SP <- SP - 2
@SP <- PC
PC <- PC - (2*disp)

Segmented
SP <- SP - 4
@SP <- PC
PC <- PC - (2*disp)

The current contents of the program counter (PC) are
pushed onto the top of the processor stack. The stack
pointer used is R15 if nonsegmented, or RR14 if seg-
mented. (The program counter value used is the address
of the first instruction byte following the CALR in-
struction.) The destination address is calculated and
then loaded into the PC and points to the first in-
struction of a procedure.

At the end of the procedure a RET instruction can be
used to return to the original program flow. RET pops
the top of the processor stack back into the PC.

No flags affected

Address
NS SS
10 —

SL
15

The relative addressing mode is calculated by doubling
the displacement in the instruction, then subtracting
this value from the updated value of the PC to derive
the destination address. The updated PC value is taken
to be the address of the instruction byte following the
CALR instruction, while the displacement i s a 12-bit
signed value in the range -2048 to +2047. Thus, the
destination address must be in the range -4092 to +4098
bytes from the start of the CALR instruction. In the
segmented mode, the PC segment number is not affected.
The assembler automatically calculates the displacement
by subtracting the PC value of the following instruction
from the address given by the programmer.

CALR PROC
NEXT:

IProcedure PROC is called!
IControl eventually returns to here!

3-31

CLR
Clear

CLR dst
CLRB

INSTRUCTION FORMAT: (Fl.l)

W/B: mode 0 0 1 1 0 W/B dst
i i i

1 0 0 0I I I]

dst: R, IR, DA, X

mode dst
10 R
00 IR
01 DA (dst field=0)
01 X (dst fieldOO)

OPERATION: dst <- 0

The destination is cleared to zero.

FLAGS: No flags affected

CYCLES

EXAMPLE

dst

R
IR
DA
X

Word/Byte
NS SS SL
7 __ __
8 — --
11 12 14
12 12 15

If the word at location %ABBA contains 13, the
statement

CLR %ABBA

will leave the value 0 in the word at location %ABBA.

3-32

COM
Complement

COM dst dst:
COMB

INSTRUCTION FORMAT:

W/B : 1 mode 0 0 1 1 o \
1 I 1 1 1 L

(F l . l)
mode

NIB dst o o o o 1 10I I I 1 1 1 1 nf l

01
01

R, IR, DA

dst
R

IR
DA

X
(dst
(dst

, x

f ie ld=0)
fieldOO)

OPERATION: dst <- NOT dst

The contents of the destination are complemented (one's
complement); all one bits are changed to zero, and vice-
versa.

FLAGS: C: Unaffected
Z: Set if the result is zero; cleared otherwise
S: Set if the most significant bit of the result is set;

cleared otherwise
P: COM - unaffected; COMB - set if parity of the result

is even; cleared otherwise
D: Unaffected
H: Unaffected

CYCLES: dst Word/Byte
NS SS SL

R 7 — ~
IR 12 — —
DA 15 16 18
X 16 16 19

EXAMPLE: If register Rl contains %2552 (0010010101010010),
the statement

COM Rl

will leave the value %DAAD (1101101010101101) in Rl.

3-33

COMFLG
Complement Flag

COMFLG flag

INSTRUCTION FORMAT: (F9.1)

flag: C, Z, S, P, V

1 0 0 0 1 1 0 1 C Z S P / V 0 1 0 1
t l l l l l I

OPERATION: FLAGS(4:7) <- FLAGS(4:7) XOR instruct ion(4:7)

Any combination of the C, Z, S, P or V flags are
complemented (each one bit is changed to zero, and
vice-versa) if the corresponding bit in the
instruction is one. If the corresponding bit in the
instruction is zero, the flag will not be affected.
All other bits in the FLAGS register are
unaffected. Note that the P and V flags are
represented by the same bit. There may be one,
two, three or four operands in the assembly
language statement, in any order.

FLAGS: C:
Z:
S:

P/V:
D:
H:

CYCLES:

EXAMPLE:

Complemented if specified; unaffected otherwise
Complemented if specified
Complemented if specified;
Complemented if specified;
Unaffected
Undefined

unaffected otherwise
unaffected otherwise
unaffected otherwise

If the C, Z, and S flags are all clear (=0),
and the P flag is set (=1), the statement

COMFLG P, S, Z, C

will leave the C, Z, and S flags set (=1),
and the P flag cleared (=0).

3-34

CP
Compare

CP dst, src dst:
CPB
CPL

INSTRUCTION FORMAT:

W / B : mode 0 0 1 0 1 W

L : mode 0 1 0 0 0
l i i i i i

W/B : mode o o i i o w

sr c :

(F 2 . 1)
mode

IB src dst 1 0
i i i i l l r, n00

D src dst 0 01 1 1 ' ' i . - n i
01

(F 5 . 1)
mode

; B d s t 0 0 0 1 00i i i i i i
Ul
01

R, IR,
R , I M ,

dst
R
R
R
R
R

dst
IR
DA

X

DA
IR

src
R

IM
IR
DA

X

src
IM
IM
IM

, x
, DA,

(s r c
(s rc
(s rc
(s rc

(ds t
(dst

X

f i e ld=0)
f i e ldOO)
f ield=0)
f ie ldOO)

f ie ld=0)
f i e l d O O)

OPERATION:

FLAGS: C:

Z:
S:
V;

D:
H:

CYCLES:

dst - src

The source operand is compared to (subtracted from) the
destination operand, and the appropriate flags set
accordingly, which may then be used for arithmetic and
logical conditional jumps. Both operands are unaffect-
ed, with the only action being the setting of the flags
Subtraction is performed by adding the two's complement
of the source operand to the destination operand.

Cleared if there is a carry from the most significant
bit of the result; set otherwise, indicating a "borrow"
Set if the result is zero; cleared otherwise
Set if the result is negative; cleared otherwise
Set if arithmetic overflow occurs, that is, if both
operands were of opposite signs and the sign of the
result is the same as the sign of the source; cleared
otherwise
Unaffected
Unaffected

dst src Word/Byte

R
R
R
R
R

IR
DA
X

R
IM
IR
DA
X

IM
IM
IM

NS
4
7
7
9
10
11
14
15

SS
--
--
--
10
10
—
15
15

SL
--
--
--
12
13
--
17
18

NS
8

14
14
15
16

Long
SS
--
--
—
16
16

SL__

--

—
18
19

3-35

E3-3055-01 07/02/79

CP
Compare

EXAMPLE: If register R5 contains %0400, the byte at location
%0400 contains 2, and the source operand is the
immediate value 3, the statement

CPB @R5,#3

will leave the C flag set, indicating a borrow, the
S flag set, and the Z and V flags cleared.

3-36

CPD
Compare and Decrement

CPD
CPDB

dst , s rc , r ,cc dst:
src :

R
IR

INSTRUCTION FORMAT: (F6.5)

W/B: 1 0 1 1
I I I

0 0 0 0

1 0 1
I I

W/ B

r

src
i i i

dst
i i i

1 0 0 0
l l l

cc
l t l

dst src
R IR

OPERATION:

FLAGS: C:
Z:

S:
V:

D:
H:

CYCLES:

EXAMPLE:

dst - src
AUTODECREMENT src {-1 if byte, -2 if word}
r <- r - 1

This instruction is used to search a string of data for
an element meeting the specified condition. The con-
tents of the location addressed by the source register
is compared to (subtracted from) the destination operand,
and the Z flag is set if the condition code specified by
"cc" would be set by the comparison; otherwise the Z flag
is cleared. See section 3.2.1 for a list of condition
codes. Both operands are unaffected.

The source register is then decremented by one if CPDB,
or by two if CPD, thus moving the pointer to the pre-
vious element in the string. The word register specified
by "r" (used as a counter) is then decremented by one.

Undefined
Set if the condition code generated by the comparison
matches cc; cleared otherwise
Undefined
Set if the result of decrementing r is zero; cleared
otherwise
Unaffected
Unaffected

Word/Byte
20

If register RHO contains %FF, register Rl contains
%4001, the byte at location %4001 contains %00, and
register R3 contains 5, the statement

CPDB RHO,@R1,R3,EQ

will leave the Z flag cleared since the condition code
would not have been "equal". Register Rl will contain
the value %4000 and R3 will contain 4.

3-37

CPDR
Compare, Decrement and Repeat

CPDR dst,src,r,cc
CPDRB

INSTRUCTION FORMAT: (F6.5)

W/B:

dst: R
src: IR

1 0 1 1
I I I

0 0 0 0
I I I

1 0 1
I I

W/B

I I I

src
I I I

dst
i i i

1 1 0 0
I I I

cc
I 1 1

dst
R

src
IR

r
R

OPERATION:

FLAGS: C:
Z:

S:
V:

D:
H:

CYCLES:

dst - src
AUTODECREMENT src {-1 if byte, -2 if word}
r <- r - 1
repeat until cc is true or r = 0

This instruction is used to search a string of data for
an element meeting the specified condition. The con-
tents of the location addressed by the source register
is compared to (subtracted from) the destination operand,
and the Z flag is set if the condition code specified by
"cc" would be set by the comparison; otherwise the Z flag
is cleared. See section 3.2.1 for a list of condition
codes. Both operands are unaffected.

The source register is then decremented by one if CPDRB,
or by two if CPDR, thus moving the pointer to the pre-
vious element in the string. The word register speci-
fied by "r" (used as a counter) is then decremented by
one. The entire operation is repeated until either the
condition is met or the result of decrementing r is
zero. This instruction can search a string from 1 to
65536 bytes or 32768 words long (the value of r must
not be greater than 32768 for CPDR).

Undefined
Set if the condition code generated by the comparison
matches cc; cleared otherwise
Undefined
Set if the result of decrementing r is zero; cleared
otherwise
Unaffected
Unaffected

Word/Byte
ll+9*n (n=number of data elements compared)

3-38

CPDR
Compare, Decrement and Repeat

NOTE:

EXAMPLE:

This instruction can be interrupted after each execution
of the basic operation. The program counter value of
the start of this instruction is saved before the
interrupt request is accepted, so that the instruction
can be properly resumed. Seven more cycles should be
added to this instruction's execution time for each
interrupt request that is accepted.

If the string of words starting at location %2000
contain the values 0,2,4,6 and 8, register R2 contains
%2008, R3 contains 3, and R8 contains 8, the statement

CPDR R3,@R2,R8,GT

will leave the Z flag set indicating the condition was
met. Register R2 will contain the value %200ü, R3 will
still contain 3, and R8 will contain 4.

3-39

CPI
Compare and Increment

CPI
CPIB

ds t , s r c , r , cc dst: R
src: IR

INSTRUCTION FORMAT: (F6.5)

W/B: 1 0 1 1
I I I

0 0 0 0
I I I

1 0 1
I I

W/B

r
i i i

src
i i i

dst
i i i

0 0 0 0
[1 1

cc
1 1 1

dst
R

s re £
IR R

OPERATION:

FLAGS: C:
Z :

S:
V:

D:
H:

CYCLES:

EXAMPLE:

dst - src
AUTOINCREMENT src {+1 if byte, +2 if word}
r <- r - l

This instruction is used to search a string of data for
an element meeting the specified condition. The con-
tents of the location addressed by the source register
is compared to (subtracted from) the destination operand,
and the Z flag is set if the condition code specified by
"cc" would be set by the comparison; otherwise the Z flag
is cleared. See section 3.2.1 for a list of condition
codes. Both operands are unaffected.

The source register is then incremented by one if CPIB,
or by two if CPI, thus moving the pointer to the next
element in the string. The word register specified by
"r" (used as a counter) is then decremented by one.

Undefined
Set if the condition code generated by the comparison
matches cc; cleared otherwise
Undefined
Set if the result of decrementing r is zero; cleared
otherwise
Unaffected
Unaffected

Word/Byte
20

This instruction is used in a "loop" of instructions
which searches a string of data for an element meeting
the specified condition, but an intermediate operation
on each data element is required. The following se-
quence "scans while numeric", that is, a string is
searched until either an ASCII character not in the

3-40

CPI
Compare and Increment

range "0" to "9" (see Appendix) is found, or the end
of the string is reached. This involves a range check
on each character (byte) in the string.

LOOP

DONE:

LD R3,#STRLEN
LD Rl,#STRSTART
LD RLO,#'9f

CPB @R1,#'0'
JR ULT,NONNUMERIC
CPIB RLO,@R1,R3,ULT
JR Z,NONNUMERIC
JR NOV,LOOP

unitialize counterl
ILoad start addressl
ILargest numeric char!

ITest char < '0'!

ITest char > '9'!

IRepeat until counter=0!

NONNUMERIC: IHandle non-numeric char!

3-41

CPIR
Compare, Increment and Repeat

CPIR d s t , s r c , r , c c
CPIRB

INSTRUCTION FORMAT: (F6.5)

W/B: 1 0 1 1
I I I

0 0 0 0i i i

1 0 1
I I

r

VW B src
i i i

dst
i i i

0 1 0 0l l l
cc

1 1 1

dst: R
src: IR

dst src £
RR IR

OPERATION:

FLAGS: C:
Z:

S;
V;

D;
H:

CYCLES:

NOTE:

dst - src
AUTOINCREMENT src {+1 if byte, +2 if word}
r <- r - 1
repeat until cc is true or r = 0

This instruction is used to search a string of data for
an element meeting the specified condition. The con-
tents of the location addressed by the source register
is compared to (subtracted from) the destination operand,
and the Z flag is set if the condition code specified by
"cc" would be set by the comparison; otherwise the Z flag
is cleared. See section 3.2.1 for a list of condition
codes. Both operands are unaffected.

The source register is then incremented by one if CPIRB,
or by two if CPIR, thus moving the pointer to the next
element in the string. The word register specified by
"r" (used as a counter) is then decremented by one.
The entire operation is repeated until either the con-
dition is met or the result of decrementing r is zero.
This instruction can search a string from 1 to 65536
bytes or 32768 words long (the value of r must not be
greater than 32768 for CPIR).

Undefined
Set if the
matches cc;
Undefined
Set if the
otherwise
Unaffected
Unaffected

condition code generated by the comparison
cleared otherwise

result of decrementing r is zero; cleared

Word/Byte
ll+9*n (n=number of data elements compared)

This instruction can be interrupted after each
execution of the basic operation. The program counter
value of the start of this instruction is saved

3-42

CPIR
Compare, Increment and Repeat

before the interrupt request is accepted, so that the
instruction can be properly resumed. Seven more cycles
should be added to this instruction's execution time
for each interrupt request that is accepted.

EXAMPLE: The following sequence of instructions can be used to
search a string for an ASCII return character. The
pointer to the start of the string is set, the string
length is set, the character (byte) to be searched for
is set, and then the search is accomplished. Testing
the Z flag determines whether the character was found.

LD Rl,tSTRSTART
LD R3,#STRLEN
LD RLO,#'%R'
CPIRB RLO,@R1,R3,EQ
JR Z,FOUND

3-43

CPSD
Compare String and Decrement

CPSD dst,src,r,cc
CPSDB

dst: IR
src: IR

INSTRUCTION FORMAT:

W/B:

(F6.5)

1 0 1 1
I I I

0 0 0 0
f 1 1

1 0 1
1 1

W/ B

r
i i i

src
i i i

dst
i i i

1 0 1 0
1 1 1

cc
1 1 1

dst
IR

s r c
IR

£
R

OPERATION:

FLAGS: C:
Z:

S:
V:

D:
H:

CYCLES:

dst - src
AUTODECREMENT dst and src
r <- r - 1

{-1 if byte, -2 if word}

This instruction is used to compare two strings of data
until the specified condition is true. The contents of
the location addressed by the source register is com-
pared to (subtracted from) the contents of the location
addressed by the destination register. The Z flag is
set if the condition code specified by "cc" would be
set by the comparison; otherwise the Z flag is cleared.
See section 3.2.1 for a list of condition codes. Both
operands are unaffected.

The source and destination registers are then decrement-
ed by one if CPSDB, or by two if CPSD, thus moving the
pointers to the previous elements in the strings. The
word register specified by "r" (used as a counter) is
then decremented by one.

Undefined
Set if the
matches cc;
Undefined
Set if the
otherwise
Unaffected
Unaffected

Word/Byte
25

condition code generated
cleared otherwise

by the comparison

result of decrementing r is zero; cleared

EXAMPLE: If register R2 contains %2000, the byte at location
%2000 contains %FF, register R3 contains %3000, the
byte at location %3000 contains %00, and register R4
contains 1, the statement

3-44

CPSD
Compare String and Decrement

CPSDB @R2,@R3,R4,UGE

will leave the Z flag set since the condition code would
have been "unsigned greater than or equal", and the V
flag will be set to indicate that the counter R4
now contains 0. R2 will contain %1FFF, and R3 will
contain %2FFF.

3-45

CPSDR
Compare String, Decrement and Repeat

CPSDR dst,src,r,cc
CPSDRB

INSTRUCTION FORMAT: (F6.5)

W/B: 1 0 1 1
1 1 1

o o o oi i i

1 0 1
I I

W/B

r
i i i

src
i i i

dst
i i i

1 1 1 0
i i i

cc
I I I

FLAGS: C
Z

CYCLES:

dst: IR
src: IR

dst src
IR IR

r
R

OPERATION:

D:
H:

dst - src
AUTODECREMENT dst and src {-l if byte,
r <- r - l
repeat until cc is true or r = 0

-2 if word}

This instruction is used to compare two strings of data
until the specified condition is true. The contents of
the location addressed by the source register is com-
pared to (subtracted from) the contents of the location
addressed by the destination register. The Z flag is
set if the condition code specified by "cc" would be
set by the comparison; otherwise the Z flag is cleared.
See section 3.2.1 for a list of condition codes. Both
operands are unaffected.

The source and destination registers are then decrement-
ed by one if CPSDRB, or by two if CPSDR, thus moving the
pointers to the previous elements in the strings. The
word register specified by "r" (used as a counter) is
then decremented by one. The entire operation is repeat-
ed until either the condition is met or the result of
decrementing r is zero. This instruction can compare
strings from 1 to 65536 bytes or 32768 words long (the
value of r must not be greater than 32768 for CPSDR).

Undefined
Set if the condition code generated by the comparison
matches cc; cleared otherwise
Undefined
Set if the result of decrementing r is zero; cleared
otherwise
Unaffected
Unaffected

Word/Byte
ll+14*n (n=number of data elements compared)

3-46

CPSDR
Compare String, Decrement and Repeat

NOTE: This instruction can be interrupted after each execution
of the basic operation. The program counter of the
start of this instruction is saved before the interrupt
request is accepted, so that the instruction can be
properly resumed. Seven more cycles should be added to
this instruction's execution time for each interrupt
request that is accepted.

EXAMPLE: If the words from location %1000 to %1006 contain the
values 0,2,4, and 6, the words from location %2000 to
%2006 contain the values 0,1,1,0, register R13 con-
tains %1006, register R14 contains %2006, and register
RO contains 4, the statement

CPSDR @R13,@R14,RO,EQ

leaves the Z flag set since the condition code would
have been "equal" (locations %1000 and %2000 both
contain the value 0). R13 will contain %OFFE, R14
will contain %1FFE, and RO will contain 0.

3-47

CPSI
Compare String and Increment

CPSI ds t , s rc , r , cc
CPSIB

INSTRUCTION FORMAT: (F6.5)

W/B: 1 0 1 1
1 1 1

0 0 0 0
1 1 1

1 0 1
I I

W/B

r
[l l

src
i i i

dst
t i i

0 0 1 0
I I I

cc
I I I

dst: IR
src: IR

dst src r
RIR IR

OPERATION:

FLAGS: C:
Z:

S:
V:

D:
H:

CYCLES:

EXAMPLE:

dst - src
AUTOINCREMENT dst and src {+1 if byte, +2 if word}
r <- r - l

This instruction is used to compare two strings of data
until the specified condition is true. The contents of
the location addressed by the source register is com-
pared to (subtracted from) the contents of the location
addressed by the destination register. The Z flag is
set if the condition code specified by "cc" would be
set by the comparison; otherwise the Z flag is cleared.
See section 3.2.1 for a list of condition codes. Both
operands are unaffected.

The source and destination registers are then increment-
ed by one if CPSIB, or by two if CPSI, thus moving the
pointers to the next elements in the strings. The
word register specified by "r" (used as a counter) is
then decremented by one.

condition code generated by the comparison
cleared otherwise

result of decrementing r is zero; cleared

Undefined
Set if the
matches cc;
Undefined
Set if the
otherwise
Unaffected
Unaffected

Word/Byte
25

This instruction is used in a "loop" of instructions
which compares two strings until the specified con-
dition is true, but where an intermediate operation on
each data element is required. The following sequence
attempts to match a given source string to the destin-
ation string which is known to contain all upper-case
characters. The match should succeed even if the source

3-48

CPSI
Compare String and Increment

string contains some lower-case characters. This in-
volves a forced conversion of the source string to upper-
case (only ASCII alphabetic letters are assumed, see
Appendix) by resetting bit 5 of each character (byte)
before comparison.

LD Rl,#SRCSTART ILoad start addresses!
LD R2,#DSTSTART
LD R3,#STRLEN Unitialize counter 1

LOOP:
RESB @R1,#5 1 Force upper-easel
CPSIB @R1,@R2,R3,NE [Compare until not equal 1
JR Z,NOTEQUAL !Exit loop if match fails!
JR NOV,LOOP IRepeat until counter=0!

DONE: . IMatch succeeds!

NOTEQUAL: IMatch fails!

3-49

CPSIR
Compare String, Increment and Repeat

CPSIR dst,src,r,cc
CPSIRB

INSTRUCTION FORMAT: (F6.5)

W/B:

dst:
src:

IR
IR

1 0 1 1
I I 1

0 0 0 0
1 1 1

1 0 1

I I

W/B src
I I I

dst
i i i

0 1 1 0
I I I

cc
I I I

dst src r
RIR IR

OPERATION:

FLAGS: C:
Z:

S:
V:

D:
H:

CYCLES:

dst - src
AUTOINCREMENT dst and src {+1 if byte, +2 if word}
r <- r - 1
repeat until cc is true or r = 0

This instruction is used to compare two strings of data
until the specified condition is true. The contents of
the location addressed by the source register is com-
pared to (subtracted from) the contents of the location
addressed by the destination register. The Z flag is
set if the condition code specified by "cc" would be
set by the comparison; otherwise the Z flag is cleared.
See section 3.2.1 for a list of condition codes. Both
operands are unaffected.

The source and destination reg
ed by one if CPSIRB, or by two
pointers to the next elements
word register specified by "r"
then decremented by one. The
ed until either the condition
decrementing r is zero. This
strings from 1 to 65536 bytes
value of r must not be greater

isters are then increment-
if CPSIR, thus moving the

in the strings. The
(used as a counter) is

entire operation is repeat-
is met or the result of
instruction can compare
or 32768 words long (the
than 32768 for CPSIR).

Undefined
Set if the
matches cc;
Undefined
Set if the
otherwise
Unaffected
Unaffected

Word/Byte
ll+14*n

condition code generated by the comparison
cleared otherwise

result of decrementing r is zero; cleared

(n=number of data elements compared)

3-50

CPSIR
Compare String, Increment and Repeat

NOTE:

EXAMPLE;

This instruction can be interrupted after each execution
of the basic operation. The program counter of the
start of this instruction is saved before the interrupt
request is accepted, so that the instruction can be
properly resumed. Seven more cycles should be added to
this instruction's execution time for each interrupt
request that is accepted.

The following sequence of instructions can be used to
compare two strings of possibly different lengths,
but at least one character (byte) long. It determines
if the destination string is lexicographically greater
than or equal to the source string as determined by the
ordering of the ASCII character set (see Appendix).
Notice that the string "ABC" is greater than "AB", and
"AC" is greater than "ABC". The destination string is
initially pointed to by Rl, with its length in bytes in
R3. The source string is initially pointed to by R2,
with its length in bytes in R4.

CP
JR
LD
EX

COMPARE:
CPSIRB
JR

SUCCEED:

R3,R4
ULE,COMPARE
R3,R4
R1,R2

@R1,@R2,R3,ULT
Z,FAIL

IFind shortest lengthl

llf source is shorter,!
!then swap pointers!

ICompare while >=!

IDestination >= source!

FAIL: IDestination < source!

3-51

DAB
Decimal Adjust

Decimal Adjust

DAB dst

INSTRUCTION FORMAT: (Fl.l)

B : mode dst
i i i 0 0 0 0

I I I

dst: R

mode d s_t_____ _____

OPERATION: dst <- DA dst

The destination byte is adjusted to form two 4-bit BCD
digits following an addition or subtraction operation.
For addition (ADDB,ADCB) or subtraction (SUBB,SBCB),
the following table indicates the operation
performed:

Instruction

ADDB
ADCB

SUBB
SBCB

Carry
Before
DAB

0
0
0
0
0
0
1
1

0
0
1
1

Bits 4-7
Value
(Hex)

0-9
0-8
0-9
A-F
9-F
A-F
0-2
0-2

0-9
0-8
7-F
6-F

H Flag
Before
DAB

0
0
1
0
0
1
0
0

0
1
0
1

Bits 0-3
Value
(Hex)

0-9
A-F
0-3
0-9
A-F
0-3
0-9
A-F

0-9
6-F
0-9
6-F

Number
Added
To Byte

00
06
06
60
66
66
60
66

00
FA
AO
9A

Carry
After
DAB

0
0
0
1
1
1
1
1

0
0
1
1

FLAGS:

The operation is undefined if the destination byte was
not the result of a valid addition or subtraction of
BCD digits.

C: Set or cleared according to the table above
Z: Set if the result is zero; cleared otherwise
S: Set if the most significant bit of the result is set;

cleared otherwise
V: Unaffected
D: Unaffected
H: Unaffected

CYCLES:

3-52

DAB
Decimal Adjust

EXAMPLE: If addition is performed using the BCD values 15 and
27, the result should be 42. The sum is incorrect,
however, when the binary representations are added
in the destination location using standard binary
arithmetic.

0001 0101
+ 0010 0111
ÖÖ1T TTW = %3C

The DAB instruction adjusts this result so that the
correct BCD representation is obtained.

0011 1100
± 0000 OHO

0100 0010 = 42

3-53

DEC
Decrement

DEC dst,src
DECB

INSTRUCTION FORMAT: (Fl.2)

dst: R, IR, DA, X
src: IM

mode dst src
W/B: mode 1 0 1 0 1 W/B dst src 10

00
01
01

R
IR
DA
X

IM
IM (dst field=0)
IM (dst fieldOO)

OPERATION: dst <- dst - src {src is 1 to 16}

FLAGS: C:
Z:
S:
V:

D:
H:

CYCLES:

The source operand (a value from 1 to 16) is subtract-
ed from the destination operand and the result is
stored in the destination. Subtraction is performed by
adding the two's complement of the source operand to the
destination operand. The source operand may be omitted
from the assembly language statement and thus defaults
to the value 1.

Unaffected
Set if the result is zero; cleared otherwise
Set if the result is negative; cleared otherwise
Set if arithmetic overflow occurs, that is, the
sign of the destination was opposite the sign of the
result; cleared otherwise
Unaffected
Unaffected

dst Wo r d/By t e
NS SS SL

R 4 -- --
IR 11 — --
DA 13 14 16
X 14 14 17

NOTE: field" in the instruction format encoding
ii,

The "src
contains the source operand. The "src field" values
range from 0 to 15 corresponding to the source values
1 to 16.

EXAMPLE: If register RIO contains %002A, the statement

DEC RIO

will leave the value %0029 in RIO.

3-54

DI
Disable Interrupt

DI int

INSTRUCTION FORMAT: (F9.2)

int: VI, NVI

1 0 1 1 1 1 1 0
l l l l l l l

0 0
1

0 0
1

0 0
1 1

0
1

V| NV||

OPERATION: if instruction(0) = ü then NVI <- 0
if instruction(l) = 0 then VI <- 0

Any combination of the Vectored Interrupt (VI) or
Non-Vectored Interrupt (NVI) control bits in the
Flags and Control Word (FCW) are cleared to zero if
the corresponding bit in the instruction is zero,
thus disabling the appropriate type of interrupt.
If the corresponding bit in the instruction is one,
the control bit will not be affected. All other
bits in the FCW are not affected. There may be one
or two operands in the assembly language statement,
in either order.

FLAGS: No flags affected

CYCLES: 7

NOTE: This is a privileged instruction.

EXAMPLE: If both the NVI and VI control bits are
set (=1), the statement

DI VI

will leave the NVI control bit set (= 1) ,
and the VI control bit cleared (= 0) .

3-55

E3-3055-01 07/02/79

piv
Divide

DIV dst,src
DIVL

INSTRUCTION FORMAT: (F2.1)

W:

L,

I mode
i

I mode
i

0 1
I 1 0 1i i i 1

I

0 1 1 0 1
I I I

0
I

src
i i i

src
> i i

dst
i i i

dst
i i i

OPERATION: Word
dst,dstvl <- dst,dstvl
{dst <- remainder
dstyl <- quot ient}

dst: R
src: R, IM, IR, DA, X

mode dst src__ _____

R IM (src field=0)
R IR (src fieldOO)
R DA (src field=0)
R X (src fieldOO)

src

dst ,dstyl ,dst\/2 ,dst\/3 <- dst ,dst\/l ,dstv2 , dstv3 /
src,src\/l

{dst,dst\yl <- remainder
dstv2,dst\/3 <- quotient}

The destination operand (dividend) is divided by the
source operand (divisor), the quotient is stored in the
low-order half of the destination and the remainder is
stored in the high-order half of the destination. The
contents of the source are not affected. Both operands
are treated as signed, two's complement integers and
division is performed so that the remainder is of the
same sign as the dividend. For DIV, the destination is
a register pair and the source is a word value; for
DIVL, the destination is a register quadruple and the
source is a long word value.

FLAGS: C: DIV - set if quotient is less than -21b or not less than
215; cleared otherwise; DIVL - set if quotient is less
than -231 or not less than 231; cleared otherwise

Z: Set if the quotient or divisor is zero; cleared
otherwise

S: Set if the quotient is negative; cleared otherwise
(contains the sign of the divisor if the instruction
is aborted)

V: Set if the divisor is zero or if the quotient would
be too large to fit in the low-order half of the
destination operand (the instruction is aborted if the
absolute value of the high-order half of the dividend
is larger than the absolute value of the divisor);
cleared otherwise

D: Unaffected
H: Unaffected 3_56

DIV
Divide

CYCLES: src

R
IM
IR
DA
X

NS
95
95
95
96
97

(Divisor

R
IM
IR
DA
X

13
13
13
14
15

(Absolute
div
the

R
IM
IR
DA
X

idend

Word
SS

—
97
97

SL

—
99
100

NS
723
723
723
724
725

Long
SS

—
725 7
725 7

SL

—27
28

is zero)

——

—15
15

value

—
—17
18

of
is larger

30
30
30
31
32

--

—32
32

the high-order
than the

--

—34
35

half of the
absolute value of

divisor)

25
25
25
26
27

—--

—27
27

—
—
—28
29

51
51
51
52
53

—--

—53
53

—--

—55
56

NOTE:

EXAMPLE

For proper instruction execution, the "dst field" in
the instruction format encoding must be even for DIV,
and must be a multiple of 4 (0,4,8,12) for DIVL. If
the source operand in DIVL is a register, the "src
field" must be even.

If register RRO (composed of word registers RO and Rl)
contains %00000022 and register R3 contains 6, the
statement

DIV RRO,R3

will leave the value %00040005 in RRO (Rl contains
the quotient 5 and RO contains the remainder 4).

3-57

DJNZ
Decrement and Jump if Not Zero

DJNZ r,dst
DBJNZ

INSTRUCTION FORMAT: (F3.1)

dst: RA

W/B;[1 1 ~ 1 W/B displacement
£
R

dst
RA~

OPERATION: r <- r - l
if r O 0 then PC <- PC - (2*disp)

The register being used as a counter is decremented. If
the contents of the register are not zero after decrement-
ing, the destination address is calculated and then
loaded into the program counter (PC). Control will then
pass to the instruction whose address is pointed to by
the PC. When the register counter reaches zero, control
falls through to the instruction following DJNZ or DBJNZ.
This instruction provides a simple, efficient method of
loop control.

FLAGS: No flags affected

CYCLES: Word/Byte
11

NOTE: The relative addressing mode is calculated by doubling
the displacement in the instruction, then subtracting
this value from the updated value of the PC to derive
the destination address. The updated PC value is taken
to be the address of the instruction byte following the
DJNZ or DBJNZ instruction, while the displacement is a
7-bit positive value in the range 0 to 127. Thus, the
destination address must be in the range -252 to 2 bytes
from the start of the DJNZ or DBJNZ instruction. In the
segmented mode, the PC segment number is not affected.
The assembler automatically calculates the displace-
ment by subtracting the PC value of the following
instruction from the address given by the programmer.
Note that DJNZ or DBJNZ can not be used to transfer
control in the forward direction.

EXAMPLE: DJNZ and DBJNZ are typically used to control a "loop"
of instructions. In this example, 100 bytes are moved
from one buffer area to another, and the sign bit of

3-58

DJNZ
Decrement and Jump if Not Zero

each byte is cleared to zero. Register RHO is used
as the counter.

LDB RHO,#100 Unitialize counter!
LD R1,#SRCBUF ILoad start addresses!
LD R2,#DSTBUF

LOOP:
LDB RLO,@R1 'Load source byte!
RESB RLO,#7 'Mask off sign bit!
LDB @R2,RLO !Store into destination!
INC Rl lAdvance pointers!
INC R2
DBJNZ RHO,LOOP IRepeat until counter=0!

NEXT:

3 59

EI
Enable Interrupt

EI int

INSTRUCTION FORMAT: (F9.2]

int: VI, NVI

0 1 1 1 1 1 0 0 0 0 0 0 0 1 V | N V |

OPERATION: if instruction(0) = 0 then NVI <- l
if instruction(l) = 0 then VI <- l

Any combination of the Vectored Interrupt (VI) or
Non-Vectored Interrupt (NVI) control bits in the
Flags and Control Word (FCW) are set to one if the
corresponding bit in the instruction is zero, thus
enabling the appropriate type of interrupt. If the
corresponding bit in the instruction is one, the
control bit will not be affected. All other bits
in the FCW are not affected. There may be one or
two operands in the assembly language statement, in
either order.

FLAGS: No flags affected

CYCLES: 7

NOTE: This is a privileged instruction.

EXAMPLE: If the NVI control bit is set (=1), and
the VI control bit is clear (=0), the statement

El NVI,VI

will leave both the NVI and VI control
bits set (=1) .

3-60

E3-3055-01 07/02/79

EX
Exchange

EX dst,src dst:
EXB

INSTRUCTION FORMAT: (

W/B : 1 mode 1 0 1 1 o W;B
l i i i i i

src:

F2.1)
mode

src dst 1 0
i i i i i n nu u

01
01

R
R, IR

dst
R
R
R
R

, DA

src
R

IR
DA

X

, x

(src f ie ld=
(s r c f i e ld<

OPERATION:

FLAGS:

CYCLES

EXAMPLE:

tmp <- src {tmp is an internal register}
src <- dst
dst <- tmp

The contents of the source operand are exchanged with
the contents of the destination operand.

No flags affected

src Word/Byte
NS SS SL

R 6 — —
IR 12 — —
DA 15 16 18
X 16 16 19

If register RO contains 8 and register R5 contains 9,
the statement

EX RO,R5

will leave the values 9 in RO, and 8 in R5.

3-61

EXTS
Extend Sign

EXTS
EXTSB
EXTSL

dst dst: R

INSTRUCTION FORMAT: (F l . l)

B:

W:

L:

mode

mode
i

mode

1 1 0 0 0 1

1 1 0 0 0 1

1 1 0 0 0 1
I I 1 I 1

dst

dst
1 1 1

dst

0 0 0 0
i i i

1 0 1 0
I 1 I

0 1 1 ll

mode dst
~1~0~~ ~TT~

OPERATION: Byte
if dst(7)=0 then dst(8:15) <- 000...000

else dst(8:15) <- 111...Ill

Word
if dstvl(15)=0 then dst(16:31) <- 000...000

else dst(16:31) <- 111...Ill

Long
if dstv2,dstv3(31)=0 then dst,dstwl(32:63) <- 000...000

else dst,dstvK32:63) <- 111...Ill

The sign bit of the low-order half of the destination
operand is copied into all bit positions of the high-order
half of the destination. For EXTSB, the destination is a
word register; for EXTS, the destination is a register
pair; for EXTSL, the destination is a register quadruple.
This instruction is useful in multiple precision arith-
metic or for conversion of small signed operands to
larger signed operands.

FLAGS:

CYCLES:

NOTE:

EXAMPLE:

No flags affected

Word/Byte
11

Long

For proper instruction execution, the "dst field" in
the instruction format encoding must be even for EXTS,
and must be a multiple of 4 (0,4,8,12) for EXTSL.

If register pair RR2 (composed of word registers R2
and R3) contains %12345678, the statement

EXTS RR2

will leave the value %00005678 in RR2 (because the sign
bit of R3 was 0).

3-62

HALT
Halt

HALT

INSTRUCTION FORMAT: (F 9 . 3)

0 1 1 1 1 0 1 0
1 1 I I I i I

FLAGS:

CYCLES:

NOTES:

0 0 0 0 0 0 0 0

OPERATION:

The CPU operation is suspended until an interrupt
or reset request is received. This instruction is
used to synchronize the Z8000 with external events,
preserving its state until an interrupt or reset
request is honored. After an interrupt is
serviced, control falls through to the instruction
following the HALT.

No flags affected

8+3*n (Interrupts are recognized at the end of
each 3-cycle period; thus n=number of
periods without interruption)

This is a privileged instruction.

While in the halt state, memory refresh cycles will
still occur, and BUSRQ will be honored.

3-63

IN
Input

IN ds t ,s rc
INB

INSTRUCTION FORMAT: (F7.3)

W/B: o o i i i i o W/B

(F7.1)

W/B: 0 1 1 1 0 1

FLAGS:

CYCLES:

NOTE:

EXAMPLE:

W/B dst

OPERATION: dst <- src

dst

0 1 0 0

dst: R
src: IR, DA

d s t s r c
R IR

dst src
R DA

The contents of the source operand are loaded into the
destination. I/O addresses are always 16 bits.

No flags affected

src
IR
DA

Word/Byte
10
12

This is a privileged instruction.

If register R6 contains the I/O address %0123, and the
"port" %0123 contains %FF, the statement

INB RH2,@R6

will leave the value %FF in register RH2.

3-64

INC
Increment

INC dst,src
INCB

INSTRUCTION FORMAT: (F1.2)

dst: R, IR, DA, X
src: IM

Imode
i

1 0 1 0 0
I I I I

W/B dst
i i i

src
i i i 1

OPERATION

FLAGS:

CYCLES:

NOTE:

EXAMPLE:

mode
10
00
01
01

dst
R
IR
DA
X

src
TM~
IM
IM
IM

(dst field=0)
(dst fieldOO)

dst <- dst + src {src is 1 to 16}

C:
Z:
S:
V:

D:
H:

The source operand (a value from 1 to 16) is added to
the destination operand and the sum is stored in the
destination. Two's complement addition is performed.
The source operand may be omitted from the assembly
language statement and thus defaults to the value 1.

Unaffected
Set if the result is zero; cleared otherwise
Set if the result is negative; cleared otherwise
Set if arithmetic overflow occurs, that is, the
sign of the destination was opposite the sign of the
result; cleared otherwise
Unaffected
Unaffected

dst Word/Byte

R
IR
DA
X

NS
4

11
13
14

SS

—--
14
14

SL

—
—
16
17

The "src field" in the instruction format encoding contains
the source operand. The "src field" values range from 0 to
15 corresponding to the source values 1 to 16.

If register RH2 contains %21, the statement

INCB RH2,#6

will leave the value %27 in RH2.

3-65

IND
Input and Decrement

IND dst,src,r
INDB

INSTRUCTION FORMAT: (F6.4)

W/B: 0 0 1 1
I I I

0 0 0 0

1 0 1
I I

r
l i

W/B src
i i i

dst
i i i

1 0 0 0
I I I

1 0 0 0
I [I

dst: IR
src: IR

dst src
IR IR

r_
R

OPERATION:

FLAGS: C:
Z:
S:
V:

D:
H:

CYCLES:

NOTE:

EXAMPLE:

dst <- src
AUTODECREMENT dst {-1 if byte, -2 if word}
r <- r - 1

This instruction is used for block input of strings of
data. The contents of the I/O location addressed by the
source register are loaded into the memory location
addressed by the destination register. I/O addresses
are always 16 bits. The destination register is then
decremented by one if INDB, or by two if IND, thus
moving the pointer to the previous element in the string.
The word register specified by "r" (used as a counter)
is then decremented by one.

is zero; cleared

Unaffected
Undefined
Unaffected
Set if the result of decrementing r
otherwise
Unaffected
Unaffected

Word/Byte
21

This is a privileged instruction.

In segmented mode, if register RR4 contains %02004000
(segment 2, offset %4000), register R6 contains the I/O
address %0228, the "port" %0228 contains %05B9, and
register RO contains %0016, the statement

IND @RR4,@R6,RO

will leave the value %05B9 in location %02004000, the
value %02003FFE in RR4, and the value %0015 in RO.
Register R6 still contains the value %0228.

3-66

INDR
Input, Decrement and Repeat

INDR d s t , s r c , r
INDRB

INSTRUCTION FORMAT: (F6.4)

W/B: 0 0 1 1
1 1 1

0 0 0 0
1 1 1

1 0 1
I I

W/B

r
i i i

src
i i i

dst
i i i

1 0 0 0
I I I

0 0 0 0
I t I

dst: IR
src: IR

dst src
IR IR

r
R

OPERATION: dst <- src
AUTODECREMENT dst {-1 if byte, -2 if word}
r <- r - 1
repeat until r = 0

This instruction is used for block input of strings of
data. The contents of the I/O location addressed by
the source register are loaded into the memory location
addressed by the destination register. I/O addresses
are always 16 bits. The destination register is then
decremented by one if INDRB, or by two if INDR,
thus moving the pointer to the previous element
in the string. The word register specified by "r"
(used as a counter) is then decremented by one. The
entire operation is repeated until the result of
decrementing r is zero. This instruction can input
from 1 to 65536 bytes or 32768 words (the value for r
must not be greater than 32768 for INDR).

FLAGS: C: unaffected
Z: Undefined
S: Unaffected
V: Set
D: Unaffected
H: Unaffected

CYCLES: Word/Byte
ll+10*n (n=number of data elements transferred)

NOTES: This is a privileged instruction.

This instruction can be interrupted after each execution
of the basic operation. The program counter value of
the start of this instruction is saved before the in-
terrupt request is accepted, so that the instruction can
be properly resumed. Seven more cycles should be added to
this instruction's execution time for each interrupt
request that is accepted.

3-67

INDR
Input, Decrement and Repeat

EXAMPLE: If register Rl contains %202A, register R2 contains the
I/O address %0050, and register R3 contains 8, the
statement

INDRB @R1,@R2,R3

will input 8 bytes from "port" %0050 and leave them in
descending order from %202A to %2023. Register Rl will
contain %2022, and R3 will contain 0. R2 will not be
affected.

3-68

INI
Input and Increment

INI ds t , s rc , r
INIB

INSTRUCTION FORMAT: (F 6 . 4)

dst: IR
src: IR

W/B: 0 0 1 1
I 1 1

0 0 0 0
1 1 1

1 0 1
I I

r
i i

W/B src
I I I

dst
i i i

0 0 0 0
1 1 1

1 0 0 0
I I 1

OPERATION: dst <- src
AUTOINCREMENT dst (+1 if byte, +2 if word}
r <- r - 1

This instruction is used for block input of strings of
data. The contents of the I/O location addressed by
the source register are loaded into the memory location
addressed by the destination register. I/O addresses
are always 16 bits. The destination register is then
incremented by one if INIB, or by two if INI, thus
moving the pointer to the next element in the string.
The word register specified by "r" (used as a counter)
is then decremented by one.

FLAGS: C: Unaffected
Z: Undefined
S: Unaffected
V: Set if the result of decrementing r is zero; cleared

otherwise
D: Unaffected
H: Unaffected

CYCLES: Word/Byte
21

NOTE: This is a privileged instruction.

EXAMPLE: If register R4 contains %4000, register Ro contains the
I/O address %0228, the "port" %0228 contains %B9, and
register RO contains %0016, the statement

INIB @R4,@R6,RO

will leave the value %B9 in location %4000, the value
%4001 in R4, and the value %0015 in RO. Register R6
still contains the value %0228.

3-69

INIR
Input, Increment and Repeat

INIR dst,src,r
INIRB

INSTRUCTION FORMAT: (F6.4)

W/B:

dst: IR
src: IR

dst src
0 0 1 1

I I 1

0 0 0 0
1 1 1

1 0 1
I I

W/B

r
i i i

src
i i i

dst

0 0 0 0
I 1 1

o o o o
1 1 i

IR IR

OPERATION: dst <- src
AUTOINCREMENT dst {+1 if byte, + 2 if word}
r <- r - 1
repeat until r = 0

This instruction is used for block input of strings of
data. The contents of the I/O location addressed by
the source register are loaded into the memory location
addressed by the destination register. I/O addresses
are always 16 bits. The destination register is then
incremented by one if INIRB, or by two if INIR, thus
moving the pointer to the next element in the string.
The word register specified by "r" (used as a counter)
is then decremented by one. The entire operation
is repeated until the result of decrementing r is
zero. This instruction can input from 1 to 65536 bytes
or 32768 words (the value for r must not be greater
than 32768 for INIR).

FLAGS: C: Unaffected
Z: Undefined
S: Unaffected
V: Set
D: Unaffected
H: Unaffected

CYCLES: Word/Byte
ll+10*n (n=number of data elements transferred)

NOTES: This is a privileged instruction.

This instruction can be interrupted after each execution
of the basic operation. The program counter value of
the start of this instruction is saved before the in-
terrupt request is accepted, so that the instruction can
be properly resumed. Seven more cycles should be added
to this instruction's execution time for each interrupt
request that is accepted.

3-70

INIR
Input, Increment and Repeat

EXAMPLE: If register Rl contains %2023, register R2 contains
the I/O address %0050, and register R3 contains 8, the
statement

INIRB @R1,@R2,R3

will input 8 bytes from "port" %0050 and leave them in
ascending order from %2023 to %202A. Register Rl will
contain %202B, and R3 will contain 0. R2 will not be
affected.

3-71

IRET
Interrupt Return

IRET

INSTRUCTION FORMAT: (F9.3]

0 1 1 1 1 0 1 1 0 0 0 0 0 0
I I

0
I

0
1

OPERATION:

FLAGS C
Z
S

P/V
D

CYCLES:

NOTES:

N o n s e g me n t e d
SP <- SP + 2
PS <- @SP
SP <- SP + 4

Segmented
SP <- SP + 2 {Pop "identifier"}
PS <- @SP
SP <- SP + 6

This instruction is used to return to a previously
executing procedure at the end of a procedure entered
by an interrupt or trap (including a System Call
instruction). First, the "identifier" word associated
with the interrupt or trap is popped from the system
processor stack and discarded. Then contents of the
the location addressed by the system processor stack
pointer are popped into the program status (PS), loading
the Flags and Control Word (FCW) and the program
counter (PC). The new value of the FCW is not effective
until the next instruction, so that the status pins will
not be affected by the new control bits until after the
IRET instruction execution is completed. The next in-
struction executed is that addressed by the new contents
of the PC. The system stack pointer (R15 if nonsegmented,
or RR14 if segmented) is used.

Loaded from processor
Loaded from processor
Loaded from processor
Loaded from processor
Loaded from processor

stack
stack
stack
stack

H: Loaded from processor stack

Address
NS SS
13 --

"SL
16

This is a privileged instruction.

The Z8001 version always executes the segmented mode
of the IRET instruction.

3-72

IRET
Interrupt Return

EXAMPLE: In the nonsegmented Z8002 version, if the program
counter contains %2550, the system stack pointer (R15)
contains %3000, and locations %3000, %3002 and %3004
contain %7F03, a saved FCW value, and %1004, respectively,
the statement

IRET

will leave the value %3006 in the system stack pointer
and the program counter will contain %1004, the address
of the next instruction to be executed. The program
status is now determined by the saved FCW value.

3-73

IP
Jump

JP cc,dst

INSTRUCTION FORMAT: (Fl.3)

Imode o 1
i i

1 1 1 0
i i i

dst
i i i

cc

OPERATION:

dst: IR, DA, X

mode dst
00 IR
01 DA (dst field=0)
01 X (dst fieldOO)

if cc is true then PC <- dst

A conditional jump transfers program control to the
destination address if the condition specified by "cc"
is true. See section 3.2.1 for a list of condition codes,
If the condition code is true, the program counter (PC)
is loaded with the designated address; otherwise,
control falls through to the instruction following the
JP instruction.

FLAGS:

CYCLES:

No flags affected

(jump is taken)
dst Address

NS SS SL
IR 10 -- 15
DA 7 8 10
X 8 8 11

(jump not taken)
Add r es s

NS SS SL
7 -- 7
7 8 10
8 8 11

NOTE:

EXAMPLE:

The destination address must be even since instructions
are word data.

If the carry flag is set, the statement

JP C,%1520

replaces the contents of the program counter with
%1520, thus transferring control to that location.

3-74

JR
Jump Relative

JR cc,dst

INSTRUCTION FORMAT: (F3.3)

1 1
I

1 0
I

cc displacement

OPERATION:

FLAGS:

CYCLES:

NOTE:

EXAMPLES

dst: RA

dst
RA

if cc is true then PC <- PC + (2*disp)

A conditional jump transfers program control to the
destination address if the condition specified by
is true. See section 3.2.1 for a list of condition
codes. If the condition code is true, the program
counter (PC) is loaded with the designated address;
otherwise, control falls through to the instruction
following the JR instruction.

No flags affected

"cc"

Address
6
6

(jump is taken)
(jump not taken)

The relative addressing mode is calculated by doubling
the displacement in the instruction, then adding this
value to the updated value of the PC to derive the
destination address. The updated PC value is taken to
be the address of the instruction byte following the JR
instruction, while the displacement is a 8-bit signed
value in the range -128 to +127. Thus, the destination
address must be in the range -254 to +256 bytes from the
start of the JR instruction. In the segmented mode, the
PC segment number is not affected. The assembler auto-
matically calculates the displacement by subtracting the
PC value of the following instruction from the address
given by the programmer.

If the result of the last arithmetic operation executed
is negative, the following four statements (which occupy
a total of twelve bytes) are to be skipped. This can be
accomplished with the statement

JR MI,$+14

If the S flag is not set, execution continues with the
statement following the JR.

3-75

JR
Jump Relative

A byte-saving form of a jump to the label LAB is

JR LAB

where LAB must be within the allowed range. The condition
code is "blank" in this case, and indicates that the
jump is always taken.

3-76

LD
Load

LD ds t , s rc
LDB
LDL

INSTRUCTION FORMAT: (F 2 . 1)

B:

L:

mode
i

1 0 0 0 0

mode
1

0 1
I

B: 1 1 0 0i i i

0 1 0
1 1

W/B src
i i i

dst
i i i

0 src dst

10 R R
00 R IM*
00 R IR
01 R DA
01 R X

(F 3 . 2)

dst
1 1 1

src
i i i i i i i

dst src
R IM*

(F 4 . 4)

W/B:

L:

0 0 1 1 0 0 0 W / B
l i l l i i

src
i i i

d
i

displacement
i i i i i i i i i i i i l

;t
i

i

0 0 1 1 0 1 0 1
l l l l l l l

src
_i i

dst
i i i

displacement

(F 4 . 3)

W/B:

L:

0 1 1 1 0 0 0
1 1 1 I I

0 0 0 0

W/B

X

0 1 1 1 0 1 0 1
I I I I I

0 0 0 0 X
1 1 1

src
1 1 1

dst
1 1 1

0 0 0 0 0 0 0 0

src
1 1 1

dst
1 1 1

0 0 0 0 0 0 0 0

(F 2 . 2)

W/B:

L:

W/B:

mode 1 0 1 1 1 W/ B

mode 0 1 1 1 0 1

dst src

dst src
i i i

(F5.1)

mode 0 0 1 1 0 W/B dst 0 1 0 1
1 1 1

dst: R, IR , DA, X, BA, BX
src: R, IM, IR, DA, X, BA, BX

mode dst src

IM*(s rc f i e ld=0)
IR (s rc f i e l d O O)
DA (src f ie ld=0)

X (s rc f i e ldOO)

*See Note

dst src
R BA (s rc f i e l d O O)

dst src
R BX (s rc f i e l d O O)

mode dst src
00 IR R
01 DA R (dst f i e l d = 0)
01 X R (dst f ie ldOO)

mode dst src
00 IR IM
01 DA IM (ds t f i e l d = 0)
01 X IM (dst f ie ldOO)

3-77

E3-3055-01 07/02/79

LD
Load

(F4.2)

W/B:

L:

0 0 1
l l >

l l l

1 0 0 1 W / B
i i i

dst
i i i

s re
i i i

displacement
i i i i i i i i i i t i

0 0 1
l l l

l l l

1 0 1 1 1
i i i i

dst
i i i

s re
i i i

displacement
i i i t i i i i i i i i

d s t sre
BA R (dst fieldOO)

(F4.1)

W/B:

L:

0 1 1 1
I I 1

0 0 0 0

0 1 1 1
I I I

0 0 0 0

0 0 1
I I

X

0 1 1
I I

X

W/B

1

dst
I 1 1

0 0 0 0

dst
i i i

0 0 0 0

src
i i i

0 0 0 0

src
1 1 1

0 0 0 0

dst src
BX R (dst fieldOO)

OPERATION:

NOTE:

dst <- src

The contents of the source operand are loaded into the
destination. The contents of the source are not affected,

FLAGS: No flags

CYCLES: dst src

R
R
R
R
R
R
R
R
IR
DA
X

IR
DA
X
BA
BX

R
IM
IM
IR
DA
X
BA
BX
R
R
R

IM
IM
IM
R
R

affected

Word/Byte
NS
3
7
5
7
9

10
14
14
8

11
12
11
14
15
14
14

SS SL NS
— . - _ R

-- — 11
(byte only -
--
10
10

—
—
—
12
12
--
15
15

——

—
12
13

—
—
—
14
15
--
17
18

—
—

11
12
13
17
17
11
14
15__

—--
17
17

Long
SS SL

see Note)
--
13
13

—
—
—
15
15
--

—
—
—
—

—
15
16

—--

—17
18
--

—__

—
—

Although both formats F2.l and F3.2 exist for
"LDB R,IM", the assembler always uses the short
format, F3.2. In this case, the "src field"
in the instruction format encoding contains the
source operand.

3-78

LD
Load

EXAMPLES: LD RO,Rl

LD R0,#20

LD R0,20

LD RO,@R1

LDB @R1,RHO

LD R4,8(R1)

LDL RR4,R1(#8)

LD R1(R2),R4

IRegister RO is loaded with the
contents of register Rl!

IRegister RO is loaded with the value
20!

IRegister RO is loaded with the con-
tents of the word at location 20!

!If register Rl contains 20, then
register RO is loaded with the con-
tents of the word at location 20!

!If register Rl contains 20, then the
byte at location 20 is loaded with
the contents of register RHO!

!If register Rl contains 20, then
register R4 is loaded with the con-
tents of the word at location 28
(addressed by the sum of the address 8
and the contents of the index register
Rl) !

!If register Rl contains 20, then
register RR4 is loaded with the con-
te,nts of the long word at location 28
(addressed by the sum of the base
address contained in register Rl and
the displacement 8)!

!If register Rl contains 20 and regis-
ter R2 contains 8, then the word at
location 28 (addressed by the sum of
the base address contained in Rl and
the contents of the index register R2)
is loaded with the contents of register
R4!

3-79

LDA
Load Address

LDA dst,src

INSTRUCTION FORMAT: (F2.1)

mode
1 1 ,

1 1 0 1
i i i

1 0 src
i i i

dst
i i i

IF4.4)

0 0 1 1
1 1 1

0 1 0 0
I I I

src
i i i

dst
i i i

displacement

(F4.3)

0 1 1 1
I I I

0 0 0 0

0 1 0 0
I I I

X
I ' '

src
i i i

dst
i i i

0 0 0 0 0 0 0 0

dst: R
src: DA, X, BA, BX

mode dst src
01 R DA (src field=0)
01 R X (src fieldOO)

dst src
R BA (src fieldOO)

dst src
R BX (src fieldOO)

OPERATION: dst <- ADDRESS src

FLAGS:

CYCLES

The address of the source operand is computed and loaded
into the destination. The contents of the source are
not affected. The address computation follows the rules
for addressing mode arithmetic. The destination is a
word register in nonsegmented mode, and a register pair
in segmented mode (the segmented address loaded into the
destination has an undefined value in all "reserved" bits)

No flags affected

src Address
NS SS SL

DA 12 13 15
X 13 13 16

BA 15 -- --
BX 15 — --

EXAMPLES: LDA R4,STRUCT

LDA RR2,8(R4)

LDA RR2,RR4(#8)

!In nonsegmented mode, register R4 is
loaded with the nonsegmented address
of the location named STRUCT!

!In segmented mode, if index register
R4 contains %0020, then register RR2
is loaded with the segmented address
%00000028 (segment 0, offset %0028) !

!In segmented mode, if base register
RR4 contains %01000020, then reg-
ister RR2 is loaded with the seg-
mented address %01000028 (segment 1,
offset %0028)!

3-80

LDAR
Load Address Relative

LDAR dst,src

INSTRUCTION FORMAT: (F4.4)

dst: R
s r c: RA

0 0 1 1 0 1
1 I I I I

t 1 1 1 1

0 0
1 1

0 0 0 0
1 1 1

dst
i i i

displacement
i i i i i i i i i i

FLAGS:

CYCLES:

NOTE:

EXAMPLE:

dst
R

s rc
RA

OPERATION: dst <- ADDRESS src

The address of the source operand is computed and loaded
into the destination. The contents of the source are
not affected. The destination is a word register in
nonsegmented mode, and a register pair in segmented
mode (the segmented address loaded into the destination
has all "reserved" bits cleared to zero).

No flags affected

Address
15

The relative addressing mode is calculated by adding the
displacement in the instruction to the updated value
of the program counter (PC) to derive the address. The
updated PC value is taken to be the address of the in-
struction byte following the LDAR instruction, while the
displacement is a 16-bit signed value in the range -32768
to +32767. The assembler automatically calculates the
displacement by subtracting the PC value of the following
instruction from the address given by the programmer.

LDAR R2,DATA IRegister R2 is loaded with the
nonsegmented address of the
location named DATA!

3-81

LDCTL
Load Control Register

LDCTL dst,src
LDCTLB

INSTRUCTION FORMAT: (F8.1)

B: 1 0 0 0 1 1 0 0 1 0 0 1

dst: R, CTLR
src: R, CTLR

dst src
CTLR R

: F 8 . 2)

1 0 0 0 1 1 0 0 dst 0 0 0 1

dst
R

src
CTLR

OPERATION: LDCTLB FLAGS,R
FLAGS(2:7) <- src(2:7)

The contents of the source (a byte register) are
loaded into the FLAGS register. The lower two bits
of the FLAGS register and the entire source
register are unaffected.

LDCTLB R,FLAGS
dst(2:7) <- FLAGS(2:7)
dst(0:l) <- 0

The contents of the upper six bits of the FLAGS
register are loaded into the destination (a byte
register). The lower two bits of the destination
register are cleared to zero. The FLAGS register
is unaffected.

7 6 5 4 3 2 1 0

FLAGS: c
i

i

R:

z
i j

i

s

1 J

r 1

P/V

j

r i

D

i
' i

H

i '

l

, (

' l

i i i i i

' \

0 0

FLAGS:
C:
Z :
S:

P/V:
D:

LDCTLB FLAGS,R
Loaded from source
Loaded from source
Loaded from source
Loaded from source
Loaded from source

Shaded areas are reserved

H: Loaded from source

LDCTLB R,FLAGS
No flags affected

3-82

LDCTL
Load Control Register

CYCLES: 7

NOTE: This is the only Load Control Register
instruction which is not privileged, thus it can be
used in Normal or System mode.

EXAMPLE: If the C, S and H flags are set (=1),
all other flags are clear (=0), the
statement

LDCTLB RHO,FLAGS

will leave the value %A4 (10100100) in RHO.

3-83

LDCTL
Load Control Register

INSTRUCTION

W: o i i i
J I i

FORMAT :

1 1 0 1i i i i

W : 0 , 1 , 1 , 1

OPERATION:

1 1 0 1
I I I 1

LDCTL

(F8.1)

src 1 o

(F 8 . 2)

dst o o
i i i i

FCW,R

dst
1 o CTLR

j i

dst
1 o R

src
R

src
CTLR

FCW(2:7) <- src(2:7)
FCW(11:15) <- src(ll:15)

The contents of the source (a word register) are
loaded into the Flags and Control Word (FCW)
register. Bits 0, 1, 8, 9 and 10 of the FCW
register and the entire source register are
unaffected.

LDCTL R,FCW
dst(2:7) <- FCW(2:7)
dst(ll:15) <- FCW(11:15)
dst(0:l) <- 0
dst(8:10) <- 0

The contents of the FCW register are loaded into
the destination (a word register). Bits 0, 1, 8, 9
and 10 of the destination register are cleared to
zero. The FCW register is unaffected.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FCW: NG SIN 0 V| NVI
1 1

R:fi | j i i

c

0 0 0
1 1

z s P/V D H

r

1 1 1 1 1
0 0

1

FLAGS:
C:
Z ;
S:

P/V;
D:

LDCTL FCW,R
Loaded from source
Loaded from source
Loaded from source
Loaded from source
Loaded from source

Shaded areas are reserved

H: Loaded from source

LDCTL R,FCW
No flags affected

3-84

LDCTL
Load Control Register

CYCLES: 7

NOTE: This is a privileged instruction.

EXAMPLE: If register R7 contains %D8FC
(1101100011111100), the statement

LDCTL FCW,R7

will leave the value %D8FC in the FCW register
(Segmentation and System modes are set, interrupts
are enabled, and all the flags are set).

3-85

LDCTL
Load Control Register

INSTRUCTION FORMAT: (F8.1)

W; o i i i i 1 0 1 1 o 1 1

OPERATION:

FLAGS:

CYCLES:

NOTE:

EXAMPLE:

(F 8 . 2)

1 1 0 1i i i dst
i i 0 0 1 1

dst
CTLR

dst
R

src
R

src
CTLR

LDCTL REFRESH,R
REFRESH(1:15) <- src(l:15)

The contents of the source (a word register) are
loaded into the REFRESH register. Bit 0 of the
REFRESH register and the entire source register are
unaffected.

LDCTL R,REFRESH
dst(l:8) <- REFRESH(1:8)
dst(O) <- 0
dst(9:15) <- undefined

The contents of the counter field (bits 1 to 8) of
the REFRESH register are loaded into the
destination (a word register). Bit 0 of the
destination register is cleared to zero, and the
upper seven bits are undefined. The REFRESH
register is unaffected.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

REFRESH: RATE

1 I, ; >

1 I J _ l J

COUNTER
i i

i i i i t i

.... ,.- , Shaded areas are reserved
No flags affected

7

This is a privileged instruction.

If register RO contains the value %8600
(1000011000000000), the statement

LDCTL REFRESH,RO

will leave the value %8600 in the REFRESH register
(refresh is enabled, the rate is 3, and the counter
starts at zero).

3-86

LDCTL
Load Control Register

INSTRUCTION

W: o i i i

FORMAT :

1 1 0 1i i i i

(F8.1)

src 1 1
i i i i

dst
o o CTLR

src
R

(F 8 . 2)

W: o 1 1 1 1 1 0 1i i i i i i dst 1 0 0

dst
R

src
CTLR

OPERATION:

FLAGS:

CYCLES;

NOTES:

LDCTL PSAPSEGfR
PSAPSEG(8:14) <- src(8:14)

The contents of the source (a word register) are
loaded into the Program Status Area Pointer Segment
(PSAPSEG) register. Bits 0, 1, 2,..., 1, and 15 of
the PSAPSEG register and the entire source register
are unaffected.

LDCTL R,PSAPSEG
dst(8:14) <- PSAPSEG(8:14)
dst(0:7) <- 0
dst(15) <- 0

The contents of the PSAPSEG register are loaded
into the destination (a word register). Bits 0, 1,
2,...,7, and 15 of the destination register are
cleared to zero. The PSAPSEG register is
unaffected.

15 14 13 12 11 10 9 8 7 6 5 4

PSAPSEG: R[

r
| o |

SEGMENT NUMBER

0 0 0

Shaded areas are reserved
No flags affected

7

This is a privileged instruction.

The PSAPSEG register may not be used in the
nonsegmented Z8002 version. In the segmented Z8001
version, care must be exercised when changing the
two PSAP register values so that an interrupt
occurring between the changing of PSAPSEG and
PSAPOFF is handled correctly.

3-87

LDCTL
Load Control Register

EXAMPLE: If register R12 contains %0200, the statement

LDCTL PSAPSEG,R12

will leave the value %0200 (segment 2) in
the PSAPSEG register.

3-6

LDCTL
Load Control Register

INSTRUCTION FORMAT: (F8.1)

W: 0 1 1 1 1 1 0 1i i i
src

i i i
1 1 0 1l l 1 l

OPERATION:

FLAGS:

CYCLES:

NOTES:

(F8.2)

dst

dst
CTLR

dst
R

src
R

src
CTLR

LDCTL PSAPOFF,R
PSAPOFF(8:15) <- src(8:15)

The contents of the source (a word register) are
loaded into the Program Status Area Pointer Offset
(PSAPOFF) register. Bits 0, 1, 2,...,7 of the
PSAPOFF register and the entire source register are
unaffected.

LDCTL R,PSAPOFF
dst(8:15) <- PSAPOFF(8:15)
dst(0:7) <- 0

The contents of the PSAPOFF register are loaded
into the destination (a word register). Bits 0, 1,
2,...,7 of the destination register are cleared to
zero. The PSAPOFF register is unaffected.

1 5 1 4 1 3 1 2 1 1 1 0 9 8 7 6 5 4 3 2 1 0

UPPER OFFSET
i i i i i i i

j L 1 1k , 1 , l l ;
i l t i t i i

i i i i i i i
0 0 0 0 0 0 0 0R:

No flags affected

7

Shaded areas are reserved

This is a privileged instruction.

In the nonsegmented Z8002 version, the mnemonic
"PSAP" should be used in the assembly language
statement, and indicates the same control register
as the mnemonic "PSAPOFF".

In the segmented Z8001 version, care must be
exercised when changing the two PSAP register
values so that an interrupt occurring between the
changing of PSAPSEG and PSAPOFF is handled
correctly.

3-89

LDCTL
Load Control Register

EXAMPLE: If the PSAPOFF register contains %0100,
the statement

LDCTL Rl3,PSAPOFF

will leave the value %0100 in register R13,

3-90

LDCTL
Load Control Register

INSTRUCTION FORMAT: (F8.1)

o i i i i i o i 1 1 1 0

(F 8 . 2)

T/J • 0 1 1 1 1 1 0 1
I I I I I I I

dst
1 1

0 1

dsjt s re
CTLR R

dst src
R CTLR

OPERATION: LDCTL NSPSEG,R
NSPSEG <- src

FLAGS:

CYCLES:

NOTES:

EXAMPLE:

The contents of the source (a word register) are
loaded into the Normal Stack Pointer Segment
(NSPSEG) register. In segmented mode, the NSPSEG
register is R14 in Normal mode, and contains the
segment number of the normal processor stack
pointer. (In nonsegmented mode, R14 is not used as
part of the normal processor stack pointer.)

LDCTL R,NSPSEG
dst <- NSPSEG

The contents of the NSPSEG register are loaded into
the destination (a word register). The NSPSEG
register is unaffected.

15 14 13 12 11 10 9 6 5 4 3 1 0

! I (1 1

I

1

1
,

1 ! ! ! 1 !

[

1 (

1

,

NSPSEG:

R:

No flags affected

7

This is a privileged instruction.

The NSPSEG register may not be used in the
nonsegmented Z8002 version.

If register R12 contains %7FOO, the statement

LDCTL NSPSEG,R12

will leave the value %7FOO (segment %7F)
in the NSPSEG register.

3-91

LDCTL
Load Control Register

INSTRUCTION FORMAT: (F8.1)

W: I 0 1 1 1 1 1 0 1 s rc 1 1 1 1
l l l l l l l l l l l l l l

(F8.2)

W: o i i i i i o i d s t 0 1 1 1

dst src
CTLR R

dst src
R CTLR

OPERATION: LDCTL NSPOFF,R
NSPOFF <- src

FLAGS:

CYCLES:

NOTES:

EXAMPLE:

The contents of the source (a word register) are
loaded into the Normal Stack Pointer Offset
(NSPOFF) register. In segmented mode, the NSPOFF
register is R15 in Normal mode, and contains the
offset part of the normal processor stack pointer.
In nonsegmented mode, R15 is the entire normal
processor stack pointer. The source register is
unaffected.

LDCTL R,NSPOFF
dst <- NSPOFF

The contents of the NSPOFF register are loaded into
the destination (a word register). The NSPOFF
register is unaffected.

15 14 13 12 11 10 9 6 5 4 3 2 1 0

J i ,

,

i i

l

, i

(

j

i

i J

,

l

,

i i

,

I 1

(

t

, ,

k l

,

1 1l l

NSPOFF:

R:

No flags affected

7

This is a privileged instruction.

In the nonsegmented Z8002 version, the mnemonic
"NSP" should be used in the assembly language
statement, and indicates the same control register
as the mnemonic "NSPOFF".

If the NSPOFF register contains %F002,
the statement

LDCTL R13, NSPOFF

will leave the value %F002 in register R13.

3-92

LDD
Load and Decrement

LDD dst,src,r
LDDB

INSTRUCTION FORMAT: (F6.4)

W/B: 1 0 1 1
I I I

0 0 0 0
I 1 1

1 0 1
I I

r

W/ B src
i i i

dst
i i i

1 0 0 1
l l l

1 0 0 0
1 1 1

dst: IR
src: IR

dst src r_
RIR IR

OPERATION: dst <- src
AUTODECREMENT dst and src {-1 if byte, -2 if word}
r <- r - 1

This instruction is used for block transfers of strings
of data. The contents of the location addressed by the
source register are loaded into the location addressed
by the destination register. The source and destination
registers are then decremented by one if LDDB, or by two
if LDD, thus moving the pointers to the previous elements
in the strings. The word register specified by "r" (used
as a counter) is then decremented by one.

FLAGS: C:
Z:
S;
V:

D:

Unaffected
Undefined
Unaffected
Set if the result of decrementing r
otherwise
Unaffected

is zero; cleared

H: Unaffected

CYCLES: Word/Byte
20

EXAMPLE: If register Rl contains %202A, register R2 contains
%404A, the word at location %404A contains %FFFF, and
register R3 contains 5, the statement

LDD @R1,@R2,R3

will leave the value %FFFF in location %202A, the value
%2028 in Rl, the value %4048 in R2, and the value 4 in
R3.

3-93

LDDR
Load, Decrement and Repeat

LDDR dst,src,r
LDDRB

INSTRUCTION FORMAT: (F6.4)

W/B:

dst: IR
src: IR

1 0 1 1
I I I

0 0 0 0
I 1 1

1 0 1
I I

W/B

r

src
i i i

dst

1 0 0 1
I I I

0 0 0 0
I I I

dst
IR

src
IR

r
R

OPERATION: dst <- src
AUTODECREMENT dst and src {-1 if byte, -2 if word}
r <- r - 1
repeat until r = 0

This instruction is used for block transfers of strings
of data. The contents of the location addressed by the
source register are loaded into the location addressed
by the destination register. The source and destination
registers are then decremented by one if LDDRB, or by two
if LDDR, thus moving the pointers to the previous elements
in the strings. The word register specified by "r" (used
as a counter) is then decremented by one. The entire
operation is repeated until the result of decrementing
r is zero. This instruction can transfer from 1 to
65536 bytes or 32768 words (the value for r must not
be greater than 32768 for LDDR).

The effect of decrementing the pointers during the
transfer is important if the source and destination
strings overlap with the source string starting at a
lower memory address. Placing the pointers at the
highest address of the strings, and decrementing the
pointers, ensures that the source string will be copied
without destroying the overlapping area.

FLAGS: C: Unaffected
Z: Undefined
S: Unaffected
V: Set
D: Unaffected
H: Unaffected

CYCLES: Word/Byte
ll+9*n (n=number of data elements transferred)

3-94

LDDR
Load, Decrement and Repeat

NOTE: This instruction can be interrupted after each execution
of the basic operation. The program counter value of the
start of this instruction is saved before the interrupt
request is accepted, so that the instruction can be
properly resumed. Seven more cycles should be added to
this instruction's execution time for each interrupt
request that is accepted.

EXAMPLE: If register Rl contains %202A, register R2 contains
%404A, the words at locations %4040 through %404A all
contain %FFFF, and register R3 contains 5, the statement

LDDR @R1,@R2,R3

will leave the value %FFFF in the words at locations
%2020 through %202A, the value %201E in Rl, the value
%403E in R2, and 0 in R3.

3-95

LDI
Load and Increment

LDI dst,src,r
LDIB

dst: IR
src: IR

INSTRUCTION FORMAT:

W/B:

(F6.4)
dst src r

1 0 1 1
I I I

0 0 0 0
I I I

1 0 1
I I

W/B

r
l l l

src
i i i

dst
i i i

0 0 0 1
I I I

1 0 0 0
I I I

IR IR R

OPERATION:

FLAGS: C:
Z:
S:
V:

D:
H:

CYCLES:

EXAMPLE:

dst <- src
AUTOINCREMENT dst and src {+1 if byte, +2 if word}
r <- r - 1

This instruction is used for block transfers of strings
of data. The contents of the location addressed by the
source register are loaded into the location addressed
by the destination register. The source and destination
registers are then incremented by one if LDIB, or by two
if LDI, thus moving the pointers to the next elements
in the strings. The word register specified by "r" (used
as a counter) is then decremented by one.

Unaffected
Undefined
Unaffected
Set if the result of decrementing r is zero; cleared
otherwise
Unaffected
Unaffected

Word/Byte
20

This instruction is used in a "loop" of instructions
which transfers a string of data from one location to
another, but an intermediate operation on each data
element is required. The following sequence transfers a
string of 80 bytes, but tests for a special value (%OD,
an ASCII return character) which terminates the loop if
found:

LOOP:

DONE:

LD R3,#80
LD R1,#DSTBUF
LD R2,#SRCBUF

CPB @R2,#%OD
JR EQ,DONE
LDIB @R1,@R2,R3
JR NOV,LOOP

3-96

[Initialize counter!
ILoad start addresses!

ICheck for return character!
!Exit loop if found!
!Transfer next byte!
IRepeat until counter=0!

LDIR
Load, Increment and Repeat

LDIR ds t , s rc , r
LDIRB

INSTRUCTION FORMAT:

W/B:

(F6.4)

dst: IR
src: IR

dst src
1 0 1 1

I I I

0 0 0 0
I 1 1

1 0 1
I I

W/B

r
l l l

src
i i i

dst
i i i

0 0 0 1
I I I

0 0 0 0
1 1 1

IR IR
r
R

OPERATION:

FLAGS:

CYCLES:

dst <- src
AUTOINCREMENT dst and src {+1 if byte, +2 if word}
r <- r - 1
repeat until r = 0

This instruction is used for block transfers of strings
of data. The contents of the location addressed by the
source register are loaded into the location addressed
by the destination register. The source and destination
registers are then incremented by one if LDIRB, or by two
if LDIR, thus moving the pointers to the next elements
in the strings. The word register specified by "r" (used
as a counter) is then decremented by one. The entire
operation is repeated until the result of decrementing
r is zero. This instruction can transfer from 1 to
65536 bytes or 32768 words (the value for r must not
be greater than 32768 for LDIR).

The effect of incrementing the pointers during the
transfer is important if the source and destination
strings overlap with the source string starting at a
higher memory address. Placing the pointers at the
lowest address of the strings, and incrementing the
pointers, ensures that the source string will be copied
without destroying the overlapping area.

C: Unaffected
Z: Undefined
S: Unaffected
V: Set
D: Unaffected
H: Unaffected

Word/Byte
ll+9*n (n=number of data elements transferred)

3-97

LDIR
Load, Increment and Repeat

NOTE: This instruction can be interrupted after each execution
of the basic operation. The program counter value of the
start of this instruction is saved before the interrupt
request is accepted, so that the instruction can be
properly resumed. Seven more cycles should be added to
this instruction's execution time for each interrupt
request that is accepted.

EXAMPLE: The following sequence of instructions can be used to
copy a buffer of 512 words (1024 bytes) from one area to
another. The pointers to the start of the source and
destination buffers are set, the number of words to
transfer is set, and then the transfer is accomplished.

LD R1,#DSTBUF
LD R2,#SRCBUF
LD R3,#512
LDIR @R1,@R2,R3

3-98

LDK
Load Constant

LDK dst,src

INSTRUCTION FORMAT: (Fl.2)

W: mode 1 1 1 1 0 1

OPERATION:

FLAGS:

CYCLES:

dst

dst: R
src: IM

mode dst src
10 R

dst <- src {src is 0 to 15}

IM

The source operand (a constant value) is loaded into
the destination. The source is a value from 0 to
15 which is loaded into the low-order four bits of
the destination with the high-order twelve bits
cleared to zeros.

No flags affected

Word

NOTE:

EXAMPLE;

The "src field" in the instruction format encoding
contains the source operand. The "src field" values
range from 0 to 15 corresponding to the source values
0 to 15.

LDK R3,#9 IRegister R3 is loaded with the
value 9!

3-99

LDM
Load Multiple

LDM dst,src,num

INSTRUCTION FORMAT: (F6.1)

W: mode
i

0 0
1

0 1
I

0 0
I

1 1 0 0
I I I

dst
! I I

src
I I I

0 0 0 0

0 0 0 1
I I I

num

W: mode
i

0 1
I

0 0 0 0
I I I

1 1 0 0
I I I

src
I I I

dst
i i i

0 0 0 0
I I I

1 0 0 1
I I I

num
i i i

dst: R, IR, DA, X
src: R, IR, DA, X
num: IM

mode
00
01
01

mode
00
01
01

dst
R
R
R

dst
IR
DA
X

src
IR
DA
X

src
R
R
R

(src
(src

(dst
(dst

field=0)
fieldOO)

f ield=0)
f ieldOO)

Registers from Memory
Rdst,Rdst+num-l <- src

The contents of num source words are loaded into the
destination register and the following (num-1) registers,
The contents of the source(s) are not affected. The
value of num can vary from 1 to 16, and the registers
are loaded in increasing order, with RO following R15.

FLAGS:

CYCLES;

NOTES:

Me mo r y from Reg is t e r s
dst <- Rsrc,Rsrc+num-l

The contents of num word registers including the source
register and the following (num-1) registers are loaded
into the destination words. The contents of the source(s)
are not affected. The value of num can vary from 1 to 16,
and the registers are loaded in increasing order, with RO
following R15.

No flags affected

dst src Word

R
R
R

IR
DA
X

IR
DA
X
R
R
R

NS
ll+3*n
14+3*n
15+3*n
ll+3*n
14+3*n
15+3*n

SS

—
15+3*n
15+3*n

—15+3*n
15+3*n

SL

—17+3*n
18+3*n

—17+3*n
18+3*n

(n=number of registers)

The "num field" in the instruction format encoding contains
the "num operand. The "num field" values range from 0 to 15
corresponding to the num values 1 to 16.

3-100

LDM
Load Multiple

The starting address of the block of memory where the reg-
isters are loaded from or to is computed once at the start
of execution, and incremented by two for each register
loaded. If the original address computation involved a
register, the register's value will not be affected by
the address incrementation during execution.

EXAMPLE: If register R5 contains 5, R6 contains %0100, and R7
contains 7, the statement

LDM @R6,R5,#3

will leave the values 5, %0100, and 7 at word locations
%0100, %0102, and %0104, respectively, and none of the
registers will be affected.

3-101

LDPS
Load Program Status

LDPS src

INSTRUCTION FORMAT: (F2.3)

Imode
'

1 1 1 0
i i i

0 1
I 1

src
i i i

0 0 0 0

OPERATION:

src: IR, DA, X

mode src
00 IR~
01 DA (src field=0)
01 X (src fieldOO)

PS <- src

The contents of the source operand are loaded into
the Program Status (PS), loading the Flags and
Control Word (FCW) and the program counter (PC).
The new value of the FCW does not become effective
until the next instruction, so that the status pins
will not be affected by the new control bits until
after the LDPS instruction execution is completed.
The next instruction executed is that addressed by
the new contents of the PC. The contents of the
source are not affected.

This instruction is used to set the Program Status
of a program, and is particularly useful for
setting the System/Normal mode of a program to
Normal mode, or for running a nonsegmented program
in the segmented Z8001 version. The PC segment
number is not affected by the LDPS instruction in
nonsegmented mode.

The format of the source operand (Program Status
block) depends on the current Segmentation mode
(not on the version of the Z8000), and is
illustrated in the following figure:

NONSEGMENTED

FCW

PC

LOW ADDRESS SEGMENTED

HIGH ADDRESS

(shaded area is reserved--must be zero)

3-102

LDPS
Load Program Status

FLAGS: C: Loaded from source
Z: Loaded from source
S: Loaded from source

P/V: Loaded from source
D: Loaded from source
H: Loaded from source

CYCLES: src

IR
DA
X

Add re s s
NS SS SL
12 -- 16
16 20 22
17 20 23

NOTE:

EXAMPLE:

This is a privileged instruction.

In the nonsegmented Z8002 version, if the
program counter contains %2550, register R3
contains %5000, location %5000 contains %1800, and
location %5002 contains %AOOO, the statement

LDPS @R3

will leave the value %AOOO in the program counter,
and the FCW value will be %1800 (indicating Normal
mode, interrupts enabled, and all flags cleared).

3-103

LDR
Load Relative

LDR dst,src
LDRB
LDRL

INSTRUCTION FORMAT: (F4.4)

W/B:

L:

0 0 1
I I

1 1

1 0 0 0 W / B
1 l l l

0 0 0 0
1 1 1

dst
1 1 1

displacement
i i i i i i i i i i i i i

0 0 1
I 1

1 1

1 0 1 0 1
I I I I I

0 0 0 0
1 1 1

dst
1 1 1

displacement
i i i i i i i i i i i i i

d s t: R, RA
src: R, RA

djst. src
R RA

(F4.2)

W/B:

L:

0 0 1 1 0 0 1 W / B
i i i i i

o o o o
1 1 1

src
i i i

displacement

0 0 1 1 0 1 1 1
1 I I I I I

0 0 0 0 src

displacement

dst src
RA R

OPERATION:

FLAGS:

NOTES:

EXAMPLE:

dst <- src

The contents of the source operand are loaded into the
destination. The contents of the source are not affected,

No flags affected

CYCLES: Word/Byte
14

Long

The relative addressing mode is calculated by adding the
displacement in the instruction to the updated value of
the program counter (PC) to derive the operand's address,
The updated PC value is taken to be the address of the
instruction byte following the LDR, LDRB, or LDRL
instruction, while the displacement is a 16-bit signed
value in the range -32768 to +32767. The assembler auto-
matically calculates the displacement by subtracting the
PC value of the following instruction from the address
given by the programmer.

Status pin information during the access to memory
for the data operand will be IFn instead of MREQ
because the address is relative to PC.

LDR R2,DATA IRegister R2 is loaded with the
value in the location named DATA!

3-104

MBIT
Multi-Micro Bit Test

MBIT

INSTRUCTION FORMAT: (F9.3)

OPERATION:

FLAGS: C:
Z:
S:
V:
D:

CYCLES:

NOTE:

EXAMPLE:

0 1 1 1 1 0 1 1 0 0 0 0 1 0 1 0
I I I I I I I

$ <- NOT Ul

This instruction is used to synchronize multiple
processors' exclusive access to shared hardware
resources. The multi-micro input pin (ul) is
tested, and the S flag is cleared if the pin is one
(active state = low voltage); otherwise, the S flag
is set, indicating that the pin is zero (inactive
state = high voltage).

After the MBIT instruction is executed, the S flag
can be used to determine whether a requested
resource is available or not. If the S flag is
clear, then the resource is not available; if the S
flag is set, then the resource is available for use
by this CPU.

Unaffected
Undefined
Set if ul is zero; cleared otherwise
Unaffected
Unaffected

H: Unaffected

This is a privileged instruction.

The following sequence of instructions can
be used to wait for the availability of a
resource.

LOOP:
MBIT
JR PL, LOOP

AVAILABLE:

ITest multi-micro input!
IRepeat until resource is available!

3-105

MREQ
Multi-Micro Request

MREQ dst

INSTRUCTION FORMAT: (F8.2)

W: 0 1 1 1 1 0 1 1
i i i

dst
i i i

1 1 0 1

OPERATION: Z <-
if p

dst: R

dst
R

= 1 then S_<- 0
pO <- 0

else pO <- 1
repeat dst <- dst - 1
pntjil dst = 0
if pi = 1 then S <- 1

else §_<- 0
pO <- 0

Z <- 1

This instruction is used to synchronize multiple
processors' exclusive access to shared hardware
resources. A request for a resource is signalled
through the multi-micro input and output pins (pi
and pO) , with the S and Z flags indicating the
availability of the resource after the MREQ
instruction has been executed.

First, the Z flag_is cleared. Then the pT pin is
tested. If the pi pin is one (active state = low
voltage) , the S flag is cleared and the pO pin is
cleared to zero (inactive state = high voltage),
thus indicating that the resource is not available.
Instruction execution is finished in this case.

If the pi pin is zero, indicating that the resource
may be available, a sequence of machine operations
occurs. First, the pO pin is set to one (active
state = low voltage), signalling a request by the
CPU for the resource. Next, a finite delay to
allow for propagation of the signal to other
processors is accomplished by repeatedly
decrementing the contents of the destination (a
word register) until its value is zero. Then the
pi pin is tested to determine whether the request
for the resource was acknowledged. If the pT pin
is one (active state = low voltage) , the S flag is
set to one indicating that the resource is
available and access is granted. If the pi pin is
zero (inactive state = high voltage), the S flag is

3-106

MREQ
Multi-Micro Request

cleared to zero, and the uO pin is cleared to zero
(inactive state = high voltage), indicating that
the request was not granted. Finally, in either
case, the Z flag is set to one, indicating that the
original test of the ul pin caused a request to be
made.

S flag Z flag yio Indicates

0 0 0 Request n o t signalled
(resource not available)

0 1 0 Request n o t granted
(resource not available)

1 1 1 Request granted
(resource available)

Unaffected
Set if request was signalled; cleared otherwise
Set if request was signalled and granted;
cleared otherwise
Unaffected
Unaffected

FLAGS: C
Z
S:

V:
D
H: Unaffected

CYCLES: 12 (request not signalled)
12+7*n (request signalled, n=number

of times destination is decremented)

NOTE: This is a privileged instruction.

EXAMPLE : TRY :
LD R0,#50
MREQ RO

lAllow for propagation delay!
IMulti-micro request with
delay in register RO!

JR MI,AVAILABLE
JR Z,NOT GRANTED

NOT AVAILABLE: IResource not available!

NOT GRANTED: !Request not granted!

JR
AVAILABLE:

TRY !Try again after awhile!
!Use resource!

MRES IRelease resource!

3-107

MRES
Multi-Micro Reset

MRES

INSTRUCTION FORMAT: (F9.3)

0 1 1 1 1 0 1 1 0 0 0 0 1 0 0 1
I I I I I I I I I I I I I I

OPERATION: pO <- 0

This instruction is used to synchronize multiple
processors' exclusive access to shared hardware
resources. The multi-micro output pin (uO) is
cleared to zero (inactive state = high voltage).

Resetting jöö to zero is used to indicate that a
resource controlled by the CPU is available for use
by other processors.

FLAGS: No flags affected

CYCLES: 5

NOTE: This is a privileged instruction.

EXAMPLE: MRES ISignal that resource controlled
by this CPU is available to
other processors!

3-108

MSET
Multi-Micro Set

MSET

INSTRUCTION FORMAT: (F9.3)

0 1 1 1 1 0 1 1 0 0 0 0 1 0 0 0
I I I I I I I i 1 1 I 1 I I

OPERATION:

FLAGS:

CYCLES:

NOTE:

EXAMPLE:

uO <- 1

This instruction is used to synchronize
multiple processors' exclusive access to shared
hardware resources. The multi-micro output pin
(pO) is set to one (active state = low voltage).

Setting uCf to one is used either to indicate that a
resource controlled by the CPU is not available to
other processors, or to signal a request for a
resource controlled by some other processor.

No flags affected

5

This is a privileged instruction.

MSET ISignal that controlled resource
is not available to other processors!

3-109

MULT
Multiply

MULT dst,src
MULTL

INSTRUCTION FORMAT: (F2.1)

dst: R
src: R, IM, IR, DA, X

W:

L:

mode
i

0 1 1 0 0 1

mode 0 1 1 0 0 0
t I I I 1

src
1 1 1

src
i i i

dst

dst
1 1 1

OPERATION:

FLAGS:

Z:
S:
V:
D:

d s t
~R~
R
R
R
R

src

IM (src field=0)
IR (src fieldOO)
DA (src field=0)
X (src fieldOO)

Word
srcdst,dstvl <-

Long
dst ,dst\/l i dst\/2 ,dst\/3 <- dst\/2,dst\/3 * src,srcyl

The low-order half of the destination operand (multi-
plicand) is multiplied by the source operand (multiplier)
and the product is stored in the destination. The con-
tents of the source are not affected. Both operands are
treated as signed, two's complement integers. For MULT,
the destination is a register pair and the source is a
word value; for MULTL, the destination is a register
quadruple and the source is a long word value.

MULT - set if product is less than -2'5 or greater than
or equal to 215 ; cleared otherwise; MULTL - set if pro-
duct is less than 231 or greater than or equal to 231 ;
cleared otherwise
Set if the result is zero; cleared otherwise
Set if the result is negative; cleared otherwise
Cleared
Unaffected

H: Unaffected

3-110

MULT
Multiply

CYCLES: src

R
IM
IR
DA

X

Word
NS SS SL
70 ~ —
70
70
71 72 74
72 72 75

NS
282+7*n
282+7*n
282+7*n
283+7*n
284+7*n

Long
SS

—--

—284+7*n
284+7*n

SL

—•-T"

286+7*n
287+7*n

(Multiplier is zero)

R
IM
IR
DA
X

18
18
18
19 20 22
20 20 22

(n=number of bits equal to
one in the absolute value of
the low-order 16 bits of
the destination operand)

30
30
30
31 32 34
32 32 35

NOTE:

EXAMPLE:

For proper instruction execution, the "dst field" in
the instruction format encoding must be even for MULT,
and must be a multiple of 4 (0, 4, 8, 12) for MULTL.
If the source operand in MULTL is a register, the "src
field" must be even.

If register RQO (composed of register pairs RRO and
RR2) contains %2222222200000031 (RR2 contains decimal
49), the statement

MULTL RQO,I10

will leave the value %00000000000001EA (decimal 490)
in RQO.

3-111

NEC
Negate

NEC dst
NEGB

INSTRUCTION FORMAT: (Fl.l)

W/B : | mode 0 0 1 1 0 W/B dst 0 0 1 0
I I I

dst: R, IR, DA, X

dst
R
IR
DA (dst field=0)
X (dst fieldOO)

OPERATION: dst <- - dst

The contents of the destination is negated, that is,
replaced by its two's complement value. Note that
%8000 for NEC and %80 for NEGB are replaced by them-
selves since in two's complement representation the
most negative number has no positive counterpart.

FLAGS: C: Cleared if the result is zero; set otherwise, which
indicates a "borrow"

Z: Set if the result is zero; cleared otherwise
S: Set if the result is negative; cleared otherwise
V: Set if the result is %8000 for NEG, or %80 for NEGB;

cleared otherwise
D: Unaffected
H: Unaffected

CYCLES: dst Word/Byte
NS SS SL

R 7 — —
IR 12 — --
DA 15 16 18
X 16 16 19

EXAMPLE: If register R8 contains %051F, the statement

NEG R8

will leave the value %FAE1 in R8.

3-112

NOP
No Operation

NOP

INSTRUCTION FORMAT: (F9.3)

1 0 0 0 1 1 0 1 0 0 0 0 0 1 1 1
I I 1 I I 1 I

OPERATION:

No operation is performed,
used for timing delays.

FLAGS: No flags affected

CYCLES: 7

This instruction may be

3-113

OR
Or

OR dst,src
ORB

INSTRUCTION FORMAT: (F2.i;

mode 0 0 0 1 0 W/B src dst
i i i I

dst: R
src: R, IM, IR, DA, X

mode dst src
10
00
00
01
01

R
R
R
R
R

IM (src field=0)
IR (src fieldOO)
DA (src field=0)
X (src fieldOO)

OPERATION: dst <- dst OR src

FLAGS: C
Z :
S:

D:
H:

The source operand is logically ORed with the destination
operand and the result is stored in the destination. The
contents of the source are not affected. The OR operation
results in a one bit being stored whenever either of the
corresponding bits in the two operands is one; otherwise,
a zero bit is stored.

Unaffected
Set if the result is zero; cleared otherwise
Set if the most significant bit of the result is set;
cleared otherwise
OR - unaffected; ORB - set if parity of the result is even;
cleared otherwise
Unaffected
Unaffected

CYCLES: Word/Byte
NS

4
7
7
9

10

SS

—--

—
10
10

SL

—
—
—12
13

EXAMPLE:

src

R
IM
IR
DA
X

If register RL3 contains %C3 (11000011) and the source
operand is the immediate value %7B (01111011) , the
statement

ORB RL3,#%7B

will leave the value %FB (11111011) in RL3.

3-114

OTDR
Output, Decrement and Repeat

OTDR dst,src,r
OTDRB

INSTRUCTION FORMAT: (F6.4)

W/B: 0 0 1 1
] I I

0 0 0 0

1 0 1
I I

W;B

r
i i i

src
i i i

dst
i i i

1 0 1 0
I I I

0 0 0 0

dst: IR
src: IR

dst src
IR IR

£
R

OPERATION:

FLAGS:

CYCLES:

NOTES:

dst <- src
AUTODECREMENT src {-1 if byte, -2 if word}
r <- r - 1
repeat until r = 0

This instruction is used for block output of
strings of data. The contents of the memory
location addressed by the source register are
loaded into the I/O location addressed by the
destination register. I/O addresses are always 16
bits. The source register is then decremented by
one if OTDRB, or by two if OTDR, thus moving the
pointer to the previous element in the string. The
word register specified by "r" (used as a counter)
is then decremented by one. The entire operation
is repeated until the result of decrementing r is
zero. This instruction can output from 1 to 65536
bytes or 32768 words (the value for r must not be
greater than 32768 for OTDR).

C: Unaffected
Z: Undefined
S: Unaffected
V: Set
D: Unaffected
H: Unaffected

Word/Byte
ll+10*n (n=number of data elements transferred)

This is a privileged instruction.

This instruction can be interrupted after each
execution of the basic operation. The program
counter value of the start of this instruction is
saved before the interrupt request is accepted, so
that the instruction can be properly resumed.
Seven more cycles should be added to this
instruction's execution time for each interrupt
request that is accepted.

3-115

OTDR
Output, Decrement and Repeat

If register Rll contains %OFFF, register
R12 contains %B006, and R13 contains 6, t
G+- a +- oTn ei n 4-

EXAMPLE: If
contains 6, the

statement

OTDR @R11,@R12,R13

will output the string of words from locations
%AFFC to %B006 in descending order to "port" %OFFF,
R12 will contain %AFFA, and R13 will contain 0.
Rll will not be affected.

3-116

OTIR
Output, Increment and Repeat

OTIR ds t , s rc , r
OTIRB

INSTRUCTION FORMAT: (F6.4)

W/B: 0 0 1 1
I I I

0 0 0 0
I I 1

1 0 1
I I

VWB

r
l i i

src
i i i

dst
i i i

0 0 1 0
I I I

0 0 0 0
I I I

dst: IR
src: IR

dst src
IR IR

£

R

OPERATION:

FLAGS:

dst <- src
AUTOINCREMENT src {+1 if byte, +2 if word}
r <- r - 1
repeat until r = 0

This instruction is used for block output of
strings of data. The contents of the memory
location addressed by the source register are
loaded into the I/O location addressed by the
destination register. I/O addresses are always 16
bits. The source register is the incremented by
one if OTIRB, or by two if OTIR, thus moving the
pointer to the next element in the string. The
word register specified by "r" (used as a counter)
is then decremented by one. The entire operation
is repeated until the result of decrementing r is
zero. This instruction can output from 1 to 65536
bytes or 32768 words (the value for r must not be
greater than 32768 for OTIR).

C: Unaffected
Z: Undefined
S: Unaffected
V: Set
D: Unaffected
H: Unaffected

CYCLES:

NOTES:

Word/Byte
ll+10*n (n=number of data elements transferred)

This is a privileged instruction.

This instruction can be interrupted after each
execution of the basic operation. The program
counter value of the start of this instruction is
saved before the interrupt request is accepted, so
that the instruction can be properly resumed.
Seven more cycles should be added to this
instruction's execution time for each interrupt
request that is accepted.

3-117

OTIR
Output, Increment and Repeat

EXAMPLE: The following sequence of instructions can be
used to output a string of bytes to the specified
I/O "port". The pointers to the I/O port and the
start of the source string are set, the number of
bytes to output is set, and then the output is
accomplished.

LD R1,#PORT
LD R2,#SRCBUF
LD R3,#LENGTH
OTIRB <§R1,@R2,R3

3-118

OUT
Output

OUT dst, src
OUTB

dst: IR,DA
src: R

INSTRUCTION FORMAT: (F 7 . 4)
dst src

W/B : l o o t i i i t W/B dsti i i i i i i i i src IR R
i i i i

W/B:

FLAGS:

CYCLES:

NOTE:

EXAMPLE

(F7.2)

W/B 0 1 1 0

dst
DA

src

OPERATION: dst <- src

The contents of the source operand are loaded into
the destination. I/O addresses are always 16 bits.

No flags affected

dst Word/Byte

12
IR
DA

This is a privileged instruction.

If register R6 contains %5252, the statement

OUT %1120,R6

will output the value %5252 to the "port" %1120.

3-119

OUTD
Output and Decrement

OUTD dst,src,r
OUTDB

INSTRUCTION FORMAT: (F6.4)

W/B:

dst: IR
src: IR

dst src
0 0 1 1

I I I
0 0 0 0

1 1 1

1 0 1
1 1

W/ B

r
i i i

src
i i i

dst
i i i

1 0 1 0
I 1 1

1 0 0 0
1 1 1

IR IR
£
R

OPERATION:

FLAGS: C:
Z:
S:
V:

D:
H:

CYCLES:

NOTE:

EXAMPLE:

dst <- src
AUTODECREMENT src (-1 if byte, -2 if word}
r <- r - 1

This instruction is used for block output of
strings of data. The contents of the memory
location addressed by the source register are
loaded into the I/O location addressed by the
destination register. I/O addresses are always 16
bits. The source register is then decremented by
one if OUTDB, or by two if OUTD, thus moving the
pointer to the previous element in the string. The
word register specified by "r" (used as a counter)
is then decremented by one.

of decrementing r is zero;

Unaffected
Undefined
Unaffected
Set if the result
cleared otherwise
Unaffected
Unaffected

Word/Byte
21

This is a privileged instruction.

In segmented mode, if register R2 contains
the I/O address %0030, register RR6 contains
%12005552 (segment %12, offset %5552), the word
memory location %12005552 contains %1234, and
register R8 contains %1001, the statement

at

OUTD @R2,@RR6,R8

will output the value %1234 to "port"
leave the value %12005550 in RR6, and
Register R2 will not be affected.

%0030,
%1000

and
in R8

3-120

OUTI
Output and Increment

OUTI ds t , s rc , r
OUTIB

INSTRUCTION FORMAT: (F6.4)

dst: IR
src: IR

W/B: 0 0 1 1
I I I

0 0 0 0
I I I

1 0 1
1 1

W/B

r
l l l

src
i i i

dst
i t i

0 0 1 0
I I I

1 0 0 0

dst
IR

src r_
IR R

OPERATION: dst <- src
AUTOINCREMENT src {+1 if byte, + 2 if word}
r <- r - 1

This instruction is used for block output of
strings of data. The.contents of the memory
location addressed by the source register are
loaded into the I/O location addressed by the
destination register. I/O addresses are always 16
bits. The source register is then incremented by
one if OUTIB, or by two if OUTI, thus moving the
pointer to the next element in the string. The
word register specified by "r" (used as a counter)
is then decremented by one.

FLAGS: C: Unaffected
Z: Undefined
S: Unaffected
V: Set if the result of decrementing r is zero;

cleared otherwise
D: Unaffected
H: Unaffected

CYCLES: Word/Byte
21

NOTE: This is a privileged instruction.

EXAMPLE: This instruction is used in a "loop"
of instructions which outputs a string of data, but
an intermediate operation on each element is
required. The following sequence outputs a string
of 80 ASCII characters (bytes) with the most
significant bit of each byte set or reset to
provide even parity for the entire byte.

3-121

Qndnnl
LD
LD
LD

LOOP:
TESTB
JR
SETB

EVEN:
OUTIB
JR

R1,#PORT

R2,tSRCSTART
R3,#80

@R2
PE,EVEN
(§R2,#7

@R1,@R2,R3
NO V, LOOP

!Load I/O address!
ILoad start of string!
Unitialize counter!

ITest byte parity!

IForce even parity!

!0utput next byte!
IRepeat until counter=0!

DONE:

POP
Pop

POP dst,src
POPL

INSTRUCTION FORMAT: (F2.1)

dst: R, IR, DA, X
src: IR

src
W:

L:

mode
i

0 1 0 1 1 1 src

mode 0 1 0 1 0 1
t I I 1 I

src
i i t

dst

dst
i i i

mode
10
00
01
n i

dst
R

IR
DA

V

IR
IR (dst field=0)
IR (dst fieldOO)

OPERATION: dst <- src
AUTOINCREMENT src {+2 if word, +4 if long}

The contents of the location addressed by the source-
register (a "stack pointer") are loaded into the desti-
nation. The source register is then incremented by a
value which equals the size in bytes of the destination
operand, thus removing the top element of the "stack" by
changing the stack pointer. Any register except RO (or
RRO) can be used as a stack pointer.

FLAGS: No flags a

CYCLES: dst

R
IR
DA
X

NS
8

12
16
16

f f ected

Word
SS

16
16

SL

19
19

NS
12
19
23
23

Long
SS

23
23

SL

26
26

NOTE: For POPL, the same register must not be used in
both the source and destination addressing mode
des ignators.

EXAMPLE: If register R12 (a "stack pointer") contains %1000,
the word at location %1000 contains %0055, and reg-
ister R3 contains %0022, the statement

POP R3,@R12

will leave the value %0055 in R3 and the value %1002
in R12.

3-123

E3-3055-01 07/02/79

PUSH
Push

PUSH ds t , s rc
PUSHL

INSTRUCTION FORMAT: (F 2 . 2]

W: mode 0 1 0 0 1 1

L: | mode 0 1 0 0 0 1 d s t s r c
i i i i i

dst
t 1

(F5 .1)

W: Imode
i

0 0 1 1
i i i

0 1
I 1

dst
i i i

1 0
I

0 1I I]

dst: IR
src: R, IM, IR, D A , X

mode
10
00
01
01

mode

dst
IR
IR
IR
IR

dst

src
R
IR
DA (src
X (src

src

f ield=0)
f ieldOO)

00 IR IM

OPERATION:

FLAGS:

CYCLES:

NOTE:

EXAMPLE;

AUTODECREMENT dst {-2 if word, -4 if long}
dst <- src

The contents of the destination register (a "stack
pointer") is decremented by a value which equals the
size in bytes of the destination operand. Then the
source operand is loaded into the location addressed by
the updated destination register, thus adding a new
element to the top of the "stack" by changing the stack
pointer. Any register except RO (or RRO) can be used
as a stack pointer.

No flags affected

src

R
IM
IR
DA
X

Word
NS SS SL
Q

12 -- --
13 — --
14 14

1414
17
17

Long
NS SS SL
12 -- --

20 -- --
21 21 24
21 21 24

For PUSHL, the same register must not be used
in both the source and destination addressing
mode designators.

If register R12 (a "stack pointer") contains %1002,
the word at location %1000 contains %0055, and reg-
ister R3 contains %0022, the statement

PUSH (§R12,R3

will leave the value %0022 in location %1000 and the
value %1000 in R12.

3-124

E3-3055-01 07/02/79

RES
Reset Bit

RES dst,src
RESB

INSTRUCTION FORMAT: (Fl.2)

dst: R, IR, DA, X
src: R, IM

W/B : | mode
1 0 0 0 1 W/B dst src l 0

i i i i i i
' 00

01
01

R
IR
DA

X
(F6.3)

IM (dst fieldOO)
IM (dst field=0)
IM (dst fieldOO)

W/B: 0 0 1 0
I I I

0 0 0 0
1 1 1

0 0 1
I I

dst
I I

W/B 0 0 0 0
I I I

0 0 0 0
I I I

src
I I I

0 0 0 0
I I I

OPERATION:

NOTE:

EXAMPLE

dst(src) <- 0

Clears the specified bit within the destination operand
without affecting any other bits in the destination.
The source (the bit number) can be specified as either
an immediate value, or as a word register which contains
the value. In the second case, the destination operand
must be a register, and the source operand must be RO
through R7 for RESB, or RO through R15 for RES. The
bit number is a value from 0 to 7 for RESB, or 0 to 15
for RES, with 0 indicating the least significant bit.

FLAGS: No flags

CYCLES: dst

R
IR
DA
X
R

src

IM
IM
IM
IM
R

affected

Word/Byte
NS SS SL
4

11
13
14
10

—--
14
14

—

—
—
16
17

—

Only the lower four bits of the source operand are
used to specify the bit number for RES, while only the
lower three bits of the source operand are used with
RESB. When the source operand is an immediate value, the
"src field" in the instruction format encoding contains the
bit number in the lowest four bits for RES, or the lowest
three bits for RESB.

If register RL3 contains %B2 (10110010) , the statement

RESB RL3,#1

will leave the value %BO (10110000) in RL3.

3-125

RESFLG
Reset Flag

RESFLG flag

INSTRUCTION FORMAT: (F9.1)

flag: C, Z, S, P, V

1 0 0 0 1 1 0 1 C Z S P / V 0 0 1 1
I I I I 1 I I I I I I I I

OPERATION: FLAGS(4:7) <- FLAGS(4:7) AND NOT instruction(4 : 7)

Any combination of the C, Z, S, P or V flags are
cleared to zero if the corresponding bit in the
instruction is one. If the corresponding bit in
the instruction is zero, the flag will not be
affected. All other bits in the FLAGS register are
unaffected. Note that the P and V flags are
represented by the same bit. There may be one,
two, three or four operands in the assembly
language statement, in any order.

FLAGS C:
Z:
S:

P/V:
D;

Cleared if specified; unaffected otherwise
Cleared if specified;
Cleared if specified;
Cleared if specified;
Unaffected

unaffected otherwise
unaffected otherwise
unaffected otherwise

H: Unaffected

CYCLES:

EXAMPLE: If the C, S, and V flags are all set (=1),
and the Z flag is clear (=0), the statement

RESFLG C, V

will leave the S flag set (=1), and the C, Z,
and V flags cleared (=0).

3-126

RET
Return from Procedure

RET cc

INSTRUCTION FORMAT: (F9.4!

1 0
I

0 1 1 1 1 0 0 0 0 0
I

cc
I I I

OPERATION:

FLAGS:

CYCLES:

EXAMPLE:

Npnsegmen t e d
if cc is true then

PC <- @SP
SP <- SP + 2

Segmented
if cc is true then

PC <- @SP
SP <- SP + 4

This instruction is used to return to a previously
executing procedure at the end of a procedure entered by
a CALL or CALR instruction. If the condition specified
by "cc" is true, then the contents of the location
addressed by the processor stack pointer are popped into
the program counter (PC). The next instruction executed
is that addressed by the new contents of the PC. See
section 3.2.1 for a list of condition codes. The stack
pointer used is R15 if nonsegmented, or RR14 if segmented.
If the condition code is false, then control falls through
to the instruction following the RET instruction.

No flags affected

Address
NS SS
10 —
7 —

SL
13
7

(return is taken)
(return not taken!

In nonsegmented mode, if the program counter contains
%2550, the stack pointer (R15) contains %3000, location
%3000 contains %1004, and the Z flag is clear, then the
statement

RET NZ

will leave the value %3002 in the stack
the program counter will contain %1004
the next instruction to be executed).

pointer and
the address of

3-127

RL
Rotate Left

RL dst,src
RLE

dst: R
s r c: IM

AUCTION FORMAT: (F l . l)

mode 1 1 0 0 1
I I I I

W/B dst 0 0 S 0
I 1 1

mode dst src
TM~10 R

OPERATION:

FLAGS: C:

Z:
S:

V:

D:
H:

:YCLES:

EXAMPLE

(Perform operation once if s=0, twice if s=l)

C <- dst(msb)
dst(O) <- dst(msb)
dst(n+l) <- dst(n) {n is 0 to msb-1

The contents of the destination operand are rotated left
one bit position if the source operand is 1, or two bit
positions if the source operand is 2. The source operand
may be omitted from the assembly language statement and
thus defaults to the value 1. The most significant bit
of the destination operand is moved to the bit 0 position
and also replaces the C flag.

Word:

Byte: [c~\-

Set if the last bit rotated from the most significant
bit position was 1; cleared otherwise
Set if the result is zero; cleared otherwise
Set if the most significant bit of the result is set;
cleared otherwise
Set if arithmetic overflow occurs, that is, if the
sign of the destination changed during rotation; cleared
otherwise
Unaffected
Unaffected

Word/Byte
6
7

(once)
(twice)

If register RH5 contains %88 (lOOÜlOOO;

RLB RH5

the statement

will leave the value %11 (00010001!
carry flag will be set to one.

3-128

in RH5 and the

E3-3055-01 07/02/79

RLC
Rotate Left through Carry

RLC dst,src
RLCB

INSTRUCTION FORMAT: (Fl.l)

W/B: [

OPERATION:

Imode
|

1 1 0 0 1
1 1 I 1

W/B dst
i i i

1 0 S 0
I I I

dst: R
src: IM

mode dst src
10 R IM

[Perform operation once if s=0, twice if s = l)

dst(O) <- C
C <- dst(msb)
dst(n+l) <- dst(n) (n is 0 to msb-1}

The contents of the destination operand with the C flag
are rotated left one bit position if the source operand
is 1, or two bit positions if the source operand is 2.
The source operand may be omitted from the assembly lang-
uage statement and thus defaults to the value 1. The
most significant bit of the destination operand replaces
the C flag and the previous value of the C flag is moved
to the bit 0 position of the destination.

Word:

Byte:

FLAGS:

CYCLES:

Set if the last bit rotated from the most significant
bit position was 1; cleared otherwise
Set if the result is zero; cleared otherwise
Set if the most significant bit of the result is set;
cleared otherwise
Set if arithmetic overflow occurs, that is, if the
sign of the destination changed during rotation; cleared
otherwise
Unaffected

Z:
S:

V:

D:
H: Unaffected

Word/Byte
6
7

(once)
(twice!

EXAMPLE: If the carry flag is clear (=0) and register RO
contains %800F (1000000000001111), the statement

RLC R0,#2

wi l l leave t h e v a l u e % U 0 3 D (O O O O O O G O G 0 1 1 1 1 0 1) i n
RO and c lear the c a r r y f l a g .

E3-3055-01 3 129 07/02/79

RLDB
Rotate Left Digit

RLDB dst,src dst: R
src: R

INSTRUCTION

g ; mode
_[i ii

OPERATION:

FORMAT: (F2

1 1 1 0 Si i i i i

s r c (0 : 3)

.1)

rc dst
i i i i

<- d s t (0 : 3)

mode dst src
10 R

FLAGS

src(4:7) <- src(u:3)
dst(0:3) <- src(4:7)

Rotates to the left BCD digits between source and
destination byte operands. Simultaneously, the lower
digit of destination is moved to the lower digit of
source, the lower digit of source is moved to the upper
digit of source, and the upper digit of source is moved
to the lower digit of destination. The result is the
destination after the operation, whose upper digit is
unaffected. In multiple-digit BCD arithmetic, this
instruction can be used to shift to the left a string
of BCD digits, thus multiplying it by a power of ten.

dst
7 4 3

i

0 7

I

4

L

3 |- 0

I
src

Unaffected
Set if the result is zero; cleared otherwise
Set if the most significant bit of the result is set;
cleared otherwise
Unaffected
Unaffected
Unaffected

CYCLES:

NOTE: The same register must not be used in both the
and destination addressing mode designators.

source

3 130

RLDB
Rotate Left Digit

EXAMPLE: If location 100 contains the BCD digits 0,1 (G0000001)
location 101 contains 2,3 (00100011) , and location 102
contains 4,5 (01000101)

100 101 102

the sequence of statements

LD R3,#3

LOOP

!Set loop counter for 3 bytes (6
dig its) !
!Set pointer to low-order digits!
!Zero-fill low-order digit!

!Get next two digits!
JShift digits left one position!
IReplace shifted digits!
lAdvance pointer!
IRepeat until counter is zero!

will leave the digits 1,2 (00010010) in location 100, the
digits 3,4 (00110100) in location 101, and the digits 5,0
(01010000) in location 102.

LD
CLRB

LDB
RLDB
LDB
DEC
DJNZ

R2,#102
RH1

RL1,@R2
RH1,RL1
@R2,RL1
R2
R3,LOOP

100 101 102

3-131

RR
Rotate Right

RR d s t , s r c
RRB

INSTRUCTION FORMAT: (F l . i ;

W/B: |m°de W/B dst 0 1 s 0
I I I

dst: R
src: IM

mode dst src
TM~10 R

FLAGS: C

V:

CYCLES:

EXAMPLE

^Perform operation once if s=0, twice if s=l)

OPERATION: C <- dst(O)
dst(msb) <- dst(O)
dst(n) <- dst(n+l) \n is 0 to msb-1}

The contents of the destination operand are rotated
right one bit position if the source operand is 1, or
two bit positions if the source operand is 2. The least
significant bit of the destination operand is moved to
the most significant bit and also replaces the C flag.
The source operand may be omitted from the assembly
language statement and thus defaults to the value 1.

Wo r d:

Byte:

15

Set if the last bit rotated from the least significant
bit position was 1; cleared otherwise
Set if the result is zero; cleared otherwise
Set if the most significant bit of the result is set;
cleared otherwise
Set if arithmetic overflow occurs, that is, if the
sign of the destination changed during rotation; cleared
otherwise
UnaffectedD:

H: Unaffected

Word/Byte
6
7

(once)
(twice)

If register RL6 contains %31 (00110001), the statement

RRB RL6

will leave the value %9Q (10011000) in RL6 and the
carry flag will be set to one.

3 132

E3-3055-01 07/02/79

RRC
Rotate Right through Carry

RRC d s t, s r c
RRCB

INSTRUCTION FORMAT: (Fl.l)

W/B:Imode
i

1 1 0 0 1
i i i i

W/B dst
1 1 1

1 1 S 0
1 1 1

dst: R
src: IM

mode dst src
10 R IM

OPERATION:

(Perform operation once if s=0, twice if s=l)

dst(msb) <- C
C <- dst(O)
dst(n) <- dsti n+1) {n is 0 to msb-1}

The contents of the destination operand with the C flag
are rotated right one bit position if the source operand
is 1, or two bit positions if the source operand is 2.
The least significant bit of the destination operand
replaces the C flag and the previous value of the C flag
is moved to the most significant bit position of the
destination. The source operand may be omitted from the
assembly language statement and thus defaults to the
value 1.

Word:

Byte:

15

FLAGS: C: Set if the last bit rotated from the least significant
bit position was 1; cleared otherwise

Z: Set if the result is zero; cleared otherwise
S: Set if the most significant bit of the result is set;

cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the

sign of the destination changed during rotation; cleared
otherwise

D: Unaffected
H: Unaffected

CYCLES: Word/Byte
6
7

(once)
(t w i c e)

3-133

E3-3055-01 07/02/79

RRC
Rotate Right through Carry

EXAMPLE: If the carry flag is clear (=0) and the register RO
contains %OODD (0000000011011101), the statement

RRC R0,#2

will leave the value %8037 (1000000000110111) in RO
and clear the carry flag.

3-134

RRDB
Rotate Right Digit

RRDB dst,src

INSTRUCTION FORMAT: (F2.1)

B: mo de i i i i o o

OPERATION: src (4
s r c (0
d s t (0

src

:7) <-
:3) <-
:3) <-

dst
i i i

d s t (0 : 3)
s r c (4 : 7)
s r c (0 : 3)

dst: R
src: R

mode dst
10 R

src
~ST

Rotates to the right BCD digits between source and
destination byte operands. Simultaneously, the lower
digit of destination is moved to the upper digit of
source, the upper digit of source is moved to the lower
digit of source, and the lower digit of source is moved
to the lower digit of destination. The result is the
destination after the operation, whose upper digit is
unaffected. In multiple-digit BCD arithmetic, this
instruction can be used to shift to the right a string
of BDC digits, thus dividing it by a power of ten.

dst
7 4 3 ' 1

4 3 i 0

t

src

FLAGS:

CYCLES:

NOTE:

C: Unaffected
Z: Set if the result is zero; cleared otherwise
S: Set if the most significant bit of the result is set;

cleared otherwise
V: Unaffected
D: Unaffected
H: Unaffected

ByteBjte

The same register must not be used in both the source
and destination addressing mode designators.

3-135

RRDB
Rotate Right Digit

EXAMPLE: If location 100 contains the BCD digits 1,2 (00010010),
location 101 contains 3,4 (00110100), and location 102
contains 5,6 (01010110)

100 101 102

the sequence of statements

LD R3,#3

LOOP

!Set loop counter for 3 bytes (6
digits) !
!Set pointer to high-order digits!
!Zero-fill high-order digit!

!Get next two digits!
IShift digits right one position!
IReplace shifted digits!
!Advance pointer!

DJNZ R3,LOOP !Repeat until counter is zero!

will leave the digits 0,1 (00000001) in location 100, the
digits 2,3 (00100011) in location 101, and the digits 4,5
(01000101) in location 102.

LD
CLRB

LDB
RRDB
LDB
INC

R2,#100
RH1

RL1,@R2
RH1,RL1
@R2,RL1
R2

100 101 102

3-136

SBC
Subtract with Carry

SBC
SBCB

dst , src dst:
src:

R
R

INSTRUCTION FORMAT: (F2.1)

W/B: mode 1 1 0 1 1 src dst
mode dst src___

10

FLAGS:

Z:
S:
V:

D:
H:

CYCLES:

EXAMPLE:

Imode
l

1 1 0 1 1 W/B src
i i i

dst
l l I I

R

The source operand, along with the setting of the carry
flag, is subtracted from the destination operand and the
result is stored in the destination. The contents of the
source are not affected. Subtraction is performed by
adding the two's complement of the source operand to the
destination operand. In multiple precision arithmetic,
this instruction permits the carry ("borrow") from the
subtraction of low-order operands to be subtracted from
the subtraction of high-order operands.

Cleared if there is a carry from the most significant
bit of the result; set otherwise, indicating a "borrow"
Set if the result is zero; cleared otherwise
Set if the result is negative; cleared otherwise
Set if arithmetic overflow occurs, that is, if the
operands were of opposite signs and the sign of the
result is the same as the sign of the source; cleared
otherwise
SBC - unaffected; SBCB - set
SBC - unaffected; SBCB - cleared if there is a carry
from the most significant bit of the low-order four
bits of the result; set otherwise, indicating a
"borrow"

Word/Byte
5

Long subtraction may be done with the following
instruction sequence, assuming RO,Rl contain one
operand and R2,R3 contain the other operand:

SUB R1,R3 [subtract low-order words!
SBC RO,R2 Isubtract carry and high-order words!

If RO contains %0038, Rl contains %4000, R2 contains
%OOOA and R3 contains %FOOO, then the above two in-
structions leave the value %002D in RO and %5000 in
Rl.

3-137

sc
System Call

sc src src: IM

INSTRUCTION FORMAT: (F9.5)

0 1 1 1 1 1 1 1i i i i i i i i i i i i i i

OPERATION: Nonsegme n t e d
SP <- SP - 4
@SP <- PS
SP <- SP - 2
@SP <- instruction
PS <- System Call PS

src
IM

Segmented
SP <- SP - 6
@SP <- PS
SP <- SP - 2
@SP <- instruction
PS <- System Call PS

This instruction is used for controlled access to operating
system software in a manner similar to a trap or interrupt.
The current program status (PS) is pushed on the system
processor stack, and then the instruction itself is pushed
which includes the source operand (an 8-bit value). The
PS includes the Flags and Control Word (FCW), and the up-
dated program counter (PC). (The updated program counter
value used is the address of the first instruction byte
following the SC instruction.)

The system stack pointer is always used (R15 if nonsegmen-
ted, or RR14 if segmented), regardless of whether system
or normal mode is in effect. The new PS is then loaded
from the Program Status block associated with the System
Call trap (see section 1.6.4), and control is passed to
the procedure whose address is the program counter value
contained in the new PS. This procedure may inspect the
source operand on the top of the stack to determine the
particular software service desired.

The following figure illustrates the format of the saved
program status in the system stack:

NONSEGMENTED SEGMENTED

SP
AFTER"

SP
BEFORE

INSTRUCTION

FCW

LOW ADDRESS

SP
AFTER"

SP
BEFORE

HIGH ADDRESS

INSTRUCTION

FCW

PC SEG NO

PC OFFSET

3-138

sc
System Call

FLAGS:

CYCLES:

NOTES:

EXAMPLE:

No flags affected

Address
NS SS
33 —

SL
39

The Z8001 version always executes the segmented mode
of the System Call instruction, regardless of the
current mode, and sets the Segmentation Mode bit (SEG)
to segmented mode (=1) at the start of the SC in-
struction execution. Both the Z8001 and Z8002 ver-
sions set the System/Normal Mode bit (S/N) to System
mode (=1) at the start of the SC instruction execution.
The status pins reflect the setting of these control
bits during the execution of the SC instruction.
However, the setting of SEG and S/N does not affect
the value of these bits in the old FCW pushed on the
stack. The new value of the FCW is not effective
until the next instruction, so that the status pins
will not be affected by the new control bits until
after the SC instruction execution is completed.

The "src field" in the instruction format encoding
contains the source operand. The "src field" values
range from 0 to 255 corresponding to the source values
0 to 255.

In the nonsegmented Z8002 version, if the contents of
the program counter are %1000, the contents of the
system stack pointer (R15) are %3006, and the program
counter value associated with the System Call trap in
the Program Status Area is %2000, the statement

SC #3 ISystem call,request code=3!

causes the system stack pointer to be decremented to
%3000. Location %3000 contains %7F03 (0111111100000011,
the SC instruction). Location %3002 contains the old
FCW, and location %3004 contains %1002 (the address of
the instruction following the SC instruction). System
mode is in effect, and the program counter contains the
value %2000, which is the start of a System Call trap
handler.

3-139

SDA
Shift Dynamic Arithmetic

SDA dst,src
SDAB
SDAL

dst: R
src: R

INSTRUCTION FORMAT: (F6.6)

W/B:

L:

mode
1

1 1 0 0 1
I I I

0 0 0 0
1 1 1

W/B

src
i i i

mode
i

1 1 0 0 1 1
I 1 1

0 0 0 0 src
i i i

dst
i i i

1 0 1
I I

0 0 0 0 0 0 0
1 1 1 1 1 1

1

0

dst
i i i 1 1 1

1 1
0 0 0 0 0 0 0

1 1 1 1 1 1

1

0

Byte:

Word

Long
15

mode dst src
~TT10 R

OPERATION: Right repeat src times:
dst(msb) <- dst(msb)
dst(n) <- dst(n+l) {n is 0 to msb-1}
C <- dst(O)

Left repeat src times:
dst(O) <- 0
dst(n+l) <- dst(n) {n is 0 to msb-1}
C <- dst(msb)

The destination operand is shifted arithmetically right
or left the number of bit positions specified by the
source operand (a word register). The shift count varies
from -8 to +8 for SDAB, from -16 to +16 for SDA, and from
-32 to + 32 for SDAL, where a negative value is a right
shift and a positive value is a left shift. A
zero positions does not affect the destination
the flags are set according to the destination
sign bit is replicated in shifts to the right,
flag is loaded from bit 0 of the destination,
significant bit is filled with 0 in shifts to

shift of
; however,
value. The
and the C
The least
the left, and

the C flag is loaded from the sign bit of the destination.

Right Left

15

.1
0

Rn -I- 1

Rn

n=0,2,4,...,14 n=0,2,4,...,14

3-140

SDA
Shift Dynamic Arithmetic

FLAGS: C: Set if the last bit shifted from the destination
was 1, cleared otherwise

Z: Set if the result is zero; cleared otherwise
S: Set if the result is negative; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the

sign of the destination changed during shifting;
cleared otherwise

D: Unaffected
H: Unaffected

CYCLES: Word/Byte Long
15+3*n 15+3*n (n=number of bit positions,

where 0 is equivalent to 1)

NOTE: The source operand is represented as a 16-bit two's
complement value. For each operand size, the
operation is undefined if the value is not in the
range specified above.

EXAMPLE: If register R5 contains %C705 (1100011100000101) and
register Rl contains -2 (%FFFE or 1111111111111110) ,
the statement

SDA R5,R1

performs an arithmetic right shift of two bit
positions, leaves the value %F1C1 (1111000111000001)
in R5, and clears the carry flag.

3-141

SDL
Shift Dynamic Logical

SDL dst,src
SDLB
SDLL

INSTRUCTION FORMAT: (F6.6)

W/B:

L:

mode
i

0 0

mode
i

0 0
i

1 t

0 0

1 1
I

0 0
I

0 0 1
I I

src
I I

0 0 1
I I

src
i i

W/B

1

dst
i i i

0 0 0 0
t 1 1

dst
i i i

0 0 0 0
1 1 1

0 0 1 1
I I I

0 0 0 0

0 1 1 1
I I I

0 0 0 0
I I I

dst: R
src: R

mode dst src
R R

OPERATION Right repeat src times:
dst(msb) <- 0
dst(n) <- dst(n+l) {n is 0 to msb-1}
C <- dst(O)

Left repeat src times:
dst(O) <- 0
dst(n+l) <- dst(n) {n is 0 to msb-1}
C <- dst(msb)

The destination operand is shifted logically right or
left the number of bit positions specified by the source
operand (a word register). The shift count varies from
-8 to +8 for SDLB, from -16 to +16 for SDL, and from -32
to +32 for SDLL, 'where a negative value is a right shift
and a positive value is a left shift. A shift of zero
positions does not affect the destination; however, the
flags are set according to the destination value. The
most significant bit is filled with 0 in shifts to the
right, and the C flag is loaded from bit 0 of the des-
tination. The least significant bit is filled with 0
in shifts to the left, and the C flag is loaded from the
most significant bit of the destination.

3-142

SDL
Shift Dynamic Logical

Byte:

Right Left

15

Word: o-

15

Long : °—*~_

FLAGS

CYCLES

NOTE:

EXAMPLE;

Rn Rn

Rn + 1 >-'
n=0,2,4, . . . ,14 n=0 , 2 , 4 , . . . ,14

Set if the last bit shifted from the destination was 1;
cleared otherwise
Set if the result is zero; cleared otherwise
Set if the most significant bit of the result is set;
cleared otherwise
Undefined
Unaffected
Unaffected

Word/Byte Long
15+3*n 15+3*n (n=number of bit positions,

where 0 is equivalent to 1)

The source operand is represented as a 16-bit two's
complement value. For each operand size, the
operation is undefined if the value is not in
the range specified above.

If register RL5 contains %B3 (10110011) and register
Rl contains 4 (0000000000000100) , the statement

SDLB RL5,R1

performs a logical left shift of four bit positions,
leaves the value %30 (00110000) in RL5, and sets the
carry flag.

3-143

SET
Set Bit

SET dst,src
SETB

INSTRUCTION FORMAT: (Fl.2)

W/B:

dst: R, IR, DA, X
src: R, IM

mode
i

1 0 0 1 0
I I I I

W/B dst
l i i

src

mode
10
00
01
01

dst
R
IR
DA
X

src
IM
IM
IM
IM

(F6.3)

W/B: 0 0 1 0I I I
0 0 0 0

I I I

0 1 0
I I

W/B

dst
i i i

0 0 0 0
l l l

src
1 1 1

0 0 0 0 0 0 0 0
I I I I I I 1

dst
R

IM (dst fieldOO)
dst field=0)

IM (dst fieldOO)

src_.

OPERATION:

FLAGS:

CYCLES:

NOTE:

EXAMPLE:

dst(src) <- 1

Sets the specified bit within the destination operand
without affecting any other bits in the destination.
The source (the bit number) can be specified as either
an immediate value, or as a word register which contains
the value. In the second case, the destination operand
must be a register, and the source operand must be RO
through R7 for SETB, or RO through Rl5 for SET. The bit
number is a value from 0 to 7 for SETB or 0 to 15 for
SET, with 0 indicating the least significant bit.

No flags affected

dst src Word/Byte
NS SS SL

R IM 4 — —
IR IM 11 — —
DA IM 13 14 16
X IM 14 14 17
R R 10 — —

Only the lower four bits of the source operand are used
to specify the bit number for SET, while only the lower
three bits of the source operand are used with SETB.
When the source operand is an immediate value, the "src
field" in the instruction format encoding contains the
bit number in the lowest four bits for SET, or the
lowest three bits for SETB.

If register RL3 contains %B2 (10110010) and register R2
contains the value 6, the statement

SETB RL3,R2

will leave the value %F2 (11110010) in RL3.

3-144

SETFLG flag

INSTRUCTION FORMAT: (F9.1)

SETFLG
Set Flag

flag: C, Z, S, P, V

1 0 0 0 1 1 0 1 C Z S P / V 0 0 0 1
l l l l l l l I I I I I I

OPERATION: FLAGS(4:7) <- FLAGS(4:7) OR instruction(4:7)

Any combination of the C, Z, S, P or V flags are
set to one if the corresponding bit in the
instruction is one. If the corresponding bit in
the instruction is zero, the flag will not be
affected. All other bits in the FLAGS register are
unaffected. Note that the P and V flags are
represented by the same bit. There may be one,
two, three or four operands in the assembly
language statement, in any order.

FLAGS C:
Z:
S:

P/V:
D:
H:

CYCLES:

EXAMPLE:

Set if specified; unaffected otherwise
Set if specified; unaffected otherwise
Set if specified; unaffected otherwise
Set if specified; unaffected otherwise
Unaffected
Unaffected

If the C, Z, and S flags are all clear (=0),
and the P flag is set (=1), the statement

SETFLG C

will leave the C and P flags set (=1), and
the Z and S flags cleared (=0).

3-145

SIN
Special Input

SIN dst ,src
SINE

INSTRUCTION FORMAT: (F7 .1)

dst: R
src: DA

dst src
W / B : f o o i i i o il i i i i i i W/B dst 0 1 0 1 R DA

OPERATION: dst <- src

FLAGS:

CYCLES:

NOTES:

The contents of the source operand are loaded into the
destination. I/O addresses are always 16 bits. This
instruction is used to load information from the Memory
Management Unit.

No flags affected

Word/Byte
12

This is a privileged instruction.

The status pins indicate a special I/O reference.

3-146

SIND
Special Input and Decrement

SIND dst,src,r
SINDB

INSTRUCTION FORMAT: (F6.4)

W/B: 0 0 1 1
I I I

0 0 0 0
I I I

1 0 1 W/B

, 1 ,
src

i i i
dst

1 0 0 1
I I I

1 0 0 0
I I I

dst: IR
src: IR

dst src
IR IR

£

R

OPERATION:

FLAGS: C:
Z:
S:
V:

D:
H:

CYCLES:

dst <- src
AUTODECREMENT dst {-I if. byte, -2 if word}
r <- r - 1

This instruction is used for block input of strings of
data, typically status information from the Memory
Management Unit. The contents of the I/O location
addressed by the source register are loaded into the
memory location addressed by the destination register.
I/O addresses are always 16 bits. The destination reg-
ister is then decremented by one if SINDB, or by two if
SIND, thus moving the pointer to the previous element in
the string. The word register specified by "r" (used as
a counter) is then decremented by one.

Unaffected
Undefined
Unaffected
Set if the result of decrementing r is zero;
cleared otherwise
Unaffected
Unaffected

Word/Byte~"
NOTES: This is a privileged instruction.

The status pins indicate a special I/O reference.

3-147

SINDR
Special Input, Decrement and Repeat

SINDR dst,src,r
SINDRB

dst: IR
src: IR

INSTRUCTION FORMAT:

W/B:

(F6.4)

0 0 1 1
I I I

0 0 0 0
I I I

1 0 1
I I

W/B

r
i i i

src
i i i

dst
i i i

1 0 0 1
I I I

0 0 0 0
I 1 1

dst src
IR IR

£

R

OPERATION:

FLAGS: C:
Z:
S;
V:
D:

CYCLES:

NOTES:

dst <- src
AUTODECREMENT dst {-1 if byte, -2 if word}
r <- r - 1
repeat until r = 0

This instruction is used for block input of strings of
data, typically status information from the Memory
Management Unit. The contents of the I/O location
addressed by the source register are loaded into the
memory location addressed by the destination register.
I/O addresses are always 16 bits. The destination
register is then decremented by one if SINDRB, or by
two if SINDR, thus moving the pointer to the previous
element in the string. The word register specified by
"r" (used as a counter) is then decremented by one.
The entire operation is repeated until the result of
decrementing r is zero. This instruction can input
from 1 to 65536 bytes or 32768 words (the value for r
must not be greater than 32768 for SINDR).

Unaffected
Undefined
Unaffected
Set
Unaffected

H: Unaffected

Word/Byte
ll+10*n (n=number of data elements transferred)

This is a privileged instruction.

The status pins indicate a special I/O reference.

This instruction can be interrupted after each exe-
cution of the basic operation. The program counter
value of the start of this instruction is saved before
the interrupt request is accepted, so that the in-
struction can be properly resumed. Seven more cycles
should be added to this instruction's execution time
for each interrupt request that is accepted.

3-148

SINI
Special Input and Increment

SINI dst,src,r
SINIB

INSTRUCTION FORMAT: (F6.4)

W/B: 0 0 1 1
I I I

0 0 0 0
I I I

1 0 1
I I

W/B

c
I I I

src
I I I

dst
I 1 1

0 0 0 1
I I I

1 0 0 0
I 1 1

dst:
src:

dst
IR

IR
IR

src
IR R

OPERATION:

FLAGS: C:
Z:
S:
V:

D:
H:

dst <- src
AUTOINCREMENT dst {+1 if byte, + 2 if word}
r <- r - 1

This instruction is used for block input of strings
of data, typically status information from the
Memory Management Unit. The contents of the I/O
location addressed by the source register are loaded
into the memory location addressed by the destination
register. I/O addresses are always 16 bits. The
destination is then incremented by one if SINIB,
or by two if SINI, thus moving the pointer to the
next element in the string. The word register
specified by "r" (used as a counter) is then
decremented by one.

Unaffected
Undefined
Unaffected
Set if the result of decrementing r
cleared otherwise
Unaffected
Unaffected

is zero;

CYCLES: Word/Byte
21

NOTES: This is a privileged instruction.

The status pins indicate a special I/O reference.

3-149

SINIR
Special Input, Increment and Repeat

SINIR dst,src,r
SINIRB

INSTRUCTION FORMAT: (F6.4)

dst: IR
src: IR

dst src
W/B: 0 0 1 1

I I 1
0 0 0 0

1 1 1

1 0 1
I I

W/B

r
i i i

src
i i i

dst
i i i

0 0 0 1I I I
0 0 0 0

I 1 1

IR IR
r
R

OPERATION:

FLAGS: C:
Z:
S:
V;
D:

CYCLES;

NOTES:

dst <- src
AUTOINCREMENT dst {+1 if byte, +2 if word}
r <- r - 1
repeat until r = 0

This instruction is used for block input of strings
of data, typically status information from the
Memory Management Unit. The contents of the I/O
location addressed by the source register are loaded
into the memory location addressed by the des-
tination register. I/O addresses are always 16 bits.
The destination register is then incremented by one
if SINIRB, or by two if SINIR, thus moving the pointer
to the next element in the string. The word register
specified by "r" (used as a counter) is then
decremented by one. The entire operation is repeated
until the result of decrementing r is zero. This
instruction can input from 1 to 65536 bytes or 32768
words (the value <for r must not be greater than 32768
for SINIR).

Unaffected
Undefined
Unaffected
Set
Unaffected

H: Unaffected

Word/Byte
ll+10*n (n=number of data elements transferred)

This is a privileged instruction.

The status pins indicate a special I/O reference.

This instruction can be interrupted after each
execution of the basic operation. The program
counter value of the start of this instruction is
saved before the interrupt request is accepted,
so that the instruction can be properly resumed.
Seven more cycles should be added to this in-
struction's execution time for each interrupt
request that is accepted.

3-150

SLA
Shift Left Arithmetic

SLA
SLAB
SLAL

dst,src

INSTRUCTION FORMAT: (F5.1)

W/B:

L:

mode
i

1 1 0 0 1 W / B
l l l I

s
i i i i i i i

dst
i i i

1 0 0 1
I I i

re
i i i i i i i

mode 1 1 0 0 1 1
1 I I I

dst
i i i

1 1 0 1
I I I

src
i i i i i i i i i i i i t i i

dst: R
src: IM

mode dst src
TH~10 R

OPERATION: repeat src times:
dst(O) <- 0
dst(n+l) <- dst(n)
C <- dst(msb)

{n is 0 to msb-1}

The destination operand is shifted arithmetically left
the number of bit positions specified by the source
operand. For SLAB, the source is in the range 0 to 8 ;
for SLA, the source is in the range 0 to 16; for SLAL,
the source is in the range 0 to 32. A shift of zero
positions does not affect the destination; however,
the flags are set according to the destination value.
The least significant bit of the destination is filled
with 0, and the C flag is loaded from the sign bit
of the destination. This instruction performs a signed
multiplication of the destination by a power of two
with overflow indication. The source operand may be
omitted from the assembly language statement and
thus defaults to the value 1.

Byte: c

15

Word :

Long: Rn

Rn

n = 0 , 2 , 4 , . . . , 1 4

3-151

SLA
Shift Left Arithmetic

FLAGS:

Z:
S:
V:

D:
H:

Set if the last bit shifted from the destination was 1;
cleared otherwise
Set if the result is zero; cleared otherwise
Set if the result is negative; cleared otherwise
Set if arithmetic overflow occurs, that is, if the
sign of the destination changed during shifting; cleared
otherwise
Unaffected
Unaffected

CYCLES:

NOTE:

Word/Byte
13+3*n

Long
13+3*n (n=number of bit positions,

where 0 is equivalent to 1)

The "src field" is encoded in the instruction format as
the 16-bit two's complement positive value of the source
operand. For each operand size, the operation is undefined
if the source operand is not in the range specified above.

EXAMPLE: If register pair RR2 contains %1234ABCD, the statement

SLAL RR2,#8

will leave the value %34ABCDOO in RR2 and clear the
carry flag.

3-152

SLL
Shift Left Logical

SLL
SLLB
SLLL

dst,src

INSTRUCTION FORMAT: (F5.1)

W/B:

L:

mode
i

mode
i

i

1 1 0 0 1
i i i i

i i i i

1 1 0 0 1
I I 1 1

W/B

S

1

s

dst
i i i

re
i i i

dst
i i i

re

0 0 0 1
i i i

0 1 0 1
I I I

dst: R
src: IM

mode dst src
10 R IM

OPERATION: repeat src times:
dst(O) <- 0
dst(n+l) <- dst(n) {n is 0 to msb-1}
C <- dst(msb)

The destination operand is shifted logically left the
number of bit positions specified by the source operand.
For SLLB, the source is in the range 0 to 8; for SLL,
the source is in the range 0 to 16; for SLLL, the source
is in the range 0 to 32. A shift of zero positions
does not affect the destination; however, the flags
are set according to the destination value. The least
significant bit of the destination is filled with 0,
and the C flag is loaded from the most significant bit
of the destination. This instruction performs an
unsigned multiplication of the destination by a power
of two. The source operand may be omitted from the
assembly language statement and thus defaults to
the value 1.

Byte:

Word: c

15

Long:|c

15

Rn

Rn

n=0,2,4,...,14

3-153

SLL
Shift Left Logical

FLAGS: C: Set if the last bit shifted from the destination was 1;
cleared otherwise

Z: Set if the result is zero; cleared otherwise
S: Set if the most significant bit of the result is set;

cleared otherwise
V: Undefined
D: Unaffected
H: Unaffected

CYCLES: Word/Byte Long
13+3*n 13+3*n (n=number of bit positons,

where 0 is equivalent to 1)

NOTE: The "src field" is encoded in the instruction format
as the 16-bit two's complement positive value of the
source operand. For each operand size, the operation
is undefined if the source operand is not in the
range specified above.

EXAMPLE: If register R3 contains %4321 (0100001100100001),
the statement

SLL R3,#l

will leave the value %8642 (1000011001000010) in R3
and clear the carry flag.

3-154

SOTDR
Special Output, Decrement and Repeat

SOTDR dst,src,r
SOTDRB

dst: IR
src: IR

INSTRUCTION FORMAT:

W/B:

(F6.4)

0 0 1 1
1 1 1

0 0 0 0
1 1 1

1 0 1
I I

W/B

r
I I I

src
I I I

dst
i i i

1 0 1 1
I I I

0 0 0 0

dst src
IR IR R

OPERATION: dst <- src
AUTODECREMENT src {-1 if byte, -2 if word}
r <- r - 1
repeat until r = 0

This instruction is used for block output of strings of
data, typically information to the Memory Management
Unit. The contents of the memory location addressed
by the source register are loaded into the I/O location
addressed by the destination register. I/O addresses
are always 16 bits. The source register is then decre-
mented by one if SOTDRB, or by two if SOTDR, thus moving
the pointer to the previous element in the string. The
word register specified by "r" (used as a counter) is
then decremented by one. The entire operation is re-
peated until the result of decrementing r is zero.
This instruction can output from 1 to 65536 bytes or
32768 words (the value for r must not be greater than
32768 for SOTDR).

FLAGS: C: Unaffected
Z: Undefined
S: Unaffected
V: Set
D: Unaffected
H: Unaffected

CYCLES: Word/Byte
ll+10*n (n=number of data elements transferred)

NOTES: This is a privileged instruction.

The status pins indicate a special I/O reference.

This instruction can be interrupted after each exe-
cution of the basic operation. The program counter
value of the start of this instruction is saved before
the interrupt request is accepted, so that the
instruction can be properly resumed. Seven more cycles
should be added to this instruction's execution time
for each interrupt request that is accepted.

3-155

SOTIR
Special Output, Increment and Repeat

SOTIR dst,src,r
SOTIRB

INSTRUCTION FORMAT: (F6.4)

W/B:

dst: IR
src: IR

dst src
0 0 1 1

I I I

0 0 0 0
1 1 1

1 0 1
I I

W/B

I I I

src
l l l

dst
i i i

0 0 1 1
I I I

0 0 0 0
I I I

IR IR
r_
R

OPERATION: dst <- src
AUTOINCREMENT src {+1 if byte, +2 if word}
r <- r - 1
repeat until r = 0

This instruction is used for block output of strings of
data, typically information to the Memory Management
Unit. The contents of the memory location addressed
by the source register are loaded into the I/O location
addressed by the destination register. I/O addresses
are always 16 bits. The source register is then incre-
mented by one if SOTIRB, or by two if SOTIR, thus moving
the pointer to the next element in the string. The word
register specified by "r" (used as a counter) is then
decremented by one. The entire operation is repeated
until the result of decrementing r is zero. This instruc-
tion can output from 1 to 65536 bytes or 32768 words (the
value for r must not be greater than 32768 for SOTIR).

FLAGS: C: Unaffected
Z: Undefined
S: Unaffected
V: Set
D: Unaffected
H: Unaffected

CYCLES: Word/Byte
ll+10*n (n=number of data elements transferred)

NOTES: This is a privileged instruction.

The status pins indicate a special I/O reference.

This instruction can be interrupted after each execution
of the basic operation. The program counter value of
the start of this instruction is saved before the in-
terrupt request is accepted, so that the instruction can
be properly resumed. Seven more cycles should be added to
this instruction's execution time for each interrupt
request that is accepted.

3-156

SOUT
Special Output

SOUT dst,src
SOUTB

INSTRUCTION FORMAT: (F7.2)

W/B: 0 0 1 1 1 0 1
I I I I I I

W/B src
i i i

0 1 1 1

OPERATION: dst <- src

dst: DA
src: R

dst src
DA R

FLAGS:

CYCLES:

The contents of the source operand are loaded into
the destination. I/O addresses are always 16 bits.
This instruction is used to load information into
the Memory Management Unit.

No flags affected

Word/Byte_*

NOTES: This is a privileged instruction.

The status pins indicate a special I/O reference.

3-157

SOUTD
Special Output and Decrement

SOUTD dst,src,r
SOUTDB

INSTRUCTION FORMAT: (F6.4)

W/B: 0 0 1 1
I I I

0 0 0 0
1 1 1

1 0 1
1 1

W/B

r
1 1 1

src
i i i

dst
i i i

1 0 1 1
i i i

1 0 0 0
I I I

dst: IR
src: IR

dst src
IR IR

OPERATION:

FLAGS:

CYCLES:

dst <- src
AUTODECREMENT src {-1 if byte, -2 if word}
r <- r - 1

This instruction is used for block output of strings of
data, typically information to the Memory Management
Unit. The contents of the memory location addressed by
the source register are loaded into the I/O location
addressed by the destination register. I/O addresses
are always 16 bits. The source register is then decre-
mented by one if SOUTDB, or by two if SOUTD, thus mov-
ing the pointer to the previous element in the string.
The word register specified by "r" (used as a counter)
is then decremented by one.

C: Unaffected
Z: Undefined
S: Unaffected
V: Set if the result of decrementing r is zero;

cleared otherwise
D: Unaffected
H: Unaffected

Word/Byte
21

NOTES: This is a privileged instruction.

The status pins indicate a special I/O reference.

3-158

SOUTI
Special Output and Increment

SOUTI dst,src,r
SOUTIB

INSTRUCTION FORMAT: (P6.4)

dst: IR
src: IR

W/B: 0 0 1 1
I I I

0 0 0 0
I 1 1

1 0 1
I I

r
I I

W/B src
i i i

dst
i i i

0 0 1 1
I I I

1 0 0 0
I 1 1

FLAGS: C:
Z:
S:
V:

CYCLES:

dst
IR

srcnr
r
R

OPERATION: dst <- src
AUTOINCREMENT src {+1 if byte, +2 if word}
r <- r - 1

This instruction is used for block output of strings of
data, typically information to the Memory Management
Unit. The contents of the memory location addressed
by the source register are loaded into the I/O location
addressed by the destination register. I/O addresses
are always 16 bits. The source register is then incre-
mented by one if SOUTIB, or by two if SOUTI, thus mov-
ing the pointer to the next element in the string.
The word register specified by "r" (used as a counter)
is then decremented by one.

Unaffected
Undefined
Unaffected
Set if the result of decrementing r is zero;
cleared otherwise
Unaffected

H: Unaffected

Word/Byte
21

NOTES: This is a privileged instruction.

The status pins indicate a special I/O reference.

3-159

SRA
Shift Right Arithmetic

SRA dst,src
SRAB
SRAL

INSTRUCTION FORMAT: (F5.1)

W/B:

L:

mode 1 1 0 0 1 W / B
I I I l

dst
i i i

1 0 0 1
I I I

src
i i i i i i i i i i i i i i i

mode
i

1 1 0 0 1 1
l l l l

dst
_L L I

src
i i i i i i i i i i i

1 1 0 1
I I I

I I I

dst: R
src: IM

mode dst src
10 R TST

OPERATION: repeat src times:
dst(msb) <- dst(msb)
dst(n) <- dst(n+l) {n is 0 to msb-1}
C <- dst(O)

The destination operand is shifted arithmetically right
the number of bit positions specified by the source
operand. For SRAB, the source is in the range 0 to 8;
for SRA, the source is in the range 0 to 16; for SRAL, the
source is in the range 0 to 32. A shift of zero positions
does not affect the destination, however, the flags are se
according to the destination value. The sign bit of the
destination is replicated, and the C flag is loaded from
bit 0 of the destination. The source operand may be
omitted from the assembly language statement and thus
defaults to the value 1.

Byte:

Word:

Long:

15

,11

15

Rn

15

H

n=0,2,4,...,14

3-160

SRA
Shift Right Arithmetic

FLAGS: Set if the last bit shifted from the destination
was 1; cleared otherwise
Set if the result is zero; cleared otherwise
Set if the result is negative; cleared otherwise
Cleared
Unaffected
Unaffected

CYCLES:

NOTE:

Word/Byte
13+3*n 13+3*n (n=number of bit positions,

where 0 is equivalent to 1)

The "src field" is encoded in the instruction format as
the 16-bit two's complement negative value of the source
operand. For each operand size, the operation is undefined
if the source operand is not in the range specified above.

EXAMPLE: If register RH6 contains %3B (00111011), the statement

SRAB RH6,#2

will leave the value %OE (00001110) in RH6 and set the
carry flag.

3-161

SRL
Shift Right Logical

SRL
SRLB
SRLL

dst,src

INSTRUCTION FORMAT: (F5.1)

W/B:

L:

mode
i

1 1 0 0 1 W / B
I I I I

dst
i i i

0 0 0 1
I I 1

src
i i i i i i i i i i i i i i i

mode
i

i

1 1 0 0 1 1
I I I I I

dst
i i i

0 1 0 1
I I I

src
i i i i i i i i i i i i i

dst: R
src: IM

mode dst
10 R

s r c
IM

OPERATION: repeat src times:
dst(msb) <- 0
dst(n) <- dst(n+i;
C <- dst(O)

{n is 0 to msb-1}

The destination operand is shifted logically right the
number of bit positions specified by the source operand.
For SRLB, the source operand is in the range 0 to 8; for
SRL, the source is in the range 0 to 16; for SRLL, the
source is in the range 0 to 32. A shift of zero positions
does not affect the destination, however, the flags are se
according to the destination value. The most significant
bit of the destination is filled with 0, and the C flag is
loaded from bit D of the destination. This instruction
performs an unsigned division of the destination by a
power of two. The source operand may be omitted from the
assembly language statement and thus defaults to the value
of 1.

Byte:

15

Word: o- D-S
15

Long: °~~"~|_ Rn

15

Rn

n=0,2,4,...,14

3-162

SRL
Shift Right Logical

FLAGS:. C: Set if the last bit shifted from the destination
was 1; cleared otherwise

Z: Set if the result is zero; cleared otherwise
S: Set if the most significant bit of the result is

set; cleared otherwise
V: Undefined
D: Unaffected

CYCLES:

NOTE:

H: Unaffected

Word/Byte
13+3*n (n=number of bit positions,

where 0 is equivalent to 1)

EXAMPLE:

The "src field" is encoded in the instruction format as
the 16-bit two's complement negative value of the source
operand. For each operand size, the operation is undefined
if the source operand is not in the range specified above.

If register RO contains %1111 (0001000100010001), the
statement

SRL R0,#6

will leave the value %0044
clear the carry flag.

(0000000001000100) in RO and

3-163

SUB
Subtract

SUB dst ,src
SUBB
SUBL

INSTRUCTION FORMAT: (F2.1)

dst: R
src: R, IM, IR, DA, X

W/B:

L:

mode
i

mode
i

0 0 0 0 1
I I I I

W/B

0 1 0 0 1 0
1 t I I I

src
1 1 1

src
1 1 1

dst
1 1 1

dst
i i j

mode
10
00
00
01
01

dst
R
R
R
R
R

src
~TT
IM (
IR (
DA (
X (

src
src
src
src

field=0)
fieldOO)
f ield=0)
fieldOO)

OPERATION:

FLAGS:

dst <- dst - src

The source operand is subtracted from the destination
operand and the result is stored in the destination.
The contents of the source are not affected. Sub-
traction is performed by adding the two's complement
of the source operand to the destination operand.

C: Cleared if there is a carry from the most significant
bit; set otherwise, indicating a "borrow"

Z: Set if the result is zero; cleared otherwise
S: Set if the result is negative; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the

operands were of opposite signs and the sign of the
result is the same as the sign of the source; cleared
otherwise

D: SUB,SUBL - unaffected; SUBB - set
H: SUB,SUBL - unaffected; SUBB - cleared if there is a

carry from the most significant bit of the low-order
four bits of the result; set otherwise, indicating a
"borrow"

CYCLES: src

R
IM
IR
DA
X

Word/Byte
NS SS SL
4
7
7
9
10

—--
--
10
10

—--
--
12
13

NS
8

14
14
15
16

Long
SS

—--

—16
16

SL

—--

—18
19

EXAMPLE: If register RO contains %0344, the statement

SUB RO,#%AA

will leave the value %029A in RO.

3-164

TCC
Test Condition Code

TCC cc,dst dst: R
TCCB

INSTRUCTION FORMAT: (F1.4)
mode dst__ __

W/B : I mode 1 0 1 1 1 W/B dst

OPERATION: if cc is true then dst(O) <- 1

This instruction is used to create a Boolean data value
based on the condition code resulting from a previous
operation. The condition code specified by "cc" is
tested. If the condition is true, then the least
significant bit of the destination is set; otherwise it
is unaffected. See section 3.2.1 for a list of condi-
tion codes. All other bits in the destination are
unaffected.

FLAGS: No flags affected

CYCLES: Word/Byte
5

EXAMPLE: If register Rl contains 0, and the Z flag is set, the
statement

TCC EQ,R1

will leave the value 1 in Rl.

3-165

TEST
Test

TEST dst
TESTB
TESTL

INSTRUCTION FORMAT: (Fl.l)

dst: R, IR, DA, X

B:

L:

mode

mode
i

0 0 1 1 0 W/B

0 1 1 1 0 0
I 1 1 1 I

dst

dst
i i i

0 1 0 0

1 0 0 0
I 1 1

mode dst
TO" -R-
00 IR
01 DA (dst field=0)
01 X (dst fieldOO)

OPERATION: dst OR 0

The destination operand is tested (logically ORed with
zero) , and the appropriate flags set accordingly, which
may then be used for arithmetic and logical conditional
jumps. The contents of the destination are not affected,

FLAGS: C: Unaffected
Z: Set if the result is zero; cleared otherwise
S: Set if the most significant bit of the result

is set; cleared otherwise
P: TEST - unaffected; TESTL - undefined;

TESTB - set if parity of the result is even;
cleared otherwise

D: Unaffected
H: Unaffected

CYCLES: dst

R
IR
DA
X

EXAMPLE: If register R5 contains %FFFF (1111111111111111),
the statement

Word/Byte
NS
7
8

11
12

SS

12
12

SL

14
15

NS
13
13
16
17

Long
SS

17
17

SL

19
20

TEST R5

will set the S flag, clear the
the other flags unaffected.

1 flag, and leave

3-166

TRDB
Translate and Decrement

TRDB dst,src,r

INSTRUCTION FORMAT: (F6.4)

B: 1 0 1 1
I I I

0 0 0 0
1 1 1

1 0 0 0
I I I

I I I

dst
i i i

src
i i i

1 0 0 0
I 1 1

0 0 0 0
1 1 1

dst: IR
src: IR

dst src
IR IR

r
R

OPERATION:

FLAGS:

CYCLES:

dst <- src[dst]
AUTODECREMENT dst {-1}
r <- r - 1

This instruction is used to translate a string of
bytes from one code to another code. The contents
of the location addressed by the destination reg-
ister (the "target byte") is used as an index into
a table of translation values whose lowest address
is contained in the source register. The index is
computed by adding the target byte to the address
contained in the source register. The addition is
performed following the rules for addressing mode
arithmetic, with the target byte treated as an un-
signed 8-bit value extended with high-order zeros.
The sum is used as the address of an 8-bit transla-
tion value within the table which replaces the
original contents of the location addressed by the
destination register.

The destination register is then decremented by one,
thus moving the the pointer to the previous element in
the string. The word register specified by "r" (used
as a counter) is then decremented by one.

Because the 8-bit target byte is added to the source
register to obtain the address of a translation value,
the table may contain 256 bytes. A smaller table size
may be used where it is known that not all possible
8-bit target byte values will occur.

Unaffected
Undefined
Unaffected
Set if the result of decrementing r is zero; cleared
otherwise

D: Unaffected
H: Unaffected

3-167

TRDB
Translate and Decrement

NOTE: The original contents of register RH1 is lost, and is
replaced by an undefined value.

EXAMPLE: If register R6 contains %4001, the byte at location
%4001 contains 3, register R9 contains %1000, the
byte at location %1003 contains %AA, and register R12
contains 2, the statement

TRDB @R6,@R9,R12

will leave the value %AA in location %4001, the value
%4000 in R6, and the value 1 in R12. R9 will not be
affected.

3-168

TRDRB
Translate, Decrement and Repeat

TRDRB dst,src,r

INSTRUCTION FORMAT: (F6.4)

B: 1 0 1 1
I I I

0 0 0 0

1 0 0 0
I I I

r
i i i

dst
i i i

src
i i i

1 1 0 0
I I I

0 0 0 0
1 1 1

dst: IR
src: IR

dst src
IR IR R

OPERATION:

FLAGS:

dst <- src[dst]
AUTODECREMENT dst {-1}
r <- r - 1
repeat until r = 0

This instruction is used to translate a string of bytes
from one code to another code. The contents of the
location addressed by the destination register (the
"target byte") is used as an index into a table of
translation values whose lowest address is contained
in the source register. The index is computed by
adding the target byte to the address contained in the
source register. The addition is performed following
the rules for addressing mode arithmetic, with the
target byte treated as an unsigned 8-bit value extended
with high-order zeros. The sum is used as the address
of an 8-bit translation value within the table which
replaces the original contents of the location address-
ed by the destination register.

The destination register is then decremented by one,
thus moving the pointer to the previous element in the
string. The word register specified by "r" (used as a
counter) is then decremented by one. The entire
operation is repeated until the result of decrementing
r is zero. This instruction can translate from 1 to
65536 bytes.

Because the 8-bit target byte is added to the source
register to obtain the address of a translation value,
the table may contain 256 bytes. A smaller table size
may be used where it is known that not all possible
8-bit target byte values will occur.

C: Unaffected
Z: Undefined
S: Unaffected
V: Set
D: Unaffected
H: Unaffected

3-169

TRDRB
Translate, Decrement and Repeat

CYCLES:

NOTES:

EXAMPLE:

Byte
ll+14*n (n=number of data elements translated)

The original contents of register RHl is lost, and is
replaced by an undefined value.

This instruction can be interrupted after each
execution of the basic operation. The program
counter of the start of this instruction is saved
before the interrupt request is accepted, so that
the instruction can be properly resumed. Seven
more cycles should be added to this instruction's
execution time for each interrupt request that is
accepted.

If register R6 contains %4002, the bytes at locations
%4000 through %4002 contain the values %00, %40, %80,
respectively, register R9 contains %1000, the trans-
lation table from location %1000 through %10FF con-
tains 0,1,2,... ,%7F,0,1,2,... ,%7F (the second zero
is located at %1080), and register R12 contains 3,
the statement

TRDRB @R6,@R9,R12

will leave the values %00, %40, %00 in locations %4000
through %4002, respectively. Register R6 will contain
%3FFF, and R12 will contain 0. R9 will not be affected,

BEFORE

%4000

%4001

%4002

%1000

%1001

% 1002

%107F

%1080

%1081

%1082

%10FF

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

1

0

•

0

0

0

0

1

0

0

0

1

0

0

0

1

0

0

0

1

0

0

0

1

0

0

0

1

0

0

1

1

0

1

0

•
0 1 1 1 1 1 1 1

3-170

TRIB
Translate and Increment

TRIB ds t , s rc , r

INSTRUCTION FORMAT: (F 6 . 4)

B: 1 0 1 1
I I I

0 0 0 0

1 0 0 0
I I I

r
i i i

dst
i i i

src

0 0 0 0
1 1 1

0 0 0 0

dst: IR
src: IR

dst

OPERATION: dst <- src[dst]
AUTOINCREMENT dst {+1}
r <- r - l

This instruction is used to translate a string of bytes
from one code to another code. The contents of the
location addressed by the destination register (the
"target byte") is used as an index into a table of
translation values whose lowest address is contained
in the source register. The index is computed by
adding the target byte to the address contained in the
source register. The addition is performed follow-
ing the rules for addressing mode arithmetic, with
the target byte treated as an unsigned 8-bit value
extended with high-order zeros. The sum is used as
the address of an 8-bit translation value within
the table which replaces the original contents of
the location addressed by the destination register.

The destination register is then incremented by one,
thus moving the pointer to the next element in the
string. The word register specified by "r" (used
as a counter) is then decremented by one.

Because the 8-bit target byte is added to the source
register to obtain the address of a translation value,
the table may contain 256 bytes. A smaller table
size may be used where it is known that not all pos-
sible 8-bit target byte values will occur.

FLAGS: C: Unaffected
Z: Undefined
S: Unaffected
V: Set if the result of decrementing r is zero; cleared

otherwise
D: Unaffected
H: Unaffected

CYCLES: Byte

3-171

TRIB
Translate and Increment

NOTE:

EXAMPLE

The original contents of register RH1 is lost, and is
replaced by an undefined value.

This instruction is used in a "loop" of instructions
which translate a string of data from one code to
any other desired code, but an intermediate oper-
ation on each data element is required. The follow-
ing sequence translates a string of 1000 bytes to the
same string of bytes, with all ASCII "control char-
acters" (values less than 32, see Appendix) translat-
ed to the "blank" character (value=32). A test, how-
ever, is made for the special character "return"
(value=13) which terminates the loop. The translation
table contains 256 bytes. The first 33 (0-32) entries
all contain the value 32, and all other entries con-
tain their own index in the table, counting from
zero.

LOOP;

LD R3,#1000
LD Rl,#STRING
LD R2,#TABLE

•
»

CPB @R1,#13
JR EQ,DONE
TRIB @R1,@R2,R3
JR NOV,LOOP

!Initialize
ILoad start

counter!
addresses!

DONE:

ICheck for return character!
!Exit loop if found!
ITranslate next byte!
iRepeat until counter = 0!

TABLE+ 0

TABLE+ 1

TABLE+ 2

TABLE+ 32

TABLE+ 33

TABLE+ 34

TABLE + 25s

0

0

0

0

0

0

1 0

1 0

1 0

0

0

0

0

0

0

0

0

0

0

0

0

•
0

0

0

0

0

0

1 0

1 0

1 0

0

0

0

0

0

0

0

0

1

0

1

0

•
1 1 1 1 1 1 1 1

3-172

TRIRB
Translate, Increment and Repeat

TRIRB dst ,src , r

INSTRUCTION FORMAT: (F6.4)

dst: IR
src: IR

B: 1 0 1 1
I I I

0 0 0 0
I I 1

1 0 0 0
I 1 1

r

dst
i i i

src
i i i

0 1 0 0
I I]

0 0 0 0
1 1 1

dst
IR

src
IR

r
R

OPERATION:

FLAGS:

CYCLES:

dst <- src[dst]
AUTOINCREMENT dst
r <- r - 1
repeat until r = 0

{+1}

This instruction is used to translate a string of bytes
from one code to another code. The contents of the
location addressed by the destination register (the
"target byte") is used as an index into a table of trans-
lation values whose lowest address is contained in the
source register. The index is computed by adding the
target byte to the address contained in the source
register. The addition is performed following the rules
for addressing mode arithmetic, with the target byte
treated as an unsigned 8-bit value extended with high-
order zeros. The sum is used as the address of an 8-bit
translation value within the table which replaces the
original contents of the location addressed by the dest-
ination register.

The destination register is then incremented by one, thus
moving the pointer to the next element in the string.
The word register specified by "r" (used as a counter) is
then decremented by one. The entire operation is repeated
until the result of decrementing r is zero. This in-
struction can translate from 1 to 65536 bytes.

Because the 8-bit target byte is added to the source
register to obtain the address of a translation value,
the table may contain 256 bytes. A smaller table size
may be used where it is known that not all possible 8-bit
target byte values will occur.

C: Unaffected
Z: Undefined
S: Unaffected
V: Set
D: Unaffected
H: Unaffected

Byte
ll+14*n (n=number of data elements translated)

3-173

TRIRB
Translate, Increment and Repeat

NOTES: The original contents of register RHl is lost, and is
replaced by an undefined value.

This instruction can be interrupted after each exe-
cution of the basic operation. The program counter
of the start of this instruction is saved before
the interrupt request is accepted, so that the in-
struction can be properly resumed. Seven more cycles
should be added to this instruction's execution time
for each interrupt request that is accepted.

EXAMPLE: The following sequence of instructions can be used to
translate a string of 80 bytes from one code to an-
other. The pointers to the string and the trans-
lation table are set, the number of bytes to translate
is set, and then the translation is accomplished.

LD R1,#STRING
LD R2,#TABLE
LD R3,#80
TRIRB @R1,@R2,R3

3-174

TRTDB
Translate, Test and Decrement

TRTDB srcl,src2,r

INSTRUCTION FORMAT: (F6.4)

B: 1 0 1 1
I I I

0 0 0 0
1 1 1

1 0 0 0
I I I

r
i 1 1

srci
i i i

src2
i i i

1 0 1 0
I 1 1

0 0 0 0
1 1 1

srcl: IR
src2: IR

srcl

OPERATION: RH1 <- src2[srcl]
AUTODECREMENT srcl {-1}
r <- r - 1

This instruction is used to scan a string of bytes
testing for bytes with special meaning. The contents
of the location addressed by the first source register
(the "target byte") is used as an index into a table
of translation values whose lowest address is con-
tained in the second source register. The index is
computed by adding the target byte to the address con-
tained in the second source register. The addition is
performed following the rules for addressing mode arith-
metic, with the target byte treated as an unsigned 8-bit
value extended with high-order zeros. The sum is used
as the address of an 8-bit value within the table which
is loaded into register RH1. The Z flag is set if the
value loaded into RH1 is zero; otherwise the Z flag is
cleared. The contents of the locations addressed by the
source registers are not affected.

The first source register is then decremented by one,
thus moving the pointer to the previous element in the
string. The word register specified by "r" (used as a
counter) is then decremented by one.

Target byte values which have corresponding zero trans-
lation table entry values are to be scanned over, while
target byte values which have corresponding non-zero
translation table entry values are to be detected.
Because the 8-bit target byte is added to the second
source register to obtain the address of a translation
value, the table may contain 256 bytes. A smaller table
size may be used where it is known that not all possible
8-bit target byte values will occur.

3-175

TRTDB
Translate, Test and Decrement

FLAGS:

CYCLES:

Unaffected
Set if the translation value loaded into RH1 is zero;
cleared otherwise
Unaffected
Set if the result of decrementing r is zero; cleared
otherwise
Unaffected
Unaffected

Byte

EXAMPLE: If register R6 contains %4001, the byte at location
%4001 contains 3, register R9 contains %1000, the
byte at location %1003 contains %AA, and register
R12 contains 2, the statement

TRTDB @R6,@R9,R12

will leave the value %AA in RHl, the value %4000 in
R6, and the value l in R12. Location %4001 and
register R9 will not be affected.

3-176

TRTDRB
Translate, Test, Decrement and Repeat

TRTDRB srcl,src2,r

INSTRUCTION FORMAT:

B:

(F6.4)

1 0 1 1
I 1 1

0 0 0 0

1 0 0 0
I I I

r
I I I

srci
i i i

src2
i i i

1 1 1 0
I I I

1 1 1 0

srcl: IR
src2: IR

srcl src2
IR IR

r_
R

OPERATION: RH1 <- src2[srcl]
AUTODECREMENT srcl {-1}
r <- r - 1
repeat until RHl <> 0 or r = 0

This instruction is used to scan a string of bytes
testing for bytes with special meaning. The contents
of the location addressed by the first source register
(the "target byte") is used as an index into a table
of translation values whose lowest address is contained
in the second source register. The index is computed
by adding the target byte to the address contained in
the second source register. The addition is performed
following the rules for addressing mode arithmetic,
with the target byte treated as an unsigned 8-bit
value extended with high-order zeros. The sum is used
as the address of an 8-bit value within the table which
is loaded into register RHl. The Z flag is set if the
value loaded into RHl is zero; otherwise the Z flag is
cleared. The contents of the locations addressed by
the source registers are not affected.

The first source register is then decremented by one,
thus moving the pointer to the previous element in the
string. The word register specified by "r" (used as
a counter) is then decremented by one. The entire
operation is repeated until either the 1 flag is clear,
indicating that a non-zero translation value was loaded
into RHl, or until the result of decrementing r is
zero. This instruction can translate and test from 1
to 65536 bytes.

Target byte values which have corresponding zero
translation table entry values are to be scanned
over, while target byte values which have correspond-
ing non-zero translation table entry values are to be
detected. Because the 8-bit target byte is added to
the second source register to obtain the address of a
translation value, the table may contain 256 bytes.
A smaller table size may be used where it is known
that not all possible 8-bit target byte values will
occur.

3-177

TRTDRB
Translate, Test, Decrement and Repeat

FLAGS: C: Unaffected
Z: Set if the translation value loaded into RH1 is zero;

cleared otherwise
S: Unaffected
V: Set if the result of decrementing r is zero; cleared

otherwise
D: Unaffected
H: Unaffected

CYCLES:

NOTE:

EXAMPLE;

Byte
ll+14*n (n=number of data elements tested)

This instruction can be interrupted after each exe-
cution of the basic operation. The program counter of
the start of this instruction is saved before the in-
terrupt request is accepted, so that the instruction
can be properly resumed. Seven more cycles should be
added to this instruction's execution time for each
interrupt request that is accepted.

If register R6 contains %4002, the bytes at locations
%4000 through %4002 contain the values %00, %40, %80,
respectively, register R9 contains %1000, the transla-
tion table from location %1000 through %10FF contains
0,1,2,...,%7F,0,1,2,...,%7F (the second zero is
located at %1080) , and register R12 contains 3, the
statement

TRTDRB @R6,@R9,R12

will leave the value %40 in RH1 (which was loaded from
location %1040). Register R6 will contain %4000, and
R12 will contain 1. R9 will not be affected.

%4000 0 0 0 0

%4001 0 1 0 0

%4002 1 0 0 0

%1000

0 0 0 0 %1001

0 0 0 0 %1002

o o o o •
•

•

%107F

%1080

%1081

%1082

•

•

•

%10FF

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

•
•

•

0 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

•

•

•

0 1 1 1 1 1 1 1

3-178

TRTIB
Translate, Test and Increment

TRTIB srcl,src2,r

INSTRUCTION FORMAT: (F6.4)

B: 1 0 1 1
I I I

0 0 0 0
1 1 1

1 0 0 0
I I 1

r
i i i

srcl
i i i

src2
i i i

0 0 1 0
I I I

0 0 0 0
1 1 1

srcl: IR
src2: IR

srcl src2
IR IR

r_
R

OPERATION: RH1 <- src2[srcl]
AUTOINCREMENT srcl {+1}
r <- r - 1

This instruction is used to scan a string of bytes
testing for bytes with special meaning. The contents
of the location addressed by the first source register
(the "target byte") is used as an index into a table
of translation values whose lowest address is con-
tained in the second source register. The index is
computed by adding the target byte to the address
contained in the second source register. The addi-
tion is performed following the rules for addressing
mode arithmetic, with the target byte treated as an
unsigned 8-bit value extended with high-order zeros.
The sum is used as the address of an 8-bit value
within the table which is loaded into register RHl.
The Z flag is set if the value loaded into RHl is
zero; otherwise the Z flag is cleared. The contents
of the locations addressed by the source registers
are not affected.

The first source register is then incremented by one,
thus moving the pointer to the next element in the
string. The word register specified by "r" (used as
a counter) is then decremented by one.

Target byte values which have corresponding zero
translation table entry values are to be scanned
over, while target byte values which have corres-
ponding non-zero translation table entry values are
to be detected. Because the 8-bit target byte is
added to the second source register to obtain the
address of a translation value, the table may con-
tain 256 bytes. A smaller table size may be used
where it is known that not all possible 8-bit target
byte values will occur.

3-179

TRTIB
Translate, Test and Increment

FLAGS: C: Unaffected
Z: Set if the translation value loaded into RH1 is zero;

cleared otherwise
S: Unaffected
V: Set if the result of decrementing r is zero; cleared

otherwise
D: Unaffected
H: Unaffected

CYCLES: Byte

EXAMPLE: This instruction is used in a "loop" of instructions
which translate and test a string of data, but an
intermediate operation on each data element is re-
quired. The following sequence outputs a string of
72 bytes, with each byte of the original string
translated from its 7-bit ASCII code (see Appendix)
to an 8-bit value with odd parity. A test, however,
is made for the special character "return" (value=%D)
which terminates the loop. The translation table
contains 128 bytes, which assumes that the most
significant bit of each byte in the string is always
zero. Each entry contains its own index in the
table in the low-order seven bits, with the most
significant bit of the value set or cleared to
give odd parity for the entire value.

LOOP:

LD
LD
LD

CPB
JR
TRTIB
OUTB
JR

R4,#72
R5,#STRING
R6,#TABLE

(§R5,#%D
EQ,DONE
@R5,@R6,R4
PORTN,RH1
NOV,LOOP

DONE:

unit ial ize counter!
!Load start addresses!

ICheck for return character!
!Exit loop if found!
!Translate next byte!
!0utput with odd parity!
IRepeat until counter=0!

TABLE + 0

TABLE +1

TABLE + 2

TABLE + 3

TABLE + 4

TABLE + 5

TABLE + 6

TABLE + 7

TABLE + 8

TABLE + 9

•

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

1 0 0 0 0 0 1 1

0 0 0 0 0 1 0 0

1 0 0 0 0 1 0 1

1 0 0 0 0 1 1 0

0 0 0 0 0 1 1 1

0 0 0 0 1 0 0 0

1 0 0 0 1 0 0 1

•

3-180

TRTIRB
Translate, Test, Increment and Repeat

TRTIRB srcl ,src2,r

INSTRUCTION FORMAT:

B:

(F 6 . 4)

1 0 1 1
I I I

0 0 0 0
I I I

1 0 0 0
1 1 1

r
i i i

srd
i i i

src2
i i i

0 1 1 0
I I I

1 1 1 0

srcl: IR
src2: IR

srcl src2
IR IR

r
R

OPERATION: RH1 <- s rc2[s rc l]
AUTOINCREMENT srcl {+1}
r <- r - 1
repeat until RH1 <> 0 or r = 0

This instruction is used to scan a string of bytes
testing for bytes with special meaning. The contents
of the location addressed by the first source register
(the "target byte") is used as an index into a table
of translation values whose lowest address is contain-
ed in the second source register. The index is com-
puted by adding the target byte to the address con-
tained in the second source register. The addition is
performed following the rules for addressing mode
arithmetic, with the target byte treated as an unsigned
8-bit value extended with high-order zeros. The sum
is used as the address of an 8-bit value within the
table which is loaded into register RH1. The Z flag
is set if the value loaded into RH1 is zero; otherwise
the Z flag is cleared. The contents of the locations
addressed by the source registers are not affected.

The first source register is then incremented by one,
thus moving the pointer to the next element in the
string. The word register specified by "r" (used as
a counter) is then decremented by one. The entire
operation is repeated until either the Z flag is
clear, indicating that a non-zero translation value
was loaded into RH1, or until the result of decrement-
ing r is zero. This instruction can translate and test
from 1 to 65536 bytes.

Target byte values which have corresponding zero
translation table entry values are to be scanned over,
while target byte values which have corresponding
non-zero translation table entry values are to -be
detected. Because the 8-bit target byte is added to
the second source register to obtain the address of
a translation value, the table may contain 256 bytes.
A smaller table size may be used where it is known
that not all possible 8-bit target byte values will
occur.

3-181

TRTIRB
Translate, Test, Increment and Repeat

FLAGS: C: Unaffected
Z: Set if the translation value loaded into RHl is zero;

cleared otherwise
S: Unaffected
V: Set if the result of decrementing r is zero; cleared

otherwise
D: Unaffected
H: Unaffected

CYCLES:

NOTE:

EXAMPLE

Byte
ll+14*n (n=number of data elements tested)

This instruction can be interrupted after each execution
of the basic operation. The program counter of the
start of this instruction is saved before the interrupt
request is accepted, so that the instruction can be
properly resumed. Seven more cycles should be added
to this instruction's execution time for each interrupt
request that is accepted.

The following sequence of instructions can be used to
scan a string of 80 bytes, testing for special char-
acters as defined by corresponding non-zero translation
table entry values. The pointers to the string and
translation table are set, the number of bytes to scan
is set, and then the translation and testing is
accomplished. The Z and V flags can be tested after
the operation to determine if a special character was
found, and whether the end of the string has been
reached. The translation value loaded into RHl might
then be used to index another table, or to select one
of a set of sequences of instructions to execute next.

LD
LD
LD
TRTIRB
JR

END OF STRING:

R4,#STRING
R5,#TABLE
R6,#80
@R4,@R5,R6
NZ,SPECIAL

SPECIAL:
JR OV,LAST CHAR SPECIAL

LAST CHAR SPECIAL:

3-182

TSET
Test and Set

TSET dst
TSETB

INSTRUCTION FORMAT: (Fl.l)

W/B: mode W/B dst
i i i 0 1 1 0

I I I

OPERATION:

FLAGS:

CYCLES:

NOTE:

C:
Z:
S:

V:
D:
H:

dst: R, IR, DA, X

mode dst
TO" ~R~
00 IR
01 DA (dst field=0)
01 X (dst fieldOO)

S <- dst(msb)
dst(0:msb) <- 111...111

Tests the most significant bit of the destination
operand, copying its value into the S flag, then sets the
entire destination to all 1 bits. This instruction pro-
vides a locking mechanism which can be used to synchro-
nize software "processes" which require exclusive access
to certain data or instructions at one time.

Unaffected
Unaffected
Set if the most significant bit of the destination
was 1; cleared otherwise
Unaffected
Unaffected
Unaffected

dst Word/Byte
NS SS SL

R 7 -- —
IR 11 — --
DA 14 15 17
X 15 15 18

During the execution of this instruction, BUSRQ is not
honored in the time between loading the destination
from memory and storing the destination to memory.
For systems with one processor, this ensures that the
testing and setting of the destination will be completed
without any intervening accesses. This instruction
should not be used to synchronize software "processes"
residing on separate processors where the destination
is a shared memory location, since this locking mechanism
cannot be guaranteed to function correctly with
multi-processor accesses.

3-183

TSET
Test and Set

EXAMPLE: A simple mutually-exclusive "critical region" may be
implemented by the following sequence of statements:

ENTER:
TSET SEMAPHORE
JR MI,ENTER lloop until resource

controlled by SEMAPHORE
is available!

•

ICritical Region—only one software process
executes this code at a time!

CLR SEMAPHORE !release resource con-
trolled by SEMAPHORE!

3-184

XOR
Exclusive OR

XOR dst,src
XORB

INSTRUCTION FORMAT: (F2.1)

W/B:

dst: R
src: R, IM, IR, DA, X

Imode
i _

0 0 1 0 0 W/B src
l ' '

dst
l l l

OPERATION:

FLAGS: C:
Z:
S:

D:
H:

CYCLES:

EXAMPLE:

mode

00
00
01
01

dst
R
R
R
R
R

src___

IM
IR
DA
X

(src field=0)
(src fieldOO)
(src field=0)
(src fieldOO)

dst <- dst XOR src

The source operand is logically EXCLUSIVE ORed with the
destination operand and the result is stored in the
destination. The contents of the source are not affected.
The EXCLUSIVE OR operation results in a one bit being
stored whenever the corresponding bits in the two
operands are different; otherwise, a zero bit is stored.

Unaffected
Set if the result is zero; cleared otherwise
Set if the most significant bit of the result
is set; cleared otherwise
XOR - unaffected; XORB - set if parity of the
result is even; cleared otherwise
Unaffected
Unaffected

src

R
IM
IR
DA
X

If register RL3 contains %C3 (11000011) and the source
operand is the immediate value %7B (01111011) , the
statement

XORB RL3,#%7B

will leave the value %B8 (10111000) in RL3.

Word/Byte
NS

4
7
7
9

10

SS

—
—
10
10

SL

—

—
12
13

3-185

3.4 ÜNIMPLEMENTED INSTRUCTIONS

As explained in Section 1.6.4, certain binary instruction codes
are defined by the Z8000 architecture, but are not currently
implemented by the hardware. The following opcodes (listed by
the first instruction word in hexadecimal where "x" means any
value) will cause an Unimplemented Instruction trap if an
attempt is made to execute them:

OExx
OFxx
4Exx
4Fxx
8Exx
8Fxx

NOTE

These opcodes are reserved for future
extensions to the Z8000 architecture and must
not be used by the programmer. To provide
for compatibility with Zilog hardware and
software systems, the results of attempted
execution of these instructions is undefined,
other than the occurrence of an Unimplemented
Instruction trap.

3-186

Section 4
Structuring a Z8000 Program

4.1 INTRODUCTION

This section introduces the high-level PLZ/ASM statements
described in Section 5. The structuring of programs and the
concepts of module linkage and relocation are discussed.

4.2 PROGRAM STRUCTURE

4.2.1 Modules

A Z8000 PLZ/ASM program consists of one or more separately-coded
and assembled modules. These modules are combined into an
executable program using the module linkage end relocation
facilities of an operating system such as Z-80 RIO. One of the
modules should include a "main program"; that is, a GLOBAL
procedure whose name is supplied to the linking facility as the
program's entry point.

PLZ/ASM modules are made up of high-level and assembly-language
statements that either declare or define data or perform some
action. The assembly-language statements described in Section 3
are action statements. In general, data definition equates an
identifier with a fixed value or type, whereas data declaration
equates an identifier with a variable and associates a type with
it.

Data, labels, or procedures can be shared between modules by
declaring them to be GLOBAL in one module and declaring them as
EXTERNAL in other modules that reference them. Data, labels, or
procedures declared as INTERNAL to a module may be referenced
only within that module. See Section 4.2.5 for more explanation
of the scope of these objects.

The following example is the skeleton of a module showing two
procedures, the second of which is a main program.

4-1

bubble_sort MODULE

CONSTANT
false := 0
true := 1

EXTERNAL
list ARRAY [10 WORD]

INTERNAL
sort

PROCEDURE

IConstant definition!

lExternal variable
declared in another module

IFirst procedure!
IProcedure name!

END sort

GLOBAL
main

PROCEDURE
ENTRY

LD RO, #9*2
CALL sort
RET

END main

END bubble sort

! End first procedure!

ISecond procedure!

!End second procedure!

!End of module!

4.2.2 Procedures

A procedure declaration defines an executable portion of a module
(including both action and data statements). It also associates
an identifier with that block of code so that it can be activated
by the assembly-language CALL statement. (See the "CALL sort"
statement in the preceding example).

Every procedure declaration also has a scope associated with it.
It can be:

• GLOBAL (the procedure can be called from other
modules) ;

• INTERNAL (it can be called only within the
current module);

• EXTERNAL (it is called from the current module,
but is declared as GLOBAL in another module).

4-2

E3-3055-01 07/02/79

A procedure declaration can include LOCAL variables or label
declarations as shown in the following example. LOCAL variables
and labels can be referenced only within the procedure in which
they are declared.

INTERNAL IProcedure scope!
sort IProcedure name!

PROCEDURE
LOCAL

switch BYTE ILocal variable!
ENTRY
DO !DO loop introduced!
•

!(action statements)!
•

OD !End DO loop!
END sort !End of procedure!

Note in this example that the keyword ENTRY is used to separate
the declarations of LOCAL variables from the executable action
statements making up the body of the procedure. The example also
carries the previous "bubble-sort module" example to the first
inner level of detail--the procedure. At the same time it
introduces another program structuring element--the DO loop.

_/ 4.2.3 DO Loops

The description of the DJNZ instruction in Section 3 pointed out
that it is used primarily for loop control. DO loops perform a
similar function, but in a more structured, high-level manner.
The statements between the keywords DO and OD are executed
repeatedly until control is diverted through a loop control
statement: REPEAT, EXIT, or one of the assembly-language branch
statements. The EXIT statement causes execution to continue at
the first statement following the innermost DO loop containing
the EXIT, while REPEAT statement causes execution to continue at
the first statement of the innermost DO loop containing the
REPEAT.

A DO statement does not introduce a new scope. It contains only
action statements.

4-3

The following example enlarges upon the original "bubblesort"
skeleton and also introduces the IF statement.

DO
LDB switch, #false
CLR Rl
DO

CP Rl, RO
IF UGE THEN EXIT FI

INote nested DO loop!

!IF statement at inner level

INC Rl, #2
OD

CPB switch, #false
IF . . . FI
OD

!End nested DO loop!

!IF statement at outer level!
!End DO loop!

Note in this example that DO loops can contain IF statements or
other DO loops. IF statements can also have DO loops or other IF
statements nested within them.

4.2.4 IF Statements

The general form of the IF statement is:

IF condition-code THEN actionl
ELSE action2

FI

The IF statement specifies that all statements between THEN and
"*•'••" '--'-- ---> * De executed if the condition specified is true.ELSE (actionl)
Otherwise, the statements between ELSE and FI
executed. The ELSE clause can be omitted,
action is performed when the specified condition
the DO loop, the IF statement contains
statements.

(action2) are
in which case no
is false. Like
only executable

The condition codes specified are the same as for the assembly
language JP and JR instructions (section 3.2.1). As in the case
of DO loops versus the DJNZ instruction, one can set up
conditional statements using only assembly-language instructions,
but the high-level IF statement may lead to a more structured
program.

4-4

The following example shows a brief IF statement followed by a
longer one.

IF UGE THEN EXIT FI

IF UGT THEN
LDB switch, #true
LD list(Rl), R6
LD list(R2), R4

FI

4.2.5 Scope

The scope of a variable, label, or procedure, refers to that
portion of the program in which the object is recognized and
handled in keeping with its declaration. When declaring an
object for use solely within the current module or procedure, its
use elsewhere is of no concern. Even though the same identifier
is used in another scope, it refers to a different object.

In general, a scope can be an entire executable program, a
module, or a procedure. An identifier is accessible in a scope S
if it is either

• Declared in S or in the module containing
S, or

• Declared EXTERNAL in the module containing S.

New identifiers are declared by their appearance in a variable,
procedure, constant, or type declaration, or by their use as a
label within the module. If a label identifier is not declared
explicitly, it is assumed to have an INTERNAL scope and thus is
accessible throughout the module in which it is defined. The
scope of a label identifier may explicitly be declared to be
either GLOBAL, INTERNAL, or LOCAL. In addition, a special form
of statement labels is discussed in Section 5.3.5, which always
have a LOCAL scope and therefore cannot be declared explicitly.

New identifiers introduced in a variable, procedure, or label
declaration are accessible only within the newly-established
scope as determined from the declaration class specified:
GLOBAL, EXTERNAL, INTERNAL or LOCAL. A new identifier cannot be
the same as an identifier already accessible in the current
scope.

4-5

For variable and label declarations, GLOBAL specifies that the
variable is declared in the current module but may be used in
other modules. GLOBAL variables have a scope of the entire
executable program. EXTERNAL specifies that the variable is used
in the current module but declared as GLOBAL in another module.
INTERNAL specifies that the variable is declared in the current
module and is accessible only within the current module. LOCAL
specifies that the variable can be accessed only inside the
procedure in which it is declared. GLOBAL, EXTERNAL, and
INTERNAL can only be specified at the module level; LOCAL can
only be used at the procedure level.

For variables declared with type RECORD, the scope of a record
field is the module or procedure in which it is defined. Note
that this implies that record fields must have names that are
unique within their scope.

Procedure declarations must be either GLOBAL, EXTERNAL, or
INTERNAL, as defined for variables above. The name given to the
procedure as part of the procedure declaration is recognized in
the entire scope of the enclosing module.

Constant identifiers are defined using the CONSTANT class, and
can be defined only at the module level. The scope of a constant
identifier is the module scope, and it cannot be used outside the
module unless it is redefined.

Type identifiers are defined using the TYPE class. They can be
defined only at the module level and are recognized only within
the scope of the module.

An identifier used in a scope and not declared in that scope is
said to be free in that scope. Any identifier that is free in
the scope of a procedure must be declared in the enclosing
module. Procedures do not explicitly import variables into their
scope as modules do (via the EXTERNAL declaration).

4.2.6 Summary

The preceding sections were intended only as an introduction to
program structuring. The detailed formats of the declarations
used to define the program structure are listed in Section 5.
Even without those details, however, the following module should
be comprehensible at this point. If any statement looks foreign,
reread the part of Section 3 or 4 that explains its operation.

4-6

An example of a complete bubble_sort module for sorting a 10-word
array is as follows: ~

bubble_sort MODULE

CONSTANT
false := 0
true := 1

EXTERNAL
list ARRAY [10 WORD]

INTERNAL
sort

PROCEDURE
LOCAL

switch BYTE
ENTRY
DO

LDB
CLR
DO

CP

switch, tfalse
Rl

Rl, RO
IF UGE THEN EXIT FI
LD R2, Rl
INC R2, #2
LD R4, list(Rl)
LD R6, list(R2)
CP R4, R6
IF UGT THEN

LDB switch, #true
LD list(Rl), R6
LD list(R2), R4

FI
INC Rl, #2

OD
CPB switch, ffalse
IF EQ THEN RET FI

OD
END sort

GLOBAL
main

PROCEDURE
ENTRY

LD RO, #9*2

CALL sort
RET

END main

END bubble sort

IModule declaration!

IConstant declarations!

JProcedure declaration!

ILocal variable declaration!
ILoop control switch!
IBegin executable part!

Unitialize switch!
IClear array pointer i!

IDone?!

Unitialize pointer j!
!j = i+1 (double for words)!

!If listfi] > listtj] then!
lexchange to bubble largest!
!number to top of array!

lAdvance pointer (double for
words)!
!End nested DO loop!
ITest switch!

!End outer DO loop!
!End of procedure!

!New procedure declaration!
IProgram entry procedure!

!No LOCALS!
! In i t i a l i ze loop control!
IDoub le fo r word a r r a y !
ICal l sort procedure!

! End of m a i n p rocedure !

! End of module !
4-7

E3-3055-01 07/02/79

4.3 RELOCATABILITY

The Z8000 PLZ/ASM assembler produces relocatable object modules.
Essentially, this frees the programmer from memory management
concerns during program development (since object code can be
relocated in memory) and also allows programs to be developed in
modules whose addresses are resolved automatically when the
modules are linked.

Modular program development offers numerous advantages to the
developer. Complex programs can be divided into several smaller
tasks and assigned to a development team, should schedule
constraints require quick completion. An entire program need not
be delayed while one module is awaiting development, since
modules can be separately tested and assembled. A change
affecting a single module will not have a ripple effect through
the entire program and will require reassembly of the affected
module only. In short, several simple programs are generally
easier to write, test, and debug than one large, complex program.

The relocatability feature of the Z8000 assembler is supported by
the $ABS, $REL, and $SECTION assembler directives. These
directives determine whether programs are assembled in
relocatable mode or not, and where data and action statements are
to be loaded into memory. An operating system program called a
linker relocates object modules and resolves inter-module
references.

These assembler directives are summarized below. Other
directives are listed in Appendix C, and are described in detail
in the Z8000 Assembler User's Guide.

4.3.1 Sections

In addition to the logical structuring provided by modules and
procedures, it is possible to divide a program into sections
which can be mapped into various areas of memory when the program
is linked or loaded for execution. For example, the programmer
may choose to group a set of data structures and the procedures
which manipulate them together in the same module. But it may
also be desirable to physically separate the object code for the
procedures from the data in a system where read-only memory is
used for the procedures and read/write memory is used for the
data.

The assembler allows a program to be arbitrarily divided into
named sections. Each section might be allocated to a different
address space; for instance, code or date memory. In the
segmented Z8000, each section might be mapped into a different
segment, or several sections might be combined from different
modules into the same segment. A single module may contain

several sections, each of which will be allocated a different
area in memory. Alternatively, the portions of a single section
may be spread through several modules and the portions will be
automatically combined into a single area by the linker.
Sections provide the programmer with complete control over the
mapping of a program into the address spaces of the Z8000
processor.

Usually the full generality of arbitrary sections is not needed
for a particular application. By default, the assembler
automatically creates two sections for each module, one for all
the data variables and the other for all procedures. The data
section is given the same name as the module name, with the
suffix "_D" (or "_d") appended. The procedure section is given
the same name as the module name, with the suffix "_p" (or "_p")
appended. If the first character of the module name is
uppercase, then an uppercase suffix is used; otherwise, a
lowercase suffix is used.

For example, the data section "bubble_sort_d" will be created for
the sample module in Section 4.2.6, and contains only the BYTE
named "switch". The program section "bubble_sort_p" contains all
the code in the module.

The $SECTION assembler directive can be used to override the
default sectioning. This directive causes all following
statements to be associated with a symbolic identifier which can
later be mapped into a particular memory area. It has the
format:

$SECTION identifier

The $SECTION directive remains in effect until either another
$SECTION directive is encountered, the $SDEFAULT directive is
encountered which returns to the default section scheme described
above, or the end of the module is found.

NOTE

Because the assembler automatically calculates the
displacement used in the Relative addressing mode
(Section 2.4.6), the target address must be in the
same section and module as the instruction which
uses Relative Addressing.

4.3.2 Location Counter Control

The assembler keeps track of the "location" of the current
statement with a location counter, just as an executing program
does with its program counter. There is a location counter
associated with each section in a program. The counter value

4-9

represents a 16-bit offset within the current section. The
offset may be either an absolute value, or it may represent a
relocatable value which may be adjusted depending on where the
module's portion of the section is finally allocated at link or
load time. Relocatable and absolute portions of a section may be
specified in the same module or program.

If the $ABS assembler directive has been specified, the location
counter reflects the absolute location of the current statement;
if $REL has been specified, the counter reflects the relocatable
offset of the statement. If neither is specified, the counter
defaults to relocatable offset 0 at the beginning of a module.
The location counter symbol "$" may be used in any expression,
and represents the address of the first byte of the current
instruction.

For the majority of programming tasks, one need not specify
either $ABS or $REL in the source program. Program location can
be carried out more appropriately at link time or load time. If
one desires complete control over program location at assembly
time, however, the $ABS directive will force that part of the
program to reside at a specific location.

4.3.3 Nodes of Arithmetic Expressions

All arithmetic expressions have one of three modes associated
with them: absolute, relocatable, or external. v ^

An absolute expression consists of one or more constants,
constant identifiers, or absolute labels combined with arithmetic
or logical operators. The difference between two relocatable
expressions is also considered to be absolute.

JP IRQ_VECTOR iWhere IRQ VECTOR is an absolute
label! ~

ADD Rl, #K*3 IWhere K is a constant identifier!

A relocatable expression is one containing exactly one identifier
subject to relocation after assembly. The expression can be
extended by adding or subtracting an absolute expression. Plus
and minus are the only operators allowed, however.

JP Z, LOOP+2 JWhere LOOP is a relocatable
label!

4-10

An external expression is one containing exactly one external
identifier, possibly extended by adding or subtracting an
absolute expression. An external identifier is one that is used
in the current module but defined in another module (Section
4.2.5). The value of an external identifier is not known until
the modules are linked.

LD RO, timer count lExternal if timer_count was
defined outside current module!

In the following summary,
expression, "RE" stands
and "EX" is an external
one of the standard
LOR, LAND, etc.).

"AB" stands for an absolute value or
for a relocatable value or expression,

identifier or expression. "operator" is
arithmetic or logical operators (+, -, *,

"AB" is defined as either:

• an absolute identifier
• AB "operator" AB
• +AB, -AB, or LNOT AB
• RE - RE

"RE" is defined as either:

a relocatable identifier
RE + AB
AB + RE
RE - AB
+RE

"EX" is defined as either:

• an external identifier
• EX + AB
• AB + EX
• EX - AB
• +EX

Certain mode combinations are not permitted in PLZ/ASM. For
example, a relocatable expression that does not result in simple
relocation is invalid. Simple relocation means that only a
single relocation factor need be added to a relocatable value
when the assembled program is relocated.

JP Z , LOOP1 + 8

JP Z, LOOP1 + LOOP2

IVALID — relocation factor is
added only once!

!INVALID — relocation factor
would have to be added twice!

4-11

In general, the second example would be invalid no matter which
arithmetic or logical operator was used to combine LOOPl and
LOOP2. The one exception is subtraction. Suppose LOOP2 is the
label of the first statement following a procedure named LOOPl.
The statement

LD R5, #(LOOP2 - LOOPl)

could be used to find the length of the LOOPl procedure. The
difference between two relocatable labels (which must be in the
same section) is always absolute, regardless of where the module
is relocated to.

Other invalid mode combinations are:

• A relocatable expression multiplied or divided
by an absolute expression:

JP Z, LOOP1*4 !INVALID!

• A relocatable expression subtracted from an
absolute expression (although the reverse is
allowed):

DJNZ R5, LOOPl - 8 !VALID!
DJNZ R5, 8 - LOOPl !INVALID!

• An external expression combined with a relocatable
expression, and vice-versa:

ADD R6, EXTERNAL_NUMB + LOOPl !INVALID!
JP Z, LOOPl - EXTERNAL NUMB 'INVALID!

4-12

Section 5
PLZ/ASM High-level Statements

5.1 Z8000 SOURCE PROGRAM STATEMENTS

The majority of code in a Z8000 PLZ/ASM program will normally be
the assembly-language instructions described in Section 3.
Typically, the source program will also include some high-level
statements and assembler directives.

High-level statements perform two basic functions:

• They introduce program structures (modules,
procedures, DO loops, and IF statements);

• They declare and define data.

Assembler directives control the mode of assembly (absolute or
relocatable), determine where object code is to be stored in
memory, and specify the form of assembler output. These
directives are embedded in the source program and are always
preceded by a dollar sign ($) (see Appendix C).

In the descriptions of high-level statements in this section the
following notational conventions are used:

• Keywords are shown as all capital letters: MODULE

• Parameters shown in lowercase letters represent
items to be replaced by actual data or names:
module_identifier

• Optional items are enclosed in square brackets:
[local_declaration]

• Possible repetition of an item is indicated by
appending a "+" (to signify one or more repetitions)
or an "*" (to signify zero or more repetitions) to the
item: declaration*

• Other special characters shown in statement and command
formats such as :=, (), and [] will be enclosed in
single quotes and must be written as shown. The
special symbol ":=" means "is defined as" or "is
assigned".

5-1

For example:

CONSTANT
constant_identifier ':=' constant_expression

RECORD '[' identifier* type ']'

5.2 PROGRAM STRUCTURING STATEMENTS

5.2.1 Module Declaration

A Z8000 PLZ/ASM program module consists of a sequence of data and
procedure declarations. These declarations are bounded by the
module declaration statement and the end-of-module statement.
The format of a module declaration is:

module_identifier MODULE
declaration*

END module identifier

where
module identifier

declaration

conforms to the rules for
identifiers (Section 2.2.1)

is zero or more data and/or
procedure declarations
(Sections 5.2.2 and 5.3).

Example:
sine_computation MODULE

END sine_computation

5.2.2 Procedure Declaration

A procedure declaration defines an executable part of a program
and associates an identifier with it so that it can be activated
by the assembly-language CALL statement.

The procedure heading specifies the identifier naming the
procedure. This identifier labels the first instruction in the
procedure, and can be used as any other program label. The scope
of the procedure identifier may be either GLOBAL, INTERNAL, or
EXTERNAL. If the procedure is declared EXTERNAL, then only the
procedure identifier is given, since the actual definition of the
procedure occurs in some other module. A procedure declaration
may also include local variable declarations. These variables

5-2

are recognized only within the procedure in which they are
declared.

The format of the procedure declaration is:

procedure_identifier PROCEDURE
[LOCAL

[variable_identifier+ type]*]*
[ENTRY
action_statement*]

END procedure_identifier

where
identifier conforms to the rules for

identifiers (Section 2.2.1).

type is BYTE, SHORT_INTEGER, INTEGER,
WORD, LONG, LONG_INTEGER, LABEL,
ARRAY, RECORD or a user_defined
type (Sections 5.3.2 through 5.3.4).

action_statement is zero or more assembly-language,
DO, IF, REPEAT, or EXIT statements,
or a combination of these
statements.

The keyword ENTRY is used to separate the local variable
declarations from the executable part of the procedure, and must
be used whenever any action statements are specified.

Example:

EXTERNAL
print PROCEDURE

GLOBAL
suml BYTE

add_routine PROCEDURE
LOCAL

sum BYTE
ENTRY

LDB RH2,suml
ADDB RH2,#72
LDB sum,RH2
CALL print
RET

END add_routine

Note that the RET instruction precedes the END statement. If RET
is not present, control will fall through to the statement
following the END statement.

5-3

5.2.3 DO Statement

DO loops provide a framework for performing actions repetitively.
The statements between the DO and OD keywords are executed
repeatedly until control is diverted through a loop control
statement.

The only way the execution flow of a DO loop can be diverted is
by encountering an assembly-language branch instruction (DJNZ,
JP, JR, CALL, CALR, RET, or IRET) or an EXIT or REPEAT statement
(described below).

The format of the DO loop is:

where

[label]*
DO

action_statement*
OD

label

action statement

conforms to the rules for labels
(Sections 2.2.1 and 5.3.5) and is
used to identify the DO block for
use with multi-level EXIT and
REPEAT statements.

is zero or more assembly-language,
DO, IF, REPEAT, or EXIT statements,
or a combination of these
statements.

The assembler automatically inserts a single unconditional jump
instruction at the OD keyword which branches back to the DO
keyword. Either a JR or JP is generated depending on the range
of the loop; JR is used whenever possible.

The EXIT statement causes execution to continue at the first
statement following the innermost DO...OD block containing the
EXIT. The EXIT statement may be further qualified by a label
indicating a specific DO...OD block from which to exit. Its
format is:

where

EXIT [FROM label]

label conforms to the rules for labels
(Sections 2.2.1 and 5.3.5).

5-4

The assembler automatically inserts a single unconditional jump
to the instruction following the indicated OD keyword. Either a
JR or JP is generated depending on the range of the EXIT, with a
JR used whenever possible.

The REPEAT statement causes execution to continue at the first
statement of the innermost DO...00 block containing the REPEAT.
It can also be qualified by a label indicating a specific DO...OD
block to which execution is to proceed. Its format is:

where

REPEAT [FROM label]

label conforms to the rules for labels
(Sections 2.2.1 and 5.3.5).

The assembler automatically inserts a single unconditional jump
instruction at the REPEAT statement which branches to the
indicated DO keyword. Either a JR or JP is generated depending
on the range of the REPEAT, with a JR used whenever possible.

Example:

LOOP1: DO
ADD RO, @R1
INC R5, #2
CP R5, #limitl
IF EQ THEN EXIT FI
DO

ADD R2, @R3
INC R6, #2
CP R6, #limit2
IF GT THEN REPEAT FROM LOOP1 FI

OD
OD

5.2.4 IF Statement

The IF statement specifies that the statements between the
keywords THEN and ELSE (or between THEN and FI if the ELSE clause
is omitted) are to be executed if the specified condition code is
true. If the condition is false and the ELSE clause is present,
the statements between ELSE and FI are executed. If the
condition is false and the ELSE clause is omitted, execution
continues with the statement following FI.

The format of the IF statement is:

IF condition_code
THEN actionl_statement*
[ELSE action2_statement*]

FI

5-5

where

condition_code is Z, NZ, C, NC, PL, MI, EQ,
NE, 0V, NOV, PE, PO, LE, LT,
GT, GE, ULE, ULT, UGT, or
UGE (Section 3.2.1).

actionl_statement is performed if "condition_code"
is true and consists of zero
or more assembly-language, DO,
IF, REPEAT, or EXIT statements
or a combination of these
statements.

action2_statement is performed if "condition_code"
is false and consists of zero
or more assembly-language,
DO, IF, REPEAT, or EXIT
statements or a combination of
these statements.

The assembler automatically inserts a single conditional jump
instruction just before the THEN keyword, which branches to
either the ELSE clause, if present, or to the FI keyword if not.
The conditional jump has an opposite sense from the condition
code given; for instance, "IF 0V THEN" generates a "JP NOV"
instruction. The opposing condition pairs are: Z-NZ, C-NC,
PL-MI, EQ-NE, OV-NOV, PE-PO, LE-GT, LT-GE, ULE-UGT, and ULT-UGE.
If the ELSE clause is present, a single unconditional jump is
inserted just before the ELSE clause which branches to the FI
keyword.

For each of the jump instructions, either a JR or JP is generated
depending on the range of the IF statement, with a JR used
whenever possible.

Example:

IF NZ THEN
LD counter, #1

FI

IF GT
THEN SETFLG C; RET
ELSE RESFLG C; RET

FI

5-6

5.2.5 IP-CASE Statement

The IF-CASE statement is an extension of the IF statement. It
allows the user to select from a series of actions depending on
the contents of a selector register. The case whose list
contains a match with the contents of the selector register is
performed. An ELSE clause can be used to specify alternative
statements to be executed if no match occurs. If no ELSE is
specified and no match occurs, the statement following the FI
keyword is executed next. ;

The IF-CASE statement has the format:

IF selector_register
[CASE expression+ THEN action_statement*]+
[ELSE action_statement*]

FI

where
selector_register is the designator for a single

byte, word, or long word
register (Section 2.4.2).

expression is any expression which is valid
as an operand in a Compare
instruction.

action_statement is zero or more assembly-
language, DO, IF, REPEAT, or
EXIT statements or a combination
of these statements.

The assembler automatically inserts a Compare instruction (CP,
CPB, or CPL) and a conditional jump for each list element. For
the last expression in a CASE clause, a "jump NE" to the next
CASE is generated (or to the ELSE clause, if present, or if not
present, to the FI keyword for the last CASE). Either a JR or JP
instruction is used depending on the range of the CASE clause,
with a JR used whenever possible. When there is more than one
expression in a single CASE clause, all but the last expression
generate a "JR EQ" to the start of the action statements
associated with the CASE clause. Therefore, the number and size
of expressions for a single CASE clause must not exceed the range
of the first JR instruction for that clause.

Example:

IF R5
CASE #1, R4 THEN CALL control 1
CASE #2, @R3 THEN CALL controT_gt_l
ELSE CALL control_gt_4

FI

5-7

5.3 DEFINING DATA

Data (constants and variables) must be defined or declared so
that it can be referenced accordingly. In general, data
definition associates an identifier with a fixed value or type.
Data declaration introduces an identifier as the name of a
variable and associates a scope and type with it. The following
three statements are used to define and declare data:

• The constant-definition statement (CONSTANT), which
associates a constant identifier with a fixed value;

• The type-definition statement (TYPE), which associates
a type identifier with a fixed type;

• The variable declaration which associates a variable
identifier with a scope, type, and (optionally) an
initial value.

Constant identifiers are assumed to have INTERNAL scope.
Constants have no explicit type and are represented as 32-bit
values.

Type identifiers appearing in type-definitions are also assumed
to have INTERNAL scope. No scope or initial value can be
specified in type-definition statements. They are used primarily
to categorize data or provide a template for structured data.

The variable declaration allows a variable identifier to be
associated with any specific scope, type, or initial value
(within the limits of the variable's scope).

5.3.1 Constant Definition

A constant definition associates an identifier with a constant
expression. Since this value must be determinable at assembly
time, any identifier appearing in the expression must be
previously defined.

Constant identifiers have no explicit type and are always
represented as 32-bit values. And, since constants are defined
at the module level, they have a scope of the module in which
they are defined (INTERNAL). Constants to be used in other
modules must be redefined in those modules.

The format of the constant-definition statement is:

CONSTANT
[constant identifier ':=' constant expression]*

where
constant_identifier

constant expression

Example:

CONSTANT
minus
count
NEG_COUNT
A_SYMB
MODULUS

conforms to the rules for
identifiers (Section 2.2.1).

conforms to the rules for
constant expressions (Section
2.3.2).

-1
10
minus*count
'A1

256

5.3.2 Data Types

Data types are associated with variables either to indicate the
size of the values the variables can represent or to identify a
name as a label. Simple data types indicate whether a variable
can hold an 8-bit, 16-bit or 32-bit value; structured data types
provide a template of storage for collections of simple
variables. The label type is used to declare the scope of labels
explicitly.

with variable identifiers
.3.4), or they may be
using a user-defined "type
latter is an identifier

with a type in a TYPE
following example, the

simple type BYTE, allowing
fier in subsequent type

Data types can be directly associated
in variable declarations (Section 5
associated with variables indirectly
identifier" to specify the type. The
that has been previously associated
statement (Section 5.3.3). In the
variable CHAR is associated with the
CHAR to be used as a type identi
definitions:

l
TYPE

CHAR BYTE
letter CHAR |
digit CHAR

Simple Types. The basic data type is either a standard simple
data type or a simple data type defined by the user in a type
definition (like CHAR in the example just given).
data types are:

5-9

SHORT INTEGER or BYTE An 8-bit quantity whose value
can be signed (-128 to +127)
or unsigned (0 to 255).
value may also represent
single character from the
ASCII character set.

This
a

INTEGER or WORD

LONG INTEGER or LONG

A 16-bit quantity whose value
can be signed (-32768 to
+32767) or unsigned (0 to
65535) .

A 32-bit quantity whose value
can be signed (-2,148,483,648
to +2,148,483,647) or unsigned
(0 to 4,296,967,296) .

The values of simple variables (that is, variables defined with
simple types) are interpreted as signed or unsigned depending on
their use in assembly-language instructions.

TYPE
CHAR BYTE
small_value BYTE
large_value LONG_INTEGER
letter CHAR

Structured Types. Structured types are defined by indicating the
structuring method to be used and the types of all elements
within the selected structure. Two structuring methods are
available: ARRAY and RECORD.

Array Structures. An array structure is a collection of variable
elements, each of which has the same type. When referenced, the
identifier associated with the ARRAY type refers to the entire
array structure. Arrays with N elements are indexed from 0 to
N-l; for example, a 10-element array has index 0 as the first
element and index 9 as the last element.

Individual elements within an array can be accessed in several
different ways. A particular element's address may be calculated
at run-time, for instance, by specifying an indexed address mode.
At assembly-time, a particular element's address can be specified
by an expression containing the array identifier and a fixed
offset or by an array identifier followed by one or more constant
expressions enclosed within square brackets. In the latter case,
each constant expression represents an index for the particular
"dimension" of the array, and the assembler's calculation of the
desired element's address may involve an implicit multiplication
by the size of each dimension or by the size (in bytes) of the
element type (see Section 5.3.4).

5-10

Example

TYPE
STRING ARRAY [26 BYTE]

INTERNAL
alpha STRING

!The array identifier "alpha" is defined as a 26-byte
array!

LD R5, #0
LDB alpha(R5), #'A1

LDB alpha+1, #'B'
LDB alpha[2], #'C1

!The first element of array alpha now contains 'A', the
second element contains 'B1, and the third element
contains 'C'!

Array definition and initialization are explained in detail in
Section 5.3.4.

Record Structures. A record structure is a collection of named
fields. Unlike array elements, record fields are not required to
have the same type. For example, a record structure named
"strobe" might have a BYTE field named "pin" and a SHORT_INTEGER
field named "voltage".

TYPE
strobe RECORD [pin BYTE voltage SHORT_INTEGER]

INTERNAL
si strobe

As this example indicates, a RECORD type definition specifies an
identifier and a type for each of its fields, as well as an
identifier for the record structure itself. Individual fields
can be referenced subsequently by specifying a record variable
name followed by a period '.' and the field name.

LDB RL5, si.voltage

The scope of a record identifier is specified in the variable
declaration in which it -.is introduced (or it is implicitly
INTERNAL if introduced in a TYPE statement). The scope of record
field identifiers is the module or procedure in which they are
introduced; in other words, all field identifiers must be unique
in their entire scope. Record definition is explained in detail
in Section 5.3.4.

Label Type. An identifier with type LABEL can only be used as a
statement label. The LABEL type declaration is used primarily to
explicitly specify a label's scope. The scope of a label is
assumed to be the module in which it appears (that is, INTERNAL).

5-11

Therefore, statement labels which are to be accessible throughout
the module need not be declared, although they can be explicitly
declared INTERNAL for documentation purposes. If a label is to ^/
have GLOBAL, EXTERNAL, or LOCAL scope, however, it must be
declared explicitly in a label declaration statement.

GLOBAL
TRIG_FUNCTION LABEL

Label declaration is explained in detail in Section 5.3.5.

5.3.3 Type Definition

The type-definition statement associates an identifier with a
fixed type. These identifiers are assumed to have a scope of the
current module (that is, INTERNAL scope).

Types are used primarily to categorize data and informally
associate attributes or properties with the value of the data.
Types ARRAY and RECORD provide an abbreviated template for
structured data storage. Z8000 PLZ/ASM allows arbitrary
association of types and data values with no type-compatibility
restrictions.

The format of the type definition statement is:

TYPE
[type_identifier type]* ^

where
type_identifier conforms to the rules for

identifiers (Section 2.2.1).

type is BYTE, SHORT_INTEGER,
INTEGER, WORD, LONG, LONG_INTEGER,
a previously-defined type identifier,
or is an ARRAY or RECORD type
definition.

5-12

Example:
TYPE

limitl
Iimit2

LIST
matrix
patient

BYTE
LONG

ARRAY
ARRAY
RECORD

[128 BYTE]
[10 10 SHORT_INTEGER]
[age height weight BYTE
room WORD
sex BYTE]

char
letter
digit

BYTE
char
char

5-13

5.3.4 Variable Declaration

The variable declaration statement is used to declare the type of
variable identifiers and optionally to define their initial
values. Its basic format is:

variable_identifier+ type [':=' initial_value]

This format is limited, however, by the scope and type specified.

Initialization. There are several rules and special symbols used
for initializations in general. When a single declaration
contains more than one variable identifier, the corresponding
initialization values are listed within square brackets. A
simple variable is initialized using a constant expression. A
structured variable is initialized using a "constructor", which
is simply a list of values enclosed by square brackets, with each
level of nesting within the structure denoted by a matching set
of brackets. A special symbol, '...', indicates that the
immediately preceding value or constructor is to be repeated for
the rest of the variables at the current level of nesting. The
special symbol '?' can be used as a placeholder in a list of
initial values for simple variables or components of simple type
within a structure, and indicates that the corresponding simple
variable remains unassigned. An empty constructor, '[]',
indicates that the corresponding structured variable remains
unassigned.

Scope. The scope of the variable declaration can be GLOBAL,
EXTERNAL, INTERNAL, or LOCAL (Section 4.2.5). The first three
can be specified only in variable declarations at the module
level. LOCAL can be specified only at the procedure level.

An EXTERNAL variable declaration cannot include an initial value.
The type of the variable can be any simple or structured type, or
a previously-specified type identifier. Consequently, the format
of the variable declaration in this case reduces to:

variable_identifier+ type

Example:

EXTERNAL
counter WORD
input, output ARRAY [72 BYTE]
customer_name STRING

Simple Variable Declaration. Simple variables are variables
whose type is BYTE, SHORT_INTEGER, WORD, INTEGER, LONG,
LONG_INTEGER, or a previously specified simple type identifier
(Section 5.3.2). Simple variables which are GLOBAL, INTERNAL, or
LOCAL may optionally be given an initial value.

5-14

Simple variables are initialized in one of two ways: with a
single constant expression, or with a list of constant
expressions enclosed in square brackets. In the first case, only
one variable may appear in the declaration and is initialized to
the constant value. If a list is supplied, the variables are
initialized in left-to-right order from the initial-value list.
The initial-value list may have fewer items than the
variable-identifier list, but an error results if the
initial-value list is longer.

Example:

INTERNAL
HUE BYTE
limit WORD := %FFFF
total, subtotal BYTE := [0...]
A, B, X BYTE := ['A', 'B', 'X']
D, E, F BYTE := [0, 1]

!D=0, E=l, F is still undefined!

Array Variable Declaration. An array variable is one whose type
is ARRAY. An array variable declaration has the format:

array_identifier+ ARRAY '[' dimension+ type ']'
[':=' initial_value]

or :
array identified array type [':=' initial value]

\
' where

array_identifier conforms to the rules for
identifiers (Section 2.2.1).

dimension specifies the number of
dimensions in the array
structure and the number of
elements in each dimension.
The dimension(s) must be one
or more constant expression(s)
(Section 2.3.2) or a single
asterisk (*), as detailed
below.

type is BYTE, SHORT_INTEGER, INTEGER,
WORD, LONG, LONG_INTEGER, a
previously defined type
identifier, or is an ARRAY,
or RECORD type definition.

array_type is a previously-defined ARRAY
type identifier.

5-15

E3-3055-01 07/02/79

initial_value is a bracketed list of constant
expressions, or a character
sequence as detailed below.

Several array identifiers may appear in a single declaration, and
may optionally be initialized if they are declared GLOBAL,
INTERNAL, or LOCAL.

Array structures are initialized in left-to-right order from the
initial values supplied and in row-major sequence (that is, in
the sequence of ascending memory addresses). For example, a 3x3
matrix would be ordered in the following sequence:

[0,0] [0,1] [0,2] [1,0] [1,1] [1,2] [2,0] [2,1] [2,2]

Array structures are initialized by a bracketed list of constant
expressions. If the initial-value list contains "n" items, the
first "n" elements of the array structure are initialized (in
row-major sequence). The number of constants supplied cannot
exceed the number of elements in the array structure.

Example:

INTERNAL
matrix ARRAY [10 10 LONG_INTEGER]
list ARRAY [10 BYTE] := [0,1,0,0,1]
TABLE ARRAY [4 BYTE] := ['T1, 'O1, 'D1, 'S']
ONEDIM1, ONEDIM2 ARRAY [2 BYTE] := [[!...][2...]]

Normally, each dimension specified in the array declaration must
be a constant expression so that variable upper bounds are
prohibited. The sole exception is an array declaration
initializing a one-dimensional array structure. In this case,
'*' is specified as the dimension and the length of the list is
determined by the number of items in the initialization list.
When the '*' feature is used, array structures can be initialized
in two ways: with a bracketed list of constants as described
above, or with a character sequence (enclosed in single quote
marks). In the latter instance, the array elements must be type
BYTE, SHORT_INTEGER, or a user-defined 8-bit type and each byte
is initialized to a single character value.

Example:

INTERNAL
list ARRAY [* BYTE] := [0,1,0,0,1]

IThis array is only 5 bytes; "list" array in last
example is 10 bytes, although only 5 are initialized!

TABLE ARRAY [* BYTE] := 'TODS'
!Compare to TABLE array in last example!

5-16

Record Variable Declaration. A record variable is a variable
whose type is RECORD. A record variable declaration specifies an
identifier for the record as a whole and an identifier and type
for each field within the record. A field type may be ARRAY or
RECORD, as well as a simple type.

A record variable declaration has the format:

record_identifier+ RECORD '[' [field_identifier+ type]+ ']'
[':=' initial value]

or :

where

record_identifier+ record_type
[':=' initial value]

identifier

type

record_type

initial value

conforms to the rules for identifiers
(Section 2.2.1).

is BYTE, SHORT_INTEGER, WORD, INTEGER,
LONG, LONG_INTEGER, a previously-defined
type identifier, or is an ARRAY or
RECORD type definition.

is a previously-defined RECORD type
identifier.

is a bracketed list of. constant
expressions.

Several record identifiers may appear in a single declaration,
and may optionally be initialized if declared GLOBAL, INTERNAL,
or LOCAL. Each record field is initialized in left-to-right
order from the values given in the initial list. A list of "n"
values enclosed by square brackets may be given, with the first
"n" fields being initialized. Having more constants than the
total number of record fields is flagged as an error.

Example:

GLOBAL
person RECORD

MSG RECORD

[age, height, weight BYTE
birth RECORD [day, month, year BYTE]
salary WORD]

[length BYTE char ARRAY [50 BYTE]] :=[0[0]]
llength field and first byte of char array
are initialized to zero!

If an array or record appears within another array or record,
then this nesting is represented by enclosing each level of
initialization values within square brackets. Notice that in
this case, the last record fields or array elements at each level

5-17

do not have to be specified. Furthermore, if more than one
structured variable identifier appears in a single declaration,
then the part of the initial value list corresponding to each
structured variable must also be enclosed by square brackets.

TYPE
PATIENT RECORD [ROOM WORD

BIRTH RECORD [DAY,MO,YR BYTE]
SEX BYTE]

INTERNAL
FEMALE ARRAY [100 PATIENT] :=[[?,[],'F']...]

lonly the SEX field of each record is initialized!

Alignment. If the current location counter value is even, then
any data variable or instruction may start at that address.
However, if the current location counter value is odd, then only
8-bit values may start at that address. The assembler
automatically aligns simple variables so that word (WORD or
INTEGER) or long word (LONG or LONG_INTEGER) variables are
located at even addresses. This is accomplished by inserting a
byte with an undefined value when the location counter value is
odd, thus forcing the word or long word to stert at the next
higher even address. Instructions within a procedure are also
automatically aligned.

Structured variables are, in general, automatically aligned; that
is, all array or record variables are forced to start at an even
address (an undefined byte value is inserted if the location
counter was odd). An exception to this rule is made for arrays
whose elements are any 8-bit type (based on BYTE or
SHORT_INTEGER), which do not have to be aligned on an even
address boundary.

It is the programmer's responsibility to ensure that all
variables within a structure are aligned properly. The
programmer should be careful to align record fields on their
appropriate address boundaries relative to the start of the
record. This can be accomplished by defining "filler" fields
where necessary to force the alignment of the following field.

5-18

E3-3055-01 07/02/79

5.3.5 Label Declaration

The label declaration statement specifies that an identifier is
used in the program as a statement label. It cannot be used for
any other purpose within its defined scope. The format of the
label declaration is:

label declaration+ LABEL

where

label identifier conforms to
identifiers

the rules for
in Section 2.2.1

Note that the colon (:) that follows a label identifier when it
appears in an executable statement (Section 2.2.1) is not
included when the label is identified in a label declaration
statement. Note also that labels cannot be given an initial
value (that is, the label declaration cannot be used to assign
absolute addresses).

A label can have GLOBAL, EXTERNAL, INTERNAL, or LOCAL scope
(Section 4.2.5). If a label is used in an executable statement
without being declared in a label declaration statement, it is
assumed to be INTERNAL to the module in which it appears. This
default scope can be overridden by explicitly declaring the scope
of the label.

Notice that a label with LOCAL scope must be declared in the
procedure declaration before the ENTRY keyword; that is, before
the label is used or defined, whereas a label with GLOBAL,
EXTERNAL, or INTERNAL scope may be used before it is either
declared or defined. To allow the programmer to avoid
pre-declaring LOCAL labels, Z8000 PLZ/ASM provides a special form
of statement labels which are always of LOCAL scope and cannot be
declared explicitly. The form of a special label is a dollar
sign "$", followed immediately by any valid decimal number, and
it can be used in the same manner as a regular statement label
identifier, except that its scope is always limited to the
procedure in which it is defined.

5 19

E3-3055-01 07/02/79

Example:

GLOBAL
STEP3 LABEL

processlO PROCEDURE
LOCAL

a,b,c BYTE
STEP2 LABEL

ENTRY
STEP1: ...

IProcedure has GLOBAL scope!

1STEP1 has INTERNAL scope!

ISTEP2 is LOCAL to
"processlO"!

STEPS 1STEP3 has GLOBAL scooe!

$1: .. !$1 is LOCAL to "processlO"!

END processlO

5.3.6 SIZEOF Operator

Z8000 PLZ/ASM includes a special unary operator, SIZEOF, which
operates on type identifiers to determine the size (in bytes) of
a variable field. Although SIZEOF can be
is useful for sizing arrays, records, and

used with any type,
user-defined types.

it

TYPE
char
d igit
matrix
patient

BYTE
char
ARRAY [10 10 WORD]
RECORD [height weight BYTE

room WORD]

LD RO, 4SIZEOF digit
LD Rl, tSIZEOF matrix
LD Rl, If (SIZEOF matrix/

SIZEOF WORD)
LD R2, 4SIZEOF patient
LD R3, 43IZEOF patient.weight

!RO contains 1!
!R] contains 200!

!R1 contains 100!
!R2 contains 4!
!R3 contains 1!

5-20

E3-3055-01 07/02/79

Appendix A
Instruction Set Summary

TO BE PUBLISHED

A-l

Appendix B
High-Level Statement Summary

The following list summarizes the high-level keywords and their
uses.

ARRAY

BYTE

CASE

CONSTANT

DO

ELSE

END

ENTRY

EXIT

EXTERNAL

FI

FROM

One of the two structured variable
types. Used in type definition and
variable declaration statements.

One of the simple variable types.
Used in type definition and variable
declaration statements.

Used in IF conditional-execution
statement. Instruction(s) following
CASE definition are executed if one
of the specified values matches
selector register.

Introduces constant definition(s).

Introduces DO loop.

Used in IF conditional-execution
statement. Statements between ELSE
and FI are executed if the specified
condition is false.

Module or procedure terminator.

Marks beginning of action-statement
part of a procedure.

Loop control statement used to
control execution flow of a DO loop.

Specifies that variables and/or
procedures defined as GLOBAL in
another module will be used in the
current module.

IF statement terminator.

Used in conjunction with EXIT and
REPEAT loop control statements.

B-l

GLOBAL

IF

INTEGER

INTERNAL

LABEL

LOCAL

LONG

LONG_INTEGER

MODULE

OD

PROCEDURE

RECORD

REPEAT

SHORT_INTEGER

THEN

Declares variables and/or procedures
to have a scope of the entire
executable program.

Introduces IF statement. Code
following IF-THEN is executed if the
specified condition is true.

One of the simple variable types.
Equivalent to WORD.

Declares variables and/or procedures
to have a scope of the current module
only.

Used to declare statement label
scope explicitly.

Declares variables to have a
scope of the current procedure only.

One of the simple variable types.
Used in type definition and variable
declaration statements.

One of the simple variable types.
Equivalent to LONG.

Introduces a module.

DO loop terminator.

Introduces a procedure.

One of the two structured variable
types. Used in type definition and
variable declaration statements.

Loop control statement used to
control execution flow of a DO loop.

One of the simple variable
types. Equivalent to BYTE.

Used in IF conditional-execution
block. The statements between THEN
and ELSE (or THEN and FI if ELSE is
omitted) are executed if the
specified condition is true.

B-2

TYPE Introduces type definition(s).

WORD One of the simple variable types.
Used in type definition and variable
declaration statements.

The remainder of this appendix contains the complete grammar for
Z80ÖO PLZ/ASM. In this grammar:

• Keywords are shown as all uppercase letters;

• Required special characters are enclosed in "single
quotes ' ;

• Optional items are enclosed in [square brackets];

• Possible repetition of an item is shown by appending
a "+" (to signify one or more repetitions) or "*"
(to signify zero or more repetitions) to the item;

• Parentheses are used to group items to be repeated;

• A vertical bar "|" signifies that an alternative
follows.

B-3

PLZ/ASM GRAMMAR - MODULE SYNTAX

modul« module_identifier MODULE
declarations*

END module identifier

declarations

constants

types

globals

internals

externals

constant definition

expression

ar ithmetic_expression

term

factor

:> constants
:> types
:> globals
=> internals
=> externals

=> CONSTANT
constant_defin it ion*

= > TYPE
type_definit ion*

= > GLOBAL
var_or_proc_declaration*

=> INTERNAL
var_or_proc_declarat ion*

= > EXTERNAL
restr icted_var_or_proc_declaration*

:> constant_identifier
1:-' expression

=> arithmetic_expression
[rel_op arithmetic_expression]*

;> term [add_op term]*

=> factor [mult_op factor]*

:> unary_operator factor
-> ' (' excr ess ion ') '
-> S I Z E O F t y p e _ i d e n t i f i e r
= > c o n s t e n t _ i d e n t i f i e r
•-> label
:> var iable
:> n u m b e r
: > c h a r a c t e r cons tan t

B-4

E3-3055-01 07/02/79

character_constant => character_sequence

type definition => type identifier type
— —

type => simple_type
=> structured_type

simple_type => BYTE
=> WORD
=> LONG
=> SHORT_INTEGER
=> INTEGER
=> LONG_INTEGER
=> simple_type_identifier

structured_type => array_type
=> record_type

array_type => ARRAY '[' expression* type ']'
=> array_type_identifier

record_type => RECORD '[' field_declaration+ ']'
=> record_type_identifier

field_declaration => field_identifier+ type

var_or_proc_declaration
=> variable_declaration
=> procedure_declaration

variable_declaration => variable_noinitial_declaration
=> variable_initial_declaration
=> label_declaration

restr icted_var_or_proc_declaration
=> identifier* type
=> procedure_identifier PROCEDURE

variable_noinitial_declaration
=> identifier* type

B-5

variable_initial_declaration
=> identifier simple_type

':=' initial_value
=> identifier identifier* simple_type

1:=' '[' initial value*
['...'] '] '

=> identifier structured_type
1:=' constructor

=> identifier identifier+ structured_type
':=' '[' constructor*
['...'I '] '

=> identifier ARRAY
1 t' '*' simple_type ']'
1:=' '[' initial_value+ ']'

=> identifier ARRAY
1[' '*' simple_type ']'
':=' character_sequence+

J

constructor

initial_component

initial_value

label_declaration

variable

array_variable

array_designator

record_variable

record_designator

= > ' [' initial component*
['...'I '] '

=> initial_value
=> constructor

=> expression
=> ' ? '

=> label_identifier+ LABEL

=> identifier
=> array_variable
=> record_variable

=> array_designator
1[' expression+ ']'

=> array_identifier
=> record_variable
=> array_variable

=> record_designator
1.' field_identifier

=> record_identifier
=> array_variable
=> record variable

B-6

procedure declaration

locals

statement

=> procedure_identifier
PROCEDURE

locals*
[ENTRY

statement*]
END procedure_identifier

=> LOCAL
variable_declaration*

=> [label ':'] statement
=> loop_statement
=> exit_statement
=> repeat_statement
=> if_statement
=> select_statement
=> assembler instruction

loop_statement

label

exit_statement

repeat_statement

if_statement

select_statement

seiector_reg ister

select_element

rel_op

add_op

mult_op

unary_operator

assembler instruct ion

operation

= > DO

OD
statement*

=> label_identifier
=> '$' decimal_constant

=> EXIT [FROM label]

=> REPEAT [FROM label]

=> IF condition_code THEN statement*
[ELSE statement*] FI

=> IF selector_register
seleet_elernent+
[ELSE statement*] FI

=> register

=> CASE expression+
THEN statement*

I '<>' I '<' I •>'

I '-' I LOR | LXOR

I '/' I LAND | MOD

I ' - ' | LNOT

=> operation operand*

=> Z8000 instruction

= > ' + '

= > •* •

= > ' + '

SHL SHR

B-7

operand

register

single_register

double_register

low_byte_register

high_byte_register

quad_register

indirect_register

immediate

indexed_address

based_address

based_indexed_address

direct_address

relative address

=> register
=> indirect_register
=> immediate
:> indexed_address
=> based_address
=> based_indexed_address
=> direct_address
=> relative_address
=> condition_code
= > flags
= > int

=> single_register
=> double_register
=> low_byte_register
=> high_byte_register
=> quad_register
=> special_register

=> RO | Rl | R2 | R3 | R4 | R5 |
R6 | R7 | R8 | R9 | RIO | Rll
R12 | R13 | R14 | R15

=> RRO I RR2 | RR4 | RR6 I
RR8 | RR10 | RR12 I RR14

=> RLO | RL1 | RL2 | RL3 I
RL4 | RL5 | RL6 | RL7

=> RHO | RH1 | RH2 | RH3 |
RH4 I RH5 | RH6 I RH7

=> RQO | RQ4 | RQ8 | RQ12

=> '@' register

=> '#' expression
=> '#' SEG expression
-> '#' OFFSET expression

=> address_designator
1(' register ')'

=> register '(' immediate ')'

=> register '(' register ')'

=> address_designator

=> address designator

B-8

E3-3055-01 07/02/79

, address_designator => ' I ' seg_address_designator ' I '
=> seg_address_designator

seg_address_designator => expression
= > '«' expression '»' expression

condition_code => Z I NZ | EQ I NE I MI I PL I
C i NC | 0V | NOV | LT | GE |
LE | GT | ULT | UGE ! ULE I UGT
PE I PO

special_register => FCW I FLAGS I NSP | NSPOFF |
NSPSEG | PSAP | PSAPOFF |
PSAPSEG | REFRESH

flags => C | Z l S | P | V

int => VI | NVI

B-9

E3-3055-01 07/02/79

Z8000_instruction => ADC I ADCB | ADD | ADDB | ADDL |
AND | ANDB | BIT I BITS I CALL I
CALR | CLR | CLRB | COM | COMB |
COMFLG | CP I CPE I CPL I CPD I
CPDB | CPDR | CPDRB | CPI I CPIB |
CPIR I CPIRB | CPSD I CPSDB | CPSDR I
CPSDRB | CPSI | CPSIB | CPSIR |
CPSIRB | DAB | DBJNZ I DEC I DECB I
DI | DIV | DIVL | DJNZ I El | EX |
EXB | EXTS | EXTSB I EXTSL | HALT I
IN | INB | INC | INCB | IND | INDB I
INDR | INDRB I INI | INIB I INIR I
INIRB | IRET I JP | JR | LD | LDA |
LDAR | LDB I LDCTL I LDCTLB I
LDD | LDDB I LDDR | LDDRB | LDI |
LDIB | LDIR | LDIRB | LDK I LDL |
LDM | LDPS | LDR | LORE | LDRL I
MBIT | MREQ I MRES I MSET I MULT I
MULTL | NEC I NEGB | NOP | OR |
ORB | OTDR | OTDRB I OTIR I OTIRB I
OUT I OUTB I OUTD | OUTDB | OUTI I
OUTIB | POP | POPL | PUSH I PUSHL I
RES | RESB | RESFLG I RET | RL |
RLE | RLC | RLCB | RLDB I RR | RRB I
RRC | RRCB | RRDB I SBC I SBCB | SC I
SDA I SDAB j SDAL | SDL | SDLB I
SDLL | SET I SETB | SETFLG | SIN I
SINE l SIND | SINDB I SINDR | SINDRB I
SINI | SINIB | SINIR | SINIRB I SLA |
SLAB I SLAL I SLL | SLLB I SLLL I
SOTDR | SOTDRB | SOTIR | SOTIRB |
SOUT | SOUTB | SOUTD I SOUTDB I
SOUTI | SOUTIB | SRA j SRAB | SRAL |
SRL | SRLB | SRLL I SUB I SUBB I
SUBL | SWAP | TCC I TCCB I TEST I
TESTE | TESTL | TRDB | TRDRB I TRIE I
TRIRB j TRTDB I TRTDRB I TRTIB I
TRTIRB I TSET I TSETB I XOR | XORB

B-10

PLZ/ASM GRAMMAR - LEXICAL SYNTAX

PLZ_text

id_constant_text

separator

identifier

constant

number

decimal_constant

hex_constant

octal_constant

binary_constant

character_sequence

string_text

string_char

special_string_text

special_str ing_char

letter

bin_digit

oct digit

=> separator* [id_constant_text]
(separator+ id_constant_text)*

=> identifier
=> constant

=> delimiter_text
=> special_symbol

=> letter (letter I digit I

=> number
=> character_sequence

=> decimal_constant
=> hex_constant
=> octal_constant
=> binary_constant

=> digit+

=> ' % ' hex_digit+

= > ' % (8) ' oct_digit+

= > ' % (2) ' bin_digit+

= > ' ' ' string_text+ ' ' '

=> string_char
=> special_string_text

=> any_character_except_%_or_'

' M *

=> '%' special_string_char
=> '%' hex_digit hex_digit

'p1
=>

=>

=>

=>

' R 1 |
' r 1 1

' A 1 |
'a ' 1

' O 1 I

' 0 '.4. 1

1 'L '
'!'

I 'B'
'b '

1 'I1

1 '!'
1 '5 '

I 'T '
1 ' t '

1 ...
1 ...

I ' 2 '
1 ' 6 '

'Q1 I '%' I

I '3
I '7

B-ll

digit

hex_digit

special symbol

delimiter_text

comment

delimiter

' 0 '
'5 '

' O 1

' 5 '
'A 1

' a '

• + •
i p i

' t '1 = '

' l1

' 6 '

'!'
1 6 '
'B 1

' b '

1 — '
1 • *

1] '
1 < '

' 2 '
' 7 '

' 2 '
i 7 i

' C 1

' c 1

• * i
'.'
' ('
' > '

'3 '
' 8 '

'3 '
'8 '
'D 1

' d 1

V
1 % '

' < = '

' 4 '
.9 .

• 4.
, 9 , |

' E 1

'e1

' ... '
' # '

' < > ' |
| • > = '

'«' l '»' l T

=> delimiter
=> comment

= > ' ! ' any_character_except_!

= > ' ;' I space | ' , ' |
tab I formfeed | linefeed
carriage_return

p. |

B-12

Appendix C
Assembler Directives and

Extended Instructions

C.l ASSEMBLER DIRECTIVES

The following is a summary of some of the assembler directives
used to control the operation of the Z8000 assembler. Other
directives are explained in detail in the Z8000 Assembler User's
Guide.

These directives can be embedded in the source program, and
always start with a dollar sign "$", immediately followed by the
particular directive and then any operands. For example, a
programmer may want to fix the address for a procedure:

$ABS 12

The assembler directives are:

$ABS [location]

$REL [location]

$SDEFAULT

Specifies that the object code produced
is to be absolute. If "location" is
specified, the location counter will
be set to that value and the assembler
will begin assigning absolute addresses
from that location. "Location" "'ist be
a constant expression. $ABS rema is in
effect until a $REL directive is
encountered.

Specifies that the object code produced
is to be relocatable. If "location"
is specified, it is a relocatable
offset from the beginning of the
current section. "Location" must be a
constant expression. $REL remains
in effect until $ABS directive is
encountered. $REL 0 is the default at
the start of module assembly.

Cancels the effect of the $SECTION
assembler directive and restores
default memory assignment. Data
declarations reside in the data
section and procedure declarations
reside in the program section.

C-l

$SECTION identifier Causes the object code produced to be
associated with a symbolic identifier
which can be used later for mapping
into one of the memory areas.
Remains in effect until either
another $SECTION directive is
encountered, or until a $SDEFAULT
directive restores default memory
assignment.

C.2 EXTENDED INSTRUCTIONS

The following three "extended" instructions may be placed within
a procedure as a one-operand assembly language instruction and
produce an arbitrary byte, word, or long word value.

BVAL constant_expression

WVAL constant_expression

LVAL constant expression

Defines a byte value to be
located at the current location
counter. Can be used to
"create" Z8000 instructions or
data.

Defines a word value to be
located at the current location
counter. Can be used to
"create" Z8000 instructions or
data.

Defines a long word value to be
located at the current location
counter. Can be used to
"create" Z8000 instructions or
data.

C-2

Appendix D
Reserved Words and Special Characters

D.I RESERVED WORDS

Certain special symbols are reserved for Z8000 PLZ/ASM and can
not be redefined as symbols by the programmer. These are the
names of operators, condition codes, register symbols, assembly
language instructions, and high-level statement keywords. The
specific reserved words are listed below.

NAMES OF OPERATORS

LAND OFFSET
LNOT SEG
LOR SHL
LXOR SHR
MOD SIZEOF

STATUS FLAGS AND CONTROL BITS

C V
NVI VI
P Z
s

CONDITION CODES

C LE NE PE UGT
EQ LT NOV PL ULE
GE MI NZ PO ÜLT
GT NC 0V UGE Z

CONTROL REGISTER SYMBOLS

FCW PSAP
FLAGS PSAPOFF
NSP PSAPSEG
NSPOFF REFRESH
NSPSEG

D-l

ASSEMBLY LANGUAGE INSTRUCTIONS

ADC
ADCB
ADD
ADDB
ADDL
AND
AND B
BIT
BITB
CALL
CALR
CLR
CLRB
COM
COMB
COMFLG
CP
CPB
CPL
CPD
CPDB
CPDR
CPDRB
CPI
CPIB
CPIR
CPIRB

CPSD
CPSDB
CRSDR
CPSDRB
CPSI
CPSIB
CPSIR
CPSIRB
DAB
DBJNZ
DEC
DECB
DI
DIV
DIVL
DJNZ
El
EX
EXB
EXTS
EXTSB
EXTSL
HALT
IN
INB
INC
INCB

IND
INDB
INDR
INDRB
INI
INIB
INIR
INIRB
I RET
JP
JR
LD
LDA
LDAR
LDB
LDCTL
LDCTLB
LDD
LDDB
LDDR
LDDRB
LDI
LDIB
LDIR
LDIRB
LDK
LDL

LDM
LDPS
LDR
LDRB
LDRL
MBIT
MREQ
MRES
MSET
MULT
MULTL
NEC
NEGB
NOP
OR
ORB
OTDR
OTDRB
OTIR
OTIRB
OUT
OUTB
OUTD
OUTDB
OUTI
OUTIB
POP

POPL
PUSH
PUSHL
RES
RESB
RESFLG
RET
RL
RLE
RLC
RLCB
RLDB
RR
RRB
RRC
RRCB
RRDB
SBC
SBCB
SC
SDA
SDAB
SDAL
SDL
SDLB
SDLL
SET

SETB
SETFLG
SIN
SINB
SIND
SINDB
SINDR
SINDRB
SINI
SINIB
SINIR
SINIRB
SLA
SLAB
SLAL
SLL
SLLB
SLLL
SOTDR
SOTDRB
SOTIR
SOTIRB
SOUT
SOUTB
SOUTD
SOUTDB
SOUTI

SOUTIB
SRA
SRAB
SRAL
SRL
SRLB
SRLL
SUB
SUBB
SUBL
TCC
TCCB
TEST
TESTB
TESTL
TRDB
TRDRB
TRIE
TRIRB
TRTDB
TRTDRB
TRTIB
TRTIRB
TSET
TSETB
XOR
XORB

When defining symbols, users should also avoid the forms Rn, RHn,
RLn, RRn, and RQn where' n is a number from 0 to 15.

EXTENDED INSTRUCTIONS

BVAL
LVAL
WVAL

HIGH-LEVEL STATEMENT KEYWORDS

ARRAY
BYTE
CASE
CONSTANT
DO
ELSE

END
ENTRY
EXIT
EXTERNAL
FI
FROM

GLOBAL
IF
INTEGER
INTERNAL
LABEL
LOCAL

LONG
LONG_INTEGER
MODULE
OD
PROCEDURE
RECORD

REPEAT
SHORT_INTEGER
THEN
TYPE
WORD

D-2

D. 2 SPECIAL CHARACTERS

The list of special characters below includes delimiters and
special symbols. The difference between them is that delimiters
have no semantic significance (for example, two PLZ/ASM tokens
can have any number of blanks separating them) , whereas special
symbols do have semantic meaning (for example, # is used to
indicate an immediate value) .

The class of delimiters includes the space (blank) , tab, form
feed, line feed, carriage return, semicolon (;), and comma (,).
The comment construct enclosed in exclamation points (!) is also
considered a delimiter.

special symbols and their uses are as follows:

+ Binary addition; unary plus.

Binary subtraction; unary minus.

* Unsigned multiplication; dimension specifier for
list (one-dimensional array) initialization.

/ Unsigned division.

: Label terminator.

:= Constant and variable initialization.

% Nondecimal number base specifier; special
character specifier within quoted character
sequence .

Immediate data specifier.

@ Indirect address specifier.

$ Current contents of location counter; specifies
special LOCAL statement labels; precedes
assembler directives.

[] Enclose components of ARRAY or RECORD definition;
enclose index part of ARRAY reference; enclose
initialization values.

() Enclose expressions selectively; enclose octal or
binary number base indicator; enclose index part
of indexed, based, and based indexed address.

Separates RECORD name from field name in RECORD
field reference.

< "Less than" operator

> "Greater than" operator. s J

» "Equal" operator.

<> "Not equal" operator.

<= "Less than or equal" operator.
\

>= "Greater than or equal" operator.

? Placeholder in initialization lists.

... Repetition symbol in initialization lists.

« » Denotes segmented address.

I I Enclose short offset segmented address.

D-4

Appendix E
Hex-ASCII Table

The following table lists the ASCII character
hexadecimal representation for each character code.

GRAPHIC OR
CONTROL

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
LF
VT
FF
CR
SO
SI
OLE
DC1
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
SUB
ESC
FS
GS
RS
US

(space)
i
n

#
$

HEX
CODE

00
01
02
03
04
05
06
07
08
09
OA
OB
OC
OD
OE
OF
10
11
12
13
14
15
16
17
18
19
1A
IB
1C
ID
IE
IF
20
21
22
23
24
25
26
27

GRAPHIC OR
CONTROL

0
1
2
3
4
5
6
7
8
9

A
B
C
D
E
F
G
H
I
J
K
L
M
N
0

set and the

HEX
CODE

28
29
2A
2B
2C
2D
2E
2F
30
31
32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F
40
41
42
43
44
45
46
47
48
49
4A
4B
4C
4D
4E
4F

E-l

GRAPHIC OR
CONTROL

P
Q
R
S
T
U
V
W
X
y
z
[
\
]
T

a
b
c
d
e
f
g

HEX
CODE

50
51
52
53
54
55
56
57
58
59
5A
5B
5C
5D
5E
5F
60
61
62
63
64
65
66
67

GRAPHIC OR HEX
CONTROL CODE

h 68
i 69
j 6A
k 6B
l 6C
m 6D
n 6E
0 6F
p 70
q 71
r 72
s 73
t 74
u 75
v 76
w 77
x 78
y 79
z 7A
{ 7B
1 7C
} (ALT MODE) 7D

7E
DEL (RUB OUT) 7F

E-2

DOCUMENT CHANGE NOTICE

DATE: 07-02-79

DCN NUMBER: E3-3055-01

PUBLICATION NUMBER: 03-3055-01

TITLE: Z8000 PLZ/ASM Assembly Language
Programming Manual

PREVIOUS DON'S BY NUMBER: None

EFFECTIVE DATE: 07-02-79

This Document Change Notice provides changed pages
for the publication specified above. The changed
pages will remain in effect for subsequent
releases unless specifically amended by another
DCN or superseded by a publication revision.
Replace the following pages in your manual with
the enclosed pages:

vii 4-1
4-7

3-19

3:55 l-u G-Äite--
3-59 5-19
3-77
3-123 B-3
3-127 B-7
3-129 B-9
3-131
3-133

Changes are indicated by a vertical line in the
right-hand margin.

NOTE: Please file this DCN at the back of the
manual to provide a record of changes.

CF 1017 01A

